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I    Introduction 

With more than 85% of the European population using the mobile internet (GSMA, 2023), prac-

tically anyone can order individualized logistical services anytime, anywhere. This proliferation 

of digital distribution channels has fundamentally changed the market environment in which pro-

viders of business-to-consumer logistical services operate. Among the most impactful changes 

are the following three: 

• Breakthrough of new business models: Logistical services are affected by the general trend 

of service individualization (Lehrer et al., 2018). In the pre-digital era, private customers only 

had access to highly standardized logistical services. These include both goods transportation 

services like standard mail delivery or parcel delivery and passenger transportation services 

such as scheduled public transport with buses and railways. Via digital channels, customers 

can now easily configure, order, and pay for customized logistical services on short notice. 

More precisely, customers can choose the desired parameters such as timing, speed, or origin 

and destination of the transportation service. Before, such parameters were set by the provider 

alone. Now, these business models, which were previously confined to niche markets, often 

in the business-to-business segment, can be run on a large-scale for private customers. 

• Increase in dynamism and stochasticity: Regarding the operational fulfillment planning 

problems arising for logistical service providers, the new business models are associated with 

a shift from static, deterministic problems to dynamic, stochastic problems. The main reasons 

for that are the individuality of orders and the ability to submit ad-hoc service requests in 

parallel to ongoing fulfillment operations. This means that planning decisions can no longer 

be made in batches as, e.g., in standard mail delivery (Irnich, 2008), or at the strategic-tactical 

planning level as, e.g., in scheduled public transport (Schöbel, 2012). Instead, vehicle routing 

decisions must be made in real-time for sequentially arriving customer requests. Likewise, 

stochasticity becomes much more relevant because when making one such decision, the char-

acteristics of future orders, which influence the overall system performance, are highly un-

certain. Overall, operational planning for the new logistical services becomes much more 

complex since the provider must solve dynamic, stochastic vehicle routing problems 

(Soeffker et al., 2022). 

• Opportunities for demand management: When customers are given the freedom to choose 

their desired service parameters, they demand a very high service level, i.e., as little deviation 

as possible by the provider (Amorim et al., 2024). This poses another challenge for providers 

since it drastically reduces the opportunities for demand consolidation, which the traditional 

standardized services naturally allow (Ulmer, 2020). To navigate the trade-off between ser-

vice level and demand consolidation, providers can apply demand management. The basic 

idea behind it is to actively control the availability or the pricing of fulfillment options that 

customers can choose from upon submitting a request. Thereby, customers’ choices are in-

fluenced according to the providers objectives, and the system performance improves. The 
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methodological foundation of these approaches lies in traditional revenue management and 

dynamic pricing, which originated in the airline industry (Strauss et al., 2018). 

As a result of these changes, providers in many different fields of application face a common 

optimization problem at the operational planning level: They must decide on which offers are 

made to requesting customers and (simultaneously) decide on a feasible route plan for the fulfill-

ment of collected orders. Usually, both decisions are optimized with the objective of maximizing 

profit, i.e., revenue net of routing cost. The resulting novel optimization problems are called in-

tegrated demand management and vehicle routing problems (i-DMVRPs). While dynamic vehicle 

routing problems as well as revenue management and dynamic pricing problems alone are already 

highly complex, considering them in an integrated fashion entails additional complexity since 

both types of decisions are heavily intertwined. Therefore, integrated demand management and 

vehicle routing has emerged as a distinct research area, and its methodology combines elements 

from both dynamic vehicle routing as well as revenue management and dynamic pricing. 

In the following, an initial understanding of the basic structure of i-DMVRPs is provided. To this 

end, we first consider a single customer’s booking process before widening the view to consider 

the structure of the entire planning horizon.  

 

Fig. 1 Prototypical booking process 

Fig. 1 shows a prototypical, simplified example of a single customers’ booking process and the 

associated planning tasks for the provider. The booking process of a single customer can be sub-

divided into four steps. The first step (request arrival) and the third step (order confirmation) 

require the customer to enter data into their smartphone or web application. The second step (de-

mand management) and the fourth step (vehicle routing) require the provider to make planning 

decisions. We consider all steps in more detail below: 

1. Request arrival: The customer partly specifies the desired logistical service. The point in 

time at which the request is submitted is termed time of request. Usually, a delivery location 

or drop-off location is required along with the desired time of service fulfillment. In some 
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applications, additional parameters, such as a pick-up location or a more detailed specification 

of the service type, are relevant. Depending on the relation between time of request and de-

sired time, we can distinguish three types of requests: advance requests (time of request at 

least one day prior to desired time), same-day requests (time of request on the same day as 

desired time), and ad-hoc requests (time of request matches desired time). Upon entering the 

data, the customer requests an offer by the provider, which triggers Step 2.  

2. Demand management: Having received the request, the provider must decide on the offer 

they make in response. Optimizing this decision represents the first subproblem, termed de-

mand management subproblem, of the provider’s overall operational planning problem. In its 

most basic form, the demand management decision corresponds to the provider deciding on 

whether the desired fulfillment option is offered, i.e., whether the request is accepted as it is 

or rejected. As an extension, the provider can also decide on whether alternative fulfillment 

options are offered and/or vary the price of each fulfillment option. In any case, the result of 

the demand management decision, which is termed the offer set, is then presented to the cus-

tomer. This initiates Step 3. 

3. Order confirmation: Following provider-side request acceptance, the customer either con-

firms their order or abandons the booking process if they are not satisfied with the provider’s 

offer. If the offer set comprises multiple fulfillment options, the customer chooses exactly 

one as part of the order confirmation. A successful order confirmation triggers Step 4. 

4. Vehicle routing: In the final step, it is again up to the provider to decide on how to fulfill the 

collected order, i.e., how the route plan is adapted to include all pending orders and the newly 

received one. To determine the updated route plan, the provider must solve a second subprob-

lem, namely the vehicle routing subproblem. 

 

Fig. 2 Planning process 

Now, we consider the entire planning process. Fig. 2 shows a time period of five days. Typically, 

the provider only offers service during a certain period of a day, which is called a service horizon. 

We now focus on the three different service horizons depicted in different line styles (on Day 3, 

Day 4, and Day 5). As the matching line style indicates, each of these service horizons is associ-

ated with a corresponding booking horizon during which customers can submit requests for 

Day 1 Day 2 Day 3 Day 4 Day 5

Service 

horizon

Disjoint

booking

horizon

Overlapping

booking

horizon

Cut-off time

Cut-off time

Cut-off time



I    Introduction 

 4 

service at this particular service horizon. The temporal relation between a pair of corresponding 

booking horizon and service horizon can be twofold:  

• Overlapping horizons: In this case, both horizons may cover the exact same time period. 

Then, customers can only submit same-day requests and ad-hoc requests. Alternatively, as 

depicted in Fig. 2, the booking horizon additionally extends over multiple days prior to the 

day of the service horizon, also allowing customers to place advance requests. E.g., a service 

to be fulfilled during the service horizon of Day 3 (solid line) can be requested from Day 1 

until the end of the service horizon on Day 3. Analogously, requests for the service horizon 

of Day 4 (dashed line) can be submitted on Day 2, Day 3, and Day 4 itself until the respective 

service horizon ends. 

• Disjoint horizons: In case of disjoint horizons, the booking horizon also starts multiple days 

before the day of the service horizon but ends at a cut-off time before the start of the corre-

sponding service horizon. In this setting, customers can only submit advance requests. E.g., 

requests for a service to be fulfilled during the service horizon of Day 3 (solid line) can only 

be submitted until the evening of Day 2. Likewise, the latest point in time for submitting a 

request for Day 4 (dashed line) lies in the evening hours of Day 3.  

Dividing the planning horizon into several service horizons has a crucial advantage: Providers 

can then plan each pair of a service horizon and its corresponding booking horizon independently. 

Hence, a problem instance of an i-DMVRP is equivalent to one pair of finite horizons. As long 

as only few customers are willing to substitute between multiple days, this assumption is reason-

ably weak. If this is not the case, an infinite planning horizon results.  

To illustrate the high relevance and broad variety of business models involving i-DMVRPs, we 

now briefly discuss three of their most prominent applications: 

• Attended home delivery (AHD): Unlike standard parcels, certain deliveries require the cus-

tomer to be present at home to receive them. Typical examples include bulky goods such as 

large household appliances and furniture, perishable goods like groceries, or pharmaceuticals 

that must be received personally by the customer by law. In the AHD business model, the 

delivery service is coupled with the purchase of these goods. Customer requests in AHD are 

characterized by a shopping basket and a delivery location. The offer set, which the provider 

presents in response to a request, consists of a menu of delivery time slots. The resulting 

vehicle routing subproblem is a vehicle routing problem with time windows. In AHD re-

search, booking horizon and service horizon are often assumed to be disjoint. Then, the vehi-

cle routing subproblem is static, and can be solved in the time period between cut-off time 

and start of the service horizon. In practice, however, more and more providers relax this 

assumption, resulting in overlapping horizons (Waßmuth et al., 2023).  

In 2023, AHD providers in the e-grocery market globally incurred an estimated 490 billion 

USD revenue (Statista, 2024a). In Germany alone, e-grocery has become a steadily growing 

multi-billion Euro market, which is projected to grow even further in the coming years (Hofer 
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et al., 2024). Research on i-DMVRPs in AHD can be traced back to the seminal work by 

Campbell and Savelsbergh (2005). Regarding demand management, both availability control 

(e.g., Lang et al., 2021 and Mackert, 2019) and dynamic pricing (e.g., Koch and Klein, 2020 

and Yang et al., 2016) are well-investigated. For an overview of this stream of literature, we 

refer the interested reader to the surveys by Cordeau et al. (2024), Snoeck et al. (2020), and 

Waßmuth et al. (2023).  

• Same-day delivery (SDD): SDD refers to the same-day delivery of parcels, groceries, and 

meals. While traditional SDD services exclusively transported urgent, high value items in the 

business-to-business market, the business-to-consumer market has grown rapidly in recent 

years (Allen et al., 2018). In today’s SDD business-to-consumer market, the delivered goods 

are predominantly food. They can be categorized into recurring groceries, emergency grocer-

ies, recipe boxes, and prepared meals (Buldeo Rai et al., 2023). While the request placement 

step is similar to AHD, the offer set comprises delivery deadlines instead of time windows. 

There is a clear trend toward shorter deadlines, which has even led to the establishment of 

own sub-types of SDD. These include instant delivery in less than two hours (Dablanc et al., 

2017), and quick commerce in less than twenty minutes (Buldeo Rai et al., 2023). Due to 

booking horizon and service horizon being identical, both demand management and vehicle 

routing decisions must be made dynamically. The vehicle routing subproblem can be cast as 

a multi-trip vehicle routing problem with release and due times (Klein and Steinhardt, 2023).  

SDD has reached considerable market size. For the year 2023, global (German) revenue in 

the quick commerce segment is estimated to equal 144 billion USD (810 million EUR) (Sta-

tista, 2024c), and estimates for prepared meal delivery are even higher with 394 billion USD 

(7 billion EUR) (Statista, 2024b). The literature stream on i-DMVRPs in SDD is initiated by 

Azi et al. (2012) who apply accept/reject demand management. More recent studies also in-

vestigate dynamic pricing (Ulmer, 2020, Klein and Steinhardt, 2023). A comprehensive sur-

vey of the research in this field can be found in Li et al. (2024). 

• Mobility-on-demand (MOD): i-DMVRPs also arise in local passenger transportation. To 

subsume these business models, the term MOD (e.g., Atasoy et al., 2015), or alternatively, 

demand-responsive transport (e.g., Brake et al., 2004) is used in the literature. Originating 

from phone-based dial-a-bus systems in the 1970s, a wide variety of services has emerged 

(Currie and Fournier, 2020). Enoch et al. (2004) categorize them into the following subtypes: 

Interchange MOD services operate as feeders for scheduled public transport. Network MOD 

services, which are potentially destination-specific, complement scheduled public transport, 

e.g., to link underserved areas or extend public transport into the night. Substitute MOD ser-

vices fully replace scheduled public transport in an entire region. Another important distinc-

tion can be made based on whether the ride is exclusive for the requesting customer as in 

traditional taxis (e.g., Alonso-Mora et al., 2017) or combined with rides of unrelated custom-

ers (shared MOD), which is known as ridepooling (e.g., Zwick et al., 2022). Further, there 
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are substantial differences between urban services and rural services. However, all business 

models have in common that customers can request rides from a desired origin to a desired 

destination at a desired time for one or multiple passengers. Potentially, customers can choose 

between different products that differ, e.g., in terms of the maximum added ride time. After 

submitting their request, customers can usually choose between different ride options. Since 

booking horizon and service horizon typically overlap, the provider must solve a dynamic 

dial-a-ride problem (Cordeau and Laporte, 2007) or, in case of exclusive rides, a matching 

problem (Alonso-Mora et al., 2017).  

The MOD market size is difficult to estimate due to the plethora of (small) service providers 

and because most services are run in a business-to-government setting as a form of public 

transport. According to an estimate by Foljanty (2024), the size of the global business-to-

government market alone was 1.15 billion USD in 2023 with Germany being among the three 

leading national markets. In the academic literature, Atasoy et al. (2015) are the first to con-

sider an i-DMVRP in the context of MOD. While they apply availability control, there is a 

rich body of literature on dynamic pricing (e.g., Arian et al., 2022, Qiu et al., 2018, or Sharif 

Azadeh et al., 2022). Recent surveys of this literature stream are presented by Rammohan et 

al. (2024), Vansteenwegen et al. (2022), and Zwick et al. (2022). 

The subject of the cumulative dissertation at hand is the analysis of the family of i-DMVRPs from 

a general point of view and the detailed investigation of one specific business model, namely rural 

shared MOD (SMOD) services. Throughout the dissertation, there is a strong focus on the demand 

management subproblem, and the applied methodology regarding modeling and solving the con-

sidered problems is mainly drawn from operations research.  

The remainder of the introduction serves two purposes: On the one hand, it introduces the indi-

vidual contributions of articles A1-A6. On the other hand, it explicitly highlights the interconnec-

tions between the articles. Section 1 provides more detail about the planning problems, models, 

and solution approaches considered in the academic literature based on Article A1. Sketching the 

contributions of Article A2 and Article A3, Section 2 outlines how the analytical and numerical 

analysis of opportunity cost yields domain knowledge about the general structure of i-DMVRPs 

and facilitates the selection and development of solution algorithms. Finally, Section 3 introduces 

the i-DMVRP arising in rural SMOD. Further, it presents the main contributions of the remaining 

three articles: Article A4 identifies patterns in the rural demand structure that can be exploited by 

demand management. Article A5 analyzes the impact of different availability control approaches 

on the sustainability of a rural SMOD system. Article A6 develops a multi-objective, sustainable 

dynamic pricing approach tailored to rural SMOD systems.  
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1 Problem Definitions, Models, and Solution Approaches for i-

DMVPRs 

In Article A1, we present the first cross-application survey of the i-DMVRP literature. The moti-

vation for conducting such a study is the heterogeneity of research on i-DMVRPs due to authors 

having diverse backgrounds in terms of modeling techniques (e.g., mixed-integer programming 

vs. Markov decision process modeling), solution approaches (e.g., sampling-based vs. learning-

based), and application areas (e.g., AHD, SDD, or MOD). This heterogeneity is in stark contrast 

to the common problem structure underlying all i-DMVRPs, which provides ample opportunities 

for transferring knowledge gained for a specific i-DMVRP to other i-DMVRPs. To leverage these 

opportunities, a unified, generalized methodological framework is necessary, which Article A1 

provides. In the following, the organization of the article is briefly outlined and the relevance of 

the results for the subsequent articles of this cumulative dissertation is addressed. 

In the article, we define three criteria that a problem must meet to be considered an i-DMVRP: 

First, it must feature a stochastic and dynamic booking process. Second, both types of decisions 

(demand management and vehicle routing) must be explicitly optimized aiming at some form of 

profitability (Article A5) or service level maximization, which may be derived from sustainability 

objectives (Article A6). Third, the provider must have full control over fleet operations. Consid-

ering all publications that meet these criteria, we apply morphological analysis to derive a gener-

alized problem definition.  

Further, we formulate a high-level Markov decision process (MDP) model that generalizes the 

many application-specific models for i-DMVRPs and join other researchers (Ulmer et al., 2020) 

in advocating for MDPs to become the standard modeling approach in i-DMVRP research. This 

is not only due to their suitability for precisely defining an i-DMVRP mathematically, but also 

since they allow analytical and numerical analyses of the problem structure (articles A2 and A3). 

Regarding solution approaches, we provide a structured overview of solution concepts and cor-

responding algorithms. At the top level, we distinguish static deterministic approximation and 

decomposition-based approximation, with the latter being by far the more popular solution con-

cept. Its core idea is to further decompose the demand management subproblem into 1) feasibility 

check, 2) opportunity cost approximation, and 3) determining the actual demand management 

decision. This observation sets the basis for articles A2 and A3, which aim at guiding the selection 

and design of opportunity cost approximation algorithms. In articles A5 and A6, the solution 

concept is also decomposition-based approximation. 

Finally, we characterize all relevant publications drawing on the developed framework and iden-

tify crucial implications for future research, some of which we take up in articles A2-A6. Among 

them is the finding that anticipation not only improves the performance regarding the primary 

objective but can also reduce disparities in the offer quality between different types of customer 

requests (see also Article A4 and Article A6). Further, we stress the importance of innovation in 
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choice modeling and fulfillment option design, to which we contribute in Article A5 and Article 

A4, respectively. Another recommendation of Article A1 that the dissertation at hand follows, is 

transferring i-DVMRP research into practice. E.g., we present an explainability technique that 

contributes to a better understanding of decomposition-based solution approaches in Article A3. 

Articles A4, A5, and A6 are based on a collaboration with our industry partner FLEXIBUS and 

include computational analyses based on a large real-world data set. Finally, we stress the poten-

tial of demand management to improve the sustainability of business models, for which articles 

A5 and A6 provide extensive evidence. 

2 Definition and Analysis of Opportunity Cost in i-DMVRPs 

The decomposition-based solution concept introduced in Section 1 is also widely established in 

other application areas of demand management, such as traditional revenue management in the 

airline industry or car rental industry. Since it is well-known that opportunity cost approximation 

has a decisive impact on the overall performance of the solution approach (Klein et al., 2018), 

properties of opportunity cost are analyzed with the aim of developing improved solution ap-

proaches that exploit them (e.g., Adelman, 2007 or Koch, 2017). However, verifying whether 

properties such as monotonicity or non-negativity hold in a specific problem is not straightfor-

ward. In i-DMVRPs, it is even more challenging because the definition of opportunity cost is 

fundamentally different compared to traditional revenue management, where opportunity cost is 

“[...] the expected loss in future revenue from using the capacity now rather than reserving it for 

future use.” (Talluri and Van Ryzin, 2004, p. 33). Given non-negligible and non-attributable var-

iable routing cost, the profit impact of a demand management decision no longer equals displaced 

revenue but also includes the change in routing cost due to serving the additional order.  

Hence, leveraging structural knowledge about opportunity cost in i-DMVRPs requires a rigorous 

analysis from a formal definition to proving the general validity of mathematical properties and 

deriving novel types of approximation approaches that exploit them. In Article A2, we provide 

this analysis and thereby close the corresponding research gap. 

In the first step, drawing on a newly introduced model element, the interim state, we can isolate 

the impact of the demand management decision from the integrated vehicle routing decision. 

Based on that, we define opportunity cost as the difference in future profit resulting from collect-

ing a potential order compared to not collecting it.  

In the second step, we prove that opportunity cost in i-DMVRPs generally has four properties:  

1. Decomposability into two components (displacement cost and marginal cost-to-serve) 

2. Potential component-wise negativity 

3. Overall non-negativity 

4. State value monotonicity 
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In the third step, we present three approximation approaches that are designed to exploit the de-

composability property and show that they yield promising results in a stylized numerical exper-

iment involving many different problem settings. 

Article A3 builds on the theoretical foundation developed in articles A1 and A2. Again, it aims 

to guide the selection and development of decomposition-based solution approaches for i-

DMVRPs. By design, these approaches consist of several algorithmic elements, i.e., feasibility 

check, opportunity cost approximation, and solution methods for the demand management sub-

problem and the vehicle routing subproblem. In Article A1, we point out that research should 

shed more light on how each of these elements influences the overall solution quality. This ques-

tion refers to the issue of algorithmic explainability, which has not yet gained much attention in 

the operations research community (Goerigk and Hartisch, 2023) but is addressed more exten-

sively in reinforcement learning (Milani et al., 2024).  

Focusing again on opportunity cost approximation, we develop an explainability technique that 

consists of two building blocks: The first building block quantifies the chain of influencing factors 

between a systematic opportunity cost approximation error and the resulting performance loss. 

The second building block follows the concept of reward decomposition (Juozapaitis et al., 2019) 

and allows assessing the importance of each of the two opportunity cost components (Article A2) 

for approximation accuracy.  

Applying the technique to the dataset introduced in Article A2, we characterize fundamental types 

of approximation errors, i.e., errors that are likely to occur in any i-DMVRP. Further, we discuss 

algorithmic approaches to mitigate them. Referring to the existing academic literature, we show 

that indications of the identified fundamental types of errors can be found in many computational 

experiments for specific i-DMVRPs and there seems to be implicit knowledge about them. With 

our work, we can transform it into explicit knowledge that other researchers and practitioners can 

take advantage of. Examples of Article A3’s practical value can be found in articles A5 and A6. 

E.g., we find the myopic approaches applied therein are subject to overestimation errors, which 

can thwart stakeholders’ support for dynamic pricing since early requests are systematically 

charged higher prices (Article A6). Still, the myopic approaches perform remarkably well in terms 

of objective value, which can also be better explained by the findings in Article A3. 

3 Sustainability-oriented Demand Management for Rural SMOD Ser-

vices 

Following the generic, rather theoretical analyses of i-DMVRPs in articles A1-A3, the remainder 

of the dissertation at hand (articles A4-A6) focuses on rural shared mobility-on-demand (SMOD) 

as one specific application area. The particular relevance of rural SMOD stems from their ability 

to break the vicious cycle that scheduled public transport suffers from (Bar-Yosef et al., 2013). 

Due to low, dispersed demand, scheduled public transport only reaches a low service quality, e.g., 

in terms of service frequency. This leads to a low model split and under-utilized services being 
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cut back further. SMOD services, in contrast, offer favorable characteristics for providing area-

wide mobility coverage in low-demand areas (Mounce et al., 2020). This is because they combine 

demand orientation with (low-degree) demand consolidation (Fig. 3). As these theoretical con-

siderations suggest, replacing or complementing scheduled services by SMOD services has been 

found to be beneficial by several studies (e.g., Mortazavi et al., 2024, Sieber et al., 2020, Viergutz 

and Schmidt, 2019).  

 

Fig. 3 Key characteristics of SMOD services 

Rural SMOD services differ from most i-DMVRP applications in four characteristics:  

• Sustainability as the all-inclusive objective: In AHD, SDD, and many urban (S)MOD sys-

tems, providers are purely private companies whose primary objective is to maximize profit. 

In rural SMOD, municipal authorities either contract the company providing service or even 

own it (Lu et al., 2024). Therefore, they are deeply involved in planning service provision 

(Wang et al., 2015). The underlying root cause is that public transport in rural areas is finan-

cially unprofitable, and governments must step in to ensure basic mobility provision (Mounce 

et al., 2020). In the past, their decision-making was also largely economically driven, which 

limited the differences to purely privately operated services. With increasing efforts to com-

bat climate change, however, the paradigm has shifted toward sustainability (Poltimäe et al., 

2022), which is defined by three pillars: social sustainability, environmental sustainability, 

and economic sustainability (Purvis et al., 2019).  

• Regulated pricing: Rural SMOD systems are part of the public transport system. Thus, their 

pricing must be closely aligned with scheduled public transport, which is often enforced by 

regulation (Schasché et al., 2022). This means that prices are predominantly static, even 

though dynamic pricing is conceivable within suitable regulation (VDV, 2023). This is dif-

ferent from other i-DMVRP applications, where providers are in full control of pricing. 

• Long booking horizon overlapping with service horizon: To allow for as much planning 

reliability as possible, given the limited alternative modes of transport, rural SMOD providers 

typically extend the booking horizon well before the start of the service horizon. E.g., our 

Demand 

consolidation

Demand 

orientation

Scheduled

service

Taxi/

private car

SMOD

service
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industry partner FLEXIBUS allows requesting service up to two weeks in advance, while 

other providers even extend the booking horizon to cover a full month before the start of 

service horizon (Chandakas, 2020). At the same time, customers should also be able to place 

requests during the service day since not all trips can be planned in advance. In contrast to 

AHD, where only advance requests are possible, and SDD and urban (S)MOD, where the 

booking horizon is much shorter, this results in a special type of i-DMVRP with a long book-

ing horizon that overlaps with the service horizon.  

• Low demand volume: Compared to urban SMOD providers, rural providers face much lower 

demand, and thus, operate a much smaller fleet. The difference can amount to several orders 

of magnitude. E.g., the urban provider MOIA transports about 7000 passengers per day with 

280 vehicles in Hamburg (MOIA, 2024), while our industry partner FLEXIBUS transports 

only about 70 passengers per day with 2-3 vehicles in the service area Krumbach. For opera-

tional planning, this has two implications: On the one hand, ridepooling is particularly chal-

lenging since compatible orders are scarce. On the other hand, the instance size of the i-

DMVRP is small, which means that more accurate solution approaches can be applied. 

In view of these decisive differences compared to other application areas and their high societal 

significance, the i-DMVRPs resulting from rural SMOD services deserve thorough investigation. 

In particular, given the profit improvements achieved in other application areas, analyzing how 

demand management can improve the performance regarding sustainability objectives is of high 

practical relevance. As the literature reviews in articles A4-A6 reveal, much of the existing re-

search focuses on urban SMOD services, which makes the research gap even larger. Each of the 

articles A4-A6 investigates the application of demand management to rural SMOD services with 

a different focus. The remainder of this section introduces the contribution of each article. 

Article A4 

Article A4 descriptively analyzes demand data with the aim of discovering structural patterns that 

have implications for demand management. Thereby, it provides essential groundwork for articles 

A5 and A6, which develop demand management approaches tailored to rural SMOD services. 

Based on the data set, we compile empirical evidence for demand patterns that arise as a direct 

consequence of the extended booking horizon, which is one of the unique characteristics of rural 

SMOD services. For each of the observed patterns, we discuss its implications for operational 

planning, which may be challenges or opportunities. Further, we elaborate criteria that suitable 

demand management approaches should meet to account for these patterns and improve the sys-

tem performance. In more detail, we find the following four patterns:  

• Reservation behavior: First, customers strategically reserve certain types of rides early in 

the booking horizon. While this means that the provider gives up some control over the book-

ing process, it may even be desirable for providers and customers that such reservations are 

possible. If the provider wants to curtail them, we suggest applying anticipatory demand man-

agement. The approaches developed in article A5 and A6 meet this criterium.  
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• Round trips: Second, customers commonly request round trips in the following way: They 

request the outward ride in advance and the return ride ad-hoc. While this is advantageous 

for the provider since they can theoretically reject the return ride, it reduces the planning 

reliability for customers, which may lead to lost demand. Operationally, this issue can also 

be addressed by anticipatory demand management, as in articles A5 and A6. Strategically, 

providers may design a dedicated product for round trips with a larger time window for the 

return ride.  

• Cancellations: Third, the long booking horizon leads to orders that are booked early and 

cancelled late, which we call ghost demand. It is problematic since it distorts the information 

basis for demand management decisions and blocks fleet resources. We find that cancellation 

probabilities can be accurately predicted by supervised learning models, which allows the 

explicit consideration of cancellations in demand management decision-making. Since nei-

ther we nor other authors have investigated this topic further, it is still open for future research. 

• Time flexibility: Fourth, we find that customers have time flexibility in both directions, i.e., 

the provider has the opportunity to shift their pick-up time earlier or later by offering alterna-

tive times to the desired time. This suggests offering multiple alternative rides instead of 

purely accepting/rejecting the desired ride to improve performance. The demand management 

approaches presented in articles A5 and A6 follow this finding. 

Article A5 

In Article A5, we consider a strategic decision problem that arises when newly establishing a 

rural SMOD system or when a switch from first-come-first-served decision-making to active de-

mand management is planned. In this situation, providers and municipal authorities face the stra-

tegic question which type of demand management to apply. To provide decision support, we pro-

pose a methodology based on a suitable model of the corresponding i-DMVRP. The model is 

solved with practical solution algorithms representing different classes of demand control poli-

cies. These classes differ in terms of the applied mechanisms (rejections or time shifts), criteria 

for decision-making (feasibility or profitability), and use of information (myopic or anticipatory). 

Based on a computational study with real-world data, we analyze how the proposed classes of 

demand control policies differ regarding their performance. For this study, we limit the scope to 

availability control. Further, we assume that the provider maximizes profit, which yields insights 

into whether social sustainability and environmental sustainability improve “automatically” when 

the provider follows the traditional economic planning paradigm. 

At the heart of our proposed methodology is a semi-perfect information model, which is derived 

from an MDP model of the i-DMVRP that the provider faces at the operational planning level. 

Since the semi-perfect information model is intended to be applied at the strategic planning level, 

the realization of the i-DMVRP’s stochastic information must be accurately simulated. Regarding 

the request arrivals, this is straightforward because the provider can track historical request arri-

vals and use them as a basis for the simulation. However, the customer choice behavior in the 
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order confirmation step can hardly be statistically estimated. To avoid a distortion of the results 

by an inaccurate customer choice model, we propose to model it deterministically and to perform 

a systematic sensitivity analysis to account for the uncertainty about true customer choice behav-

ior. The studied solution algorithms follow the decomposition-based solution concept introduced 

in Section 1. For anticipatory demand management, we propose a sampling-based look-ahead 

algorithm that is transferred from algorithms for related AHD problems (Koch and Klein, 2020, 

Köhler et al., 2024, and Yang et al., 2016).  

In the computational study of Article A5, we find that availability control substantially improves 

performance in terms of economic sustainability and also environmental sustainability. However, 

this comes at the cost of social sustainability. Anticipating the future evolution of the booking 

process brings further, albeit much smaller benefits. Sensitivity analyses reveal another conflict 

of objectives between economical sustainability and environmental sustainability. The observed 

benefits of demand management together with the observed conflicts of objectives motivate the 

development of demand management approaches that explicitly consider and balance multiple 

sustainability objectives. One such approach is proposed in Article A6. 

Article A6 

Article A6 is motivated by one of the main findings in Article A5: Purely setting economic in-

centives for the provider to achieve sustainability improvements potentially causes an underrepre-

sentation of the other two pillars of sustainability. Similar difficulties can be observed if the au-

thority imposes certain minimum performance requirements for individual sustainability objec-

tives (Anzenhofer et al., 2025). In Article A6, we investigate the alternative idea of enforcing the 

application of an explicitly sustainability-oriented demand management approach. Next to a po-

tentially more balanced performance in terms of sustainability, such an approach also enables the 

application of dynamic pricing. Assuming a profit-maximizing provider as in Article A5 and the 

vast majority of the academic literature, unregulated dynamic pricing would lead to monopoly 

markups, i.e., a general increase of the price level solely to exploit customers’ willingness-to-pay 

(Hörcher and Graham, 2020).  

The sustainable dynamic pricing approach we propose in Article A6 is based on a thorough in-

vestigation of the relevant objectives by means of multi-attribute decision analysis (Keeney and 

Raiffa, 1993). Therewith, we identify five objectives:  

• Social sustainability: From the social perspective, 1) the maximization of basic mobility 

provision and 2) the avoidance of monopoly markups are relevant.  

• Environmental sustainability: In terms of environmental sustainability, the provider should 

3) aim at a maximization of modal shift from motorized individual transport and 4) aim at the 

minimization of emissions per passenger km of the SMOD service.  

• Economic sustainability: Finally, economic sustainability can be cast as equal to 5) mini-

mizing subsidy requirements. 
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Based on the structuring of objectives, we formulate a constrained MDP model, which builds on 

the model presented in Article A5. The objective function only accounts for the primary objective 

of maximizing served demand. Thereby, we incorporate the social objective of maximizing basic 

mobility provision and the environmental objective of maximizing modal shift. To consider the 

remaining secondary objectives, we include a constraint that imposes a lower bound on the price 

of each ride. This bound is set equal to the marginal cost of the ride, i.e., variable routing cost and 

external cost resulting from emissions. Thereby, we implement the well-established concept of 

marginal cost pricing (Hörcher and Tirachini, 2021). Based on the price signal, it allows the cus-

tomer to decide whether a ride is worth its societal cost, thereby steering demand (Eliasson, 2021).  

Making accurate dynamic pricing decisions requires an evaluation of rides, similar to opportunity 

cost approximation in profit-based i-DMVRPs, to approximate displaced demand and marginal 

cost. To this end, we also develop a post-decision rollout algorithm (Bertsekas et al., 1997) in 

Article A6. It shares many similarities with the sampling-based look-ahead algorithm presented 

in Article A5 but crucially allows for an assessment of demand displacement and the impact of 

future demand management decisions. 

The computational study based on real-world data shows that sustainable dynamic pricing is ad-

vantageous both for the provider and for customers compared to static pricing, which is the status-

quo in practice, and compared to profit-oriented dynamic pricing, which is almost exclusively 

proposed in the academic literature. Again, we find that anticipation is beneficial, not only in 

terms of sustainability but also since it allows for a more constant offer quality across the booking 

horizon due to the avoidance of opportunity cost overestimation errors (Article A3). Based on the 

results, we also discuss the application of our dynamic pricing approach in practice. In particular, 

we recommend an accompanying communication strategy that emphasizes the advantages for 

individual customers. 
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Abstract 

In logistics and mobility services, new business models such as “attended home delivery”, “same-

day delivery”, and “mobility-on-demand” have been successfully established over the last decade. 

They have in common that customers order online, while the services are provided offline. To 

make such online-to-offline services profitable, the efficient operation of a vehicle fleet is an 

essential prerequisite. Therefore, researchers began to explore approaches for integrating demand 

management and vehicle routing to support such operations, and a rapidly growing body of liter-

ature emerged. However, due to the diversity of existing business models, the analysis and com-

parison of decision problems and solution concepts are challenging, especially across applica-

tions, making the search for appropriate models and algorithms for new problem settings non-

trivial.  

Therefore, in this survey, we structure this innovative research area and review the existing liter-

ature from a methodological perspective. We present a generalized problem definition of inte-

grated demand management and vehicle routing, derive a high-level formulation for the underly-

ing sequential decision process, and present a corresponding mathematical model. We then de-

scribe and characterize solution concepts and algorithms from the literature in a structured way. 

We also present a tabular overview of the literature that connects applications and problem char-

acteristics with solution concepts and allows researchers to quickly step through already studied 

combinations. Finally, we comment on the state-of-the-art from a cross-application perspective 

and discuss future research opportunities. 

Key words: Routing, Demand Management, Attended Home Delivery, Same-Day Delivery, Mo-

bility-on-Demand 
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1 Introduction 

Over the last decade, many new applications for vehicle routing models and corresponding solu-

tion methods have emerged, which have attracted great interest in the research community and in 

public. Starting points for this development were the introduction of new technologies like drones 

and delivery robots (Boysen et al., 2021) and the establishment of new business models such as 

attended home delivery, same-day delivery, and mobility-on-demand (e.g., Agatz et al., 2013, 

Voccia et al., 2019, and Qin et al., 2020). These business models, often characterized by the term 

“online-to-offline”, allow a service to be booked online that is delivered offline by operating ve-

hicles. Today, with services like Instacart, Amazon PrimeNow, and Uber being commonplace, 

corresponding business models represent such an essential part of the modern on-demand lifestyle 

that popular news media like the BBC have covered even the underlying mathematics (Church, 

2019).  

In this context, demand management has become a popular, often necessary tool. Requests for 

online-to-offline services arrive over time, and customers have different preferences concerning 

different fulfillment options. Hence, providers can shape demand, i.e., the set of resulting orders 

and their characteristics, by offering targeted fulfillment options to specific customers to allow 

efficient routing operations. A variety of approaches were proposed for this purpose: In the case 

of attended home delivery (AHD) and field service operations (FSO), the variation of prices or 

time window availability is often in the focus of demand control (e.g., Strauss et al., 2021 or 

Avraham and Raviv, 2021). For same-day delivery (SDD) and mobility-on-demand (MOD) ser-

vices, accepting or rejecting customer requests may be the approach of choice (e.g., Klapp et al., 

2020 or Fielbaum et al., 2022). In general, actively controlling demand entails the following ben-

efits for providers: First, control decisions balance demand in temporal and geographical terms to 

avoid spilled demand on the one hand and low utilization of fulfillment resources on the other 

hand. This increases the number of orders served by a given fleet and, hence, the overall profit. 

Second, for time periods or areas where such smoothing does not eliminate capacity shortage, 

demand control enables allocating available capacity to the most profitable customers (Agatz et 

al., 2013) and possibly earning additional revenues in the form of delivery fees. Thereby, the 

average profit per order increases. Third, effective demand control stimulates demand and opens 

new markets in the form of initially low-demand and, therefore, unprofitable delivery areas (Yang 

and Strauss, 2017). Fourth, demand control contributes to increasing routing efficiency (Klein et 

al., 2019). By controlling the fulfillment options sold, service providers can “generate” a favora-

ble instance of the resulting routing problem. 

In principle, many established approaches from the field of revenue management, like availability 

control and dynamic pricing, can be used for demand management purposes (see Strauss et al., 

2018 and Klein et al., 2020 for recent surveys). Unfortunately, the integration of demand man-

agement and vehicle routing turns out to be quite complex. More precisely, demand is stochastic 
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and realizes over time, which leads to a sequential decision problem. Providers must decide on 

fulfillment options for incoming requests without exactly knowing the number of future custom-

ers and their preferences. Depending on the orders made, different vehicle routing costs may re-

sult, and future revenues may even be displaced, e.g., if an accepted request prevents future orders 

due to capacity or service constraints. Anticipating these intertemporal effects requires solving 

vehicle routing problems, which, in general, are NP-hard. Furthermore, to meet customers’ ex-

pectations, providers must make decisions in real-time (e.g., Poggi et al., 2014).  

This complexity led to various new approaches to integrate demand management and vehicle 

routing, with the center of the respective contributions often depending on the authors’ methodo-

logical backgrounds (e.g., integer programming or stochastic dynamic programming). However, 

analyzing the literature shows that the structure of the specific control problems considered is 

very similar. This observation even holds across application areas. As a consequence, demand 

management approaches, solution concepts, and algorithms applied in different areas are strongly 

related. Despite that, the relationships are usually not discussed beyond the areas’ borders. 

Motivated by these observations, the key contributions of this survey paper are as follows:  

1) To foster a structured comparison of different real-world applications, we present a general-

ized definition of integrated demand management and vehicle routing problems. To analyze 

the characteristics of specific decision problems, we identify four components of the under-

lying sequential decision process: request capture, demand management, order confirmation, 

and vehicle routing. Using morphological analysis, we characterize each component regard-

ing several dimensions. We summarize this analysis in a comprehensive morphological box 

and illustrate the results by describing possible realizations for existing applications in AHD, 

FSO, SDD, and MOD.  

2) As a synthesis of specific modeling approaches existing in the literature, we formulate a high-

level mathematical model of the generalized sequential decision problem. As tractable solu-

tion concepts for decision problems falling under this generalized formulation, we discuss 

static deterministic approximations as well as decomposition-based approximations. In par-

ticular, we investigate the tasks resulting from decomposition-based approximations, i.e., fea-

sibility check, cost estimation, demand control, and routing control, and present correspond-

ing solution approaches often based on specific auxiliary models. 

3) We present an overview of the literature “at a glance” in two comprehensive tables, linking 

decision problems and solution concepts to applications. These tables allow researchers to 

check for suitable approaches without analyzing all possible related fields when they want to 

apply demand management in their area of interest. Furthermore, they can quickly verify 

whether certain combinations of specific decision problems and solution concepts have al-

ready been examined.  

4) Complementary to the high-level overview of solution concepts, we discuss selected contri-

butions to algorithms used as part of solution approaches for static deterministic 
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approximations and decomposition-based approximations in more detail. For the latter class, 

we highlight the algorithms that are suitable for addressing several tasks in combination.  

5) Finally, we identify seven different topics around which we discuss the current state of re-

search to deliver cross-application insights, and which represent fruitful starting points for 

future research. 

The scope and the purpose of our work substantially differ from existing surveys. Agatz et al. 

(2013) focus more on optimizing demand management decisions and less on the associated rout-

ing problems. Besides this, they exclusively consider AHD problems. The latter also holds for the 

survey by Snoeck et al. (2020), who extensively outline possible extensions of AHD-specific 

problem settings and their implications. Yan et al. (2020) exclusively deal with matching and 

dynamic pricing in MOD. The recent survey by Soeffker et al. (2022) considers dynamic vehicle 

routing in general, with SDD being one of many application areas. 

To allow for the necessary focus, we establish the following criteria for selecting the publications 

for this survey: First, we only include works investigating stochastic and dynamic booking pro-

cesses. Second, we only consider settings where fulfillment operations must be optimized explic-

itly by integrating demand management and vehicle routing methods based on profitability or 

service quality. Hence, we exclude dynamic vehicle routing settings, where providers control ser-

vice availability purely for ensuring the feasibility of routes and refer the interested reader to 

surveys by, e.g., Pillac et al. (2013), Psaraftis et al. (2016), and Ulmer et al. (2020). Finally, we 

assume full information and control regarding the resources needed to fulfill services. Conse-

quently, we do not cover problems involving stochastic vehicle availability or platform-based 

service provision based on two-sided markets, which arise in the context of sharing-based or 

crowdsourced fulfillment systems (e.g., Afèche et al., 2023, Banerjee et al., 2016, and Taylor, 

2018). Furthermore, we leave out special cases for readability. 

Our survey is structured as follows: In Section 2, we first state the problem of integrating demand 

management and vehicle routing along a generic process formulation. Subsequently, we discuss 

the characteristics of this process for several areas of application. We then provide an exact, high-

level mathematical model formulation for the resulting sequential decision problem in Section 3. 

In Section 4, we analyze different solution concepts based on tractable approximations of the 

exact model from Section 3. Section 4 concludes with a summary of all results up to this point in 

the form of comprehensive tables of the existing literature. Section 5 comprises a more detailed 

discussion on solution algorithms and may be skipped by readers only looking for the high-level 

overview provided in the preceding sections. Section 6 is devoted to key insights and take-aways 

and includes the discussion of promising research opportunities. 

2 Generalized Problem Definition 

This section first investigates a sequential decision process for integrating demand management 

and vehicle routing from an application-oriented perspective. We identify four essential 
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components that are part of this process and present dimensions that characterize each component 

as well as possible realizations of each dimension in Section 2.1. Subsequently, we discuss pro-

totypical applications in Section 2.2. The purpose is to show how different realizations of the 

dimensions relate to real-world implementations. 

2.1 Sequential Decision Process 

Providers that offer online-to-offline logistical services regularly face stochastic and dynamic de-

cision problems that arise over time on an operational level. Such problems can be described as 

sequential decision processes, which cast the overall problem as a sequence of states (Powell, 

2019). In each state, the provider must collect and evaluate (stochastic) information concerning 

customers, logistical resources, i.e., vehicles, and, possibly, the environment (Soeffker et al., 

2022). Depending on the information’s evaluation, they must also make different types of deci-

sions.  

To analyze the problem characteristics, we decompose the resulting decision process into four 

components for each state. Two of the components include interactions with customers, the re-

maining two deal with the provider’s decisions. Different types of events may trigger these deci-

sions. Fig. 1 shows the components and their relationships. We explain them in the following and 

introduce dimensions by which we characterize different realizations of the components as part 

of a morphological analysis. This technique allows us to systematically describe the entire spec-

trum of decision problems by reducing the problems to these key dimensions with a set of possible 

realizations. 

 

Fig. 1 Components of the sequential decision process 

Request capture: The arrival of a customer during a sales period, called the booking hori-

zon, triggers this component. The provider can sell different types of services: pure transportation 

(e.g., a ride), transportation in combination with selling goods (e.g., groceries), or transportation 

in combination with selling ancillaries (e.g., installation). We refer to the latter two as coupled 

goods and coupled services, respectively. The customer makes a request by specifying parameters 
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of the service wanted, e.g., using a web application or via a call-center. These parameters can be 

origin and destination, time and mode of transport, and coupled goods or services. The provider 

must capture these parameters as input for their decisions.  

Demand management: This component follows request capturing and must control demand with 

respect to the provider’s objective. It tries to exploit that usually several feasible options for ser-

vice fulfillment exist. Then, it aims at selling the available capacity in a way that maximizes a 

measure of profit. The profit comprises several components that represent revenues and costs. On 

the revenue-side, the fees for the logistical service itself and the revenues/profits of coupled goods 

or services may be relevant. On the cost-side, the unit costs of the coupled goods or services, 

possible discounts, and the transportation costs must be considered. Depending on the application, 

also the number of orders, i.e., accepted requests, may serve as an objective. Regardless of the 

objective function, the provider must ensure that the logistical services sold can be fulfilled sub-

ject to operational constraints. The implementation of demand management can be characterized 

along the following dimensions (Agatz et al., 2013): 

• Concerning the time of decision, static and dynamic controls can be distinguished. Static con-

trols determine all decisions before the start of the booking horizon based on exogenous in-

formation. They do not adjust them depending on endogenous information concerning cus-

tomers but check for feasibility. As an example, an AHD provider may publish a static price 

list for their delivery time slots, which is valid for multiple weeks. During each booking pro-

cess, any customer will be able to place an order at the price of the published delivery fee as 

long as the provider can feasibly fulfill the order. By contrast, dynamic controls make deci-

sions based on the information becoming available during the booking and service horizon. 

Beyond the current request’s parameters, such information includes existing orders, the vehi-

cles’ locations, and loads. In this case, an AHD provider would, e.g., offer individual delivery 

fees determined at the time of each customer request arrival based on the delivery location 

and the shopping basket value. 

• To influence the customers’ choices favorably, the provider can apply two control types, 

namely availability control or price-based control. In availability control, the provider makes 

decisions on which feasible fulfillment options to offer to the customer, e.g., when prices are 

fixed. In price-based control, they set fees for the different options. The set of fulfillment 

options along with their prices form an offer set, from which a customer can choose. 

• Finally, the provider can decide on request processing, i.e., between real-time processing for 

single requests or batch processing. In the first case, the provider implements decisions im-

mediately. In the second one, they postpone decisions until, e.g., a specific batch size or state 

is reached. 

Order confirmation: After constructing the offer set, the order confirmation component repre-

sents a second interaction with the customers, which consists in presenting offer sets to customers 

and, potentially, closing a deal. If the provider generally offers only a single fulfillment option, 
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customers will either buy or not. If they provide an assortment of multiple options, e.g., different 

time windows for the transportation, customers will choose an option, which is potentially the no-

purchase option, according to some individual preference function, e.g., by maximizing their util-

ities. If a sale takes place, the corresponding option becomes an order.  

 

Fig. 2 Booking and service horizon 

Vehicle routing: The vehicle routing component is executed before or during the period of ser-

vice fulfillment, called the service horizon. Its task consists in determining feasible and cost-

minimizing route plans for the given orders. Booking and service horizons can either be disjoint, 

overlapping, or infinite as illustrated in Fig. 2. In the first case, the provider collects orders until 

a cutoff time, which lies before the beginning of the service horizon. Here, the provider can post-

pone definitive vehicle routing decisions until the end of the booking horizon. However, some-

times they may perform tentative route planning as an input for demand management decisions. 

If the horizons overlap or are infinite, the provider needs to finalize routing decisions before the 

end of the booking horizon. Here, several events may trigger a decision for a given state. First of 

all, a new order may have been accepted. Other events include that a vehicle has become idle or 

must act, e.g., leave the depot, to fulfill operational constraints. Also, it can be reasonable to move 

a vehicle to another position to be better prepared for future requests. In the latter cases, the ve-

hicle routing component is executed without a customer arrival. Depending on the transportation 

service sold, the provider must solve different types of vehicle routing problems (e.g., Toth and 

Vigo, 2014). For example, delivery or pickup problems may occur. Also, point-to-point problems 

may arise. Finally, routing decisions may be subject to different types of constraints. These may 

refer to the fleet size or composition, the vehicles’ capacity, or service guarantees like delivery 

within a specific time window.  

The morphological box in Table 1 summarizes the result of the morphological analysis, i.e., it 

describes the different components based on the dimensions and their potential realizations intro-

duced above. Besides providing a compact summary, it also serves as a tool for further analyses. 

Specific decision problems, including novel ones, can be derived by selecting a certain realization 

for each dimension and combining them. In turn, existing decision problems can be classified 

according to their realizations for each dimension. In the survey at hand, we present the latter type 

of analysis for prototypical decision problems (Table 2) and decision problems considered in the 

existing literature (Table 4). 
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Table 1 Components and dimensions of the sequential decision process 

2.2 Applications 

This section discusses prototypical applications for which integrating demand management and 

vehicle routing has already been established or is currently evolving. We deliberately do not ex-

plicitly refer to specific companies’ existing applications because the underlying business models 

are adapted fast and refined continuously. However, in all cases, corresponding services exist and 

can easily be found by simple internet search. In Table 2, we describe the prototypical applica-

tions based on the morphological box (Table 1) developed in Section 2.1. Table 4 in Section 4.3 

will characterize the related specific problems considered in the existing academic literature. 

The most prominent application for AHD is e-groceries (Agatz et al., 2013). Here, transportation 

is combined with the sales of groceries. Most commonly, the providers try to maximize profit 

after fulfillment. This profit is determined by the profit per order, which considers the profit of 

the shopping basket plus the delivery fee, minus the cost of transportation. In the early days of 

AHD, the usual way to control demand was to define combinations of delivery areas and time 

windows. For these combinations, the provider computed static prices and the maximal number 

of customers to be served prior to the booking horizon which led to a form of availability control. 

Thus, it was possible to provide customers with feedback on fulfillment options after filling their 

shopping basket in real-time. Until recently, booking and service horizon have usually been dis-

joint. Customers had to place their orders until the evening before the delivery day. For all orders 

accepted, the provider must solve a capacitated vehicle routing problem with time windows. 

Please note that modern approaches do not only set prices dynamically but also offer overlapping 

time windows of different lengths.  

SDD is also used for selling groceries (Archetti and Bertazzi, 2021). New market entrants cur-

rently try to establish services that deliver a restricted assortment of food products within very 

short deadlines. Established players like large grocery and wholesale retailers are experimenting 

Process  

component 
Dimension Realization 

Request  
capture 

Service type Transportation (TR) Coupled goods (CG) Coupled services (CS) 

Demand 
management 

Objective Profit (PR) Revenue (RE) Number of orders (NO) 

Time of decision Static Dynamic  

Control type Availability (AV) Price-based (PB)  

Processing Real-time (RT) Batch (BA)  

Order  
confirmation 

Fulfillment  
options 

Single (SI) Multiple (MU)  

Vehicle  
routing 

Booking/service 
horizon 

Disjoint (DJ) Overlapping (OL) Infinite (IF) 

Routing  
problem 

Delivery (DE) Pick-up (PU) Point-to-point (PP) 

Constraints Fleet Vehicles Service guarantees 
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with combining SDD and next-day delivery. However, the concept was initially introduced for 

courier and express services, the reason why we discuss a corresponding application here (Ghiani 

et al., 2009). Such services offer pure transportation for, e.g., pharmaceutical drugs or spare parts. 

Since the provider’s capacity is usually fixed on a given day, they maximize the total revenue as 

a proxy for profit. Depending on the transport’s origin and destination and the delivery deadline, 

the provider dynamically calculates a fee, i.e., sets a price. Again, the provider must process a 

captured request in real-time. New orders arrive while executing others, i.e., the booking and 

service horizon overlap. Hence, the provider must deal with a dynamic point-to-point (pickup and 

delivery) problem with deadlines.  

Table 2 Sample applications 

Process 
component 

Dimension AHD SDD MOD FSO 

Request  

capture 
Service type Coupled goods Transportation Transportation Coupled services 

Demand  
management 

Objective Profit Revenue Number of orders Number of orders 

Time Static Dynamic Dynamic Dynamic 

Control type Availability Price-based Availability Availability 

Processing Real-time Real-time Real-time Batch 

Order  
confirmation 

Fulfillment  
options 

Multiple Single Single Multiple 

Vehicle 
routing 

Booking/ 

service horizon 
Disjoint Overlapping Overlapping Infinite 

Routing  
problem 

Delivery Point-to-point Point-to-point Delivery 

Constraints 
Time windows, 
vehicle capacity 

Delivery dead-
lines 

Waiting and 
travel time 

Time windows, 
worker skills 

An increasingly popular form of public transport is MOD (Hazan et al., 2019). The transportation 

service is provided using mini-buses and taxis in a shared-ride mode. Public providers may aim 

at maximizing the number of orders, i.e., rides, performed. Customers can specify the origin and 

destination and the earliest pick-up or latest arrival time. The fee depends on the origin and des-

tination and is commonly based on published tariffs, such that only the availability is subject to 

dynamic control. Hence, based on their request and the capacity utilization, customers are either 

offered a ride or are rejected in real-time. In the first case, a single option is provided which comes 

with a travel time, a possible waiting time, and the number of passengers on the ride. The cus-

tomers can then accept the option or reject it. With the switch from call center- to application-

based reservation systems, providers have allowed to make reservations on the day of travel lead-

ing to overlapping booking and service horizons. Again, a point-to-point (dial-a-ride) transporta-

tion problem results whose constraints must consider the vehicles’ capacities and ride-specific 

aspects like waiting and travel times.  

FSO represents an emerging application of integrated demand management and vehicle routing 

(Chen et al., 2016). In a business-to-consumer context, customers receive some furniture, 
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electronics, or home appliances and may require a coupled service like installation for the items 

delivered. In a business-to-business context, on-site maintenance and repair may represent possi-

ble use cases. In the first case, which we consider here, it is common that the customer can select 

several options from a menu of delivery dates with corresponding time windows, i.e., the provider 

deliberately restricts the availability of options by availability control. When determining the cor-

responding offer sets, the provider usually tries to maximize the number of installations. Some 

days ahead of delivery, the provider informs about which of the customer’s options they have 

chosen for installation. Since lead times for the products can depend heavily on the different 

products, the problem on hand has no finite horizon. New orders for products with a short lead 

time can arrive and be ready for installation while waiting for the completion of orders with longer 

ones. Like for AHD, the provider must solve a capacitated vehicle routing problem with time 

windows. However, additional constraints like worker skills come into play. Often, corresponding 

routing problems are identified as technician or field service routing problems. 

3 Mathematical Model Formulation 

In this section, we discuss the formalization of the generalized problem definition described in 

Section 2 by means of mathematical modeling. Since the problem at hand is stochastic and dy-

namic, an accurate formalization requires a dynamic control model, which is subject of Section 

3.1. An integral element of this formalization is also the modeling of the customers’ choice be-

havior, provided that they are given a choice between fulfillment options as part of the order 

confirmation component. Therefore, we elaborate on these customer choice models separately in 

Section 3.2. 

3.1 Dynamic Control Model 

Mathematically, Markov decision processes (MDPs) provide the foundation for describing most 

decision problems in demand management and vehicle routing. However, in contrast to, e.g., de-

terministic vehicle routing, it is not standard in the literature to present a corresponding MDP 

model, which is an observation already made by Ulmer et al. (2020) for stochastic, dynamic ve-

hicle routing. Reasons may be that the notation is quickly becoming complex and awkward to 

handle. Moreover, solution approaches are generally approximative and do not rely directly on 

an exact dynamic control model. Further, the variety of problems leads to rather specific models 

from a notational point of view (e.g., Al-Kanj et al., 2020, Ulmer et al., 2019, Xu et al., 2018, or 

Yang et al., 2016). Therefore, in the following, we synthesize the models from existing works and 

provide a generalized, high-level model formulation. We structure the discussion along the 

model’s primary building blocks using the language and notation common for MDPs (e.g., Pow-

ell, 2019). For similarly generic models, we refer to Klein et al. (2020), who present formulations 

from a demand management perspective, and Ulmer et al. (2020), who propose a route-based 

modeling framework for dynamic routing.  
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In the model, demand is represented as a set of potential customers ℐ = {1,… , 𝐼}. Each customer 

𝑖 ∈ ℐ comes with a location and has different preferences for the services offered. To serve the 

customers, the provider has vehicles ℎ ∈ ℋ = {1,… ,𝐻} available. The vehicles may have several 

restrictions concerning their capacity, which may refer to the maximal feasible load, the maximal 

travel distance, or the maximal travel time due to working shifts. Based on these assumptions, we 

describe the building blocks of MDP models. For each possible variant of modeling a certain 

building block, we provide exemplary references. Please note that the notation chosen makes 

several deliberate simplifications for the sake of readability. For example, numbers of customers 

𝐼, in general, are stochastic. Furthermore, we omit indices where possible, and following Al-Kanj 

et al. (2020), we indicate unambiguous state-dependencies by an index 𝑘. 

Decision epochs: The booking horizon and the service horizon encompass 𝑘 ∈ 𝒦 = {0,… , 𝐾} 

decision epochs, whose number can be stochastic. Decision epochs represent points in time at 

which the provider must make a demand management decision, a routing decision, or both. Three 

types of events can trigger a decision epoch, with the latter two only being relevant for problems 

with overlapping horizons. The first one is the arrival of a customer request (Ulmer, 2020a). Sec-

ondly, routing-related events may require decisions, e.g., if a vehicle becomes available after 

completing an order (Ulmer et al., 2018). Thirdly, a new decision epoch can be defined to occur 

after a certain amount of time in which vehicles were idle or orders were not assigned for fulfill-

ment (Chen et al., 2019). 

States: Tuples 𝑆𝑘 = (𝑆𝑘
𝑐𝑢𝑠𝑡 , 𝑆𝑘

𝑣𝑒ℎ) describe the system’s state at the beginning of a decision epoch 

𝑘 and contain all information necessary to make a decision. The vectors 𝑆𝑘
𝑐𝑢𝑠𝑡  and 𝑆𝑘

𝑣𝑒ℎ  describe 

the customers’ and vehicles’ statuses. For customers, this status may indicate which customers 

are currently requesting service. Additionally, in case the provider receives orders, information 

on the orders’ parameters (Koch and Klein, 2020) and, for problems with overlapping horizons, 

the fulfillment status is stored (Chen et al., 2022). For vehicles, the status may refer to the current 

location (Qiu et al., 2018), the time of arrival at the next customer (Chen et al., 2019) or at the 

depot (Voccia et al., 2019), or a route plan (Ulmer and Thomas, 2020). Note that information on 

vehicles is not required for problems with disjoint horizons because final routing is not necessary 

before the end of the booking horizon. 

Decisions: Depending on the state in decision epoch 𝑘, the provider must either make a demand 

management decision and, potentially, a corresponding vehicle routing decision, or a stand-alone 

routing decision. When booking horizon and service horizon are disjoint, demand management 

decisions suffice. The decisions are summarized by variables 𝑥𝑘 = (𝑥𝑘
𝑑𝑒𝑚 , 𝑥𝑘

𝑟𝑜𝑢𝑡) that describe 

the actions taken and are defined as follows:  

• Vehicle routing decisions 𝒙𝒌
𝒓𝒐𝒖𝒕: If the provider makes a routing decision 𝑥𝑘

𝑟𝑜𝑢𝑡  for state 𝑆𝑘, 

they select a feasible route plan 𝜙𝑘 = {𝜌ℎ: ℎ ∈ ℋ}, i.e., determine a route 𝜌ℎ for each vehicle 

ℎ ∈ ℋ (Ulmer, 2020a). A route plan is called feasible if it does not violate any operational 
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restriction. In this context, the term route plan has a fairly broad meaning, i.e., 𝑥𝑘
𝑟𝑜𝑢𝑡  may 

only state which order to serve next for each vehicle (e.g., Xu et al., 2018). The set of all 

feasible route plans in state 𝑆𝑘 is denoted by Φ𝑘 . In case the booking horizon and service 

horizon are disjoint, a single routing decision is made at decision epoch 𝐾 + 1 (Klein et al., 

2018), i.e., at the end of the booking horizon. 

• Demand management decisions 𝒙𝒌
𝒅𝒆𝒎: A demand management decision 𝑥𝑘

𝑑𝑒𝑚  determines 

which offer the provider makes for providing a service requested by customer 𝑖 at decision 

epoch 𝑘. The feasible fulfillment options available are given by 𝒪𝑘 = {1, … , 𝑂𝑘}. An option 

𝑜 ∈ 𝒪𝑘  is called feasible if a feasible route plan 𝜙𝑘+1 exists when the request turns into an 

order due to the sale of 𝑜. When applying availability control, the provider determines an 

offer set Θ𝑘 ⊆ 𝒪𝑘 (Avraham and Raviv, 2021). Analogously, when using price-based control, 

the provider sets prices (service fees) 𝑝𝑜𝑖 for all options 𝑜 ∈ 𝒪𝑘  (Prokhorchuk et al., 2019).  

Transitions: Transitions between states 𝑆𝑘 and 𝑆𝑘+1 may occur for several reasons: If customer 

𝑖 decides (stochastically) to buy an option 𝑜, the request becomes an order and 𝑆𝑘
𝑐𝑢𝑠𝑡  is updated 

accordingly. The same holds if customers are served as the provider (partially) executes route 

plan 𝜙𝑘. In this case, the vehicles’ status 𝑆𝑘
𝑣𝑒ℎ  is also updated (Voccia et al., 2019). Mathemati-

cally, the transition can be described by a state equation 𝑆𝑘+1 = 𝑆
𝑀(𝑆𝑘 , 𝑥𝑘 ,𝑊𝑘+1). 𝑊𝑘+1 repre-

sents random variables affecting the transition from epoch 𝑘 to 𝑘 + 1. In our case, these include, 

e.g., the choice of customer 𝑖, the preferences and locations of incoming customers (Mackert, 

2019), or stochastic travel times (Xu et al., 2018).  

Rewards: If the provider sells an option 𝑜 to a customer 𝑖, they obtain a reward 𝑅𝑘(𝑆𝑘 , 𝑥𝑘) = 𝑟𝑜𝑖 . 

Usually, 𝑟𝑜𝑖 represents the revenue per order or the profit per order possibly depending on a 

charged price (service fee) 𝑝𝑜𝑖 (Strauss et al., 2021). If the objective is to maximize the number 

of customers served, the reward is set to 𝑟𝑜𝑖 = 1 (Ulmer et al., 2019). Fulfillment costs can be 

modeled as negative rewards that are incurred once the respective routing decisions become de-

finitive and the route plan is (partly) executed (Klapp et al., 2018). For disjoint horizon problems, 

the terminal reward 𝑅𝐾+1 summarizes all fulfillment cost (Yang et al., 2016). 

Policy: A policy 𝑋𝜋(𝑆𝑘) is a rule or function that determines a decision 𝑥𝑘 for a state 𝑆𝑘. Here, it 

refers to vehicle routing and demand management decisions, which are often intertwined. For 

example, when deciding on an offer set, the provider may have to simultaneously make routing 

decisions anticipating the possible sale.  

Objective function: In general, since the problems are stochastic, the objective consists of max-

imizing expected rewards (including terminal cost 𝑅𝐾+1): 

𝐽(𝑋𝜋) = 𝔼{∑ 𝑅𝑘(𝑆𝑘 , 𝑋
𝜋(𝑆𝑘)) + 𝑅𝐾+1

𝐾
𝑘=0 }  

In infinite state problems, we can discount rewards and define the objective as the limit of the 

expression above, when 𝐾 → ∞ (Holler et al., 2019). 
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Value function: To evaluate possible decisions in state 𝑆𝑘, we define the value function 𝑉𝑘(𝑆𝑘) 

the provider wants to maximize. It represents the objective function value at the end of the book-

ing and service horizon that can be expected at decision epoch 𝑘 by the corresponding Bellman 

equation:  

𝑉𝑘(𝑆𝑘) = max
𝑥𝑘
 𝔼{𝑅𝑘(𝑆𝑘 , 𝑥𝑘) + 𝑉𝑘+1(𝑆

𝑀(𝑆𝑘 , 𝑥𝑘 ,𝑊𝑘+1)) }  

Thus, 𝐽(𝑋𝜋) = 𝑉0(𝑆0) holds if 𝑋𝜋 is an optimal policy. The correct computation of the value 

function requires optimal demand management decisions for future requests and optimal routing 

decisions for existing and future orders. Alternatively, it is possible to formulate a Bellman equa-

tion based on state-action values (Kullman et al., 2022). 

3.2 Customer Choice Modeling 

In case the order confirmation component allows customers to select a fulfillment option from an 

offer set, any dynamic control model must include a customer choice model. Otherwise, if there 

is no such interaction during order confirmation, choice modeling can be omitted. More precisely, 

a choice model predicts a purchase probability 𝑃𝑜(Θ𝑘) for each option 𝑜 ∈ Θ𝑘 with respect to the 

offer set Θ𝑘 and, possibly, prices 𝑝𝑜𝑖. For this purpose, parametric, non-parametric, and multi-

stage models exist (Strauss et al., 2018 and Berbeglia et al., 2022). 

In the context of vehicle routing applications, parametric models rooted in random utility theory 

dominate. Following this theory, each customer 𝑖 evaluates the set of offered alternatives with 

respect to an individual utility function before deciding on either buying one option 𝑜 ∈ Θ𝑘 or 

leaving the market (e.g., Train, 2009). In general, we assume that the resulting utility for an option 

𝑜 ∈ Θ𝑘 has a deterministic and a random part. Customers decide on the alternative that maximizes 

their utility. If |Θ𝑘| > 1, customers may substitute across all 𝑜 ∈ Θ𝑘, in case their preferred one 

is not available (e.g., Kök and Fisher, 2007). In the literature, the existence of such substitution 

behavior is widely acknowledged (e.g., Ulmer, 2020a, Yan et al., 2020, or Yang et al., 2016). 

Thus, the resulting purchase decision is stochastic and depends on the characteristics of all options 

𝑜 ∈ Θ𝑘 including, if applicable, their prices 𝑝𝑜𝑖. 

The purpose of choice modeling is to obtain purchase probabilities for each 𝑜 ∈ Θ𝑘, which serve 

as input parameters for demand control. To this end, the specification of a utility function is nec-

essary for random utility models. The deterministic part is usually expressed as a linear function 

of a vector of attributes that influence the purchase probabilities. In last-mile logistics, these in-

clude the associated time slot (e.g., Yang et al., 2016) and the delivery deadline (Prokhorchuk et 

al., 2019). Similarly, for passenger transportation, attributes encompass travel time (Atasoy et al., 

2015 and Qiu et al., 2018) as well as origin, destination, and time of day (Al-Kanj et al., 2020). 

Also, the price 𝑝𝑜𝑖 represents an attribute if fees are charged.  

Different choice models are obtained depending on the assumptions made on the distribution of 

the random utility part. Thereby, it is crucial to consider that model selection and model 
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specification significantly impact the quality of demand management decisions and the complex-

ity of demand control (Berbeglia et al., 2022). The estimation of the utility function’s parameters 

from historical data is also an optimization problem and can be of varying complexity.  

With respect to our domain, authors use the following random utility models: 

• Multinomial logit (MNL) model: This is the most prominent model. It assumes that the 

entire customer population can be described by a common utility function. Furthermore, it 

assumes that the random utility components are independent and identically distributed ran-

dom variables following a Gumbel distribution. If 𝑂𝑘 = 1, the MNL reduces to a binary logit 

model (Al-Kanj et al., 2020). In comparison to other random utility models, the MNL has 

advantages in terms of computational complexity (Berbeglia et al., 2022). However, it is not 

sufficiently accurate in many applications, even with a nearly perfect specification: First, it 

does not capture latent customer preferences. Second, the model suffers from the IIA property 

(independence from irrelevant alternatives) and therefore only allows for proportional substi-

tution behavior (Train, 2009). 

• Generalized attraction model: Compared to the MNL model, it captures customer dissatis-

faction and thus reduces purchase probabilities for all offered products if the cardinality of an 

offer set is low (Gallego and Topaloglu, 2019). 

• Finite mixture MNL model: This model assumes that demand is composed of homogeneous 

segments whose choice behavior can be described by standard MNL models (Strauss et al., 

2018). If the segment affiliations of the arriving customers are unknown, the integration of 

the model into demand control significantly increases its complexity (Koch and Klein, 2020). 

The same holds for the parameter estimation problem. Otherwise, the segment-specific MNL 

models are independent, and there is no increase in complexity (e.g., Lang et al., 2021b).  

• Nested logit model: The nested logit (NL) model is appropriate if we can aggregate alterna-

tives into nests in a way such that the IIA holds within each nest but not across nests. Each 

nest represents a set of substitutes. The model by Wang et al. (2021) accounts for alternate 

pick-up and drop-off points customers can choose. Köhler et al. (2019) and Strauss et al. 

(2021) use the NL model to reflect demand interdependencies and non-negligible dispropor-

tional substitution behavior due to offering overlapping time windows of different lengths. 

Because of the higher complexity of demand management decisions, Strauss et al. (2021) 

approximate the NL model by a standard MNL model.  

Lastly, some authors propose parametric models that are specifically designed for pricing control 

and are not rooted in random utility theory (Campbell and Savelsbergh, 2006, Chen et al., 2019, 

Haliem et al., 2021, Klein and Steinhardt, 2023, Ulmer, 2020a, and Vinsensius et al., 2020).  

4 Solution Concepts 

In this section, we discuss solution concepts for dealing with decision problems that fall under 

the generalized problem definition as presented in Section 2. Due to the problems’ complexity, 
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directly solving corresponding dynamic control models (Section 3) to optimality is computation-

ally intractable. As the state space is very large even for small instances, it is not possible to 

evaluate, e.g., the Bellman equation for each potential state. Moreover, in each state, the determi-

nation of demand management decisions and vehicle routing decisions can represent challenging 

optimization problems of their own.  

Instead, the existing literature follows two basic solution concepts, both based on approximations. 

In Section 4.1, we first describe decomposition-based approximations. Section 4.2 is devoted to 

static deterministic approximations. In Section 4.3, we merge the results of our analyses of prob-

lem characteristics and solution concepts in the form of a tabular overview. Thus, we only provide 

exemplary references in all the following subsections and refer the reader to Table 4 and Table 5 

for the extensive classification of all works. 

4.1 Decomposition-based Approximation 

In the academic literature, most authors resort to a decomposition-based approximation. For this 

purpose, they identify major tasks in the overall decision process to be addressed by the provider. 

Then, they formalize the tasks and solve corresponding subproblems or combinations of them 

sequentially. Different types of solution approaches exist: Sometimes, the authors explicitly for-

mulate auxiliary or simplified mathematical models for the problems that are then tackled using 

a general-purpose solver or some special-purpose algorithm. In other cases, they only describe 

the problems verbally, propose a conceptual model to, e.g., deal with stochasticity or interdepend-

encies among problems, and again, provide suitable algorithms. We define the tasks in Section 

4.1.1 and describe the corresponding solution approaches in Sections 4.1.2-4.1.5. Solution algo-

rithms are subject of Section 5.1.  

4.1.1 Task Definitions 

In Section 2.1, we have identified two components that require the provider to make decisions: 

demand management and vehicle routing. When analyzing corresponding research papers, it turns 

out that authors consider up to three different tasks to support demand management decisions 

𝑥𝑘
𝑑𝑒𝑚 . Fig. 3 shows the sequence of these tasks and the input data they provide for the succeeding 

task. Routing control can be viewed as a fourth task associated with the vehicle routing compo-

nent. 

 

Fig. 3 Tasks of demand management component 

Feasibility check: First, the provider must determine the set 𝒪𝑘  of feasible options with respect 

to existing orders in state 𝑆𝑘. The exact type of the corresponding vehicle routing problem 
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depends on the application. In case the vehicle routing problem has a feasible solution, this im-

plies that 𝜊 ∈ 𝒪𝑘. 

Cost estimation: Second, the provider must compute the value difference, i.e., the costs, 

∆𝑉(𝑆𝑘+1|𝑜) = 𝑉𝑘+1(𝑆𝑘+1) − 𝑉𝑘+1(𝑆𝑘+1|𝑜) for each feasible option 𝜊 ∈ 𝒪𝑘  in case the provider 

sells option 𝑜 to customer 𝑖 due to demand management decisions 𝑥𝑘
𝑑𝑒𝑚 compared to not selling 

it. Hence, the result of the feasibility check is an input for cost estimation. The impact of selling 

option 𝑜 is twofold: First, it can lead to the displacement of demand arriving later, in case not 

enough capacity will be left. Hence, a sale influences future rewards via the displacement cost 

well known from revenue management (Talluri and van Ryzin, 2004a). Second, due to deliveries, 

it also impacts the costs-side because the usage of some resources causes non-negligible (future) 

transport costs that are not attributable to requests ex-ante. These costs are captured by the term 

marginal delivery cost or marginal cost-to-serve (e.g., Yang and Strauss, 2017). However, due to 

the “curses of dimensionality” (Powell, 2011), i.e., the large number of possible states and actions, 

cost values ∆𝑉(𝑆𝑘+1|𝑜) can usually only be approximated by an estimate ∆𝑉̃(𝑆𝑘+1|𝑜). 

Demand control: Based on a cost estimate for each feasible option, the provider must make a 

demand management decision 𝑥𝑘
𝑑𝑒𝑚: 

• When applying availability control, the provider will only offer (accept) an option (a request) 

𝑜 ∈ 𝒪𝑘  to (by) customer 𝑖 if 𝑟𝑜𝑖 ≥ ∆𝑉̃(𝑆𝑘+1|𝑜). That is, the resulting order is feasible, and the 

total expected value increases by selling option 𝑜. Since the customer preferences for options 

are heterogenous and stochastic, it may pay off to offer only a restricted offer set Θ𝑘 ⊆ 𝒪𝑘  to 

influence choice behavior in a favorable manner.  

• When using price-based control, the provider again only offers an option 𝑜 ∈ 𝒪𝑘  if 𝑟𝑜𝑖 ≥

∆𝑉̃(𝑆𝑘+1|𝑜) where 𝑟𝑜𝑖 includes the price 𝑝𝑜𝑖. Hence, the ∆𝑉̃(𝑆𝑘+1|𝑜) represents a lower 

bound for the reward 𝑟𝑜𝑖, from which a lower bound for the price (service fee or discount) 

𝑝𝑜𝑖  can be derived. Based on this information, the provider can optimize prices to influence 

demand.  

Routing control: The final task results from the vehicle routing component and consists in mak-

ing routing decisions 𝑥𝑘
𝑟𝑜𝑢𝑡 . Again, the feasibility check provides a crucial input to ensure that 

routing decisions do not violate the operational constraints. 

As we show in the following sections, there exist individual solution approaches for each task. 

Yet, as the tasks build upon each other, the corresponding subproblems are often related. For 

example, explicit route planning approaches can be applied to feasibility check, cost estimation, 

and routing control. Therefore, one could argue that solution approaches exist that solve tasks in 

combination. However, for the sake of clarity, we discuss the approaches for each task individu-

ally (Sections 4.1.2-4.1.5). Table 3 provides an overview of the fundamental solution approaches 

for each task. 
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Table 3 Overview of task-specific solution approaches 

Task Solution approach 

Feasibility check Route-based (RO) Capacity-based (CA)   

Cost estimation Myopic (MY) Sampling-based (SA) 
Deterministic  
linear program (DL) 

Predictive (PR) 

Demand control Accept/reject (AR) 
Assortment  
optimization (AO) 

Discrete pricing (DP) 
Continuous  
pricing (CP) 

Routing control Full route plan (FP) Single route (SR) Leg-oriented (LO)  

4.1.2 Feasibility Check 

As stated before, the provider can check the feasibility of a potential order as a separate task. In 

this case, we can distinguish two types of checks:  

Route-based check: This type solves some auxiliary model that explicitly considers the con-

straint satisfaction version of a vehicle routing problem for each fulfillment option 𝑜 being a can-

didate for 𝒪𝑘  (e.g., Brailsford et al., 1999 and Berbeglia et al., 2011 or Elting and Ehmke, 2021 

in the context of point-to-point transportation). The models are deterministic because the already 

existing orders and the option 𝑜 are known for a state 𝑆𝑘. In case a solution exists for the resulting 

instance, 𝑜 is included in 𝒪𝑘 . 

Capacity-based check: These checks determine capacity limits for the number of feasible orders 

depending on criteria like the location or the time of delivery (e.g., Lang et al., 2021a) and thereby 

approximate the constraint satisfaction problem. During the booking horizon, an option 𝑜 is con-

sidered feasible, i.e., included in 𝒪𝑘 , if the number of similar orders with respect to the criteria is 

below the capacity limit. Capacity-based feasibility checks are generally more suitable for dis-

joint-horizon problems because no routing decisions are required during the booking horizon and, 

thus, route-based planning is not essential. 

4.1.3 Cost Estimation 

The literature distinguishes between myopic cost estimation and anticipative cost estimation de-

pending on the use of information. 

Myopic estimation solely incorporates information about orders that have already been received 

(Haferkamp and Ehmke, 2022) and does not require any (probabilistic) information about future 

demand. Therefore, it only aims at marginal cost-to-serve and does not capture a decision’s im-

pact on future rewards, i.e., neglects displacement cost. However, the reduced data requirements 

compared to anticipative estimation can also be a significant advantage in practice if data on 

future demand are sparse, unreliable, or even not available at all. Usually, myopic estimation 

relies on a formulation of a static routing problem, so that marginal cost-to-serve is estimated as 

the increase in total routing cost caused by adding another order to the respective problem in-

stance. 
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If information about future demand is available, anticipative estimation is applicable. It addresses 

two aspects to improve the estimate. First, it can achieve a more accurate estimate of marginal 

cost-to-serve compared to myopic estimation. For example, this cost may be overestimated in 

myopic estimates if not considering consolidation opportunities with future orders. Second, an-

ticipation enables an approximation of displacement costs in the first place. Not surprisingly, em-

pirically, many studies demonstrated that anticipative estimation yields better results compared 

to myopic estimation (Section 6). However, the extent to which this potential can be realized in 

practice depends on the quality of available data regarding future demand. 

Depending on which techniques are used to deal with uncertainty, i.e., characteristics of future 

requests including the customers’ preferences, we distinguish three subclasses of anticipative ap-

proaches, namely sampling-based approaches, deterministic linear programming approaches, 

and predictive approaches. In the following, we characterize these subclasses:  

• Sampling-based: To obtain a more precise estimation of marginal cost-to-serve, several au-

thors propose the inclusion of sampled future orders into a single (tentative) route plan or a 

pool of tentative route plans, i.e., a static routing problem. If the corresponding problem al-

lows displacements of sampled orders, its solution also yields an estimate of displacement 

cost. The idea behind this type of approaches, known as scenario-based planning, is to antic-

ipate how the instance of the routing problem will be structured at the time a potential order 

is fulfilled. The resulting gain of accuracy is particularly high in the early phase of each book-

ing horizon (Yang et al., 2016). The concept goes back to Bent and van Hentenryck (2004) 

and Ichoua et al. (2006), who apply it to pure dynamic vehicle routing problems. While sce-

nario-based planning considers the future evolution of the decision process from a hindsight 

perspective, sampling is also possible by dynamically simulating the evolution of the decision 

process from the current state onward over a limited horizon (Soeffker et al., 2022). This is 

the principle of rollout approaches, which provide an estimate of both cost components as 

future decisions are simulated sequentially according to a base policy (e.g., Ulmer, 2020b). 

• Deterministic linear programming: Originally developed in revenue management (Gallego 

and Topaloglu, 2019), several publications show that deterministic linear programming tech-

niques are transferable to the field of vehicle routing. They define corresponding auxiliary 

models, which provide two types of information: On the one hand, the objective function 

value approximates a certain state value, and hence, the model can be solved twice to calculate 

a cost estimate ∆𝑉̃(𝑆𝑘+1|𝑜) (e.g., Klein et al., 2018). On the other hand, the solution yields 

information that may also serve directly as an input for demand control. Such models are 

related to sampling-based approaches in that they also assume expected future demand to be 

deterministic and include it as an input in aggregated or disaggregated form. The goal is to 

use this information to predict the expected evolution of the remaining booking and service 

horizon depending on the demand management and routing decisions. To model customer 

choice behavior, the inclusion of choice models (Section 3.2) is also possible.  
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• Predictive: A considerable number of authors use predictive models borrowed from the field 

of statistical learning (Powell, 2019). We can distinguish three types of solution approaches 

depending on the values to be predicted:  

▪ The first type approximates the state value function 𝑉̃𝑘+1(𝑆𝑘+1|𝑜) for each resulting state 

𝑆𝑘+1 and option 𝑜 to calculate the cost ∆𝑉̃(𝑆𝑘+1|𝑜) as a value difference 𝑉̃𝑘+1(𝑆𝑘+1) −

𝑉̃𝑘+1(𝑆𝑘+1|𝑜) (e.g., Lang et al., 2021a).  

▪ The second one provides a direct cost approximation ∆𝑉̃(𝑆𝑘+1|𝑜) (e.g., Qiu et al., 2018).  

▪ Finally, the third one predicts state-action values by Q-learning based on approximating 

the value of a demand management decision in a particular state. Since maximizing the 

state-action value in a state 𝑆𝑘 directly leads to an optimal solution for demand control, 

an explicit cost calculation is no longer required (e.g., Chen et al., 2023).  

Any type of prediction can generally be encoded using three types of approximations (Powell, 

2011). All of these have in common that values are computed dependent on a set of prese-

lected features representing the state in an aggregated form. Besides the decision epoch 𝑘 this 

may include order characteristics as well as route-based features of tentative routes like the 

vehicles’ idle times. The approximations are: 

▪ Lookup tables: They store an estimate for all possible resulting combinations of feature 

values, which is updated each time one of the corresponding states occurs throughout the 

learning process (e.g., Ulmer et al., 2018). 

▪ Parametric approximations: They represent the prediction by an expression of a partic-

ular functional form dependent on a set of parameters and the feature values. Most often, 

a linear function, i.e., the weighted sum of all feature values, is chosen (e.g., Yang and 

Strauss, 2017). However, piecewise-linear or non-linear specifications are also possible 

(e.g., Ni et al., 2021 and Lebedev et al., 2020).  

▪ Non-parametric approximations: In contrast to parametric ones, these approximations 

do not assume that the relationship between the estimate and the feature values is of a 

particular functional form. Therefore, they can adapt more flexibly to the actual func-

tional relationship, which is likely non-linear. Examples are kernel regression and (deep) 

neural networks (e.g., Dumouchelle et al., 2021). 

4.1.4 Demand Control 

The demand control task yields the demand management decisions 𝑥𝑘
𝑑𝑒𝑚 that are made in re-

sponse to an arriving request in stage 𝑆𝑘. For optimizing the demand management decision, po-

tentially based on customer choice behavior, three types of control are proposed in the literature: 

accept/reject control, assortment optimization, and pricing control. 

Accept/reject: If the order confirmation step does not involve any stochastic customer choice 

decision, demand control boils down to an accept or reject decision for each request. The resulting 

subproblem can be cast in two ways, both derived from traditional demand management 
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applications (Talluri and van Ryzin, 2004a). First, the provider can subdivide the set of possible 

requests into subsets according to certain parameters and assign a booking limit to each subset, 

i.e., an upper bound on the number of orders (Giallombardo et al., 2022). In this case, a request 

is accepted if this does not cause the corresponding limit to be exceeded. Second, the cost estimate 

(Section 4.1.3) can serve as a bid price, i.e., as the minimum profit of a request for it to be ac-

cepted. This type of control is also applicable for batched request processing (Ulmer et al., 2018). 

Assortment optimization: Under the assumption of substitution behavior and multiple fulfill-

ment options, the demand control task is called an assortment optimization problem (see Gallego 

and Topaloglu, 2019 for an in-depth introduction). Due to the decision space growing exponen-

tially with 𝑂𝑘, i.e., the number of fulfillment options, it becomes combinatorial. Given 𝒪𝑘  as well 

as 𝑟𝑜𝑖, ∆𝑉̃(𝑆𝑘+1|𝑜), and the offer set-dependent purchase probabilities 𝑃𝑜(Θ𝑘) for all 𝑜 ∈ Θ𝑘 and 

Θ𝑘 ⊆ 𝒪𝑘 provided by the choice model, the objective is to maximize the expected profit after 

fulfillment: 

Θ𝑘
∗ = argmax

Θ𝑘⊆𝒪𝑘

{∑ 𝑃𝑜(Θ𝑘) ⋅ (𝑟𝑜𝑖 − ∆𝑉̃(𝑆𝑘+1|𝑜))𝑜∈Θ𝑘 }  

If necessary, certain structural properties of the offer set can be specified by adding constraints. 

Additionally, problem structure and problem complexity depend on the choice model (Section 

3.2). 

Pricing: The basic principle of price-based control is to offer each feasible option 𝑜 ∈ Θ𝑘 = 𝒪𝑘  

at some dynamic price 𝑝𝑜𝑖, i.e., determine a price vector 𝒑𝑖 = (𝑝𝑜𝑖)𝑂𝑘×1. Thus, rewards 𝑟𝑜𝑖(𝑝𝑜𝑖) 

depend on the respective price 𝑝𝑜𝑖. In general, pricing optimization requires the same types of 

input data as assortment optimization, and the problem structure again depends on the choice 

model defining the purchase probabilities 𝑃𝑜(𝑝𝑜𝑖 , Θ𝑘). The decision space, i.e., the feasible price 

vectors, can be similarly vast even if restrictions are imposed. In case the price is only subject to 

an upper or a lower bound or is entirely unrestricted, a continuous pricing problem results, which 

is modeled as follows (e.g., Yang et al., 2016): 

𝒑𝑖
∗ = argmax

𝒑𝑖

{∑ 𝑃𝑜(𝑝𝑜𝑖 , Θ𝑘) ⋅ (𝑟𝑜𝑖(𝑝𝑜𝑖) − ∆𝑉̃(𝑆𝑘+1|𝑜))𝑜∈Θ𝑘 }  

Specifying a set of feasible price points leads to a discrete pricing problem, which is a special 

case of the assortment optimization problem described above. Alternatively, auxiliary models 

based on quadratic programming (Campbell and Savelsbergh, 2006 and Vinsensius et al., 2020) 

and predictive models (Chen et al., 2019 and Al-Kanj et al., 2020) are proposed in the academic 

literature. Finally, note that discounts can also be modeled by allowing 𝑝𝑜𝑖 < 0. 

4.1.5 Routing Control 

Routing control is inherently related to the tasks of the demand management component discussed 

in 4.1.2-4.1.4. Its goal is to optimize the route plan for serving the set of previously received 

orders augmented by the newly received one and to potentially make additional routing decisions 
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based on expected demand. In contrast to checking feasibility, the objective is to not only deter-

mine a feasible route plan but a cost-minimal one. Depending on the control problem at hand, 

three types of routing control are possible that differ in what portion of the route plan is deter-

mined. 

Full route plan: For disjoint horizon problems, routing control is in fact static and deterministic 

as definitive routing decisions are made after the booking horizon. Therefore, the provider makes 

a single decision on the full route plan under certainty by solving a static vehicle routing problem 

(Toth and Vigo, 2014). Note that, additionally, tentative route planning is part of some solution 

approaches for feasibility checking, cost estimation, and demand control of disjoint problems but 

we do not categorize it as routing control.  

Single route: Conversely, for overlapping horizons, some fulfillment planning decisions must be 

made during the booking horizon and cannot be postponed until its end. Routing control decisions 

can then be made by repeatedly fixing complete routes for single vehicles over time, e.g., when 

the capacity limit of a vehicle is reached. For this purpose, corresponding routing problems may 

include tentative decisions for other vehicles. Consequently, most problems consider a tentative 

route plan beyond the route to be optimized (e.g., Klein and Steinhardt, 2023). This is particularly 

suitable for deliveries from a central depot as, once a set of orders is loaded onto a vehicle, the 

route usually cannot be changed any more. 

Leg-oriented: Overlapping horizons also allow only fixing a certain part of a route, i.e., the next 

leg or the next few legs for each vehicle. A leg may correspond to serving an order, moving empty 

to another location or a charging station, or even idling until the next decision epoch. This type 

of routing control is often applied to point-to-point transportation problems. In this context, ful-

fillment planning at each decision epoch only needs to cover a short time span in the case of tight 

waiting time limits and the absence of pre-bookings (e.g., Kullman et al., 2022). Decisions on 

relocations and deliberate waiting times of the vehicles, i.e., anticipative routing decisions based 

on expected demand, can be incorporated, e.g., by means of predictive modeling (e.g., Holler et 

al., 2019). We refer the interested reader to the works of Berbeglia et al. (2010), Ulmer (2017), 

Soeffker et al. (2022), and Pillac et al. (2013) for an in-depth consideration of these aspects. 

4.2 Static Deterministic Approximation 

Integrated demand management and vehicle routing problems can also be cast as static determin-

istic problems assuming given deterministic customer requests and customer preferences. Only a 

subset of requests must be accepted as orders. If multiple fulfillment options are defined, it may 

also be part of the optimization which option should be sold to each customer. Hence, for a fleet 

of several vehicles, profitable capacitated tour problems or team orienteering problems result 

(Vansteenwegen and Gunawan, 2019). Therefore, they can be formulated as mixed-integer pro-

grams (MIPs). As is the case for dynamic control models, their structure depends on the problem 
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setting. Depending on their use, we distinguish two types of static deterministic approximations 

for the dynamic control model: 

Offline static control: Here, we assume perfect information on incoming customer requests and 

customer preferences. This assumption reflects an ex-post perspective at the end of the booking 

horizon. Solution approaches based on offline static control auxiliary models yield static controls, 

which determine definitive demand management decisions before the start of the booking horizon 

(e.g., Agatz et al., 2011, Klein et al., 2019, and Mackert et al., 2019). Another motivation for 

explicitly considering such models results from the fact that their solutions serve as a bound for 

any policy’s performance for the corresponding dynamic problem (e.g., Hosni et al., 2014). 

Online static control: The underlying idea of this approach is to derive both demand manage-

ment and vehicle routing decisions from a static snapshot of the original dynamic control problem 

at a specific decision epoch. Consequently, perfect information is only available about existing 

orders and newly arrived requests. Online static control is applicable for both real-time request 

processing and batched request processing (e.g., Erdmann et al., 2021). Expected future orders 

can, e.g., be integrated by simulating customer arrivals or using aggregated expectations, which 

results in anticipative auxiliary models. Note that in addition, constraints must ensure all previ-

ously made decisions. Exemplary formulations of auxiliary models can be found in Klapp et al. 

(2020), Voccia et al. (2019), and Wang et al. (2021). 

4.3 Tabular Overview 

This section provides an overview of the literature on modeling and dynamically solving inte-

grated demand management and vehicle routing problems that we consider to be in scope for this 

survey. To this end, we use the morphological analysis of the problem characteristics from Sec-

tion 2.1 to classify the individual publications (see Table 1 for the possible realizations of all 

dimensions). Table 4 comprehensively merges the results of this analysis (Columns 3-10) with 

the application (Column 2), the selected customer choice model (Column 11), and the basic solu-

tion concept of the respective work (Columns 12 and 13). Please note that in addition to the ap-

plications considered in Section 2.2, we use the entry “GEN” for publications that consider a 

generic problem setting and do not specify an application. Also, Column 10 sketches the con-

straint structure of the respective problem in more detail than given in Table 1. The following 

entries are possible: single vehicle fleet (SV), heterogeneous fleet (HF), multiple trips per vehicle 

(MT), maximum route duration (RD), order pickup range (PR), physical vehicle capacity (PC), 

time windows (TW), delivery deadlines (DD), maximum waiting time (WT), maximum ride time 

(RT), and battery charging level (CL). Since we focus on dynamic decision making, all publica-

tions listed in Table 4 propose dynamic controls, and we omit the dimension “time of decision”. 

Column 11 specifies whether the authors apply a multinomial logit model (ML), a generalized 

attraction model (GA), a finite mixture MNL model (FM), a nested logit model (NL), or a pricing-

specific parametric model (PM). To characterize the solution concept, Column 12 states whether 
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the authors apply a decomposition-based approximation (✓) or a static deterministic one (X). 

Additionally, Column 13 indicates whether the approach is anticipative (✓) or myopic (X). For 

the works applying decomposition-based approximation, we summarize the task-specific solution 

approach that the authors selected in Table 5. We use the classification scheme given in Table 3. 

In case predictive cost estimation is applied, we additionally state whether it provides a state value 

estimate (SV), a direct cost estimate (DC), or a state-action value estimate (AV). 
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Table 4 General overview (continued on next page) 

Authors 
Appli- 
cation 

Service 
type 

Objective 
Control 

type 
Pro- 

cessing 
Fulfillment 

options 
Booking/ser-
vice horizon 

Routing 
problem 

Constraints 
Choice 
model 

Decom- 
position 

Antici- 
pation 

Al-Kanj et al. (2020) MOD TR PR PB BA SI OL PP PC, CL, PR ML ✓ ✓ 

Alonso-Mora et al. (2017) MOD TR NO AV BA SI OL PP PC, WT, RT – X ✓ 

Angelelli et al. (2021) GEN TR PR AV RT SI DJ PU SV – ✓ ✓ 

Archetti et al. (2021) GEN TR PR AV RT SI OL DE PC, HF, TW, MT – ✓ X 

Atasoy et al. (2015) MOD TR PR AV RT MU OL PP PC, HF, WT, RT ML ✓ X 

Avraham and Raviv (2021) FSO CS NO AV RT MU IF DE TW ML ✓ ✓ 

Azi et al. (2012) SDD TR PR AV RT SI OL DE TW, MT, RD – ✓ ✓ 

Bertsimas et al. (2019) MOD TR PR AV BA SI OL PP PC, TW – X X 

Campbell and Savelsbergh (2005) AHD CG PR AV RT MU DJ DE PC, TW – ✓ ✓ 

Campbell and Savelsbergh (2006) AHD CG PR PB RT MU DJ DE PC, TW PM ✓ X 

Chen et al. (2019) MOD TR RE PB RT SI OL PP PC, PR PM ✓ ✓ 

Chen et al. (2023) SDD TR NO AV RT SI OL DE DD, MT – ✓ ✓ 

Chen et al. (2022) SDD TR NO AV RT SI OL DE PC, HF, DD, MT – ✓ ✓ 

Côté et al. (2021) SDD TR PR AV BA SI OL DE TW, MT – X ✓ 

Dayarian et al. (2020) SDD TR NO AV BA SI OL DE SV, PC, HF, DD – X X 

Dumouchelle et al. (2021) GEN TR PR AV RT SI DJ PU PC – ✓ ✓ 

Erdmann et al. (2021) MOD TR PR AV RT, BA SI OL PP PC, TW, WT – X X 

Fielbaum et al. (2022) MOD TR PR AV BA SI OL PP PC, WT, RT – X ✓ 

Giallombardo et al. (2022) GEN TR PR AV RT SI DJ PU PC – ✓ ✓ 

Haferkamp and Ehmke (2022) MOD TR NO AV RT SI OL PP WT, RT – X ✓ 

Haliem et al. (2021) MOD TR PR PB BA SI OL PP PC PM ✓ ✓ 

Holler et al. (2019) MOD TR RE AV BA SI OL PP PC, PR, WT – ✓ ✓ 

Hosni et al. (2014) MOD TR PR AV RT SI OL PP PC, HF, WT, RT – ✓ X 

Jahanshahi et al. (2022) SDD TR NO AV RT SI OL PP PC, DD – ✓ ✓ 

Klapp et al. (2018) SDD TR PR AV BA SI OL DE SV, MT, RD – X ✓ 

Klapp et al. (2020) SDD TR PR AV RT SI OL DE SV, MT, RD – X ✓ 

Klein et al. (2018) AHD CG PR PB RT MU DJ DE PC, TW ML ✓ ✓ 
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Authors 
Appli- 

cation 

Service 

type 
Objective 

Control 

type 

Pro- 

cessing 

Fulfillment 

options 

Booking/ser-

vice horizon 

Routing 

problem 
Constraints 

Choice 

model 

Decom- 

position 

Antici- 

pation 

Klein and Steinhardt (2023) SDD CG PR PB RT MU OL DE DD, MT PM ✓ ✓ 

Koch and Klein (2020) AHD CG PR PB RT MU DJ DE TW FL ✓ ✓ 

Köhler et al. (2019) AHD CG NO PB RT MU DJ DE TW NL ✓ X 

Köhler et al. (2020) AHD CG NO AV RT MU DJ DE TW – ✓ X 

Kullman et al. (2022) MOD TR PR AV RT SI OL PP PC, WT, CL – ✓ ✓ 

La Rocca and Cordeau (2019) MOD TR RE AV BA SI IF PP PC, WT, CL – X X 

Lang et al. (2021a) AHD CG RE AV RT MU DJ DE TW FL ✓ ✓ 

Lang et al. (2021b) AHD CG RE AV RT MU DJ DE TW FL ✓ ✓ 

Lebedev et al. (2020) AHD CG PR PB RT MU DJ DE TW ML ✓ ✓ 

Lebedev et al. (2022) AHD CG PR PB RT MU DJ DE TW ML ✓ ✓ 

Lotfi and Abdelghany (2022) MOD TR PR AV BA MU OL PP PC, TW – ✓ X 

Mackert (2019) AHD CG PR AV RT MU DJ DE PC, TW GA ✓ ✓ 

Ni et al. (2021) MOD TR PR PB BA MU OL PP CL PM ✓ ✓ 

Prokhorchuk et al. (2019) SDD TR RE PB RT MU OL DE DD, MT ML ✓ ✓ 

Qiu et al. (2018) MOD TR PR PB RT MU OL PP PC, HF, RT, PR ML ✓ ✓ 

Strauss et al. (2021) AHD CG PR PB RT MU DJ DE PC, TW NL ✓ ✓ 

Ulmer (2020a) SDD CG RE PB RT MU OL DE DD, MT PM ✓ ✓ 

Ulmer (2020b) FSO CS NO AV BA SI OL, IF DE SV – ✓ ✓ 

Ulmer et al. (2018) GEN TR NO AV BA SI OL PU SV – ✓ ✓ 

Ulmer et al. (2019) GEN TR NO AV BA SI OL PU SV – ✓ ✓ 

Ulmer and Thomas (2020) GEN TR RE AV RT SI DJ DE SV, PC – ✓ ✓ 

Vinsensius et al. (2020) AHD CG PR PB RT MU DJ DE PC, HF, RD, MT, TW PM ✓ ✓ 

Voccia et al. (2019) SDD TR NO AV BA SI OL DE TW, MT – X ✓ 

Wang et al. (2021) MOD TR PR PB BA MU OL PP PC, TW NL X X 

Xu et al. (2018) MOD TR RE AV BA SI OL PP PC – ✓ ✓ 

Yang and Strauss (2017) AHD CG PR PB RT MU DJ DE PC, TW ML ✓ ✓ 

Yang et al. (2016) AHD CG PR PB RT MU DJ DE PC, TW ML ✓ ✓ 

Zhang et al. (2023) GEN TR NO AV RT SI OL DE MT – ✓ ✓ 
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Table 5 Overview of decomposition-based approaches 

Authors Feasibility check Cost estimation Demand control Routing control 

Al-Kanj et al. (2020) RO PR, SV DP LO 

Angelelli et al. (2021) RO SA AR FP 

Archetti et al. (2021) RO MY AR SR 

Atasoy et al. (2015) RO MY AO SR 

Avraham and Raviv (2021) RO PR, DC AO FP 

Azi et al. (2012) RO SA AR SR 

Campbell and Savelsbergh (2005) RO SA AR FP 

Campbell and Savelsbergh (2006) RO MY DP FP 

Chen et al. (2019) RO PR, SV DP LO 

Chen et al. (2023) RO PR, AV AR SR 

Chen et al. (2022) RO PR, AV AR SR 

Dumouchelle et al. (2021) CA PR, AV AR FP 

Giallombardo et al. (2022) CA DL AR FP 

Haliem et al. (2021) RO MY CP LO 

Holler et al. (2019) RO PR, AV AR LO 

Hosni et al. (2014) RO MY AR LO 

Jahanshahi et al. (2022) RO PR, AV AR LO 

Klein et al. (2018) RO DL CP FP 

Klein and Steinhardt (2023) RO SA DP SR 

Koch and Klein (2020) RO PR, SV DP FP 

Köhler et al. (2019) RO MY DP FP 

Köhler et al. (2020) RO MY AO FP 

Kullman et al. (2022) RO PR, AV AR LO 

Lang et al. (2021a) CA PR, SV AO FP 

Lang et al. (2021b) CA PR, SV AO FP 

Lebedev et al. (2020) CA PR, SV CP FP 

Lebedev et al. (2022) CA PR, SV CP FP 

Lotfi and Abdelghany (2022) RO MY AR SR 

Mackert (2019) RO DL AO FP 

Ni et al. (2021) RO PR, SV CP LO 

Prokhorchuk et al. (2019) RO PR, SV CP SR 

Qiu et al. (2018) RO PR, DC CP LO  

Strauss et al. (2021) CA DL DP FP 

Ulmer (2020a) RO PR, SV CP SR 

Ulmer (2020b) RO SA, PR, SV AR LO 

Ulmer et al. (2018) RO PR, SV AR LO 

Ulmer et al. (2019) RO SA, PR, SV AR LO 

Ulmer and Thomas (2020) RO PR, SV AR FP 

Vinsensius et al. (2020) CA PR, SV DP FP 

Xu et al. (2018) RO PR, SV AR LO 

Yang and Strauss (2017) CA PR, SV CP FP 

Yang et al. (2016) RO SA CP FP 

Zhang et al. (2023) RO DL AR SR 

5 Solution Algorithms 

In this section, we provide a more detailed analysis of the specific algorithms used as part of the 

solution concepts from Section 4. Hence, this section is intended particularly for readers who 

would like to dive deeper into the literature. We discuss algorithms for both classes of solution 

concepts in Sections 5.1 and 5.2, respectively. 

5.1 Algorithms for Decomposition-based Approximation 

In the following, we discuss algorithms for the tasks individually in Sections 5.1.1-5.1.4. We 

structure our discussion along the types of solution approaches characterized in Section 4.1. An 

essential observation is that authors rarely fully decompose the problem, i.e., they often propose 
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a particular algorithm to tackle more than one task. Therefore, at the end of each section, we 

highlight the algorithms suitable for solving a combination of the current and preceding tasks. 

5.1.1 Feasibility Check 

The complexity of this task ranges from almost trivial (e.g., if the fleet consists of vehicles with 

a physical capacity of one) to NP-hard for time-window-constrained problems (Savelsbergh, 

1985). Consequently, exact as well as heuristic algorithms are applied. Heuristic algorithms are 

usually considerably faster compared to exact ones. Thus, as feasibility checks are required sim-

ultaneously for all potential options in real-time, the former prevail in the literature. However, 

they may return false-positive or false-negative results, i.e., incorrectly categorize an option as 

feasible or infeasible, respectively. The consequence of a false-positive statement and a resulting 

order of the corresponding option is that the provider cannot serve the respective customer or 

other customers due to insufficient capacity. This could cause a loss of customer goodwill (e.g., 

Wang et al., 2011) or require expensive short-term capacity enhancement measures (e.g., 

Vinsensius et al., 2020). By way of contrast, false-negative statements might lead to lost sales if 

a feasible and profitable option is not offered. 

Algorithms for route-based checks: Most publications apply route-based feasibility checks, 

drawing on the extensive set of existing methods for solving classical static vehicle routing prob-

lems:  

• Heuristics: In heuristic algorithms, at least one route plan 𝜙 ∈ Φ𝑘 serving all orders accepted 

so far is maintained or generated online at each decision epoch. If the heuristic finds that 

augmenting 𝜙 to a plan 𝜙′ for an option 𝑜 is feasible, the check returns a positive result. Most 

approaches use an insertion heuristic to this end (Solomon, 1987). Insertion heuristics offer 

high flexibility regarding the extensiveness of the search for a feasible position and are adapt-

able to many generalizations of the vehicle routing problem (Campbell and Savelsbergh, 

2004). For that reason, they are applied to almost any problem setting. The following works 

present interesting contributions regarding this method: Campbell and Savelsbergh (2005) 

generate a pool of tentative route plans using a randomized insertion procedure and evaluate 

all potential insertion positions for a particular fulfillment option. Yang et al. (2016) addi-

tionally maintain a tentative route plan from the previous decision epoch. Azi et al. (2012) 

allow splitting routes if there is no feasible insertion position in the original routes of a single 

route plan, given some maximum route length constraint. Prokhorchuk et al. (2019) check for 

infeasible and undoubtedly unprofitable options to reduce the computational effort for the 

downstream tasks. 

• Exact algorithms: As opposed to heuristics, exact algorithms thoroughly search a static rout-

ing problem’s solution space. Thus, they do not return false results but at the cost of higher 

time consumption. In the surveyed literature, authors only consider total enumeration and 

apply it to less complex problems. For example, they examine problem settings that only 
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involve vehicles with a physical capacity of one (e.g., Chen et al., 2019). Qiu et al. (2018) 

show that total enumeration is also applicable for vehicle capacities in the lower one-digit 

range.  

Algorithms for capacity-based checks: Since capacity-based feasibility checks approximate 

route-based auxiliary models, they are heuristic by design. The corresponding algorithms differ 

in how capacity limits are determined offline. Lebedev et al. (2020), Yang and Strauss (2017), 

and Strauss et al. (2021) draw on routing approximation techniques by Daganzo (1987). Lang et 

al. (2021a) apply the iterated local search algorithm by Souffriau et al. (2013) to solve sampled 

instances of the offline static control problem (Section 4.2). Lang et al. (2021b) also solve an 

offline problem with forecasted orders but assume that the provider must serve all orders.  

5.1.2 Cost Estimation 

As outlined in Section 4.1.3, any cost estimation is approximate due the task’s high complexity. 

This section discusses the algorithms presented in the literature, which again may yield cost esti-

mates of varying quality. 

Algorithms for myopic estimation: Applying myopic estimation yields an estimate of tentative 

marginal cost-to-serve, i.e., the increase in total delivery cost caused by additionally serving a 

potential order 𝑜. The term tentative expresses that they only refer to the orders accepted so far. 

For this estimate to be exact, routing costs of the optimal route plans 𝜙′∗ and 𝜙∗ with and without 

the potential order need to be determined, which is often very time-consuming. Therefore, only 

Hosni et al. (2014) apply a standard mixed-integer programming solver (MIP solver) to search 

for the minimum-cost update, however, separately for each vehicle and thus heuristically. The 

other algorithms rely on insertion heuristics.  

Campbell and Savelsbergh (2006) approximate the tentative marginal cost-to-serve by the inser-

tion cost of a potential order concerning a pool of tentative route plans. Atasoy et al. (2015) de-

velop a similar procedure that differentiates between different vehicle types but is based only on 

a single current route plan. Köhler et al. (2019) and Köhler et al. (2020) observe that the insertion 

cost decreases depending on the routing flexibility for a given set of orders. Hence, they use 

measures for the routing flexibility as a cost estimate.  

It is important to note that even exact tentative marginal cost-to-serve are an approximation of the 

true marginal cost-to-serve. The latter can be computed at the end of the booking horizon, being 

the cost difference between optimal route plans with and without the potential order. In the fol-

lowing, we denote this true hindsight cost as ex-post marginal cost-to-serve. This distinction is 

required because a tentative route plan can structurally differ from the final route plan to a large 

extent (Yang et al., 2016).  

Hence, we have a chain of three potential sources of inaccuracy for myopic estimation: First, 

heuristic algorithms only approximate the exact tentative marginal cost-to-serve. Second, even 

the exact tentative marginal cost-to-serve only approximate the ex-post marginal cost-to-serve. 
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Third, as explained in Section 4.1.1, the ex-post marginal cost-to-serve is just one cost component 

and must be complemented by the exact displacement cost to obtain a perfectly accurate cost 

estimate. Within the class of myopic approaches, an algorithmic improvement can just tackle the 

first source of inaccuracy as the other two are of a structural nature.  

It is only through anticipation that a refinement of the marginal cost-to-serve estimate beyond the 

exact tentative value and toward the ex-post value and the estimation of displacement cost be-

comes possible. However, not all approaches take advantage of both opportunities, as explained 

in the following. 

Algorithms for sampling-based estimation: Solution algorithms for sampling-based cost esti-

mation are related to those for myopic estimation in that they are also essentially routing heuris-

tics. However, the inclusion of sampled orders necessitates adaptions.  

Azi et al. (2012) calculate the average insertion cost of a potential order into a pool of route plans, 

each initialized with sampled orders. They permanently insert new orders into the sampled route 

plans and reoptimize them using an adaptive large neighborhood search heuristic. Yang et al. 

(2016) compute a weighted combination of the average insertion cost regarding two pools of route 

plans: One contains route plans of all received orders. The other consists of historic final route 

plans and, hence, entirely contains sampled orders. The tentative insertion cost is expected to gain 

accuracy throughout the booking horizon, so its weight is gradually increased. Displacement of 

sampled customers is not possible in either approach.  

In contrast, the following three algorithms also estimate displacement cost. Campbell and Savels-

bergh (2005) construct a single route plan from scratch using a profit-based insertion heuristic for 

each potential order. In the first phase, they insert all existing orders. In the second one, they 

include the potential order together with a set of sampled ones. Thereby, they adjust the sampled 

orders’ revenues by the probabilities of their arrival. The resulting objective function values of 

the solution with and without the potential order are used to determine a cost estimate, including 

displacement cost. Angelelli et al. (2021) follow the same ideas but draw on a different routing 

heuristic (Chao et al., 1996). Klein and Steinhardt (2023) propose a method to refine cost esti-

mates derived from scenario-sampling through the explicit integration of future demand control 

decisions and the resulting customer choice behavior. Ulmer (2020b) presents a rollout algorithm. 

It uses a pre-trained state value approximation and an insertion heuristic to simulate demand con-

trol and routing control, respectively. 

Algorithms for deterministic linear programming: Deterministic linear programming models 

are usually solved through MIP solvers. To achieve tractable formulations, authors propose sev-

eral techniques. Such formulations require an approximation of final routing cost based on known 

and expected orders. Since expected orders depend on future demand management decisions and, 

potentially, on customer choice behavior, they must also include these aspects. 
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Klein et al. (2018) solve a model leaning on the choice-based deterministic linear program (e.g., 

Liu and van Ryzin, 2008). For estimating routing cost, they combine insertion-based tentative 

route planning with a seed-based routing approximation developed by Fisher and Jaikumar 

(1981). To account for expected demand management and the resulting purchase decisions, they 

define a set of potential price lists and pre-compute choice probabilities. Mackert (2019) uses the 

same routing approach to adapt the sales-based deterministic linear program by Gallego et al. 

(2015), which endogenizes a choice model in the form of linearized constraints. The same is true 

for the formulation used by Strauss et al. (2021). However, they apply the approximation devel-

oped by Daganzo (1987) to estimate the final routing cost. Zhang et al. (2023) solve a multiple-

knapsack problem approximating both future demand management and routing decisions. Gial-

lombardo et al. (2022) geographically aggregate requests to allow for explicit route planning. If 

the request arrival rate is prohibitively high for real-time decisions, Klein et al. (2018) and Gial-

lombardo et al. (2022) propose solving their auxiliary model at larger time intervals and re-using 

current cost estimates until an update is available.  

Algorithms for predictive estimation: For predictive approaches, algorithms solve the estima-

tion problem of the statistical model, i.e., they train the model based on historical or simulated 

booking data (e.g., Powell, 2019). This training involves several steps, such as feature value cal-

culation, model updates, and exploration. For each of these steps, a wide range of methods from 

the field of statistical learning can be applied in various combinations to the control problem 

considered in this survey. Therefore, we refrain from discussing the individual methods and their 

composition in detail and only give an overview of the most important contributions. 

• State value approximations: Lang et al. (2021b) apply a backward dynamic programming 

algorithm to compute a lookup table. Ulmer et al. (2018) and Al-Kanj et al. (2020) propose 

dynamically refining the partitioning of lookup tables during the offline learning process. 

Ulmer et al. (2019) amend this approach by an online rollout component. The parametric 

models by Prokhorchuk et al. (2019) and Koch and Klein (2020) entail features derived from 

route plans. Like sampling-based approaches, the latter include sampled orders into the route 

plan, which they gradually remove during the booking horizon. Both works use linear regres-

sion for policy updates. Koch and Klein (2020) find that side constraints incorporating the 

value function's structural properties improve the learning performance. The algorithms of 

Yang and Strauss (2017) and Vinsensius et al. (2020) do not require any tentative route plan-

ning. Both update the parameters using a stochastic gradient step immediately after each value 

observation but differ in the way of calculating the final delivery cost: Yang and Strauss 

(2017) use a routing approximation by Daganzo (1987), Vinsensius et al. (2020) construct 

each final route plan with a minimum-regret insertion heuristic (Pisinger and Ropke, 2007). 

For non-linear statistical models, Lebedev et al. (2020) and Lebedev et al. (2022) show that 

policy updates are not prohibitively complex. The same is true for non-parametric statistical 
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models, i.e., neural networks, for which special policy update methods exist depending on the 

model specification (Chen et al., 2019 and Lang et al., 2021a). 

• Direct cost approximations: To directly learn a non-linear cost function, Avraham and Ra-

viv (2021) conduct an iterative local search within a gradient descend framework and use 

simulation to evaluate a parameter set’s quality. Qiu et al. (2018) employ a covariance matrix 

adaption evolution strategy, i.e., a numerical optimization method, to learn the parameters of 

a linear function. 

• State-action value approximations: Instead of a value function or a cost function, Q-learn-

ing is based on learning a state-action value function. Combining Q-learning with a deep 

neural network representation of the state-action value function is called Deep Q-learning. It 

is, e.g., applied in the following two works: Chen et al. (2023) train the network such that it 

learns a policy which balances acceptance rates over sub-areas. Kullman et al. (2022) estimate 

a separate Q-value for each vehicle and mimic centralized control during training by a reward-

sharing mechanism. Holler et al. (2019) propose a proximal policy optimization method that 

also relies on a neural network representation of the policy. Jahanshahi et al. (2022) train a 

Double Deep Q-Network with prioritized experience replay. Finally, Dumouchelle et al. 

(2021) train a neural network combining Monte Carlo tree search with the SARSA algorithm. 

Combination with other tasks: All algorithms for myopic cost estimation simultaneously provide 

a cost estimate and a statement on the feasibility for each potential order. 

Yang et al. (2016) and Klein and Steinhardt (2023) simultaneously check feasibility when apply-

ing their routing heuristics to determine sampling-based cost estimates. Since some predictive 

cost estimation algorithms require tentative route planning to calculate feature values, such as the 

free time budget, combining them with a route-based feasibility check (e.g., Ulmer et al., 2018) 

is natural. 

Integrated capacity-based feasibility checks are, on the one hand, possible via the routing approx-

imations used as part of the deterministic linear programming approach by Strauss et al. (2021) 

as well as the predictive approaches by Lang et al. (2021a), Lebedev et al. (2020), and Yang and 

Strauss (2017). On the other hand, the cost estimate can incorporate the likelihood that a potential 

order leads to an infeasible route plan. If the likelihood is high, the aim is to set the value of the 

cost estimate sufficiently high to prevent offering the respective fulfillment option. Vinsensius et 

al. (2020) and Dumouchelle et al. (2021) propose such algorithms. 

5.1.3 Demand Control 

In this section, we examine algorithms for the demand control task. The complexity of this task 

depends on both the type of solution approach, according to which we structure the following 

discussion, and the choice model providing purchase probabilities. 

Algorithms for accept/reject control: Accept/reject decisions based on both booking limits and 

bid prices require minimal computational effort. For booking limits, it is sufficient to check 
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whether a potential order causes the respective limit to be exceeded (Giallombardo et al., 2022). 

Controlling demand based on bid prices requires checking whether a potential order’s profit is 

larger than or at least equal to the cost estimate. If not, the request is rejected (Hosni et al., 2014). 

However, some algorithms allow such requests to be reconsidered in subsequent decision epochs 

until they expire (Holler et al., 2019). Maximizing state-action values (Kullman et al., 2022) or 

solving a matching problem via the Kuhn-Munkres algorithm (Xu et al., 2018) are also suitable 

for accept/reject control.  

Algorithms for assortment optimization: Under the assumption of an MNL choice model, an 

optimal offer set exists among the nested-by-revenue ones (Talluri and van Ryzin, 2004b). Lang 

et al. (2021a) and Lang et al. (2021b) take advantage of this property, which does no longer hold 

in case of side constraints. The application considered by Atasoy et al. (2015) requires such con-

straints to guarantee that at most one option of different classes of fulfillment options is offered. 

However, the total unimodularity of this constraint allows formulating the problem as a linear 

program (see Davis et al., 2013 and Bechler et al., 2021 for an overview of such linearization 

techniques). Similarly, Mackert (2019) uses a linearized formulation of the assortment optimiza-

tion problem arising under the assumption of a generalized attraction choice model. For problem 

settings where |Θ𝑘| is low, Avraham and Raviv (2021) find that total enumeration is an efficient 

method to solve assortment optimization problems given that all options with 𝑟𝑜𝑖 < ∆𝑉̃(𝑆𝑘+1|𝑜) 

can be excluded.  

Algorithms for pricing: Discrete pricing problems can be modeled as assortment optimization 

problems, such that algorithms described in the previous paragraph are applicable. Like Atasoy 

et al. (2015), Strauss et al. (2021) solve an MNL-based pricing problem with unimodular con-

straints using a MIP solver. The constraints guarantee that less convenient options are priced 

lower than more convenient ones. Koch and Klein (2020) tackle the discrete pricing problem 

under a finite-mixture MNL model through a greedy construction heuristic.  

Yang et al. (2016) are the first to describe the continuous pricing problem resulting from applying 

the MNL model in the context of demand management for a vehicle routing application. Drawing 

on Dong et al. (2009), they show that the problem is non-linear but concave, so they can apply 

any numerical optimization method.  

While all pricing policies discussed so far involve discrete choice models, the literature describes 

some other variants. Campbell and Savelsbergh (2006) propose a two-step algorithm. First, they 

perform a rule-based selection of feasible options to be offered at a discount. By solving the 

piecewise linear approximation of a quadratic program, they determine the value of all discounts. 

Vinsensius et al. (2020) apply a similar algorithm and solve the resulting quadratic program di-

rectly in closed form. Ulmer (2020a) proposes a rule-based policy that makes offers at a static 

base price or a price equal to the cost estimate if the latter exceeds the base price. Haliem et al. 

(2021) use a similar method. Köhler et al. (2019) present another rule-based algorithm analogous 

to the assortment optimization method by Köhler et al. (2020). Al-Kanj et al. (2020) and Chen et 
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al. (2019) show that machine learning methods are also suitable for solving pricing problems 

heuristically. 

Combination with other tasks: As booking limits generally reflect the available logistical capacity, 

their use for the demand control task involves a capacity-based feasibility check. Concerning the 

other demand control approaches, existing works exclusively tackle demand control separate 

from other tasks. 

5.1.4 Routing Control 

Algorithms for determining vehicle routing decisions for control problems with integrated de-

mand management have much in common with pure vehicle routing algorithms (Soeffker et al., 

2022). Due to the constraint structure depending on operational restrictions, they are also highly 

specific to the problem setting of individual applications. As we generally focus on demand man-

agement, we only provide a high-level overview. 

Algorithms for full route plan approaches: In problem settings with disjoint booking and ser-

vice horizons, a static vehicle routing problem arises after the cutoff time. Thus, any route plan-

ning heuristic suitable for the respective model can be applied. 

Algorithms for single route approaches: In the case of overlapping horizons, routing control 

may rely on fixing complete routes. Here, it is possible to extend the feasibility check to not only 

search for a feasible update for tentative route planning but a cost-minimal one. Azi et al. (2012) 

were the first to propose such an algorithm. They insert every new order into a valid route plan 

containing all received orders and reoptimize it by adaptive large neighborhood search upon each 

insertion. Archetti et al. (2021) periodically perform a local search, Lotfi and Abdelghany (2022) 

apply a greedy heuristic. Atasoy et al. (2015) consider a problem setting where each vehicle can 

be used for different transportation modes. Thus, they divide each route into blocks within which 

the mode remains the same. If possible, they insert new orders into an existing block. Otherwise, 

they create a new block solving a shortest path problem. 

Algorithms for leg-oriented approaches: Alternatively, the provider can decide on the next legs 

of vehicles. The methods by Ulmer et al. (2018) and Ulmer et al. (2019) require a decision whether 

to wait at the current location or to proceed toward the next location according to the updated 

route plan at each decision epoch. For applications with point-to-point transportation, stand-alone 

algorithms can determine empty relocations as shown by Chen et al. (2019), who use a random 

walk process. In contrast, Ni et al. (2021) apply a MIP solver to determine all routing decisions 

including relocations. 

Combination with other tasks: For the routing control task, there are many combination opportu-

nities with preceding tasks. Many algorithms for feasibility check and cost estimation already 

yield route plans as a “side-product.” Hence, these plans can be used directly (e.g., Klein and 

Steinhardt, 2023) or optimized further by the heuristics described above. Xu et al. (2018) and Qiu 

et al. (2018) show that algorithms for demand control can also yield routing decisions. Decisions 



Article A1: Recent Advances in Integrating Demand Management and Vehicle Routing: A Methodological Review 

 53 

on relocations can also be made in conjunction with demand control. State(-action) value-based 

accept/reject methods offer one way to integrate these tasks (Al-Kanj et al., 2020, Holler et al., 

2019, Jahanshahi et al., 2022, and Kullman et al., 2022). Haliem et al. (2021) estimate dedicated 

state-action values for relocations, which also serve as an input for pricing decisions. 

5.2 Algorithms for Static Deterministic Approximation 

In contrast to solution concepts based on decomposition, which are often inspired by traditional 

demand management applications, this class of concepts rather originate from pure dynamic ve-

hicle routing (Berbeglia et al., 2010) and, hence, are only suitable in case of overlapping horizons. 

In each decision epoch, solving an auxiliary online static control model (Section 4.2) simultane-

ously provides a demand control and routing control decision. This results in another important 

characteristic compared to decomposition-based approximations: the lack of an explicit cost esti-

mate. However, the notion of myopic and anticipative decision making is transferable since online 

static control models may also include information on future demand. In the literature, static de-

terministic approximation is only applied, with one exception, for accept/reject control. There-

fore, the complexity of the periodic optimization problem is mainly determined by the vehicle 

routing component and the use of anticipation. Consequently, we consider algorithms for myopic 

and anticipative approaches separately in Sections 5.2.1 and 5.2.2.  

5.2.1 Algorithms for Myopic Approaches 

La Rocca and Cordeau (2019) present the only exact solution algorithm within the class of myopic 

approaches. They apply a MIP solver to a linear assignment problem with dummy vehicles, which 

leads to a set of new orders with vehicle assignments. The route plan is then complemented with 

charging and relocation decisions for unassigned vehicles by separate rule-based policies depend-

ent on the current system state.  

Other authors rely on heuristics: Erdmann et al. (2021) propose a greedy matching heuristic to 

determine order-vehicle assignments. Bertsimas et al. (2019) solve an auxiliary network flow 

model using a MIP solver. They use the solution from the previous decision epoch as a warm start 

and a backbone algorithm for preprocessing to reduce the computational effort. 

The auxiliary bi-level programming model used by Wang et al. (2021) is very complex as it in-

corporates choice-based pricing control and thus needs to be solved by a specialized heuristic 

search algorithm. Dayarian et al. (2020) use a two-stage heuristic that first creates a potentially 

infeasible route plan serving all received orders and potential orders using a large neighborhood 

search with a worst-removal destroy operator. Second, potential orders are removed following a 

greedy scheme until reaching feasibility. 

5.2.2 Algorithms for Anticipative Approaches 

Some works solving anticipative auxiliary models also consider problems that allow a thorough 

search of the solution space. For vehicle capacities in the lower one-digit range, Alonso-Mora et 
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al. (2017) show that total enumeration is applicable. They construct a shareability graph, first 

proposed by Santi et al. (2014), to identify the set of all feasible routes and solve a matching 

problem to determine which of these to assign to vehicles. To allow for anticipation and reloca-

tions, a set of sampled requests with reduced rejection penalty costs is added to the batch of newly 

arrived ones. Fielbaum et al. (2022) propose two extensions for this algorithm: First, they modify 

arc costs according to the expected demand at the vehicle’s destination. Second, they refine the 

sampling procedure for future orders through an online method for estimating demand distribu-

tions for sampling that does not require historical data. Klapp et al. (2018) and Klapp et al. (2020) 

consider single-vehicle, multi-trip problems for which the application of a MIP solver is also 

practical. Both works develop policies based on a-priori plans, which are computed by solving 

the offline static control problem based on expected customer arrivals associated with rejection 

penalties. The a-priori plan is then updated at each decision epoch by solving the online static 

control problem or a simplified version of it. Following the authors mentioned above, Klapp et 

al. (2020) state that it is beneficial to warm-start the solver with data from the previous decision 

epoch. However, they also present a metaheuristic tailored to the problem’s structure to reduce 

computation time further. 

This leads us to more complex static control problems where metaheuristics are, in fact, the only 

practical solution approach. Haferkamp and Ehmke (2022) apply a large neighborhood search 

with three classical removal operators and regret-insertion. Voccia et al. (2019) generate scenarios 

by sampling future requests and solve a relaxation of the online static control problem for each 

scenario instance by a variable neighborhood search. They then apply a consensus function (Bent 

and van Hentenryck, 2004) to the set of resulting scenario plans. This function identifies which 

part of each idle vehicle’s route can accommodate new orders in each scenario plan, selects the 

best plan, and with it the subset of requests to accept. The chosen plan is then repaired for feasi-

bility by removing potential orders. Also based on scenario-sampling, Côté et al. (2021) first 

evaluate whether it is beneficial to delay the start of all planned routes. If not, they first ensure 

that each request is either planned to be served by a vehicle departing in the current decision 

epoch, a later decision epoch, or is rejected consistently in all scenarios before applying the con-

sensus function. For route planning, they use an adaptive large neighborhood search. 

6 Conclusion and Research Opportunities 

In this survey, we reviewed the methodological advances regarding the integration of demand 

management and vehicle routing. This research area, whose origins can be situated around the 

mid-2000s, encompasses a wide range of applications. Therefore, we first developed a general-

ized definition and a high-level mathematical model of the underlying sequential decision pro-

cess, and then used this as a basis for analyzing and classifying the literature concerning the de-

cision problems, solution concepts, and algorithms presented.  
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Based on this analysis, we can now discuss important insights and challenges from a cross-appli-

cation perspective. In particular, we draw conclusions regarding the current state of research and, 

simultaneously, point toward future research opportunities. We structure the elaboration along 

the following seven topics:  

Generic model formulations: Establishing some form of a common modeling language is un-

doubtedly beneficial to describe problem settings in a standardized and concise manner and to be 

able to relate these settings to each other on a formal level. To this end, it seems most natural to 

formalize the various settings in terms of corresponding Markov decision processes to fully cap-

ture the dynamic and stochastic nature of the underlying control problems. Since many existing 

works already include such models, we advocate that these become a standard for future publica-

tions and introduced a generic, high-level formulation representing a possible starting point for 

modeling specific control problems in any area of application. One example in this context is the 

model by Yang et al. (2016) for dynamic pricing in AHD, on which several authors have based 

their models afterward. A particular challenge arises because vehicle routing dynamics and the 

reactions of customers to demand management must be modeled. Klein et al. (2020) discuss ex-

amples of modeling integrations of demand management techniques and operational decision 

making from different fields of applications. An important step to improve the presentation of 

relevant control problems toward a more generic description is to establish and use common ter-

minology that this review aims to contribute to.  

Generic solution frameworks: Just like standardized modeling, a uniform description of solution 

concepts enables methodological transfers within and between the application-specific literature 

streams and thus a faster progress of research overall. We aimed to contribute toward such a 

unification by explicitly distinguishing decomposition-based approximations and static determin-

istic ones as well as the associated solution approaches (Section 4). We encourage authors of 

future works on decomposition-based approximation to be explicit about how they address each 

task, how they orchestrate their complete solution method, and how it could possibly be adapted 

to other problem settings. It is also promising to align solution approaches and model formulation 

more closely. Substantial efforts in this direction already exist in related fields, e.g., by Ulmer et 

al. (2020) introducing a route-based Markov decision process for dynamic vehicle routing prob-

lems. 

Advancement of solution approaches: We also see opportunities for future research at the meth-

odological level. For the feasibility check, machine learning methods suitable for solving binary 

classification problems could be a valuable extension of the existing body of methods for capac-

ity-based checks. Recent work by Dumouchelle et al. (2021) and Van der Hagen et al. (2024) 

shows that this is a promising research avenue. The same observation accounts for constraint 

programming techniques for route-based feasibility checks. Recent advances in approximate dy-

namic programming could improve cost estimates (Ulmer et al., 2019). To derive more accurate 

features from route plans, the inclusion of sampled orders could be further investigated (Koch 
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and Klein, 2020). The application of more accurate choice models, whose major drawback is that 

they cause an increase in complexity of the demand control task, could be facilitated by develop-

ing tailored assortment planning and pricing heuristics. Sampling methods that rely on online 

demand data could enable anticipation in the absence of a reliable source of historical data 

(Fielbaum et al., 2022). 

Performance assessment: Due to the abovementioned heterogeneity of the problem settings and 

dependencies on instance characteristics, comparing the performance of complete solution ap-

proaches on a general level is difficult. However, there seems to be a universally valid insight 

repeatedly reported in different areas of application: Anticipative approaches consistently domi-

nate myopic ones, particularly in problem instances characterized by a medium scarcity of fulfill-

ment capacity (e.g., Azi et al., 2012 and Voccia et al., 2019). Especially the anticipation of dis-

placement effects is found to have a significant impact by several authors (e.g., Klein et al., 2018) 

comparing their approaches with the method by Yang et al. (2016), which uses anticipation only 

to refine the estimate of marginal cost-to-serve. Another interesting finding is that anticipation 

reduces the systematic discrimination against customers based on their location (e.g., Prokhor-

chuk et al., 2019), an issue that Soeffker et al. (2017) raised first. We believe that researchers 

should put more emphasis on identifying the components of the overall solution procedure to 

which a certain increase in performance can be attributed. To a certain extent, this is examined, 

e.g., in the study by Haferkamp and Ehmke (2022). Regarding the performance, authors should 

also evaluate the robustness of anticipative approaches in case that the parameters used in choice 

models and demand distributions differ from the real-world (Srour et al., 2018). To allow a gen-

eralized empirical validation of these performance insights, Lang et al. (2021a) identify the de-

velopment of a benchmarking tool as an essential task for future research. First promising steps 

in this direction are being taken (Bertsimas et al., 2019 and Lang and Cleophas, 2020). 

Suitability of demand control policies: Whether providers should prefer availability control or 

price-based control policies cannot be answered equally clearly, which is why no approach has 

become dominant in the literature either. Several authors argue that persuasive control strategies, 

i.e., those using incentives, are superior to coercive ones restricting service availability because 

they are more likely to be endorsed by customers. Consequently, availability control and espe-

cially policies that might reject customers without offering alternative fulfillment options are seen 

critically (e.g., Asdemir et al., 2009). As Lee and Savelsbergh (2015) point out, the resulting 

dissatisfaction in MOD settings is amplified by the fact that rejected customers might have to 

switch to an alternative means of transportation at short notice. Offering a set of fulfillment op-

tions instead of only a single one bears the potential to reduce the rate of these provider-side 

rejections substantially. On the other hand, charging dynamic prices for a logistical service is an 

inherent competitive disadvantage (Lang et al., 2021b). It may even be restricted or forbidden due 

to regulation (Bruck et al., 2018). Other types of incentives can use discounts or vouchers (Agatz 
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et al., 2008) or highlight the environmental benefits of specific fulfillment options (Agatz et al., 

2021a) to alleviate these issues. 

Advancement of choice modeling and fulfillment options: In both availability control and 

price-based control, the path toward more customer-friendly controls leads to the growing im-

portance of choice modeling and the design of fulfillment options. As illustrated in Section 3.2, 

accurately modeling customer choice behavior is widely recognized as a success factor for de-

mand management in general. The results of Mackert et al. (2019) show that this is also the case 

for vehicle routing applications. In future research, instead of passively fitting choice models, 

choice behavior could be actively explored, especially if the available historical data are sparse 

or biased due to suboptimal demand management in the past (Bondoux et al., 2020). Furthermore, 

the integration of more advanced choice models like the exponomial (Alptekinoğlu and Semple, 

2016) or the Markov chain model (Feldman and Topaloglu, 2017) is a promising topic for future 

research. Likewise, the development of suitable types of fulfillment options should depend on the 

application examined. Although this is a strategic planning task (Talluri and van Ryzin, 2004a), 

it often has methodological implications. We believe the potential for future research in this re-

gard exists in all application areas. For instance, Strauss et al. (2021) apply the concept of flexible 

products in AHD. Atasoy et al. (2015) propose an MOD system that allows customers to choose 

the mode of transport. Avraham and Raviv (2021) suggest offering arriving customers time slots 

of several consecutive working days simultaneously. 

Transfer into practice: More research also seems necessary, in our view, to address problems 

that arise when transferring existing methods into practice. These include concurrency issues (Av-

raham and Raviv, 2021) as well as the management of disruptions and failed fulfillments, which 

can be investigated, for example, by taking stochastic travel times into account (Prokhorchuk et 

al., 2019). Another issue lies in the scalability of solution approaches concerning large instances, 

as they usually occur in practice (Bertsimas et al., 2019).  

With the survey at hand, we hope to promote the transfer of the large body of existing approaches 

to novel problem settings or even new applications. Interestingly, all three themes that Agatz et 

al. (2021b) identify as characteristics of impactful research in the field of transportation are pre-

sent in the surveyed research area: multi-objective optimization, stochastic optimization, and the 

integration of stakeholder behavior. Therefore, we believe active demand management to be a 

key enabler of new, sustainable business models for smart mobility and transportation applica-

tions. 
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Abstract 

Integrated demand management and vehicle routing problems are characterized by a stream of 

customers arriving dynamically over a booking horizon and requesting logistical services, 

fulfilled by a given fleet of vehicles during a service horizon. Prominent examples are attended 

home delivery and same-day delivery problems, where customers commonly have heterogeneous 

preferences regarding service fulfillment and requests differ in profitability. Thus, demand man-

agement methods are applied to steer the booking process to maximize total profit considering 

the cost of the routing decisions for the resulting orders. To measure the requests’ profitability for 

any demand management method, it is common to estimate their opportunity cost. In the context 

of integrated demand management and vehicle routing problems, this estimation differs substan-

tially from the estimation in the well-examined demand management problems of traditional rev-

enue management applications as, for example, found in the airline or car rental industry. This is 

because of the unique interrelation of demand control decisions and vehicle routing decisions as 

it inhibits a clear quantification and attribution of cost, and of displaced revenue, to certain cus-

tomer requests. In this paper, we extend the theoretical foundation of opportunity cost in inte-

grated demand management and vehicle routing problems. By defining and analyzing a generic 

Markov decision process model, we formally derive a definition of opportunity cost and prove 

opportunity cost properties on a general level. Hence, our findings are valid for a wide range of 

specific problems. Further, based on these theoretical findings, we propose approximation ap-

proaches that have not yet been applied in the existing literature, and evaluate their potential in a 

computational study. Thereby, we provide evidence that the theoretical results can be practically 

exploited in the development of solution algorithms.  

Key words: Last-mile Logistics, Demand Management, Markov Decision Process, Opportunity 

Cost 
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1 Introduction 

The widespread adoption of digital distribution channels both enables and forces more and more 

logistical service providers to manage booking processes actively, in order to maintain competi-

tiveness. As a result, their operational planning is no longer limited to solving vehicle routing 

problems (VRPs). Instead, providers integrate demand management to steer the booking process 

and either make established business models more profitable or operate novel ones profitably in 

the first place. These demand management approaches can comprise demand control decisions 

on prices of fulfillment options, the availability of fulfillment options, or the acceptance/rejection 

of requests. 

Generally, the resulting integrated demand management and vehicle routing problems (i-

DMVRPs) share a common structure (Fleckenstein et al., 2023 and Waßmuth et al., 2023): A 

service provider offers logistical services characterized by origin and destination in combination 

with other parameters like, e.g., service fees, time commitments, or vehicle types. These services 

are sold throughout a booking horizon, with customer requests arriving dynamically. The provider 

specifies a set of fulfillment options to offer in response to an incoming customer request, con-

sisting of only a single option or multiple options with fixed or varying fees. Subsequently, the 

customer makes a purchase choice, i.e., places an order, based on their individual preferences and 

the offered options. Fulfillment of all customer orders takes place throughout the service horizon 

by means of a fixed number of vehicles. Capacities of other resources, like driver working hours, 

may also be limited. The booking and service horizons can be disjoint, which is typical for at-

tended home delivery problems, or overlapping, which is common for same-day delivery and 

mobility-on-demand problems. Given the capacity restrictions as well as other operational con-

straints, such as potentially guaranteed service levels, the provider’s typical objective is to control 

demand and routing in a profit-maximizing way, that is, to maximize the difference between rev-

enue and cost. 

Because i-DMVRPs are stochastic and dynamic, they can be modeled as Markov decision pro-

cesses (MDPs) and, theoretically, decisions can be optimized by solving the well-known Bellman 

equation. However, as in demand management problems from traditional revenue management 

applications, like the airline or car rental industry (Klein et al., 2020), solving the Bellman equa-

tion is intractable for industry-sized instances. Therefore, it is common to approach demand man-

agement problems by decomposing them into two subproblems (e.g., Gallego and Topaloglu, 

2019, p. 25), with the aim of eliminating the Bellman equation’s recursiveness (Klein et al., 2018). 

The respective subproblems are 1) Approximating the opportunity cost for every potential fulfill-

ment option to measure its profitability considering the remaining booking process and 2) solving 

the actual demand control problem based on the opportunity cost approximation. For this general 

decomposition-based solution concept, the overall performance largely depends on the quality of 

the underlying opportunity cost approximation (Klein et al., 2018), which is typically calculated 
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as the difference of the state value approximation for the two resulting post-decision states (selling 

the fulfillment option vs. not selling it). Hence, in revenue management, the analysis of oppor-

tunity cost and its properties has already become a standard tool (e.g., Adelman (2007), Gallego 

and Topaloglu (2019), p. 10, Talluri and Van Ryzin (2004), p. 92). However, the corresponding 

results cannot be transferred directly to i-DMVRPs, due to the mutual interdependencies between 

demand control decisions and vehicle routing decisions across the entire planning horizon (Agatz 

et al., 2013). 

This observation is the motivation for our work, which aims to inform and accelerate the devel-

opment of more accurate opportunity cost approximation approaches. To this end, we consider 

opportunity cost at a formal level, and hence, draw on MDP models of i-DMVRPs as our primary 

object of study. Investigating these models, we derive mathematical properties and prove that 

they are valid for the entire family of i-DMVRPs. In a further step, we present three opportunity 

cost approximation approaches, which exploit the central property, namely the decomposability 

of opportunity cost. In a computational study, we analyze the potential of these approaches for a 

variety of problem settings. Primarily, this study is intended as a proof of concept for how the 

theoretical knowledge about the concept of opportunity cost can drive the development of solution 

approaches. In addition, the performance evaluation of the presented approaches can serve as a 

starting point for future research because it hints which approaches have the greatest potential in 

a certain setting. 

Overall, our work has the following contributions: 

1. We deepen the theoretical foundation of opportunity cost in the context of i-DMVRPs. We 

do so by elaborating on decisive differences between opportunity cost in traditional revenue 

management applications and in i-DMVRPs and also by introducing a formal opportunity 

cost definition that is specifically tailored to i-DMVRPs.  

2. We contribute to the existing literature on modeling i-DMVRPs and strengthen the connec-

tion between models and solution approaches by introducing a generic MDP model for i-

DMVRPs. Further, to the best of our knowledge, we are the first to show formally how to 

separate demand control decisions from vehicle routing decisions at each decision epoch. 

This allows investigating the profit impact of demand control decisions in isolation. Addi-

tionally, we present a valid model transformation to restore properties in case a certain i-

DMVRP application does not naturally inherit them.  

3. We introduce and prove four central properties of opportunity cost for our i-DMVRP model 

that can be exploited within opportunity cost approximation approaches. Those properties are 

decomposability into two components, potential component-wise negativity, overall non-

negativity, and state value monotonicity. 

4. Based on our theoretical findings and focusing on the decomposability as the central property, 

we present three types of approximation approaches that exploit this property and have yet to 

be applied to i-DMVRPs: single component approximation, a rather naive hybrid reward 
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approximation, and a more sophisticated hybrid reward approximation. Thereby, we illustrate 

how the theoretical results lead to direct, practical advances in algorithm development. 

The remainder of this paper is structured as follows: In Section 2, we review the literature on 

opportunity cost in the context of demand management problems in general and on i-DMVRPs 

in particular. In Section 3, we first model the generic i-DMVRP, for which we show how its 

opportunity cost differs from the traditional interpretation in revenue management. Then, we pre-

sent a formal definition of opportunity cost for i-DMVRPs. In Section 4, we elaborate and prove 

four central opportunity cost properties, which hold for the generic i-DMVRP. In Section 5, we 

present the approximation approaches and discuss the computational results. In Section 6, we 

summarize our work and outline opportunities for future research. 

2 Literature Review 

In this section, we give an overview of the related literature. We divide this overview into two 

parts. First, we briefly sketch the evolution of the integration of demand management and vehicle 

routing as a distinct research area (Section 2.1). Second, we review the scientific contributions to 

the analysis of opportunity cost for both traditional revenue management problems and i-

DMVRPs and position our own work relative to these publications (Section 2.2). 

2.1 Integrating Demand Management and Vehicle Routing 

Specific similarities between traditional revenue management applications and selling logistical 

services, such as fixed resources and heterogeneous demand, have prompted the establishment of 

vehicle routing as a new application for demand management (Agatz et al., 2013). The differen-

tiation of i-DMVRPs from “pure” stochastic and dynamic vehicle routing problems (for a recent 

review, see Soeffker et al. (2022)) is nontrivial. In the remainder of this work, we follow the 

definition in Fleckenstein et al. (2023). According to that, the control of demand with respect to 

profitability instead of only feasibility is the distinguishing feature of i-DMVRPs. 

Thus, although there is some earlier work in the field of stochastic and dynamic vehicle routing, 

the works by Campbell and Savelsbergh (2005) and Campbell and Savelsbergh (2006) can be 

viewed as the first contributions to integrating active demand management and vehicle routing. 

These publications initiate the literature stream on attended home delivery problems (e.g., Koch 

and Klein, 2020, Vinsensius et al., 2020, and Yang et al., 2016), for which Snoeck et al. (2020) 

and Waßmuth et al. (2023) provide in-depth reviews. The corresponding problems feature disjoint 

booking and service horizons, meaning that bookings for a specific service horizon, usually a 

working day, are only possible until a certain cutoff time, such that there is no temporal overlap 

between booking and fulfillment processes. 

On the contrary, Azi et al. (2012) present the first work on steering booking processes in parallel 

to fulfillment operations, that is, problems with overlapping booking and service horizons. 
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Therewith, they start the literature stream on same-day delivery (e.g., Klein and Steinhardt, 2023, 

and Ulmer, 2020), which is reviewed thoroughly by Li et al. (2024). 

Another stream of literature on i-DMVRPs is initiated by Atasoy et al. (2015) and Hosni et al. 

(2014) and considers (shared) passenger transportation problems summed up under the term mo-

bility-on-demand (e.g., Al-Kanj et al., 2020, Arian et al., 2022, Bertsimas et al., 2019, and Kull-

man et al., 2022). The corresponding problems commonly feature overlapping booking and ser-

vice horizons as well. For a more extensive, cross-application review of the literature on i-

DMVRPs, we refer the interested reader to the recent survey by Fleckenstein et al. (2023). 

2.2 Theoretical Analysis of Opportunity Cost 

As explained in Section 1, instead of approaching demand management problems holistically, 

solution concepts usually rely on decomposition. The idea is to separate the opportunity cost ap-

proximation from optimizing the demand control decision. Both subproblems can be tackled with 

separate approaches. In traditional revenue management applications, properties of the state val-

ues and opportunity cost, such as monotonicity or nonnegativity, have been successfully exploited 

to improve both the performance of opportunity cost approximation approaches and approaches 

for optimizing the subsequent demand control decisions. For the first task, that is, the approxima-

tion of opportunity cost, approaches based on linear programming (Adelman, 2007) as well as on 

statistical learning (Koch, 2017) are known to perform better if constraints are imposed to ensure 

that the resulting approximation also exhibits existing properties of opportunity cost. For the sec-

ond task, that is, solving the demand control problem, certain properties simplify the computation 

of the optimal demand control decisions as, for example, shown in Talluri and Van Ryzin (2004) 

(p. 38) for single-resource capacity control. When designing solution approaches for specific ap-

plications of demand management, it is necessary to prove whether such structural properties hold 

or do not hold for the specific demand management problem, that is, under the assumptions asso-

ciated with the underlying application (see, e.g., Maddah et al. (2010) for an example from cruise 

ship revenue management or Quante et al. (2009) for a manufacturing problem). 

Because of the unique problem structure of i-DMVRPs, we cannot directly transfer findings from 

analyses of demand management problems in traditional revenue management or from other ap-

plication areas of demand management. In the academic literature on i-DMVRPs, the majority of 

authors follow the general decomposition-based solution approach described in Section 1 (Fleck-

enstein et al., 2023). However, the development of solution approaches is mainly driven by struc-

tural reasoning based on characteristics of specific i-DMVRPs paired with the validation of the 

respective approaches in a computational study. First, there are works that design opportunity 

cost approximations with the aim of capturing displacement effects regarding potential future or-

ders (Avraham and Raviv, 2021, Lang et al., 2021, Ulmer, 2020, and Prokhorchuk et al., 2019). 

Second, some authors suggest that there is another component of opportunity cost in i-DMVRPs 

to be considered besides displacement cost: E.g., Arian et al. (2022) define opportunity cost as a 
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difference in future profit, which includes fulfillment cost. According to Klein et al. (2018), op-

portunity cost quantifies the “[…] ”consequences” concerning potential future requests and the 

resulting routing cost […]” (p. 971). Koch and Klein (2020), Yang et al. (2016), and Campbell 

and Savelsbergh (2005) state that the lost revenue of potential future orders as well as final fulfill-

ment cost have to be anticipated when approximating opportunity cost. Vinsensius et al. (2020) 

introduce the term “marginal fulfillment cost” of a potential order, and Akkerman et al. (2022) 

aim at approximating changes in transportation cost. Abdollahi et al. (2023), Strauss et al. (2021), 

Mackert (2019), and Yang and Strauss (2017) provide the most extensive discussion of both rev-

enue-side and cost-side future effects of a demand control decision. 

Despite the substantial progress regarding approximation approaches, which the aforementioned 

publications have contributed to, there is hardly any work on formalizing and generalizing the 

underlying considerations aside from the following three publications (see also Waßmuth et al., 

2023): Lebedev et al. (2021) and Asdemir et al. (2009) conduct a structural analysis of a specific 

i-DMVRP, namely an attended home delivery dynamic pricing problem with disjoint horizons. 

Based on MDP formulations that only implicitly model vehicle routing, they derive properties of 

the value function and the optimal pricing policy. In contrast to Asdemir et al. (2009), Lebedev 

et al. (2021) also model the cost-side via a fulfillment cost approximation. In comparison, our 

study is more general in that it considers a generic i-DMVRP and explicit vehicle routing deci-

sions. It also focuses on the concept of opportunity cost independent from a specific demand 

management approach such as dynamic pricing. While the former two works take up a demand 

management-oriented view, Ulmer et al. (2020) focus on dynamic vehicle routing problems, 

which do not necessarily include demand management. They propose a novel MDP modeling 

framework and show its benefits for informing the design of solution approaches. Our work also 

aims to establish connections between modeling and solving i-DMVRPs but, different from 

Ulmer et al. (2020), with a focus on the demand control subproblem rather than on the vehicle 

routing subproblem. 

In summary, our work closes existing research gaps in two ways: First, we provide a theoretical 

foundation for the existing qualitative reasoning and computational results. Second, our analysis 

provides the basis for developing algorithmic approaches that have not been considered in exist-

ing works, which we demonstrate in a computational study. 

3 Opportunity Cost in Integrated Demand Management and Vehicle 

Routing Problems 

In this section, we adapt and discuss the concept of opportunity cost specifically for i-DMVRPs. 

We first introduce a generic problem definition, on which we base our discussion throughout the 

whole section. For didactical reasons, we consider a problem as generic as possible and show 

later on (Section 4.5) how our insights can be transferred to more specific i-DMVRPs. We model 

the prototypical problem as an MDP (Section 3.1) and show the relevance of opportunity cost for 
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solving the introduced MDP (Section 3.2). Then, we discuss the structural differences of oppor-

tunity cost in i-DMVRPs compared with those in traditional revenue management applications 

and formalize a unified definition of opportunity cost specifically tailored to i-DMVRPs (Section 

3.3). For ease of readability, we provide a list of the notation used throughout this paper in Ap-

pendix A. 

3.1 Generic Problem Definition and Modeling 

We discuss the concept of opportunity cost in the light of i-DMVRPs for the following generic 

problem: In each stage 𝑡 = 1, . . . , 𝑇 within a finite booking horizon, at most one customer request 

of type 𝑐 ∈ 𝐶 can arrive with a certain arrival rate 𝜆𝑐
𝑡 . A customer request of type 𝑐 is character-

ized by the locations of its origin and destination, stored by parameter 𝑙𝑐, and revenue 𝑟𝑐. Without 

loss of generality, we assume that multiple individual customer requests can arrive from the same 

location with the same revenue, such that the arrival rates 𝜆𝑐
𝑡  are independent of whether an indi-

vidual customer request of type 𝑐 has already realized before or not. Because the customer re-

quests arrive sequentially, we can distinguish individual customer requests by their request time 

𝜏. 

The provider offers each arriving customer an offer set, which is a subset of a set of fulfillment 

options, for example, different time windows for order delivery. Once a customer books defini-

tively, their request turns into a confirmed customer order that requires a certain amount of ful-

fillment resources, such as driving time or physical space in a vehicle, depending on the charac-

teristics of the corresponding fulfillment option stored in parameter 𝑜. Requests may arrive in 

parallel to fulfillment operations, that is, the booking and the finite service horizon overlap. Dur-

ing the service horizon, all confirmed customer orders are served, and the provider incurs the 

resulting fulfillment cost defined as variable overhead cost arising from the execution of planned 

routes. 

Because an individual opportunity cost value is associated with each (potential) order, that is, 

with a certain fulfillment option, modeling only a single fulfillment option is sufficient to gener-

ally analyze the concept of opportunity cost. By omitting explicitly modeling multiple fulfillment 

options, we obtain a much simpler model because the provider’s decision space for demand con-

trol reduces from all possible offer sets to an accept/reject decision per request. Hence, for the 

sake of simplicity, we consider a single-option model in the remainder of this work. However, we 

will explain how to generalize the results of our discussion for problems requiring the explicit 

modeling of multiple fulfillment options in Section 4.5. In the following, we state the correspond-

ing MDP model: 

Decision epoch – A decision epoch defines the beginning of a stage of the MDP. In the considered 

problem, such stages correspond to (constant) time steps 𝑡 = 1, . . . , 𝑇. These time steps are suffi-

ciently small to ensure that at most one customer request arrives between two decision epochs. 
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Hence, 𝜆𝑐
𝑡  can well approximate the probability for observing exactly one request per time interval 

(Subramanian et al., 1999, Lee and Hersh, 1993). 

State – The state of the system consists of all information that is known so far and relevant for 

decision-making. In i-DMVRPs with overlapping booking and service horizons, information 

about orders’ and vehicles’ statuses stored in two separate components are part of the state defi-

nition. First, state 𝑠𝑡  at decision epoch 𝑡 stores all confirmed customer orders for which fulfillment 

has not yet started as tuples (𝑙𝑐 , 𝜏, 𝑜) in set 𝒞𝑡. The second component is the overall tour plan at 

decision epoch 𝑡, denoted by 𝜙𝑡 . It contains the currently running tours 𝜃𝑡
𝑣 for every vehicle 𝑣 ∈

𝒱. Thus, we define the state as: 𝑠𝑡 = (𝒞𝑡, 𝜙𝑡). It is important to note that we construct the MDP 

around the post-decision state because this is the “natural” formulation when making decisions 

for an observed arriving request (Powell, 2022, p. 490). Hence, 𝑠𝑡  consistently refers to a post-

decision state. An important consequence of this is that a decision in decision epoch 𝑡 is based on 

the information stored in state 𝑠𝑡−1. 

Action – In an MDP model, the action 𝑎𝑡 taken at decision epoch 𝑡 corresponds to the realization 

of a certain decision. In the considered problem, at most one customer request, denoted by its 

request type 𝑐, can arrive in any stage between 𝑡 = 1 and 𝑡 = 𝑇. In the case of a request arrival, 

the provider must integratively make a demand control decision 𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐) ⊆ {0,1}, i.e., ac-

cept or reject the arriving request of type 𝑐, and a tour planning decision 𝜙𝑡(𝑔𝑡) ∈ Φ(𝑠𝑡−1 , 𝑐, 𝑔𝑡) 

depending on whether the arriving request must be served according to the demand control deci-

sion. A tour planning decision is a decision on an update of the tour plan stored in the system 

state, which can also be the decision to leave the tour plan unchanged. The set Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡) 

defines all potential tour plans that are feasible given the preceding (post-decision) state 𝑠𝑡−1 and 

the demand control decision 𝑔𝑡  for the arriving customer request of type 𝑐. In general, the tour 

plan must allow for the duly fulfillment of all confirmed customer orders. However, the precise 

definition of any feasible tour plan, that is, of the action space for the tour planning decision, 

depends on the specific problem. If no customer request arrives, we set 𝑔𝑡 = 0 and, thus, only a 

tour planning decision 𝜙𝑡(0) ∈ Φ(𝑠𝑡−1 , 0) not including a new request is required. In summary, 

the action 𝑎𝑡 is formally defined for three distinct cases: 

𝑎𝑡 = {

(0, 𝜙𝑡(0))      for 𝑡 = 1,… , 𝑇, if there is no customer request arrival          

(0, 𝜙𝑡(0))      for 𝑡 = 1, … , 𝑇, if the current customer request is rejected   

(1, 𝜙𝑡(1))      for 𝑡 = 1,… , 𝑇, if the current customer request is accepted.

          (1) 

The corresponding action space 𝒜𝑡(𝑠𝑡−1, 𝑐) at a decision epoch 𝑡 when being in state 𝑠𝑡−1 and 

receiving a customer request of type 𝑐 comprises the two, above introduced components, that is, 

the demand control component 𝒢(𝑠𝑡−1, 𝑐) and the tour planning component Φ(𝑠𝑡−1 , 𝑐, 𝑔𝑡). Thus, 

the action space is formally defined as 𝒜𝑡(𝑠𝑡−1, 𝑐) = {(𝑔𝑡 , 𝜙𝑡(𝑔𝑡)): 𝑔𝑡 ∈ 𝒢(𝑠𝑡−1 , 𝑐), 𝜙𝑡(𝑔𝑡) ∈

Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡)}. Thereby, the action space for the demand control decision depends on tour plan-

ning, because accepting a request of type 𝑐 given the relevant state 𝑠𝑡−1 is only feasible if at least 
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one feasible tour plan exists, that is, if Φ(𝑠𝑡−1, 𝑐, 1) ≠ ∅. However, for better readability, we omit 

this dependency as well as the dependency of the demand control decision 𝑔𝑡  on the request type 

𝑐 in the notation. In case there is no customer request arrival at decision epoch 𝑡, the respective 

action space is defined as 𝒜𝑡(𝑠𝑡−1) = Φ(𝑠𝑡−1, 0). 

Rewards – The demand-control-related rewards 𝑟𝑐 are received with actions 𝑔𝑡 = 1 for 𝑡 =

1, . . . , 𝑇. They are positive and equal the revenue of the customer request type 𝑐 that is accepted 

at 𝑡, respectively. Demand control actions 𝑔𝑡 = 0 for 𝑡 = 1, . . . , 𝑇 entail no rewards. Because we 

assume that the triangle inequality holds, the reward accrued with a tour planning decision is 

either zero (in case no new fulfillment vehicle operation is triggered) or negative (otherwise). We 

call those rewards logistics-related rewards and denote them formally by 𝑟𝜙𝑡(𝑔𝑡). They equal the 

negative of all fulfillment cost that are newly triggered with a decision 𝜙𝑡(𝑔𝑡), that is, the variable 

overhead cost of all new fulfillment operations that are executed definitively. 

Transition – As a consequence of actions and stochasticity, the MDP transitions from a given 

state 𝑠𝑡−1 to a successor state 𝑠𝑡 . The second state component changes due to the execution of 

fulfillment operations according to the tour planning decision 𝜙𝑡(𝑔𝑡) in action 𝑎𝑡. In the absence 

of stochastic elements in the fulfillment operations, such as stochastic travel times, this transition 

is purely deterministic. Thus, for state 𝑠𝑡 , 𝜙𝑡  is set to 𝜙𝑡(𝑔𝑡) from 𝑎𝑡. The first state component 

𝒞𝑡−1, that is, the set of confirmed customer orders for which fulfillment has not yet started, 

changes as follows: First, the stochasticity of the i-DMVRP influences the transition of the first 

state component in the form of the potential request arrival according to time-dependent arrival 

rates 𝜆𝑐
𝑡 . If a customer request arrives and turns into a customer order, it is added. We denote this 

particular order by 𝑐𝑡 = (𝑙𝑐
𝑡 , 𝜏𝑡 , 𝑜𝑡). Second, the subset of orders Ψ(𝜙𝑡) for which the fulfillment 

process has started according to the new tour plan 𝜙𝑡  are removed. The transitions of the state 

components can be formalized as follows: 

𝜙𝑡 = 𝜙𝑡(𝑔𝑡)                   (2) 

𝒞𝑡 = {
𝒞𝑡−1 ∖ Ψ(𝜙𝑡),                         if there is no customer request arrival or if 𝑔𝑡 = 0
(𝒞𝑡−1 ∪ {𝑐𝑡}) ∖ Ψ(𝜙𝑡),        if 𝑔𝑡 = 1                                                                          

.                (3) 

Objective – The objective of the generic i-DMVRP is maximizing the expected profit across all 

decision epochs starting in state 𝑠0. Thus, we aim at determining a policy 𝑥, with 𝑎𝑡
𝑥(𝑠𝑡−1, 𝑐𝑡) =

(𝑔𝑡
𝑥(𝑠𝑡−1, 𝑐𝑡),𝜙𝑡

𝑥(𝑔𝑡
𝑥(𝑠𝑡−1, 𝑐𝑡))) denoting the action selected by the policy 𝑥 at decision epoch 

𝑡, according to the following objective function:  

max
𝑥
𝔼(∑ (𝑟𝑐𝑡 ⋅ 𝑔𝑡

𝑥(𝑠𝑡−1, 𝑐𝑡) + 𝑟𝜙𝑡𝑥(𝑔𝑡𝑥(𝑠𝑡−1,𝑐𝑡)))
𝑇
𝑡=1 ∣

∣ 𝑠0 ).            (4) 

3.2 State Values and Opportunity Cost 

We now represent the previously introduced objective of the generic i-DMVRP (4) by the corre-

sponding value function that equals the well-known Bellman equation. It captures the value of 
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being in a given state and can be applied to find an optimal policy for the MDP model (Powell, 

2022, p. 46). Specified for the generic model, the value function explicitly models the mutual 

temporal interdependencies of the two integrated decisions, that is, the demand control decision 

and the tour planning decision: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡𝑟𝑐 + max
𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)

(𝑟𝜙𝑡(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(𝑔𝑡) )))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0)

(𝑟𝜙𝑡(0) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(0) )),            (5) 

with boundary condition: 

𝑉𝑇(𝑠𝑇) = 0.                  (6) 

 

Fig. 1 Overview of the MDP model of the i-DMVRP booking and fulfillment process including the interim state 

In i-DMVRPs, an action can comprise two types of integrated decisions, namely, demand control 

and tour planning decisions. In this work, the effects of a demand control decision are of interest. 

Thus, it is the target to calculate opportunity cost from comparing state values that reflect such 

effects separated from potential effects of tour planning decisions at the same decision epoch. 

Therefore, we introduce a fictive state for each decision epoch 𝑡 = 1, . . . , 𝑇. We refer to it as the 

interim state and denote it as 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 . Technically, 𝑐 and 𝑔𝑡  are captured in additional state 

dimensions of the interim state. The interim state describes the state that is reached if the provider 

accepts (𝑔𝑡 = 1) a customer request of type 𝑐 starting in state 𝑠𝑡−1 or rejects it (𝑔𝑡 = 0). In other 

words, the state is measured after the demand control decision but before the integrated tour plan-

ning decision. The idea behind it is comparable to the idea of the post-decision state introduced 

by Powell (2011) (p. 129) with the aim of isolating different effects of decisions and information 

on the state variable. However, the post-decision state separates the deterministic effect of a de-

cision from the stochastic effect of the same decision in order to ease decision-making. The in-

terim state, instead, separates the effects of two different decisions, that is, the effects of the de-

mand control decision from the effects of a tour planning decision taken in the same decision 

epoch. Fig. 1 illustrates the interim state within the decision process and its components. 

We denote the value of interim state 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡  by 𝑉𝑡

′( 𝑠𝑡
′ ∣∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 ). Generally, it can be 

calculated as the sum of the succeeding post-decision state’s value, that is, of state 𝑠𝑡 ∣

𝑠𝑡−1, 𝜙𝑡
∗(𝑔𝑡), and the logistics-related rewards of decision epoch 𝑡: 

𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 ) = max
𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)

(𝑟𝜙𝑡(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(𝑔𝑡) ))  
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= 𝑟𝜙𝑡∗(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡

∗(𝑔𝑡) ),               (7) 

with 𝜙𝑡
∗(𝑔𝑡) denoting the optimal tour planning decision given demand control decision 𝑔𝑡  at 

decision epoch 𝑡. Note that this simplification of notation will be used repeatedly throughout the 

remainder of the paper. Based on interim state values, we can formulate a simplified variant of 

the value function (5) isolating the demand control decision: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ 𝑟𝑐 + 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1 , 0 ).               (8) 

In the remainder of our discussion, we denote interim states 𝑠𝑡
′ ∣ 𝑠𝑡−1 , 𝑐, 1 by 𝑠𝑡

′(𝑐) and interim 

states 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 0 (or 𝑠𝑡

′ ∣ 𝑠𝑡−1 , 0 in case there is no customer request) by 𝑠𝑡
′(0) for ease of 

presentation. Based on the interim state, the following definition formalizes the concept of op-

portunity cost for solving the demand control problem of our generic i-DMVRP: 

Definition 1. The opportunity cost Δ𝑉𝑡(𝑠𝑡−1, 𝑐) of accepting a customer request of type 𝑐 in a 

certain state 𝑠𝑡−1 is calculated as the difference of the values of the following two interim states: 

(1) the interim state following the rejection of customer request 𝑐 and (2) the interim state follow-

ing the acceptance of 𝑐. Thus, it is defined as: 

Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = 𝑉𝑡
′(𝑠𝑡

′(0)) − 𝑉𝑡
′(𝑠𝑡

′(𝑐)).               (9) 

This opportunity cost is then used as input to solve the demand control problem, which can be 

illustrated by the following reformulation of the value function (8). This reformulation is typical 

in the revenue management literature (e.g., Strauss et al., 2018) and yields: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐)))⏟                      
Demand control subproblem

+ 𝑉𝑡
′(𝑠𝑡

′(0)).        (10) 

Because the provider only takes a demand control decision when a certain customer request ar-

rives, the probability ∑ 𝜆𝑐
𝑡

𝑐∈𝐶  is not relevant for decision-making. Also, the second summand of 

equation (10), that is, 𝑉𝑡
′(𝑠𝑡

′(0)), is not relevant as it is a constant and independent of the decision. 

Further, the provider knows 𝑟𝑐. Thus, given the opportunity cost of a customer request of type 𝑐, 

Δ𝑉𝑡(𝑠𝑡−1, 𝑐), it is possible to solve the demand control problem as a deterministic subproblem. 

This is why, for industry-sized problems, it is necessary to find accurate and efficient approxima-

tion approaches for opportunity cost, that is, for the value function (Strauss et al., 2018). This 

motivates a deeper understanding of opportunity cost and of its peculiarities and properties in i-

DMVRPs. Knowing certain properties enables exploiting them to accelerate and enhance ap-

proaches to approximate opportunity cost as discussed in Section 2.2. Consequently, in the fol-

lowing, we compare opportunity cost in traditional settings, that is, in revenue management prob-

lems, and opportunity cost in i-DMVRPs and carve out decisive differences. 
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3.3 Generalization of the Concept of Opportunity Cost for i-DMVRPs 

In traditional revenue management applications, the concept of opportunity cost bases on two 

main assumptions (see Weatherford and Bodily, 1992) that cause the opportunity cost to be equiv-

alent to displacement cost (DPC). Those are defined as “[...] the expected loss in future revenue 

from using the capacity now rather than reserving it for future use.” (Talluri and Van Ryzin, 2004, 

p. 33) In the following, we show that this definition cannot be transferred to i-DMVRPs by stating 

each of the underlying assumptions and investigating it in the respective context: 

Assumption 1 – Supply is inflexible, that is, resource capacities are fixed: In i-DMVRPs, either 

driver working times, fleet sizes, or loads represent resources with fixed capacities. As expected, 

such limited resources may cause a displacement of demand (see Example 1 in Appendix B.1). 

Thus, in most i-DMVRPs, the first assumption is valid. 

Assumption 2 – Variable cost associated with the usage of capacity are either negligible or at 

least directly attributable to individual orders: This does not hold in most i-DMVRPs, which can 

be shown by considering fuel cost as an example: Because the fuel consumption of a fulfillment 

tour depends on the specific combination of customer locations in the tour, there is no way to 

calculate and attribute the share and the resulting cost of each individual customer location (e.g., 

Vinsensius et al., 2020). Further, in i-DMVRPs, such variable overhead cost are not negligible. 

The exact same combination of state and customer request of the same problem instance can yield 

different optimal demand control decisions depending on whether fulfillment cost are taken into 

consideration or are neglected (see Examples 2a and 2b in Appendix B.2). 

Consequently, we must adapt the traditional concept of opportunity cost, which equalizes oppor-

tunity cost and expected displacement cost (Talluri and Van Ryzin, 2004, p. 33), for i-DMVRPs. 

More precisely, a concept is needed that explicitly takes into account variable overhead cost re-

lated to order fulfillment: In the literature on i-DMVRPs, some authors already explicitly consider 

the marginal increase of variable overhead cost caused by the acceptance of a customer request 

and refer to it as marginal cost-to-serve (MCTS) (e.g., Strauss et al., 2021, Vinsensius et al., 2020). 

For myopic decision-making, that is, when neglecting future orders, we can calculate a request’s 

MCTS by optimizing the tour plan for all accepted customer orders including the current request 

and comparing its variable fulfillment cost with the cost of the optimal tour plan without the 

current request (see Example 2b in Appendix B.2). However, such myopic MCTS are not suffi-

cient for optimal decision-making (see Example 3 in Appendix B.3). In summary, for optimal 

decision-making, opportunity cost for i-DMVRPs cannot only be revenue-related in the form of 

expected DPC, but also have to take cost-related effects into account in the form of expected 

MCTS. Correspondingly, we amend the definition of opportunity cost as follows: 

Definition 2. In i-DMVRPs with variable overhead cost that are not directly attributable to cus-

tomer requests, opportunity cost comprises two components: DPC as the difference of cumulative 
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expected future revenue caused by accepting a customer request and MCTS as the difference of 

expected future fulfillment cost caused by accepting a customer request. 

4 Properties and Analytical Discussion of Opportunity Cost for i-

DMVRPs 

We have showed in Section 3 that opportunity cost is calculated as the difference of two value 

functions. Hence, opportunity cost, as well as its components DPC and MCTS, are recursive 

functions that are intractable for realistic-sized i-DMVRPs. Consequently, solving i-DMVRPs 

requires accurate approximations of value functions or opportunity cost. To support the develop-

ment and selection of respective approximation approaches, we discuss four central properties of 

the generic i-DMVRP, or more precisely, of the corresponding value function (5) and the derived 

opportunity cost values. Those are as follows. 

1. Decomposability into DPC and MCTS 

2. Potential negativity of DPC and MCTS 

3. Non-negativity of opportunity cost 

4. Monotonicity of the value function 

Please note, for ease of readability, we move the minor mathematical proofs to Appendix C and 

only state the final proofs of the central properties throughout our discussions. 

4.1 Decomposability into Displacement Cost and Marginal Cost-to-Serve 

To prove the decomposability of opportunity cost into DPC and MCTS, we first define both terms 

formally, starting with a definition of expected future revenue and expected future fulfillment cost 

of a certain interim state 𝑠𝑡−1
′ . 

Definition 3. The expected future revenue 𝑅𝑡−1
′ (𝑠𝑡−1

′ ) of a given interim state 𝑠𝑡−1
′  at decision 

epoch 𝑡 − 1 is defined as:  

𝑅𝑡−1
′ (𝑠𝑡−1

′ )  =  ∑ 𝜆𝑐
𝑡 ⋅ (𝑔𝑡

∗ ⋅ 𝑟𝑐 + 𝑅𝑡
′  (𝑠𝑡

′|𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗))𝑐∈𝐶   

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑅𝑡
′(𝑠𝑡

′|𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0),             (11) 

with boundary condition: 

𝑅𝑇
′ (𝑠𝑇

′ ) = 0                 (12) 

and 𝑔𝑡
∗ denoting the optimal demand control decision, given that a customer request of type 𝑐 

arrives in state 𝑠𝑡 . 

Definition 4. The expected future fulfillment cost 𝐹𝑡−1
′ (𝑠𝑡−1

′ ) of a given interim state 𝑠𝑡−1
′  at 

decision epoch 𝑡 − 1 is defined as:  

𝐹𝑡−1
′ (𝑠𝑡−1

′ ) = 𝑟𝜙𝑡−1∗ (𝑔𝑡−1) + ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗ ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0 ),             (13) 

with boundary condition: 
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𝐹𝑇
′ (𝑠𝑇

′ ) = 𝑟𝜙𝑇∗ (𝑔𝑇).               (14) 

Based on Definitions 3 and 4, we now formally define DPC and MCTS: 

Definition 5. DPC of accepting a customer request of type 𝑐 at decision epoch 𝑡 and state 𝑠𝑡−1 is 

defined as:  

Δ𝑅𝑡(𝑠𝑡−1, 𝑐) = 𝑅𝑡
′(𝑠𝑡

′(0)) − 𝑅𝑡
′(𝑠𝑡

′(𝑐)).             (15) 

Definition 6. MCTS of accepting a customer request of type 𝑐 at decision epoch 𝑡 and state 𝑠𝑡−1 

is defined as:  

Δ𝐹𝑡(𝑠𝑡−1, 𝑐) = 𝐹𝑡
′(𝑠𝑡

′(0)) − 𝐹𝑡
′(𝑠𝑡

′(𝑐)).             (16) 

DPC and MCTS both depend on the state of the system and all consecutive decisions and transi-

tions. Thus, both suffer from the curse of dimensionality (Powell et al., 2012) in that the number 

of potential tour planning decisions that must be evaluated is intractable for realistic-sized in-

stances. 

Now, we show that there is a valid decomposition of the value function (7) for interim states into 

two components. In other words, the value of any interim state, that is, 𝑉𝑡
′(𝑠𝑡

′), equals the sum of 

expected future revenue, 𝑅𝑡
′(𝑠𝑡

′), and expected future fulfillment cost, 𝐹𝑡
′(𝑠𝑡

′). This leads to the 

following lemma, based on which we then define the first property:  

Lemma 1. The value (function) of an interim state 𝑠𝑡
′ can be decomposed into two additive com-

ponents, one capturing expected future revenue and one capturing expected future fulfillment 

cost:  

𝑉𝑡
′(𝑠𝑡

′) = 𝑅𝑡
′(𝑠𝑡

′) + 𝐹𝑡
′(𝑠𝑡

′).               (17) 

Property 1. Opportunity cost can be decomposed into DPC and MCTS:  

Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = Δ𝑅𝑡(𝑠𝑡−1, 𝑐) + Δ𝐹𝑡(𝑠𝑡−1, 𝑐).             (18) 

Proof. To prove Property 1, we substitute Lemma 1 into Equation (9). Further, we substitute 

Definitions 5 and 6, which results in: 

Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = 𝑉𝑡
′(𝑠𝑡

′(0)) − 𝑉𝑡
′(𝑠𝑡

′(𝑐))  

= (𝑅𝑡
′(𝑠𝑡

′(0)) + 𝐹𝑡
′(𝑠𝑡

′(0))) − (𝑅𝑡
′(𝑠𝑡

′(𝑐)) + 𝐹𝑡
′(𝑠𝑡

′(𝑐)))  

= 𝑅𝑡
′(𝑠𝑡

′(0)) − 𝑅𝑡
′(𝑠𝑡

′(𝑐)) + 𝐹𝑡
′(𝑠𝑡

′(0)) − 𝐹𝑡
′(𝑠𝑡

′(𝑐))  

= Δ𝑅𝑡(𝑠𝑡−1, 𝑐) + Δ𝐹𝑡(𝑠𝑡−1, 𝑐)     ∎              (19) 

Please note that despite DPC and MCTS can be expressed as two separate terms, the decisions 

they stem from are still interconnected. More precisely, to optimally calculate one of the compo-

nents, the other one has to be taken into account because both Equation (11) and (13) incorporate 

optimal decisions that can only be determined based on the original value function including DPC 

and MCTS. 
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4.2 Potential Negativity of DPC and MCTS 

Contrary to demand management problems of traditional revenue management applications in 

which DPC can only be non-negative (Talluri and Van Ryzin (2004), p. 217), in i-DVMRPs, DPC 

and MCTS can be negative, which is the next property we discuss. 

Negative DPC – The intuition behind negative DPC, as they occur in Example 5 in Appendix 

B.5, is the following: turning the considered customer request into a customer order enables ac-

cepting one or more expected future customer requests in its vicinity that otherwise would not be 

profitable regarding their fulfillment cost and revenue. 

Negative MCTS – The intuition behind negative MCTS, as they occur in Example 4 in Appendix 

B.4, is the following: Accepting a corresponding customer request and following the subsequent 

optimal decisions leads to expected future fulfillment cost that is lower than the cost generated 

by optimal decisions following the rejection of the same customer request. In other words, ac-

cepting a certain customer request inhibits the acceptance of one or more future customer re-

quests, which would otherwise be accepted with optimal decisions and would lead to a longer 

tour, that is, larger fulfillment cost. 

This is a decisive difference between the traditional concept of opportunity cost and the newly 

derived concept for i-DMVRPs. 

Property 2. DPC and MCTS can both be negative. 

Proof. By Example 4 and Example 5 in Appendix B.      ∎ 

4.3 Nonnegativity of Opportunity Cost 

Despite the finding that both DPC and MCTS can be negative, we can show that for the generic 

MDP model with the value functions defined by (5) or (8), opportunity cost, that is, the sum of 

DPC and MCTS, is always nonnegative. To prove this property, we show that the value of the 

interim state following the acceptance of a customer request 𝑐𝑡 by action 𝑔𝑡 = 1 cannot be greater 

than the value of the interim state following a rejection of the same customer request 𝑐𝑡 by action 

𝑔𝑡 = 0. The corresponding proof builds on three lemmata (Lemma 2, Lemma 3, and Lemma 4), 

which formalize characteristics that are valid for the i-DMVRP model defined in Section 3.1. 

First, Lemma 2 concerns the stochastic transition probabilities, that is, the arrival rates 𝜆𝑐
𝑡  in a 

stage 𝑡. 

Lemma 2. Stochastic transition probabilities are independent of the set of already confirmed 

customer orders: 

∀𝑡 ∈ 1,… , 𝑇, 𝑐 ∈ 𝐶: 𝜆𝑐
𝑡  independent of 𝒞𝑡−1.             (20) 

Second, Lemma 3 concerns the relationship of the action spaces at decision epoch 𝑡 when starting 

in any two states 𝑠𝑡−1 and 𝑠̂𝑡−1, that only differ in that the latter contains exactly one additional 

customer order, denoted by 𝑐̂, that is, 𝒞̂𝑡−1 = 𝒞𝑡−1 ∪ {𝑐̂}. Starting in those two states, the action 

space resulting from the latter is a subset of the action space resulting from the former. 
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Lemma 3. The action space resulting from any state 𝑠̂𝑡−1 = (𝒞𝑡−1 ∪ {𝑐̂}, 𝜙𝑡−1) is a subset of the 

action space resulting from a corresponding state 𝑠𝑡−1 = (𝒞𝑡−1, 𝜙𝑡−1): 

∀𝑡 ∈ 1,… , 𝑇, 𝑐 ∈ 𝐶, 𝑐̂ ∈ 𝐶:𝒜(𝑠̂𝑡−1, 𝑐) ⊆ 𝒜(𝑠𝑡−1, 𝑐).            (21) 

Third, Lemma 4 concerns the state space of an i-DMVRP MDP model. More precisely, it claims 

that, for any state 𝑠̂𝑡 = (𝒞̂𝑡, 𝜙𝑡), there exists a state 𝑠𝑡 = (𝒞𝑡 , 𝜙𝑡), which only differs in that it 

does not include a certain customer order 𝑐̂. 

Lemma 4. For every state 𝑠̂𝑡 = (𝒞̂𝑡, 𝜙𝑡), there exists a state 𝑠𝑡 = (𝒞𝑡 , 𝜙𝑡) with 𝒞𝑡 = 𝒞̂𝑡 ∖ {𝑐̂}: 

∀𝑠̂𝑡   with 𝑡 ∈ 1, . . . , 𝑇: ∃𝑠𝑡 ∶ 𝒞𝑡 = 𝒞̂𝑡 ∖ {𝑐̂}.             (22) 

We now consider a certain decision sequence, denoted as 𝜋 = (𝜙𝑡(𝑔𝑡), 𝑎𝑡+1 , 𝑎𝑡+2, . . . , 𝑎𝑇), and 

apply it to a certain sample path 𝜔 = (𝑐𝑡 , 𝑐𝑡+1, 𝑐𝑡+2, … , 𝑐𝑇). Both start in an interim state 𝑠𝑡
′. A 

sample path is a specific sequence of stochastic realizations throughout the decision epochs. Thus, 

for this sample path, the respective request arrival probabilities in Equation (5) equal 1 and the 

probabilities of other realizations 𝜔′ ≠ 𝜔 equal 0. 

Given Lemma 2 to 4, two further lemmata regarding the resulting revenue, denoted by 𝑅𝑡
′𝜋𝜔(𝑠𝑡

′), 

and regarding the resulting fulfillment cost, denoted by 𝐹𝑡
′𝜋𝜔(𝑠𝑡

′), can be derived: More precisely, 

Lemma 5 states that, applying 𝜋 to 𝜔, assuming it starts in the interim state 𝑠𝑡
′(𝑐𝑡), results in the 

same cumulative revenue as assuming 𝜔 starts in the corresponding interim state 𝑠𝑡
′(0). This is 

because of the circumstance that in the interim state the revenue of 𝑐𝑡 has already been collected. 

Lemma 6 states that, applying 𝜋 to 𝜔, assuming it starts in the interim state 𝑠𝑡
′(𝑐𝑡), results in 

higher or equal fulfillment cost as assuming 𝜔 starts in the corresponding interim state 𝑠𝑡
′(0).  

Lemma 5. Applying decision sequence 𝜋 to sample path 𝜔, assuming it starts in interim state 

𝑠𝑡
′(𝑐𝑡), results in the same cumulative revenue as assuming 𝜔 starts in the interim state 𝑠𝑡

′(0): 

𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) = 𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(0)).              (23) 

Lemma 6. Applying decision sequence 𝜋 to sample path 𝜔, assuming it starts in the interim state 

𝑠𝑡
′(𝑐𝑡), results in higher or equal fulfillment cost as assuming 𝜔 starts in the corresponding in-

terim state 𝑠𝑡
′(0): 

𝐹𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) ≤ 𝐹𝑡
′𝜋𝜔(𝑠𝑡

′(0)).               (24) 

Combining Lemmata 5 and 6 shows that applying a decision sequence 𝜋 to sample path 𝜔 starting 

in interim state 𝑠𝑡
′(𝑐𝑡) cannot result in a greater objective value than starting in interim state 𝑠𝑡

′(0). 

We formalize this in the following lemma:  

Lemma 7. If the same decision sequence 𝜋 is applied to sample path 𝜔 starting in interim state 

𝑠𝑡
′(𝑐𝑡), it cannot yield a greater value than it does when starting in interim state 𝑠𝑡

′(0):  

𝑉𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) ≤ 𝑉𝑡
′𝜋𝜔(𝑠𝑡

′(0)).               (25) 

With this in mind, we can formally prove the third opportunity cost property. 

Property 3. Opportunity cost is generally non-negative:  
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∀𝑐 ∈ 𝐶, 𝑡 = 1,… , 𝑇 ∶  Δ𝑉𝑡(𝑠𝑡−1, 𝑐) ≥ 0.             (26) 

Proof. The proof is by contradiction. For a sample path 𝜔, starting in an interim state 𝑠𝑡
′(𝑐𝑡), the 

optimal sequence of decisions, denoted by 𝜋∗(𝑐𝑡), results in value 𝑉𝑡
′𝜋∗(𝑐𝑡)𝜔(𝑠𝑡

′(𝑐𝑡)). We now 

assume that this value is higher than any value that we can accrue on the same sample path starting 

in interim state 𝑠𝑡
′(0). However, with Lemma 2 to 4, we can feasibly apply 𝜋∗(𝑐𝑡) to the sample 

path starting in interim state 𝑠𝑡
′(0) and, with Lemma 7, this results in at least the same value. The 

original assumption is proven wrong. Hence, the following holds:  

𝑉𝑡
′ω(𝑠𝑡

′(𝑐𝑡)) = 𝑉𝑡
′𝜋∗(𝑐𝑡)𝜔(𝑠𝑡

′(𝑐𝑡)) ≤ 𝑉𝑡
′𝜋∗(𝑐𝑡)𝜔(𝑠𝑡

′(0)) ≤ 𝑉𝑡
′𝜋∗(0)𝜔(𝑠𝑡

′(0)) = 𝑉𝑡
′𝜔(𝑠𝑡

′(0)),        (27) 

with 𝜋∗(0) being the optimal sequence of decisions for sample path 𝜔, starting in interim state 

𝑠𝑡
′(0). This proof by contradiction can be replicated for every sample path 𝜔 ∈ Ω. Then, because 

the Bellman function represents the expected value over all possible sample paths 𝜔 ∈ Ω, follow-

ing their respective optimal decision sequences 𝜋∗, it holds that: 

𝑉𝑡
′(𝑠𝑡

′(𝑐𝑡)) = 𝑉𝑡
′𝜋∗(𝑐𝑡)(𝑠𝑡

′(𝑐𝑡)) ≤ 𝑉𝑡
′𝜋∗(0)(𝑠𝑡

′(0)) = 𝑉𝑡
′(𝑠𝑡

′(0)),           (28) 

and substituted in Equation (9), this proves that Δ𝑉𝑡(𝑠𝑡−1, 𝑐𝑡) ≥ 0.      ∎ 

4.4 Monotonicity of the Value Function 

We now investigate the monotonicity of the value function in confirmed customer orders, and 

across decision epochs, as typically done in traditional revenue management (e.g., Gallego and 

Topaloglu, 2019, p. 10, Adelman, 2007). Property 3 directly implies that the value function is 

monotonically decreasing in the confirmed customer orders for which fulfillment has not yet 

started 𝑐 ∈ 𝒞𝑡−1 at a certain decision epoch 𝑡, that is, the following holds:  

Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = 𝑉𝑡
′(𝑠𝑡

′(0)) − 𝑉𝑡
′(𝑠𝑡

′(𝑐)) ≥ 0 ⇔ 𝑉𝑡
′(𝑠𝑡

′(0)) ≥ 𝑉𝑡
′(𝑠𝑡

′(𝑐)).         (29) 

Analogously, we can investigate monotonicity in time across decision epochs. More precisely, 

we consider the monotonicity of state values of consecutive states 𝑠𝑡  and 𝑠𝑡′, with 𝑡′ > 𝑡. For two 

states 𝑠𝑡  and 𝑠𝑡′  to be consecutive, there must exist a sequence of (potentially multiple) stochastic 

transitions, that is, request arrivals, such that making optimal decisions 𝑎𝑡
∗(𝑠𝑡 , 𝑐𝑡) = (𝑔𝑡

∗, 𝜙𝑡
∗(𝑔𝑡

∗)) 

causes the decision process to transition from 𝑠𝑡  to 𝑠𝑡′  in a finite number of decision epochs. 

Then, the value function (5) of the generic MDP model presented in Section 3.1 is clearly not 

monotonically decreasing across consecutive states. This is due to the negative logistics-related 

rewards arising throughout the decision process. Consider, for example, a decision epoch at which 

the routing constraints do not allow feasibly accepting any new order until the end of the service 

horizon. In this case, no future revenue will be collected. However, the tour planning decisions 

required for the fulfillment of the confirmed orders cause future logistics-related rewards, which 

are negative. Over the remaining service horizon, these negative rewards realize and the state 

value increases, that is, becomes less negative, over the remaining decision epochs until it equals 

zero in the terminal state. 
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Despite this finding, it is possible to achieve value function monotonicity across consecutive 

states by modifying the generic MDP model as shown in Appendix D such that it still models the 

exact same problem, that is, such that the modified model is mathematically equivalent to the 

original model. Formally, the modified model differs from the original model regarding cost re-

alization and cost modeling. Cost realization concerns the point of time in which the cost is in-

curred in the real application. Cost modeling concerns the decision epoch in which the corre-

sponding cost is taken into account within the MDP model as a negative reward. In the original 

model, cost realization and cost modeling match. In the modified model, we delay cost modeling. 

To this end, we augment the state of the modified model and adapt the transition and the value 

function accordingly, whereas all other model components remain unaltered: 

State – For the modified model, we add a third state component denoted by 𝑟𝑡
𝑙  𝑐𝑢𝑚. It captures 

the cumulative logistics-related rewards, that is, the negative of the cumulative fulfillment cost 

that realized before or at decision epoch 𝑡. Thus, we define the state as: 𝑠𝑡 = (𝒞𝑡, 𝜙𝑡 , 𝑟𝑡
𝑙  𝑐𝑢𝑚). 

The state space comprises all combinations of possible customer requests and arrival times with 

potential tour plans and potential cumulative logistics-related rewards. 

Transition – The transition of the additional state component 𝑟𝑡
𝑙  𝑐𝑢𝑚  equals: 𝑟𝑡

𝑙  𝑐𝑢𝑚 = 𝑟𝑡−1
𝑙  𝑐𝑢𝑚 +

𝑟𝜙𝑡(𝑔𝑡). The transition of all other components remains unaltered as introduced in Section 4. 

Value function – For the modified model, we delay cost modeling to decision epoch 𝑇. Conse-

quently, during the decision epochs 𝑡 = 1, . . . , 𝑇, only rewards 𝑟𝑐 are considered in the value func-

tion, which is hence defined as: 

𝑉̃𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ 𝑟𝑐 + max
𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)

𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡(𝑔𝑡) ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0)

𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡(0) ).           (30) 

We only consider rewards 𝑟𝜙𝑡(𝑔𝑡) in the boundary condition such that the salvage value equals 

the respective state component: 

𝑉̃𝑇(𝑠𝑇) = 𝑟𝑇
𝑙  𝑐𝑢𝑚.                (31) 

In the following, we show that the value function of the modified model (30), denoted by 𝑉̃𝑡(𝑠𝑡), 

is monotonically decreasing across consecutive states, that is, 𝑉̃𝑡(𝑠𝑡) ≥ 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) ≥ 𝑉̃𝑡′(𝑠𝑡
′), 

with 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) denoting the value of interim state 𝑠𝑡+1
′  at decision epoch 𝑡 + 1 in the modified 

model. Thus, we must show that 𝑉̃𝑡(𝑠𝑡) ≥ 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) and 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) ≥ 𝑉̃𝑡+1(𝑠𝑡+1) holds for any 

pair of consecutive states 𝑠𝑡  and 𝑠𝑡+1 as this directly implies that ∀𝑡 < 𝑡′ ≤ 𝑇: 𝑉̃𝑡
′(𝑠𝑡

′) ≥ 𝑉̃𝑡′(𝑠𝑡′).  

Property 4. The value function of the modified model is monotonically decreasing in the course 

of decision epochs for consecutive states 𝑠𝑡  and 𝑠𝑡+1: 

∀𝑡 = 0,… , 𝑇 − 1 ∶ 𝑉̃𝑡(𝑠𝑡) ≥ 𝑉̃𝑡+1(𝑠𝑡+1).             (32) 

Proof. The fact that 𝑉̃𝑡(𝑠𝑡) ≥ 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) follows directly from Equation (10) with the following 

line of reasoning: Starting in a certain post-decision state 𝑠𝑡  in decision epoch 𝑡 means that there 
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is one more customer request 𝑐𝑡+1 potentially contributing to the state value compared with start-

ing in the resulting interim state 𝑠𝑡+1
′ . If all potentially arriving requests are not profitable based 

on 𝑠𝑡 , the optimal demand control decision is the rejection in any case, and 𝑉̃𝑡(𝑠𝑡) = 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) 

holds, as no revenue can be collected in 𝑡 + 1. Otherwise, if there is a nonempty subset of poten-

tially arriving requests that is profitable, it is optimal to accept these requests and the associated 

expected revenue positively contributes to 𝑉̃𝑡(𝑠𝑡). Then, 𝑉̃𝑡(𝑠𝑡) > 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) holds. 

𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) ≥ 𝑉̃𝑡+1(𝑠𝑡+1) directly follows from Equation (7) because for the considered value 

function ∀𝑡 ∈ 0,… , 𝑇 − 1 ∶ 𝑟𝜙𝑡+1∗ (𝑔𝑡+1) = 0 holds by definition of the modified MDP formula-

tion. Thus, ∀𝑡 =  0, … , 𝑇 − 1, it holds that 𝑉̃𝑡+1
′ (𝑠𝑡+1

′ ) = 𝑉̃𝑡+1(𝑠𝑡+1).      ∎ 

Please note, Properties 1 to 3 as well as the monotonicity of the value function in confirmed 

customer orders also hold for the modified model. The respective proofs are straightforward with 

𝐹̃𝑡−1
′ (𝑠𝑡−1

′ ) = 𝐹𝑡−1
′ (𝑠𝑡−1

′ ) + 𝑟𝑡
𝑙  𝑐𝑢𝑚 (analogously to the transformation of 𝑉̃𝑡−1

′ (𝑠𝑡−1
′ ) as previ-

ously described and proven in Appendix D). Because OC, DPC, as well as MCTS are defined as 

the differences of the respective value functions, (7), (11), and (13) for different interim states on 

the same stage 𝑡, the constant 𝑟𝑡
𝑙  𝑐𝑢𝑚 cancels in Equations (9), (15), and (16). Thus, for the mod-

ified model, our proofs can be applied as conducted for the original model. 

4.5 Generalization for Multiple Fulfillment Options 

All properties formulated in Section 4 are also valid for i-DMVRPs with multiple fulfillment 

options. Compared with accept/reject control, the difference in this case is that the demand control 

decision consists of selecting an offer set of feasible fulfillment options. Thus, there is an interim 

state for each fulfillment option the customer can possibly choose, preceded by an additional 

stochastic transition according to the customer’s purchase choice probabilities. Opportunity cost 

is then defined separately for each fulfillment option as the difference of the interim state value 

for the customer choosing the particular option compared with choosing the no-purchase option, 

as shown in Appendix E. 

Despite these differences, the two types of rewards, revenue and cost, can still be separated, such 

that Lemma 1 remains valid and the proof for Property 1 can be conducted as presented for a 

single fulfillment option. As the multi-option case generalizes the single-option case, Example 4 

and Example 5 also prove Property 2 for multiple options. Likewise, modeling multiple options 

does not affect the validity of Lemma 2 because the additional stochastic transition reflecting the 

customer’s purchase choice is also independent of the set of already confirmed customer orders. 

Lemma 3 also holds for multiple fulfillment options because the feasibility of each fulfillment 

option depends on the tour planning component in the same way as described for the single-option 

case. Based on the basic lemmata, the remainder of the proof for Property 3 can be conducted in 

a similar way as presented above for the single-option case. Finally, the line of reasoning in the 

proof of Property 4 can also be made based on profitable fulfillment options instead of customer 

requests. 
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5 Computational Study 

The theoretical results obtained in Section 3 and Section 4 contribute to a deeper understanding 

of i-DMVRPs’ mathematical structure, which is useful in itself. On top of that, they can also be 

of direct, practical use because they represent domain knowledge that can be exploited by a vari-

ety of solution approaches. In the case of the nonnegativity of opportunity cost (Property 3) and 

the monotonicity of the value function (Property 4), first promising results in this regard are found 

by Koch and Klein (2020). They consider a problem with disjoint booking and service horizons 

and apply a statistical learning approach that imposes structural constraints on policy updates to 

preserve both properties, which facilitates the learning process. Because we prove that these prop-

erties hold in general, such an exploitation is possible for any i-DMVRP, including problems with 

overlapping horizons based on the modified model (Appendix D). Likewise, our results imply 

that the opportunity cost approximation approach by Adelman (2007), which is based on linear 

programming and includes constraints exploiting domain knowledge, can also be validly trans-

ferred to i-DMVRP solution approaches. 

In contrast to Property 3 and Property 4, to the best of our knowledge, the targeted algorithmic 

exploitation of the decomposability of opportunity cost into DPC and MCTS (Property 1 and 

Property 2) has not yet been proposed by existing research. Hence, in this computational study, 

we systematically explore the potential of three general approaches for exploiting the decompos-

ability. In Section 5.1, we first present the three approaches. In Section 5.2, we then describe the 

design of the computational study, that is, we define the specific i-DVPRP and the settings we 

consider. Finally, in Section 5.3, we discuss the computational results and derive insights regard-

ing the potential of each of the three approaches. 

5.1 General Algorithmic Approaches Exploiting Decomposability 

In the following, we explain the algorithmic approaches we analyze in the computational experi-

ments. Because we are interested in the general potential of exploiting decomposability in a cer-

tain way rather than in a specific (heuristic) algorithm design, we define the algorithms by for-

mulating the respective variant of the Bellman equation and solve it by means of backwards re-

cursion. Thus, we obtain idealized algorithms by combining each of the approximation ap-

proaches with an exact method to compute the values of the approximation. For an in-depth re-

view on existing heuristic solution approaches for specific i-DMVRPs see Fleckenstein et al. 

(2023). 

5.1.1 Single-Component Approximations 

This approach is based on the idea that, in certain problem settings, one of the opportunity cost 

components may generally have a considerably greater absolute value than the other. This sug-

gests that completely neglecting the other component in the opportunity cost approximation 

should be possible with only a small deterioration of performance. 
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We derive an idealized DPC-based approximation Δ𝑅̃𝑡  (𝑠𝑡−1 , 𝑐) from the following Bellman 

equation:  

𝑅̃𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝑅̃𝑡(𝑠𝑡−1 , 𝑐))) + 𝑅̃𝑡
′(𝑠𝑡

′(0))         (33) 

with: 

𝑟𝜙𝑡(𝑠𝑡′) = 0  ∀  𝑡 ∈ {1,… , 𝑇}.              (34) 

Here, we set the logistics-related rewards equal to 0 while retaining the revenue as the immediate 

reward of an acceptance decision. Thus, decisions are optimized comparing the immediate re-

ward, that is, the potential immediate revenue, with the exact future revenue impact of the ac-

ceptance decision neglecting its future cost impact. 

Similarly, an idealized MCTS-based approximation Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐) results from:  

𝐹̃𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ argmax
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐))) ⋅ (−Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐))  

+𝐹̃𝑡
′(𝑠𝑡

′(0)).                 (35) 

By using an argmax(⋅) operator in Equation (35), we still consider the revenue for decision-

making but at the same time prevent it from entering the value function as an actual immediate 

reward. Thereby, we make sure that Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐) only captures logistics-related rewards, and thus, 

correctly quantifies the future cost impact of an acceptance decision. This cost impact is then 

compared with the revenue to derive the currently optimal decision-making in each stage. 

5.1.2 Hybrid Reward Approximations 

Compared with single-component policies, an approximation aiming at both components has 

structural advantages if both MCTS and DPC have non-negligible values. Many existing approx-

imation approaches of this type are based on value function approximations that return an aggre-

gated estimate such that the components are not distinguishable (e.g., Ulmer, 2020). Alterna-

tively, the decomposability property allows hybrid approximation design. The underlying idea is 

to compute a separate estimate for DPC and MCTS, aggregate the estimates, and therewith, use 

both as an input for demand control decision-making. A new sampling-based solution method 

recently presented by Abdollahi et al. (2023) constitutes a first non-learning-based, step in this 

direction. They use tentative route planning with sampled orders to compute a DPC estimate and 

an MCTS estimate separately. 

In the class of learning-based approaches, the equivalent are hybrid reward architectures that have 

been successfully applied to classical reinforcement learning problems (Van Seijen et al., 2017), 

but, to the best of our knowledge, have not yet been applied to i-DMVRPs. In such approaches, a 

separate value function approximation is computed for revenue and routing cost, that is, two sin-

gle-component opportunity cost approximations result, each of which can depend on different 

features such that learning is expedited. To aggregate the two estimates, several strategies can be 
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used, like a simple additive aggregation (Van Seijen et al., 2017) or a more complex delegation 

architecture (Russell and Zimdars, 2003). 

Because Property 1 suggests that i-DMVRPs lend themselves to hybrid reward architectures, we 

evaluate the potential of such opportunity cost approximation approaches for i-DMVRPs by ap-

plying two idealized implementations: The first, rather naive one, bases on the aggregation of the 

two single-component approximations by simply summing up their value functions (33) and (35), 

that is, the corresponding opportunity cost approximation is set to Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐) + Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐). 

We refer to this approach as naive hybrid reward approximation (naive HR approximation). The 

other, more sophisticated, approach relies on the additive aggregation of an offline learned com-

ponent and an online learned component. More precisely, we investigate whether it is promising 

to approximate the DPC offline and the MCTS online, or vice versa. In the existing literature, 

offline-online learning as a general concept has already been successfully applied (e.g., Ulmer et 

al., 2019). However, no approach has been proposed yet that specifically takes advantage of op-

portunity cost decomposability. For the offline approximation, we draw on the (disaggregate) 

approximation of the respective single-component approximation ((33) and (35)) for each state, 

and store them in a look-up table by averaging the respective estimates over a two-dimensional 

state space representation. The first dimension measures the remaining time in the booking pro-

cess, and the second dimension represents the remaining logistical capacity. For the online ap-

proximation, we use the disaggregate DPC (MCTS) value from the original model ((15) and (16)). 

Then, we set the corresponding opportunity cost approximation equal to Δ𝐹̃𝑡
𝑎𝑔𝑔𝑟(𝑠𝑡−1, 𝑐) +

Δ𝑅𝑡(𝑠𝑡−1, 𝑐) (or Δ𝑅̃𝑡
𝑎𝑔𝑔𝑟(𝑠𝑡−1 , 𝑐) + Δ𝐹𝑡(𝑠𝑡−1 , 𝑐), respectively). We refer to this approach as of-

fline-online hybrid reward approximation (offline-online HR approximation) and distinguish its 

variants by using the term DPC (MCTS) when the DPC (MCTS) are approximated online.  

5.1.3 Compact Overview 

In summary, this computational study compares decision-making based on the following approx-

imations, which include the ones described above and the true opportunity cost derived from 

solving the dynamic program (9) as the benchmark: 

• DPC-based approximation: Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) = Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐) 

• MCTS-based approximation: Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) = Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐) 

• Naive hybrid reward approximation: Δ𝑉̃𝑡(𝑠𝑡−1 , 𝑐) = Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐) + Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐) 

• Offline-online HR approximation (DPC-based): Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) = Δ𝐹̃𝑡
𝑎𝑔𝑔𝑟(𝑠𝑡−1, 𝑐) +

Δ𝑅𝑡(𝑠𝑡−1, 𝑐) 

• Offline-online HR approximation (MCTS-based): Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) = Δ𝑅̃𝑡
𝑎𝑔𝑔𝑟(𝑠𝑡−1, 𝑐) +

Δ𝐹𝑡(𝑠𝑡−1, 𝑐) 

• True opportunity cost (Benchmark): Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) = Δ𝑉𝑡(𝑠𝑡−1, 𝑐) 
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5.2 Study Design and Methodology 

To evaluate the approaches introduced above, we apply them for decision-making in various dif-

ferent settings. All settings have in common that they reflect an i-DMVRP with the same problem 

structure as introduced in Section 3.1 and the following additional assumptions: disjoint booking 

and service horizons, a single fulfillment vehicle, pure accept/reject decisions, and a booking 

horizon of 𝑇 = 10 potential decision epochs. With that, we ensure that the instance size is suffi-

ciently small for being computationally tractable without overly compromising complexity.  

The settings differ with regard to four parameters whose realizations emulate characteristics of i-

DMVRPs from typical application areas. Two of those parameters define a setting’s customer 

distribution, one sets the general profitability of a setting, and the last defines the type of capacity 

consumption considered in a setting. In the following, we further describe those parameters and 

motivate our choice of their realizations. 

5.2.1 Customer Distribution 

The customer distribution of a setting is characterized by two parameter values, which are the 

customers’ location distribution and their revenue distribution, and is further defined by the mu-

tual interplay of those two parameters. 

Location distribution – To vary the level of difficulty of demand consolidation, we draw the cus-

tomer locations 𝑙𝑐 from two different customer distributions on a line segment of 50 length units 

(LU) in the interval [−25, 25], with a centrally located depot. The first customer distribution 

follows a uniform distribution over the entire interval and, hence, mimics an urban area. The 

second customer distribution is drawn from two truncated normal distributions with means −10 

and 20 and the same standard deviation of 2.5 𝐿𝑈, from which we draw 50% of the customer 

locations each. Therewith, we obtain two clusters that could represent two villages in a rural area. 

Table 1 Customer distribution parameters 

revenue distribution 
location distribution 

uniform (unif) clustered (clust) clustered sorted (clust_sort) 

homogeneous (homog) ✓ ✓  

high-before-low (h-b-l) ✓ ✓ ✓ 

low-before-high (l-b-h) ✓ ✓ ✓ 

random (rand) ✓ ✓ ✓ 

Revenue distribution – The customers’ revenue distribution is an important characteristic that 

influences displacement effects, both in a spatial and a temporal sense. Thus, on the one hand, we 

consider homogeneous revenues (no additional displacement effects) with a value of 𝑟𝑐 = 15 

𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 (𝑀𝑈). This corresponds to, for example, next-day parcel delivery with a static, 

uniform delivery fee. On the other hand, we consider heterogeneous settings with 70% low-rev-

enue customers (𝑟𝑐 = 15𝑀𝑈) and 30% high-revenue customers (𝑟𝑐 = 25𝑀𝑈). We vary their 
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distribution over time as follows: The sequence of customer arrivals either follows a strict high-

before-low sorting (low displacement effects), a random sorting (medium displacement effects), 

or a strict low-before-high sorting (high displacement effects). Such variations over time can oc-

cur, for example, as a result of markup-pricing or markdown-pricing. In addition, for each of 

those three schemes, we consider a customer setting in which the high-revenue customers only 

originate from the distant cluster to mimic a distance-based pricing scheme, which is common, 

for example, in mobility-on-demand applications. We refer to this special combination of location 

distribution and revenue distribution as clustered sorted. 

Overall, these two parameters and the combinations of their potential realizations yield 11 differ-

ent customer settings, which are marked with a ✓ in Table 1. As mentioned before, for all those 

11 customer settings, we vary two more parameters that address the general profitability of a 

setting as well as the capacity consumption. 

5.2.2 Profitability 

To vary the general level of profitability of a problem setting, we adjust the relation between 

revenues and cost by solving all previously mentioned settings for three different routing cost 

factors. More precisely, we consider low-cost settings with cost of 0.2 𝑀𝑈 per 𝐿𝑈 travelled, me-

dium-cost settings with 0.6 𝑀𝑈, and high-cost settings with 1 𝑀𝑈. Thereby, the different profit-

abilitiy settings represent different fields of application. Low-cost settings are dominant in at-

tended home delivery due to minimum order values that cause high revenue relative to cost. On 

the contrary, high-cost settings occur in mobility-on-demand applications with comparatively low 

revenues equal to the fare the provider charges. 

5.2.3 Capacity Consumption 

To consider the impact of the marginal capacity consumption per order for all our settings, we 

additionally assume another parameter. Its value either reflects route length constraints, or phys-

ical capacity constraints such that only one of them is restrictive in a setting. First, for the settings 

with restrictive physical capacity, we set the maximum capacity to 3 orders and assume unit de-

mand for all orders. Hence, the marginal capacity consumption is both uniform and known a-

priori. A typical application that is represented by these settings is attended home delivery of 

bulky goods. Second, for settings with a restrictive route length, we set the maximum capacity to 

50 𝐿𝑈. With this type of constraint, the marginal capacity consumption is variable among the 

orders and is unknown until the final routing decision. This is typical for applications that are 

mainly time-constrained such as same-day delivery. 

Because we aim at a full-factorial analysis of our approaches, we solve all the 11 customer set-

tings from Table 1 for all 6 combinations of parameter values defining the profitability and ca-

pacity consumption. Hence, we test our approaches in 66 settings. For each setting, we draw 50 

instances. Thereby, for each instance, we draw a fixed (deterministic) customer stream of 10 
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customers from the setting-dependent customer distribution. Then, for each customer, we assume 

a probability of 𝜆0
𝑡 = 0.5 that the respective request does not arrive, which is the only source of 

stochasticity, once a setting is defined. 

 

(a) Physical capacity-constrained settings 

 

(b) Route length-constrained settings 

Fig. 2 Objective values resulting from the different opportunity cost approximations – Averaged across 50 instances 
per setting 
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5.3 Performance Evaluation 

To evaluate the performance of the considered approaches, for each of the 66 settings, we calcu-

late the mean objective value, that is, profit after fulfillment, over the 50 different instances 

drawn. In Fig. 2 and Appendix F, we report the results and discuss them in the following: 

5.3.1 Single-Component Approximation 

The comparison between the two variants of this approximation approach reveals that the DPC-

based variant outperforms the MCTS-based variant in high-profitability settings and most route 

length-constrained settings. Especially in the latter settings, it also achieves very small optimality 

gaps and is competitive with the more sophisticated approximations. In turn, the MCTS-based 

variant is among the best-performing approaches in low-profitability, physical capacity-con-

strained settings. On the downside, the performance of both variants fluctuates strongly across 

different settings. For example, we observe a very bad performance of the MCTS-based variant 

for low-profitability settings with distance-dependent revenues and even negative objective val-

ues for the DPC-based variant in some low-profitability, physical capacity-constrained settings. 

However, despite these issues with solution quality fluctuations, single-component approxima-

tions can be a viable approach because their practical implementations usually require less com-

putational effort and, if the right variant is applied in the right setting, it can offer competitive 

solution quality. 

5.3.2 Naive Hybrid Reward Approximation 

The naive hybrid reward approximation is among the best-performing policies in many high-

profitability settings and, with some outliers, also in medium-profitability settings. Hence, in 

these settings, ignoring the interdependency between DPC and MCTS values does not appear 

particularly harmful to the solution quality. However, it performs weaker and shows severe out-

liers in low-profitability settings, especially if capacity is route length-constrained. Because of 

this lack of robustness and the small gains relative to single-component approximations, the ad-

ditional computational effort may only be justified in a few specific settings. 

5.3.3 Offline-Online HR Approximation 

Comparing the two variants of the offline-online HR approximation, the MCTS-based variant 

performs superior in physical capacity-constrained settings and in low-profitability settings. With 

a few exceptions, it is even the best-performing approach for these settings and shows a very 

robust performance overall. The DPC-based variant is slightly better in some route length-con-

strained settings with medium or high profitability. However, it can be considered inferior overall 

because its performance is also more variable. A possible explanation for this result is that the 

MCTS show a stronger variation over similar states, whereas the differences in DPC are smaller 

for states with the same decision epoch and remaining capacity. If this is indeed the case, antici-

pating the MCTS online in disaggreate form should yield more accurate opportunity cost 
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estimates. Overall, the results are very promising for the MCTS-based variant, even though its 

practical implementations are expected to require the highest computational effort.  

We can conclude that none of the presented approaches exploiting the decomposability of oppor-

tunity cost is strictly dominated such that all are worth being investigated further. Our results can 

serve as a rough guidance as to which approach is most promising in a certain setting. Interest-

ingly, we also observe that the relevance of DPC and MCTS correlates with the performance of 

the approaches. As an example, the MCTS gain relevance with decreasing profitability because 

the fulfillment cost becomes larger relative to the revenues, and thus, we would expect a relative 

performance gain of the MCTS-based approaches. This gain can indeed be observed for both the 

MCTS-based single component approximation and the MCTS-based offline-online HR approxi-

mation. 

6 Conclusion and Future Research Opportunities 

This work constitutes the first formal, generic analysis of opportunity cost in i-DMVRPs. We 

showed that the original interpretation of opportunity cost from traditional revenue management 

applications cannot be transferred to i-DMVRPs and, therefore, generalized its definition. Further, 

we analytically investigated opportunity cost properties with the central property being the de-

composability into DPC and MCTS. Finally, we conducted a computational study and applied 

previously unconsidered approximation approaches as a proof of concept for that the properties 

can be directly exploited in algorithm design. In the following, we first briefly summarize our 

theoretical and computational results. Second, we discuss the future research opportunities emerg-

ing from our work. 

In existing works, insights are mainly derived either from qualitative reasoning and computational 

studies (e.g., Mackert, 2019 and Vinsensius et al., 2020) or from analytical analyses for specific 

i-DMVRPs (Asdemir et al., 2009 and Lebedev et al., 2020). In contrast, our approach is both 

analytical and generic, which is why our results apply to the whole family of the most common 

types of i-DMVRPs. By showing that it is possible to substantiate existing observations at the 

modeling level, we not only confirm their general validity, but also highlight the importance of 

modeling frameworks for understanding and exploiting the problem structure of i-DMVRPs when 

designing solution concepts. The following summary captures the essence of our theoretical 

framework: 

For i-DMVRPs, opportunity cost measures the impact of selling an order as a consequence of a 

demand control decision, on both (expected) future revenues, in the form of DPC, and (expected) 

future cost of fulfillment, in the form of MCTS (e.g., Yang and Strauss, 2017). With our analysis, 

we can precisely express this impact in a formal way: First, we show that the impact of a demand 

control decision can be isolated from the impact of the subsequent routing decision. Second, we 

show that both revenue impacts and cost impacts can be formally expressed and, thus, mathemat-

ically decomposed from each other (Property 1). Third, we find that both impacts can have a 
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positive or a negative sign (Property 2). Fourth, although we can measure the impacts in isolation 

through MCTS and DPC, the corresponding values are still nonseparable and, in sum, nonnega-

tive, which leads to the general non-negativity of opportunity cost (Property 3). Finally, the value 

function decreases monotonically in an increasing set of accepted but not yet served customer 

orders and can also be transformed to decrease monotonically in time (Property 4). 

In addition to these theoretical findings, our computational study shows that exploiting the de-

composability of opportunity cost allows transferring new algorithmic approaches to i-DMVRPs 

that have been shown to be beneficial in related fields. This includes different hybrid reward 

approximation approaches, which are already established in reinforcement learning (Van Seijen 

et al., 2017). The computational evaluation of idealized implementations of these approaches il-

lustrates their potential in the context of i-DMVRPs. At the same time, we also observe that the 

relative performance of the approaches can vary considerably even among similar settings. This 

highlights the importance of continuously expanding the available toolbox of approaches such 

that a wide range of settings can be suitably tackled. 

For future research, we primarily see the opportunity to exploit the decomposability and the other 

properties in heuristic solution algorithms for specific i-DMVRPs, not only with the aim of im-

proving solution quality but also for reducing runtimes. In particular, we believe that heuristic 

versions of the presented hybrid reward approximation approaches deserve further investigation. 

Another future research question arises in connection with Property 4. In the case of problems 

with overlapping horizons, it only holds for modified models (Appendix D). Interestingly, this 

model transformation can be viewed as a form of reward shaping (Laud, 2004), which establishes 

monotonicity at the cost of increasing the delay of rewards. To the best of our knowledge, reward 

shaping has not been applied to solve i-DMVRPs. Hence, although it is out of scope for the study 

at hand, our theoretical results suggest that there is potential to investigate its application. 

Finally, we see the potential for doing similar theoretical research for other novel demand man-

agement problems that feature integrated combinatorial optimization problems to plan service 

fulfillment, such as scheduling problems (Xu et al., 2015). 
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Appendix A: Notation 

Table 2 Notation (continued on next page) 

𝑡 = 1, . . . , 𝑇  Decision epoch 

𝑐  Type of customer request 

𝑐𝑡   Customer requesting in stage 𝑡 

𝐶  Set of customer request types 

𝜆𝑐
𝑡   Arrival rate of a customer request from customer order type 𝑐 in stage 𝑡 

𝑙𝑐  Location of a customer request from customer request type 𝑐 

𝑟𝑐  Revenue of a customer request from customer request type 𝑐 

𝜏  Time of an incoming customer request 

𝑜  Fulfillment option chosen by a customer of a confirmed customer order 

(𝑙𝑐 , 𝜏, 𝑜)  Confirmed customer order that is defined by parameters 𝑙𝑐 , 𝜏, and 𝑜 

𝒞𝑡  
Set of customer orders that have been confirmed but for which fulfillment has not yet 

started until decision epoch 𝑡 

𝑣  Vehicle 

𝒱  Set of vehicles 

𝜃𝑡
𝑣  Tour of vehicle 𝑣 currently running in decision epoch 𝑡 

𝜙𝑡 = {𝜃𝑡
𝑣}𝑣∈𝒱  Overall tour plan in decision epoch 𝑡 

Ψ(𝜙𝑡)  
Subset of orders for which the fulfillment process has started according to the new tour 

plan 𝜙𝑡 

𝑠𝑡 = (𝒞𝑡 , 𝜙𝑡)  State in decision epoch 𝑡 

𝑠𝑡
′ ∣ 𝑠𝑡−1 , 𝑐, 𝑔𝑡  

Interim state that is reached when in state 𝑠𝑡−1 a customer request of type 𝑐 arrives and de-

mand control decision 𝑔𝑡 is taken 

𝑠𝑡
′(𝑐)  

Interim state that is reached when in state 𝑠𝑡−1 a customer request of type 𝑐 arrives and is 

accepted by demand control decision 𝑔𝑡 = 1 

𝑠𝑡
′(0)  

Interim state that is reached when in state 𝑠𝑡−1 a customer request of type 𝑐 arrives and is re-

jected by demand control decision 𝑔𝑡 = 0 or in case there is no request at decision epoch 𝑡 

𝑔𝑡  Demand control decision in decision epoch 𝑡 

𝒢(𝑠𝑡−1, 𝑐) ⊆ {0,1}  
Feasible demand control decisions (1: accept, 0: reject) in state 𝑠𝑡−1, when a customer re-

quest of type 𝑐 arrives 

𝜙𝑡(𝑔𝑡)  Tour planning decision in decision epoch 𝑡, depending on demand control decision 𝑔𝑡 

𝜙𝑡
∗(𝑔𝑡)  

Optimal tour planning decision in decision epoch 𝑡, depending on demand control decision 

𝑔𝑡 

𝑟𝜙𝑡(𝑔𝑡)  Logistics-related rewards depending on tour planning decision 𝜙𝑡(𝑔𝑡) 

𝑟𝜙𝑡∗(𝑔𝑡)  Logistics-related rewards depending on optimal tour planning decision 𝜙𝑡
∗(𝑔𝑡) 

Φ(𝑠𝑡−1 , 𝑐, 𝑔𝑡)  
Set of tour plans that are feasible given state 𝑠𝑡−1 and the demand control decision 𝑔𝑡 for 

the arriving customer request of type 𝑐 

𝑎𝑡 = (𝑔𝑡 , 𝜙𝑡(𝑔𝑡))  Action taken at decision epoch 𝑡 

𝒜(𝑠𝑡−1, 𝑐)  Action space in state 𝑠𝑡−1 for a request arrival of type 𝑐 

𝑥  A policy 

𝜋  A certain decision sequence 
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𝜋∗(𝑐𝑡)  The optimal decision sequence when starting in interim state 𝑠𝑡
′(𝑐𝑡) 

𝜔  A certain sample path 

Ω  Set of all potential sample paths 

𝑉𝑡(𝑠𝑡)  Value of being in state 𝑠𝑡 

𝑉̃𝑡(𝑠𝑡)  Value of being in state 𝑠𝑡 of the modified model 

𝑉𝑡
′(𝑠𝑡

′)  Value of being in interim state 𝑠𝑡
′ 

𝑉𝑡
′𝜔(𝑠𝑡

′)  Value of being in interim state 𝑠𝑡
′ when sample path 𝜔 realizes 

𝑉𝑡
′𝜋𝜔(𝑠𝑡

′)  
Value of being in interim state 𝑠𝑡

′ when sample path 𝜔 realizes and decision sequence 𝜋 is 
applied 

Δ𝑉𝑡(𝑠𝑡−1 , 𝑐)  Opportunity cost of accepting a request of type 𝑐 starting in state 𝑠𝑡−1 

𝑅𝑡−1
′ (𝑠𝑡−1

′ )  Expected future revenues of interim state 𝑠𝑡−1
′  

Δ𝑅𝑡(𝑠𝑡−1, 𝑐)  DPC of accepting a customer request of type 𝑐 at decision epoch 𝑡 and state 𝑠𝑡−1 

𝐹𝑡−1
′ (𝑠𝑡−1

′ )  Expected future fulfillment cost of interim state 𝑠𝑡−1
′  

Δ𝐹𝑡(𝑠𝑡−1 , 𝑐)  MCTS of accepting a customer request of type 𝑐 at decision epoch 𝑡 and state 𝑠𝑡−1 

 

Appendix B: Examples 

 

Fig. 3 Customer locations of the problem instance underlying the discussion of opportunity cost properties in  
i-DMVRPs 

For illustrative reasons and in order to generate a general intuition of opportunity cost in i-

DMVRPs and its decisive characteristics, we consider a simple instance of the generic i-DMVRP 

presented in Section 3.1, which we introduce in the following. However, the respective results 

can be generalized to more complex problem instances. The problem instance corresponds to a 

special case of the generic i-DMVRP with disjoint booking and service horizons. Thus, the pro-

vider takes a single routing decision at the terminal decision epoch 𝑇 and demand control deci-

sions in 𝑡 = 1, . . . , 𝑇. We encode the accept decision by actions 𝑎𝑡 = 𝑔𝑡 = 1 and the reject deci-

sions by actions 𝑎𝑡 = 𝑔𝑡 = 0. We assume that there are only three potential customer requests, 

denoted as 𝑐1, 𝑐2, and 𝑐3. As depicted in Fig. 3, they are located on a line with one single, centrally 

located depot. There are three decision epochs, and thus, three stages in which customer requests 

arrive with time-dependent arrival rates 𝜆𝑐𝑖
𝑡  = 0.5, if 𝑖 = 𝑡 and 𝜆𝑐𝑖

𝑡 = 0, else. The potential reve-

nues 𝑟𝑐𝑖 associated with those customer requests are 10, 10 and 20 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 (𝑀𝑈) for 

requests 𝑐1, 𝑐2, and 𝑐3, respectively. The customer request characteristics are summarized in Table 

3. Further, for every customer request, the same physical capacity consumption is assumed. It 

equals the size of one trunk. To serve customer orders, the provider has a single vehicle available, 

which can only load two trunks at a time and is not allowed to conduct multiple trips. Fuel cost is 

assumed to equal 1 𝑀𝑈 per 𝑙𝑒𝑛𝑔𝑡ℎ 𝑢𝑛𝑖𝑡 (𝐿𝑈). 
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Table 3 Customer requests of the problem instance underlying the discussion of opportunity cost properties in i-
DMVRPs 

𝑐𝑖 𝑙𝑐𝑖  𝑟𝑐𝑖  𝜆𝑐𝑖
𝑡  

𝑐1 (−4) 10 

𝜆𝑐𝑖
𝑡 = {

0.5  if 𝑖 = 𝑡
0     𝑒𝑙𝑠𝑒     

 𝑐2 (4.5) 10 

𝑐3 (−5.5) 20 

B.1. Example 1 

Example 1: We investigate decision epoch 𝑡 = 2 of the above described problem instance. We 

assume that a customer request 𝑐1 arrived at the previous decision epoch and turned into a cus-

tomer order. In 𝑡 = 2, customer request 𝑐2 realizes. Thus, 𝒞1 = {𝑐1} and the provider has to de-

cide whether to accept the current customer request 𝑐2 with action 𝑎2 = 1 or reject it with action 

𝑎2 = 0. If the provider accepts 𝑐2, it turns into a confirmed customer order. Then, it is not possible 

to also accept the customer request 𝑐3, which realizes at the subsequent decision epoch with prob-

ability 𝜆𝑐3
3 = 0.5. Consequently, decision 𝑎2 = 1 results in expected DPC that equals 𝜆𝑐3

3 ⋅

 𝑟𝑐3  𝑀𝑈 = 0.5 ⋅ 20 𝑀𝑈 = 10 𝑀𝑈. This means that an expected revenue of 10 𝑀𝑈 is displaced 

due to limited vehicle capacities if decision 𝑎2 = 1 is taken. 

B.2. Example 2 

Example 2a: Again, we consider the same decision epoch, with equal state and potential actions 

of the problem instance as described in Example 1. If fuel cost were to be neglected, DPC would 

equal opportunity cost, i.e., Δ𝑉2(𝑠1, 𝑐2) = 10 𝑀𝑈. Since the immediate contribution of action 

𝑎2 = 1 also equals 𝑟𝑐2 = 10 𝑀𝑈, both decisions, 𝑎2 = 1 or 𝑎2 = 0, are equally good decisions 

for the provider. 

Example 2b: However, Fig. 3 shows clearly that the additional fulfillment cost in case the provider 

accepts customer request 𝑐2 equals 9𝑀𝑈. In turn, rejecting customer request 𝑐2 by action 𝑎2 = 0 

and then accepting customer request 𝑐3 instead only leads to additional fulfillment cost of 3𝑀𝑈. 

Since customer request 𝑐3 realizes with probability 𝜆𝑐3
3 = 0.5, the expected increase in delivery 

cost caused by decision 𝑎2 = 1 is calculated as 9 𝑀𝑈 − 0.5 ⋅ 3 𝑀𝑈 = 7.5 𝑀𝑈. Considering this 

cost additionally to the previously calculated DPC, action 𝑎2 = 1 causes an expected cost of 

17.5 𝑀𝑈. Since the immediate contribution of accepting customer request 𝑐2 is below this ex-

pected cost, the provider has to decide for 𝑎2 = 0 in order to generate profit. 

B.3. Example 3 

Example 3: Again, we consider the same problem instance, with the same potential customer 

requests regarding locations, revenues, and arrival rates as depicted in Table 3. Fuel cost is again 

1 𝑀𝑈/𝐿𝑈. This time, we examine decision epoch 𝑡 = 1. There are no confirmed customer orders 

yet, i.e., 𝒞0 = {}, and a request 𝑐1 realizes. The myopic MCTS equal 8 𝑀𝑈 since the distance 

between 𝑙𝑐1 and the depot is 4 𝐿𝑈. 
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For decision making, also DPC need to be calculated as in the previous examples. We must cal-

culate the sum of all expected revenues that the provider can accrue under optimal decision-mak-

ing in the subsequent decision epochs until the terminal decision epoch starting in interim state 

𝑠1
′ . This sum equals 15 𝑀𝑈 as we explain in the following: If the provider rejects customer request 

𝑐1, it is still possible to accept 𝑐2 and 𝑐3 if they realize. Thus, it is possible to accrue their revenues 

10 𝑀𝑈 and 20 𝑀𝑈 with the respective arrival probabilities 𝜆𝑐2
2 = 𝜆𝑐3

3 = 0.5. From that, we sub-

tract the corresponding sum of expected revenues under optimal decision-making starting in in-

terim state 𝑠1
′(𝑐1), which equals 10 𝑀𝑈 as described in the following: After accepting customer 

request 𝑐1, it would be optimal to reject customer request 𝑐2 if it realizes and to accept customer 

request 𝑐3 respectively. Overall, this yields 𝐷𝑃𝐶 = 15 𝑀𝑈 − 10 𝑀𝑈 = 5 𝑀𝑈. Consequently, if 

the provider bases decision-making on myopic MCTS and DPC, the resulting optimal decision is 

to reject customer request 𝑐1 by action 𝑎1 = 0 because the sum of myopic MCTS and DPC ex-

ceeds its revenue. Nevertheless, the optimal decision resulting from solving the value function is 

accepting customer request 𝑐1 by action 𝑎1 = 1. This is also the intuitive decision when looking 

at Fig. 3 and considering the vicinity to potential future customer request 𝑐3, or in more technical 

terms, when considering that accepting customer request 𝑐1 entails a cost-related opportunity ef-

fect. 

B.4. Example 4 

 

Fig. 4 Decision Tree – Example 4 

Example 4: We consider the same problem instance as in Example 3, with the same potential 

customer requests regarding locations, revenues, and arrival rates as depicted in Table 3. Fuel 
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cost is again assumed to equal 1 𝑀𝑈/𝐿𝑈 and decision epoch 𝑡 = 1 is examined with 𝒞0 = {}. 

Customer request 𝑐1 realizes. Decision 𝑎1 = 1, i.e., accepting 𝑐1, results in value 𝑉1
′(𝑠1

′(𝑐1)) =

0.5𝑀𝑈. Rejecting it by decision 𝑎1 = 0, results in value 𝑉1
′(𝑠1

′(0)) = 5 𝑀𝑈. Consequently, the 

corresponding opportunity cost of decision 𝑎1 = 1 for customer request 𝑐1 when starting in the 

considered state equals 4.5 𝑀𝑈. DPC are calculated as in Example 3, thus, Δ𝑅1(𝑠0, 𝑐1) = 5 𝑀𝑈. 

Exploiting Property 1 yields 𝑀𝐶𝑇𝑆 = Δ𝐹1(𝑠0, 𝑐1) = Δ𝑉1(𝑠0, 𝑐1) − Δ𝑅1(𝑠0, 𝑐1) = 4.5 𝑀𝑈 −

5 𝑀𝑈 = −0.5 𝑀𝑈 < 0 𝑀𝑈. 

For illustrative purposes, Fig. 4 shows the partial decision tree for this problem instance, origi-

nating in state 𝑠0, assuming a customer request arrives. Random nodes are depicted as circles and 

represent whether there is a customer request or not. The outgoing upper arc always represents 

the arrival of a customer request, the outgoing lower arc represents the case that there is no such 

arrival. Decision nodes are depicted as rectangles and represent demand control decisions. The 

upper arcs originating in such nodes represent accepting the respective customer request. The 

corresponding lower arcs represent rejecting the customer request. Optimal decisions in each de-

cision epoch, derived from solving the corresponding value function, are depicted as solid arcs 

originating in the demand control decision nodes. 

Underlying calculations: 

𝑉2( 𝑠2
′ (𝑐2) ∣∣ 𝑠1

′ (𝑐1) ) = 0.5 ⋅ (−17) + 0.5 ⋅ (−17) = −17  

𝑉2( 𝑠2
′ (0) ∣∣ 𝑠1

′(𝑐1) ) = 0.5 ⋅ (20 − 11) + 0.5 ⋅ (−8) = 0.5  

𝑉2( 𝑠2
′ (𝑐2) ∣∣ 𝑠1

′ (0) ) = 0.5 ⋅ (20 − 20) + 0.5 ⋅ (−9) = −4.5  

𝑉2( 𝑠2
′ (0) ∣∣ 𝑠1

′(0) ) = 0.5 ⋅ (20 − 11) + 0.5 ⋅ 0 = 4.5  

𝑉1(𝑠1
′(𝑐1)) = 0.5 ⋅ 𝑉2( 𝑠2

′ (0) ∣∣ 𝑠1
′(𝑐1) ) + 0.5 ⋅ 𝑉2( 𝑠2

′ (0) ∣∣ 𝑠1
′(𝑐1) ) = 0.5  

𝑉1(𝑠1
′(0)) = 0.5 ⋅ (10 − 𝑉2( 𝑠2

′ (𝑐2) ∣∣ 𝑠1
′(0) )) + 0.5 ⋅ 𝑉2( 𝑠2

′ (0) ∣∣ 𝑠1
′(0) ) = 5  

B.5. Example 5 

Example 5: We consider the same problem instance as in the previous examples. Thereby, we 

assume the same potential customer requests regarding locations and arrival rates, but with po-

tential revenues 𝑟𝑐1 = 10 𝑀𝑈, 𝑟𝑐2 = 10 𝑀𝑈 and 𝑟𝑐3 = 10.5 𝑀𝑈. Furthermore, we now assume 

that the physical vehicle capacity is unrestricted, and instead, the maximum route length is con-

strained to 12 𝐿𝑈. Traveling one 𝐿𝑈 still costs 1 𝑀𝑈. Again, we investigate decision epoch 𝑡 =

1, and again, we assume that there is no confirmed customer order yet, i.e., 𝒞0 = {}, and a cus-

tomer request 𝑐1 realizes. Now, 𝑅1
′ (𝑠1

′(0)) = 5 𝑀𝑈 as with rejecting 𝑐1 by action 𝑎1 = 0, the 

subsequent optimal decisions lead to a future revenue of 10 𝑀𝑈 with probability 𝜆𝑐2
2 = 0.5. If 

request 𝑐2 does not realize, still, a request 𝑐3 will not be accepted. In case the current customer 

request 𝑐1 converts into a confirmed customer order, in turn, it is optimal to also accept a customer 



Article A2: On the Concept of Opportunity Cost in Integrated Demand Management and Vehicle Routing 

 101 

request 𝑐3 if it realizes. Consequently, 𝑅1
′ (𝑠1

′(𝑐1)) = 5.25 𝑀𝑈 and, thus, 𝐷𝑃𝐶 = Δ𝑅1(𝑠0 , 𝑐1) =

−0.25𝑀𝑈 < 0𝑀𝑈. 

 

Fig. 5 Decision Tree – Example 5 

Analogous to the previous example, Fig. 5 illustrates the corresponding optimal decisions for all 

decision epochs, derived from solving the value function. 

Underlying calculations: 

𝑉2( 𝑠2
′ (0) ∣∣ 𝑠1

′(𝑐1) ) = 0.5 ⋅ (10.5 − 11) + 0.5 ⋅ (−8) = −4.25  

𝑉2( 𝑠2
′ (𝑐2) ∣∣ 𝑠1

′ (0) ) = 0.5 ⋅ (−9) + 0.5 ⋅ (−9) = −9  

𝑉2( 𝑠2
′ (0) ∣∣ 𝑠1

′(0) ) = 0.5 ⋅ 0 + 0.5 ⋅ 0 = 0  

𝑉1(𝑠1
′(𝑐1)) = 0.5 ⋅ 𝑉2( 𝑠2

′ (0) ∣∣ 𝑠1
′(𝑐1) ) + 0.5 ⋅ 𝑉2( 𝑠2

′ (0) ∣∣ 𝑠1
′(𝑐1) ) = −4.25  

𝑉1(𝑠1
′(0)) = 0.5 ⋅ (10 − 𝑉2( 𝑠2

′ (𝑐2) ∣∣ 𝑠1
′(0) )) + 0.5 ⋅ 0 = 0.5  

Appendix C: Proofs of Lemmata 

C.1. Proof of Lemma 1 

Proof. Based on (7), we must show that the induction hypothesis 

𝑅𝑡
′(𝑠𝑡

′) + 𝐹𝑡
′(𝑠𝑡

′) = 𝑟𝜙𝑡∗(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡

∗(𝑔𝑡) )            (36) 

holds for any interim state 𝑠𝑡
′ in any stage 𝑡. The proof is by induction over 𝑡. 

Initial case: In the terminal decision epoch, rewards are defined by the boundary conditions (6), 

(12), and (14). For the left hand side of (36), we have 𝑅𝑇
′ (𝑠𝑇

′ ) + 𝐹𝑇
′ (𝑠𝑇

′ ) = 0 + 𝑟𝜙𝑇∗ (𝑔𝑇). For the 
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right hand side of (36), we get the same result: 𝑟𝜙𝑇
∗ (𝑔𝑇)

+ 𝑉𝑇( 𝑠𝑇 ∣∣ 𝑠𝑇−1, 𝜙𝑇
∗ (𝑔𝑇) ) = 𝑟𝜙𝑇

∗ (𝑔𝑇)
+ 0. 

Thus, Lemma 1 holds for 𝑡 = 𝑇. 

Induction step: Now, we show that if the induction hypothesis is valid for 𝑡, then it is also valid 

for 𝑡 − 1. For this purpose, we apply the following transformations: 

1. We start with Equation (7) of decision epoch 𝑡 − 1. 

2. We substitute Equation (8) for 𝑉𝑡−1(𝑠𝑡−1). 

3. We substitute Equation (7) of decision epoch 𝑡 and eliminate the maximum operator by 

inserting the variable for the optimal demand control decision 𝑔𝑡
∗. 

4. We substitute the induction hypothesis (36). 

5. We rearrange the terms. 

6. We substitute Equations (11) and (13). 

𝑉𝑡−1
′ (𝑠𝑡−1

′ ) =
1.
𝑟𝜙𝑡−1∗ (𝑔𝑡−1) + 𝑉𝑡−1(𝑠𝑡−1)  

=
2.
𝑟𝜙𝑡−1∗ (𝑔𝑡−1) + ∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ⋅ max

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡 ⋅ 𝑟𝑐 + 𝑉𝑡

′( 𝑠𝑡
′ ∣∣ 𝑠𝑡−1 , 𝑐, 𝑔𝑡 ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1 , 0 )  

=
3.
𝑟𝜙𝑡−1∗ (𝑔𝑡−1) + ∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ⋅ (𝑔𝑡

∗ ⋅ 𝑟𝑐 + 𝑟𝜙𝑡∗(𝑔𝑡∗) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1 , 𝜙𝑡

∗(𝑔𝑡
∗) ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ (𝑟𝜙𝑡∗(0) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡

∗(0) ))  

=
4.
𝑟𝜙𝑡−1∗ (𝑔𝑡−1) + ∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ⋅ (𝑔𝑡

∗ ⋅ 𝑟𝑐 + 𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗ ) +

𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗ ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ (𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0 ) + 𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0 ))  

=
5.
∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ⋅ (𝑔𝑡

∗ ⋅ 𝑟𝑐 + 𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗ ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0 )  

+𝑟𝜙𝑡−1∗ (𝑔𝑡−1) +∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 𝑔𝑡
∗ ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑔𝑡−1), 0 )  

=
6.
𝑅𝑡−1
′ (𝑠𝑡−1

′ ) + 𝐹𝑡−1
′ (𝑠𝑡−1

′ ).      ∎              (37) 

C.2. Proof of Lemma 2 

Proof. Lemma 2 holds by definition for the generic i-DMVRP model since the customer arrival 

process is only time-dependent, but not state-dependent, by the definition of the arrival rates 𝜆𝑐
𝑡 . 

      ∎ 

C.3. Proof of Lemma 3 

Generally, the demand control component 𝒢(𝑠𝑡−1, 𝑐) of an action space 𝒜𝑡(𝑠𝑡−1, 𝑐) =

(𝒢(𝑠𝑡−1, 𝑐), Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡)) strongly depends on the tour planning component Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡) as 

follows. It only comprises 𝑔𝑡 = 1 if a feasible tour plan 𝜙𝑡(1) exists in Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡). Thus, to 
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prove Lemma 3, it is sufficient to show that the tour planning component of 𝒜(𝑠̂𝑡−1, 𝑐) is a subset 

of the respective tour planning component in 𝒜(𝑠𝑡−1, 𝑐). 

Proof. Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡) corresponds to the solution space of the constraint satisfaction variant of the 

underlying VRP. Enforcing the fulfillment of an additional order 𝑐̂ requires (at least) one addi-

tional constraint compared to fulfilling the set of orders 𝒞𝑡−1, without order 𝑐̂. This constraint is 

either redundant or further restricts the solution space, as long as the triangle inequality holds, 

which proves Lemma 3 (see Asdemir et al. (2009) for a similar proof).      ∎ 

C.4. Proof of Lemma 4 

To prove Lemma 4, it is sufficient to show that, when rejecting a certain customer request 𝑐̂, we 

can feasibly make the same future decisions as when accepting 𝑐̂, and that both decisions result 

in the same transitions.  

Proof. By Lemma 3, the same future decisions can be made by assuming the rejection of a cus-

tomer request 𝑐̂ as well as by assuming its acceptance. Further, by Lemma 2, those decisions 

result in the same subsequent transitions.      ∎ 

C.5. Proof of Lemma 5 

Proof. From Lemmata 3 and 4, it follows that any 𝜋 that can be feasibly applied to 𝜔 starting in 

interim state 𝑠𝑡
′(𝑐𝑡) can also be feasibly applied to 𝜔 starting in interim state 𝑠𝑡

′(0). Then, Lemma 

5 directly follows from Lemma 2 since, starting in both interim states, the same set of customer 

orders are received given the same decisions.      ∎ 

C.6. Proof of Lemma 6 

Proof. 𝜋 and 𝜔 start with the same set of confirmed customer orders 𝒞𝑡−1, irrespective of whether 

their start is assumed from interim state 𝑠𝑡
′(𝑐𝑡) or 𝑠𝑡

′(0). Then, assuming 𝜋 and 𝜔 start in interim 

state 𝑠𝑡
′(𝑐𝑡), customer order 𝑐𝑡 is added to the set of confirmed customer orders 𝒞𝑡 whereas it is 

not added assuming 𝜋 and 𝜔 start in interim state 𝑠𝑡
′(0). Afterward, starting in interim states 

𝑠𝑡
′(𝑐𝑡) and 𝑠𝑡

′(0), respectively, and applying the same decision sequence 𝜋 to 𝜔, which is possible 

by Lemmata 3 and 4, again, the same customer orders are confirmed, which results from Lemma 

2. Consequently, starting 𝜋 and 𝜔 in interim state 𝑠𝑡
′(𝑐𝑡) results in subsequent states 𝑠̂𝑡′ =

(𝒞̂𝑡′, 𝜙𝑡′) and starting in interim state 𝑠𝑡
′(0) results in subsequent states 𝑠𝑡′ = (𝒞𝑡′ , 𝜙𝑡′) for 𝑡′ =

𝑡, . . . , 𝑇, with 𝒞̂𝑡′ = 𝒞𝑡′ ∪ {𝑐𝑡}. This proves Lemma 6 analogously to the proof of Lemma 3, as 

the underlying VRP is more restricted and consequently the resulting fulfillment cost cannot be 

smaller as long as the triangle inequality holds.      ∎ 

C.7. Proof of Lemma 7 

Proof. The proof of Lemma 7 follows directly from Lemma 5 and Lemma 6: Lemma 5 states 

revenue equality when applying a decision sequence 𝜋 to sample path 𝜔 starting in interim state 

𝑠𝑡
′(𝑐𝑡) and starting in interim state 𝑠𝑡

′(0), i.e., 𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) = 𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(0)). Lemma 6 states that 

higher or equal fulfillment cost arise for decision sequence 𝜋 applied to sample path 𝜔 starting in 
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interim state 𝑠𝑡
′(𝑐𝑡) over applying the same decision sequence 𝜋 to sample path 𝜔 starting in 

interim state 𝑠𝑡
′(0), i.e., 𝐹𝑡

′𝜋𝜔(𝑠𝑡
′(𝑐𝑡)) ≤ 𝐹𝑡

′𝜋𝜔(𝑠𝑡
′(0)). Hence, substituting Lemma 5 and Lemma 

6 yields:  

𝑉𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) = 𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) + 𝐹𝑡
′𝜋𝜔(𝑠𝑡

′(𝑐𝑡)) ≤  

𝑅𝑡
′𝜋𝜔(𝑠𝑡

′(0)) + 𝐹𝑡
′𝜋𝜔(𝑠𝑡

′(0)) = 𝑉𝑡
′𝜋𝜔(𝑠𝑡

′(0)).      ∎           (38) 

Appendix D: Proof of Model Equivalency 

Denoting the value function of the original model by 𝑉𝑡(𝑠𝑡) and the one of the modified model 

by 𝑉̃𝑡(𝑠𝑡), the following relationship holds: 𝑉𝑡(𝑠𝑡) = 𝑉̃𝑡(𝑠𝑡)– 𝑟𝑡
𝑙  𝑐𝑢𝑚. Before proving the model 

equivalency, we reformulate the corresponding value functions 𝑉𝑡(𝑠𝑡) and 𝑉̃𝑡(𝑠𝑡) of the original 

and the modified model for ease of presentation. Then, we prove model equivalency by induction. 

First, we replace the maximization operators by the corresponding optimal decisions. We repre-

sent the optimal demand control decision, i.e.,  max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

, by 𝑔𝑡
∗. The optimal tour planning de-

cision, i.e.,  max
𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)

, is represented by 𝜙𝑡
∗(𝑔𝑡). Further, we introduce expressions 𝑟𝑡

+ and 

𝑟𝑡
− to replace expectations over positive rewards (revenues) and negative rewards (costs), respec-

tively. 

Value function of the original model: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (𝑔𝑡
∗ ⋅ 𝑟𝑐 + 𝑟𝜙𝑡∗(𝑔𝑡∗) + 𝑉𝑡( 𝑠𝑡 ∣

∣ 𝑠𝑡−1, 𝜙𝑡
∗(𝑔𝑡

∗) ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ (𝑟𝜙𝑡∗(0) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡

∗(0) ))  

= ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ 𝑔𝑡
∗ ⋅ 𝑟𝑐⏟          

𝑟𝑡
+

+∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ 𝑟𝜙𝑡∗(𝑔𝑡−1∗ ) + (1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑟𝜙𝑡∗(0)⏟                          
𝑟𝑡
−

  

+∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ 𝑉𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡
∗(𝑔𝑡

∗) ) + (1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑉𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡
∗(0) )⏟                                            

𝑉𝑡(𝑠𝑡)

= 𝑟𝑡
+ + 𝑟𝑡

− + 𝑉𝑡(𝑠𝑡).  

                  (39) 

Value function of the modified model: 

𝑉̃𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (𝑔𝑡
∗ ⋅ 𝑟𝑐 + 𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1 , 𝜙𝑡

∗(𝑔𝑡−1
∗ ) )) + (1 − ∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ) ⋅

𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡
∗(0) )  

= ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (𝑔𝑡
∗ ⋅ 𝑟𝑐)⏟          

𝑟𝑡
+

+∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ 𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡
∗(𝑔𝑡

∗) ) + (1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑉̃𝑡( 𝑠𝑡 ∣∣ 𝑠𝑡−1, 𝜙𝑡
∗(0) )⏟                                            

𝑉𝑡(𝑠𝑡)

  

= 𝑟𝑡
+ + 𝑉̃𝑡(𝑠𝑡).                 (40) 

Model equivalency is given if 𝑉𝑡(𝑠𝑡) = 𝑉̃𝑡(𝑠𝑡) − 𝑟𝑡
𝑙  𝑐𝑢𝑚 holds for every 𝑡, and 𝑉0(𝑠0) = 𝑉̃0(𝑠0) 

holds as well. We prove this by induction, for which we remind the reader of the following two 

relationships: 

𝑉𝑇(𝑠𝑇) = 0                (41) 
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𝑟𝑡−1
𝑙  𝑐𝑢𝑚 = 𝑟𝑡

𝑙  𝑐𝑢𝑚 − 𝑟𝜙𝑡(𝑔𝑡)               (42) 

The proof starts with the result for the terminal state 𝑠𝑇 to which the system transitioned via a 

certain sample path denoted by 𝜔. Then, independent of which sample path realizes, i.e., for every 

sample path in the set of all potential sample paths, 𝜔 ∈ Ω, we can conduct the following proof: 

Proof. By induction:  

Initial case: 

𝑉𝑇
𝜔(𝑠𝑇) = 𝑉̃𝑇

𝜔(𝑠𝑇) − 𝑟𝑇
𝜔  𝑙  𝑐𝑢𝑚 = 0              (43) 

Equation (43) holds by definition. 

Induction hypothesis: 

𝑉𝑡
𝜔(𝑠𝑡) = 𝑉̃𝑡

𝜔(𝑠𝑡) − 𝑟𝑡
𝜔  𝑙  𝑐𝑢𝑚               (44) 

Induction step: Now, we show that if the induction hypothesis is valid for 𝑡, then it is also valid 

for 𝑡 − 1. For this purpose, we apply the following transformations: 

1. From Equation (39), the following relationship can be derived to start with: 𝑉𝑡−1
𝜔 (𝑠𝑡−1) =

𝑉𝑡
𝜔(𝑠𝑡) + 𝑟𝑡

𝜔  + + 𝑟𝑡
𝜔  −. 

2. We substitute the induction hypothesis (44). 

3. We substitute Equation (42). 

4. We substitute Equation (40). 

5. Since 𝑟𝜙𝑡(𝑔𝑡)
𝜔 = 𝑟𝑡

𝜔  − for 𝑐𝑡 that is observed in sample path 𝜔, we can rearrange the terms 

and eliminate 𝑟𝑡
𝜔  + and 𝑟𝑡

𝜔  −. 

𝑉𝑡−1
𝜔 (𝑠𝑡−1) =

1.
𝑉𝑡
𝜔(𝑠𝑡) + 𝑟𝑡

𝜔  + + 𝑟𝑡
𝜔  −              (45) 

=
2.
𝑉̃𝑡
𝜔(𝑠𝑡) − 𝑟𝑡

𝜔  𝑙  𝑐𝑢𝑚 + 𝑟𝑡
𝜔  + + 𝑟𝑡

𝜔  −              (46) 

=
3.
𝑉̃𝑡
𝜔(𝑠𝑡) − (𝑟𝑡−1

𝜔  𝑙  𝑐𝑢𝑚 + 𝑟𝜙𝑡(𝑔𝑡)
𝜔 ) + 𝑟𝑡

𝜔  + + 𝑟𝑡
𝜔  −            (47) 

=
4.
(𝑉̃𝑡−1

𝜔 (𝑠𝑡−1) − 𝑟𝑡
𝜔  +) − (𝑟𝑡−1

𝜔  𝑙  𝑐𝑢𝑚 + 𝑟𝜙𝑡(𝑔𝑡)
𝜔 ) + 𝑟𝑡

𝜔  + + 𝑟𝑡
𝜔  −          (48) 

=
5.
𝑉̃𝑡−1
𝜔 (𝑠𝑡−1) − 𝑟𝑡−1

𝜔  𝑙  𝑐𝑢𝑚.              (49) 

We have shown that, if the induction hypothesis holds for 𝑡, it also holds for 𝑡 − 1, and thus, also 

for 𝑡 = 0, i.e., 𝑉0
𝜔(𝑠0) = 𝑉̃0

𝜔(𝑠0) − 𝑟0
𝜔  𝑙  𝑐𝑢𝑚. Further, it holds by definition that 𝑟0

𝜔  𝑙  𝑐𝑢𝑚 =

𝑟0
𝜔  − = 0. Consequently, 𝑉0

𝜔(𝑠0) = 𝑉̃0
𝜔(𝑠0) holds for any sample paths 𝜔, and we conclude that 

the original and the modified model are equivalent.      ∎ 

Appendix E: Model Generalization to Multiple Fulfillment Options 

As explained in Section 4.5, the analytical considerations for the single-option model can be read-

ily generalized to models with multiple fulfillment options. In the following, to provide further 

details on this generalization, we demonstrate it on a formal level. To this end, we first show how 

the generic MDP model can be adapted to the multi-option case. Second, we present the general-

ized Bellman equation and derive the generalized definitions of OC, DPC, and MCTS. 
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Action – We define a set 𝑂(𝑠𝑡−1, 𝑐) of feasible fulfillment options 𝑜 ∈ 𝑂(𝑠𝑡−1, 𝑐) that can poten-

tially be offered to a requesting customer of type 𝑐 starting in state 𝑠𝑡−1 and includes the no-

purchase option 𝑜 = 0. Hence, in the multi-option model, a demand control decision is equivalent 

to selecting a subset of feasible fulfillment options 𝑔𝑡 ⊆ 𝑂(𝑠𝑡−1, 𝑐). The corresponding action 

space 𝒢(𝑠𝑡−1, 𝑐) = 2
𝑂(𝑠𝑡−1,𝑐) at a decision epoch 𝑡 starting in state 𝑠𝑡−1 with an arriving customer 

request of type 𝑐 equals the power set of all feasible fulfillment options. The tour planning deci-

sion (𝜙𝑡(𝑜))𝑜∈𝑂(𝑠𝑡−1,𝑐)
 comprises a potential tour plan for each feasible fulfillment option with 

the respective action spaces given by Φ(𝑠𝑡−1, 𝑐, 𝑜) for all 𝑜 ∈ 𝑂(𝑠𝑡−1, 𝑐). 

Transition – Following the selection of an offer set 𝑔𝑡  by the provider, there is an additional 

stochastic transition because the customer chooses a fulfillment option according to choice prob-

abilities 𝑃𝑜(𝑔𝑡). If the customer chooses a fulfillment option 𝑜𝑡
′ ≠ 0, an order is confirmed and 

the tour plan is set to 𝜙𝑡(𝑜𝑡
′). Overall, the transitions can be summarized as follows: 

𝜙𝑡 = 𝜙𝑡(𝑜𝑡
′)                 (50) 

𝒞𝑡 = {
𝒞𝑡−1 ∖ Ψ(𝜙𝑡),                 if there is no customer request arrival or if 𝑜𝑡

′ = 0 
(𝒞𝑡−1 ∪ {𝑐𝑡}) ∖ Ψ(𝜙𝑡), if 𝑜𝑡

′ ≠ 0                                                                           
.        (51) 

Rewards – If a customer of type 𝑐 chooses a fulfillment option 𝑜 ∈ 𝑔𝑡 , the provider receives the 

demand-control-related reward 𝑟𝑐𝑜. The logistics-related reward is denoted as 𝑟𝜙𝑡(𝑜). 

Based on the above-described extensions to the MDP model, we now generalize the Bellman 

equation (5) to the multi-option case: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

  

(∑ 𝑃𝑜(𝑔𝑡) ⋅ [𝑟𝑐𝑜 + max
𝜙𝑡(𝑜)∈Φ(𝑠𝑡−1,𝑐,𝑜)

(𝑟𝜙𝑡(𝑜) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(𝑜) ))]𝑜∈𝑔𝑡 )  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0)

(𝑟𝜙𝑡(0) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(0) ))          (52) 

with boundary condition: 

𝑉𝑇(𝑠𝑇) = 0.                (53) 

Drawing on the interim state 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 𝑜, we obtain the multi-option variant of Bellman equa-

tion (8): 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑜(𝑔𝑡)𝑜∈𝑔𝑡 ⋅ [𝑟𝑐𝑜 + 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1, 𝑐, 𝑜 )])  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1 , 0 ).              (54) 

Next, we define opportunity cost, which is now specific to fulfillment options 𝑜 ∈ 𝑂(𝑠𝑡−1, 𝑐):  

Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜) = 𝑉𝑡
′(𝑠𝑡

′(0)) − 𝑉𝑡
′(𝑠𝑡

′(𝑜)),             (55) 

with interim state 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 𝑜 denoted as 𝑠𝑡

′(𝑜) and interim state 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 0 denoted as 𝑠𝑡

′(0). 

Making use of the multi-option definition of opportunity cost, we formulate the multi-option 

equivalent of Bellman equation (10): 
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𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑜(𝑔𝑡)𝑜∈𝑔𝑡 ⋅ [𝑟𝑐𝑜 − Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜)]) + 𝑉𝑡
′(𝑠𝑡

′(0)).       (56) 

Analogously to the single-option case (Equation (11) and Equation (13)), we can now define the 

expected future revenue 𝑅𝑡−1
′ (𝑠𝑡−1

′ ) and the expected future fulfillment cost 𝐹𝑡−1
′ (𝑠𝑡−1

′ ) of a given 

interim state 𝑠𝑡−1
′  at decision epoch 𝑡 − 1: 

𝑅𝑡−1
′ (𝑠𝑡−1

′ ) = ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ⋅ (∑ 𝑃𝑜(𝑔𝑡
∗)𝑜∈𝑔𝑡

∗ ⋅ [𝑟𝑐𝑜 + 𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑜𝑡−1
′ ), 𝑜 )])  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝑅𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑜𝑡−1
′ ), 0 ),            (57) 

with boundary condition 

𝑅𝑇
′ (𝑠𝑇

′ ) = 0,                (58) 

and 𝑜𝑡−1
′  denoting the fulfillment option chosen by the customer arriving at decision epoch 𝑡 − 1. 

𝐹𝑡−1
′ (𝑠𝑡−1

′ ) = 𝑟𝜙𝑡−1∗ (𝑜𝑡−1
′ ) +∑ 𝜆𝑐

𝑡
𝑐∈𝐶 ⋅ ∑ 𝑃𝑜(𝑔𝑡

∗)𝑜∈𝑔𝑡
∗ ⋅ (𝐹𝑡

′( 𝑠𝑡
′ ∣∣ 𝑠𝑡−1

′ , 𝜙𝑡−1
∗ (𝑜𝑡−1

′ ), 𝑜 ))  

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ 𝐹𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1
′ , 𝜙𝑡−1

∗ (𝑜𝑡−1
′ ), 0 ),             (59) 

with boundary condition: 

𝐹𝑇
′ (𝑠𝑇

′ ) = 𝑟𝜙𝑇∗ (𝑜𝑇′ ).               (60) 

Finally, we formulate the formal definition of DPC and MCTS for the multi-option case: 

Δ𝑅𝑡(𝑠𝑡−1, 𝑐, 𝑜) = 𝑅𝑡
′(𝑠𝑡

′(0)) − 𝑅𝑡
′(𝑠𝑡

′(𝑜)).            (61) 

Δ𝐹𝑡(𝑠𝑡−1, 𝑐, 𝑜) = 𝐹𝑡
′(𝑠𝑡

′(0)) − 𝐹𝑡
′(𝑠𝑡

′(𝑜)).             (62) 
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Appendix F: Further Numerical Results: p-Values 

Table 4 p-Values of one-tailed paired t-tests on average objective values resulting from applying the different approx-
imations for physical capacity-constrained settings I/II 

  𝐻0: 

Settings Profit. DPC ≤ 

MCTS 

MCTS ≤ 

DPC 

DPC ≤ 

HR 

HR ≤ 

DPC 

MCTS ≤ 

HR 

HR ≤ 

MCTS 

(unif, homog) low 1 4.900e-21 1 4.638e-18 1.015e-06 0.999 

(clust, homog) low 1 2.425e-22 1 6.147e-24 0.013 0.986 

(unif, rand) low 1 5.916e-18 0.999 1.544e-12 0.001 0.998 

(clust, rand) low 1 1.065e-22 0.999 5.734e-13 2.790e-12 0.999 

(clust_sort, rand) low 0.999 0.0002 0.991 0.008 0.008 0.991 

(unif, l-b-h) low 0.999 1.983e-16 0.999 1.979e-12 0.003 0.996 

(clust, l-b-h) low 1 1.259e-23 0.999 5.744e-15 7.575e-11 0.999 

(clust_sort, l-b-h) low 0.999 1.131e-14 1 1.031e-17 0.007 0.992 

(unif, h-b-l) low 0.999 2.156e-15 0.999 5.399e-09 1.466e-05 0.999 

(clust, h-b-l) low 1 1.275e-19 0.999 1.990e-06 6.276e-12 0.999 

(clust_sort, h-b-l) low 7.722e-13 0.999 2.352e-13 0.999 0.164 0.835 

(unif, homog) high 1 1 1 4.103e-20 1 4.103e-20 

(clust, homog) high 1 1 1 8.007e-23 1 8.007e-23 

(unif, rand) high 4.389e-16 0.999 0.999 3.061e-11 1 5.227e-20 

(clust, rand) high 7.178e-17 0.999 0.999 6.156e-10 1 3.768e-21 

(clust_sort, rand) high 5.553e-21 1 0.999 0.0003 1 1.596e-26 

(unif, l-b-h) high 5.246e-32 1 0.999 3.058e-15 1 2.971e-32 

(clust, l-b-h) high 4.779e-43 1 0.999 1.035e-12 1 7.622e-38 

(clust_sort, l-b-h) high 4.655e-34 1 0.993 0.006 1 8.183e-42 

(unif, h-b-l) high 1 1 0.999 1.155e-11 0.999 1.155e-11 

(clust, h-b-l) high 1 1 1 2.154e-17 1 2.154e-17 

(clust_sort, h-b-l) high 1 1 0.999 9.676e-08 0.999 9.676e-08 
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Table 5 p-Values of one-tailed paired t-tests on average objective values resulting from applying the different approx-
imations for physical capacity-constrained settings II/II 

  𝐻0: 

Settings Profit. DPC ≤ 

OO_MCTS 

OO_MCTS 

≤ DPC 

MCTS ≤ 

OO_MCTS 

OO_MCTS 

≤ MCTS 

OO_DPC ≤ 

OO_MCTS 

OO_MCTS 

≤ OO_DPC 

(unif, homog) low 1 4.256e-20 0.004 0.995 1 6.710e-19 

(clust, homog) low 1 1.252e-23 0.982 0.017 0.999 4.664e-09 

(unif, rand) low 1 3.181e-20 0.798 0.201 1 2.579e-17 

(clust, rand) low 1 6.821e-24 0.001 0.998 1 3.191e-20 

(clust_sort, rand) low 0.999 3.430e-13 0.999 6.480e-09 0.999 7.588e-17 

(unif, l-b-h) low 1 1.109e-19 0.825 0.174 0.999 2.659e-15 

(clust, l-b-h) low 1 1.734e-21 9.905e-05 0.999 1 2.847e-17 

(clust_sort, l-b-h) low 1 2.887e-38 0.999 1.198e-08 1 1.223e-27 

(unif, h-b-l) low 1 2.124e-17 0.721 0.278 1 1.660e-22 

(clust, h-b-l) low 1 6.043e-26 0.984 0.015 1 4.951e-20 

(clust_sort, h-b-l) low 1 5.997e-20 1 2.012e-23 1 1.917e-30 

(unif, homog) high 1 7.345e-21 1 7.345e-21 1 4.879e-21 

(clust, homog) high 1 2.108e-21 1 2.108e-21 1 2.033e-21 

(unif, rand) high 0.999 3.896e-07 1 9.953e-18 0.999 1.356e-05 

(clust, rand) high 0.999 8.823e-06 1 2.490e-17 0.999 1.911e-07 

(clust_sort, rand) high 0.999 0.0002 1 1.305e-22 0.999 7.760e-05 

(unif, l-b-h) high 0.999 7.929e-17 1 9.466e-31 0.999 5.259e-12 

(clust, l-b-h) high 0.999 5.546e-17 1 1.989e-40 0.999 2.440e-16 

(clust_sort, l-b-h) high 0.825 0.174 1 2.028e-33 0.864 0.135 

(unif, h-b-l) high 0.999 1.385e-11 0.999 1.385e-11 0.999 2.582e-18 

(clust, h-b-l) high 1 2.027e-18 1 2.027e-18 1 2.582e-18 

(clust_sort, h-b-l) high 0.639 0.3602 0.639 0.360 0.219 0.780 
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Table 6 p-Values of one-tailed paired t-tests on average objective values resulting from applying the different approx-
imations for route length-constrained settings I/II 

  𝐻0: 

Settings Profit. DPC ≤ 

MCTS 

MCTS ≤ 

DPC 

DPC ≤ 

HR 

HR ≤ 

DPC 

MCTS ≤ 

HR 

HR ≤ 

MCTS 

(unif, homog) low 0.239 0.760 0.106 0.893 0.001 0.998 

(clust, homog) low 2.122e-08 0.999 4.345e-11 0.999 0.012 0.987 

(unif, rand) low 0.006 0.993 0.001 0.998 0.005 0.994 

(clust, rand) low 0.939 0.060 0.028 0.971 0.0001 0.999 

(clust_sort, rand) low 3.886e-18 1 6.508e-24 1 0.029 0.970 

(unif, l-b-h) low 1.324e-05 0.999 1.645e-05 0.999 0.680 0.319 

(clust, l-b-h) low 0.835 0.164 0.230 0.769 0.014 0.985 

(clust_sort, l-b-h) low 5.786e-18 1 1.127e-36 1 0.007 0.992 

(unif, h-b-l) low 0.0003 0.999 2.121e-05 0.999 0.001 0.998 

(clust, h-b-l) low 0.015 0.984 8.219e-11 0.999 1.690e-09 0.999 

(clust_sort, h-b-l) low 5.137e-24 1 5.140e-21 1 0.985 0.014 

(unif, homog) high 0.001 0.998 0.999 0.0001 0.999 0.0003 

(clust, homog) high 0.007 0.992 0.999 5.989e-06 0.999 2.772e-05 

(unif, rand) high 0.0003 0.999 0.995 0.004 0.999 0.0002 

(clust, rand) high 9.636e-07 0.999 0.999 0.0001 0.999 6.101e-08 

(clust_sort, rand) high 5.166e-09 0.999 0.998 0.001 0.999 2.256e-09 

(unif, l-b-h) high 2.742e-06 0.999 0.999 0.0001 0.999 2.050e-06 

(clust, l-b-h) high 4.377e-05 0.999 0.999 0.0001 0.999 4.564e-06 

(clust_sort, l-b-h) high 1.658e-56 1 1 1 1 1.658e-56 

(unif, h-b-l) high 0.005 0.994 0.999 0.0008 0.996 0.003 

(clust, h-b-l) high 0.002 0.997 0.999 2.464e-05 0.999 0.0001 

(clust_sort, h-b-l) high 1.091e-48 1 0.919 0.080 1 2.825e-49 
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Table 7 p-Values of one-tailed paired t-tests on average objective values resulting from applying the different approx-
imations for route length-constrained settings II/II 

  𝐻0: 

Settings Profit. DPC ≤ 

OO_MCTS 

OO_MCTS 

≤ DPC 

MCTS ≤ 

OO_MCTS 

OO_MCTS 

≤ MCTS 

OO_DPC ≤ 

OO_MCTS 

OO_MCTS 

≤ OO_DPC 

(unif, homog) low 0.114 0.885 0.259 0.740 0.999 8.009e-07 

(clust, homog) low 0.997 0.002 0.999 1.018e-10 1 1.287e-18 

(unif, rand) low 0.001 0.998 0.552 0.447 0.998 0.001 

(clust, rand) low 0.880 0.119 0.272 0.727 0.999 0.0001 

(clust_sort, rand) low 0.024 0.975 0.999 5.385e-14 0.999 2.894e-10 

(unif, l-b-h) low 0.0001 0.999 0.976 0.023 0.999 3.055e-06 

(clust, l-b-h) low 0.969 0.030 0.571 0.428 0.999 2.334e-05 

(clust_sort, l-b-h) low 0.999 2.645e-05 1 9.137e-19 1 1.491e-19 

(unif, h-b-l) low 0.022 0.977 0.998 0.001 0.976 0.023 

(clust, h-b-l) low 0.933 0.066 0.999 0.0004 0.999 2.029e-08 

(clust_sort, h-b-l) low 0.998 0.001 1 1.394e-25 1 2.352e-22 

(unif, homog) high 0.001 0.998 1 1 0.0005 0.999 

(clust, homog) high 0.005 0.994 0.161 0.838 0.0007 0.999 

(unif, rand) high 0.0003 0.999 1 1 0.0002 0.999 

(clust, rand) high 1.702e-05 0.999 0.356 0.643 1.449e-05 0.999 

(clust_sort, rand) high 7.159e-14 0.999 0.0001 0.999 6.552e-14 0.999 

(unif, l-b-h) high 2.064e-06 0.999 0.100 0.899 1.889e-06 0.999 

(clust, l-b-h) high 2.104e-05 0.999 0.7381 0.261 2.003e-05 0.999 

(clust_sort, l-b-h) high 0.0993 0.900 1 9.713e-56 0.099 0.900 

(unif, h-b-l) high 0.005 0.994 1 1 0.003 0.996 

(clust, h-b-l) high 0.002 0.997 1 1 0.001 0.998 

(clust_sort, h-b-l) high 0.999 0.0007 1 4.116e-39 0.998 0.001 
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Abstract 

The widespread adoption of digital distribution channels both enables and forces more and more 

logistical service providers to manage booking processes actively to maintain competitiveness. 

As a result, their operational planning is no longer limited to solving vehicle routing problems. 

Instead, demand management decisions and vehicle routing decisions are optimized integratively 

with the aim of maximizing revenue and minimizing fulfillment cost. The resulting integrated 

demand management and vehicle routing problems (i-DMVRPs) can be formulated as Markov 

decision process models and, theoretically, can be solved via the well-known Bellman equation. 

Unfortunately, the Bellman equation is intractable for realistic-sized instances. Thus, in the liter-

ature, i-DMVRPs are often addressed via decomposition-based solution approaches involving an 

opportunity cost approximation as a key component. Despite its importance, to the best of our 

knowledge, there is neither a technique to systematically analyze how the accuracy of the oppor-

tunity cost approximation translates into overall solution quality nor are there general guidelines 

on when to apply which class of approximation approach. 

In this work, we address this research gap by proposing an explainability technique that quantifies 

and visualizes the magnitude of approximation errors, their immediate impact, and their relevance 

in specific regions of the state space. Exploiting reward decomposition, it further yields a charac-

terization of different types of approximation errors. Applying the technique to a generic i-

DMVRP in a full-factorial computational study and comparing the results with observations in 

existing literature, we show that the technique contributes to better explaining algorithmic perfor-

mance and provides guidance for the algorithm selection and development process. 

Key words: Explainability, Demand Management, Opportunity Cost 
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1 Introduction 

The proliferation of e-commerce and the progress of communication technology has led to the 

emergence and establishment of new business models that allow customers to book on-demand 

logistical services, mostly the delivery of goods (Waßmuth et al., 2023) or local transportation 

(Vansteenwegen et al., 2022). Prominent examples of these services are attended home delivery 

(AHD), same-day delivery (SDD), or mobility-on-demand (MOD). These business models have 

in common that customers expect a very high service level, e.g., in terms of the deviation from 

their desired service time (Amorim et al., 2024). Meeting these expectations makes demand con-

solidation challenging, which entails high fulfillment cost (Ulmer, 2020). To still operate profita-

bly, operational planning for these business models has evolved: Instead of optimizing the asso-

ciated vehicle routing alone, providers additionally apply demand management to achieve 

efficient fulfillment operations. 

The resulting integrated demand management and vehicle routing problems (i-DMVRPs) are sto-

chastic and dynamic with two types of integrated decisions: For each dynamically arriving cus-

tomer request, the provider integratively makes a demand control decision and a vehicle routing 

decision with the overall objective of maximizing the expected profit, i.e., revenue net of opera-

tional fulfillment cost. Such an i-DMVRP can be modeled as a Markov decision process (MDP) 

and, theoretically, be solved by evaluating the well-known Bellman equation (Puterman, 2014). 

Practically, however, i-DMVRPs suffer from the curses of dimensionality (Powell, 2011) such 

that this is not tractable for realistic-sized instances. Consequently, in literature, demand control 

decisions for i-DMVRPs are often optimized with a decomposition-based solution approach. 

More precisely, two subproblems are solved sequentially for every incoming customer request 

(Fleckenstein et al., 2023, Ulmer, 2020, Gallego and Topaloglu, 2019, p. 25, Klein et al., 2018):  

1.) Approximating opportunity cost (OC) for each potential fulfillment option (e.g., different time 

windows) to measure the expected profit impact assuming the current customer chooses the 

respective option, given the state of the system.  

2.) Solving the actual demand control problem based on the approximated OC, i.e., deciding on 

the pricing or availability of fulfillment options, or the acceptance/rejection of the request. 

This leads to the following conclusion: One of the main avenues for accelerating the development 

of practical solution approaches for i-DMVRPs is understanding and explaining the relation be-

tween the accuracy reached in (1), i.e., the accuracy of the OC approximation, and the quality of 

(2), i.e., the quality of the resulting demand control decision. However, despite the maturity of 

integrated demand management and vehicle routing as a research area, this relation has not been 

systematically explored, and therefore, largely remains a black box so far. Hence, we now close 

this research gap by comprehensively analyzing this relationship. To do so, we first introduce a 

novel explainability technique for i-DMVRPs that combines two building blocks:  
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• B1: Chain of influencing factors – The first building block resembles a typical post-hoc ex-

plainability technique (Arrieta et al., 2020), i.e., we define metrics to evaluate the behavior of 

a given policy in certain states and the respective impact on solution quality. Thereby, we aim 

at answering the central questions that arise along the chain of influencing factors from OC 

approximation error to objective value loss as depicted in Fig. 1. This allows deriving insights 

on when (in which states) and why a certain policy performs especially good or bad. 

• B2: Reward decomposition – The second building block incorporates the idea of reward de-

composition (Juozapaitis et al., 2019). For that, we exploit the finding that opportunity cost 

can be decomposed into displacement cost (DPC) and marginal cost-to-serve (MCTS) (Fleck-

enstein et al., 2024). More precisely, we propose to apply OC approximations capturing only 

one of the two components, with the aim of assessing the importance of the respective com-

ponent for approximation accuracy. 

Afterward, in an extensive computational study, we apply the explainability technique to the ge-

neric i-DMVRP and the stylized parameter settings from Fleckenstein et al. (2024). Then, we 

complement the numerical results by an analysis of the existing literature on i-DMVRPs. There-

with, we confirm the validity of our findings and show that our identified OC approximation error 

types can indeed explain the observed performance of state-of-the-art solution approaches. In 

summary, our work has four contributions:  

1.) To the best of our knowledge, we introduce the first explainability technique for the widely 

established decomposition-based solution approaches for i-DMVRPs.  

2.) We apply our explainability technique within a comprehensive computational study and iden-

tify fundamental OC approximation error types, i.e., OC approximation errors that can occur 

in a broad variety of real-world i-DMVRPs. Therewith, we are the first to systematically an-

alyze the relation between the accuracy of OC approximation and the objective value.  

3.) We classify patterns in the occurrence of the fundamental approximation error types we iden-

tify, characterize which problem settings are prone to which error type, and propose algorith-

mic elements to successfully mitigate them. This yields insights that guide the selection and 

the design of OC approximation algorithms. 

4.) We compile indications for the occurrence of the identified error types from existing literature 

and show that our findings improve explainability of the reported results. Thereby, we trans-

form the existing implicit knowledge about specific i-DMVRPs to explicit, high-level 

knowledge. 

The remainder of this paper is structured as follows: In Section 2, we review the related literature 

both on algorithmic explainability and i-DMVRPs. In Section 3, we introduce and model the 

generic i-DMVRP under consideration. Then, in Section 4, we present our novel explainability 

technique for i-DMVRPs in detail, and we present our computational study in Section 5. In Sec-

tion 6, we derive general insights for algorithm design and summarize our work in Section 7. 
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Fig. 1 Chain of influencing factors from OC approximation error to objective value loss 

2 Literature Review 

Due to the cross-cutting nature of our study, the related literature spans across multiple distinct 

research areas. In Section 2.1, we review the literature on i-DMVRPs with a special focus on its 

origins in revenue management, dynamic pricing, and dynamic vehicle routing. In Section 2.2, 

we then discuss algorithmic explainability techniques, particularly from explainable reinforce-

ment learning (RL), highlighting the techniques that we adapt and apply in the work at hand. 

Finally, in Section 2.3, we review the descriptive analytics that authors use to explain the observed 

performance of their i-DMVRP solution approaches. 

2.1 Modeling and Solving i-DMVRPs 

In logistics, many companies dynamically collect orders for a transportation service that is 

fulfilled by a given fleet of vehicles. These companies face an i-DMVRP if they can both plan 

individual offers made in response to customer requests and plan the vehicle routes to feasibly 

fulfill the resulting orders. Hence, i-DMVRP research synthesizes two originally distinct research 

areas: 

1.) Research in revenue management and dynamic pricing addresses the dynamic optimization 

of offering decisions under the assumption that fulfillment is already pre-planned. For an ex-

tensive overview of this field, we refer the reader to the textbooks by Gallego and Topaloglu 

(2019) and Talluri and Van Ryzin (2004) as well as the reviews by Klein et al. (2020) and 

Strauss et al. (2018).  

2.) Dynamic vehicle routing investigates the optimization of fulfillment assuming given orders 

that arrive dynamically. For a deeper discussion of this research area, we refer the reader to 

the textbook by Toth and Vigo (2014) as well as the reviews by Hildebrandt et al. (2023), 

Soeffker et al. (2022), and Psaraftis et al. (2016). 

Starting with the seminal work of Campbell and Savelsbergh (2005) on an AHD system, i-

DMVRPs are considered in a variety of applications such as SDD (Azi et al., 2012), MOD (Ata-

soy et al., 2015), or mobile personnel booking (Avraham and Raviv, 2021). Indicative of the 
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growing importance of this research area, there are several reviews that are either application-

specific (Li et al., 2024, Waßmuth et al., 2023, and Snoeck et al., 2020), or aim at i-DMVRP 

literature in general (Fleckenstein et al., 2023). 

Since i-DMVRPs are dynamic and stochastic, the natural modeling approach is to formulate a 

Markov decision process (MDP) model (Puterman, 2014). It is important to note that MDP mod-

els not only serve as a formal problem definition. On top of that, model analysis, which can be 

done analytically or numerically (Bravo and Shaposhnik, 2020), yields domain knowledge that 

can be exploited by solution approaches. For i-DMVRPs, such model analyses can be found in 

Fleckenstein et al. (2024), Lebedev et al. (2021), and Asdemir et al. (2009). In particular, we draw 

on the property that OC can be decomposed into MCTS and DPC (Fleckenstein et al., 2024). The 

three works have in common that they mainly analyze models analytically. In contrast, our tech-

nique focuses on the numerical analysis of solution approaches. It also yields domain knowledge 

regarding a combination of a solution approach and a model of a specific i-DMVRP. 

Although i-DMVRPs can be solved to optimality by exact dynamic programming algorithms, this 

is impractical for realistic-sized instances. Hence, there exists a wide variety of heuristic solution 

approaches for specific i-DMVRPs. According to Fleckenstein et al. (2023), they can be classified 

into two broad solution concepts: First, there are static deterministic approaches that solve auxil-

iary models with a rolling-horizon to iteratively derive demand management and vehicle routing 

decisions (e.g., Klapp et al., 2020). Second, there are decomposition- based solution approaches 

that subdivide the demand management task into two sub-problems as already mentioned: OC 

approximation and demand management decision-making. 

In this work, we only consider the decomposition-based solution approaches, which are adopted 

by the majority of authors (Fleckenstein et al., 2023). The applied OC approximation approaches 

can be sub-divided further into sampling-based (e.g., Klein and Steinhardt, 2023) and learning-

based (e.g., Ulmer, 2020) and are either targeted at approximating MCTS, DPC, or both (Fleck-

enstein et al., 2024). To evaluate the performance of these approximation approaches, authors of 

existing works resort to descriptive analyses. With our work, we aim at explaining the reasons for 

the observed results by investigating the impact of OC approximation errors. 

2.2 Explainability of Algorithmic Performance and Behavior 

Explainability becomes increasingly relevant in analytics and optimization in general (see, e.g., 

the recent reviews by De Bock et al. (2024) and Goerigk and Hartisch (2023)). In particular, the 

field of explainable RL (XRL) has recently gained more attention (Milani et al., 2024). Due to the 

close relation between RL and the OC approximation approaches observed in i-DMVPR litera-

ture, the techniques developed for XRL are also applicable to most approaches tackling i-

DMVRPs. 
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Milani et al. (2024) introduce a two-dimensional taxonomy of explainability techniques tailored 

to XRL. The first classification dimension proposed by the authors is borrowed from general ex-

plainable artificial intelligence:  

1.) Explainability can be inherent to a policy or restored post-hoc.  

2.) We can further distinguish local explanations that refer to individual states, and global expla-

nations that holistically view the behavior of the policy.  

3.) Among the post-hoc techniques, a distinction can be made regarding the degree of portability, 

i.e., the range of solution approaches the technique can be readily applied to. 

Regarding this classification dimension, our explainability technique is a post-hoc explanation 

since it is applied to a given (decomposition-based) policy. As discussed in Section 2.1, this type 

of policy is quite common, which makes our technique portable. Further, it features local (state-

level) metrics but also involves global considerations since these local metrics are aggregated to 

explain the global behavior of the policy. 

The second classification dimension specifically addresses XRL approaches and distinguishes 

explainability techniques based on the type of explanations they incorporate as follows: 

1.) Feature importance explanations: explaining individual actions by providing their context, 

e.g., state features. Typical approaches are, e.g., surrogate policies encoded as decision trees 

or saliency map explanations.  

2.) Learning process and MDP explanations: exploiting the definition of MDP model elements 

or training process steps to generate explanations. The aim is to identify critical drivers of the 

policy’s individual decisions.  

3.) Policy-level explanations: identifying recurring sequences of decisions (e.g., by clustering 

states) to extract patterns of the policy’s overall control behavior. 

Regarding this second classification dimension, our technique can be viewed as a combination of 

policy level explanations (in B1) and learning process and MDP explanations (in B2). In the 

following, we briefly review the closest related literature for B1 and B2 separately. 

B1 of our explainability technique is closely related to a technique called strategy summarization 

by Amir et al. (2019). They suggest identifying states of interest on the basis of importance, cov-

erage, likelihood of encountering, and policy disagreement with the aim of aggregating these 

states to summarize the behavior of the policy. Applied to i-DMVRPs, measuring the OC approx-

imation error itself can be considered equal to measuring policy disagreement with the optimal 

policy. To quantify state importance, we measure the impact of an approximation error in a certain 

state on the quality of the resulting decision. This can also be viewed as a special case of the state 

importance metric used by Torrey and Taylor (2013). Further, like Amir et al. (2019), we consider 

the likelihood of encountering a state. 

B2 of our explainability technique is a reward decomposition technique. It is first proposed by 

Russell and Zimdars (2003) with the aim of facilitating the learning process. With the same goal, 
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it is also applied by Van Seijen et al. (2017) in the form of a hybrid reward architecture. However, 

as shown by Juozapaitis et al. (2019), reward decomposition can not only be applied for designing 

hybrid reward architectures but also as an explainability technique. Therefore, they analyze the 

influence of the different reward components for explaining the behavior of a given policy. In 

contrast, we analyze approximation errors that result from considering only one reward compo-

nent for explaining the behavior of a given policy. This idea of analyzing approximation errors in 

RL is first presented by Mannor et al. (2007) with the aim of computing confidence intervals. 

Regarding the application of our explainability technique, a distinguishing feature compared to 

most existing works in XRL is that we consider a large number of small problem instances and 

solve them to optimality. Thereby we derive generic domain knowledge, in the form of funda-

mental OC approximation error types, rather than analyzing heuristic policies for large instances. 

In this regard, we only found one similar approach by Bravo and Shaposhnik (2020). They use 

machine learning to analyze optimal policies for small problem instances of, amongst others, tra-

ditional revenue management problems. 

In summary, our methodology combines a variety of existing RL explainability techniques in a 

novel way: Besides adapting them to the problem structure of i-DMVRPs, we introduce the new 

idea of combining strategy summarization and reward decomposition and applying both to derive 

characterizations of fundamental OC approximation errors. 

2.3 Performance Metrics in i-DMVRP Literature 

In contrast to “pure” revenue management and dynamic pricing, where explainability has already 

received some attention (e.g., Biggs et al., 2021, Bravo and Shaposhnik, 2020), we find no sys-

tematic application of techniques from XRL in the literature on i-DMVRPs. Instead, most authors 

evaluate the performance of their solution approaches by incorporating descriptive analytics, as 

we summarize in the following. 

Aggregate metrics – Apart from the arithmetic mean of profit, which is the objective in most of 

the considered i-DMVRPs, many authors additionally report the following aggregate metrics de-

scribing the performance of policies: Among the most widely reported metrics are average or 

overall revenue, cost, and number of orders (Campbell and Savelsbergh, 2005). Further, some 

authors also report revenue per order (Klein et al., 2018), cost per order (Yang et al., 2016), av-

erage number of fulfillment options offered to each customer (Mackert, 2019), pooling rate (An-

zenhofer et al., 2024), or fleet utilization (Klein and Steinhardt, 2023). In addition to the arithmetic 

mean, the standard deviation (Yang et al., 2016) or the coefficient of variation (Anzenhofer et al., 

2024) are reported in a few studies. 

Decision-making – For a more detailed analysis of a policies’ performance, authors analyze how 

the resulting decision-making differs over time, i.e., over the course of the booking horizon, or 
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for different types of requests: For any i-DMVRP, the acceptance rate or conversion rate 

(Mackert, 2019) or the cumulative revenue over time (Lang et al., 2021) can be reported. 

If customers can choose from a set of fulfillment options, the number (Abdollahi et al., 2023) or 

composition of offered fulfillment options (Klein and Steinhardt, 2023), or the chosen fulfillment 

options (Anzenhofer et al., 2024) can be analyzed. If dynamic pricing is applied, average prices 

of offered (Klein et al., 2018) or chosen fulfillment options (Yang et al., 2016) are reported. 

Opportunity cost – If a parametric OC approximation is used, its parameter values (Lang et al., 

2021) or the function values for certain parameter values (Avraham and Raviv, 2021) can be 

investigated. Only very rarely, authors directly consider approximated OC values for different 

groups of similar requests (Yang and Strauss, 2017) or over time (Koch and Klein, 2020). 

In general, we identify three central problems that limit the explanatory power of the existing 

descriptive analyses: First, observations of the performance and the behavior of a policy do not 

provide direct evidence of whether or how exactly an OC approximation error influences the ob-

served performance. Due to a lack of conclusive explanations, the reasoning is often limited to 

formulating hypotheses. Second, the metrics are only analyzed in an aggregate form, which does 

not allow distinguishing different types of errors that originate in certain regions of the state space. 

Third, since typically, a specific solution approach for a specific i-DMVRP is considered, the 

results are hardly attributable to certain characteristics of the problem structure, the instance struc-

ture, or the solution approach. This again limits conclusiveness and transferability. 

Overall, there is a clear research gap regarding the development of explainability techniques for 

i-DMVRPs and the formulation of generalizable explanations for policy performance. 

3 Problem Definition and Modeling 

In this section, we formally characterize i-DMVRPs with a particular focus on the generic MDP 

model for i-DMVRPs by Fleckenstein et al. (2024). 

Typically, an i-DMVRP is structured as follows: During a booking horizon, customers log-in to 

the business platform and place a service request by entering service parameters like pick-

up/drop-off locations, desired fulfillment times, or vehicle types. In response, the provider either 

presents a set of suitable fulfillment options with different prices to choose from or accepts/rejects 

the request. Then, a successfully placed customer request turns into a confirmed customer order. 

All customer orders are eventually served by the provider within the service horizon, which can 

either be disjoint or overlapping with the booking horizon. The former is typical for AHD, where 

customer and provider agree on a delivery time window for a certain day in advance. The latter 

is typical for SDD or MOD, where the customer expects to receive a service on short notice. 

In the following, we consider the generic i-DMVRP model as in Fleckenstein et al. (2024) but 

adapt it specifically for the case of disjoint booking horizons and service horizons. Further, the 
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underlying demand control subproblem features an accept/reject demand control. However, the 

generalization to multi-option demand control is straightforward (see Fleckenstein et al., 2024). 

 

Fig. 2 Overview of the MDP model of the i-DMVRP booking and fulfillment process including the interim state (Fleck-
enstein et al., 2024) 

Decision epoch – A decision epoch marks the start of the MDP model’s stages. In the considered 

problem, such stages correspond to (constant) time steps 𝑡 = 1, . . . , 𝑇. A customer request of type 

𝑐 ∈ 𝐶 can arrive in stage 𝑡 with a certain arrival rate 𝜆𝑐
𝑡 . With each customer request of type 𝑐, 

the provider also receives data on the associated location(s) 𝑙𝑐 and revenue 𝑟𝑐. Individual customer 

requests are then uniquely identified by combining this information with their request time 𝜏. 

Arrival rates are assumed to be small enough that at most one customer request arrives per stage. 

State – The system state 𝑠𝑡 = (𝒞𝑡 , 𝜙𝑡) comprises two sets. The first set 𝒞𝑡 consists of tuples 

(𝑐, 𝜏, 𝑜), which store customer orders for which fulfillment has not yet started. The second set 𝜙𝑡  

stores the tour plan. Since we assume disjoint booking and service horizons, in our case, 𝜙𝑡  is 

either preliminary or empty for all 𝑡 < 𝑇. Please note that 𝑠𝑡  defines a post-decision state. The 

state space of a decision epoch 𝑡 is denoted as 𝒮𝑡  and comprises all potential realizations of cus-

tomer orders 𝒞𝑡 and tour plans 𝜙𝑡 . Thus, ∀ 𝑡 ∈  {1, . . . , 𝑇}: 𝑠𝑡 ∈  𝒮𝑡. 

Action – An action in response to an arriving customer request of type 𝑐 integrates an accept/reject 

decision for demand control 𝑔𝑡 ∈ 𝒢(𝑠𝑡−1 , 𝑐) ⊆ {0,1}, and a tour planning decision 𝜙𝑡(𝑔𝑡) ∈

Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡). Again, 𝜙𝑡(𝑔𝑡) is either preliminary or empty for all 𝑡 < 𝑇 due to the disjoint ho-

rizons. The action space for tour planning, denoted as Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡), is defined by the routing 

constraints of the problem and depends on the preceding state 𝑠𝑡−1, the type 𝑐 of the arriving 

request, and the demand control decision 𝑔𝑡 . The action space for demand control, denoted as 

𝒢(𝑠𝑡−1, 𝑐), in turn, depends on Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡) since 𝑔𝑡 = 1 is only feasible if Φ(𝑠𝑡−1, 𝑐, 𝑔𝑡) ≠ ∅. 

Thus, 𝒜𝑡(𝑠𝑡−1, 𝑐) = {(𝑔𝑡 , 𝜙𝑡(𝑔𝑡)) ∶  𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐), 𝜙𝑡(𝑔𝑡) ∈ Φ(𝑠𝑡−1 , 𝑐, 𝑔𝑡)}. 

Rewards – As a consequence of an acceptance decision 𝑔𝑡 = 1, a revenue 𝑟𝑐 is received. A rejec-

tion yields no reward. A routing decision 𝜙𝑡(𝑔𝑡) entails a reward 𝑟𝜙𝑡(𝑔𝑡). It equals the newly 

arising fulfillment cost, which, given the triangle inequality holds, is non-positive. Again, since 

we assume disjoint booking and service horizons, ∀𝑡 < 𝑇: 𝑟𝜙𝑡(𝑔𝑡) = 0. 
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Transition – When transitioning to state 𝑠𝑡 , 𝜙𝑡  is set to 𝜙𝑡(𝑔𝑡). The first state component 𝒞𝑡−1 

also changes. More precisely, if the newly arriving request of type 𝑐𝑡 is accepted, the resulting 

customer order is added. 

Objective – The provider aims at maximizing profit after fulfillment. Therefore, it is required to 

determine a policy 𝜋 that returns the optimal decision for each state that can potentially be 

reached. These decisions of a policy 𝜋 can be denoted as 𝑎𝑡
𝜋(𝑠𝑡−1, 𝑐𝑡) =

(𝑔𝑡
𝜋(𝑠𝑡−1, 𝑐𝑡), 𝜙𝑡

𝜋(𝑔𝑡
𝜋(𝑠𝑡−1, 𝑐𝑡))) at decision epoch 𝑡. Then, the objective function is:  

max
𝜋
𝔼(∑ (𝑟𝑐𝑡 ⋅ 𝑔𝑡

𝜋(𝑠𝑡−1, 𝑐𝑡) + 𝑟𝜙𝑡𝜋(𝑔𝑡𝜋(𝑠𝑡−1,𝑐𝑡)))
𝑇
𝑡=1 ∣ 𝑠0).            (1) 

Bellman equation – The objective function (1) can be expressed in the form of a Bellman equa-

tion, which defines a value 𝑉𝑡(𝑠𝑡) for each state 𝑠𝑡 . Solving this equation yields the optimal policy 

𝜋∗. 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 ⋅ max

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡𝑟𝑐 + max

𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)
(𝑟𝜙𝑡(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣

∣ 𝑠𝑡−1, 𝜙𝑡(𝑔𝑡) )))𝑐∈𝐶   

+(1 − ∑ 𝜆𝑐
𝑡

𝑐∈𝐶 ) ⋅ max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0,0)

(𝑟𝜙𝑡(0) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(0) )) ,           (2) 

with boundary condition: 𝑉𝑇(𝑠𝑇) = 0.               (3) 

In Equation (2), both types of decisions are represented in an integrated form. Thus, an interim 

state 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 can be defined to isolate the impact of the demand control decision from the 

impact of the vehicle routing decision as also depicted in Fig. 2. Further, substituting the OC of 

accepting a request of type 𝑐, i.e., Δ𝑉𝑡(𝑠𝑡−1, 𝑐), we obtain the following reformulation. Note that 

we denote interim states 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 1 by 𝑠𝑡

′(𝑐) and interim states 𝑠𝑡
′ ∣ 𝑠𝑡−1, 𝑐, 0, or 𝑠𝑡

′ ∣ 𝑠𝑡−1, 0, 0, 

by 𝑠𝑡
′(0).  

𝑉𝑡−1(𝑠𝑡−1) =  ∑ 𝜆𝑐
𝑡 ⋅ max

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐))) + 𝑉𝑡

′(𝑠𝑡
′(0))𝑐∈𝐶 ,           (4) 

with 𝑉𝑡
′( 𝑠𝑡

′ ∣∣ 𝑠𝑡−1, 𝑐, 𝑔𝑡 ) = max
𝜙𝑡(𝑔𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑔𝑡)

(𝑟𝜙𝑡(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡(𝑔𝑡) ))  

                                        = 𝑟𝜙𝑡∗(𝑔𝑡) + 𝑉𝑡( 𝑠𝑡 ∣
∣ 𝑠𝑡−1, 𝜙𝑡

∗(𝑔𝑡) ),            (5) 

and Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = 𝑉𝑡
′(𝑠𝑡

′(0)) − 𝑉𝑡
′(𝑠𝑡

′(𝑐)) ≥ 0.             (6) 

Further, 𝜙𝑡
∗(𝑔𝑡) denotes the optimal routing decision for a given demand management decision 

𝑔𝑡 . 

4 Explainability Technique 

In this section, we present our novel explainability technique for i-DMVRPs, which comprises 

two separate building blocks. Both are later applied for the comprehensive analysis of the relation 

between OC approximation error and the quality of the resulting demand management decisions.  
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4.1 Building Block 1 

The basic idea of B1 is to define metrics for each step in the chain of influencing factors (Fig. 1) 

behind the losses in objective value observed when following a certain policy. By this, we aim at 

identifying the regions of the state space that are especially relevant regarding the respective over-

all objective value loss. Therefore, we analyze the occurrence, the sign, and the magnitude of OC 

approximation errors in the respective states. Then, by suitable visualizations of the metrics, we 

compare them over various settings of problem parameter values (in the following referred to as 

settings) resembling different real-world i-DMVRPs. Based on that, we classify fundamental 

types of approximation errors, i.e., OC approximation errors that a broad variety of real-world i-

DMVRPs are prone to. Therewith, we can eventually explain the performance of the considered 

policy. Both the metrics and the respective visualizations are generally valid, i.e., can be applied 

to any policies derived from different OC approximation approaches. In the following, we first 

describe the chain of influencing factors between OC approximation error and objective value 

loss. Afterwards, we describe the metrics we use to quantify each step in this chain of influencing 

factors and, finally, we propose visualizations of these metrics. 

Chain of influencing factors 

At the beginning of the chain of influencing factors, there is an approximation error in a certain 

state 𝑠𝑡−1, which could either be an underestimation or an overestimation of the true OC. De-

pending on the actual magnitude of such an approximation error, the magnitude of the true OC, 

i.e., Δ𝑉𝑡(𝑠𝑡−1, 𝑐), and the immediate reward 𝑟𝑐, this error can but not necessarily must result in a 

suboptimal decision. 

Generally, a suboptimal decision in a certain state 𝑠𝑡−1 can either yield less immediate reward 

than the optimal decision, transition the system to a lower-valued state than the optimal decision, 

or both. However, the respective negative effect on the objective value itself can vary from barely 

notable to considerable. 

Whether the chain of influencing factors continues further, depends on the likelihood that 𝑠𝑡−1 is 

encountered and the respective suboptimal decision is made when following the policy under 

consideration. 

We now define disaggregated metrics to quantify “how bad” an OC approximation error is, “how 

wrong” the resulting decision is, and also, “how likely” this decision is. Additionally, we define 

a fourth metric that captures the aggregated overall impact of OC underestimations or OC over-

estimations on the objective value. 

Metrics 

Fig. 3 shows which of the metrics presented in the following corresponds to which step in the 

previously described chain of influencing factors between OC approximation error and objective 
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value loss. Please note, we assume that we examine an OC approximation relative to the true OC, 

i.e., a suboptimal policy relative to the optimal policy. 

 

Fig. 3 Metrics among the chain of influencing factors from OC approximation error to objective value loss 

(1) Error magnitude – In general, an OC approximation can be inaccurate in both directions. By 

separately evaluating overestimation and underestimation, we can analyze whether the conse-

quences are different. Hence, we calculate the magnitude of overestimation errors 𝑒𝑜(𝑠𝑡−1, 𝑐) and 

underestimation errors 𝑒𝑢(𝑠𝑡−1 , 𝑐), separately, for all individual states 𝑠𝑡−1 and request arrivals 

𝑐 as follows: 

𝑒𝑜(𝑠𝑡−1 , 𝑐) = Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐) − Δ𝑉𝑡(𝑠𝑡−1, 𝑐),              (7) 

𝑒𝑢(𝑠𝑡−1, 𝑐) = Δ𝑉𝑡(𝑠𝑡−1, 𝑐) − Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐).              (8) 

This metric allows us to identify regions of the state space, where an approximation systematically 

overestimates (𝑒𝑜(𝑠𝑡−1, 𝑐) > 0) or underestimates (𝑒𝑢(𝑠𝑡−1, 𝑐) > 0) the true OC. Hence, it pro-

vides information about where approximation errors originate and how strongly the chain of in-

fluencing factors is triggered. 

(2) Single decision regret – As is well-known in revenue management (e.g., Talluri and Van 

Ryzin, 2004), an OC approximation error in itself is not problematic because the resulting deci-

sion may still be fairly accurate or even optimal. As previously described, the chain of influencing 

factors only continues if there is a suboptimal decision. Hence, to quantify the “suboptimality” of 

a single decision when a request of type 𝑐 arrives in state 𝑠𝑡−1, we introduce the metric single 

decision regret, denoted as 𝛿(𝑠𝑡−1, 𝑐). It computes the overall reward difference between a single 

decision based on a, potentially wrong, OC approximation and the optimal decision. In less tech-

nical terms, to isolate the regret of one single decision, all future decisions from decision epoch 

𝑡 + 1 onward are assumed to be made based on the optimal policy in both cases. Then, again 

depending on the observed underlying error magnitude 𝑒𝑜(𝑠𝑡−1, 𝑐) and 𝑒𝑢(𝑠𝑡−1, 𝑐), we can dis-

tinguish between overestimation regret and underestimation regret, even though both are calcu-

lated based on the same expression: 

𝛿(𝑠𝑡−1 , 𝑐) = 𝑔𝑡
∗(𝑠𝑡−1, 𝑐) ⋅ (𝑟𝑐 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐)) − 𝑔̃𝑡(𝑠𝑡−1, 𝑐) ⋅ (𝑟𝑐 − Δ𝑉𝑡(𝑠𝑡−1 , 𝑐)),         (9) 

with 𝑔𝑡
∗(𝑠𝑡−1, 𝑐) denoting the optimal demand control decision and 𝑔̃𝑡(𝑠𝑡−1, 𝑐) denoting the de-

mand control decision when following the policy under consideration. Then, we define the over-

estimation regret as: 
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𝛿𝑜(𝑠𝑡−1 , 𝑐) = {
𝛿(𝑠𝑡−1, 𝑐), 𝑒

𝑜(𝑠𝑡−1, 𝑐) > 0
0,                 otherwise,          

            (10) 

and the underestimation regret as: 

𝛿𝑢(𝑠𝑡−1 , 𝑐) = {
𝛿(𝑠𝑡−1, 𝑐), 𝑒

𝑢(𝑠𝑡−1, 𝑐) > 0
0,                otherwise.           

            (11) 

With this metric, we can assess whether an overestimation error or underestimation error leads to 

a suboptimal decision, and by which amount it causes the objective value to deteriorate assuming 

optimal decisions over the remaining booking process. Please note, for ease of readability, in the 

following, we refer to the single decision regret as regret. 

(3) Decision rate – As a third step in the chain of influencing factors, the relevance of a suboptimal 

decision must be considered. It depends on how likely it is to visit the state in which the decision 

is made. We measure the likelihood in the form of the decision rate 𝑃(𝑠𝑡−1, 𝑐), which denotes the 

probability that a policy 𝜋̃ visits state 𝑠𝑡−1 and decides on the acceptance/rejection of a customer 

request of type 𝑐 at decision epoch 𝑡. To calculate it, we simulate decision-making based on the 

considered OC approximation for a sufficiently high number of drawn sample paths. This metric 

provides information about the relevant areas of the state space, and thus, to what extent the regret 

in a certain state impacts the objective value. 

(4) Weighted error ratio – Additionally to the metrics involved in our chain of influencing factors, 

we propose an aggregate metric to approximate the share of the loss in objective value that is 

caused by overestimation and underestimation, respectively. We refer to this metric as weighted 

error ratio and define it for a certain setting as follows: 

𝐸 =
∑ ∑ 𝛿𝑜(𝑠,𝑐)⋅𝑃(𝑠,𝑐)𝑐∈𝐶𝑠∈𝒮

∑ ∑ (𝛿𝑜(𝑠,𝑐)+𝛿𝑢(𝑠,𝑐))⋅𝑃(𝑠,𝑐)𝑐∈𝐶𝑠∈𝒮
             (12) 

Thus, a weighted error ratio of 1 means that the full observed objective value loss of a certain 

policy is caused by overestimation errors, and a weighted error ratio of 0 means that only under-

estimation causes objective value loss. 

Visualizations 

Disaggregated metrics (1)-(3) – Due to the curses of dimensionality, analyzing the values of the 

metrics (1)-(3) for individual states as introduced above is impractical. Hence, we propose a state 

space aggregation for their visualization and the subsequent analysis. For this, we draw on two-

dimensional lookup tables, which are well-known from reinforcement learning (e.g., Powell, 

2022). We aggregate states according to the dimensions decision epoch 𝑡 (𝑦-axis) and capacity 

consumption (x-axis), where we measure the latter in percentage of the available capacity. Since 

we consider multiple instances per setting, we further aggregate the results of all instances per 

setting in one look-up table by averaging the respective numbers. In sum, these aggregations al-

low us to examine the average magnitude of overestimation and underestimation, the associated 

regret, and the decision rate in the different regions of the state space. Additionally, all instance-
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specific effects are averaged out. Further, this two-dimensional aggregation allows us to represent 

the resulting look-up tables in heatmaps, as exemplarily depicted in Fig. 4. 

 

(a) Policy A: Average objective value reached = −8.334 

 

(b) Policy B: Average objective value reached = 12.447 

Fig. 4 Technique of error characterization – exemplary for two policies (A and B) applied to the same setting 

Now, it is possible to qualitatively analyze and compare the results for different policies as ex-

emplarily demonstrated in the following: In the example presented in Fig. 4, we analyze two 

suboptimal policies A and B that, over the same set of instances, yield entirely different average 

objective values. However, by analyzing the heatmaps of our metrics (calculated based on the 

optimal policy), we can now explain these drastic results: Policy A suffers from severe underes-

timation errors that cause high regret in particularly relevant areas of the state space. Overestima-

tion, in turn, also occurs but does not cause any regret. Contrary, policy B only exhibits mild 

underestimation with substantially lower regret in rather irrelevant states. Further, for policy B, 

overestimation also causes regret that is even slightly more relevant. Overall, the aggressive ac-

ceptance of (early) customers due to underestimation errors by Policy A causes a severe objective 

value loss. In comparison, the (slightly too) conservative behavior of Policy B leads to a much 

better performance. Hence, if we were to develop a policy for an i-DMVRP with this setting 

structure, we conclude that Policy A is missing crucial information. Hence, in the development 

process, we can now, e.g., integrate algorithmic elements to tackle the systematic underestimation 

by Policy A, or draw the conclusion to focus more development effort on Policy B due to its 

structural advantages. 
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Aggregated metric (4) – To visualize and interpret the fourth metric, i.e., the weighted error ratio, 

we propose a scatter plot, where the result of applying a policy to a certain setting is plotted as a 

point according to the weighted error ratio on the x-axis and the relative optimality gap on the y-

axis (see Fig. 5). This visualization enables us to analyze in which settings a policy is prone to 

either underestimation or overestimation in combination with the resulting performance impact. 

The example given in Fig. 5 shows a policy that is mainly affected by underestimation errors in 

Setting 1 and Setting 2, with a more severe impact in Setting 1. Setting 3 is equally affected by 

overestimation and underestimation, whereas Setting 4 is mainly affected by overestimation. 

 

Fig. 5 Weighted error ratio – exemplary for four settings 

4.2 Building Block 2 

To apply the previously presented technique for gaining general insights on i-DMVRPs within 

our computational study, we now rely on a second explainability technique, namely on reward 

decomposition (Juozapaitis et al., 2019). More precisely, although B1 can be applied to any OC 

approximation in comparison to the optimal policy and already yields valuable insights, we apply 

it to specific OC approximations that base on the idea of reward decomposition. This comes with 

two advantages: First, the resulting policies resemble typical approximation approaches from lit-

erature that (predominantly) capture one of the reward components. Second, and more im-

portantly, they reveal which reward component is more relevant in a certain setting of a given i-

DMVRP and, therewith, hold further explainability potential. 

Thus, to define the policies we analyze in Section 5, we draw on the results of Fleckenstein et al. 

(2024). They show that the OC of an i-DMVRP, Δ𝑉𝑡(𝑠𝑡−1, 𝑐), can be decomposed into two com-

ponents: DPC, formally denoted as Δ𝑅𝑡(𝑠𝑡−1 , 𝑐), and MCTS, formally denoted as Δ𝐹𝑡(𝑠𝑡−1, 𝑐). 

While the former captures the loss of future revenue, i.e., a decision’s impact on the positive 
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rewards, the latter measures the respective increase of fulfillment cost, i.e., the impact on the 

negative rewards. For the formal definition, we first define the expected future revenue of a given 

interim state 𝑠𝑡−1
′  at decision epoch 𝑡 − 1 as 𝑅𝑡−1

′ (𝑠𝑡−1
′ ) and the expected future fulfillment cost 

of a given interim state 𝑠𝑡−1
′  at decision epoch 𝑡 − 1 as 𝐹𝑡−1

′ (𝑠𝑡−1
′ ). Then, we can define DPC and 

MCTS as follows:  

Δ𝑅𝑡(𝑠𝑡−1, 𝑐) = 𝑅𝑡
′(𝑠𝑡

′(0)) − 𝑅𝑡
′(𝑠𝑡

′(𝑐))              (13) 

Δ𝐹𝑡(𝑠𝑡−1, 𝑐) = 𝐹𝑡
′(𝑠𝑡

′(0)) − 𝐹𝑡
′(𝑠𝑡

′(𝑐)),             (14) 

and Δ𝑉𝑡(𝑠𝑡−1, 𝑐) = Δ𝑅𝑡(𝑠𝑡−1 , 𝑐) + Δ𝐹𝑡(𝑠𝑡−1, 𝑐) holds. 

Based on this finding, we derive and analyze OC approximations that only capture DPC or MCTS, 

i.e., completely neglect the other component. By considering these most extreme cases, we make 

sure that any systematic errors resulting from inadequately approximating one component occur 

as clearly as possible. Further, to reduce random errors related to the varying performance of a 

heuristic solution algorithm, we formulate the Bellman equations corresponding to our policies 

and solve them in an exact way by backwards recursion. The DPC-based approximation 

Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐) results from:  

𝑅̃𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 ⋅ max

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡 ⋅  (𝑟𝑐 − Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐))) + 𝑅̃𝑡

′(𝑠𝑡
′(0))𝑐∈𝐶          (15) 

Since the DPC-based approximation neglects fulfillment cost, i.e., 𝑟𝜙𝑡(𝑠𝑡′) = 0 ∀𝑡 = 1, . . . , 𝑇, the 

revenue is the only type of reward, and the future cost impact of an acceptance decision is ignored. 

Solving Equation (15), we obtain the DPC policy 𝜋𝑅, the DPC-based decision 𝑔𝑡
𝑅(𝑠𝑡−1, 𝑐) =

argmax
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝑅̃𝑡(𝑠𝑡−1, 𝑐))) being in state 𝑠𝑡−1 and observing the arrival of a request of 

type 𝑐, and the DPC-based objective value 𝐽𝑅 = 𝑅̃0(𝑠0).  

The MCTS-based approximation Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐) results from:  

𝐹̃𝑡−1(𝑠𝑡−1) =∑𝜆𝑐
𝑡 ⋅ argmax

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐))) ⋅ (−Δ𝐹̃𝑡(𝑠𝑡−1, 𝑐))

𝑐∈𝐶

 

+𝐹̃𝑡
′(𝑠𝑡

′(0)).                 (16) 

Since the MCTS-based approximation neglects displacement cost, formulating the Bellman equa-

tion of this approximation requires an 𝑎𝑟𝑔𝑚𝑎𝑥(⋅) operator. This prevents the revenue from being 

included in the state value while still comparing it to the future cost impact for deciding on each 

single request’s acceptance. Then, the result of the 𝑎𝑟𝑔𝑚𝑎𝑥(⋅) operator, which encodes the bi-

nary demand control decision, is multiplied with the future cost impact, i.e., the MCTS. Solving 

Equation (16), we obtain the MCTS policy 𝜋𝐹, the MCTS-based decision 𝑔𝑡
𝐹(𝑠𝑡−1, 𝑐) =

argmax
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(𝑔𝑡 ⋅ (𝑟𝑐 − Δ𝐹̃𝑡(𝑠𝑡−1 , 𝑐))) being in state 𝑠𝑡−1 and observing the arrival of a request of 

type 𝑐, and the MCTS-based objective value 𝐽𝐹 = 𝐹̃0(𝑠0). 
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5 Computational Study 

We now apply the explainability technique consisting of B1 and B2 to a generic i-DMVRP as 

introduced in Section 3. The aim of this numerical analysis is to identify and characterize funda-

mental types of approximation errors that can occur in any real-world i-DMVRP. In Section 5.1, 

we first present the experimental design, the tested parameter settings, and the benchmarks that 

we consider next to the already introduced DPC-based and MCTS-based approximations. Then, 

in Section 5.2, we characterize the observed types of approximation errors. Finally, we investigate 

the impact of these types of errors on the objective value in Section 5.3 to further refine the char-

acterization. 

5.1 Experimental Design 

Overall, we draw on the full-factorial study design proposed in Fleckenstein et al. (2024), which 

consists of 66 different settings of an i-DMVRP with disjoint booking horizon and service hori-

zon and pure accept/reject decisions. The integrated VRP is a distance-constrained, capacitated 

VRP in all settings. Further, all settings have in common that we assume a single fulfillment 

vehicle and a booking horizon of 𝑇 = 10 potential decision epochs with 10 potentially arriving 

customer requests such that at most one customer request arrives per decision epoch. 

The settings differ in the following parameters: location distribution, revenue distribution, gen-

eral profitability of a setting, and binding capacity constraints. The former two parameters are 

customer-related, the latter two are provider-related. In detail, the following parameter values are 

possible: 

Location distribution – Regarding the customers’ location distribution, we consider two realiza-

tions: A stream of customer request locations 𝑙𝑐 with 𝑐 = 1, . . . ,10 are either drawn from (1) a 

uniform distribution over a line segment with length 50 in the interval [−25, 25] representing a 

single urban area, or (2) in random order from two truncated normal distributions with means 

−10 and 20 and the same standard deviation of 2.5 to generate two equal-sized clusters repre-

senting, e.g., two villages in a rural area. The first location distribution is referred to as unif for 

uniform distribution. The second location distribution is referred to as clust since there is two 

clusters of customers. 

Revenue distribution – Regarding the customers’ revenue distribution, we consider four realiza-

tions: Besides (1) homogeneous customer streams with all revenues equal to 15 monetary units 

referred to as homog, (2) heterogeneous customer streams are generated by randomly assigning a 

revenue of 25 monetary units to 30% of the customers in a stream of customer requests. The 

other 70% of the customers are assigned revenues equal to 15 monetary units. If heterogeneous 

customers are considered in a setting, the high-revenue customers can either (2.1) strictly arrive 

in the beginning (referred to as h-b-l for high-before-low), (2.2) randomly (referred to as rand), 

or (2.3) strictly in the end (referred to as l-b-h} for low-before-high) of the booking horizon. 
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Further, for each of the realizations (2.1)-(2.3), an additional clustered setting is considered in 

which all high-revenue customers are located in the distant cluster. We refer to these settings as 

clust_sort. Also, if required (as in h-b-l and l-b-h settings), we sort the drawn customer streams. 

These customer-related parameter realizations yield 11 meaningful combinations (referred to as 

customer settings), as depicted as leaf nodes in Fig. 7 in Appendix A. Each of these settings is 

then considered six times, according to six combinations of the two provider-related parameters’ 

realizations that we explain in the following. 

Profitability – To vary the general profitability of the settings, we modify the routing cost factor. 

More precisely, each customer setting is considered three times with different routing cost factors 

of 0.2, 0.6, or 1 monetary units per distance unit. We refer to these settings by addressing the 

profitability as high, med, or low. 

Capacity constraints – Regarding the logistical capacity constraints, we assume two different 

realizations. We either limit the route length to 50 length units and refer to these settings as dis-

tance-constrained (dist), or we limit the physical capacity of the fulfillment vehicle to 3 units. In 

the latter case, we assume unit demand for all customers and refer to the respective settings as 

load-constrained (load). 

For each of the resulting 66 settings, we consider 50 different instances in our computational 

study. Each instance is defined by an individual customer stream of 10 customers, sampled ac-

cording to the above-mentioned customer-related parameter values in advance. Of these customer 

streams, each customer then places a request with probability 𝜆𝑐
𝑡 = 0.5 if 𝑐 = 𝑡 and 𝜆𝑐

𝑡 = 0, oth-

erwise. This is the only source of stochasticity once an instance is fully specified. We apply the 

policies presented in Section 4.2 to each instance, calculate the metrics introduced in Section 4.1, 

and average the respective results over all 50 instances per setting to derive the setting-specific 

results we report. 

Note, the choice of such a basic problem is deliberate, and typically done in literature, to obtain 

findings that are valid for a broad variety of real-world problems (e.g., Ulmer and Thomas, 2020).  

Benchmark policies – As a reference for evaluating the performance of the previously introduced 

DPC- and MCTS-based approximations, we mainly consider two benchmark approaches, which 

we also apply to all instances as previously described. First, we solve Equation (4) to compute 

the true OC Δ𝑉𝑡(𝑠𝑡). Thereby, we also obtain the optimal policy 𝜋∗ and the optimal objective 

value 𝐽∗ = 𝑉0(𝑠0) as well as the optimal decision 𝑔𝑡
∗(𝑠𝑡−1, 𝑐) = argmax

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)
(𝑔𝑡 ⋅ (𝑟𝑐 −

Δ𝑉𝑡(𝑠𝑡−1, 𝑐))). 

Second, we consider a myopic OC approximation due to its high relevance as a benchmark policy 

in the i-DMVRP literature (e.g., Arian et al., 2022, Klein and Steinhardt, 2023, or Yang et al., 

2016). Instead of a state value difference, the respective OC approximation is defined as the 
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insertion cost into the current myopic route plan, i.e., a route plan based on only confirmed cus-

tomer orders. 

The objective values of all policies are depicted in Fig. 8 in Appendix B. 

5.2 Identification of Fundamental Approximation Errors 

In the following, we identify and characterize the fundamental types of approximation errors that 

we observe for the DPC policy and the MCTS policy. This analysis is based on the heatmaps 

introduced in Section 4.1. Since it is not possible to include the full set of heatmaps for all settings 

in the paper at hand, we provide two types of supplementary material for the interested reader. 

First, we present carefully selected heatmaps in Appendix C. These are intended to be used as 

“textbook” examples that show a certain error and its characteristics particularly clearly. Second, 

to allow for full reproducibility, the complete set of heatmaps can be viewed or downloaded at 

zenodo.org. 

When discussing an error type’s characteristics in the following, especially regarding the influ-

ence of setting parameters, we only mention those error types that are reasonably pronounced and 

occur over many different settings. Thereby, we ensure generalizability beyond the basic settings 

we consider. Then, we explain the prevalence of these error types in the different settings as well 

as their interplay. 

DPC policy 

The DPC policy lacks information on how well a request can be consolidated with other orders 

to a profitable fulfillment tour. It can only observe this information indirectly if it is reflected in 

the request’s capacity consumption, and thus, affects the displacement of future revenue. Apart 

from that, the policy assumes perfect consolidation of orders, i.e., MCTS of zero for each request. 

In the following, we introduce the three distinctive types of approximation errors resulting from 

this DPC policy. More precisely, we discuss two types of underestimation errors and one type of 

overestimation error, that occur when applying the DPC policy. 

Underestimation error type 1: neglecting better consolidation of future requests 

This error occurs when the acceptance of the current request causes the displacement of future 

requests with a similar revenue that can be consolidated better with other future requests or orders 

already received. This type of underestimation error becomes smaller over time as there are less 

opportunities for collecting orders that allow better consolidation (see Fig. 9a). In the case that 

future requests have a higher revenue than the current request, as especially visible in our l-b-h 

settings, the policy protects a certain amount of capacity. This reduces the error’s regret since the 

DPC are sufficiently high to correctly cause a rejection (compare Fig. 9a and Fig. 9b). The regret 

also becomes smaller with more correlation between consolidation and capacity consumption, as 

observable in our dist constrained settings (compare Fig. 9b and Fig. 9c). In general, the error 

occurs in a broad region of the state space with a relatively high decision rate (see Fig. 9). 

https://zenodo.org/records/14197957?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjViYzRkY2UxLTk0M2YtNDlhOS05MzkwLWM3ZjI5OTM3NzRhOSIsImRhdGEiOnt9LCJyYW5kb20iOiJmMGE0NGFjNDA3ZGU4NDM5NWY1NjU5OGEzZjY4M2YxZCJ9.XeOM-YyBFnBIRi_0sLDyNR2ybKNk4T5picbMQxzvgkErE6t6uoG-yJgZ-ADmR6-flZOF7Qk9UdjGS1aYwkqjww
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Underestimation error type 2: neglecting inherent request unprofitability 

This error mainly occurs when the current request is neither profitable based on consolidation 

with the orders already received nor is it expected to become profitable taking future consolida-

tion opportunities into account. Hence, the effect becomes stronger over time with shrinking fu-

ture consolidation opportunities and tends to occur in states with low capacity consumption where 

not much consolidation is already established (see Fig. 9a). The associated regret is only damp-

ened when high-revenue requests arrive in the affected states as especially observable in our l-b-

h settings (see Fig. 9b). Compared to underestimation error type 1, considering the decision rate 

reveals that this error type has much less impact because the region of late states with low capacity 

consumption is hardly visited in any of our settings (see Fig. 9a-9c). However, if revenues reflect 

the distance from the depot as in our clust_sort settings, the error can occur earlier, i.e., in states 

with a higher decision rate (see Fig. 9d). 

In extreme cases, the underestimation due to these two types of errors can become large enough 

that an acceptance decision is made in every state. 

Overestimation error: protecting capacity for high-revenue demand with poor consolidation 

The missing information on consolidation opportunities can also lead to an OC overestimation. 

This error occurs when the policy anticipates demand that has indeed higher revenue but cannot 

be consolidated as well as the current request. In such a state, it is better to accept the current 

customer request despite its lower revenue than to reserve capacity for the higher-revenue demand 

that is less profitable due to poor consolidation. Consequently, a heterogeneous revenue distribu-

tion that is not strictly h-b-l is prone to this error (compare Fig. 10a and Fig. 10b). We then can 

locate the error in all states early in the booking horizon but it only leads to regret in states in 

which displacement effects are sufficiently strong, i.e., states with high capacity consumption in 

case of load-constrained settings or states with low capacity consumption in case of dist-con-

strained settings (compare Fig. 10a and Fig. 10c). It remains constant over time until the high-

revenue demand is expected to realize. Its magnitude is proportional to the mismatch between 

revenue and consolidation opportunities offered by the demand, or in other words, between rev-

enue displacement observed by the policy and the actual profit displacement. A particularly strong 

occurrence can be observed in low, clust_sort settings in which the high-revenue requests also 

cause the highest routing cost (see Fig. 10d). In the region of the state space, in which this error 

type occurs, the decision rate is comparatively high (see Fig. 10). 

MCTS policy 

The MCTS policy has information about all parameters of expected future requests including their 

revenue. However, it only uses the information about the revenue when making a decision on an 

individual request, as revenues generally do not enter its value function. Thus, the policy can only 

anticipate which future requests it will accept in case of any realization of future demand and the 
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resulting fulfillment cost but not the associated cumulative revenue. For this policy, we find three 

distinctive estimation errors. 

Underestimation error type 1: neglecting future high-revenue demand 

Since the MCTS policy cannot observe heterogeneity in revenue, it fails to reserve capacity if 

there is more profitable, high-revenue demand arriving at a later phase of the booking process as 

especially observable in our l-b-h settings. The resulting regret due to earning less revenue per 

order is roughly proportional to the magnitude of the underestimation error. The error becomes 

stronger the more capacity is consumed and the earlier a state is (see Fig. 11a). The error magni-

tude is insensitive toward the profitability (compare Fig. 11a and Fig. 11b). 

Underestimation error type 2: missing information on the volume of future demand 

Even if the revenues are homogeneous, underestimation occurs when applying the MCTS policy 

since its OC approximations do not fully reflect the volume of demand to come. Only in the end 

of the booking horizon, the low volume of demand to come impacts the approximation via the 

decreasing number of consolidation opportunities. In earlier states, this information can only be 

derived from the expected revenue to come, and thus, the displacement cost. The consequence of 

this underestimation is that the policy does not protect capacity for requests offering better con-

solidation, i.e., are less costly to serve. This can either lead to less efficient routing, which reduces 

profitability on the cost side, or it may also reduce the number of accepted orders due to the higher 

capacity consumption, which affects the revenue side. The error and the associated regret occur 

predominantly in early states (see Fig. 11c). As for underestimation error type 1, the error mag-

nitude does not change with profitability (compare Fig. 11c and Fig. 11d). 

Both types of MCTS underestimation errors are usually superimposed on each other. Similar to 

the type 1 underestimation error of the DPC policy, they occur in a fairly large region of the state 

space with a high decision rate. In the worst case, the combination of both errors leads to solutions 

with less accepted orders, less revenue per order, and an inefficient routing. 

Overestimation error: wrong cost attribution 

The missing information on future revenues can also lead to overestimation errors by the MCTS 

policy. This is caused by the following mechanism: If none or only very few orders are confirmed 

already, accepting a request momentarily entails a high increase in routing cost compared to re-

jecting it. If the instance is sufficiently profitable, anticipating optimal future decision-making 

would reveal that the final cost difference between accepting the current request and rejecting it 

would not be as high because of future consolidation. The MCTS policy, however, anticipates 

that in the reject-case, no or only few additional requests would be accepted, again because of 

their momentarily high increase in routing cost compared to a rejection. In summary, the policy 

wrongly attributes high routing cost to early arriving requests. 
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The error and the resulting regret become more severe with lower profitability (compare Fig. 12a 

and Fig. 12b or Fig. 12c and Fig. 12d), and its recursive character makes this error particularly 

harmful. At worst, it can lead to the policy stalling in states with no or few orders, which becomes 

apparent from the plots showing the decision rate (see Fig. 12b and Fig. 12d). The reason is that 

suboptimal rejections due to overestimation lead to successor states in which the overestimation 

error is likely to occur again. Thus, the error occurs mainly in states with no or a very short ten-

tative route and becomes more severe with decreasing profitability. By contrast, error and regret 

are reduced by heterogeneous revenues. In addition, the region of high decision rates shifts away 

from the states with low capacity consumption, where the error occurs, which indicates that the 

vicious cycle is broken early in the booking process. Responsible for this are high-revenue re-

quests that are accepted despite the overestimation (compare Fig. 13a and Fig. 13b). These orders 

then serve as seed customers to establish consolidation independent from their distribution over 

time. Similarly, a uniform distribution of locations (unif) can reduce the error due to orders located 

close to the depot serving as seed customers (compare Fig. 13a and Fig. 13c). 

5.3 Resulting Performance Impact 

Using the weighted error ratio and its visualization introduced in Section 4.1, we now analyze the 

contribution of underestimation errors and overestimation errors to the losses in objective value 

relative to the optimal solution. Again, we consider the DPC policy and the MCTS policy in the 

66 different settings. The results are depicted in Fig. 6. As discussed in the following, there are 

some clearly observable patterns between the optimality gap, the weighted error ratio, and certain 

setting parameter values. From these patterns, we can derive insights on how location distribution, 

revenue distribution, and profitability cause underestimation errors or overestimation errors when 

applying a given policy and how this affects the optimality gap. However, depending on the policy 

applied, there may hardly be any patterns, as we observe for our MCTS policy. This shows that 

there can be complex interactions between underestimation and overestimation errors, e.g., both 

can offset. 

DPC policy 

When applying the DPC policy, the average optimality gap generally decreases with increasing 

profitability, but the weighted error ratio stays almost constant with only a slight shift toward 

underestimation. The type of the binding capacity constraints also has an influence on perfor-

mance since the average optimality gap is smaller for dist-constrained settings, and there is more 

observations of settings in which the optimality gap results mainly from overestimation. Both 

scenario parameters combined, the observations reach from an average optimality gap below 1% 

in high-profitability, dist-constrained settings, to even negative objective values in some low-

profitability, load-constrained settings. 
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Generally, in clust settings, the average optimality gap tends to be larger than in unif settings. 

Since we only observe a slight shift toward overestimation, this is mainly caused by more severe 

regret from underestimation errors. If the requests’ revenues are proportional to their distance 

from the depot, i.e., in clust_sort settings, the share of overestimation increases but without a clear 

impact on the average optimality gap. For med-profitability settings, the gap becomes smaller but 

it increases for low-profitability settings. 

 

         (a1) load              (a2) dist 

(a) DPC policy 

 

         (b1) load              (b2) dist 

 (b) MCTS policy 

Fig. 6 Weighted error ratio and average optimality gap 

Regarding the revenue distribution, we find the highest average optimality gap for our homog 

settings and the smallest for h-b-l settings. In both types of settings, there is no overestimation in 

case of load-constrained settings and only a small impact of overestimation in dist-constrained 

settings. In case of heterogeneous revenues, i.e., in our h-b-l, l-b-h, or rand settings, the average 

optimality gap and the share of overestimation decrease the earlier the high revenue arrives, as 

especially observable in our h-b-l settings. 

MCTS policy 
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For the MCTS policy, the patterns are less clear. In high-profitability settings, underestimation is 

by far the dominant error. Due to the dominating underestimation error, the average optimality 

gap is higher the more high-revenue demand arrives late, i.e., in l-b-h settings, as well as in load-

constrained settings, where less consolidation is possible. Despite the error ratio shifting toward 

overestimation with the setting becoming less profitable, this has no coherent impact on the av-

erage optimality gap because of the complex interactions of underestimation errors and overesti-

mation errors. E.g., we observe average optimality gaps increasing consistently with decreasing 

profitability in h-b-l settings that are dist-constrained with unif or clust locations, and load-con-

strained, clust_sort settings. In load-constrained settings with unif or clust location distribution, 

however, the average optimality gap decreases between med-profitability and low-profitability 

settings due to offsetting errors for rand and l-b-h settings. Another example for these inconsist-

encies are settings with homog revenues. Here, the average optimality gap is much higher for unif 

settings compared to clust settings, when considering med profitability. In low-profitability set-

tings, we observe an inverse relation. 

Regarding the location distribution, the general findings are that unif settings tend to have a higher 

average optimality gap compared to clust settings and that low-profitability, clust_sort settings 

are prone to overestimation. 

Considering the distribution of revenues, we find that homog or l-b-h settings tend to have a higher 

average optimality gap. 

6 Insights for Algorithm Selection and Algorithm Design 

In this section, we formulate five actionable insights based on our findings that support developers 

and users of OC approximation approaches in selecting and designing algorithmic components 

for specific i-DMVRPs. By closely incorporating the key computational results of the existing 

literature, we now show that our findings explain much of the performance differences observed 

in literature. Therewith, we also compile evidence for that our results derived from the numerical 

analysis of a generic i-DMVRP are fundamental to the entire family of i-DMVRPs. 

Opportunity cost approximation errors can be grouped into a few distinct types: Neglecting 

one of the OC components causes systematic errors that can be grouped into a small number of 

fundamental types consistently observable across a variety of settings. Furthermore, we find many 

patterns regarding their occurrence in certain regions of the state space and in different settings. 

While some of those patterns were already suspected in existing literature based on the decision-

making behavior of the respective solution approaches, we are the first to provide direct, numer-

ical evidence to characterize these patterns and are also able to identify entirely novel ones. E.g., 

the existence of underestimation errors when applying an MCTS policy has been discussed but 

not conclusively proven by Mackert (2019) and Yang and Strauss (2017). Overestimation, how-

ever, has only been briefly mentioned by one author (Mackert, 2019). Overall, our main finding 
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is that neglecting either component can lead to both overestimation errors and underestimation 

errors. As we show in the work at hand, both are systematic in the sense that they occur even if 

an exact algorithm, i.e., applying backwards recursion to the (modified) Bellman equations (4), 

(15), and (16), is used to compute the respective OC estimate. 

Underestimation is the dominant error when neglecting DPC or MCTS: The fundamental 

issue with neglecting DPC or MCTS is that the resulting approximation does not reach the correct 

absolute level of the true OC since the contribution of the other component is missing. Hence, 

underestimation is by far more common than overestimation (see Fig. 6): For the DPC policy, 

underestimation (weighted error ratio < 0.5) is dominant in 89.4% of all settings. For the MCTS 

policy, this occurs in 69.7% of the settings. This dominance of underestimation leads to greedy 

decision-making overall. The fact that many authors report such greedy behavior in studies with 

realistic-sized instances shows the general validity of this result. This accounts for both availabil-

ity control (e.g., Arian et al., 2022, Lang et al., 2021, Mackert, 2019, and Campbell and Savels-

bergh, 2005), and dynamic pricing (e.g., Abdollahi et al., 2023, Klein and Steinhardt, 2023, Klein 

et al., 2018, Yang and Strauss, 2017, and Yang et al., 2016). In the former case, the policy accepts 

too many customers or offers too many, or even all of the feasible fulfillment options to each 

requesting customer resulting in a first-come-first-served decision-making behavior. In the latter 

case, the average price level is too low and can drop markedly during the booking horizon. In 

MOD applications, this observation is also known as the “wild goose chase” (Castillo et al., 2024). 

In accordance with our findings, which show the potential severity of the underestimation errors, 

some works find that the resulting greedy behavior can lead to a worse performance than static 

pricing (Abdollahi et al., 2023, Yang and Strauss, 2017). 

Due to the absence of research on DPC policies, there are no direct indications for respective 

underestimation errors in the literature. However, there is one indirect observation, which can 

now be better explained in the light of our findings: Koch and Klein (2020) observe that average 

OC increases quite strongly in the end of the booking horizon. This can be attributed to only 

unpopular fulfillment options remaining available, for which only few orders are collected al-

ready. Thus, collecting an additional order for such an option incurs high MCTS. If MCTS is not 

adequately captured by the OC approximation, this results in severe underestimation errors. 

Another important observation from Fig. 6 is that neglecting either MCTS or DPC tends to cause 

a higher performance loss in load-constrained settings than in dist-constrained settings. This 

points toward a link of the two components by the consumption of logistical capacity associated 

with an order. In settings in which a high capacity consumption causes both strong displacement 

effects and a high marginal increase of fulfillment cost, DPC and MCTS will both be high, and 

vice versa. This means that an approximation based on one of the components can still correctly 

determine the relative ordering of the OC across different requests or different fulfillment options 

for one request. However, if the absolute value of the OC approximations is too low due to the 
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high relevance of the missing component, this information gain does not come into effect. In 

Abdollahi et al. (2023), we find further evidence for this mechanism. They report that their MCTS 

policy performs well in terms of the number of collected orders and the cost per order, which 

indicates that the policy correctly captures the “right” orders to achieve high consolidation. How-

ever, their policy still fails to improve profit due to the general price level being too low. 

Regarding the design of solution algorithms, the explicit consideration of both components is the 

safest way of avoiding structural underestimation. However, this may be associated with a much 

higher computational effort. Instead, the described findings related to underestimation suggest 

two low-threshold algorithmic strategies for mitigating its performance loss:  

1. The OC approximation can be raised to the correct level by adding a rough estimate of the 

other component. An example for this can be found in Yang et al. (2016). They introduce a 

cost penalty as an additional rough DPC estimate if an order cannot be feasibly inserted into 

the sampled route plan (indicating strong displacement effects). The main challenge with such 

an approach is the correct adjustment of the rough DPC estimate. Klein et al. (2018) bench-

mark their own approach, which features a more sophisticated DPC approximation, against 

the approach by Yang et al. (2016), and the results show that its performance does not decline 

monotonically with a tighter capacity restriction. Based on our results, the reason for this is 

that the performance depends on how well the penalty is adjusted to result in the correct level 

of DPC rather than on the general magnitude of displacement effects. 

2. The demand control approach can be made more robust against the consequences of under-

estimation rather than tackling the underestimation error itself. Hence, the goal is to reduce 

the regret resulting from a given underestimation error. Ulmer (2020) present an example for 

such an approach. They introduce a basis price that is charged even if the OC approximation 

would suggest an even lower price. This curtails greedy control behavior resulting from un-

derestimation. 

Neglecting DPC or MCTS can cause severe overestimation errors: In contrast to underesti-

mation, which is presumed to cause performance differences in several existing works, there is 

only one publication discussing possible overestimation errors. Mackert (2019) observes that us-

ing a less accurate approximation of routing cost leads to the policy making less offers on average, 

which points toward an increase of average OC, i.e., toward a potential overestimation. 

With our computational study, we provide definitive proof that overestimation errors as a conse-

quence of neglecting DPC or MCTS exist. In most settings, overestimation contributes less than 

underestimation to the optimality gap. However, if overestimation is the dominant error, the op-

timality gap is particularly large in most cases. This is especially true for the MCTS policy, which 

can completely stall due to the recursive nature of the type of overestimation error it exhibits. At 

the same time, this recursiveness is what makes the error manageable by providing some form of 

anticipatory information on future consolidation opportunities. This explains the success of 



Article A3: From Approximation Error to Optimality Gap – Explaining the Performance Impact of Opportunity Cost 
Approximation in Integrated Demand Management and Vehicle Routing 

 138 

skeletal or sampled route planning that is applied as a well-performing algorithmic component in 

several existing publications (e.g., Anzenhofer et al., 2024, Koch and Klein, 2020, and Yang et 

al., 2016). However, none of these publications contains a conclusive explanation of why it is 

beneficial. 

The early phase of the booking process is critical: Computational experiments in the existing 

literature suggest that demand control in the early phase of the booking process has a critical 

influence on solution quality (Anzenhofer et al., 2024, Campbell and Savelsbergh, 2006). Our 

computational results support this finding as we observe that the regret of a suboptimal demand 

control decision decreases over time for most types of overestimation and underestimation errors. 

Since the effect is observable independent of the revenue distribution, we can derive that the 

underlying main reason is not the loss in immediate reward but the transition to a state that has a 

much lower value than the successor state resulting from the optimal decision. 

Anticipation is not an end in itself: The existing literature studying specific i-DMVRPs consist-

ently emphasizes the importance of anticipation for the performance of solution approaches 

(Fleckenstein et al., 2023). However, our computational study shows that myopic policies can be 

hard to beat in certain settings (see Fig. 8 in Appendix B, e.g., med-profitability or low-profita-

bility, load-constrained settings). This result becomes even more relevant given that, in the exist-

ing literature, anticipatory policies only achieve maximal improvements of a around 10 − 15% 

over myopic benchmarks for some specific i-DMVRPs (e.g., Azi et al., 2012, Heitmann et al., 

2023, Koch and Klein, 2020), and that these numbers may even be subject to a negative results 

bias (Fanelli, 2012). From our computational study, we can derive some of the underlying rea-

sons: 

1. In some settings, an i-DMVRP can be “easy” to solve in general, e.g., high-profitability, h-b-

l settings (see Fig. 8). Highly profitable demand arriving early in the booking process hardly 

impacts estimation errors but substantially reduces the resulting regret. Therefore, a more 

accurate OC approximation by an anticipatory policy may not necessarily translate into a 

reduced regret. 

2. Myopic policies benefit from the fact that estimation errors can offset. Therefore, higher over-

estimation errors compared to an anticipatory policy can, counter-intuitively, be beneficial 

because the underestimation errors are then compensated better (e.g., see Fig. 14).  

3. In settings with low profitability or low consolidation, overestimation, which myopic policies 

are prone to, is generally less harmful than underestimation because it leads to a more con-

servative acceptance behavior. 

In summary, we conclude that investing a substantial amount of the scarce computation time at 

each decision epoch into an anticipatory OC approximation may not be the most efficient ap-

proach for certain i-DMVRPs. Instead, a greater performance improvement might be possible by 
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investing it into solving the other complex subproblems of i-DMVRPs, e.g., the demand control 

subproblem, or the dynamic vehicle routing subproblem. 

7 Conclusion and Future Research Opportunities 

With this work, we present a novel post-hoc explainability technique for i-DMVRPs as well as 

the results of its first systematic application. The proposed explainability technique allows quan-

tifying and visualizing the extent of OC approximation errors, the regret associated with subopti-

mal decisions, and the rate at which such decisions are made. Applying this technique to a generic 

i-DMVRP and considering many settings with a broad variety of parameter values and their com-

binations, we derive a comprehensive identification and analysis of fundamental types of approx-

imation errors. Finally, we show that this knowledge can be used to explain performance differ-

ences observed in the literature and to guide algorithm selection and algorithm design. In the 

following, we conclude by discussing how developers and users can benefit from our findings: 

1. Our computational results provide a guideline for how important an accurate considera-

tion of DPC and MCTS is in certain problem settings, and how likely the different fun-

damental types of errors are to occur. This provides indications for the selection of a basic 

solution concept. 

2. The technique presented in Section 4 can be directly applied to small instances of the 

specific i-DMVRP under consideration to compare variants of the pre-selected solution 

concept with the optimal policy. Thereby, developers and users can gain detailed insights 

into which types of estimation errors are most relevant for their problem and make tar-

geted adaptions to their algorithms to tackle them. 

3. Providing training for users based on our findings can enable them to better diagnose 

anomalies in the behavior of policies and react accordingly. 

Since algorithmic explainability is still an emerging concept that is of high relevance both from a 

theoretical and a practical perspective, we believe that there is great potential for future research 

connected to our work: 

1. It would be interesting to apply post-hoc explainability techniques similar to ours to re-

lated problem classes, such as network revenue management problems arising, e.g., in 

the airline industry (Klein et al., 2020). In particular, also given the promising results of 

related research (Bravo and Shaposhnik, 2020), we believe that optimal policies for small 

instances are a valuable source of domain knowledge for problems that cannot be solved 

to optimality when considering realistic-sized instances. 

2. Complementary to post-hoc techniques based on OC, we see a similar potential for the 

development of inherently explainable solution approaches for i-DMVRPs, such as in-

herently explainable policy function approximations. 

3. Finally, our numerical results suggest that myopic policies deserve more attention. While 

they are currently mainly considered for pure benchmarking purposes in comparison to 
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anticipatory approaches, their potential as carefully designed, full-fledged solution ap-

proaches should also be investigated more thoroughly.  
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Appendix A: Settings 

 
Fig. 7 11 customer settings which are solved six times each, for all combinations of routing cost factors 0.2, 0.6, 1 with 
either binding load constraints or binding distance constraints 
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Appendix B: Numerical Results 

 
        (a) Load-constrained settings 

 
        (b) Dist-constrained settings 

Fig. 8 Objective values resulting from the different opportunity cost approximations – Averaged across 50 instances 
per setting  
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Appendix C: Heatmaps 

 

Fig. 9 DPC policy – underestimation errors 
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Fig. 10 DPC policy – overestimation error 
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Fig. 11 MCTS policy – underestimation errors 
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Fig. 12 MCTS policy – overestimation error 
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Fig. 13 MCTS policy – overestimation error (cont’d) 
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Fig. 14 Offsetting of underestimation errors and overestimation errors in setting low | load | unif | l-b-h 
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Abstract 

Shared mobility-on-demand systems receive increasing attention as a sustainable transportation 

option in rural areas. To guarantee maximum planning reliability given the limited alternative 

modes of public transport, rural providers typically enable customers to request rides several days 

in advance of their desired day and time. Existing literature shows that extending the booking 

horizon beyond the service day influences system performance via the degree of dynamism. How-

ever, there is no analysis of the special demand structure resulting from allowing advance requests 

within an extended booking horizon. In this work, we present a methodology for descriptively 

analyzing real-world data to identify unique demand patterns with the aim of addressing them by 

suitable demand management approaches. Through a case study using a large dataset provided 

by our industry partner FLEXIBUS, we uncover four patterns: First, customers may strategically 

reserve rides early in the booking horizon, which can be addressed by anticipatory demand man-

agement. Second, customers predominantly request outward rides in advance, while correspond-

ing return rides are often requested ad-hoc. This observation motivates a flexible product design 

for round trips. Third, extended booking horizons can exacerbate the issue of cancellations. We 

demonstrate that a state-of-the-art supervized learning model accurately predicts cancellation 

probabilities, which can be used for advanced demand management. Fourth, we observe that cus-

tomers exhibit time flexibility in both directions, i.e., regularly accept to ride earlier or later than 

originally desired. Hence, the provider can use demand management to steer customers toward 

alternative pick-up/drop-off times that are more favorable. 

Key words: Shared Mobility-on-Demand, Rural Transportation, Extended Booking Horizon, De-

mand Management 
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1 Introduction 

Urbanization is rapidly transforming both urban areas and rural areas. By 2050, 68% of the global 

population is expected to reside in cities (Sun et al., 2020). Meanwhile, rural areas face declining 

populations, which reduces mobility demand (Mounce et al., 2020). Traditional scheduled public 

transport becomes less efficient, leading to a vicious cycle of reduced usage and service quality 

(Bar-Yosef et al., 2013) and a lack of competitiveness with private motorized transport (Eurostat, 

2022). Hence, to contribute to a more sustainable rural transport system, public transport must 

improve its service quality in terms of flexibility and planning reliability.  

Shared mobility-on-demand (SMOD) systems are widely regarded as a promising solution for 

this challenge. They are demand-oriented, offering the customers more flexibility compared to 

rigid scheduled services. More precisely, customers can request rides between specific pick-up 

points and drop-off points at a desired time. At the same time, like scheduled services, SMOD 

systems aim at consolidating demand. The term "shared" refers to ridepooling, whereby passen-

gers of multiple independent requests can be pooled in a vehicle simultaneously.  

Despite these favorable characteristics, SMOD systems have a fundamental weakness: the lack 

of planning reliability. Unlike scheduled services, which guarantee transport, SMOD systems 

cannot meet all demand without a substantially oversized fleet and reduced consolidation. As a 

result, request rejections due to vehicle unavailability are inevitable. Most research (e.g., Arian et 

al., 2022, Hungerländer et al., 2021) focuses on SMOD systems with short booking horizons, 

which only allow customers to place ad-hoc requests with practically no booking lead time (≤

5 min) before their desired pick-up time, making it difficult for customers to rely solely on SMOD 

for their future mobility needs. This is especially problematic in rural areas with limited transport 

alternatives available on short notice. 

To improve planning reliability, providers can extend the booking horizon, allowing customers 

to request rides hours or even days in advance. This includes same-day requests with more than 

a 5-minute booking lead time and advance requests placed even before the service day. Both 

options eliminate the uncertainty of whether the SMOD service will be available to serve a cus-

tomer’s future travel needs. In case it is not, customers have more time to adjust and find an 

alternative mode of transport or replan their activities. 

Notwithstanding its advantages and practical relevance, academic literature lacks research on how 

an extended booking horizon impacts the demand structure of an SMOD service and what the 

implications are for the provider’s planning process, in particular for demand management. In 

general, demand management involves strategic, tactical, and operational decision-making re-

garding the sales process of a logistical service (Talluri and van Ryzin, 2004, p. 3, Waßmuth et 

al., 2023). In our work, we consider, on the one hand, strategic demand management regarding 

(virtual) product definitions made by the SMOD provider, such as regular pooled rides and 
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premium express rides without pooling. On the other hand, we discuss operational demand man-

agement: Here we distinguish between availability control and dynamic pricing. Availability con-

trol refers to the operational decision on which (alternative) rides to offer in response to a request. 

Availability control in the context of SMOD can use different mechanisms, such as rejecting a 

request (not offering a ride at all) or using time shifts (offering alternative times to the originally 

desired time). Dynamic pricing refers to decisions on the the pricing of offered rides depending 

on the current system state. Both availability control and dynamic pricing can differ in their use 

of information, resulting in myopic or anticipatory (using information on future demand) deci-

sion-making.  

This work uses real-world data from FLEXIBUS, one of the most experienced SMOD providers 

in Germany, to analyze the demand structure of an SMOD provider offering an extended booking 

horizon. From the results, we derive implications for demand management. Please note that, for 

reasons of data confidentiality, we deliberately do not disclose the spatial and temporal extent of 

the data set, any absolute request numbers, and the actual demand management approach used. 

To the best of our knowledge, we are the first to extensively investigate the following research 

questions: 

• Which demand patterns emerge when customers can place requests within an extended book-

ing horizon? 

• How can providers use strategic and operational demand management to address potential 

issues arising from these patterns and improve system performance? 

In summary, the scientific contribution of our work lies in the identification of four key demand 

patterns. For each pattern, we provide evidence from a descriptive analysis and propose demand 

management approaches leveraging this knowledge: 

• Reservation behavior: Customers show strategic behavior by reserving rides early in the 

booking horizon that otherwise are likely to be rejected by SMOD providers. To mitigate 

these reservations, which can lead to inefficient route plans, providers can apply anticipatory 

demand management at the operational level. 

• Round trips: Customers also show strategic behavior by requesting the outward ride in ad-

vance, while the return ride is requested with a shorter booking lead time (same-day or ad-

hoc requests). This may reflect the fact that many customers have an appointment with an 

uncertain end time, preventing them from requesting the return ride in advance. As a result, 

customers face uncertainty about whether the SMOD service will have enough capacity for 

their return ride. SMOD providers can address this at the strategic planning level by designing 

a product that allows customers to request the return ride in advance without specifying the 

exact pick-up time but instead guarantees service within a fixed time interval. This may in-

crease planning reliability for customers.  
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• Cancellations: We find that offering an extended booking horizon may exacerbate cancella-

tion issues. At the observed scale, cancellations are likely to substantially harm the system 

performance. Allowing customers to place advance requests may lead to long dwell times of 

false demand (soon to be cancelled) in the system as true demand, which can be detrimental 

to operational planning. A mitigation strategy is to predict cancellation probabilities at the 

time of request arrival. We show that, using state-of-the-art supervized machine learning al-

gorithms, our predictions are accurate enough to support operational demand management. 

• Time flexibility: We analyze customers’ observed time flexibility by comparing the actual 

booked times with their originally desired times. Providers can exploit this flexibility by ap-

plying time shifts, which are an operational demand management mechanism. Thereby, cus-

tomers are steered toward choosing an alternative time that is more favorable for the provider 

(Anzenhofer et al., 2024a).  

The remainder of this work is structured as follows: Section 2 reviews the literature on descriptive 

analyses of SMOD systems with a focus on extended booking horizons and their implications for 

the provider’s planning process. Section 3 provides a descriptive analysis on spatial and temporal 

characteristics with a focus on advance requests. In Section 4, we discuss the operational impact 

of the four identified demand patterns resulting from extended booking horizons and propose 

demand management approaches. Finally, Section 5 concludes the study and discusses future 

research directions.  

2 Literature Review 

In this section, we review the existing academic literature. Section 2.1 focuses on empirical stud-

ies examining (S)MOD systems and their analysis of demand structure. Section 2.2 explores re-

search on SMOD systems that allow customers to place same-day and advance requests, empha-

sizing the impact of an extended booking horizon on operational planning (vehicle routing and 

demand management). Finally, Section 2.3 identifies the research gap in the analysis of demand 

patterns in SMOD systems arising from an extended booking horizon. 

2.1 Descriptive Analysis of SMOD Customer Demand 

This section reviews works that conduct descriptive analyses of customer demand patterns in 

(S)MOD systems. We subdivide the discussion into two parts, starting with works that consider 

urban areas, before turning toward research focusing on rural areas. 

Urban areas: Several studies examine demand for SMOD in urban areas. Zwick and Axhausen 

(2022) analyze MOIA’s SMOD systems in Hamburg and Hannover (Germany) and focus on the 

spatio-temporal demand structure. Using heatmaps and histograms, they visualize the spatial dis-

tribution of rides as well as demand fluctuations over time. Other works, such as Zwick et al. 

(2023), Gödde et al. (2023), and Weckström et al. (2018), provide similar spatiotemporal anal-

yses. However, these studies differ from ours as they focus on SMOD systems that do not allow 
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advance requests. Other studies also examine spatial and temporal demand patterns in urban areas, 

but focus on ride-hailing systems, which only handle ad-hoc requests (e.g., Li et al., 2023, Shulika 

et al., 2024). 

Only one work specifically focuses on the demand structure of an SMOD system that allows 

advance requests. Chandakas (2020) analyze the urban SMOD provider Tisséo Mobibus in Tou-

louse, developing a medium-term forecast of demand up to seven days before the service day. 

They find that the level of “early” advance requests is a good indicator of the final total demand. 

Tisséo Mobibus allows customers to place advance requests 28 days before the desired service 

day and up to two hours before the desired time. Their descriptive analysis includes demand levels 

by month, week, and day, as well as booking curves showing when requests are placed within the 

booking horizon. Although the authors also descriptively examine an SMOD provider with an 

extended booking horizon, our work differs significantly from theirs: First, unlike them, we em-

phasize the interrelation between spatial and temporal patterns, particularly regarding the time of 

request. Second, while their work focuses on demand prediction, we elaborate on how the pro-

vider can draw on the broad “toolbox” of demand management to account for the discovered 

demand patterns. Third, we examine rural SMOD systems with a fundamentally different demand 

structure than in urban areas. Fourth, Tisséo Mobibus does not offer ad-hoc requests or same-day 

requests within two hours before the desired time. 

Rural areas: Research on rural SMOD systems aligns more closely with our work. For example, 

Sörensen et al. (2021) examine the SMOD system EcoBus in the Oberharz region (Germany). 

They use flow maps, i.e., plots that illustrate the spatial distribution of desired origin and destina-

tion locations via arrows, to provide insights into average demand levels. They also explore the 

interrelation between spatial demand patterns and desired times by presenting flow maps at dif-

ferent time intervals throughout the service day. While our descriptive analysis also includes anal-

yses of flow maps and desired times (see Section 3.3), our main contribution lies in analyzing the 

interrelation between the time of request and spatiotemporal characteristics to identify patterns 

induced by the extended booking horizon. There are also other works, like Imhof and Blättler 

(2023), that examine a rural SMOD system (mybuxi in the canton of Berne, Switzerland), but 

differ greatly from our work as they focus on SMOD systems that do not allow advance requests. 

2.2 Implications of an Extended Booking Horizon for Operational and Strategic 

Planning 

A body of literature examines the operational and strategic planning of SMOD systems that fea-

ture an extended booking horizon. The vast majority of works analyzes the implications of an 

extended booking horizon for operational planning, without explicitly accounting for specific de-

mand patterns. The review consists of three parts: First, we consider implications for vehicle 

routing decisions, which involve assigning customer requests to vehicles and planning routes. 
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Second, we consider operational demand management, which refers to decisions regarding ride 

availability or pricing. Third, we discuss strategic demand management. 

Vehicle routing: Numerous studies address the implications of an extended booking horizon for 

vehicle routing. Elting and Ehmke (2021) investigate the rural SMOD system EcoBus in the 

Oberharz region, using constraint programming to search for feasible solutions of the dynamic 

dial-a-ride problem. They argue that requests with longer booking lead times disrupt the natural 

ordering of requests, potentially even reducing the number of served requests. However, this ef-

fect can be mitigated by more advanced routing heuristics or rolling horizon optimization. Other 

studies on SMOD systems with extended booking horizons, both in urban (e.g., Engelhardt et al., 

2022, Ma and Koutsopoulos, 2022, Theodoridis et al., 2023) and rural areas (e.g., Lu et al., 2023), 

show that even requests with relatively short booking lead times (e.g., same-day requests) can 

improve the performance in terms of the number of served requests and vehicle kilometers trav-

eled. 

There are also a few studies that investigate the impact of cancellations in SMOD systems on 

vehicle routing: Horn (2002) incorporates cancellations into operational planning models without 

proposing mitigation strategies. Wu et al. (2024) investigate prediction-failure-risk-aware online 

dial-a-ride scheduling that allows for request selection and cancellations. Unlike prior research, 

their correction mechanisms for prediction errors and cancellations are embedded into the opti-

mization framework to proactively mitigate negative effects. However, they do not use demand 

management to proactively reject requests that are very likely to be cancelled. We propose that 

predicting cancellation probabilities and selectively rejecting such requests through demand man-

agement could be a major lever for SMOD providers. Cancellations are more often considered in 

the context of other types of MOD services, such as ridehailing services (e.g., He et al., 2018, 

Wang et al., 2019, Wang et al., 2024, Xu et al., 2022, Sun et al., 2023) or nonemergency medical 

transportation (e.g., Yu et al., 2021). 

Operational demand management: Research on the demand management implications of ex-

tended booking horizons is generally scarce. In the following, we discuss the literature that applies 

operational demand management to SMOD systems in urban and rural areas, highlighting the few 

papers that consider an extended booking horizon. 

Dynamic pricing: There is literature on dynamic pricing for SMOD systems, especially in urban 

areas (e.g., Qiu et al., 2018, Sharif Azadeh et al., 2022), but only few works consider dynamic 

pricing in rural areas (e.g., Arian et al., 2022, Anzenhofer et al., 2024b). More specifically, An-

zenhofer et al. (2024b) is the only work that applies dynamic pricing to a rural SMOD system 

with an extended booking horizon. In addition, there is literature on ride-hailing systems with 

dynamic pricing (Al-Kanj et al., 2020, Chen et al., 2019, Haliem et al., 2021, Ni et al., 2021, Liu 

et al., 2021). However, none of them consider an extended booking horizon. 

Availability control: The literature on availability control in SMOD systems is limited: While 

there are few works on SMOD systems in urban areas (Atasoy et al., 2015, Huang et al., 2020, 
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Haferkamp et al., 2024), only Anzenhofer et al. (2024a) consider a rural SMOD system with an 

extended booking horizon, and find that customers’ time flexibility (the deviation of the booked 

time from the originally desired time) can be exploited to steer customers toward more favorable 

pick-up times. In the study at hand, the descriptive analysis of the observed time flexibility is 

much more detailed. 

In addition, there is also a body of literature that examines demand management via simple ac-

cept-reject mechanisms in urban areas (Haferkamp and Ehmke, 2022, Heitmann et al., 2023, 

Hosni et al., 2014, Jung et al., 2016, Lotfi and Abdelghany, 2022). However, these works exclu-

sively consider ad-hoc requests. 

Strategic demand management: Research related to strategic demand management for SMOD 

systems is scarce. There is a small body of literature that focuses primarily on operational demand 

management but considers SMOD systems with differentiated products. For example, Arian et 

al. (2022) and Sharif Azadeh et al. (2022) study SMOD systems that offer several products (rides) 

with varying service quality, particularly with regard to waiting times. In addition, Atasoy et al. 

(2015) investigate a SMOD system that allows customers to choose between shared and non-

shared rides.  

2.3 Research Gap 

We are the first to conduct a detailed descriptive analysis of an SMOD system with an extended 

booking horizon, focusing specifically on the time of request. On the one hand, an extended book-

ing horizon allows SMOD providers to offer a higher level of planning reliability to potential 

customers. On the other hand, it results in unique demand patterns that may present challenges 

and opportunities for both SMOD providers and customers. Our study provides guidance to 

SMOD providers on how to leverage these patterns through tailored demand management ap-

proaches. We address a research gap in two key dimensions: 

Descriptive analysis focusing on advance requests: While spatial and temporal demand distri-

butions in SMOD systems have been extensively studied, we are the first to provide detailed 

insights into how an extended booking horizon impacts the demand structure and induces demand 

patterns in rural areas. 

Tailored demand management approaches addressing demand patterns:  

• Reservations: So far, there is no literature on rural SMOD areas providing evidence of stra-

tegic reservation behavior by customers. Its existence is only hypothesized by Sörensen et al. 

(2021). Nevertheless, there is already literature presenting demand management approaches 

suitable for addressing this demand pattern (e.g., Anzenhofer et al., 2024a). However, none 

of these publications explicitly refers to it. 

• Round trips: There is neither specific descriptive analysis of round trips in SMOD systems 

nor research on demand management approaches for addressing this demand pattern. 



Article A4: Extended Booking Horizons in Rural Shared Mobility-on-Demand Systems: Insights and Implications for 
Demand Management 

 159 

• Cancellations: We are the first to analyze cancelled demand with a focus on discussing and 

visualizing the importance of the ghost demand dwell time, i.e., the time interval between 

time of request and the actual cancellation, in SMOD systems. While there is some literature 

on the implications of cancellations on vehicle routing, there is no literature on tailored de-

mand management approaches that account for this demand pattern. 

• Time flexibility: There is limited literature that examines SMOD data to observe time flexi-

bility in customer requests. Only Anzenhofer et al. (2024a) provide some evidence of ob-

served customer time flexibility in rural SMOD services, but not at the same level of detail 

as in this paper. Further, they propose a demand management approach that exploits the time 

flexibility by means of time shifts. 

These gaps point to a clear need for further research into how extended booking horizons influ-

ence demand patterns and how providers can better manage demand in response. 

3 Descriptive Analysis of the Customer Demand 

This section provides a descriptive analysis of customer demand in one of the service areas of our 

industry partner. Section 3.1 provides a general summary of the booking process. In Section 3.2, 

we briefly introduce the service area under consideration. Then, Section 3.3 and Section 3.4 com-

prise a detailed analysis of customer demand with particular emphasis on the demand patterns 

associated with the extended booking horizon. 

3.1 Booking Process 

In this section, we outline the prototypical booking process employed by rural SMOD providers, 

along with the corresponding operational planning decisions. During the booking horizon, re-

quests are placed dynamically. Each request follows a four-step procedure: request arrival, feasi-

bility check (or demand management decision), order confirmation, and vehicle routing decision. 

Fig. 1 illustrates the process for an individual request, followed by a step-by-step explanation:  

• Request arrival: Initially, the customer specifies their desired ride via a smartphone app (or 

telephone). This includes parameters regarding the desired time, the origin-destination pair 

(OD pair), and the number of passengers. The provider tracks the time of request place-

ment (timestamp).  

• Feasibility check (or demand management decision): Next, the provider assesses the fea-

sibility of fulfilling the request based on the current route plan for all vehicles. Alternative 

ride times with small deviations from the desired time, either earlier or later, are also checked 

for feasibility. This approach, referred to as the feasibility check, generally follows a first-

come-first-served policy, commonly used by SMOD providers. A more advanced method 

additionally involves a demand management decision, assessing whether the request is prof-

itable, e.g., considering revenue net of routing costs (see Anzenhofer et al., 2024a). The 
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outcome of this step is an offer set, a list of feasible (and profitable) rides with different de-

sired times. If no feasible (and profitable) ride exists, the request is rejected by the provider. 

• Order confirmation: In this step, the provider presents the offer set from the previous step. 

The customer chooses their preferred ride and confirms the order. If unsatisfied with the 

available rides, the customer can still choose to abandon the booking process. 

• Vehicle routing decision: Finally, the provider updates the route plan to incorporate the new 

order. This step is also required for advance requests to ensure feasibility for subsequent re-

quests. However, if the customer abandons the process, no vehicle routing decision is made. 

 

Fig. 1 Booking process for an exemplary request (C: customer, P: provider) 

As our primary goal is to analyze customer demand, we concentrate on the first step, request 

arrival, and provide an explanation of the key request parameters below: 

Time of request: This parameter refers to the timestamp of a customer’s request submission dur-

ing the booking horizon. In FLEXIBUS’ system, customers can place advance requests up to 14 

days before the start of the service horizon. Generally, customers can submit requests at any time 

before their desired time (also during the service horizon). 

Desired time: The desired time refers to the time in the service horizon when the customer wishes 

to be transported. We classify requests based on the time of request in relation to the desired time: 

Advance requests are submitted the day before the start of the service horizon or earlier. Same-

day requests are submitted during the service horizon but with a booking lead time, i.e., the time 

span between time of request and desired time, of more than 5 min. Ad-hoc requests are placed 

with less than 5 min of lead time. The service horizon, which can vary by service area and day 

type (e.g., weekday or weekend), defines the available time range for the desired pick-up or drop-

off. 

OD pair: Customers specify an OD pair, consisting of two locations within the service area. The 

provider uses predefined virtual stops across the service area and assigns each specified location 

to the nearest virtual stop. 
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Number of passengers: Providers allow customers to request rides for multiple passengers in a 

single request. 

3.2 Service Area and Service Horizon 

The service area under consideration features a central town, where the depot is located, sur-

rounded by smaller villages, which we collectively refer to as the peripheral area.  

 

Fig. 2 Level of demand 

In our analysis, we focus on working days (Monday to Thursday), as these days share the same 

service horizon (5 a.m. to 9 p.m.) and have similar demand levels as illustrated in Fig. 2. Please 

note that we exclude Fridays, Saturdays, Sundays, and public holidays from our analysis, as they 

have a different service horizon and demand levels than working days. 

3.3 Descriptive Analysis of Customer Demand 

In this section, we analyze the customer demand based on the key request parameters: time of 

request, desired time, and desired OD pair. We first conduct a separate descriptive analysis of 

each parameter, followed by an assessment of their interdependencies with varying booking lead 

times to identify specific demand patterns in the next subsection. 

Fig. 3 provides insights into time of request, desired time, and spatial distribution, forming a basis 

for understanding the structure of customer demand.  

Time of request: Fig. 3a illustrates the booking curve, showing the distribution of the time of 

request (aggregated on a day-level). A notable peak occurs at −14 days, with 8.75% of requests 

made shortly after the start of the booking horizon. The curve then rises moderately, reaching 

another peak at −1 day, by which time 53.09% of the total requests have been submitted as ad-

vance requests (represented by green and light-yellow bars).  
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Fig. 3 Descriptive analysis of time of request, desired times, and origin-destination pairs 
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These advance requests can be further divided into early advance requests (with a booking lead 

time of −8 to −14 days, representing 20.25%), and late advance requests (with a booking lead 

time of −1 to −7 days, representing 32.84%). Overall, advance requests account for the largest 

share compared to same-day requests (22.86%, dark-yellow bar) and ad-hoc requests (24.05%, 

red bar). This highlights the importance of advance requests, which are more frequent than same-

day requests and ad-hoc requests combined. 

Desired time: Fig. 3b shows the distribution of hourly desired times for the service horizon, 

which ranges from 5:00 to 21:00. The demand levels reveal distinct patterns. The data shows an 

early peak between 9:00 and 12:00, capturing 33.73% of the total demand (light-yellow bars), 

followed by an afternoon peak from 13:00 to 16:00, which accounts for 30.53% (dark-yellow 

bars). Two off-peak periods are also identifiable: the morning hours from 5:00 to 8:00, comprising 

19.79% of the total demand, and the evening hours from 17:00 to 21:00, making up 15.95%. 

These patterns highlight a concentration of demand during the midday hours, with significantly 

lower demand during the early morning and late evening periods. 

Spatial distribution: Lastly, we examine the spatial demand distribution (Fig. 3c), which is 

closely tied to the service area. For greater clarity, each virtual stop and the associated demand is 

mapped to a cluster (given by the provider). The demand is visualized using a heatmap, in which 

each circle corresponds to one of the clusters. Its size indicates the volume of overall demand in 

that cluster. The color bar to the right shows whether a cluster is more frequently requested as a 

pick-up (light-yellow), drop-off (dark-purple), or is relatively balanced between the two (green). 

The central area of the service area, which we refer to as the center, stands out. It is both the most 

frequent origin (55.75%) and destination (58.42%), indicated by the balanced yellow color. In 

contrast, some peripheral clusters lean slightly towards more pick-ups or drop-offs respectively, 

though lying in moderate ranges. Additionally, we illustrate demand flows with arrows represent-

ing ride direction, where arrow thickness corresponds to ride frequency. A hub-and-spoke pattern 

is evident, with three clusters showing significant bi-directional traffic, highlighted by double-

headed arrows. 

To provide further insights into the service area under consideration, we report the average re-

quested distances in Appendix A. In this analysis, we categorize all requests based on the lengths 

of the desired OD pairs and present them in a histogram. The most frequent requests are for dis-

tances of less than 5 km (46.35%) or between 5 and 10 km (41.37%). For a more detailed break-

down of the distance distribution, we refer readers to Appendix A.1.  

We further enhance interpretability by categorizing requests into four distinct spatial subsets. This 

aggregation allows for a clearer understanding of spatial demand patterns: 

• Rides within the center (29.14%): These are rides with both the origin and destination being 

within the center.  
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• Rides from the center (26.92%): These rides start in the center and end at a stop in the sur-

rounding peripheral areas. 

• Rides to the center (29.63%): These involve rides originating from peripheral stops with the 

destination in the center. 

• Rides within peripheral area (14.31%): These rides start and end at stops located in the pe-

ripheral area. 

This classification highlights that only around 15% of requests are "spoke-to-spoke" rides (rides 

within peripheral area), while the vast majority involve the center as either the origin, destination, 

or both. This result underscores the hub-and-spoke spatial pattern prevalent in the service area. 

Further analysis of the average distances for each spatial type is provided in Appendix A.2. As 

expected, rides within the center are shortest, with 100% of these rides being less than 5 km. Rides 

to and from the center show similar distributions, with the majority of rides (64.74% for rides 

from the center and 67.41% for rides to the center) falling between 5 and 10 km, and smaller 

percentages (8.93% and 9.34%, respectively) covering distances between 10 and 15 km. In con-

trast, rides within peripheral areas show a different pattern, with an average distance that is 

65.81% longer than the average of the total demand: 36.16% of these rides fall between 10 and 

15 km, and a notable 12.83% of rides are between 15 and 20 km.  

3.4 Customer Demand with a Spotlight on the Extended Booking Horizon 

In this section, we highlight the unique patterns that result from an extended booking horizon. 

First, we explore specific trends in the time of request related to desired times and spatial distri-

bution. Thereby, we identify strategic booking behavior in the form of reservations. Second, we 

examine round trip booking behavior. We start with a brief introduction, followed by an in-depth 

look at differences in time of request for the outward rides and return rides of round trips. Third, 

we analyze the characteristic cancellation behavior enabled by the extended booking horizon. 

Lastly, we examine the time flexibility that we can observe for individual requests in the booking 

process. 

3.4.1 Reservation Behavior 

First, we investigate whether an extended booking horizon exhibits specific patterns in desired 

times. To do so, we utilize the four request types identified in the general analysis: early advance 

requests, late advance requests, same-day requests, and ad-hoc requests. 

Table 1: Relative frequency of request types during the service horizon 

 Early advance  

requests 

Late advance  

requests 

Same-day requests Ad-hoc requests 

Off-peak morning 29% 45% 3% 22% 

Peak morning 16% 36% 26% 22% 

Peak afternoon 19% 28% 29% 24% 

Off-peak evening 14% 22% 29% 35% 
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Time of request – Desired times: As shown in Fig. 4, there is a general trend that advance re-

quests (both early and late) dominate during the off-peak morning hours, while same-day and ad-

hoc requests increase substantially during the peak periods and ultimately prevail in the off-peak 

evening (see Table 1). Focusing on late advance and same-day requests, we find that the share of 

late advance requests is particularly high in the first service hours, while same-day requests are 

comparatively low. This is largely due to the classification because any request submitted shortly 

before the start of service is categorized as a late advance request. 

 

Fig. 4 Desired times for different request types 

However, the demand patterns of early advance requests are particularly notable. These requests 

are most frequent during off-peak morning hours (e.g., 6: 00: 43%, 7: 00: 39%), around the af-

ternoon peak at 16: 00 (28%), and in the final service hour (28%). Customers may prefer to 

reserve rides well in advance, particularly those who, e.g., commute for work.  

As the day progresses, same-day and ad-hoc requests rise, peaking in the evening. This indicates 

a trend toward increased spontaneity among customers later in the day. This spontaneity may be 

associated with customers’ need to plan flexible round trips. For instance, a customer might use 

an SMOD service for appointments or work. However, due to unpredictable return times the re-

turn ride is often requested with a short booking lead time. We explore this pattern in greater 

detail in Section 3.4.2, where we specifically analyze round trips. 

Time of request – Spatial distribution: We now examine how the time of request relates to 

desired OD pairs. Using the four OD pair types and direct OD distances, we aim to identify pat-

terns. As shown in Fig. 5a, the highest proportion of advance requests is observed for peripheral 

rides, with a combined share of 59.77% (Early: 28.91%, Late: 30.88%). Notably, early advance 

requests for peripheral rides (28.91%) are higher compared to other OD pair types: within the 

center (16.53%), from the center (20.85%), and to the center (19.29%). This suggests a moderate 

preference for early planning for peripheral rides. While rides within and from the center exhibit 
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relatively balanced booking patterns, an interesting trend emerges for rides to the center. Here, 

advance requests dominate with a share of 55.58% (Early advance: 19.29%, Late advance: 

36.29%), indicating a preference for advance planning, likely driven by commuting, appoint-

ments, or shopping trips to the center. This finding implies that advance booking can be crucial 

for these types of rides. We expect that long rides outside of the center can be pooled much worse 

with other rides that predominantly occur in and around the center. 

 

Fig. 5 OD-pair types and distances for different request types 

Fig. 5b highlights a clear trend that longer rides are more frequently requested in advance. E.g., 

early advance requests make up 15.00% of the shortest rides (0 − 5 km) but increase to 22.26% 

for 15 − 20 km rides. Late advance requests also show an upward trend, accounting for 34.16% 

of the shortest rides and increasing to 41.07% for 15 − 20 km rides. The longest distance range 

(20 − 25 km), which contains only a small number of requests, is exclusively composed of late 

advance requests (100%). 

This analysis reveals a strong tendency for customers to submit advance requests for longer rides, 

peripheral rides, and, to some extent, rides to the center. These trends suggest that customers may 
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prioritize booking longer or peripheral rides in advance, possibly due to greater uncertainty in 

availability for these ride types. 

In Appendix A.3, we combine these patterns and analyze the demand structure of different request 

types for peripheral rides and their respective desired times. When comparing peripheral rides to 

requests associated with the other three categories (within, to, and from the center), we find addi-

tional evidence that early reservation peaks for specific desired times (e.g., 6:00, 7:00, 16:00, 

20:00) are even more pronounced for peripheral rides (49%, 52%, 40%, 37%) compared to rides 

involving the center (42%, 36%, 25%, 24%). Beyond these desired time peaks, early advance 

requests generally occur at higher levels for peripheral rides (off-peak morning: 32%, peak morn-

ing: 18%, peak afternoon: 32%, off-peak evening: 18%) than for rides involving the center (off-

peak morning: 29%, peak morning: 16%, peak afternoon: 17%, off-peak evening: 13%). 

3.4.2 Round Trips 

Now, we focus on customer behavior concerning round trips. A round trip is defined as a pair of 

requests (outward ride and return ride) that satisfies the following conditions: 

• Outward ride and return ride are requested by the same customer. 

• The pick-up (drop-off) of the outward ride occurs in the same cluster as the drop-off (pick-

up) of the return ride. 

• The desired time of the outward ride is earlier than that of the return ride. Both rides take 

place at the same day. 

We provide a general overview of the relevance of round trips and their distinguishing features. 

Additionally, we explore specific patterns in booking lead times that differ between outward rides 

and return rides. Overall, 46.76% of all requested rides are part of round trips, making them a 

crucial consideration for SMOD providers. In this case study, nearly every second customer re-

quests a return ride to their original location. 

Fig. 6a visualizes the shift in desired times between outward and return rides. Naturally, the de-

sired time of outward rides lies earlier in the day, while return rides occur closer to the end of the 

service horizon. On average, the time span between outward and return rides is 227.85 min 

(around 3.8 hours), with most time spans ranging from 90 min to 334.5 min. A more detailed 

analysis can be found in Appendix A.4. 

In terms of spatial patterns, Fig. 6b shows that most round trips involve the center: 43.79% are 

within the center, and 34.20% between the center and the peripheral area (back or to the center). 

This suggests that many customers use the service for rides to the center and back, for example 

for appointments. 

A key observation is the difference in booking lead times between outward and return rides. Out-

ward rides are generally booked with more lead time, averaging 105.35 hours, compared to 77.91 

hours for return rides. This suggests that outward rides are often linked to fixed activities, such as 
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doctor’s appointments or commuting, where the start time is precisely known. In contrast, the 

timing for return rides is often uncertain, as it depends on the length of the stay, resulting in more 

spontaneous requests.  

This difference is also evident in the request types for outward and return rides: 68.02% of out-

ward rides are requested in advance. Considering return rides, only 44.60% of return rides are 

requested in advance. 29.97% of return rides are requested same-day and 25.43% ad-hoc. This 

discrepancy can lead to an undesirable situation from the customer’s perspective: Assuming a 

provider applies a first-come-first-served policy without demand management, outward rides are 

more likely to be accepted as early requests are prioritized. Hence, the return ride corresponding 

to an accepted outward ride may be rejected, leaving customers “stranded” at their destination. 

Given that nearly half of all requested rides are part of round trips, this issue is relevant. 

3.4.3 Cancellations 

In this section, we explore the relevance of cancellations within SMOD systems with extended 

booking horizons. We define a cancellation as a request that initially became a confirmed order 

(see Fig. 1) but was later cancelled unilaterally by the customer.  

In the previous analyses, we excluded cancelled requests because we assume that they do not 

reflect real demand. Hence, we have considered only 79.93% of all received requests so far. The 

remaining 20.07% were cancelled before the desired time or at the desired time (no-show), mak-

ing it a relevant share. In this section, we analyze the key characteristics of this cancelled demand, 

including the time of request, the desired time, and the spatial distribution. This descriptive anal-

ysis helps identify patterns that may enable SMOD providers to predict the likelihood of a can-

cellation at the time of request with high accuracy.  

Comparing Fig. 3a and Fig. 7a, we observe substantial differences between cancelled and non-

cancelled demand. Notably, the booking curve for cancelled requests skews toward longer book-

ing lead times. E.g., 38.89% of cancellations are early advance requests (compared to only 

20.25% early advance requests for non-cancelled demand), and 40.27% are late advance requests 

(vs. 32.84%). In contrast, orders resulting from ad-hoc requests and same-day requests are rarely 

cancelled (3.05% and 17.79%, respectively, vs. 24.05% and 22.86% for non-cancelled de-

mand). These patterns underscore the particularly high relevance of cancellations in SMOD sys-

tems with extended booking horizons.  

In terms of desired times (Fig. 3b and Fig. 7b), the distribution of cancelled and non-cancelled 

requests is generally similar. However, certain hours, such as 12:00 and 16:00, are more prone to 

cancellations. Spatially, cancelled rides are more common in the peripheral area, with a notable 

shift toward drop-offs in these regions. While the center remains the most common origin 

(54.02% vs. 55.75%) and destination (50.39% vs. 58.42%), cancellations are more prevalent in 

rides to the peripheral area, as indicated by the purple dots around the hub in Fig. 7c. These 
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distinct patterns revealed by comparing cancelled and non-cancelled demand (Fig. 3c and Fig. 

7c) suggest potential for machine learning algorithms to predict cancellations at the time of re-

quest. Because of an extended booking horizon, a cancelled request may remain in the system, 

mistakenly treated as true demand, for a certain dwell time, which we call ghost demand dwell 

time. The provider treats the request as true demand from the time of request until the time of 

cancellation, although it is actually ghost demand (see Fig. 9). In a didactic example (Fig. 8), the 

provider receives a request with a lead time of −10 days. The time of cancellation is −2 days 

before the desired time (cancellation lead time of 2 days). The period between time of request 

and time of cancellation spans 8 days during which the request, being ghost demand, could have 

a negative impact on operational planning. 

 

Fig. 6 Temporal and spatial characteristics of round trips 
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Fig. 7 Descriptive analysis of time of request, desired times and origin-destination pairs (cancelled demand) 
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Fig. 8 Illustrative example of an individual cancelled request (ghost demand dwell time, cancellation lead time) 

Fig. 9 shows that a considerable proportion of ghost demand remains in the system for up to two 

weeks, which is only possible because of the extended booking horizon. While 42.17% of all 

cancelled requests remain in the system for less than one day (0d), 57.83% remain in the system 

for more than one day, with 29.38% remaining in the system for more than 7 days.  

 

Fig. 9 Distribution of ghost demand dwell time for different request types 

Compared to the average ghost demand dwell time (105.24 hours), the average cancellation lead 

time is lower (36.29 hours). Looking at Fig. 10, we find that the majority of cancellations occur 

on the same day as the desired day with 72.15% and very few requests are cancelled with a longer 

cancellation lead time (only 6.86% with at least seven days lead time). 

3.4.4 Time Flexibility 

In this section, we examine the observed time flexibility of customers when their desired time 

cannot be met. Time flexibility could be a crucial factor in improving SMOD systems, especially 

in rural areas with dispersed demand offering few opportunities for ridepooling. Hence, under-

standing customers’ willingness to accept deviations from their desired time can provide valuable 

insights. Please note that, theoretically, customers could also be asked to be more flexible regard-

ing the waiting time or the maximum added ride time. In practice, however, these parameters are 
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set uniformly for any request to guarantee a certain service level. Hence, offering alternative pick-

up/drop-off times is the only practical way of exploiting customers’ time flexibility. 

 

Fig. 10 Average cancellation lead time for different request types 

By analyzing customer behavior when the ride at the desired time is not offered, we can gain 

insights into their willingness to accept alternative times. Our analysis provides a lower bound on 

this flexibility, as it only includes cases where customers place a request that transforms into an 

order for an alternative time. Due to data limitations, we cannot observe the full offer set presented 

to customers. This means that we cannot see which options customers have declined. Further, it 

is possible that customers may exhibit even greater flexibility if they are offered additional op-

tions with larger deviations from their desired times. Finally, a substantial proportion of requests 

(32.28%) are offered their exact desired time and therefore are never “asked” to reveal any time 

flexibility, let alone their true flexibility. 

Our findings are visualized in Fig. 11 using a density function. The results show that most requests 

exhibit some degree of flexibility, with an overall mean of 29.98 min. Notably, the extended 

booking horizon allows SMOD providers to offer alternative times both before and after the orig-

inal desired time, resulting in observations of both positive and negative flexibility. The average 

positive flexibility (willingness to depart later) is 67.02 min, while the average negative flexibility 

(willingness to depart earlier) is -18.81 min. Requests are almost uniformly distributed across 

three categories: 31.96% show flexibility below the median, 35.76% show flexibility above the 

median, and 32.28% match the median flexibility (0 min).  

For further analysis, we segment the requests into three distinct subsets: low-flexibility requests 

with deviations of fewer than 5 min from the desired time (49.40% of all requests), moderate-

flexibility requests with absolute flexibility between 5 min and 30 min (34.72% of all requests), 

and high-flexibility requests (15.88% of all requests) with over 30 min of flexibility. 
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Fig. 11 Observed time flexibility - Density of observed accepted time deviations from desired time 

As Fig. 12 shows, requests submitted early in the booking horizon often show low time flexibility. 

In contrast, same-day and ad-hoc requests exhibit higher flexibility. Especially at the end of the 

booking horizon, the share of requests with high observed time flexibility increases markedly, 

while moderately flexible requests decline.  

However, due to the abovementioned data limitations and possible additional biases due to the 

demand management applied by FLEXIBUS, these findings do not allow the conclusion that cus-

tomers submitting advance requests are systematically less flexible. However, despite its limita-

tions, our analysis reveals a significant finding: some customers even display negative flexibility, 

indicating that many customers are willing to adjust their desired times either earlier or later. 

 

Fig. 12 Different flexibility levels over the booking horizon 
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4 Implications for Operational Demand Management 

SMOD providers can improve planning reliability for customers by extending the booking hori-

zon. However, descriptive analysis of the demand structure (Section 3.4) reveals four key patterns 

associated with the extended booking horizon that are prevalent in the considered service area. 

These patterns impact system performance, which suggests a potential for demand management 

approaches to both mitigate undesirable effects and take advantage of desirable effects to enhance 

system performance. In this section, we provide a compact summary of each pattern’s impact on 

operational planning along with suggestions for demand management. 

Reservation behavior 

Impact on operational planning: We observe that customers disproportionately submit advance 

requests for certain rides based on the following parameters: 

1. Desired time (e.g., 6:00–8:00)  

2. OD pair (peripheral rides) 

3. Direct OD distance (longer-distance rides). 

On the one hand, such strategic reservation behavior is not necessarily detrimental: In general, it 

could be argued that advance requests are beneficial for the operators’ operational planning since 

they increase the deterministic information known before the service horizon starts. On the other 

hand, it is also advantageous for the customer since they can reserve rides that may be particularly 

important to them by planning their trip and requesting their ride earlier than other customers do. 

On the other hand, strategic reservation behavior can have negative consequences for the provider 

and other customers. From the provider’s point of view, customers taking advantage of early 

reservations may particularly request “unfavorable rides” (not necessarily in monetary terms). 

These rides could then displace other customers requesting later in the booking horizon whose 

rides may be more favorable. Also, from a customer perspective, ordering rides for equally im-

portant but spontaneously arising trips may become difficult because the fleet is largely occupied 

already several days in advance. 

For example, it seems likely that peripheral rides have a lower average chance of being accepted, 

given that they represent only a small portion of total requests (14.31%) and are on average longer 

than other rides involving the center (Appendix A.2). Therefore, they allow for less consolidation. 

Whether serving peripheral rides aligns with the provider’s objectives depends on factors such as 

the available supply and the given demand of the service day.  

Demand management suggestion: If the SMOD provider considers reservation behavior an issue, 

we suggest the adoption of anticipatory demand management. The SMOD provider may use prob-

abilistic information about future demand when a request arrives to decide on the availability 

and/or pricing of rides. This involves approximating the opportunity cost of serving a request, 

which captures the expected displacement of future revenue and the expected increase in routing 

cost (Fleckenstein et al., 2024). 
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Anticipatory demand management allows an SMOD provider to steer all demand, including early 

advance requests, according to their operational objectives. E.g., by applying availability control, 

a provider can decide which ride options a customer is offered in response to a given request, 

depending on the opportunity cost of possible ride options (e.g., alternative pick-up times). As a 

result, the offers made are less dependent on the time of request (Anzenhofer et al., 2024a).  

While availability control allows the provider to manage the access to the system very effectively, 

it is also quite coercive from the customers’ perspective. Frequently, customer requests are re-

jected due to high opportunity cost despite the existence of feasible rides. To give all customers 

a chance to access the service, dynamic pricing can be used for demand management (Arian et 

al., 2022). With dynamic pricing, rides with high opportunity cost are still offered but at an in-

creased price. Then, the customer can still decide whether their desired ride is important enough 

for them to pay the higher price (Eliasson, 2021). 

Round trips 

Impact on operational planning: A substantial portion of demand (46.76%) involves round trips, 

underscoring their importance. We observe notable patterns in the request types for outward and 

return rides: outward rides are more frequently requested in advance (68.02%) than return rides 

(44.60%). A potential explanation is that customers can precisely specify the desired time for the 

outward ride well in advance if their planned activity begins at a fixed time. In contrast, return 

times tend to be more variable and unknown to the customer in advance. If a provider applies a 

first-come-first-served policy, this could lead to “stranded” customers that are forced to switch to 

another mode of transport for the return ride on short notice. This might lead to many customers 

not even considering the SMOD service as a suitable mode of transport. Then, a lot of potential 

demand is lost.  

Demand management suggestion: If an SMOD provider wants to facilitate round trips for planned 

activities with an uncertain end time, our suggestion is twofold:  

First, as with reservation behavior, anticipatory demand management can help achieve consistent 

offer quality across the booking horizon, increasing the likelihood that customers can order their 

return ride ad-hoc. 

However, since this alone does not guarantee the necessary planning reliability to fully avoid 

“stranding”, SMOD providers can additionally apply strategic demand management: E.g., the 

provider can design a premium ride option that allows the customer to specify a larger, provisional 

time window within which they are guaranteed a return ride. This would give the customer the 

opportunity to confirm the exact desired time of their return ride shortly in advance, possibly with 

a certain minimum booking lead time. E.g., if a customer has a doctor’s appointment with a known 

start time (9: 30), the outward ride can be ordered in advance, while a return ride is guaranteed 

within a larger timeframe (e.g., 10: 00 – 11: 00) to account for the uncertain desired return time. 

With a minimum booking lead time of, e.g., 30 min, the customer could specify their desired 
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return time within the provisional time window, such as confirming at 09: 55 for a 10: 25 pick-

up. While this product design is certainly associated with operational challenges for the provider, 

it could offer a compromise between sufficient planning reliability for customers and system per-

formance. 

Note that the provider can clearly also address reservation and round trip issues by expanding the 

vehicle fleet. However, this solution comes at considerable cost, including capital expenditures 

for vehicles and operational expenses such as driver wages. Thus, increasing supply should be 

viewed as a subordinate solution compared to applying demand management, which requires 

much lower expenses. 

Cancellations 

Impact on operational planning: Unilateral cancellations by customers are inherently problematic 

for the operational planning of SMOD systems. In our descriptive analysis, their relevance is 

emphasized by their relative frequency during the observation period (20.07% of all requests 

submitted result in cancelled orders). 

With an extended booking horizon, the issue of cancellations is further exacerbated: Unlike urban 

providers, which primarily receive ad-hoc requests and mainly deal with ad-hoc cancellations 

(no-shows), rural providers must consider this “ghost demand” in operational planning, poten-

tially over a large portion of the booking horizon (Fig. 10).  

This could distort operational demand management decisions: First, whenever a new request ar-

rives, this ghost demand is considered as true demand when approximating the opportunity cost 

of the new request. Hence, the consolidation with ghost demand, which is in fact never realized, 

can lead to an opportunity cost estimation error. E.g., the opportunity cost of a newly arriving 

request for a ride within the peripheral area could be underestimated due to compatible peripheral 

ghost demand. 

Second, ghost demand blocks fleet resources over its dwell time. Meanwhile, requests that are in 

fact feasible (were it not for the ghost demand) are rejected. The longer the ghost demand dwell 

time, the more time there is for such demand displacement to realize. Thus, we conclude that the 

dwell time of the ghost demand is critical, and the damage likely increases with dwell time. 

Independent of the impact on operational demand management, there are also implications for 

vehicle routing, which we only touch on briefly because it is not the focus of our work: For very 

late cancellations, routing costs realize because, e.g., the pick-up location is visited by a vehicle. 

In addition, as it is the case for demand management, route planning is distorted by unrealized 

consolidation with ghost demand. 

Demand management suggestion: Unlike reservation behavior or round trips, anticipatory de-

mand management (e.g., Anzenhofer et al., 2024a) cannot mitigate the impact of cancellations 

unless they are explicitly considered. Hence, a tailored prediction model must be integrated to 

assess each request’s cancellation probability, using information available at request arrival. The 
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discovery of patterns in cancellations by our descriptive analysis suggests that such a prediction 

should be possible with high accuracy. 

To investigate this hypothesis, we apply XGBoost, a widely used gradient boosting method (Chen 

and Guestrin, 2016), to predict cancellations. We train the model using a train-test split with 80% 

of the data set for training and 20% for testing. As hyperparameter values, we set 1000 estimator 

trees, a maximum depth of 6 for each tree, and a learning rate of 0.1. The set of features includes 

the requested day of week, the desired hour, the OD type, and the anonymized customer ID. With 

this model, we achieve a high accuracy of 93.66%. These promising results suggest that a can-

cellation predictor can, e.g., be incorporated into an anticipatory demand management frame-

work, enabling providers to proactively reject requests based on the cancellation prediction or 

charge an increased price (Wu et al., 2024). 

The high relevance of cancellations also suggests the application of overbooking, i.e., the practice 

of selling more rides than the available capacity allows as a hedge against customer cancellations. 

If less demand is cancelled than predicted, the provider must bump customers at pre-determined 

or negotiated penalties and additional goodwill losses (Klein et al., 2020). Although overbooking 

is well-established in other applications, particularly the airline industry, there is little literature 

on (S)MOD systems. The only work to our knowledge is Liu et al. (2021), who develop a general 

optimization framework for a ridehailing system that allows for the consideration of cancellations 

via an overbooking policy. 

Time flexibility 

Impact on operational planning: Our findings suggest that an extended booking horizon allows 

SMOD providers to leverage time flexibility both before and after the desired time, which is not 

possible in systems limited to ad-hoc requests. Hence, SMOD providers have greater opportuni-

ties to steer customers toward choosing alternative rides instead of the originally desired ride.  

We observe a substantial absolute time flexibility (29.98 min). It is important to note that this 

observed time flexibility is only a lower bound and the true time flexibility is likely much higher. 

The average positive flexibility (willingness to accept a later pick-up) is +67.02 min, while the 

average negative flexibility (willingness to accept an earlier pick-up) is −18.81 min.  

Demand management suggestion: We suggest that SMOD providers actively leverage the time 

flexibility of customer requests. Specifically, we suggest implementing demand management us-

ing availability control (Anzenhofer et al., 2024a) or dynamic pricing (Arian et al., 2022). E.g., at 

demand peaks during the service horizon such as the morning peak, it may be beneficial for the 

provider to actively steer advance requests to the earlier off-peak morning hours, where more 

supply is available. Anzenhofer et al. (2024a) conduct a computational analysis on the value of 

time flexibility. They find that demand management approaches utilizing time shifts can improve 

service reliability (increasing the number of served requests) and environmental sustainability 
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(improving distance savings relative to private motorized transport), with the benefits increasing 

the more time flexibility customers have. 

5 Conclusion and Future Research Directions 

This study examined the patterns in customer demand arising from an extended booking horizon 

in SMOD systems. These patterns offer valuable insights into customer behavior when customers 

are given the crucial opportunity to plan rides early in advance. Our descriptive analyses revealed 

clear patterns in reservation behavior, round trip requests, cancellations, and observable time flex-

ibility. Based on these findings, we proposed tailored demand management approaches that can 

improve the system performance both from the perspective of providers and customers. 

Our results give rise to several research questions that require further investigation: 

• Demand management with cancellations: Despite the rich body of literature on demand 

management for SMOD systems, approaches explicitly considering cancellations are rare. 

Future research should focus on developing algorithms that can readily exploit probabilistic 

information about cancellations. 

• Enhanced cancellation prediction models: While we show that simple machine learning 

models already achieve a high accuracy in predicting cancellations, future research could in-

vestigate more sophisticated models that integrate additional features, such as customer pref-

erences, external factors (e.g., weather, events), or customer-specific features. This is espe-

cially beneficial if overbooking strategies are used for demand management since erroneous 

predictions of cancellations would then lead to confirmed orders becoming infeasible. To 

avoid losses in customer goodwill, expensive short-term measures would be necessary, such 

as resorting to regular taxis. 

• Survey-based research on time flexibility: While we measure the observable time flexibil-

ity based on historical orders, future research should aim at determining more accurate ap-

proximations of the true time flexibility. Due to historical order data being biased by the 

provider’s decision-making, conducting customer surveys appears to be a promising ap-

proach. In particular, such research could reveal the true flexibility of customers placing ad-

vance requests. 

• Strategic decision support and operational solution algorithms for round trip product: 

The proposed premium product for round trips deserves further investigation both from the 

strategic perspective as well as the operational perspective. At the strategic planning level, 

future research could provide decision support regarding the product design, i.e., the size of 

the provisional time window for the return ride or the minimum booking lead time for con-

firming the exact desired pick-up time. At the operational planning level, future research 

should explore demand management approaches that incorporate the premium product for 
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round trips. The main challenge is to ensure the guaranteed service given the provisional time 

window and the minimum booking lead time. 
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Appendix A.1 – Distribution of Direct Origin-Destination Pair  

Distance (Total Demand) 

 

Fig. 13 Relative frequency of requests associated with a specific origin-destination pair distance 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Appendix A.2 – Distribution of Origin-Destination Pair Distance 

(Spatial Type) 
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Fig. 14 Relative frequency of requests with a specific origin-destination pair distance per spatial request type 
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Appendix A.3 – Average Proportions per Request Type for Specific 

Service Hours 

 

Fig. 15 Relative proportions per request type for different desired times 

Appendix A.4 – Time Difference between Outward and Return Rides 

 

Fig. 16: Boxplot on time difference between outward and return rides in min 
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Abstract 

In rural areas, shared mobility-on-demand services can improve the sustainability of public 

transport. However, bundling customer rides is challenging due to an unfavorable spatial and 

temporal demand distribution. As one potential solution, service providers could apply demand 

management. By controlling the availability of offered rides on an operational level, they could 

try to influence the resulting orders to allow more bundling. In practice, however, the introduction 

of demand management, which is a strategic decision, is often impeded by the inability of stake-

holders to assess the exact impact on system performance in advance. In this paper, we tackle this 

issue by developing a methodology that serves as a basis for the strategic decision on how to 

implement operational demand management by realizing different types of demand control poli-

cies. More precisely, we propose a methodology that evaluates different policies by applying them 

to a model of the operational planning problem, which itself has not been considered in the exist-

ing literature. For this purpose, we first formulate the operational planning problem as a Markov 

decision process. Second, we apply practical solution algorithms representing different control 

policies on a model variant supporting the strategic decision. Finally, drawing on real-world data 

from FLEXIBUS, a rural provider in Germany, we conduct a computational study and present 

managerial insights into the impact of different control policies on the system performance in 

terms of profit, which the provider aims at maximizing, and other sustainability-oriented objec-

tives of municipal contracting authorities. 

Key words: Mobility-on-Demand, Rural Areas, Demand Management, Availability Control, 

Routing 
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1 Introduction 

Sustainable mobility is a key societal goal, where there are still critical issues despite all efforts: 

severe environmental impacts of the transport sector (EEA, 2024, EPA, 2024), a lack of social 

equity in terms of access to mobility (Banister, 2011, European Parliament, 2021), and economic 

inefficiencies that lead to significant macroeconomic costs (Allcott, 2013, Gössling et al., 2022). 

A significant cause of these issues is the high reliance on individual motorized transportation, 

accounting for about 80% of the modal split during the period from 2010 to 2020 (Eurostat, 2022). 

This has pushed many countries to pursue a shift towards more sustainable public transportation 

options.  

In rural areas, traditional scheduled public transport often enters a vicious circle of limited de-

mand and supply (Bar-Yosef et al., 2013). This leads to inefficiencies in mobility provision, un-

attractive schedules, and, therefore, a low modal split owing to its non-competitiveness with mo-

torized individual transport (Nobis and Kuhnimhof, 2018). To overcome these issues, shared mo-

bility-on-demand (SMOD) represents one of the most promising concepts (Alonso-González et 

al., 2018, Poltimäe et al., 2022, Sörensen et al., 2021). Also known as demand-responsive trans-

portation (Schasché et al., 2022) or (shared) ride-hailing (Gilibert et al., 2020), SMOD refers to a 

flexible, demand-responsive passenger transportation system in which rides can be booked on 

request and shared by unrelated individuals through pooling.  

In practice, SMOD systems have been successfully implemented in rural areas across various 

countries and by different providers, such as ioki (ioki, 2024), Padam Mobility (Padam Mobility, 

2024), and Via (Via, 2024). Several publications have also demonstrated the substantial sustain-

ability benefits of SMOD in ecological (Coutinho et al., 2020, Prud’homme et al., 2011), social 

(Asatryan et al., 2023, Ma and Koutsopoulos, 2022), and economical (Bischoff et al., 2017, Va-

zifeh et al., 2018) terms. There are also promising results regarding the comparison to scheduled 

public transport. E.g., Asatryan et al. (2023) compare scheduled buses with an SMOD system 

operating during late evening hours in Wuppertal (Germany), and find that the SMOD system 

improves the service quality. 

However, trade-offs exist between improving traditional public transport and introducing SMOD 

(e.g., Viergutz and Schmidt, 2019; Sieber et al., 2020). Overall, while cost-efficiency is highly 

dependent on the region, SMOD systems have a high potential in rural areas to improve service 

quality, accessibility, and environmental sustainability, especially if integrated with scheduled 

services (Mortazavi et al., 2024). 

Still, many providers face operational challenges that lead to failure (Currie and Fournier, 2020). 

This highlights the critical importance of operational planning. The general operational planning 

problem in SMOD systems has two main components: demand management, which refers to the 

operational decision on which rides to offer to a customer requesting service, and vehicle routing, 
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which refers to the decision on how to fulfill the collected orders (Arian et al., 2022, Atasoy et 

al., 2015, Haferkamp and Ehmke, 2022).  

Existing literature concludes that an SMOD system’s performance improves in different ways by 

using either more advanced demand management or more advanced vehicle routing (Haferkamp 

and Ehmke, 2022). However, in rural areas where compatible requests are scarce, demand man-

agement seems to be more effective. It can potentially “generate” more compatible requests that 

can be successfully pooled. Despite this potential, rural providers in practice to date usually do 

not actively manage demand. Instead, rides are typically offered in a first-come-first-served man-

ner. One reason for this is that the precise effects of implementing specific, more sophisticated 

approaches are hard to assess in advance.  

In this paper, we tackle this issue by developing a methodology for supporting a rural SMOD 

provider’s strategic decision on how to implement demand management. On the operational plan-

ning level, this requires selecting some type of demand control, which is realized by applying a 

control policy. To allow for a sound strategic decision, our methodology incorporates a precise 

model of the operational planning problem along with appropriate practical solution algorithms 

for possible control policies. We take into account the following unique characteristics, which 

have not yet been considered in the literature on demand management for SMOD systems: 

• First, pricing is integrated and harmonized with scheduled public transport resulting in a static 

pricing scheme (Schasché et al., 2022). For such a pricing scheme, demand control is re-

stricted to availability control which is a concept from the area of revenue management and 

which is based on the definition of (virtual) products (Klein et al., 2020, Strauss et al., 2018). 

In the context of rural SMOD, such products may correspond to fulfillment options, i.e., dif-

ferent pick-up or drop-off times, in response to a specific request. During the booking process, 

availability control then decides on which products to offer to each requesting customer.  

• Second, due to the limited scheduled public transport alternatives in rural areas, both long-

term planning reliability and short-term service availability are crucial features for rural 

SMOD systems to compete with motorized individual transport. To meet these requirements, 

any customer can place a ride request for a future service day (advance request), for a time 

later in the current service day (same-day request), and for the current point in time (ad-hoc 

request).  

• Third, in rural areas, demand for SMOD services is often sparse and spread over a wide geo-

graphical area (Imhof and Blättler, 2023, Wang et al., 2015), which makes efficient pooling 

of requests challenging. 

Given these unique characteristics, i.e., the application of availability control to advance requests, 

same-day requests, and ad-hoc requests in a setting with dispersed demand, the operational plan-

ning problem for SMOD in rural areas is a novel dynamic and stochastic optimization problem 

which we refer to as the rural Shared Mobility-on-Demand Control Problem (r-SMCP).  
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Our work differs from existing literature on SMOD as we are the first to analyze the combination 

of availability control and advance requests in a rural context. In terms of the methodology, our 

approach is the only one guiding the strategical selection of availability control policies. The only 

other work taking a strategic view on demand management is Haferkamp und Ehmke (2022), 

which introduces only a simple accept/reject policy and does not account for the three unique 

characteristics in rural areas. In addition, our methodology preserves the stochasticity of request 

arrivals, features solution algorithms that are readily applicable also at the operational planning 

level, and analyzes sustainability-oriented objectives. Apart from this, the only other works ana-

lyzing multi-option availability control in SMOD systems are by Sharif Azadeh et al. (2022) and 

Atasoy et al. (2015), both in an urban context. Finally, Arian et al. (2022) also consider a rural 

setting but apply dynamic pricing instead of availability control. 

We consider availability control policies based on three characteristics: First, they can employ 

different mechanisms, i.e., rejections of a request (not offering a ride at all) or utilizing time shifts 

(offering alternative times to the originally desired time). Second, they can use two different cri-

teria – feasibility or profitability – for decision-making. Third, they may differ in their use of 

information, resulting in myopic or anticipatory decision-making. Our methodology then incor-

porates a model variant supporting the final strategic decision, which we call semi-perfect infor-

mation model. It serves as the basis for our computational analyses and carefully trades-off model 

accuracy and data availability. To maintain the focus on demand management and isolate its per-

formance impact, we use a uniform approach for making vehicle routing decisions. 

In summary, our work makes the following scientific contributions: 

• We develop a methodology for analyzing the impact of different availability control policies 

on performance metrics reflecting the provider’s and the municipal contracting authority’s 

objectives. Transferred into practice, our methodology can be applied at the strategic planning 

level to evaluate in advance whether, and if so, which policy fits best for their specific system. 

• As part of the methodology, we are the first to present a model and solution algorithms for 

the novel operational planning problem of rural SMOD providers (r-SMCP).  

• We apply our methodology to one year of real-world data from our industry partner FLEXI-

BUS who have been operating an SMOD system since 2009, and therefore, belong to the 

most experienced providers in Germany. Therefore, this case study not only serves as a proof-

of-concept for the methodology, but it also yields structural insights into the system perfor-

mance in a typical, mature rural SMOD system.  

The remainder of this work is structured as follows: In Section 2, we first review the literature 

and distinguish our work from the existing publications. In Section 3, we present the methodol-

ogy, comprising models and solution concepts, for analyzing the impact of demand management 

in rural SMOD systems. The computational study using real-world data from FLEXIBUS, which 

serves as a proof-of-concept for the methodology and yields managerial insights, follows in 
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Section 4. Section 5 summarizes the key managerial insights and includes a discussion of prom-

ising research opportunities. 

2 Literature Review 

In this section, we delve into the existing literature and review publications that consider an 

SMOD system with similar basic characteristics. These basic characteristics include the follow-

ing: First, customers place requests dynamically and must receive an immediate offer. Second, 

the provider cannot decide on the pick-up and drop-off stop of requests and has full control over 

the fleet. Third, the system allows ridepooling and is accessible for the general public. Fourth, the 

SMOD system is controlled independently without explicitly considering multimodal interde-

pendencies. Table 1 lists all currently existing publications that – to the best of our knowledge – 

meet these criteria. With the exception of Haferkamp and Ehmke (2022), all of them only consider 

the operational planning level. To show that we cannot directly draw on the models, solution 

algorithms, and computational results from these publications for evaluating operational demand 

control policies for the r-SMCP, we compare them to our work regarding three dimensions: The 

considered operational problem and instance structure, the solution concept, and the data used in 

the computational study.  

Columns 2 to 6 compare problem and instance structure. Regarding the type of demand control 

(Column 2), we distinguish between feasibility-based control (FE), accept/reject decisions (AR), 

availability control (AV), or dynamic pricing (PR). Columns 3 to 5 indicate whether each of the 

three types of requests is considered. Column 6 indicates whether instances resembling the de-

mand structure in rural areas are considered. To characterize the solution concept, Column 7 in-

dicates whether the analysis is based on a Markov decision process (MDP), and Column 8 cate-

gorizes the solution concept as myopic (M) or anticipatory, more precisely, sampling-based (S) 

or learning-based (L). Finally, in Column 9, we distinguish between computational experiments 

based on an artificially generated data set (A), a data set sampled from real-world demand distri-

butions (D), and a data set comprising original real-world requests (O). Based on Table 1, we 

discuss the assumptions and contributions of existing publications and delineate them from our 

work, and then summarize the resulting research gap. The discussion is loosely grouped along the 

problem and instance structure. 

The only two works using availability control in SMOD systems are Sharif Azadeh et al. (2022) 

and Atasoy et al. (2015), albeit in an urban context. Consequently, the respective booking pro-

cesses exclude advance requests, and the instance structure resembles an urban setting, which is 

more favorable for ridepooling. Another difference to our work is that both systems do not operate 

exclusively in a ridepooling mode, as customers are additionally offered a taxi-like service. In the 

case of Sharif Azadeh et al. (2022), there are further differences since the authors integrate dis-

crete pricing and generate fulfillment options by varying the length of the pick-up time window 

instead of varying the pick-up or drop-off time. There are also significant methodological 
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differences to our work as both papers neither include an MDP formulation nor an anticipatory 

solution concept. 

Arian et al. (2022) is the only existing publication considering demand control specifically suited 

for a rural SMOD system. However, their approach involves dynamic pricing and only allows 

customers to place ad-hoc requests. This also results in a different definition of fulfillment op-

tions, since only one option per vehicle is generated based on the time it becomes available next. 

Similar to our methodology, they formulate an MDP and present an anticipatory solution algo-

rithm. Qiu et al. (2018) investigate a comparable urban problem setting. 

If requests can only be answered by offering a single fulfillment option for a static price, demand 

control is still possible by completely rejecting requests. The resulting control problem, involving 

only ad-hoc-requests and in an urban context, is investigated, e.g., by Haferkamp and Ehmke 

(2022). Their work is the closest to ours in terms of the methodology, as their goal is to analyze 

the performance impact of applying different demand control and vehicle routing policies from a 

strategic perspective. To this end, they also formulate the problem as an MDP and perform anal-

yses based on a corresponding perfect information model, which provides results independent of 

the quality of the available data on customer choice behavior. In comparison, the semi-perfect 

information model we propose is more refined in that it preserves the stochasticity of request 

arrivals. Further, we use algorithms representing each control policy that can readily be applied 

to solve the actual fully stochastic operational planning problem.  

There are several other publications considering accept/reject control in urban settings with ad-

hoc requests. Among them, Heitmann et al. (2023) is the only one presenting an MDP formulation 

and an anticipatory policy. Hosni et al. (2014), Jung et al. (2016), and Lotfi and Abdelghany 

(2022) only apply myopic policies. 

Finally, there are papers investigating purely feasibility control. The one most closely related to 

the paper at hand is Elting and Ehmke (2021), since their work is the first to investigate a problem 

with all three types of requests in a rural context. Hence, their analysis focuses on the performance 

of feasibility control depending on the share of advance requests. Other works investigating fea-

sibility control include Hungerländer et al. (2021), Lotze et al. (2023), and Lu et al. (2023), each 

of which analyzes a data set with original requests from a rural SMOD provider. Araldo et al. 

(2019), Attanasio et al. (2004), Bischoff et al. (2017), Haferkamp and Ehmke (2020), Horn 

(2002), and Jung et al. (2012) also employ feasibility control but analyze urban settings. 

In addition to the publications listed in Table 1, there is literature on (S)MOD services that are 

less closely related, which we briefly summarize for the sake of completeness:  

• SMOD systems that allow providers to process and consolidate requests in batches (e.g., 

Alonso-Mora et al., 2017), which is impractical in rural areas due to the sparse demand.  

• Ride-hailing systems that provide a taxi-like service and exclude ridepooling (e.g., Bertsimas 

et al., 2019).  
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• SMOD systems that control the assignment of pick-up and drop-off stops, which is also a 

form of demand control (e.g., Melis and Sörensen, 2022).  

• SMOD systems dedicated to a specific group of users (e.g., Schilde et al., 2011). 

• Ex-post analyses based on the static demand control problem (e.g., Gaul et al., 2022). 

• Evaluation of empirical data through descriptive analyses (e.g., Coutinho et al., 2020). 

• Analyses from a system-oriented perspective using multi-agent simulation to explicitly model 

the interplay between different modes of transportation (e.g., Zwick et al., 2021). 

In summary, the review of the existing literature reveals a significant research gap. Although there 

is some literature on availability control for SMOD systems (Atasoy et al., 2015, Sharif Azadeh 

et al., 2022) and on controlling advance requests with a pure feasibility control (Elting and Ehmke, 

2021), we are the first to analyze the combination of availability control and advance requests. In 

conclusion, the r-SMCP itself is a novel optimization problem that rural SMOD providers face 

on the operational level. Methodologically, our approach differs from the bulk of existing work, 

which all aim to solely develop specific solution algorithms for the operational planning level. 

Opposed to that, our work aims at comparing the impact of selecting different availability control 

policies from the strategic perspective similar to Haferkamp and Ehmke (2022).  

To solve the semi-perfect information model of the r-SMCP, we transfer and adapt algorithms 

from literature on closely related attended home delivery problems (Campbell and Savelsbergh, 

2005, Yang et al., 2016, and Koch and Klein, 2020) for two reasons: First, these algorithms are 

tailored to controlling advance requests, whereas there are no SMOD-specific solution algorithms 

for this purpose. Second, the existing specific anticipatory algorithms for similar SMOD control 

problems are all learning-based (see Table 1), which limits explainability and requires extensive 

training and tuning, unlike the sampling-based algorithms designed for attended home delivery 

problems.  
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Table 1 Literature overview; Abbreviations: Demand management: FE (feasibility control), AR (accept/reject), AV (availability control), PR (dynamic pricing); Solution concept: M (Myopic), S (Sam-
pling-based), L (Learning-based); Data: A (Artificial), D (Real-world Distribution), O (Original requests) 

 Problem and instance structure Solution concept 
Computational 

study 

Authors 
Demand  
control 

Advance 
requests 

Same-day 
requests 

Ad-hoc 
requests 

Rural  
instances 

MDP  
Solution 
concept 

Data 

Araldo et al. (2019) FE X X ✓ X X M A 

Arian et al. (2022) PR X X ✓ ✓ ✓ L A 

Atasoy et al. (2015) AV X ✓ ✓ X X M A 

Attanasio et al. (2004) FE (✓) ✓ X X X M D 

Bischoff et al. (2017) FE X X ✓ X X M O 

Elting and Ehmke (2021) FE ✓ ✓ ✓ ✓ X M A 

Haferkamp and Ehmke (2020) FE X X ✓ X X M A 

Haferkamp and Ehmke (2022) AR X X ✓ X ✓ (S) D 

Heitmann et al. (2023) AR X X ✓ X ✓ L D 

Horn (2002) FE X ✓ ✓ X X M O 

Hosni et al. (2014) AR X X ✓ X X M A 

Hungerländer et al. (2021) FE X X ✓ ✓ X M O 

Jung et al. (2012) FE X X ✓ X X M D 

Jung et al. (2016) AR X X ✓ X X M D 

Lotfi and Abdelghany (2022) AR X X ✓ X X M A 

Lotze et al. (2023) (FE) X ✓ ✓ ✓ X M D 

Lu et al. (2023) FE (✓) X ✓ ✓ X M O 

Qiu et al. (2018) PR X X ✓ X ✓ L D 

Sharif Azadeh et al. (2022) AV/PR X ✓ ✓ X X M O 

Our work AV ✓ ✓ ✓ ✓ ✓ S O 
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3 Methodology to Analyze the Impact of Demand Management 

In this section, we outline our methodology for conducting an impact analysis of demand man-

agement on the SMOD system performance at the strategic planning level. We first provide a 

brief overview in Section 3.1. Then, we elaborate on the two main components of our methodol-

ogy, each of which we explain in a dedicated subsection: The problem formalization and model-

ing in Section 3.2 and the solution concept in Section 3.3. 

3.1 Overview 

At the strategic planning level, an SMOD provider may decide whether to apply demand man-

agement at all, and in case of static pricing, which availability control policy to select. This re-

quires an explicit evaluation of the impact of applying different availability control policies at the 

operational planning level compared to the status quo (feasibility control).  

 

Fig. 1 An overview of the methodology 

Fig. 1 provides an overview of the methodology. To support this strategic decision, the method-

ology evaluates different policies by applying a specific algorithm of it to a modelling variant of 

the operational control problem (r-SMCP), in our case, to the semi-perfect information model. 

Following the framework presented in Fleckenstein et al. (2023), the r-SMCP itself can be cast 

as a sequential decision problem for the provider, involving provider-side decisions (black boxes) 

and customer-side realizations of exogeneous information (gray boxes) at every decision epoch 

of the planning horizon: First, a request arrives. Second, the provider makes a offer decision. In 

the context of rural SMOD this means that the provider offers a restricted set of fulfillment options 

(availability control), more precisely, rides with different pick-up or drop-off times, in response 

to a specific request. The offer decision is determined by the availability control policy selected 

at the strategic planning level and an offer set results. Third, the customer’s response to the offer 

set realizes in the order confirmation step, i.e., the customer either chooses one of the fulfillment 

options or abandons the booking process. Fourth, the provider makes a vehicle routing decision 

to dynamically plan the order fulfillment.  
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3.2 Modeling 

In this section, we first develop the operational MDP formulation as a mathematical formalization 

of the r-SMCP in Section 3.2.1. Regarding this operational problem formulation, we then propose 

a modelling variant, the semi-perfect information model, which serves as a basis for the analyses 

of the impact of demand management at the strategic planning level (Section 3.2.2). 

3.2.1 Operational Markov Decision Process Formulation 

General Notation and Assumptions: 

We formalize the r-SMCP as a Markov decision process (Puterman, 2014), using a consider-then-

choose discrete choice model (Aouad et al., 2021) to capture customer choice behavior. We fol-

low this modeling approach because MDPs are suitable both as a concise mathematical problem 

definition as well as a formal basis for the solution concept we consider (Fleckenstein et al., 2023, 

Ulmer et al., 2020). 

First, we introduce some general notation and assumptions:  

• Planning horizon: Customers can place requests for a specific service horizon (operating day) 

over a multi-day booking horizon. We subdivide the booking horizon into a set of stages 𝒯 =

{1,… , 𝑡𝑠 , … , 𝑇} with 𝑡 ∈ 𝒯 denoting each individual stage. 𝑡𝑠 indicates the first stage within 

the corresponding service horizon, i.e., both horizons overlap.  

• Requests: Customers can place requests for a ride between pairs pre-defined stops. All stops 

can be used as a pick-up or drop-off stops and are stored in the set ℋ. Formally, a request of 

type 𝑐 ∈ 𝒞 is characterized by the following attributes: 

o Pick-up stop: 𝑝𝑐 ∈ ℋ 

o Drop-off stop: 𝑑𝑐 ∈ ℋ 

o Number of passengers: 𝑚𝑐 

o Desired time: 𝑡𝑐 ∈ {𝑡
𝑠 ,… , 𝑇} 

o Desired time type: 𝑓𝑐 ∈ {0,1} encoding whether 𝑡𝑐 is a pick-up (𝑓𝑐 = 0) or a drop-off time 

(𝑓𝑐 = 1) 

Each request type 𝑐 is associated with a fixed revenue 𝑟𝑐. Please note that a request can be 

placed for a single passenger (𝑚𝑐 = 1) or a group of multiple passengers (𝑚𝑐 > 1).  

Individual requests 𝑖 ∈ ℐ, with ℐ denoting the set of all individual requests, are defined by the 

underlying request type 𝑐𝑖. This implicity defines the request’s pick-up stop 𝑝𝑐𝑖, drop-off stop 

𝑑𝑐𝑖, number of passengers 𝑚𝑐𝑖, desired time 𝑡𝑐𝑖, and type of the desired time 𝑓𝑐𝑖 .  

Additionally, each request has a time of request 𝜏𝑖 ∈ 𝒯, which represents the stage during 

which the request is placed. Based on the desired time and the time of request, we can classify 

requests into three categories: 

o Advance requests: 𝜏𝑖 < 𝑡
𝑠 (request is placed before the service horizon starts) 

o Same-day requests: 𝜏𝑖 ≥ 𝑡
𝑠 (request is placed on the same day but with a booking lead 

time) 
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o Ad-hoc requests: 𝜏𝑖 = 𝑡𝑐𝑖 (request is placed for immediate service) 

Finally, to model the case of no request arrival, we introduce a dummy request type 𝑐 = 0. 

• Fulfillment options: A fulfillment option 𝑜 ∈ 𝒪𝑐  represents a certain pick-up or drop-off time 

that the service provider offers in response to a request of type 𝑐 with desired time 𝑡𝑐. The set 

𝒪𝑐  includes all fulfillment options that can potentially be offered. When a customer places a 

request with a desired time 𝑡𝑐, the provider can respond in several ways: 

o Desired option: 𝑜 = 𝑡𝑐 (the provider offers the exact desired pick-up or drop-off time) 

o Alternative option: 𝑜 ≠ 𝑡𝑐 (the provider offers a pick-up or drop-off time 𝑜 deviating 

from the desired time) 

o No-purchase option: 𝑜 = 0 (the provider allows the customer to abadon the booking pro-

cess) 

Thus, the set of potential fulfillment options 𝒪𝑐  can include the desired option and multiple 

alternative options but must include the no-purchase option.  

Note that each fulfillment option 𝑜 for a request of type 𝑐 can be converted into a pair of time 

windows for pick-up and drop-off based on the direct ride time between pick-up and drop-

off, the waiting time, and the maximum added ride time (see Appendix C or Jaw et al. (1986) 

for an in-depth explanation).  

The provider then decides to present an offer set 𝑔 ⊆ 𝒪𝑐, which comprises a subset of the 

potential fulfillment options.  

• Order confirmation: When faced with an offer set 𝑔, a customer with a request of type 𝑐 

chooses an option 𝑜 ∈ 𝑔 based on probabilities 𝑃𝑐,𝑜(𝑔) reflecting their time preferences. If an 

option 𝑜 ≠ 0 is chosen, the request 𝑖 ∈ ℐ becomes an order 𝑗 ∈ 𝒥 with 𝑖 = 𝑗. Thus, the set of 

orders 𝒥 is a subset of the set of requests ℐ (𝒥 ⊆ ℐ). In addition to the attributes of the corre-

sponding request, an order 𝑗 is further characterized by its associated fulfillment option 𝑜𝑗 ∈

𝒪𝑐𝑗. 

• Order fulfillment: To fulfill the orders, the provider deploys vehicles 𝑣 ∈ 𝒱 from a given fleet 

𝒱. Each vehicle has the following attributes: 

o Seat capacity: 𝑄𝑣 (maximum number of passengers per vehicle) 

o Start time: 𝑡𝑣
𝑏 ∈ {𝑡𝑠 ,… , 𝑇} (start of the service horizon) 

o End time: 𝑡𝑣
𝑟 ∈ {𝑡𝑠 , … , 𝑇} (end of the service horizon) 

o Start and end location: ℎ = 0 (the vehicle starts and ends its route at the depot) 

The planned route of each vehicle is encoded as the set 𝜃𝑣 =

{(𝑗1, ℎ𝑗1 , 𝑎𝑗1
− , 𝑎𝑗1

+), (𝑗2, ℎ𝑗2 , 𝑎𝑗2
− , 𝑎𝑗2

+),… , (𝑗𝑛, ℎ𝑗𝑛 , 𝑎𝑗𝑛
− , 𝑎𝑗𝑛

+ )}, where ℎ𝑗𝑛 ∈ ℋ is the 𝑛-th stop of 

the route. 𝑗𝑛 ∈ 𝒥 encodes the corresponding order the vehicle picks up or drops off. 𝑎𝑗𝑛
− ∈

{𝑡𝑠 ,… , 𝑇} and 𝑎𝑗𝑛
+ ∈ {𝑡𝑠 ,… , 𝑇} encode the vehicle’s arrival time at and the departure time 

from the stop, respectively.  



Article A5: Analyzing the Impact of Demand Management in Rural Shared Mobility-on-Demand Systems 

198 

 

Fig. 2 Visualization of the Markov decision process with a decision tree 

Markov Decision Process: 

Now, with the general notation at hand and drawing on the modeling frameworks by Fleckenstein 

et al. (2023), Klein and Steinhardt (2023), and Ulmer et al. (2020), we formulate the MDP. Please 

note that the following explanations are complemented by two visual representations. Fig. 2 de-

picts an intuitive visualization in the form of a decision tree. Fig. 3 is more technical and provides 

a compact overview of the most important notation. 

• Decision epochs: A decision epoch marks the beginning of each stage of the MDP, where the 

provider must make a decision. We adopt an incremental time-based definition (Puterman, 

2014). Each stage 𝑡 ∈ 𝒯 = {1,… , 𝑡𝑠 , … , 𝑇} of the booking horizon is defined as a micro-pe-

riod, with each period being equally and sufficiently short that the probability of more than 

one request arrival during the stage is negligible. Given this property, the arrival rate 𝜆𝑐
𝑡  of 

the Poisson process underlying the request arrivals accurately approximates the probability 

of receiving exactly one request of type 𝑐 in stage 𝑡. 

• States: The post-decision state 𝑠𝑡 = (𝐶𝑡 , 𝜙𝑡) stores the information required for decision mak-

ing at the subsequent decision epoch 𝑡 + 1. The state definition of the r-SMCP comprises two 

elements:  

…

…

Stage 𝑡

- decision node

- outcome node

2 Availability control decision

Offer set 𝑔𝑡
∗

3 Order confirmation

Option 𝑜 ∈ 𝑔𝑡
∗

Stage 𝑡 + 1

4 Integrated vehicle routing decision 

Route 𝜙𝑡
∗

…

No customer 

Offer set 1

Offer set 𝑛

1 Request arrival

𝜆0
𝑡

𝜆𝑐
𝑡

Offer set 2

O  i n 1: 𝑃𝑐,𝑜 𝑔𝑡

O  i n 2: 𝑃𝑐,𝑜′ 𝑔𝑡

No purchase: 

𝑃𝑐,0 𝑔𝑡
…

Empty offer set

…

…

…

…

…

No purchase

…

R     2

R     1

R     𝑛
…

R     2

R     1

R     𝑛

R     2

R     1

R     𝑛

…

…

…

…

…

…

…

…

Customer type 𝑐
O  i n 1: 𝑃𝑐,𝑜 𝑔𝑡

O  i n 2: 𝑃𝑐,𝑜′ 𝑔𝑡

No purchase: 

𝑃𝑐,0 𝑔𝑡

…

…

Stage 𝑡

- decision node

- outcome node

2 Availability control decision

Offer set 𝑔𝑡
∗

3 Order confirmation

Option 𝑜 ∈ 𝑔𝑡
∗

Stage 𝑡 + 1

4 Integrated vehicle routing decision 

Route 𝜙𝑡
∗

…

No customer 

Offer set 1

Offer set 𝑛

1 Request arrival

𝜆0
𝑡

𝜆𝑐
𝑡

Offer set 2

O  i n 1: 𝑃𝑐,𝑜 𝑔𝑡

O  i n 2: 𝑃𝑐,𝑜′ 𝑔𝑡

No purchase: 

𝑃𝑐,0 𝑔𝑡

…

Empty offer set

…

…

…

…

…

No purchase

…

R     2

R     1

R     𝑛
…

R     2

R     1

R     𝑛

R     2

R     1

R     𝑛

…

…

…

…

…

…

…

…

Customer type 𝑐
O  i n 1: 𝑃𝑐,𝑜 𝑔𝑡

O  i n 2: 𝑃𝑐,𝑜′ 𝑔𝑡

No purchase: 

𝑃𝑐,0 𝑔𝑡
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o Set of orders: 𝐶𝑡  (storing all orders 𝑗 ∈ 𝒥 for which fulfillment has not yet been com-

pleted) 

o Current route plan: 𝜙𝑡 = {𝜃1,𝑡 ,… , 𝜃𝑉,𝑡} (where 𝜃𝑣,𝑡 denotes the planned route of vehicle 

𝑣 ∈ 𝒱) 

Since in the r-SMCP, the provider makes decisions in response to a specific request arrival, 

defining 𝑠𝑡  as a post-decision state simplifies the MDP formulation (Powell, 2022). Note that 

decisions at epoch 𝑡 are then made based on information stored in the preceding post-decision 

state 𝑠𝑡−1 and the attributes of the request newly arrived in stage 𝑡 (also see Fig. 3). 

• Actions: An action is represented as 𝑎𝑡 = (𝑔𝑡 , (𝜙𝑡(𝑜))𝑜∈𝑔𝑡
), and includes all operational de-

cisions made at decision epoch 𝑡. In the r-SMCP, the provider applies demand management 

in form of an availability control, i.e., offers a limited set of fulfillment options, i.e., the pick-

up or drop-off times. This availability control decision 𝑔𝑡  is associated with integrated vehi-

cle routing decisions (𝜙𝑡(𝑜))𝑜∈𝑔𝑡
 for any option 𝑜 ∈ 𝑔𝑡  the customer could potentially 

choose when presented the offer set 𝑔𝑡 . Note that both the control decision and the integrated 

vehicle routing decision are interdependent. 

Availability Control Decision: 

The availability control decision is encoded as an offer set 𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐) ⊆ 2
𝒪𝑐 ∖ ∅. The 

corresponding action space 𝒢(𝑠𝑡−1, 𝑐) includes every feasible offer set, i.e., it is a subset of 

the power set 2𝒪𝑐  of 𝒪𝑐  (excluding the empty set). An offer set is feasible if it only contains 

feasible fulfillment options.  

A fulfillment option 𝑜 is considered feasible if it satisfies the constraints of the integrated 

vehicle routing problem (see Appendix B for the corresponding model), which is a standard 

dial-a-ride problem (DARP): More specifically, there must be at least one feasible route plan 

𝜙𝑡(𝑜) that allows the provider to serve the following orders: 

o All pending orders stored in 𝐶𝑡−1.  

o The new potential order given option 𝑜 is chosen. 

We denote the set of feasible fulfillment options by 𝒪𝑐
𝑓 = {𝑜 ∈ 𝒪𝑐 :Φ(𝑠𝑡−1, 𝑐, 𝑜) ≠ ∅}. Thus, 

we can define the action space of the control decision more precisely as 𝒢(𝑠𝑡−1 , 𝑐) = 2
𝒪𝑐
𝑓

∖

∅.  

If there is no request, i.e., 𝑐 = 0, the only feasible option is the no-purchase option, i.e., 

𝒢(𝑠𝑡−1, 0) = {{0}}. 

Integrated Vehicle Routing Decisions: 

For each feasible fulfillment option 𝑜 ∈ 𝑔𝑡 , the provider must make a tentative vehicle routing 

decision 𝜙𝑡(𝑜). The complete vehicle routing decision is encoded as a tuple of route plans 

(𝜙𝑡(𝑜))𝑜∈𝑔𝑡
. If the customer chooses option 𝑜, the corresponding route plan 𝜙𝑡(𝑜) is exe-

cuted by the fleet until the subsequent decision epoch.  
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The action space for the integrated vehicle routing decisions is ∏ Φ(𝑠𝑡−1 , 𝑐, 𝑜)𝑜∈𝑔𝑡 , which 

represents all combinations of feasible route plans.  

An important feature of this modeling approach is that vehicle routing decisions are predom-

inantly tentative, meaning that large parts of the determined route plans 𝜙𝑡(𝑜) can still be 

adapted by future routing decisions. Only the parts of the route plans 𝜙𝑡(𝑜) that involve ve-

hicle movements starting during stage 𝑡 + 1 are definitive and must be executed. 

• Transitions: Starting in a post-decision state 𝑠𝑡−1, a sequence of transitions caused by the 

provider’s actions (availability control and routing decision) and customer-side stochasticity 

(request arrivals and customer choice behavior). The sequence leads to a successor state 𝑠𝑡 . 

The transition process can be broken down into four steps: request arrival, availability control 

decision, order confirmation, and integrated vehicle routing decision (see Fig. 2): 

o Step 1 (Request arrival): First, the system transitions stochastically to the pre-decision 

state 𝑠𝑡
pre

 when a new request 𝑖𝑡 ∈ ℐ arrives (also see Powell, 2022). If a request arrives 

(𝑐𝑖𝑡 ≠ 0), Step 2 follows. If no request arrives (𝑐𝑖𝑡 = 0), the transition continues with Step 

4. 

o Step 2 (Availabiltiy control decision): Once a request arrives, the provider determines an 

offer set 𝑔𝑡 , which contains the options (pick-up times or drop-off times) the customer 

can choose from. This decision deterministically leads to the next step, where the cus-

tomer makes a choice from the available options.  

o Step 3 (Order confirmation): Given the offer set 𝑔𝑡 , the customer either confirms their 

order 𝑗𝑡 by choosing a option 𝑜𝑗𝑡 ∈ 𝑔𝑡, or they abandon the booking process. The order 

confirmation follows customer-specific choice probabilities 𝑃𝑐𝑖𝑡 ,𝑜
(𝑔𝑡). If the order 𝑗𝑡  is 

confirmed, it is added to the set of orders 𝐶𝑡−1.  

o Step 4 (Integrated vehicle routing decision): Finally, the process reaches the succeeding 

post-decision state 𝑠𝑡  by a deterministic update of the route plan. The route plan 𝜙𝑡(𝑜𝑗𝑡) 

determined as part of the routing decision replaces the route plan 𝜙𝑡−1 in the system state 

and is potentially partly executed. As already defined, 𝜙𝑡(𝑜𝑗𝑡) is the route plan, pre-de-

termined in the vehicle routing decision, specifically for the case that the customer 

chooses fulfillment option 𝑜𝑗𝑡. If in 𝜙𝑡(𝑜𝑗𝑡) vehicle movements are planned to start until 

decision epoch 𝑡 + 1, the respective stops 𝜓𝑣,𝑡 (𝜙𝑡(𝑜𝑗𝑡)) = {(𝑗, ℎ𝑗, 𝑎𝑗
−, 𝑎𝑗

+) ∈ 𝜃𝑣,𝑡: 𝜃𝑣,𝑡 ∈

𝜙𝑡(𝑜𝑗𝑡), 𝑎𝑗
+ = 𝑡 + 1} are removed from the individual routes 𝜃𝑣,𝑡 ∈ 𝜙𝑡(𝑜𝑗𝑡) to reflect the 

planning being executed, and hence, becoming irreversible. If, by these vehicle move-

ments, the fulfillment of some orders from 𝐶𝑡−1 is completed, these orders are removed 

from 𝐶𝑡−1. The respective orders are determined according to  

Ψ𝑡 (𝜙𝑡(𝑜𝑗𝑡)) = {𝑗 ∈ 𝐶𝑡−1: (𝑗, ℎ𝑗, 𝑎𝑗
−, 𝑎𝑗

+) ∈ ⋃ 𝜓𝑣,𝑡 (𝜙𝑡(𝑜𝑗𝑡))𝑣∈𝒱 , ℎ𝑗 = 𝑑𝑐𝑗}, i.e., based 

on the drop-offs (ℎ𝑗 = 𝑑𝑐𝑗) removed from the route plan. 
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In summary, the transition from 𝑠𝑡−1 = (𝐶𝑡−1, 𝜙𝑡−1) to 𝑠𝑡 = (𝐶𝑡 , 𝜙𝑡) can be described as 

follows: 

𝐶𝑡 = (𝐶𝑡−1 ∪ {𝑗𝑡}) ∖ Ψ𝑡 (𝜙𝑡(𝑜𝑗𝑡))                            (1) 

𝜙𝑡 = {𝜃𝑣,𝑡 ∖ 𝜓𝑣,𝑡 (𝜙𝑡(𝑜𝑗𝑡)) : 𝜃𝑣,𝑡 ∈ 𝜙𝑡(𝑜𝑗𝑡)}                         (2) 

• Rewards: The provider collects two types of rewards:  

o Availability-control-related rewards (𝑟𝑐 ≥ 0): These rewards are collected when a re-

quest of type 𝑐 converts into an order. The reward corresponds to the fare paid by the 

customer, based on a static pricing scheme (see e.g., Appendix J).  

o Vehicle-routing-related rewards (𝑟𝜙𝑡(𝑜) ≤ 0): These are costs (negative rewards) in-

curred for the irreversible vehicle movements planned in 𝜙𝑡(𝑜). The routing costs are 

calculated based on the set of stops that are removed from the route plan 𝜓𝑣,𝑡 (𝜙𝑡(𝑜𝑗𝑡)) 

as follows: 

𝑟𝜙𝑡(𝑜) = {
−∑ ∑ 𝜌ℎ,ℎ′ℎ:(𝑗,ℎ,𝑎𝑗

−,𝑎𝑗
+)∈𝜓𝑣,𝑡(𝜙𝑡(𝑜))

𝑣∈𝒱 ,         if ∃𝜓𝑣,𝑡(𝜙𝑡(𝑜)) ≠ ∅ 

0,                                                      otherwise
,         (3) 

with ℎ′ denoting the successor stop of ℎ in 𝜃𝑣,𝑡 ∈ 𝜙𝑡(𝑜) and 𝜌ℎ,ℎ′ denoting the routing 

cost for traveling from stop ℎ to stop ℎ′. 

• Bellman equation: The provider’s objective can be represented using the Bellman equation 

(e.g., Powell, 2019), which recursively defines the value 𝑉𝑡(𝑠𝑡), i.e., the expected future re-

ward, for each state 𝑠𝑡  and decision epoch 𝑡 ∈ 𝒯. 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑐,𝑜(𝑔𝑡) [𝑟𝑐 ⋅ 𝟏𝑜≠0 + max
𝜙𝑡(𝑜)∈Φ(𝑠𝑡−1,𝑐,𝑜)

(𝑟𝜙𝑡(𝑜) +𝑜∈𝑔𝑡𝑐∈𝒞

𝑉𝑡(𝑠𝑡|𝑠𝑡−1, 𝑐, 𝜙𝑡(𝑜)))]) + 𝜆0
𝑡 max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0,0)

(𝑟𝜙𝑡(0) + 𝑉𝑡(𝑠𝑡|𝑠𝑡−1, 0, 𝜙𝑡(0))) ,          (4) 

with boundary condition 𝑉𝑇(𝑠𝑇) = 0. 

The Bellman equation (4) consists of two summands, which can be explained as follows:  

o Request arrival: The first summand models the case in which a request of type 𝑐 arrives. 

The probability of such an event is 𝜆𝑐
𝑡 . If a request of type 𝑐 arrives as part of the transition 

from 𝑡 − 1 to 𝑡, an integrated demand management and vehicle routing decision is nec-

essary, which is reflected by the two nested maximum operators: First, the availability 

control decision is encoded by the outer maximum operator max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(⋅). The provider 

selects an offer set 𝑔𝑡  that maximizes their expected profit. Therefore, the provider must 

determine the sum of the positive reward (the fare paid) and the negative reward resulting 

from the vehicle routing decision for each option 𝑜, weighted by the probability 𝑃𝑐,𝑜(𝑔𝑡). 

Second, the vehicle routing decision is encoded by the inner maximum operation 

max
𝜙𝑡(𝑜)∈Φ(𝑠𝑡−1,𝑐,𝑜)

(⋅). For each option 𝑜 ∈ 𝑔𝑡 , the provider must also decide on a routing 
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plan 𝜙𝑡(𝑜), for which an evaluation of the vehicle-routing-related reward 𝑟𝜙𝑡(𝑜) and the 

value of the resulting post-decision state 𝑉𝑡(𝑠𝑡|𝑠𝑡−1, 𝑐, 𝜙𝑡(𝑜)) is necessary. 

o No request arrival: The second summand addresses the case in which no request arrives, 

indicated by 𝑐 = 𝑜 = 0. Here, the provider only makes a vehicle routing decision 𝜙𝑡(0) 

by analogously solving the maximum operator max
𝜙𝑡(0)∈Φ(𝑠𝑡−1,0,0)

(⋅). 

Drawing on the interim state 𝑠𝑡
′|𝑠𝑡−1, 𝑐, 𝑜 introduced by Fleckenstein et al. (2024), we can 

transform (4) such that the availability control subproblem is separated from the routing con-

trol subproblem: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑐,𝑜(𝑔𝑡)[𝑟𝑐 ⋅ 𝟏𝑜≠0 + 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1 , 𝑐, 𝑜)]𝑜∈𝑔𝑡
)𝑐∈𝒞   

+𝜆0
𝑡 ⋅ 𝑉𝑡

′(𝑠𝑡
′|𝑠𝑡−1 , 0, 0),                  (5) 

with 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 𝑐, 𝑜) = max
𝜙𝑡(𝑜)∈Φ(𝑠𝑡−1,𝑐,𝑜)

(𝑟𝜙𝑡(𝑜) + 𝑉𝑡(𝑠𝑡|𝑠𝑡−1, 𝑐, 𝜙𝑡(𝑜))). 

With another transformation, we can reformulate the availability control subproblem in (5) 

based on the opportunity cost Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜) = 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1 , 𝑐, 0) − 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 𝑐, 𝑜) of con-

verting a request of type 𝑐 with option 𝑜 into an order:  

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑐,𝑜(𝑔𝑡)[𝑟𝑐 ⋅ 𝟏𝑜≠0 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜)]𝑜∈𝑔𝑡
)𝑐∈𝒞 +

𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 0, 0)                  (6) 

Thereby, we exploit that 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1 , 𝑐, 0) = 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 0, 0) for each 𝑐 ∈ 𝒞. Formulation (6) 

is important, because it provides the theoretical foundation for decomposition-based solution 

concepts for integrated demand management and vehicle routing problems, which we also 

draw on in this work (see Section 3.3). 

Stochastic Modeling: 

The MDP formulation introduced above must be complemented by a suitable customer choice 

model, which defines the choice probabilities 𝑃𝑐,𝑜(𝑔𝑡). These probabilities represent the exoge-

nous information process (Powell, 2022), determining how customers choose from a given offer 

set. While the MDP can be combined with any choice model, we apply a consider-then-choose 

model (Aouad et al., 2021). Generally, models of this class assume a two-step choice process:  

• Consideration set: Customers use simple decision rules to filter out alternatives that they are 

not willing to choose at all. The remaining options form the customer’s individual consider-

ation set.  

• Ranking: Second, customers rank the options in the consideration set according to their pref-

erences and choose the highest-ranked option from the offer set. This can be the no-purchase 

option.  

To allow for heterogeneity in the customer behavior, we define a set of customer segments ℒ. 

Each segment 𝑙 ∈ ℒ has its own consideration set structure and preference ranking. Many empir-

ical studies have shown that the consider-then-choose paradigm and the heuristic construction of 
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consideration sets are typical components of customers’ multi-product decision-making (Hauser, 

2014).  

Consider-then-choose model for r-SMCP: 

In our model, the consideration set 𝒮𝑙,𝑐 for each customer segment 𝑙 ∈ ℒ and request types 𝑐 ∈ 𝒞 

is determined by two quality cut-offs: Δ𝑙
+ for positive flexibility and −Δ𝑙

− for negative flexibility. 

These cutoffs represent the deviation from the customer’s desired time 𝑡𝑐 that they are willing to 

accept. Thus, the consideration set is defined as 𝒮𝑙,𝑐 = {𝑜 ∈ 𝒪𝑐: 𝑜 − 𝑡𝑐 ≤ Δ𝑙
+ ∧ 𝑜 − 𝑡𝑐 ≥ −Δ𝑙

−}. 

Further, we assume a unique ranking function 𝜁 for all segments, which ranks the fulfillment 

options in non-decreasing order based on their difference from the desired time 𝑡𝑐. In this regard, 

our model is similar to the lowest-open-fare model (e.g., Talluri and van Ryzin, 2004), which is 

one of the standard models used in revenue management. 

Given an offer set 𝑔, a request of type 𝑐 and the customer’s segment affiliation 𝑙, we obtain the 

option the customer will choose by:  

𝑜𝑐𝑔𝑙 = argmin
𝑜∈𝒮𝑙,𝑐∩𝑔

{𝜁(𝑜)}.                  (7) 

This means that the customer chooses the option that is closest to their desired time among the 

options they are willing to consider. 

Finally, the choice probabilities 𝑃𝑐,𝑜(𝑔) can be calculated as  

𝑃𝑐,𝑜(𝑔) = ∑ 𝛾𝑙 ⋅ 𝟏𝑜=𝑜𝑐𝑔𝑙𝑙∈ℒ ,                (8) 

with 𝛾𝑙 denoting the share of segment 𝑙 in the customer population. 

3.2.2 Semi-Perfect Information Model 

Motivation and Outline: 

While the operational MDP introduced in Section 3.2.1 accurately formalizes the r-SMCP, di-

rectly solving it to analyze the performance impact of demand management at the strategic plan-

ning level may not yield accurate results. This is because the quality of the results depends not 

only on the accuracy of the MDP formulation but also on how well the uncertain parameters of 

the MDP can be derived from historical real-world data to generate problem instances.  

If these parameters are biased, the results will not properly reflect the real-world performance 

impact. In the case of the r-SMCP, there are two types of uncertain parameters:  

• Request arrivals: It is uncertain what type of request 𝑐 will arrive at each decision epoch 𝑡 ∈

𝒯. This depends on the arrival rate 𝜆𝑐
𝑡 .  

• Customer choice behavior: It is also uncertain which fulfillment option 𝑜𝑗𝑡 a customer 

chooses. This choice depends on the choice probabilities 𝑃𝑐,𝑜(𝑔𝑡). 

In practice, SMOD providers, such as our industry partner FLEXIBUS, can accurately track re-

quest arrivals because these are observable events. However, it is more challenging to capture 
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customer choice behavior precisely as it involves complex, individual decision-making that is not 

easily observable.  

To address this, we base our analyses on a semi-perfect information model, which is derived from 

the MDP formulation. It results from, on the one hand, preserving the stochasticity regarding 

request arrivals, but, on the other hand, deterministically modeling customer choice behavior. 

Hence, the solution algorithm is given perfect information about which fulfillment option a cus-

tomer will choose from a certain offer set, but not about the requests that will arrive in the future. 

Thereby, the semi-perfect information model carefully trades off the accuracy of the model for-

mulation against the accuracy of the parameter values obtainable from historical data. In the fol-

lowing, we explain in detail how this is achieved by the semi-perfect information model: 

We assume that in SMOD systems, providers can track the arrival of a requests at each decision 

epoch 𝑡, including the type of request 𝑐. This allows us to obtain the true realizations of demand 

reflecting the arrival rate 𝜆𝑐
𝑡  from historical service days. Thus, no additional assumptions and 

modeling adjustments are required to model this source of uncertainty compared to the opera-

tional MPD formulation. To preserve the stochasticity of request, we simulate the request arrival 

process for each historical service day. That is, we generate a customer stream per day by using 

all original requests.  

Unlike request arrivals, the true customer choice behavior cannot be directly observed. Historical 

data only reveals choices in response to the provider’s historical demand control decisions. Ap-

proximating the true choice behavior by statistically estimating a choice model, which is the usual 

approach to modeling this uncertainty, would be particularly error-prone for the r-SMCP. Due to 

control decisions being made knowing the customer’s desired time, providers usually try to offer 

options as close as possible to the desired time. Therefore, the historical data contains hardly any 

information on the true flexibility of customers, and there is a lack of exploration of the choice 

behavior.  

To avoid having to rely on a potentially severely inaccurate customer choice model estimated on 

biased historical data, we instead consider customer choice deterministically. Since this assump-

tion is strict, it is important to conduct sensitivity analyses to explore different customer choice 

behaviors in a systematic way (see Section 4.4).  

Model formulation: 

We now explain the resulting mathematical formulation of the semi-perfect information model 

and how it differs from the operational MDP formulation (Section 3.2.1). The key difference is 

that while we retain the stochastic nature of request arrivals, we assume that the provider has 

perfect information about the customer’s segment affiliation 𝑙𝑖𝑡 for each request 𝑖𝑡 for 𝑡 ∈ 𝒯. By 

assuming this, we can eliminate the need for estimating choice probabilities 𝑃𝑐,𝑜(𝑔), which cannot 

be done reliably based on typically available data. Introducing perfect information on customer 

choice, the provider can deterministically steer the customer within their consideration set, which 
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also changes the definition of actions and transitions. In Fig. 3, this corresponds to replacing the 

box with the solid frame by the box with the dashed frame. 

 

Fig. 3 Visualization of the Markov decision process and the semi-perfect information model 

Formally, the following modifications occur compared to the operational MDP formulation: 

• Stochastic modeling: In the semi-perfect information model, requests still arrive stochasti-

cally, following an arrival rate 𝜆𝑐
𝑡  for each type of request 𝑐, just like in the operational MDP. 

However, customer choice behavior is now modeled deterministically. Since the segment af-

filiation 𝑙 of a customer placing a request of type 𝑐 is known, the provider can predict with 

certainty which option the customer will choose from the offer set 𝑔. Specifically, the choice 

probabilities are defined as:  

𝑃𝑐,𝑜(𝑔) = {
1, if 𝑜 = argmin

𝑜′∈𝒮𝑙,𝑐∩𝑔
{𝜁(𝑜′)}

0, otherwise                     
,                           (9) 

In more detail, the segment affiliation yields the customer’s consideration set 𝒮𝑙,𝑐  which, ac-

cording to the consider-then-choose paradigm, reveals which options 𝒮𝑙,𝑐 ∩ 𝑔 from the offer 

set 𝑔 the customer is generally willing to consider. Then, the known (uniform) ranking func-

tion 𝜁 yields the most preferred among all considered options, which is the option the cus-

tomer chooses with certainty. Therefore, the choice probabilities are effectively eliminated 

from the MDP. We illustrate the differences between the stochastic modeling component of 

the operational MDP and of the semi-perfect information model in Appendix D. 

• Actions: The action space of the availability control subproblem can be reduced to 

𝒢′(𝑠𝑡−1 , 𝑐) = (𝒪𝑐
𝑓 ∩ 𝒮𝑙,𝑐) ∪ {0}. Instead of determining an offer set that the customer 

chooses from, the provider deterministically assigns a feasible option from the consideration 

set. The assigned option becomes the confirmed order (𝑜𝑗𝑡 = 𝑔𝑡 ∈ (𝒪𝑐
𝑓 ∩ 𝒮𝑙,𝑐)), or the cus-

tomer is rejected (𝑜𝑗𝑡 = 𝑔𝑡 = 0). Thereby, the provider can fully exploit the flexibility pro-

vided by the customer. 

with 𝑃𝑐,𝑜 𝑔𝑡

𝑜𝑗𝑡 ∈ 𝑔𝑡𝑐 ≠ 0

𝑡 − 1 𝑡 𝑡 + 1

𝑠𝑡−1 = 𝐶𝑡−1, 𝜙𝑡−1
𝒢 𝑠𝑡−1, 𝑐

𝑠𝑡
′ 𝑠𝑡 = 𝐶𝑡, 𝜙𝑡Planning 

horizon

Stage 𝑡 Stage 𝑡 + 1

with 𝜆𝑐
𝑡
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𝑔𝑡

𝑟𝑐 ≥ 0

𝑟𝜙𝑡 𝑜𝑗𝑡
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𝒢 𝑠𝑡−1, 0

𝑔𝑡 = 0 𝑜𝑗𝑡 = 0𝑐 = 0

𝑟0 = 0 𝑟𝜙𝑡 0 ≤ 0

…

𝒢′ 𝑠𝑡−1, 𝑐

𝑔𝑡 = 𝑜𝑗𝑡
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Semi-Perfect Information Model
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• Transitions: Since the order directly results from the availability control decision (𝑜𝑗𝑡 = 𝑔𝑡), 

the originally stochastic transition from the pre-decision state 𝑠𝑡
pre

 to the interim state 𝑠𝑡
′ be-

comes deterministic. 

• Bellman equation: Analogously to (6), the value function of the semi-perfect information 

model is then defined as: 

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 ⋅ max

𝑔𝑡∈𝒢
′(𝑠𝑡−1,𝑐)

(𝑟𝑐 ⋅ 𝟏𝑔𝑡≠0 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑔𝑡))𝑐∈𝒞 + 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 0, 0).  (10) 

Compared to the operational MDP (6), this formulation eliminates the need for choice prob-

abilities 𝑃𝑐,𝑜(𝑔𝑡) in the maximum operator max
𝑔𝑡∈𝒢

′(𝑠𝑡−1,𝑐)
(⋅). Since customer choice behavior 

is known with certainty, the reward for any availability control decision 𝑔𝑡  consisting of the 

immediate reward 𝑟𝑐 (if an order is confirmed) and the opportunity cost Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑔𝑡), 

becomes deterministic. Hence, determining the optimal control decision boils down to cal-

culating the reward resulting from selling each of the feasible fulfillment options from the 

customer’s consideration set, given by 𝒢′(𝑠𝑡−1 , 𝑐), and assigning the most profitable option 

as 𝑔𝑡 . However, the stochasticity regarding request arrivals is preserved in the form of the 

arrival rate 𝜆𝑐
𝑡  analogously to the value function of the operational model (6). 

In summary, using the semi-perfect information model instead of the fully accurate operational 

MDP formulation, has two main advantages (Haferkamp and Ehmke, 2022): First, our results 

represent an upper bound for the scenario of a certain average consideration set size, i.e., flexibil-

ity, in the customer population. Second, the control policies’ decision-making is only driven by 

the (accurately observable) customer stream and the general level of flexibility rather than a spe-

cific choice model. Thus, we obtain a clear picture of their respective control behavior and the 

performance impact, which is not distorted by the influence of a biased model of the customer 

choice behavior. 

3.3 Solution Concept 

Solving the r-SMCP is equivalent to determining a policy, i.e., a function mapping each state to 

a decision, with a specific solution algorithm. To compute the optimal policy, it would be neces-

sary to solve the Bellman equation (10), e.g., by backwards recursion. However, this is not pos-

sible for real-world instances since even the semi-perfect information model still exhibits two of 

the three curses of dimensionality (Powell, 2019), namely regarding state and exogeneous infor-

mation. Thus, as part of our methodology, we define heuristic availability control policies for the 

r-SMCP (Section 3.3.1) and compare the performance of state-of-the-art solution algorithms that 

are representative of each policy (Section 3.3.2). This allows us to attribute performance differ-

ences to basic characteristics of availability control, i.e., to certain ways of decision-making, for 

the r-SMCP. 
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3.3.1 Availability Control Policies 

Availability control policies for the r-SMCP can be systematically distinguished based on three 

key characteristics of availability control decision-making: First, a policy can utilize different 

mechanisms of availability control, namely rejections (not offering a ride at all) and time shifts 

(offering alternative times to the originally desired time). Second, availability control can be 

based on different criteria, either feasibility or profitability. Third, different types of information 

can be used for decision-making, either myopic information or anticipatory information. In the 

following, we provide a more detailed explanation of each characteristic in the context of the 

semi-perfect information model, which allows a deterministic assignment of fulfillment options 

by the provider. Since it is closely related to the operational MDP, the policies are readily trans-

ferable to policies for the operational MDP involving stochastic customer choice behavior. 

• Mechanisms: For the r-SMCP, a policy can use rejections as a control mechanism, meaning 

that no fulfillment option is offered. The second mechanism are time shifts, i.e., controlling 

the offered times for request such that it differs from the desired time (e.g., by incremental 

steps). In the operational MDP, this can be done by only offering a selected subset of feasible 

fulfillment options. Note that both mechanisms can be applied separately or combined. 

• Criteria: Both rejections and time shifts can be applied based on different criteria: feasibility 

and profitability. In the former case, the policy assigns an alternative fulfillment option or 

entirely rejects the request to avoid an infeasible order. In the latter case, the policy assigns 

an alternative option although there are other feasible fulfillment options preferred by the 

customer or rejects the request if the order cannot be “made” profitable. Here, a request is 

considered profitable if it does not decrease the expected profit after fulfillment. Please note, 

that in general, the objective function does not necessarily have to be monetary. For the semi-

perfect information model, we can unambiguously distinguish the four combinations of 

mechanisms and criteria: A feasibility rejection is applied if the policy cannot identify any 

feasible option for a request within the customer’s consideration set. Conversely, if the policy 

rejects a request despite having identified at least one such option, it applies a profitability 

rejection. To distinguish the two types of time shifts, we can use the closest feasible option, 

which is defined as the feasible option with the smallest deviation from the desired time. If 

the policy assigns an option with a deviation from the desired time equal to that of the closest 

feasible option, it applies a feasibility time shift. If the deviation is greater, this difference is 

a profitability time shift.  

• Information: Among policies considering profitability, we can further differentiate between 

myopic policies and anticipatory policies. While the former only draw on information from 

the current state, the latter incorporate information about future demand to make more accu-

rate profitability rejections and profitability time shifts. Feasibility-based decisions are my-

opic by design since the feasibility of any fulfillment option can be exactly verified based on 

the current state. 
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From (meaningful) combinations of these characteristics, we obtain a set of seven control policies, 

which we briefly introduce in the following: 

• Feasibility control (FC): A feasibility control does not consider profitability, and, thus, only 

applies feasibility rejections and feasibility time shifts. Given at least one feasible option can 

be identified within the customer’s consideration set, it always assigns the closest feasible 

option.  

• Myopic control (MC): A myopic control uses both types of rejections and time shifts and 

makes decisions according to myopic information. In addition to this general myopic control, 

we consider two special cases:  

o A non-selective myopic control (NS-MC), which does not apply profitability rejections. 

o A non-time-shifting myopic control (NT-MC), which does not apply profitability time 

shifts. 

• Anticipatory control (AC): An anticipatory control also uses both types of rejections and time 

shifts, but its decision-making is additionally based on probabilistic information on future 

demand. Analogously to the MC, we consider two special cases: 

o A non-selective anticipatory control (NS-AC), which does not apply profitability rejec-

tions. 

o A non-time-shifting anticipatory control, which does not apply profitability time shifts 

(NT-AC). 

Since we aim at analyzing the impact of demand management, the policies use a myopic approach 

for making vehicle routing decisions that does not involve waiting strategies or empty relocations 

(see also Section 3.3.2). 

3.3.2 Solution Algorithms 

For each policy, we design one solution algorithm that is representative of it. We do not compare 

several different algorithms per policy, which would go beyond the scope of this work. The se-

lected solution algorithms do not require extensive efforts for training and tuning such that they 

are easily adoptable in practice. Furthermore, they yield interpretable results regarding the poli-

cies’ control behavior, which is particularly important for analyzing the performance regarding 

the objective of equal accessibility. Since we are the first to consider the r-SMCP, we transfer and 

adapt elements of existing algorithms for related control problems. We introduce the algorithms 

such that they are suitable for the semi-perfect information model which we use for our analysis 

on the strategic planning level. However, they can readily be adapted such that they can be applied 

to the operational MDP as we explain at the end of this section.  

To characterize the different algorithms, we introduce the general solution concept and basic al-

gorithmic structure. Thereby, we draw on classification and terminology presented in Flecken-

stein et al. (2023). Overall, we adopt a decomposition-based approximation as the general solution 

concept, which is used in most existing publications on solving integrated demand management 
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and vehicle routing problems and builds on formulation (10) of the r-SMCP. There are four sub-

problems resulting from this decomposition, which are tackled by different algorithmic compo-

nents: feasibility check, opportunity cost estimation, availability control, and routing control. This 

is directly reflected in the basic structure of the solution algorithm depicted as a pseudocode in 

Fig. 4.  

1 𝐶0
𝑎𝑐𝑡 ≔ ∅  

2 𝜙0
𝑎𝑐𝑡, 𝜙0

𝑠𝑎𝑚 ≔ {𝜃𝑣 = {(0,0, 𝑡𝑣
𝑏 , 𝑡𝑣

𝑏), (0,0, 𝑡𝑣
𝑟 , 𝑡𝑣

𝑟)}:𝑣 ∈ 𝒱}  

3 𝐶0
𝑠𝑎𝑚 ≔ 𝑑𝑟𝑎𝑤_𝑠𝑎𝑚𝑝𝑙𝑒(𝑑𝑎𝑦_𝑡𝑦𝑝𝑒,𝐴𝑅𝑠𝑎𝑚)  

4 𝜙0
𝑠𝑎𝑚 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜙0

𝑠𝑎𝑚, 𝐶0
𝑠𝑎𝑚)  

5 forall 𝑡 ∈ 𝒯 do 

6       𝜙𝑡
𝑎𝑐𝑡, 𝐶𝑡

𝑎𝑐𝑡 ≔ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝑟𝑜𝑢𝑡𝑒_𝑝𝑙𝑎𝑛(𝜙𝑡−1
𝑎𝑐𝑡 , 𝐶𝑡−1

𝑎𝑐𝑡, 𝜏𝑖𝑡)  

7       𝜙𝑡
𝑠𝑎𝑚, 𝐶𝑡

𝑠𝑎𝑚 ≔ 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒_𝑟𝑜𝑢𝑡𝑒_𝑝𝑙𝑎𝑛𝑠(𝜙𝑡
𝑎𝑐𝑡, 𝐶𝑡−1

𝑠𝑎𝑚)  

8       𝒪𝑐𝑖𝑡
𝑓 ≔ ∅ 

9       forall 𝑜 ∈ 𝒪𝑐𝑖𝑡  do 

10             𝜙𝑡
𝑎𝑐𝑡(𝑜),𝒪𝑐𝑖𝑡

𝑓 ≔ 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 (𝜙𝑡
𝑎𝑐𝑡, 𝒪𝑐𝑖𝑡

𝑓 , 𝑖𝑡 , 𝑜) 

11             if 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓

 do 

12                   Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜),𝜙𝑡
𝑠𝑎𝑚(𝑜) ≔ 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦_𝑐𝑜𝑠𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝜙𝑡

𝑎𝑐𝑡, 𝜙𝑡
𝑎𝑐𝑡(𝑜),𝜙𝑡

𝑠𝑎𝑚, (𝑐𝑖𝑡 , 𝜏𝑖𝑡 , 𝑜)) 

13       𝑜𝑗𝑡 ≔ 𝑑𝑒𝑚𝑎𝑛𝑑_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑖𝑡 , { Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜): 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 }) 

14       if 𝑜𝑗𝑡 ≠ 0 then 

15             𝐶𝑡
𝑎𝑐𝑡 ≔ 𝐶𝑡

𝑎𝑐𝑡 ∪ {𝑗𝑡} 

16       𝜙𝑡
𝑎𝑐𝑡 ≔ 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝜙𝑡

𝑎𝑐𝑡(𝑜𝑗𝑡),𝐶𝑡
𝑎𝑐𝑡) 

17       𝜙𝑡
𝑠𝑎𝑚, 𝐶𝑡

𝑠𝑎𝑚 ≔ 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑟𝑜𝑢𝑡𝑒_𝑝𝑙𝑎𝑛(𝜙𝑡
𝑠𝑎𝑚(𝑜𝑗𝑡),𝐶𝑡

𝑎𝑐𝑡) 

Fig. 4 Basic solution algorithm 

Statements with italic line numbers are only needed for the AC. In statements with an underlined 

line number, the variables 𝜙𝑡
𝑠𝑎𝑚 are only required for the AC. All other statements are common to 

all policies.  

Before the start of the booking horizon, the actual route plan 𝜙𝑡
𝑎𝑐𝑡, which encodes the routing 

decisions, and the set 𝐶𝑗
𝑎𝑐𝑡 of all orders 𝑗 ∈ 𝒥 for which fulfillment has not yet been completed, 

are initialized as empty (lines 1 and 2). At each decision epoch, it is first computed which part of 

the route plan determined at the previous decision epoch has been executed, and 𝐶𝑗
𝑎𝑐𝑡 and 𝜙𝑡

𝑎𝑐𝑡 

are updated (line 6). Then, for each fulfillment option, the feasibility check is performed (line 10). 

If the result is positive, the opportunity cost estimate for the option is determined (line 12). Based 

on the results from lines 9-12, a control decision is made (line 13). If it results in a newly con-

firmed order, 𝐶𝑡
𝑎𝑐𝑡 is updated (line 15). In line 16, the routing control decision is made. 

Feasibility check: By solving the feasibility check subproblem, the action space 𝒢′(𝑠𝑡−1, 𝑐) of 

the r-SMCP’s control subproblem is determined. Hence, the subproblem must be solved 
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separately for each fulfillment option 𝑜 ∈ 𝒪𝑐 ∩ 𝒮𝑙,𝑐 that is part of the customer’s consideration 

set. To ensure short computation times, we solve the feasibility check subproblem heuristically 

using a parallel insertion heuristic for the DARP (Jaw et al., 1986) and maintain the (tentative) 

route plan from the preceding decision epoch. If the potential order defined by 𝑖𝑡 and 𝑜 can be 

feasibly inserted, we add 𝑜 to the set of feasible options 𝒪𝑐𝑖𝑡
𝑓

. We integrate this approach, as given 

in Appendix E, in identical form into each of the seven policies. 

Opportunity cost estimation: By solving this subproblem, we aim at determining an accurate 

approximation Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) of each potential order’s opportunity cost. It measures the loss of 

expected future profit due the consumption of logistical resources associated with the additional 

order. Consequently, the classification of policies for the r-SMCP into FC, MC, and AC depends 

on the opportunity cost estimation approach.  

• The feasibility control is characterized by generally setting Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐, 𝑜) ≔ 0. Thereby, the 

opportunity cost estimation problem is effectively omitted. 

• Myopic policies determine a myopic opportunity cost estimate, which is solely based on in-

formation stored in 𝑠𝑡−1. For the specific MC, and its two variants NT-MC and NS-MC, that 

we apply to the r-SMCP, we again draw on the parallel insertion heuristic and use the value 

of the cheapest insertion cost as a myopic opportunity cost estimate, i.e., Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) ≔

𝑐𝑜𝑠𝑡(𝜙𝑡
𝑎𝑐𝑡(𝑜)) − 𝑐𝑜𝑠𝑡(𝜙𝑡

𝑎𝑐𝑡). Starting with Campbell and Savelsbergh (2006), this approach 

has been used in many works on integrated demand management and vehicle routing prob-

lems. 

• Anticipatory policies additionally draw on probabilistic information on future demand to de-

termine an anticipatory opportunity cost estimate. For the opportunity cost estimation in our 

specific AC, and its variants NT-AC and NS-AC, we apply a sampling-based look-ahead 

algorithm, which combines elements from the algorithms developed by Koch and Klein 

(2020), Köhler et al. (2024), and Yang et al. (2016) for an attended home delivery problem 

with similar structure. The basic idea is to derive the cost estimate from the cheapest insertion 

position of each potential order in a skeletal route plan, which we call the sampled route plan 

𝜙𝑡
𝑠𝑎𝑚. At the beginning of the booking horizon, the sampled route plan 𝜙0

𝑠𝑎𝑚 is initialized 

only with a set of sampled orders 𝐶0
𝑠𝑎𝑚 (line 3 and 4). We draw 𝐶0

𝑠𝑎𝑚 directly from the 

historical data. Compared to methods that sample from individual distributions or joint dis-

tributions of request attributes, this sampling method performs superior since it extracts more 

accurate information about future demand from the historical data set (Köhler et al., 2024). 

Furthermore, we consider all historical requests and not only those that resulted in a con-

firmed order to avoid the sample being biased by the policy the provider used at the time the 

requests were observed. At each decision epoch, the algorithm first synchronizes the sampled 

route plan 𝜙𝑡
𝑠𝑎𝑚 with the actual route plan 𝜙𝑡

𝑎𝑐𝑡 based on the routing control decisions that 

are made (line 7). Then, it determines the opportunity cost estimate Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) by 
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searching the cheapest insertion position in the sampled route plan for each feasible fulfill-

ment option. In case a new order is confirmed, the algorithm again updates the sampled route 

plan by selecting a sampled order to be replaced by the new order (line 17). A more detailed 

description of this algorithm can be found in Appendix H. 

Availability control: Once the action space 𝒢′(𝑠𝑡−1 , 𝑐) and opportunity cost estimates 

Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) for all options 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓

 are computed, a control decision 𝑔𝑡 = 𝑜𝑗𝑡 must be deter-

mined by solving the maximum operator 𝑜𝑗𝑡 ≔ max
𝑜∈𝒢′(𝑠𝑡−1,𝑐𝑖𝑡)

(𝑟𝑐𝑖𝑡
⋅ 𝟏𝑜≠0 − Δ𝑉̃𝑡(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜)). For 

the semi-perfect information model, this can be done in linear time by complete enumeration. 

This approach is used for similar integrated demand management and vehicle routing problems 

in the literature, if the action space is sufficiently small (Avraham and Raviv, 2021, Klein and 

Steinhardt, 2023). The resulting solution algorithm for the control problem comprises the three 

steps profitability evaluation (line 1), time shift evaluation (line 2), and a tie breaker (line 3) (see 

Appendix F for a formal definition):  

Regarding the first step, i.e., profitability evaluation, the revenue net of the option’s estimated 

opportunity cost must be maximal as well as non-negative. In other words, the profitability eval-

uation ensures that only the most profitable option(s) is (are) selected. It is the only step that 

differs between the general policies that are both selective and time shifting (FC, MC, and AC) 

and their non-selective and non-time-shifting special cases. In the case of the FC, both conditions 

are non-restrictive since all cost estimates equal zero. In the case of non-selective policies, the 

second condition is omitted, such that the evaluation returns the least unprofitable option if no 

profitable option exists. Conversely, for non-time-shifting policies, the first condition is omitted, 

such that only unprofitable options are filtered out. Regarding the second step, the subset of op-

tions causing the smallest time shift is generated from the result of the profitability evaluation. 

Then, either one option or two options with the minimal time shift in both directions remain. In 

the latter case, we assign the option with the earlier alternative time to break the tie. 

Routing control: Mathematically, the routing control subproblem is defined by the maximum 

operator max
𝜙𝑡(𝑜𝑗𝑡)∈Φ(𝑠𝑡−1,𝑐,𝑜𝑗𝑡)

(𝑟𝜙𝑡(𝑜𝑗𝑡)
+ 𝑉𝑡 (𝑠𝑡|𝑠𝑡−1, 𝑐, 𝜙𝑡(𝑜𝑗𝑡))). We solve it as follows in all 

policies (also see Appendix G): At the last decision epoch before the start of the service horizon, 

the actual route plan 𝜙𝑡
𝑎𝑐𝑡 is re-optimized from scratch by solving the static DARP with the par-

allel insertion heuristic. During the service horizon, we draw on the route plan 𝜙𝑡
𝑎𝑐𝑡(𝑜𝑗𝑡) resulting 

from the feasibility check for the assigned option 𝑜𝑗𝑡. In the case of a rejection, 𝑜𝑗𝑡 = 0 and 𝜙𝑡
𝑎𝑐𝑡 =

𝜙𝑡
𝑎𝑐𝑡(0), i.e., the route plan is not changed. Combining feasibility check and routing control in 

this way is common in the literature on integrated demand management and vehicle routing prob-

lems (Fleckenstein et al., 2023). 
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In the operational MDP, the customer’s choice behavior and thus the availability control decision 

on the offer set is stochastic. Hence, an appropriate choice model must be selected and estimated 

that yields the choice probabilities 𝑃𝑐,𝑜(𝑔) of all options 𝑜 ∈ 𝒪𝑐 for any possible offer set 𝑔 ∈

2𝒪𝑐 ∖ ∅. The availability control decision on the offer set for an individual request represents an 

assortment optimization problem (Heger and Klein, 2024). 

4 Computational Results 

In this section, we evaluate the policies presented in Section 3.3 using a real-world data set, pro-

vided by our industry partner FLEXIBUS. From the different service areas FLEXIBUS operates 

in, we consider the most mature service area established in 2009, which consists of the small town 

Krumbach and the surrounding peripheral area.  

The service area counts almost 1300 users who requested trips during the one-year observation 

period from February 2022 to February 2023. For the sake of comparability, we consider only 

working days with a service horizon from 5:00 a.m. to 9:00 p.m, excluding Fridays and holidays. 

This results in a data set of 200 service days, which all show statistically significant similarity. 

In Section 4.1, we start with a brief descriptive analysis of this data set. Then, we introduce the 

experimental setup and the parameters of the base scenario in Section 4.2. After that, we discuss 

the results for the base scenario (Section 4.3) as well as the sensitivity analyses of demand-side 

flexibility (Section 4.4), level of profitability (Section 4.5), and supply-side capacity (Section 

4.6). Finally, we demonstrate that our methodology can also be applied to support other strategic 

decisions (Section 4.7). We performed all computations on an Intel© Core© i7-6700 processor 

with 4 cores, 3.40 GHz, and 16 GB RAM. The algorithms were implemented in PYTHON (Ver-

sion 3.9). 

4.1 Descriptive Analysis of Demand Structure 

The descriptive analysis serves two purposes. First, we illustrate the key features of the r-SMCP, 

namely the relevance of advance requests, same-day requests, and ad-hoc requests as well as the 

low, dispersed demand. Second, we analyze how much temporal flexibility customers have 

shown. 

The booking curve depicted in Fig. 5a shows the relative proportions of advance requests 

(54.2%), same-day requests (22.8%), and ad-hoc requests (23%). Note that the booking curve 

does not show the advance booking time, but the actual time of request with data points grouped 

into 4-hour bins. The fact that all three kinds of requests occur in relevant proportions highlights 

the importance of applying availability control to all of them, which is one of the distinguishing 

features of the r-SMCP. During an average booking horizon in the data set, 85.87 requests are 

received. Regarding the temporal perspective illustrated in Fig. 5b, the distribution of desired 

times is characterized by off-peak times at the beginning and the end of the service horizon (5 

a.m. to 9 a.m. and 5 p.m. to 9 p.m.) and the relatively popular mid-day peak (9 a.m. to 5 p.m.). 
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Looking at Fig. 5c, we observe a hub-and-spoke-type spatial distribution of demand with the town 

of Krumbach being both the most selected origin (54.9%) and the most selected destination 

(57.3%), and the peripheral area, with the exception of two larger villages, showing a very low 

density of demand. The arrows represent the direction of the OD-pairs and the width of the arrow 

heads correspond to the frequency, with which they are requested. We only show the most popular 

OD-pairs that are requested at least every two days. Fig. 5d shows the empirical distribution (den-

sity) of the observed time flexibility measured by the difference of the desired time of the request 

and confirmed time of the order. In total, 79.20% of all orders show non-zero flexibility. The 

average request has a flexibility of 25.62 minutes. However, the data is likely heavily biased, 

because we can only observe the flexibility customers have shown based on the offer set they 

were presented. Since FLEXIBUS used a FC policy to control all booking processes in the data 

set, the observable flexibility should be viewed as a lower bound for customers’ true flexibility, 

especially in case of advance requests that receive the best offers from an FC policy. That the 

observed lower flexibility bound already amounts to nearly half an hour, is a promising finding 

for the application of availability control. 

 

Fig. 5 Descriptive analysis of demand structure: (a) The horizontal axis shows the booking horizon, while the vertical 

axis displays the average number of requests per 4-hour interval for a service day. (b) The horizontal axis represents 
the service horizon with specific desired times, while the vertical axis shows the average number of requests per 0.5-
hour interval. (c) The plot is a flow map, with arrows indicating the direction of OD pairs, and the arrowhead width 
representing the average frequency over the observation period. (d) The plot displays the empirical distribution (den-
sity) of observed average time flexibility. 
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4.2 Experimental Setup 

An instance of the r-SMCP is defined by two types of parameters: the request parameters and the 

scenario parameters. From each of the 200 historical service days contained in the dataset, we 

generate one customer stream by extracting the set of relevant request parameters for each request 

𝑖 ∈ ℐ. The scenario parameters describe the general setting of the SMOD system. Most scenario 

parameters result from the providers’ strategic and tactical decision-making (system parameters), 

the remaining ones model the customer choice behavior (choice parameters). In the following, we 

describe the scenario parameters including their values in the base scenario, which is designed to 

resemble FLEXIBUS’ real-world system as closely as possible.  

The set of stops ℋ contains 563 stops across the service area, including the depot. Travel distance 

matrix and travel time matrix are calculated with Open Source Routing Machine (OSRM, n.d.) 

and include a constant service time of one minute. The fleet 𝒱 comprises a single vehicle deployed 

continuously during each service horizon. Since considering shift planning on a detailed, day-

specific level would be out of scope for this study, we do not use the original shift plans from 

FLEXIBUS. We define fulfillment options analogously to FLEXIBUS and generate alternative 

fulfillment options with a step-size of 𝜖 = 10 minutes starting from the desired time 𝑡𝑐. As an 

example, a request with a desired pick-up time of 𝑡𝑐 = 10: 00 could be offered an earlier pickup 

at 𝑜 = 09: 50, 09: 40,… or a later pick-up at 𝑜 = 10: 10, 10: 20,… as alternative options. To de-

rive the time windows for pick-up and drop-off (Jaw et al., 1986), we use a uniform waiting time 

of 𝜔 = 10 minutes and set the added ride time factor to 𝜇 = 0.5. To determine the revenues 𝑟𝑐 

for all request types 𝑐 ∈ 𝒞, we use the original pricing scheme from FLEXIBUS’ system. See 

Appendices I and J for a map of the service area, which highlights the different fare zones and the 

associated pricing scheme. Following this scheme, the revenue 𝑟𝑐 depends on the number of fare 

zones, which a line connecting the stops 𝑝𝑐 and 𝑑𝑐 traverses, multiplied with the number of pas-

sengers 𝑚𝑐. The resulting revenues range from 2.4€ (one zone) to 9.9€ (eight zones) per passen-

ger. To calculate the cost matrix (𝜌ℎℎ′)ℎ,ℎ′∈ℋ from the travel distance matrix, we use a cost pa-

rameter of 0.3
€

𝑘𝑚
, which is similar to the cost parameter FLEXIBUS assumes. For the choice 

parameters, we assume that customers belong to a single segment 𝑙 = 1 with a consideration set 

of size Δ1
+ = Δ1

− = 30. Hence, all customers accept a maximum deviation of 30 minutes in both 

directions from their desired time, which is similar to the flexibility observable with descriptive 

analyses (Section 4.1) that can be viewed as a lower bound for the true flexibility. 

We use a deterministic simulation framework to replay the original historical customer streams 

of the problem instances, which is based on the semi-perfect information model formulated in 

Section 3.2.2. Each booking horizon begins at 𝑡 = 0, which is 14 days prior to the service horizon. 

Each stage has the duration of one minute, such that 𝑡𝑠 = 20460 and 𝑇 = 21420. 

We apply and compare the seven control policies introduced in Section 3.3: Feasibility control 

(FC), myopic control (MC), and anticipatory control (AC) as well as the non-selective variants 
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NS-MC and NS-AC and the non-time-shifting variants NT-MC and NT-AC. All anticipatory pol-

icies require the selection of a sampling acceptance rate 𝐴𝑅𝑠𝑎𝑚 , which we set to 𝐴𝑅𝑠𝑎𝑚 = 0.4 

based on preliminary tests. The other policies do not have any tunable hyperparameters. 

We evaluate the performance of the availability control policies using the following additional 

metrics, each of which refers to one of the provider’s or municipal contracting authorities’ objec-

tives:  

• Reliability: The system should be reliable meaning that customers are shown a non-empty 

offer set as often as possible. To measure reliability, we consider the number of orders. 

• Environmental sustainability: Having an SMOD system in place in a certain region should 

save emissions compared to not having the system. Hence, we analyze the vehicle distance 

savings compared to motorized individual transport, i.e., booked passenger kilometers net of 

vehicle kilometers. 

• Service differentiation: The SMOD service should be reasonably differentiated from other 

public transport modes regarding prices and the service characteristics. The authorities’ aim 

behind this is to avoid undesirable cannibalization effects and create a level playing field. As 

a metric for this objective, we analyze the pooling rate, i.e., driven passenger kilometers di-

vided by vehicle kilometers. 

• Equal accessibility: Finally, equal accessibility is a prerequisite for that an SMOD system can 

provide mobility as a basic public service. It means that no discrimination should occur based 

on request characteristics. To evaluate the performance regarding equal accessibility, we an-

alyze the policies’ control behavior. More precisely, we consider the acceptance rate and the 

average time shift for different subsets of request types with certain characteristics (Section 

4.3.2). 

4.3 Base Scenario 

To analyze the impact of demand management in the base scenario, we apply the policies to 200 

r-SMCP instances from the FLEXIBUS data set with the parameter setting of the base scenario 

introduced in Section 4.2. To account for the probabilistic nature of AC, NS-AC, and NT-AC, we 

calculate the (weighted) mean over 25 runs per r-SMCP instance for all metrics. In Section 4.3.1, 

we point out the general performance differences and discuss explanations for and implications 

from them. In Section 4.3.2, we deepen this analysis by investigating patterns in the control be-

havior of the seven policies with a focus on the objective of equal accessibility. 

4.3.1 Overview 

Table 2 summarizes each policy’s performance regarding the objective metrics. To measure per-

formance, we report the arithmetic mean (AM) and the coefficient of variation (CV). The average 

computation time per decision epoch lies between 0.003s and 0.005s for the non-anticipatory 

policies and only increases to around 0.007s for the anticipatory policies. This indicates that our 
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methodology can provide results even for considerably larger SMOD systems than that of FLEX-

IBUS in a reasonable time frame. 

Table 2 Results overview of the base scenario 

Policy 
Profit [€] Number of orders Distance savings [km] Pooling rate 

AM CV AM CV AM CV AM CV 

FC 68.51 0.28 51.40 0.12 -207.17 0.14 0.75 0.10 

MC 93.82 0.25 44.12 0.21 -107.82 0.24 0.96 0.12 

AC 98.42 0.21 49.84 0.14 -124.27 0.13 0.93 0.08 

NS-MC 80.20 0.26 52.72 0.13 -180.15 0.15 0.83 0.10 

NS-AC 80.74 0.23 53.05 0.11 -182.14 0.12 0.82 0.08 

NT-MC 86.85 0.26 43.34 0.21 -124.54 0.24 0.86 0.13 

NT-AC 83.95 0.24 45.40 0.17 -137.05 0.15 0.81 0.09 

We observe a considerable profit gain of more than 35% due to availability control (MC and AC) 

compared to the FC. The revenue per order is comparable for all three policies (just above 4€ per 

order) and there are less orders for MC and AC. Hence, the profit gain can be attributed to a 

substantial cost reduction from 2.8€ per order to around 2.1€ per order, which is partially caused 

by a reduction of the orders’ average OD-pair length from 5.4 km to 4.5 km. This finding shows 

that the main lever of improvement for availability control with uniform prices is increasing the 

routing efficiency and optimizing the length of orders’ OD-pairs rather than exploiting the cus-

tomers’ willingness-to-pay to a larger extent or collecting more orders. The comparison to the 

non-selective and non-time-shifting policies shows that selectiveness contributes more to the per-

formance gain.  

The additional profit gain due to anticipation is only incremental (4.9%) but still statistically 

significant (p-value of Wilcoxon rank sum test: 0.01). The lower coefficient of variation indicates 

a more robust performance. Interestingly, there is no profit gain for NS-AC and NT-AC compared 

to their myopic counterparts. Hence, the benefit of anticipation only arises as a synergy benefit 

from combining both control mechanisms. 

Although the revenues are sufficient to cover the variable routing cost for most types of requests, 

the potential of availability control with uniform prices is not large enough to achieve a positive 

operating result. For the base scenario, we observe a fleet productivity of around 6€ per shift hour 

for MC and AC, which is clearly not sufficient to cover the system’s overhead cost, such as driver 

wages. 

The number of orders, which is a measure of reliability from the customer perspective, is lower 

and less robust for MC (−14%) and AC (−3%) compared to the FC, notwithstanding the greater 

routing efficiency, which frees up shift capacity and would even allow more customers to be 

served. In fact, we observe a substantial reduction of fleet utilization from 79% (FC) to 54% 

(MC) and 62% (AC), which indicates that this capacity is not used. Hence, there is a subset of 

requests that are estimated to remain unprofitable, and are thus rejected, despite MC and AC being 
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able to exploit their entire flexibility. Further evidence for this is provided by the results of the 

non-selective policies: Here, the freed-up capacity is used as the fleet utilization shows (78% for 

both policies), and both policies outperform the FC in terms of orders. In contrast to the profit 

gain, the increase in the number of orders between MC and AC is greater (13%), such that the 

AC gets close to the FC in terms of reliability. Although the vehicle is not fully utilized, FC, MC, 

and AC achieve rather low acceptance rates (FC: 59.9%, MC: 51.3%, AC: 58.0%), which can 

be improved by adding supply (Section 4.6). 

The pooling rate indicates that MC and AC apply profitability time shifts extensively and thereby 

exploit the available demand-side flexibility to a larger extent compared to the FC. This additional 

flexibility is used to create consolidation opportunities, which results in substantially increasing 

pooling rates of MC and AC. Still, the pooling rates are relatively low, which underlines that rural 

areas are generally a challenging environment for SMOD services since demand is hard to con-

solidate. 

When analyzing the distance savings, we find that the vehicle travel distance generally increases 

by several kilometres per order compared to the scenario in which all customers use their private 

cars to drive directly from their desired origin to destination. Regarding this metric, availability 

control also leads to substantial performance improvements as it cuts the additional vehicle travel 

distance almost in half in absolute terms (MC: −48%, AC: −40%) as well as per order (MC: 

−39%, AC: −38%). As for the profit, this improvement is partially caused by accepting shorter 

OD-pairs on average. 

4.3.2 Control Behavior 

In this section, we investigate the policies’ control behavior toward different subsets of request 

types with certain characteristics. Thereby, we not only gain additional insights into the causes of 

the performance differences but can also assess the performance regarding the objective of equal 

accessibility. We first investigate the behavior of the policies in different phases of the booking 

horizon, i.e., depending on the time of request. Then, we conduct the same analysis depending on 

the desired time and the length of the requested OD-pair. To keep the plots clear, we only include 

FC, MC, and AC in the plots of this section, and refer the interested reader to Appendix K for 

plots including NS-MC, NS-AC, NT-MC, and NT-AC. 

Time of request: 

Since the total number of request arrivals varies over the 200 instances, we define the progress in 

the booking horizon based on the share of requests that has arrived already and group requests 

accordingly into 25 bins. 

The MC consistently rejects more requests due to unprofitability since it only has information 

about consolidation opportunities with existing orders but not about future ones (Fig. 6c). By 

contrast, the AC correctly accepts additional advance requests that are unprofitable at their time 

of arrival but eventually become profitable when consolidated with future orders, which, in turn 
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creates additional consolidation opportunities later. Forcing the myopic policy to accept any fea-

sible order, as in the NS-MC, has a similar (but not equally beneficial) effect as anticipation, since 

consolidation opportunities with real orders start to arise at an earlier point in the booking process. 

The profitability rejection rates of the non-time-shifting policies are slightly higher, which indi-

cates that for some of these additional requests, a profitability time shift is necessary to realize 

this consolidation. 

Feasibility rejections show an inverse trend compared to profitability rejections (Fig. 6b). Because 

of the higher number of orders, the increase in feasibility rejections is greater for the AC, which 

to some extent thwarts the positive effect of more consolidation opportunities. The non-selective 

policies achieving lower feasibility rejection rates than the FC shows that profitability time shifts 

improve capacity utilization.  

The resulting acceptance rates are generally decreasing almost monotonically until 80% of re-

quests have arrived (Fig. 6a). The minimum corresponds to the maximum of feasibility rejections. 

In this phase, most customers request desired times within the mid-day demand peak, which also 

explains the subsequent small rise of acceptance rates, when desired times are again off-peak. By 

design, the FC starts with a 100% acceptance rate that drops over time with increasing slope. The 

same is true for NS-MC and NS-AC but on a higher level. In contrast, MC, AC, and their non-

time-shifting variants achieve much more balanced acceptance rates, and thus, improve the per-

formance regarding equal accessibility. Because of the fewer profitability rejections of advance 

requests, the AC initially achieves a much higher acceptance rate than the MC, while still main-

taining a similar level for same-day requests and ad-hoc requests, which explains the gains in 

profit and confirmed orders. 

 

Fig. 6 Use of rejections depending on the time of request: The horizontal axis plots the percentage of requests ar-
rived. The vertical axis plots the rate of acceptances (a), feasibility rejections (b), and profitability rejections (c). Each 

series corresponds to one of the policies FC, MC, and AC. 

Now, we investigate the use of time shifts. Until the arrival of one third of requests, we can ob-

serve clear differences in profitability time shifts between MC and AC (Fig. 7c). The MC hardly 

uses them initially, while the AC shows the maximal use since it anticipates later consolidation 

opportunities that can be realized with suitable time shifts. From then onward, MC and AC simi-

larly show a decreasing use of profitability shifts since the available flexibility must increasingly 
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be used for feasibility time shifts (Fig. 7b). NS-MC and NS-AC show a similar behavior but apply 

significantly more feasibility time shifts, probably to fulfill orders that can be consolidated poorly 

but that they are still forced to accept, leaving less flexibility for profitability time shifts. 

The total time shift increases for all policies throughout the booking horizon (Fig. 7a). For the 

FC, these are all feasibility time shifts by design, which again indicates that it becomes increas-

ingly difficult to find feasible options as more orders are confirmed. The non-time-shifting poli-

cies apply even less feasibility time shifts than the FC since they collect fewer orders, and more 

capacity is available consequently. 

 

Fig. 7 Use of time shifts depending on the time of request: The horizontal axis plots the percentage of requests ar-
rived. The vertical axis plots the average total time shift (a), feasibility time shift (b), and profitability time shift per 
order in minutes (c). Each series corresponds to one of the policies FC, MC, and AC. 

Desired time: 

For this analysis, we group the requests into 1-hour bins according to their desired time. We ob-

serve more profitability rejections by the MC for all types of desired times, but the difference 

varies strongly (Fig. 8c). At the center of the mid-day demand peak (12 a.m. to 1 p.m.) as well as 

during the off-peak times in the early morning and late evening, the policies behave similarly. 

Around the boundary between peak times and off-peak times, the difference is much greater. This 

indicates that anticipation is especially beneficial when demand is moderate, and thus, some con-

solidation is possible but hard to identify. If demand is high and consolidation opportunities are 

easy to find, or if demand is low and consolidation is clearly almost impossible, the MC’s inac-

curate cost estimates do not lead to worse decisions compared to the AC. 

As expected, feasibility rejection rates are roughly inversely proportional to the demand volume 

(Fig. 8b). At 7 a.m. and 3 p.m., we observe local peaks, which are consistent with the peaks in the 

MC’s profitability rejection rate. A possible explanation could be that around these times com-

muters request rides between the peripheral villages and the central town of the service region, 

which, if not consolidated well, consume a lot of logistical capacity and are unprofitable. 

Overall, this results in three minima of the acceptance rate, which are more or less pronounced 

depending on the policy (Fig. 8a). The FC achieves the highest acceptance rate during off-peak 

times, due to MC and AC making maximal use of profitability rejections. During the mid-day 

demand peak, the AC shows the highest acceptance rate. Since acceptance rates range from 50% 
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to 70% most of the time, the temporal discrimination in the off-peak periods is not particularly 

severe. 

 

Fig. 8 Use of rejections depending on the desired time: The horizontal axis plots the desired time. The vertical axis 
plots the rate of acceptances (a), feasibility rejections (b), and profitability rejections (c). Each series corresponds to 
one of the policies FC, MC, and AC. 

Regarding the use of time shifts, we do not find clear patterns aside from a slight increase in 

feasibility time shifts during the demand peak (Fig. 9). Thus, temporal discrimination by the use 

of time shifts is not an issue. 

 

Fig. 9 Use of time shifts depending on the desired time: The horizontal axis plots the desired time. The vertical axis 

plots the average total time shift (a), feasibility time shift (b), and profitability time shift per order in minutes (c). 
Each series corresponds to one of the policies FC, MC, and AC. 

OD-pair length: 

Now, we investigate the control behavior in spatial terms by considering requests with an OD-

pair of similar length (1-km bins). Here, MC and AC show a sharp increase in the rate of profita-

bility rejections for OD-pair distances between 8 km and 11 km (Fig. 10c). Left and right of this 

interval, the rates are relatively stable. Rather than an inherent discriminatory behavior, this sug-

gests an imbalance in the pricing scheme. Apparently, the revenue of many longer OD-pairs is 

not sufficient to make them equally profitable compared to shorter ones.  

In terms of feasibility rejections, all three policies trend upward due to the higher logistical ca-

pacity consumption by the requests with longer OD-pairs (Fig. 10b). As a result, the FC shows a 

more balanced but still decreasing acceptance rate, while the acceptance rates of MC and AC 

are similarly unbalanced (Fig. 10a). 
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Fig. 10 Use of rejections depending on the OD-pair length: The horizontal axis plots the direct distance between 
pick-up and drop-off in km. The vertical axis plots the rate of acceptances (a), feasibility rejections (b), and profita-
bility rejections (c). Each series corresponds to one of the policies FC, MC, and AC. 

Considering the usage of time shifts, we do not find strong patterns, i.e., no systematic spatial 

discrimination (Fig. 11). Note that there is a limited number of data points, and consequently a 

high random variance, for requests with an OD-pair length greater than 15 km, which explains 

the outliers, in particular between 20 and 25 km. 

 

Fig. 11 Use of time shifts depending on the OD-pair length: The horizontal axis plots the direct distance between 
pick-up and drop-off in km. The vertical axis plots the average total time shift (a), feasibility time shift (b), and prof-
itability time shift per order in minutes (c). Each series corresponds to one of the policies FC, MC, and AC. 

4.4 Sensitivity Analysis: Demand-side Flexibility 

As discussed in Section 4.1, the FLEXIBUS data set only allows a limited descriptive analysis of 

the customer’s willingness to accept time shifts, i.e., the demand-side flexibility. Hence, the true 

average consideration set size is uncertain and may be much greater than the empirically observed 

lower bound (around 30 minutes) we assume for the base scenario. Therefore, we analyze the 

impact of alternative consideration set sizes on the policies’ performance in this section. For com-

pleteness, we start with a consideration set size of 0, i.e., entirely inflexible customers, and in-

crease the consideration set size incrementally by 10 minutes until reaching a size of 180 minutes. 

The other scenario parameter values remain the same as in the base scenario. 

Fig. 12 shows the values of the objective metrics over the different scenarios. On the horizontal 

axis, we plot the consideration set size. Starting from the base scenario (size 30) and increasing 

flexibility, the profit of all policies improves at a diminishing rate (Fig. 12a). This improvement 

is quite considerable, especially in scenarios similar to the base scenario. E.g., until a 
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consideration set size of 120, the AC achieves a 3% to 5% profit gain per 10 minutes of addi-

tional flexibility. For FC and MC, the slope is roughly equal, and thus, a constant profit gap 

slightly above 40% results. In contrast, the gap between MC and AC increases up to 19%. Hence, 

anticipation enables exploiting additional flexibility to a greater extent than already possible with 

feasibility control. Considering scenarios with very small consideration sets, we observe a sharp 

decrease in profit, especially for MC and AC. This finding provides further evidence for that time 

shifts, which are hardly possible in these scenarios, represent a more powerful control mechanism 

than rejections. 

 

Fig. 12 Results of demand-side sensitivity analysis: The horizontal axis plots the size of the consideration set in terms 
of the maximum deviation from the desired time. The vertical axis plots the profit (a), the number of orders (b), the 
distance savings (c), and the pooling rate (d). Each series corresponds to one of the policies FC, MC, and AC. 

For the number of orders, we observe similar trends (Fig. 12b). The AC outperforms the FC from 

a size of 60 onward due to the effective use of profitability time shifts for making more requests 

profitable. The improvement drops to less than 2% per 10 minutes of additional flexibility for all 

policies at this point, such that only acceptance rates slightly above 70% are reached. This sug-

gests that the vehicle supply increasingly becomes a constraining factor for the possible gains 

through exploiting the flexibility. Similarly, regarding the distance savings (Fig. 12c) and the 

pooling rate (Fig. 12d), the AC also becomes the best-performing policy at a certain point with 

FC and MC nearly stagnating. 

4.5 Sensitivity Analysis: Level of Profitability 

When applying availability control with uniform fulfillment option prices, the provider needs to 

decide on a pricing scheme at the strategic planning level. The pricing scheme is yet another 

crucial input parameter for the r-SMCP because it determines the relation between the price level 

and variable fulfillment costs, i.e., the level of profitability. In this section, we investigate how 
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the level of profitability impacts the system performance. To this end, we test a set of alternative 

pricing schemes that result from a change of the price for each number of zones by a certain 

percentage, i.e., a change of the general price level. The remaining scenario parameter values are 

identical to the base scenario.  

Since we generate the instances with the original historical customer streams from the FLEXIBUS 

data set, we implicitly assume the demand to be completely price-inelastic. This represents a very 

strong assumption, which becomes less valid the more changes we make to the original FLEXI-

BUS pricing scheme used in the base scenario. Hence, it is not possible to draw meaningful in-

sights from the policies’ absolute performance expressed by the different metrics. Instead, we 

focus on the relative performance differences caused by the change in the level of profitability. 

When interpreting those differences, the assumption of inelastic demand is far less problematic 

since all policies have the same (deterministic) information about the customer choice behavior. 

To analyze the impact of the level of profitability, we assume price reductions (lower level of 

profitability) and price increases (higher level of profitability) by up to 50% and generate scenar-

ios in 5%-intervals. The results are plotted in Fig. 13. Comparing the policies’ profit (Fig. 13a), 

we observe a declining gap between FC and MC/AC as the level of profitability increases. The 

underlying reason is that when requests become more profitable in general, the number of profit-

ability rejections decreases, which more and more deprives MC and AC of one of their superior 

demand management mechanisms compared to the FC. If the level of profitability is very low, 

we observe that the FC even yields negative profits, which MC and AC can avoid by many prof-

itability rejections.  

 

Fig. 13 Results of sensitivity analysis regarding the level of profitability: The horizontal axis plots the percentage 
change of the general price level. The vertical axis plots the profit (a), the number of orders (b), the distance savings 
(c), and the pooling rate (d). Each series corresponds to one of the policies FC, MC, and AC. 
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Since the FC’s control behavior is completely independent from pricing, its performance regard-

ing the number of orders, the distance savings, and the pooling rate is constant over all scenarios. 

(Fig. 13b) clearly shows that MC and AC collect more orders when the system becomes more 

profitable overall since the number of profitability rejections decreases. Distance savings (Fig. 

13c) and pooling rates (Fig. 13d) decrease with a higher level of profitability because, with higher 

prices, more and more orders for which the fulfillment is relatively inefficient become profitable. 

4.6 Sensitivity Analysis: Supply-side Capacity 

The available vehicle fleet, which results from the provider’s strategic and tactical planning, is a 

critical input parameter for the r-SMCP that constrains operational decisions. Given a certain 

demand, it determines the supply-demand ratio the SMOD system operates under in different 

phases of the service horizon. In practice, providers may target different supply-demand ratios. 

Hence, investigating how the policies perform under different supply-demand ratios is highly 

relevant. 

In the base scenario, we use the minimum possible supply, i.e., a single vehicle over the entire 

service horizon (Index 0). We generate alternative scenarios by adding vehicles according to the 

following pattern: We start with an additional vehicle deployed for a two hour period in the center 

of the mid-day demand peak. We then increase its length successively until the second vehicle is 

also deployed over the entire service day (Indices 1 to 8). Applying this pattern once more yields 

scenarios for a fleet of three vehicles (Indices 9 to 16). Table 3 provides an overview of the 

scenarios. The other parameter values remain the same as in the base scenario. 

Table 3 Supply scenarios 

Index 1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 

Start of added vehicle 12:00 11:00 10:00 09:00 08:00 07:00 06:00 05:00 

End of added vehicle 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 

Applying FC, MC, and AC to the scenarios with additional vehicle supply yields the results de-

picted in Fig. 14. The horizontal axis plots the indices of the scenarios from Table 3. For the total 

profit, we generally observe diminishing marginal gains for adding another vehicle (Fig. 14a). 

Deploying a second full-day vehicle, the FC’s profit improves by 51%, MC and AC gain 33%. 

Adding a third full-day vehicle only leads to further improvements by 12% (FC), 5% (MC), and 

6% (AC). The same accounts for prolonging the vehicles’ time of deployment since, for the given 

scenario design pattern, the additional vehicle supply covers hours with less and less demand. 

Initially, the FC gains around 10% each time 2 vehicle hours are added, while MC and AC gain 

only around 6%. Thus, the FC’s gap to MC (AC) decreases from 37% (42%) to 13% (19%), 

while the gap between MC and AC remains roughly constant. The performance of all policies 

appears to converge for high-supply scenarios. We observe similar results for the number of or-

ders (Fig. 14b). Naturally, the acceptance rate of the FC converges to 100% and already reaches 

95% for three full-day shifts. However, MC and AC only reach acceptance rates of 73% and 
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80%, respectively. This indicates that around 15% of all requests are inherently unprofitable 

given the flexibility and the revenue they provide in the base scenario parameter setting. 

 

Fig. 14 Results of supply-side sensitivity analysis: The horizontal axis plots the index of the supply scenario as de-
fined in Table 3. The vertical axis plots the profit (a), the number of orders (b), the distance savings (c), and the pool-
ing rate (d). Each series corresponds to one of the policies FC, MC, and AC. 

The results for the distance savings are inversely proportional to the number of orders, i.e., the 

distance savings per order are constant over all scenarios (Fig. 14c). Generally, we expect this 

metric to be influenced by two effects. First, the orders that can be collected additionally due to 

the growing supply should be increasingly less profitable to serve, which negatively impacts dis-

tance savings. Second, however, a growing number of orders entails more consolidation oppor-

tunities, which, together with the larger action space due to more vehicles, positively impacts 

distance savings. Based on our results, these effects seem to offset. Further evidence for this con-

clusion is provided by the pooling rate, which also remains roughly constant over all scenarios 

(Fig. 14d). 

4.7 Further Applications 

Aside from supporting the strategic decision on how to implement operational demand manage-

ment, which is the primary purpose of our methodology, it can also be applied to support other 

strategic decisions such as fleet sizing and the definition of pricing scheme or service areas. To 

demonstrate this, we exemplarily consider the fleet sizing decision, with which the provider 

mainly trades off the operating result and the reliability of the SMOD system. While Fig. 14 

(Section 4.6) shows that more supply expectedly increases profit and number of orders, it also 

increases fixed cost (e.g., driver wages). Although we cannot directly measure the impact on the 

operating result due to a lack of data on fixed cost, we can derive insights from the profit per shift 

hour.  
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Fig. 15 plots this metric against the number of orders, which measures the reliability. Each data 

point corresponds to the performance of one of the shift plans from Table 3 in combination with 

one of the demand control policies FC, MC, and AC. The different shades of grey indicate how 

much supply in terms of shift hours is available according to a certain shift plan. For all three 

policies, we observe that the profit per shift hour, and thus also the operating result, deteriorates 

with every additional shift hour, even though the total profit increases (Fig. 14a). Hence, any 

increase of the fleet size can be seen as an investment into service quality. The specific numerical 

relation between the two metrics, i.e., the return of a certain investment, depends on the demand 

management policy. Thus, providers should optimize fleet sizing decisions such that they obtain 

a pareto-efficient shift plan reflecting their own weighting of economic efficiency and reliability. 

To this end, it is important to explicitly evaluate the potential shift plans regarding their opera-

tional consequences when the actual demand management policy is used. In this vein, evaluating 

all potential shift plans as depicted in Fig. 15, potentially taking into account other system param-

eters, can be viewed as a (brute-force) fleet sizing approach. Likewise, the provider can evaluate, 

e.g., the performance of different pricing schemes or service areas sizes. 

 

Fig. 15 Evaluation of potential shift plans: The horizontal axis plots the number of orders. The vertical axis plots the 
profit per shift hour. The marker shape indicates the policy of a data point, the shade of gray indicates the supply of 
shift hours. 

5 Conclusion 

In the following, we summarize the key findings our work. Based on the results from our compu-

tational study, we provide recommendations for implementing demand control in rural SMOD 

systems (Section 5.1). Furthermore, we address the limitations of our approach when applied to 

real-world settings, focusing on data availability, infrastructure requirements, and assumptions 

about customer behavior (Section 5.2). Finally, we outline possible future research directions 

(Section 5.3). 



Article A5: Analyzing the Impact of Demand Management in Rural Shared Mobility-on-Demand Systems 

227 

5.1 Recommendations 

In this paper, we propose a methodological approach to evaluate at the strategic planning level 

whether and how an SMOD provider should control the availability of rides when performing 

demand management. We introduce a semi-perfect information model and representative algo-

rithms for different availability control policies. These policies differ in three characteristics: ap-

plied mechanisms (rejections and/or time shifts), criteria (feasibility or profitability), and utilized 

information (myopic or anticipatory). The following recommendations summarize key insights 

from our computational study, focusing on the positive impact of demand management across 

multiple dimensions: economic efficiency (profit), reliability (number of orders), environmental 

sustainability (distance savings), service differentiation (pooling rate), and equal accessibility 

(control behavior): 

• Positive impact of availability control: Overall, our experiments demonstrate that implement-

ing availability control policies substantially improves the system performance across multi-

ple objectives when compared to feasibility control. In the base scenario, myopic availability 

control already increases profit by about 37%. While there is a reduction in the number of 

orders (up to 14%), this is primarily due to the rejection of inherently unprofitable requests, 

leading to a far more efficient use of available resources. Distance savings show remarkable 

improvement, with availability control policies achieving around 48% greater savings com-

pared to feasibility control. Regarding service differentiation, the pooling rate increases by 

28%. Lastly, equal accessibility also benefits, with more balanced acceptance rates for ad-

vance and same-day requests, although slight disparities for off-peak or long-distance re-

quests may occur. Overall, the adoption of demand management through availability control 

policies offers considerable potential to improve the system performance across multiple ob-

jectives. Hence, we recommend its application in practice. 

• Advantages of anticipatory information: While myopic availability control already yields 

substantial improvements, the use of anticipatory information further enhances system per-

formance. In the base scenario, anticipatory control increases profit by an additional 5%. 

Moreover, it reduces the decline in the number of orders to −3% compared to myopic control. 

However, with anticipatory control, distance savings decline by −15% compared to myopic 

control, as it tends to generate more orders, leading to increased vehicle kilometers. The dif-

ferences in pooling rate and accessibility are minor between myopic and anticipatory infor-

mation utilized, with no significant patterns emerging. Thus, while the larger performance 

gain can be attributed to the applied criteria (profitability and not only feasibility), utilizing 

anticipatory information can bring additional benefits and is recommendable.  

• Synergy of mechanisms – rejections and time shifts: Our results highlight that the combination 

of profitability rejections and time shifts unlocks the full potential of availability control pol-

icies, particularly when paired with anticipatory information. Profitability rejections ensure 

that unprofitable requests are excluded, while time shifts allow for more flexible and efficient 
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order fulfillment. This synergy is especially pronounced in terms of profit, distance savings, 

and pooling rate. Therefore, we strongly recommend using both mechanisms in combination 

to fully exploit the potential of availability control policies. 

• Leveraging demand-side flexibility: Our analysis shows that higher customer flexibility can 

improve system performance. Increasing the consideration set size from 30 to 120 minutes 

yields profit gains between 3% and 5% per 10 minutes of additional flexibility. However, 

after 120 minutes, gains begin to diminish as vehicle supply becomes a limiting factor. The 

number of orders, distance savings, and pooling rate also benefit from increased flexibility, 

with availability control outperforming feasibility control beyond a 60-minute consideration 

set. Thus, providers should leverage as much of the customers’ time flexibility as possible, 

e.g., by applying profitability time shifts. 

• Balancing supply and demand: Adding more vehicles improves performance, but the mar-

ginal gains decrease as fleet size increases. E.g., adding a second full-day vehicle increases 

profit by 51% for feasibility control and 33% − 35% for anticipatory and myopic control. 

However, adding a third vehicle yields only 12% to 6% further improvement, and perfor-

mance across all policies begins to converge as supply grows. The number of orders rises 

with vehicles, but distance savings and the pooling rate remain constant. These results show 

that providers should carefully balance vehicle supply with demand. Vehicle oversupply re-

sults in diminishing returns and does not improve key metrics like the distance savings.  

• Balancing profitability with environmental sustainability: As prices increase, the profit gap 

between feasibility control and advanced control policies narrows, with fewer requests being 

rejected as unprofitable. While this can boost profit given sufficiently high willingness-to-

pay, it creates a trade-off with environmental sustainability. Higher profitability leads to more 

fulfilled requests, even if they result in inefficient vehicle usage, as routing costs become less 

critical. This can increase vehicle kilometers, reducing the system's environmental sustaina-

bility. Providers could adopt sustainability-oriented demand management approaches to en-

sure that profit maximization does not undermine environmental goals.  

• Computational times: Importantly, our solution approaches are scalable for larger SMOD 

systems. The average computation time per decision epoch is 0.003s - 0.005s for non-antici-

patory policies and 0.007s for anticipatory policies, ensuring that the proposed demand man-

agement strategies can be applied in real-time operational environments without causing per-

formance bottlenecks. 

In summary, we find a considerable improvement potential by applying availability control. A 

positive finding is that even “less sophisticated” forms of demand management, i.e., myopic, non-

selective, and non-time shifting policies, already yield benefits compared to feasibility control, 

which makes a step-wise introduction viable.  
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5.2 Limitations 

While our approach for strategic decision support on the selection of demand management poli-

cies yields promising results, there are several limitations that need to be considered when imple-

menting our methodology in real-world settings: 

• Data availability – Request arrival: To apply our approach, providers must have access to 

comprehensive historical request data. This data should include request attributes such as the 

time of request, desired pick-up and drop-off times, locations, and the number of passengers. 

It is essential that this data is uncensored: All customer requests, not just those that were 

successfully converted into orders, must be recorded, and the provider must not communicate 

any information on service availability before request placement. 

• Data availability – Customer choice behavior: The semi-perfect information model assumes 

perfect information regarding customer segment affiliation, which is a strict assumption. It is 

necessary because typically, real-world data on customer preferences is incomplete or noisy, 

making it difficult for providers to estimate choice models accurately. To mitigate this limi-

tation, it is important to conduct sensitivity analyses to account for the uncertainty around the 

true customer choice behavior (see Section 4.4). 

• External factors: For anticipatory demand management, we assume that the provider uses 

information from historical request data. While this accounts for any external effects that 

occurred in the past, it may not fully account for future events affecting demand such as eco-

nomic shifts. Hence, in systems with a volatile demand structure (e.g., newly established sys-

tems), the benefits of anticipatory demand management are likely lower than in the results of 

our computational study. 

5.3 Future Research Directions 

Existing research on the operation of rural SMOD systems is still scarce, and our results give rise 

to further novel research questions in this area:  

• First, we see potential for developing anticipatory availability control policies that are tailored 

to the rural problem setting. Since algorithm development is not the focus of our work, we 

transferred existing algorithms that are practical, interpretable, and do not require parameter 

tuning. Also, we focused only on the availability control subproblem. Hence, e.g., by drawing 

on methods that involve statistical learning, explicitly consider displacement effects, or allow 

anticipatory routing decisions, there is still potential for algorithmic improvements.  

• Second, the low-profitability rural environment makes subsidies by municipal contracting 

authorities a necessity. Since there are various possibilities for the design of subsidy schemes, 

future research could apply a similar methodological approach to investigate the impact of 

different subsidy schemes on the system performance. Such an approach could also provide 

decision support to authorities on how to design a subsidy scheme such that the profit-
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maximizing provider is incentivized to make operational decisions in a way that guarantees 

the authorities’ sustainability objectives to be reached. 

• Third, it could be investigated how demand management can be applied to SMOD systems 

with more complex, differentiated fulfillment option designs. Being able to offer and control, 

e.g., express rides, subscriptions, or group tickets could make the system more customer-

centric and further increase its attractiveness compared to motorized individual transport. 

• Fourth, future research is required conducting a holistic environmental sustainability assess-

ment of rural SMOD systems. Besides the direct vehicle kilometer savings, we believe that it 

is particularly important to investigate indirect effects within the entire transportation system 

of rural areas that result from an SMOD system being in place. Examples are possible reduc-

tions of the private fleet size or line-based public transport, but also induced demand or can-

nibalization effects regarding more sustainable means of transport. 

• Finally, while the work at hand focuses on demand management, we believe that it is prom-

ising to analogously analyze the impact of different policies for vehicle routing on the perfor-

mance of rural SMOD systems. Building on these results, it is also of practical relevance to 

provide guidance on which combination of algorithmic elements provides the best perfor-

mance depending on a limited computational budget that is available due to the requirement 

of real-time decision-making. 
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Appendix A: Notation 

Table 4 Notation Markov decision process model 

𝑡 ∈ 𝒯 = {1,… , 𝑡𝑠,… , 𝑇}  Decision epoch 

𝑡𝑠  Start of the service horizon 

𝑐 ∈ 𝒞  Customer request type 

𝜆𝑐
𝑡   Arrival rate of request type 𝑐 in stage 𝑡 

𝑝𝑐 ,𝑑𝑐 ∈ ℋ  Pick-up (drop-off) stop of request type 𝑐 

𝑚𝑐  Number of passengers of request type 𝑐 

𝑡𝑐 ∈ {𝑡
𝑠,… ,𝑇}  Desired time of request type 𝑐 

𝑓𝑐 ∈ {0,1}  Indicator for time window type of request type 𝑐 

𝑟𝑐  Revenue of request type 𝑐 

𝑖 ∈ ℐ  Request 

𝜏𝑖 ∈ 𝒯  Time of request for request 𝑖 

𝑜 ∈ 𝒪𝑐  Fulfillment option defined for request type 𝑐 

(𝜏𝑐,𝑜
𝑒+ , 𝜏𝑐,𝑜

𝑙+ ), (𝜏𝑐,𝑜
𝑒− , 𝜏𝑐,𝑜

𝑙− )  Pick-up (drop-off) time window for request type 𝑐 and option 𝑜 

𝑔 ⊆ 𝒪𝑐  Offer set that can be presented to customer type 𝑐 

𝑃𝑐,𝑜(𝑔)  
Probability of customer placing a request of type 𝑐 choosing option 𝑜 when presented 

offer set 𝑔 

𝑗 ∈ 𝒥  Order 

𝑣 ∈ 𝒱  Vehicle 

𝑄𝑣  Seat capacity of vehicle 𝑣 

𝑡𝑣
𝑏 , 𝑡𝑣

𝑟  Start (end) of operations for vehicle 𝑣 

𝜙𝑡  Route plan at decision epoch 𝑡 

𝜃𝑣,𝑡 ∈ 𝜙𝑡  Planned route of vehicle 𝑣 according to route plan 𝜙𝑡 

𝑎𝑗𝑛
− , 𝑎𝑗𝑛

+   Vehicle arrival (departure) time at the 𝑛-th stop in a route 

𝑠𝑡  Post-decision state at decision epoch 𝑡 

𝐶𝑡  Set of confirmed but not yet fulfilled orders at decision epoch 𝑡 

𝑎𝑡  Action at decision epoch 𝑡 

𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐)  Availability control decision at decision epoch 𝑡 

𝜙𝑡(𝑜)  
Route plan at decision epoch 𝑡 including a potential order resulting from combining the 

newly arrived request with option 𝑜 

(𝜙𝑡(𝑜))𝑜∈𝑔𝑡
∈

∏ Φ(𝑠𝑡−1, 𝑐, 𝑜)𝑜∈𝑔𝑡
  

Vehicle routing decision at decision epoch 𝑡 for request type 𝑐 availability control de-

cision 𝑔𝑡 

𝒪𝑐
𝑓

  Set of feasible fulfillment options for request type 𝑐 

𝑠𝑡
pre

  Pre-decision state at decision epoch 𝑡 

𝑜𝑗𝑡  Fulfillment option chosen by the customer placing order 𝑗𝑡 

𝑠𝑡
′  Interim state at decision epoch 𝑡 

𝜓𝑣,𝑡(𝜙𝑡(𝑜))  Stops that are visited definitively according to vehicle routing decision 𝜙𝑡(𝑜) 

Ψ𝑡(𝜙𝑡(𝑜))  Orders for which fulfillment is completed according to vehicle routing decision 𝜙𝑡(𝑜) 

𝑟𝜙𝑡(𝑜)  Vehicle-routing-related reward incurred by vehicle routing decision 𝜙𝑡(𝑜) 

𝜌ℎ,ℎ′  Routing cost for traveling from stop ℎ to stop ℎ′ 
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Table 5 Notation of Markov decision process model (continued) 

𝑉𝑡(𝑠𝑡)  Value of post-decision state 𝑠𝑡 

𝑉𝑡
′(𝑠𝑡

′)  Value of interim state 𝑠𝑡
′ 

Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜)  Opportunity cost of an order by request type 𝑐 with fulfillment option 𝑜 

𝑙 ∈ ℒ  Customer segment 

𝒮𝑙,𝑐  Consideration set of customer segment 𝑙 and request type 𝑐 

Δ𝑙
+ +Δ𝑙

−  Total time flexibility provided by segment 𝑙 

𝜁  Ranking function over fulfillment options 

𝑜𝑐𝑔𝑙  Fulfillment option chosen by request type 𝑐 and segment 𝑙 from offer set 𝑔 

𝛾𝑙  Share of segment 𝑙 in the customer population 

 

Table 6 Notation of static Dial-a-Ride problem model 

𝑘 ∈ 𝒫 ∪ 𝒟 = 𝒩  Pick-up/drop-off node 

𝜎𝑘𝑘′  Distance for traveling from node 𝑘 to node 𝑘′ 

𝛿𝑘𝑘′   Time for traveling from node 𝑘 to node 𝑘′ 

𝒜  Set of arcs 

(𝜏𝑘
𝑒 , 𝜏𝑘

𝑙 )  Time window of node 𝑘 

𝑘𝑣  Node at which vehicle 𝑣 becomes available 

𝑞𝑘  Number of passengers picked-up or dropped off at node 𝑘 

𝑥𝑘𝑘′𝑣  Binary decision variable indicating whether vehicle 𝑣 travels from node 𝑘 to node 𝑘′ 

𝐵𝑘𝑣  Time at which vehicle 𝑣 stops at node 𝑘 

𝑄𝑘𝑣  Load of vehicle 𝑣 when leaving node 𝑘 

𝑡𝑐
𝑚𝑎𝑟𝑡   Maximum added ride time for request type 𝑐 

𝜔  Waiting time 

𝜇  Maximum added ride time factor 

 

Table 7 Notation of solution algorithms 

𝐶𝑗
𝑎𝑐𝑡  Set of actual orders 

𝜙𝑡
𝑎𝑐𝑡  Actual route plan at decision epoch 𝑡 

𝜙𝑡
𝑎𝑐𝑡(𝑜)  

Actual route plan at decision epoch 𝑡 including a potential order resulting from com-

bining the newly arrived request with option 𝑜 

𝐶𝑡
𝑠𝑎𝑚  Set of sampled orders 

𝜙𝑡
𝑠𝑎𝑚  Sampled route plan at decision epoch 𝑡 

𝜙𝑡
𝑠𝑎𝑚(𝑜)  

Sampled route plan at decision epoch 𝑡 including a potential order resulting from com-

bining the newly arrived request with option 𝑜 

𝐴𝑅𝑠𝑎𝑚  Sampling acceptance rate 

Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐, 𝑜)  
Approximation of opportunity cost of an order by request type 𝑐 with fulfillment op-

tion 𝑜 

𝜙𝑡,𝑗
𝑠𝑎𝑚  Sampled route plan at decision epoch 𝑡 excluding sampled order 𝑗  

𝑗∗  Sampled order with the highest cost saving 

𝒪𝑐𝑖𝑡
𝑝𝑟𝑜

  Subset of profit-maximizing fulfillment options 

𝒪𝑐𝑖𝑡
𝑐𝑙𝑜  Subset of profit-maximizing fulfillment options closest to the desired time 
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Appendix B: Mixed-Integer-Program for the static Dial-a-Ride prob-

lem 

Determining the action space ∏ Φ(𝑠𝑡−1 , 𝑐, 𝑜)𝑜∈𝑔𝑡  for the vehicle routing decisions (𝜙𝑡(𝑜))𝑜∈𝑔𝑡
 

in the MDPs for the r-SMCP described in Section 3.2 corresponds to searching all solutions to 

|𝒪𝑐| constraint satisfaction problems. Each of these problems (CS-DARP) has a structure similar 

to the static DARP. The instance is given by the set of unfulfilled orders 𝐶𝑡−1, the current vehicle 

positions stored in 𝜙𝑡−1, and the potential order resulting from assigning the newly received re-

quest 𝑖𝑡 a fulfillment option 𝑜. In the following, we present a mixed-integer programming model 

for the CS-DARP based on the DARP formulation by Cordeau (2006) and describe how its pa-

rameters can be determined from the information given in state 𝑠𝑡−1.  

The model is based on a graph 𝐺 = (𝒩,𝒜) consisting of a set of nodes 𝒩 and a set of arcs 𝒜. 

The set of nodes 𝒩 = {0} ∪ 𝒫 ∪ 𝒟 ∪ {2|𝒥| + 1} contains a pick-up node 𝑘 = 𝑗 ∈ 𝒫 and a drop-

off node 𝑘 = (𝑗 + |𝒥|) ∈ 𝒟 for each order 𝑗 ∈ 𝒥 in addition to the origin depot node 𝑘 = 0 and 

the destination depot node 𝑘 = 2|𝒥| + 1. The geographical location of each node is given by the 

pick-up stop 𝑝𝑐𝑗 and the drop-off stop 𝑑𝑐𝑗. This mapping of nodes to stops allows the computation 

of travel distances 𝜎𝑘𝑘′ , travel times 𝛿𝑘𝑘′ , and travel costs 𝜌𝑘𝑘′  between two nodes 𝑘, 𝑘′ ∈ 𝒩. 

The three parameters are weights of the respective arcs (𝑘, 𝑘′) ∈ 𝒜 = {(𝑘, 𝑘′): 𝑘 = 0, 𝑘′ ∈ 𝒫 ∨

(𝑘, 𝑘′ ∈ 𝒫 ∪𝒟 ∧ 𝑘 ≠ 𝑘′ ∧ 𝑘 ≠ 𝑘′ + |𝒥|) ∨ 𝑘 ∈ 𝒟, 𝑘′ = 2|𝒥| + 1}. The time window of each 

node 𝑘 is defined by two time points marking its start 𝜏𝑘
𝑒 and its end 𝜏𝑘

𝑙 . It is equal to the order’s 

pick-up time window defined by the earliest pick-up time 𝜏𝑘
𝑒+ and the latest pick-up time 𝜏𝑘

𝑙+ in 

case of 𝑘 ∈ 𝒫 or the drop-off time window defined by the earliest drop-off time 𝜏𝑘
𝑒− and the latest 

drop-off time 𝜏𝑘
𝑙− in case 𝑘 ∈ 𝒟. Similarly, the number of passengers 𝑞𝑘 that are picked-up or 

dropped-off at node 𝑘 can be computed based on the number of passengers 𝑚𝑐. 

The unfulfilled orders for the vehicle routing decision at decision epoch 𝑡 are stored in 𝐶𝑡−1. A 

subset of these orders may be partly fulfilled, meaning that the passengers are already on board a 

vehicle. Hence, to derive the set of pick-up nodes 𝒫, we remove these orders based on the route 

plan 𝜙𝑡−1 such that only indices of orders remain that have not yet been picked up: 

𝒫 = 𝐶𝑡−1 ∖ {𝑘 ∈ 𝐶𝑡−1: 𝑎𝑘
+ ≤ 𝑡, (𝑘, ℎ𝑘 , 𝑎𝑘

−, 𝑎𝑘
+) ∈ 𝜃𝑣,𝑡−1, 𝜃𝑣,𝑡−1 ∈ 𝜙𝑡−1}          (11) 

The set of drop-off nodes 𝒟 contains one node for each unfulfilled order: 

𝒟 = {𝑗 + |𝒥|: 𝑗 ∈ 𝐶𝑡−1}               (12) 

Each vehicle 𝑣 ∈ 𝒱 starts its route from the origin node 𝑘𝑣 = 𝑘1 with (𝑘1, ℎ𝑘1 , 𝑎𝑘1
− , 𝑎𝑘1

+ ) ∈

𝜃𝑡−1,𝑣 , 𝜃𝑡−1,𝑣 ∈ 𝜙𝑡−1, at which it next becomes available according to the arrival times 𝑎𝑘
− stored 

in 𝜙𝑡−1: 

Similarly to the set of pick-up nodes, we can also derive the initial vehicle load 𝑞𝑘𝑣  from the route 

plan 𝜙𝑡−1: 
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𝑞𝑘𝑣 ≔ 𝑞𝑘𝑣 + ∑ 𝑚𝑐𝑘{𝑘∈𝐶𝑡−1:𝑎𝑘
+≤𝑡,(𝑘,ℎ𝑘,𝑎𝑘

−,𝑎𝑘
+)∈𝜃𝑡−1,𝑣}

            (13) 

In summary, we have the set of nodes 𝒩 = 𝒫 ∪𝒟 ∪ {2|𝒥| + 1}, which also includes the desti-

nation depot node 𝑘 = 2|𝒥| + 1 where all vehicles must finish their route. The binary decision 

variables 𝑥𝑘𝑘′𝑣 encode whether vehicle 𝑣 drives directly from node 𝑘 to node 𝑘′ (𝑥𝑘𝑘′𝑣 = 1) or 

not (𝑥𝑘𝑘′𝑣 = 0). Further, decision variables 𝐵𝑘𝑣 encode the time at which vehicle 𝑣 stops at node 

𝑘, and decision variables 𝑄𝑘𝑣 encode the load of vehicle 𝑣 when leaving node 𝑘. 

∑ ∑ 𝑥𝑘𝑘′𝑣
𝑘′∈𝒩𝑣∈𝒱

= 1 ∀𝑘 ∈ 𝒫 (14) 

∑ 𝑥𝑘𝑘′𝑣
𝑘′∈𝒩

− ∑ 𝑥|𝒥|+𝑘,𝑘′𝑣
𝑘′∈𝒩

= 0 ∀𝑘 ∈ 𝒫, 𝑣 ∈ 𝒱 (15) 

∑ 𝑥𝑘𝑣,𝑘′𝑣
𝑘′∈𝒩

= 1 ∀𝑣 ∈ 𝒱 (16) 

∑ 𝑥𝑘′𝑘𝑣
𝑘′∈𝒩

− ∑ 𝑥𝑘𝑘′𝑣
𝑘′∈𝒩

= 0 ∀𝑘 ∈ (𝒫 ∪ 𝒟) ∖ 𝒦, 𝑣 ∈ 𝒱 (17) 

∑ 𝑥𝑘,2|𝒥|+1,𝑣
𝑘∈𝒩

= 1 ∀𝑣 ∈ 𝒱 (18) 

𝐵𝑘′𝑣 ≥ (𝐵𝑘𝑣 + 𝛿𝑘𝑘′)𝑥𝑘𝑘′𝑣 ∀𝑘 ∈ 𝒩, 𝑘′ ∈ 𝒩, 𝑣 ∈ 𝒱 (19) 

𝑄𝑘′𝑣 ≥ (𝑄𝑘𝑣 + 𝑞𝑘′)𝑥𝑘𝑘′𝑣 ∀𝑘 ∈ 𝒩, 𝑘′ ∈ 𝒩, 𝑣 ∈ 𝒱 (20) 

𝐵|𝒥|+𝑘,𝑣 − 𝐵𝑘,𝑣 ≥ 𝛿𝑘,|𝒥|+𝑘 ∀𝑘 ∈ 𝒫, 𝑣 ∈ 𝒱 (21) 

𝜏𝑘
𝑒 ≤ 𝐵𝑘𝑣 ≤ 𝜏𝑘

𝑙  ∀𝑘 ∈ 𝒩 ∖𝒦, 𝑣 ∈ 𝒱 (22) 

𝑎𝑣 ≤ 𝐵𝑘𝑣,𝑣 𝑣 ∈ 𝒱 (23) 

max{0, 𝑞𝑘} ≤ 𝑄𝑘𝑣 ≤ min{𝜅𝑣 , 𝜅𝑣 + 𝑞𝑘} ∀𝑘 ∈ 𝒩, 𝑣 ∈ 𝒱 (24) 

𝑥𝑘𝑘′𝑣 ∈ {0,1} ∀𝑘 ∈ 𝒩, 𝑘′ ∈ 𝒩, 𝑣 ∈ 𝒱 (25) 

Constraints (14) make sure that each order’s pick-up node is visited by exactly one vehicle. Con-

straints (15) enforce that this vehicle also visits the corresponding drop-off node. Flow conserva-

tion is guaranteed by Constraints (16)-(18) for the vehicles’ origin nodes, the remaining pick-up 

nodes and drop-off nodes, and the destination depot node, respectively. Consistency regarding 

time flow and loads is guaranteed by Constraints (19) and (20), respectively, which can be 

straightforwardly linearized. Constraints (21) ensure that pick-up nodes are visited before drop-

off nodes for all orders. Constraints (22) prevent any time window violations and thereby also 

prevent violations of the maximum ride time, since it is included in the time window definition 

(see Appendix C). The vehicles’ time of availability is considered through Constraints (23). Fi-

nally, Constraints (24) prevent violations of the seat capacity. 
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Appendix C: Time Window Generation for the Dial-a-Ride Problem 

In the following, we briefly define how the time windows for pick-up (𝜏𝑐,𝑜
𝑒+, 𝜏𝑐,𝑜

𝑙+ ) and drop-off 

(𝜏𝑐,𝑜
𝑒−, 𝜏𝑐,𝑜

𝑙− ) are computed based on the desired time 𝑡𝑐 (Jaw et al., 1986). To guarantee a certain 

service level for all types of requests 𝑐 ∈ 𝒞, we define a maximum added time 𝑡𝑐
𝑚𝑎𝑟𝑡  to the direct 

ride time 𝛿𝑝𝑐,𝑑𝑐  from the pick-up stop 𝑝𝑐 to the drop-off stop 𝑑𝑐. It consists of a constant waiting 

time 𝜔 and a certain fraction 𝜇 of the direct ride time. Thus, 𝑡𝑐
𝑚𝑎𝑟𝑡 = 𝜔 + (1 + 𝜇)𝛿𝑗,𝑗+|𝒥| . Further, 

each node is assigned a time window (𝜏𝑘
𝑒 , 𝜏𝑘

𝑙 ) resulting from 𝛿𝑗,𝑗+|𝒥|, 𝜔, 𝜇, and the trip type 𝑓𝑐𝑗 . 

The respective formulae are given in Table 8. Finally, each node is associated with a weight 𝑞𝑘 

indicating the number of passengers to be picked up (𝑞𝑘 > 0) or dropped off (𝑞𝑘 < 0), which is 

given by 𝑚𝑐𝑗 for each order 𝑗. 

Table 8 Computation of time windows 

 𝑓𝑐 = 0 (outbound trip) 𝑓𝑐 = 1 (inbound trip) 

𝑘 ∈ 𝒫 (pick-up node) 
𝜏𝑐,𝑜
𝑒+ = 𝑜 − 𝛿𝑗,𝑗+|𝒥|− 𝑡𝑐

𝑚𝑎𝑟𝑡  

𝜏𝑐,𝑜
𝑙+ = 𝑜 − 𝛿𝑗,𝑗+|𝒥| 

𝜏𝑐,𝑜
𝑒+ = 𝑜  

𝜏𝑐,𝑜
𝑙+ = 𝑜 + 𝜔 

𝑘 ∈ 𝒟 (drop-off node) 
𝜏𝑐,𝑜
𝑒− = 𝑜 −𝜔  

𝜏𝑐,𝑜
𝑙− = 𝑜 

𝜏𝑐,𝑜
𝑒− = 𝑜 + 𝛿𝑗,𝑗+|𝒥|  

𝜏𝑐,𝑜
𝑙− = 𝑜 + 𝛿𝑗,𝑗+|𝒥|+ 𝑡𝑐

𝑚𝑎𝑟𝑡  

 

Appendix D: Example for the stochastic modeling component of the 

operational MDP and semi-perfect information model 

Consider a brief numerical example that illustrates the differences between the stochastic model-

ing component of the operational MDP and the semi-perfect information model. For simplicity, 

we assume a three-period time horizon 𝒯 = {1,2,3} with an incoming request of type 𝑐 = 1 and 

a desired time 𝑡1 = 2. The feasible fulfillment options 𝑜 ∈ 𝒪𝑐
𝑓 = {0,1,2,3} represent (alternative) 

times that the provider can offer in response to the customer’s desired time 𝑡1 = 2, specifically 

𝑜 = 1 and 𝑜 = 3, as well as the no-purchase option 𝑜 = 0.  

We assume that the customer population is divided into two customer segments ℒ = {1,2} with 

shares of 𝛾1 = 0.4 for segment 𝑙 = 1 and 𝛾2 = 0.6 for segment 𝑙 = 2: Customers of segment 1 

will only accept alternative times earlier than their desired time, and customers of segment 2 will 

only accept alternative times later than their desired time. Both, of course, consider the no-pur-

chase option. This leads to the following consideration sets: 𝒮1,1 = {0,1,2}, 𝒮2,1 = {0,2,3}. 

We assume a ranking function 𝜁 = (2,1,3,0) that represents the general preferences within con-

sideration sets, with the desired time being the most preferred option, followed by alternative 

times that are less preferred with increasing deviation, and lastly the no-purchase option. For 

alternative times with the same deviation, e.g., 𝑜 = 1 and 𝑜 = 3, alternative times earlier than the 

desired time are favored. 
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Given an offer set 𝑔 = {0,1}, we can illustrate the differences of the stochastic modeling compo-

nent for the operational MDP and the semi-perfect information model. 

Operational MDP: According to the shares of the segments 𝛾1 and 𝛾2, we can calculate the prob-

abilities that a customer with request type 𝑐 = 1 will choose an option. A customer from segment 

𝑙 = 1 will choose option 1, since the customer is willing to accept a time deviation before 𝑡1 = 2. 

A customer of segment 𝑙 = 2 will choose the no-purchase option. This results in the following 

probabilities, derived from the segments’ share of the customer population: 

𝑃1,0({0,1}) = 0.6  

𝑃1,1({0,1}) = 0.4  

𝑃1,2({0,1}) = 𝑃1,3({0,1}) = 0  

To summarize, for the operational MDP we first observe a deterministic transition by the provider 

choosing an offer set 𝑔 = {0,1}, followed by a stochastic transition according to the customer’s 

choice behavior, resulting in the choice probabilities 𝑃1,𝑜({0,1}) (see also Fig. 3). 

Semi-perfect information model: Contrary to the operational MDP, in the semi-perfect infor-

mation model, the provider knows the true segment affiliation of each customer request. Assum-

ing that the customer belongs to segment 𝑙 = 1, the stochastic component of the choice behavior 

is eliminated: The provider knows with certainty (𝑃1,1({0,1}) = 1), that the customer will choose 

option 𝑜 = 1 and we can omit the choice probabilities for other options (𝑃1,0({0,1}) =

𝑃1,2({0,1}) = 𝑃1,0({0,1}) = 0). This implies that this transition in the semi-perfect information 

model is completely deterministic as the provider can effectively assign any fulfillment option 

from the customer’s consideration set by choosing an offer set that makes this option the cus-

tomer’s most preferred one in the offer set (see also Fig. 3). 

Appendix E: Feasibility Check 

Input: Current actual route plan 𝜙𝑡
𝑎𝑐𝑡, set of feasible options 𝒪𝑐𝑖𝑡

𝑓 , current request 𝑖𝑡, option 𝑜  

1 𝜙𝑡
𝑎𝑐𝑡(𝑜) ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜙𝑡

𝑎𝑐𝑡, (𝑖𝑡 , 𝑜))  

2 if (𝑖𝑡 , 𝑜) in 𝜙𝑡
𝑎𝑐𝑡(𝑜) do 

3       𝒪𝑐𝑖𝑡
𝑓 ≔ 𝒪𝑐𝑖𝑡

𝑓 ∪ {𝑜} 

Fig. 16 Feasibility check function 
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Appendix F: Availability Control 

Input: Current customer request 𝑖𝑡, set of cost estimates { Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜): 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 } 

1 𝒪𝑐𝑖𝑡
𝑝𝑟𝑜 ≔ {𝑜′ ∈ 𝒪𝑐𝑖𝑡

𝑓 : 𝑜′ = argmax
𝑜∈𝒪𝑐𝑖𝑡

𝑓
{𝑟𝑐𝑖𝑡

−𝛥𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜)} , 𝑟𝑐𝑖𝑡
−𝛥𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜

′) ≥ 0}  

2 𝒪𝑐𝑖𝑡
𝑐𝑙𝑜 ≔ {𝑜′ ∈ 𝒪𝑐𝑖𝑡

𝑝𝑟𝑜 : 𝑜′ = argmin
𝑜∈𝒪𝑐𝑖𝑡

𝑝𝑟𝑜
{|𝑜 − 𝑡𝑐𝑖𝑡 |}}  

3 
𝑜𝑗𝑡 ≔ min

𝑜∈𝒪𝑐𝑖𝑡
𝑐𝑙𝑜
𝑜  

Fig. 17 Availability control function 

 

Appendix G: Routing Control 

Input: Actual route plan including new order 𝜙𝑡
𝑎𝑐𝑡(𝑜𝑗𝑡), set of actual orders 𝐶𝑡

𝑎𝑐𝑡 

1 𝜙𝑡
𝑎𝑐𝑡 ≔ 𝜙𝑡

𝑎𝑐𝑡(𝑜𝑗𝑡)  

2 if 𝑡 = 𝑡𝑠 − 1 do 

3       𝜙𝑡
𝑎𝑐𝑡 ≔ {𝜃𝑣 = {(0,0, 𝑡𝑣

𝑏 , 𝑡𝑣
𝑏), (0,0, 𝑡𝑣

𝑟 , 𝑡𝑣
𝑟)}: 𝑣 ∈ 𝒱} 

4       𝜙𝑡
𝑎𝑐𝑡 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜙𝑡

𝑎𝑐𝑡, 𝐶𝑡
𝑎𝑐𝑡) 

Fig. 18 Routing control function 

 

Appendix H: Additional Functions for Anticipatory Control 

In the following, we first describe the initialization and second the additional computations of the 

anticipatory policies at each decision epoch in a more detailed fashion. 

Initialization: 

The basic steps of the initialization are given in lines 2-4 of Fig. 4. First the sampled route plan is 

initialized as empty (line 2). Then, the set of orders 𝐶0
𝑠𝑎𝑚 for the skeletal route planning is sam-

pled (line 3). The pool of historical requests from which we sample is defined hierarchically by 

three attributes of the service day that is controlled, which are encoded by 𝑑𝑎𝑦_𝑡𝑦𝑝𝑒. Primarily, 

we check whether the service day is a public holiday and, if so, sample from a pool of all public 

holidays. On the second level, we check whether the service day is a school vacation day. Finally, 

we evaluate the day of week. To determine the size of the sample, we multiply the average number 

of requests received per day over all days in the sampling pool with a fictive acceptance rate 

𝐴𝑅𝑠𝑎𝑚 , which is the only parameter of the AC. From each of the sampled requests, we generate 

a sampled order by assigning the desired time as the fulfillment option. In the final step of the 

initialization (line 4), we generate the initial sampled route plan from the set of sampled orders 

𝐶0
𝑠𝑎𝑚 by means of the parallel insertion heuristic.  

Iterations: 
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At each decision epoch, there are three basic steps associated with solving the opportunity cost 

estimation subproblem in the AC (lines 7, 12, and 17). First, the sampled route plan is synchro-

nized with the actual route plan (Fig. 19). This step ensures that the cost estimate is based on the 

actual positions of the vehicles and the actual (tentative) routing decisions. Consequently, it is 

only required at decision epochs within the service horizon (line 1). The synchronized sampled 

route plan 𝜙𝑡
𝑠𝑎𝑚 is initialized as a copy of the actual route plan 𝜙𝑡

𝑎𝑐𝑡. Then, the sampled orders 

remaining at the preceding decision epoch 𝐶𝑡−1
𝑠𝑎𝑚 are inserted into 𝜙𝑡

𝑠𝑎𝑚 (line 3). Those sampled 

orders that cannot be feasibly inserted any more, e. g., because they are expired, are not included 

in the updated set of sampled orders 𝐶𝑡
𝑠𝑎𝑚 (lines 4-6).  

Input: Current actual route plan 𝜙𝑡
𝑎𝑐𝑡, current set of sampled orders 𝐶𝑡−1

𝑠𝑎𝑚 

1 if 𝑡 ≥ 𝑡𝑠 do 

2       𝜙𝑡
𝑠𝑎𝑚 ≔ 𝜙𝑡

𝑎𝑐𝑡  

3       𝜙𝑡
𝑠𝑎𝑚 ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜙𝑡

𝑠𝑎𝑚, 𝐶𝑡−1
𝑠𝑎𝑚)  

4       forall 𝑗 ∈ 𝐶𝑡−1
𝑠𝑎𝑚 do 

5             if 𝑗 in 𝜙𝑡
𝑠𝑎𝑚 do 

6                   𝐶𝑡
𝑠𝑎𝑚 ≔ 𝐶𝑡

𝑠𝑎𝑚 ∪ {𝑗} 

Fig. 19 Route plan synchronization function 

The computation of the cost estimate in the second basic step is shown in Fig. 20. First, the po-

tential order resulting from the assignment of option 𝑜 to request 𝑖𝑡 is inserted into the current 

sampled route plan 𝜙𝑡
𝑠𝑎𝑚(𝑜) (line 1). If the insertion is not feasible, the cost estimate is set to a 

sufficiently high value such that the option is guaranteed to not be offered (line 3), which is similar 

to the approach by Yang et al. (2016). Otherwise, the cost estimate is equal to the cheapest inser-

tion cost in the sampled route plan (line 5). 

Input: Current sampled route plan 𝜙𝑡
𝑠𝑎𝑚, current request 𝑖𝑡, option 𝑜 

1 𝜙𝑡
𝑠𝑎𝑚(𝑜) ≔ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜙𝑡

𝑠𝑎𝑚, (𝑖𝑡 , 𝑜))   

2 if 𝜙𝑡
𝑠𝑎𝑚(𝑜) = 𝜙𝑡

𝑠𝑎𝑚 do 

3       Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜) ≔ ∞ 

4 else do 

5       Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜) ≔ 𝑐𝑜𝑠𝑡(𝜙𝑡
𝑠𝑎𝑚(𝑜)) − 𝑐𝑜𝑠𝑡(𝜙𝑡

𝑠𝑎𝑚)  

Fig. 20 Opportunity cost estimation function (anticipatory control) 

As a third step at each decision epoch, the sampled route plan is updated such that the newly 

confirmed order 𝑗𝑡 replaces one of the sampled orders (Fig. 21). This approach is also used by 

Koch and Klein (2020). If a new order is confirmed, the sampled route plan including this order 

𝜙𝑡
𝑠𝑎𝑚(𝑜𝑗𝑡) already determined in the preceding step is used further (line 2). Then, each sampled 

order is preliminary removed from the sampled route plan to evaluate the associated cost savings 

(line 4). Finally, the algorithm permanently removes the sampled order 𝑗∗ with the greatest cost 

saving (lines 5 and 6). The reasoning behind this rule is as follows: The greater the cost estimate 
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for a sampled order, the more likely a similar actual request potentially arriving in the future 

would be rejected. Therefore, sampled orders with a high cost estimate forecast consolidation 

opportunities that are very unlikely to realize and would distort the cost estimates for the arriving 

request. By incorporating this rule, we not only anticipate future demand but also future decision-

making.  

Input: Sampled route plan including new order 𝜙𝑡
𝑠𝑎𝑚(𝑜𝑗𝑡), set of sampled orders 𝐶𝑡

𝑠𝑎𝑚 

1 if 𝑜𝑗𝑡 ≠ 0 do 

2       𝜙𝑡
𝑠𝑎𝑚 ≔ 𝜙𝑡

𝑠𝑎𝑚(𝑜𝑗𝑡)   

3       forall 𝑗 ∈ 𝐶𝑡
𝑠𝑎𝑚 do  

4             𝜙𝑡,𝑗
𝑠𝑎𝑚 ≔ 𝑟𝑒𝑚𝑜𝑣𝑒(𝜙𝑡

𝑠𝑎𝑚, 𝑗) 

5       𝑗∗ ≔ argmin
𝑗∈𝐶𝑡

𝑠𝑎𝑚
{𝑐𝑜𝑠𝑡(𝜙𝑡,𝑗

𝑠𝑎𝑚)}  

6       𝜙𝑡
𝑠𝑎𝑚 ≔ 𝜙𝑡,𝑗∗

𝑠𝑎𝑚  

Fig. 21 Update sampled route plan function (anticipatory control) 

Appendix I: Service Area Krumbach Divided in Zones 

 

 

Fig. 22 Service area of Krumbach divided in zones (FLEXIBUS, 2024) 
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Appendix J: Pricing Scheme FLEXIBUS 

Table 9 Pricing scheme FLEXIBUS (FLEXIBUS, 2024) 

Zones 1 2 3 4 5 6 7 8 

Price 2.40€ 3.60€ 4.80€ 5.50€ 6.60€ 7.70€ 8.80€ 9.90€ 

 

Appendix K: Control Behavior of Non-Selective and Non-Time-Shift-

ing Policies 

 

Fig. 23 Use of rejections depending on the time of request: The horizontal axis plots the percentage of requests ar-
rived and the vertical axis plots the rate of acceptances (a), feasibility rejections (b), and profitability rejections (c). 

Each series corresponds to one of the policies NS-MC, NT-MC, NS-AC, and NT-AC. 

 

 

Fig. 24 Use of time shifts depending on the time of request: The horizontal axis plots the percentage of requests ar-

rived and the vertical axis plots the average total time shift (a), feasibility time shift (b), and profitability time shift 
per order in minutes (c). Each series corresponds to one of the policies NS-MC, NT-MC, NS-AC, and NT-AC. 
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Fig. 25 Use of rejections depending on the desired time: The horizontal axis plots the desired time and the vertical 
axis plots the rate of acceptances (a), feasibility rejections (b), and profitability rejections (c). Each series corresponds 

to one of the policies NS-MC, NT-MC, NS-AC, and NT-AC. 

 

Fig. 26 Use of rejections depending on the OD-pair length: The horizontal axis plots the direct distance between 
pick-up and drop-off in km and the vertical axis plots the average total time shift (a), feasibility time shift (b), and 

profitability time shift per order in minutes (c). Each series corresponds to one of the policies NS-MC, NT-MC, NS-
AC, and NT-AC. 
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Abstract 

Shared mobility-on-demand (SMOD) systems allow customers to request customized rides that 

the provider bundles through ridepooling. Owing to their flexibility and efficiency in low-demand 

settings, SMOD systems are expected to become a cornerstone of rural public transport. Opera-

tionally, dynamic pricing can influence which rides customers order, thereby enhancing system 

performance. In the literature, dynamic pricing is exclusively applied to maximize profit. How-

ever, rural SMOD services primarily provide basic mobility as a public service and should con-

tribute to reducing the greenhouse gas emissions of passenger transportation. With this work, we 

present the first multi-objective, sustainable dynamic pricing approach that considers all three 

dimensions of sustainability, i.e., social, environmental, and economic objectives. The core idea 

is to set prices that maximize served demand while adhering to a dynamic lower price bound 

ensuring that the price of each ride at least covers its marginal cost. Thereby, our approach care-

fully balances the partially conflicting sustainability objectives. To accurately evaluate demand 

displacement and marginal cost of rides, which is crucial for making dynamic pricing decisions, 

we propose a post-decision rollout algorithm that anticipates the future evolution of the booking 

process. We comprehensively evaluate our approach based on a real-world data set of a rural 

SMOD provider and derive managerial insights regarding the practical impact of sustainable dy-

namic pricing. Our findings show that sustainable dynamic pricing achieves substantially better 

performance than static pricing while preventing monopoly markups, which would result from 

profit-based dynamic pricing. 

Key words: Mobility-on-Demand, Rural Areas, Sustainability, Dynamic Pricing, Routing 
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1 Introduction 

Shared mobility-on-demand (SMOD) services, also known as demand-responsive transport ser-

vices, are a flexible form of public transport that allows customers to request customized rides 

via mobile applications. Providers can bundle the rides of multiple, unrelated customers and 

transport them in one vehicle, which is called ridepooling. In rural areas, the main advantage of 

SMOD systems is that they can efficiently provide area-wide mobility coverage due to their flex-

ibility paired with at least a low degree of demand consolidation (Mounce et al., 2020). They are 

expected to be part of future rural public transport systems by complementing or replacing exist-

ing scheduled public transport services in low-demand areas (Mortazavi et al., 2024, Sieber et al., 

2020). 

Due to low and dispersed demand, rural public transport is often financially unprofitable, and 

SMOD systems are no exception (e.g., Zwick et al., 2022). However, there is a broad socio-po-

litical consensus across many countries that governments must guarantee an adequate basic mo-

bility provision as a public service, although state-level definitions of which specific objectives 

should be pursued to achieve “adequacy” are lacking to date (Mounce et al., 2020). Traditionally, 

adequacy has been seen as economic efficiency, but an increasingly popular perspective is to 

equate adequacy with sustainability (e.g., Poltimäe et al., 2022 or Schwedes, 2021, p. 45).  

The most popular definition of sustainability distinguishes three major objectives: social, envi-

ronmental, and economic sustainability (Purvis et al., 2019). We consider operational planning of 

an SMOD service to be sustainable if it pursues the following lower-level objectives derived from 

the three major objectives:  

• Social sustainability: The SMOD system should provide a) area-wide basic mobility that 

should be b) adequately priced because it is offered as a public service (Lu et al., 2024).  

• Environmental sustainability: The SMOD system should contribute to emission savings by 

a) promoting modal shift from motorized individual transport to public transport (Burghard 

and Scherrer, 2022) and b) by decreasing emissions per passenger km (Lotze et al., 2023). 

• Economic sustainability: The economic perspective is also relevant because subsidy require-

ments must be minimized to ensure long-term viability beyond the pilot stage (De Jong et al., 

2011).  

Responsible for planning SMOD services are municipal authorities, who either act as the service 

provider themselves or commission a private company (Lu et al., 2024). For the latter, perfor-

mance-based contracts are becoming increasingly popular to ensure that the private provider op-

erates the system in line with the authority’s requirements (Hensher, 2020). In any case, municipal 

authorities aim at social, environmental, and economic sustainability objectives that are partially 

conflicting. Thus, the provider requires multi-objective optimization methods allowing to find a 

suitable trade-off. Please note that we consistently refer to the sustainability objectives as the 

provider’s objectives in the remainder of the paper. 
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In this work, we focus on the operational planning level of SMOD systems. Given the strategic 

and tactical decisions on the supply of logistical capacity (e.g., shift planning), the provider can 

actively manage demand at the operational planning level to improve performance (Anzenhofer 

et al., 2024, Haferkamp and Ehmke, 2022).  

We investigate demand management through dynamic pricing, which means that the provider 

determines an individual price for each ride based on the current system state. Dynamic pricing 

for (rural) SMOD systems is not an entirely new approach (e.g., Arian et al., 2022, Sharif Azadeh 

et al., 2022), but, following the traditional economic-driven planning paradigm, academic litera-

ture proposes to apply dynamic pricing for profit maximization (Hörcher and Graham, 2020a). 

While the objective of profit maximization is to some degree congruent with the social and envi-

ronmental sustainability objectives, there is a fundamental issue (Bahamonde-Birke et al., 2021): 

If the primary objective is profit-oriented, the provider will raise prices solely to exploit the cus-

tomers’ expected willingness-to-pay, which is known as charging a monopoly markup. As a re-

sult, the provider can capitalize on the consumer surplus, which comes at the cost of lost demand. 

In view of the social and environmental sustainability objectives introduced above, this is unde-

sirable (Hörcher and Graham, 2020b).  

As an alternative to profit-based dynamic pricing, we propose a sustainable dynamic pricing ap-

proach that draws on multi-objective optimization to balance all three dimensions of sustainabil-

ity. We begin by using multi-attribute decision analysis (Keeney and Raiffa, 1993) to structure 

the provider’s objectives derived from the all-inclusive objective of improving sustainability. 

Then, we translate these results into a multi-objective optimization model, specifically a con-

strained Markov decision process (MDP) model. Its objective function reflects the primary ob-

jectives, while the secondary objectives are represented as constraints:  

• Primary objective: Our primary objective for pricing optimization is to maximize the de-

mand served by the SMOD system, supporting social sustainability (area-wide basic mobil-

ity) and environmental sustainability (modal shift). As the primary objective is not profit-

oriented, we prevent monopoly markups and ensure price adequacy. However, determining 

the specific contribution of a ride to this objective is particularly challenging because serving 

the ride consumes logistical capacity, potentially causing rides that are requested later to be-

come infeasible, which results in displaced demand. 

• Secondary objectives: Maximizing demand served alone is insufficient to reflect the envi-

ronmental and economic sustainability objectives, which we consider secondary objectives. 

To account for them, we draw on marginal cost pricing, a widely established concept in pub-

lic transport planning (e.g., Hörcher and Tirachini, 2021), where the price is based on the 

marginal societal cost of a ride. In the case of rural SMOD systems, this cost includes both 

the internalized variable routing cost for the provider and external cost due to emissions. By 

setting a dynamic lower price bound equal to a ride’s expected marginal cost, we address both 

secondary objectives, as unfavorable rides are priced higher. The price signal allows 
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customers to decide whether to book the desired ride, choose an alternative ride, opt for an-

other mode of transport, or cancel the ride (Eliasson, 2021). 

Due to the dynamic and stochastic nature of the sustainable dynamic pricing problem, two key 

features of rides, displaced demand and marginal cost, cannot be exactly determined. For the sake 

of brevity, we use the term ride evaluation for the task of approximating them. We propose an 

anticipatory post-decision rollout algorithm (Bertsekas et al., 1997) for this task. Based on simu-

lation, it compares the future evolution of the booking process from the current state onward for 

two cases: a) the current customer orders the ride and b) the current customer abandons the book-

ing process. With anticipatory ride evaluation, we can attribute marginal cost accurately to indi-

vidual rides. Thereby, we solve a central issue that, up to now, hindered the application of mar-

ginal cost pricing in the context of dynamic pricing for SMOD (Andrejszki and Török, 2018). 

Overall, our work has the following scientific contributions: 

• To our knowledge, we are the first to propose a sustainable dynamic pricing approach for 

rural SMOD systems. To this end, we formulate a multi-objective optimization model that is 

derived from an extensive multi-attribute decision analysis and incorporates marginal cost 

pricing.  

• We present an anticipatory post-decision rollout algorithm to approximate displaced demand 

and marginal costs. It enables the practical application of marginal cost pricing for SMOD 

services, which has been an issue unsolved by existing research.  

• To validate our approach, we apply it to a one-year, real-world data set provided by our in-

dustry partner FLEXIBUS who operate one of the most mature rural SMOD systems in Ger-

many. By conducting an extensive computational study including sensitivity analyses, we 

explain the performance differences compared to benchmark approaches. Further, we derive 

managerial insights and recommendations for practice. 

The remainder of this work is organized as follows: In Section 2, we give an overview of the 

related literature. Section 3 comprises an in-depth description of the considered dynamic pricing 

problem and the underlying assumptions. Further, we show how the entire operational planning 

problem can be formalized as a constrained MDP. In Section 4, we introduce the solution algo-

rithm. In Section 5, we present the design and the results of our computational study. Finally, in 

Section 6, we discuss managerial insights, recommendations, and future research opportunities 

resulting from our work. 

2 Literature Review 

Related literature to the work at hand originates in two distinct disciplines. On the one hand, there 

is a body of literature from (public) transport economics on differentiated pricing, reviewed in 

Section 2.1. On the other hand, there are many operations research works on integrated demand 

management and vehicle routing, including those that consider dynamic pricing (Section 2.2). 

Finally, we summarize the research gap in Section 2.3. 
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2.1 Differentiated Pricing in Public Transport 

In this section, we review the literature on dynamic pricing from the perspective of transport 

economics. Publications in this field typically use stylized models or simulations of multi-modal 

transport systems to analyze fundamental pricing concepts and derive policy implications. While 

our focus is narrower, directed at the provider’s operational planning, this research provides the 

theoretical foundation for our work. For a deeper discussion, we refer to surveys by Hörcher and 

Tirachini (2021), Saharan et al. (2020), and Vickerman (2024). 

Price differentiation, the basic principle behind dynamic pricing, is analyzed across different 

transport modes. Its justification is twofold: First, demand can be actively steered to align better 

with fixed supply of transport capacity. Second, it allows the internalization of external effects 

based on the marginal cost of transport demand. Bimpikis et al. (2019) and Ma et al. (2022) ex-

amine ride-hailing platforms. While the former emphasize the profit benefits of spatio-temporal 

demand balancing, the latter apply price differentiation for welfare maximization. Kaddoura et 

al. (2015) explore customer-specific price differentiation in bus networks. Outside of public 

transport, Eliasson (2021) considers congestion pricing, providing general insights into the theo-

retical justification, the impact, and the practical implementation of marginal cost pricing. 

Some works consider the transfer of marginal cost pricing to mobility-as-a-service systems. 

Hörcher and Graham (2020a) show that the widely aspired subscription models are economically 

inefficient compared to differentiated pricing, which confirms the potential of marginal cost pric-

ing for SMOD services. However, theoretical analysis by Hörcher and Graham (2020b) highlights 

the critical role of the provider’s objectives and identifies monopoly markups as a major challenge 

for the application of dynamic pricing. Bahamonde-Birke et al. (2021) further show that an un-

regulated, profit-maximizing provider inevitably applies aggressive price differentiation, suggest-

ing regulatory enforcement of marginal cost pricing as a potential solution. 

In addition to the generic analysis, two implementations of marginal cost pricing are proposed: 

First, in urban areas, congestion pricing is applied through price increases for rides traversing 

congested road segments (Kaddoura et al., 2020a) or subsidies for less congested ones (Ke and 

Qian, 2023). However, this implementation is not suitable for rural areas with negligible conges-

tion (Heinitz, 2022). Second, the concept of ex-post pricing is proposed (Andrejszki and Török, 

2018, Karaenke et al., 2023). Following this concept, each customer is initially charged the mar-

ginal cost of a fictive solitary ride. After service fulfillment, the customer is then (partly) reim-

bursed based on a cost-sharing rule if the ride could be successfully pooled. While this imple-

mentation ensures marginal cost coverage, it does not actively manage demand because customers 

cannot adapt their ride choice according to the price signal when placing their order. 

2.2 Operational Demand Management for SMOD Services and Related Services 

The operational decision problem considered in the work at hand belongs to the family of inte-

grated demand management and vehicle routing problems (i-DMVRPs). To provide an overview 
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of the related literature, we first list corresponding surveys (Section 2.2.1). Second, we exten-

sively review the stream of i-DMVRP literature that considers (S)MOD systems, distinguishing 

it from less closely related work in demand-responsive passenger transportation (Section 2.2.2). 

Third, we review i-DMVRP literature and dynamic vehicle routing literature that considers other 

application areas but shares communalities with our work (Section 2.2.3). 

2.2.1 Survey Literature 

According to Fleckenstein et al. (2024b), an i-DMVRP arises if a logistical service provider both 

plans customized offers to customers requesting service dynamically and solves a vehicle routing 

problem to plan order fulfillment. A cross-application survey of existing i-DMVRP literature is 

provided by Fleckenstein et al. (2023). i-DMVRPs integrate two optimization problems: revenue 

management/dynamic pricing, and dynamic vehicle routing. For the former problems, recent sur-

veys by Klein et al. (2020) and Strauss et al. (2018), as well as textbooks by Talluri and van Ryzin 

(2004) and Gallego and Topaloglu (2019) provide thorough coverage. Dynamic vehicle routing 

is surveyed by Pillac et al. (2013), Psaraftis et al. (2016), Rios et al. (2021), and Soeffker et al. 

(2022). Finally, for application-specific insights on operational planning for (S)MOD systems, 

readers can draw on the surveys by Rammohan et al. (2024), Vansteenwegen et al. (2022), and 

Zwick et al. (2022). 

2.2.2 Demand Management for SMOD Services 

In the following, we review the literature most closely related to our work. To suitably narrow 

the scope, we first delineate this stream from broader literature that also investigates flexible pas-

senger transportation. More precisely, we exclude literature with any of the following character-

istics: 

• A large body of research considers the static, deterministic dial-a-ride problem. Although 

there are major differences between the dynamic and the static perspective, it is important to 

note that there are some related works applying multi-objective optimization (see Ho et al. 

(2018) for a detailed discussion), including the formulation of constraints representing sec-

ondary objectives (e.g., Anzenhofer et al., 2025). 

• In pure dynamic vehicle routing, SMOD systems are frequently considered. Without demand 

management, requests are collected on a first-come-first-served basis (e.g., Hungerländer et 

al., 2021). 

• Early works on SMOD often focus on services for specific target groups (e.g., Schilde et al., 

2011). 

• Ride-hailing literature investigates taxi-like services without ridepooling, often processing 

requests in batches (e.g., Alonso-Mora et al., 2017). We only consider such works if their 

focus is on dynamic pricing. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

253 

• There is a body of literature on dynamic pricing for managing both demand and supply in 

two-sided markets (e.g., Wang and Yang, 2019). This setting occurs if the provider does not 

operate the fleet but offers a platform matching self-employed drivers and customers. 

• Finally, there is some literature on pricing for classical ride-sharing systems (e.g., Zhang et 

al., 2020). 

Next, we compare existing publications on demand management for SMOD systems with our 

work, grouping the literature into three categories: rural SMOD systems, urban SMOD systems, 

and urban ride-hailing systems. Within each category, we focus on problem definition, modeling 

approach, and solution approaches for the dynamic pricing subproblem and for ride evaluation. 

An overview of the results is given in Table 1. 

Rural SMOD systems: Our work shares the most similarities with Arian et al. (2022), who are 

the first to investigate dynamic pricing for rural SMOD systems, albeit with a much different 

problem definition. First, they focus solely on profit maximization. Second, they assume that cus-

tomers place only ad-hoc requests, whereas we also account for advance requests. Further differ-

ences are in the solution method: For solving the dynamic pricing subproblem, they propose an 

efficient algorithm relying on a specific customer choice model, namely the multinomial logit 

model. For ride evaluation, they use value function approximation.  

The only other work on demand management in the rural context is by Anzenhofer et al. (2024). 

Compared to our work, their problem definition mainly differs in its focus on profit maximization 

and the use of availability control for demand management. However, we draw on their modeling 

approach as we adapt their MDP model. Extending prior work by Haferkamp and Ehmke (2022), 

who also focus on the impact of vehicle routing, their main aim is to support the strategic decision 

on which demand control policy to apply. Despite their strategic focus, they present a practical, 

sampling-based lookahead algorithm suitable for operational ride evaluation, which is closest to 

ours in the literature. Its main shortcoming is its inability to capture demand displacement, which 

is why we introduce a post-decision rollout algorithm as a more sophisticated sampling-based 

approach. 

Urban SMOD systems: In the urban setting, Qiu et al. (2018) and Sharif Azadeh et al. (2022) 

consider dynamic pricing problems that closely resemble our problem definition, aside from their 

focus on profit maximization. Both studies consider a setting with combined ride-hailing and ride-

pooling. Sharif Azadeh et al. (2022) also account for variably sized pick-up time windows. Re-

garding the solution approach, Qiu et al. (2018) solve the dynamic pricing problem with a dedi-

cated algorithm. Even though they employ a learning-based concept for ride evaluation, there are 

parallels to our sampling-based approach. They also use a post-decision rollout algorithm to learn 

the parameters of a linear function approximating demand displacement and marginal cost. How-

ever, a key difference is that they consider vehicle routing only in an aggregated way, which is 

not suitable for rural settings with much lower, dispersed demand. Sharif Azadeh et al. (2022) 
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solve a linear program to determine prices and use myopic ride evaluation, which does not capture 

demand displacement. 

Other authors explore availability control with multiple alternative rides in urban areas: Atasoy 

et al. (2015) propose an assortment optimization model for the availability control problem. We 

use the same modeling approach. However, key differences include their focus on profit maxi-

mization, a different ride definition, and a myopic solution concept. Haferkamp (2024) considers 

a similar problem definition to ours, one of the few that does not aim at profit maximization, 

maximizing the number of orders instead. For ride evaluation, a cost function approximation is 

used that does not yield an explicit approximation of displaced demand and marginal cost. 

In the urban context, we find the only two publications on multi-objective optimization in the 

dynamic setting. Lu et al. (2024) aim at maximizing the number of orders without a good alter-

native mode of transport and at minimizing the total travel time. To account for the former objec-

tive, they formulate a constraint which enforces the rejection of requests that can travel faster by 

an alternative mode compared to the SMOD service. Wu et al. (2024) model two objectives, 

namely the minimization of cost and unfairness regarding waiting times. Besides routing cost, 

there are penalties for request rejection and time window violation, which de facto results in profit 

maximization. As a modeling approach, they use scalarization to obtain a single-objective MDP 

model, and they apply multi-agent reinforcement learning as the solution approach. Despite the 

similarities, there are also decisive differences regarding our work: Both works consider only a 

simple accept/reject control without alternative ride options. Further, they do not account for all 

three sustainability dimensions.  

Finally, some publications consider availability control without alternative ride options and a sin-

gle objective (Heitmann et al., 2023, Heitmann et al., 2024, Jung et al., 2016, and Lotfi and Ab-

delghany, 2022). 

Urban ride-hailing systems: A less closely related problem definition can be found in the context 

of urban ride-hailing systems (Al-Kanj et al., 2020, Chen et al., 2019, Haliem et al., 2021, Ni et 

al., 2021, Wang et al., 2021b). In ride-hailing, requests are often processed in batches since, with-

out pooling, the vehicle routing problem can be formulated as a matching problem. The objective 

is exclusively revenue or profit maximization. Despite these differences, there are some similari-

ties with our work. E.g., Chen et al. (2019) also combine pre-defined base prices and price mul-

tipliers. Al-Kanj et al. (2020), Haliem et al. (2021), and Ni et al. (2021) propose learning-based 

ride evaluation approaches that capture both demand displacement and marginal cost. 

2.2.3 Related Applications 

Finally, we turn toward literature from other applications using similar methodology. Each of 

these publications is only related to our work regarding the demand management subproblem or 

ride evaluation. 
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Table 1 Literature overview; Abbreviations: Demand management: AR (accept/reject), AV(availability control), PR 
(dynamic pricing); Objectives: NO (number of orders), RE (revenue), PR (profit), TT (travel time), FA (fairness); 
Request processing: RT (real-time), BA (batched); Solution concept: M (myopic), S (anticipatory, sampling), L (antic-

ipatory, learning); Demand management subproblem: FE (full enumeration), DA (dedicated algorithm), LP (linear 
programming), ML (machine learning) 

Authors 
Demand  
manage-

ment 

Objec- 
tives 

Request 
pro- 

cessing 
Pooling 

Rural  
setting 

Solution 
concept 

Dis-
place
ment 

Mar-
ginal 
cost 

Demand  
management 
subproblem 

Al-Kanj et al. 
(2020) 

PR PR BA X X L ✓ ✓ ML 

Anzenhofer et 

al. (2024) 
AV PR RT ✓ ✓ (S) X ✓ FE 

Arian et al. 
(2022) 

PR PR RT ✓ ✓ L ✓ ✓ DA 

Atasoy et al. 
(2015) 

AV PR RT ✓ X M X ✓ LP 

Chen et al. 
(2019) 

PR RE RT X X L ✓ X ML 

Haferkamp 
(2024) 

AV NO RT ✓ X M X X FE 

Haferkamp and 
Ehmke (2022) 

AR NO RT ✓ X (S) ✓ X FE 

Haliem et al. 
(2021) 

PR PR BA X X L ✓ ✓ FE 

Heitmann et al. 
(2023) 

AR RE RT ✓ X L ✓ X FE 

Heitmann et al. 
(2024) 

AR RE RT ✓ X L ✓ X FE 

Jung et al. 
(2016) 

AR PR/TT RT ✓ X M X ✓ FE 

Lotfi and Ab-
delghany (2022) 

AR PR RT ✓ X M X ✓ FE 

Lu et al. (2024) AR NO/TT RT ✓ X M X X FE 

Ni et al. (2021) PR PR BA X X L ✓ ✓ LP 

Qiu et al. (2018) PR PR RT ✓ X L ✓ ✓ DA 

Sharif Azadeh 
et al. (2022) 

PR PR RT ✓ X M X ✓ LP 

Wang et al. 
(2021b) 

PR PR BA ✓ X M X X DA 

Wu et al. (2024) AR PR/FA RT ✓ X L ✓ ✓ FE 

Our work PR SO RT ✓ ✓ S ✓ ✓ FE 

Demand management subproblem: The most closely related non-SMOD demand management 

problem can be found in Lang et al. (2021). They consider multi-objective availability control in 

attended home delivery, accounting for the economic objectives of maximizing profit, social in-

fluence of customers, and visibility of delivery vehicles. For model development, they adopt a 

similar approach to ours in that they include each objective either in the objective function or as 

a hard constraint to suitably reflect the provider’s preferences. 

Dynamic pricing is also applied in attended home delivery (Koch and Klein, 2020) and same-day 

delivery (Klein and Steinhardt, 2023). The latter application is more strongly related to SMOD 

systems since, due to the low number of delivery options (the equivalent to rides in SMOD), the 

dynamic pricing subproblem becomes tractable by full enumeration. Particularly close parallels 

can be drawn between our approach and the one proposed by Ulmer (2020a) for same-day deliv-

ery. It also uses base prices for all fulfillment options and sets prices equal to displacement cost 

if they exceed the base price. This idea is very similar to the notion of marginal cost pricing that 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

256 

our modeling approach is based on. While the dynamic pricing problems mentioned in this para-

graph all aim at profit maximization, there is recent work in the generic dynamic pricing literature 

on incorporating fairness as a “non-profit” objective (Cohen et al., 2024). Finally, since we model 

the dynamic pricing subproblem as an assortment optimization problem (Davis et al., 2013), there 

is also a connection to assortment optimization literature (see Heger and Klein (2024) for a recent 

survey). From this generic view, Chen et al. (2024) investigate assortment optimization with mul-

tiple objectives. However, their modeling framework is not applicable to our problem since all 

objectives are represented in the objective function, which leads to monopoly markups.  

Ride evaluation: Sustainable dynamic pricing decisions are optimized based on their expected 

future impact regarding displaced demand and marginal cost. In the profit-maximizing setting, 

this future impact is captured by opportunity cost. In model development, we exploit theoretical 

results by Fleckenstein et al. (2024a) who analytically show that opportunity cost in the context 

of profit-maximizing i-DMVRPs can be decomposed into displacement cost and marginal cost-

to-serve. For sustainable dynamic pricing, displaced booked passenger km and marginal cost can 

be viewed as the direct equivalents of these opportunity cost components. For the ride evaluation 

task, we develop a post-decision rollout algorithm (Goodson et al., 2017). First developed by 

Bertsekas et al. (1997), such algorithms have not yet been applied to SMOD systems (see Table 

1). However, there are existing applications for other i-DMVRPs (Ulmer et al., 2016, Ulmer et 

al., 2019, and Ulmer, 2020b). 

2.3 Research Gap 

To conclude the literature review, this section summarizes the research gap as identified: 

• The transport economics literature provides strong evidence for the need to transfer marginal 

cost pricing to SMOD but highlights the challenge of preventing monopoly markups by 

profit-maximizing providers. Existing proposals of practical implementations are not suitable 

for rural areas.  

• The operations research literature suggests sustainable dynamic pricing as a future research 

area (e.g., Qiu et al., 2018, Lang et al., 2021). To date, dynamic pricing is exclusively applied 

for profit maximization or closely related objectives (see Table 1 and Hörcher and Graham, 

2020a). Further, except for two recent publications (Lu et al., 2024 and Wu et al., 2024), there 

is no work on multi-objective demand management for SMOD systems. Moreover, research 

on rural SMOD systems is scarce, despite their high potential.  

Overall, our work is the first to address the research gap of developing a practical sustainable 

dynamic pricing approach for rural SMOD systems. Our contribution is comprehensive, including 

the definition of objectives based on multi-attribute decision analysis, the development of a multi-

objective optimization model, the design of a solution algorithm, and an in-depth computational 

analysis based on real-world data. 
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3 Problem Definition and Modeling 

In this section, we formalize the problem definition and generalize the MDP model by Anzenhofer 

et al. (2024). Section 3.1 outlines the problem definition by focusing on booking process, objec-

tives, and the basic structure of the associated multi-objective optimization model. Section 3.2 

formulates the model. 

3.1 Problem Definition 

This section describes the booking process, which handles both ad-hoc and advance requests 

(Section 3.1.1). It then outlines the objectives and attributes driving decision-making (Section 

3.1.2) and concludes with the basic structure of the multi-objective optimization model (Section 

3.1.3).  

3.1.1 Booking Process 

For a given service day, which we refer to as a service horizon, the provider receives customer 

requests dynamically via a smartphone app during the booking horizon. The booking horizon 

begins one or more days before the service horizon, allowing advance requests. Both horizons 

end simultaneously, permitting same-day requests (hours before the desired pick-up or drop-off) 

and ad-hoc requests (immediate pick-up). 

 

Fig. 1 Booking process for an exemplary request 

For a single request, the booking process consists of four steps, with two involving the customer 

and two involving the provider (see Fig. 1 for an exemplary overview).  

• Request arrival: The customer specifies their origin, destination, the number of passengers, 

and either the desired pick-up time or drop-off time. In Fig. 1, we observe the request arrival 

on 3rd of November at 12: 00 (time of request) six days in advance (advance request) of the 

desired pick-up time on 9th of November at 8: 15. The customer also specifies the origin-

destination (OD) pair from pick-up location A to drop-off location B for two passengers. 
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• Dynamic pricing decision: The provider determines fulfillment options, i.e., rides with alter-

native pick-up times or drop-off times and different prices, they offer to the customer. The 

provider may also opt to make no offer at all. This first decision is referred to as the dynamic 

pricing subproblem. Fig. 1 again exemplifies the provider’s dynamic pricing decision. Here, 

the provider decides to offer three rides (7: 45, 8: 15, 8: 45), with different prices (4 €, 9 €, 

5 €), including alternative pick-up times (+/−30 minutes). The prices indicate that the pick-

up earlier than desired is the most favorable for the provider. 

• Order confirmation: If an offer was made, the customer either chooses one of the offered 

rides, confirming the order, or abandons the booking process if unsatisfied. In the example, 

the customer confirms an order for the earliest pick-up time of 7: 45, as highlighted in green 

in Fig. 1. Hence, the provider could successfully shift demand to a pick-up time 30 minutes 

earlier than the original desired time of 8: 15. 

• Vehicle routing decision: After an order is confirmed, the provider assigns the ride to a vehi-

cle. This second decision is referred to as the vehicle routing subproblem. As shown in the 

example, the provider updates the current route plan by inserting the newly confirmed order 

(Fig. 1). 

3.1.2 Structuring of Objectives and Specification of Attributes 

Dynamic pricing enables providers to manage demand by influencing customer choices, thereby 

improving the system performance according to specific objectives. To prepare for building a 

multi-objective optimization model, we use the multi-attribute decision analysis framework by 

Keeney and Raiffa (1993) to define and structure objectives, ensuring alignment with the pro-

vider’s preferences.  

The all-inclusive objective of sustainably operating the SMOD service can be broken down into 

three major objectives: social sustainability, environmental sustainability, and social sustainabil-

ity (Purvis et al., 2019). From these major objectives, we derive five lower-level objectives, each 

associated with a (proxy) attribute. Since we focus on operational planning, only objectives di-

rectly impacted by operational decisions are included. Below, we define and structure them into 

primary and secondary objectives, as summarized in Table 2. 

Social sustainability – a) Maximize basic mobility provision: Municipal authorities are often 

legally required to provide mobility as a basic public service (Lu et al., 2024). Given a fixed fleet 

of vehicles, the objective is to maximize mobility provision, i.e., serving as much demand as 

possible (Hörcher and Tirachini, 2021). Since ensuring basic mobility provision is the very pur-

pose of publicly funded rural SMOD systems, we consider maximizing it a primary objective 

(Dauer et al., 2024, Sörensen et al., 2021). 

The attribute used to measure this objective is total booked passenger km. For an individual order, 

it equals the direct distance from pick-up stop to drop-off stop, multiplied by the number of 
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passengers (Zwick et al., 2022). Hence, the attribute excludes detours and captures only the mo-

bility provision as originally demanded.  

Social sustainability – b) Prevent monopoly markup: Price discrimination is widely seen as 

effective to enhance system performance (Section 2.1). However, a publicly funded provider is a 

natural monopolist. Hence, applying dynamic pricing with economic objectives leads to an unde-

sirable monopoly markup (Hörcher and Graham, 2020a) since the provider excessively exploits 

the consumer surplus (Bahamonde-Birke et al., 2021). 

To ensure social adequacy, the approach must be explicitly designed to prevent monopoly 

markups. Hence, this primary objective is binary, with the corresponding attribute being whether 

monopoly markups are prevented.  

Environmental sustainability – a) Maximize modal shift: Increasing the share of public 

transport by shifting demand from motorized individual transport is a key strategy to reduce emis-

sions (Carroll et al., 2019), which yields substantial emission savings per (booked) passenger km 

(Byrne et al., 2021). In rural areas, SMOD systems are particularly well-suited to facilitate this 

shift as they provide competitive service quality compared to scheduled public transport 

(Schasché et al., 2023). Additionally, indirect, long-term emission savings may occur if SMOD 

usage leads to decreased private car ownership, as suggested by evidence from related shared 

mobility services, such as ride-hailing (e.g., Wang et al., 2021a) and car-sharing (e.g., Jochem et 

al., 2020).  

While maximizing modal shift was less relevant for early SMOD providers (Laws et al., 2008), 

it has sharply gained importance in recent years (Schasché et al., 2022), which is why we consider 

it a primary objective. 

Since we cannot determine which mode a customer would have alternatively chosen, actual modal 

shift remains unobservable. However, booked passenger km can serve as a reasonable proxy at-

tribute. In rural areas, where motorized individual transport dominates (Nobis and Kuhnimhof, 

2018), most demand shifted to SMOD services likely originates from this mode (Sörensen et al., 

2021).  

Environmental sustainability – b) Minimize specific emissions: Besides modal shift, the 

SMOD system’s environmental sustainability also depends on its own emissions. The efficiency 

of a ride (greenhouse gas emissions per booked passenger km) depends on its consolidation with 

other rides (Lotze et al., 2023).  

We consider minimizing the system’s emissions as a secondary objective assuming that the indi-

rect emission savings of modal shift are sufficiently large. Since emissions depend heavily on 

vehicle powertrains and energy sources (García-Afonso, 2023), the booked pooling rate serves as 

a proxy attribute for this objective. This rate is defined as the quotient of booked passenger km 

and total vehicle km travelled (e.g., Anzenhofer et al., 2025). 

Economic sustainability – Minimize subsidy requirements: As it typical for rural public 

transport (Imhof and Mayer, 2024), rural SMOD systems are financially unprofitable and depend 
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on public subsidies (e.g., Sörensen et al., 2021, or Zwick et al., 2022). Economic sustainability 

aims to minimize these subsidies by increasing fare revenues or reducing variable routing costs. 

Then, the service can scale up and avoid withdrawal after the pilot stage (Currie and Fournier, 

2020, De Jong et al., 2011). This long-term establishment is critical as changing mobility behavior 

depends on trust in the persistence of improved public transport services (Hahn et al., 2023).  

If long-term viability is not acutely at risk, minimizing subsidy requirements can be viewed as a 

secondary objective (Hörcher and Graham, 2020b). At the operational level, we use profit after 

fulfillment, i.e., fare revenue net of variable routing cost (such as fuel, maintenance etc.), as a 

proxy attribute. Fixed cost (e.g., wages), which also impact subsidy requirements, are excluded 

from this consideration as they are not decision-relevant. 

Table 2 Overview of objectives 

3.1.3 Model Structure 

To enable mathematical optimization, the multi-attribute decision problem defined in the previous 

section must be translated into a multi-objective optimization model. Given the stochastic and 

dynamic nature of the problem, we model the problem as an MDP (Puterman, 2014), the standard 

modeling approach in i-DMVRPs research (Fleckenstein et al., 2023, Ulmer et al., 2020). Two 

types of MDP models can incorporate multiple objectives:  

• Multi-objective MDPs: This approach scalarizes different rewards into a single reward func-

tion (Roijers et al., 2013). In the context of SMOD systems, it is applied by Wu et al. (2024).  

• Constrained MDPs: Here, one objective is represented in the objective function, while others 

are modeled as constraints (Altman, 1999). Applications to i-DMVRPs include Lang et al. 

(2021) and Lu et al. (2024). 

Considering the objectives defined in Section 3.1.2, a multi-objective MDP is clearly not suitable 

for our problem because profit would be part of the objective function causing monopoly 

markups. Instead, we formulate a constrained MDP, where only the primary objectives are di-

rectly included in the objective function. Secondary objectives are reflected by constraints on 

pricing decisions, which prevents monopoly markups by design. Below, we define the objective 

function and explain how secondary objectives are integrated as constraints: 

Objective function – Maximize booked passenger km: The objective function is derived from 

the primary objectives (Social a), Environmental a)), which are congruent. Both maximizing basic 

mobility provision and maximizing modal shift lead to the same conclusion: The SMOD system 

Major objective Lower-level objective Importance (Proxy) attribute 

Social sustainability 
Maximize basic mobility provision Primary Booked passenger km 

Prevent monopoly markup Primary Analytical property 

Environmental sustainability 
Maximize modal shift Primary Booked passenger km 

Minimize specific emissions Secondary Pooling rate 

Economic sustainability Minimize subsidy requirements Secondary Profit 
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should aim to serve as much demand as possible. Hence, the objective function maximizes total 

booked passenger km. 

Constraint – Marginal cost coverage at request-level: The objective function, based on the 

primary objectives, implies that the SMOD system should accept a request if its expected dis-

placement of future booked passenger km does not exceed its own booked passenger km. How-

ever, during off-peak periods, this approach may lower prices excessively to maximize order con-

version probability, creating conflicts with secondary objectives (Environmental b), Economic). 

From these perspectives, serving demand inefficiently, whether in terms of variable routing cost 

or emissions, is undesirable (Schasché et al., 2022).  

To account for the secondary objectives while prioritizing the primary objectives, we transfer 

marginal cost pricing to SMOD systems (Hörcher and Tirachini, 2021) and present its first prac-

tical application in this context. The concept states that the price of a public transport ride must 

reflect the marginal societal cost directly attributable to it, including the provider’s variable cost 

and potential externalities. For SMOD systems without congestion, the main externalities are var-

iable carbon emissions (Heinitz, 2022, Schasché et al., 2022). To apply marginal cost pricing to 

SMOD, we impose a lower price bound, ensuring that each ride’s price covers at least its marginal 

cost, including both the external cost of carbon emissions and the variable routing costs. This 

approach also aligns with the concept of internal carbon pricing (Bento and Gianfrate, 2020). 

Both components of marginal cost are proportional to the marginal vehicle km caused by serving 

a ride. Assuming that the marginal vehicle km can be (approximately) determined, marginal cost 

is calculated by multiplying cost per vehicle km with marginal vehicle km. To ensure a minimum 

price level, we assume a pre-defined base price, e.g., depending on the pick-up and drop-off stop 

of a ride. 

It is important to note that the constraint cannot guarantee a certain pooling rate or profit over the 

booking horizon. Instead, the pricing mechanism differentiates between “favorable rides” (low 

marginal cost), which are offered at the base price, and “unfavorable rides” (high marginal cost), 

which are offered at a higher price.  

When offered an increased price, the customer is more likely to abandon the booking process, 

reducing booked passenger km (primary objectives) but improving the pooling rate and profit 

(secondary objectives). This risk of abandonment is acceptable, as the unfavorable ride would 

have incurred relatively high cost, and the customer does not value its utility enough to pay for 

this cost.  

Of course, the customer may still order the ride despite the higher price. Then, there is a positive 

impact on booked passenger km and profit, but a negative impact on the pooling rate. This is 

reasonable, as the customer’s individual utility for the ride is high enough to justify the negative 

impact on Environmental b). Overall, the demand is managed in a way that unfavorable, low-

utility rides are avoided by allowing customers to assess themselves if a ride is worth its full 
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societal cost (Eliasson, 2021). This problem structure entirely prevents monopoly markups, 

thereby fulfilling Social b), given the marginal vehicle km value is accurately calculated. 

3.2 Mathematical Modeling 

This section translates the structural model definition from Section 3.1.3 into a mathematical for-

mulation. We begin with an MDP model formalizing the complete i-DMVRP (Section 3.2.1). 

Then, the MDP model is complemented by a model for the dynamic pricing subproblem, which 

we present in Section 3.2.2. 

3.2.1 Modeling the Sequential Decision Problem 

The provider’s operational planning problem (see Section 3.1) is a sequential decision problem. 

To formalize it, we generalize the MDP model by Anzenhofer et al. (2024) in two ways: First, we 

incorporate the sustainable dynamic pricing subproblem. Second, we include the primary objec-

tive of maximizing booked passenger km instead of profit. In the following, we state the model 

by first introducing some basic notation, then defining the MDP’s components, i.e., decision 

epochs, states, actions, transitions, and rewards, and finally formulating the corresponding Bell-

man equation. Thereby, we only briefly restate the common elements of both models. 

• Planning horizon: The booking horizon is divided into stages 𝒯 = {1,… , 𝑡𝑠 , … , 𝑇}, where 𝑡𝑠 

marks the start of the service horizon. Each stage is denoted by 𝑡 ∈ 𝒯.  

• Requests: Customers request rides between a pair of stops from a pre-defined set ℋ. Each 

request 𝑖 ∈ ℐ, with ℐ denoting the set of all requests, is defined by the following attributes: 

o Request type 𝑐𝑖: Specifies the pick-up stop 𝑝𝑐𝑖 ∈ ℋ, drop-off stop 𝑑𝑐𝑖 ∈ ℋ, desired time 

𝑡𝑐𝑖 , number of passengers 𝑚𝑐𝑖, and pre-defined base price 𝑏𝑐𝑖. 

o Booked passenger km 𝜌𝑐𝑖: Calculated as the direct distance from 𝑝𝑐𝑖 to 𝑑𝑐𝑖 multiplied 

with 𝑚𝑐𝑖.  

o Time of request 𝜏𝑖 ∈ 𝒯: Denotes the stage when the request arrives. The relation between 

desired time and time of request yields a classification into three kinds of requests: 1) 

advance requests (𝜏𝑖 < 𝑡
𝑠), 2) same-day requests (𝜏𝑖 ≥ 𝑡

𝑠), and 3) ad-hoc requests (𝜏𝑖 =

𝑡𝑐𝑖).  

Note that a dummy request type 𝑐 = 0 indicates the case of no request arrival. 

• Rides and products: The set 𝒪𝑐  stores all rides that can potentially be offered in response to 

a request of type 𝑐. A ride 𝑜 ∈ 𝒪𝑐 corresponds to a pick-up time or drop-off time that can be 

offered to a request of type 𝑐 with desired time 𝑡𝑐, potentially deviating from the desired time 

𝑡𝑐. A product 𝑘 ∈ 𝒦𝑐, with 𝒦𝑐 denoting the set of product indices for request type 𝑐, is de-

fined as a combination of a ride 𝑜𝑘 ∈ 𝒪𝑐  and a price multiplier 𝑛𝑘 ∈ 𝒩, with 𝒩 denoting the 

pre-defined price multipliers.  

In less technical terms, it is possible to offer each ride at each of the pre-defined discrete price 

points. Thus, the price 𝑟𝑐,𝑘 of a product 𝑘 equals the base price of request type 𝑐 times the 
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price multiplier of product 𝑘. Further, we introduce a dummy product 𝑘 = 0 ∈ 𝒦𝑐 to denote 

the no-purchase option. 

• Order confirmation: If a customer chooses a product 𝑘 ≠ 0, their request 𝑖 ∈ ℐ becomes an 

order 𝑗 ∈ 𝒥 with 𝑖 = 𝑗 and 𝒥 denoting the set of all orders. Due to stochastic choice behavior, 

𝑃𝑘(𝑔) encodes the likelihood that product 𝑘 is chosen from an offer set 𝑔 ⊆ 𝒦𝑐. Hence, each 

order 𝑗 features a chosen product 𝑘𝑗 ∈ 𝒦𝑐. 

• Order fulfillment: The provider assigns vehicles 𝑣 ∈ 𝒱 from a fleet 𝒱 with seat capacity 𝑄𝑣 

to fulfill orders. 

Now, we formulate the MDP model using the basic notation defined above. 

• Decision epochs: At the beginning of each stage 𝑡 ∈ 𝒯, which is defined as a micro-period of 

sufficiently small duration to practically exclude more than one request arrival, the provider 

must make decisions. 

• States: The post-decision state 𝑠𝑡 = (𝐶𝑡 , 𝜙𝑡) includes all data required for demand control 

and vehicle routing decisions for the newly received request at the subsequent decision epoch 

𝑡 + 1:  

o 𝐶𝑡: The set of all pending orders 𝑗 ∈ 𝒥.  

o 𝜙𝑡: The current route plan. 

• Actions: At decision epoch 𝑡, the action 𝑎𝑡 = (𝑔𝑡 , (𝜙𝑡(𝑜𝑘))𝑘∈𝑔𝑡
) comprises two nested de-

cisions: 

o Demand control decision 𝑔𝑡: Selecting an offer set 𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐) ⊆ 2
𝒦𝑐 ∖ ∅ from the 

set of feasible offer sets 𝒢(𝑠𝑡−1, 𝑐), which may contain only the no-purchase option. To 

optimize the composition of 𝑔𝑡 , the provider must solve the dynamic pricing subproblem 

(see Section 3.2.2). 

o Vehicle routing decision (𝜙𝑡(𝑜𝑘))𝑘∈𝑔𝑡
: Determining a route plan for each ride 𝑜𝑘 asso-

ciated with an offered product 𝑘 ∈ 𝑔𝑡 . These plans ensure that all pending orders from 

𝑠𝑡−1 and the potential new order from the customer choosing product 𝑘 are served. The 

action space for this decision is ∏ Φ(𝑠𝑡−1, 𝑐, 𝑜𝑘)𝑘∈𝑔𝑡 , representing all combinations of 

feasible route plans. 

Note that only a small part of the vehicle routing decision, i.e., the planned vehicle movements 

in 𝜙𝑡(𝑜𝑘) that start until the next decision epoch 𝑡 + 1, are definitive. 

• Transitions: The transition from post-decision state 𝑠𝑡−1 to successor state 𝑠𝑡  is influenced 

by the provider’s actions and realizations of the exogeneous information, such as request ar-

rivals and customer choice behavior. First, the system transitions stochastically to pre-deci-

sion state 𝑠𝑡
pre

 as it is revealed which request 𝑖𝑡 ∈ ℐ arrives, according to arrival rates 𝜆𝑐
𝑡 . If a 

request arrives (𝑐𝑖𝑡 ≠ 0), the provider’s decision is followed first by a deterministic transition 

and then by another stochastic transition to interim state 𝑠𝑡
′. As part of these transitions, the 
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provider presents offer set 𝑔𝑡  and the customer confirms their order 𝑗𝑡 (or abandons the book-

ing process) by choosing a product 𝑘𝑗𝑡 ∈ 𝑔𝑡 , and therewith a ride 𝑜𝑗𝑡, according to choice 

probabilities 𝑃𝑐𝑖𝑡 ,𝑘
(𝑔𝑡). If 𝑘𝑗𝑡 ≠ 0, the newly confirmed order 𝑗𝑡 is added to 𝐶𝑡−1. Finally, the 

process deterministically reaches the succeeding post-decision state 𝑠𝑡 . As part of this transi-

tion, the route plan 𝜙𝑡(𝑜𝑗𝑡) replaces the route plan 𝜙𝑡−1 in the system state and is potentially 

partly executed. 

In summary, the transition from 𝑠𝑡−1 = (𝐶𝑡−1, 𝜙𝑡−1) to 𝑠𝑡 = (𝐶𝑡 , 𝜙𝑡) can be described as 

follows: 

𝐶𝑡 = (𝐶𝑡−1 ∪ {𝑗𝑡})                 (1) 

𝜙𝑡 = 𝜙𝑡(𝑜𝑗𝑡)                 (2) 

If no request arrives (𝑐𝑖𝑡 = 0), the provider’s decision is directly followed by the deterministic 

transition according to route plan 𝜙𝑡(0). 

• Rewards: The provider receives the booked passenger km 𝜌𝑐𝑗 associated with a newly con-

firmed order 𝑗. 

• Bellman equation: The optimality condition for the MDP model at hand is given by the fol-

lowing Bellman equation, which defines state values 𝑉𝑡(𝑠𝑡):  

𝑉𝑡−1(𝑠𝑡−1) = ∑ 𝜆𝑐
𝑡 max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(∑ 𝑃𝑐,𝑘(𝑔𝑡)[𝜌𝑐 ⋅ 𝟏𝑜𝑘≠0 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜𝑘)]𝑘∈𝑔𝑡
)𝑐∈𝒞 +

𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 0, 0)                 (3) 

with 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 𝑐, 𝑜𝑘) = max
𝜙𝑡(𝑜𝑘)∈Φ(𝑠𝑡−1,𝑐,𝑜𝑘)

(𝑉𝑡(𝑠𝑡|𝑠𝑡−1 , 𝑐, 𝜙𝑡(𝑜𝑘)))           (4) 

and Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜𝑘) = 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1 , 𝑐, 0) − 𝑉𝑡
′(𝑠𝑡

′|𝑠𝑡−1, 𝑐, 𝑜𝑘).           (5) 

Formulation (3) of the Bellman equation represents the formal basis for the popular decom-

position-based solution concepts for i-DMVRPs (Fleckenstein et al., 2024a), which we also 

rely on (Section 4). The maximum operator max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(⋅) corresponds to the dynamic pricing 

subproblem and yields the offer set 𝑔𝑡 . To evaluate each potential offer set, the expected gain 

in booked passenger km must be known for each product 𝑘 ∈ 𝑔𝑡 . It results from the proba-

bility 𝑃𝑘(𝑔𝑡) that product 𝑘 is chosen multiplied with the booked passenger km 𝜌𝑐 of the 

ordered ride net of the expected displacement of booked passenger km Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜𝑘). The 

latter result from future rides, which cannot be served when serving the requested ride 

(Strauss et al., 2018).  

3.2.2 Modeling the Dynamic Pricing Subproblem 

In this section, we provide a detailed model for the dynamic pricing subproblem, which is given 

by the maximum operator max
𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐)

(⋅) in Bellman equation (3). The problem can be modeled as 

a generalization of the classical assortment optimization problem, and we adopt the respective 

standard model (Heger and Klein, 2024). Instead of encoding the dynamic pricing decision as a 

set of offered products 𝑔𝑡 , the model relies on binary decision variables 𝑥𝑜,𝑛, with 𝑥𝑜,𝑛 = 1 if ride 
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𝑜 is offered with price multiplier 𝑛 and 𝑥𝑜,𝑛 = 0 otherwise. Since each product 𝑘 is fully specified 

by 𝑜𝑘 and 𝑛𝑘, 𝑥𝑜𝑘,𝑛𝑘  indicates whether product 𝑘 is included in the offer set. In addition, the 

following parameters are part of the model: 

• Set 𝒪𝑓 ⊆ 𝒪𝑐 comprises all feasible rides. For a ride 𝑜 to be feasible (𝑜 ∈ 𝒪𝑓), there must be 

at least one feasible route plan 𝜙𝑡(𝑜) for fulfilling all orders in 𝐶𝑡−1 and the new potential 

order given ride 𝑜 is chosen. Mathematically, this is equivalent to Φ(𝑠𝑡−1, 𝑐, 𝑜) ≠ ∅. For de-

termining whether Φ(𝑠𝑡−1, 𝑐, 𝑜) ≠ ∅ holds, a constraint satisfaction problem must be solved 

(see Anzenhofer et al. (2024) for a MIP formulation). 

• Probabilities 𝑃𝑜𝑛(𝒙) are equivalent to probabilities 𝑃𝑘(𝑔𝑡) in Bellman equation (3) adapted 

to the binary encoding of the offer set. To define their values, an arbitrary discrete choice 

model must be specified (Heger and Klein, 2024). In the work at hand, we draw on the con-

sider-then-choose model proposed by Anzenhofer et al. (2024). Also see Section 5.1.1 for a 

further description of the specific model used in the work at hand. 

• Set 𝒩 comprises all pre-defined price multipliers. 

• Parameter 𝜌𝑐 denotes the booked passenger km associated with the arriving request of type 

𝑐. 

• Parameter Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜) equals the expected displacement of booked passenger km due to 

selling ride 𝑜 to a customer submitting a request of type 𝑐 in state 𝑠𝑡−1.  

• Parameter 𝑟𝑐𝑜𝑛  denotes the price, i.e., the fare revenue received, when selling ride 𝑜 at price 

multiplier 𝑛 to a customer submitting a request of type 𝑐. 

• 𝜖 is the cost parameter consisting of variable routing cost and external cost (emissions) per 

vehicle km. 

• Parameter Δ𝐹𝑡(𝑠𝑡−1, 𝑐, 𝑜) denotes the expected marginal vehicle km caused by selling ride 𝑜 

to a customer submitting a request of type 𝑐 in state 𝑠𝑡−1. 

In the following, we state the model formulation:  

max 𝑍(𝒙) = ∑ ∑ 𝑃𝑜𝑛(𝒙) ⋅𝑛∈𝒩 [𝜌𝑐 − Δ𝑉𝑡(𝑠𝑡−1, 𝑐, 𝑜)]𝑜∈𝒪𝑓 ⋅ 𝑥𝑜𝑛           (6) 

s.t.    

∑ 𝑥𝑜𝑛𝑛∈𝒩 ≤ 1  ∀𝑜 ∈ 𝒪𝑓        (7) 

∑ 𝑟𝑐𝑜𝑛 ⋅ 𝑥𝑜𝑛𝑛∈𝒩 ≥ 𝜖 ⋅ Δ𝐹𝑡(𝑠𝑡−1 , 𝑐, 𝑜)  ∀𝑜 ∈ 𝒪𝑓        (8) 

𝑥𝑜𝑛 ∈ {0,1}  ∀𝑜 ∈ 𝒪𝑓 , 𝑛 ∈ 𝒩        (9) 

The objective function (6) is equivalent to the maximum operator in Bellman equation (3). Thus, 

it maximizes the expected net contribution of the arriving request in terms of booked passenger 

km. Although the provider makes dynamic pricing decisions, the price 𝑟𝑐𝑜𝑛  itself is not directly 

represented in the objective function. However, it still influences the objective function indirectly 

via choice probabilities 𝑃𝑜𝑛(𝒙), which depend on 𝑟𝑐𝑜𝑛 . 
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Constraints (7) ensure that each feasible ride 𝑜 ∈ 𝒪𝑓  is offered with at most one price multiplier 

(Davis et al., 2013). Formulating these constraints as inequalities results in the selective variant 

of the dynamic pricing problem, which allows not offering feasible rides (e.g., Anzenhofer et al., 

2024). If every feasible ride has a negative contribution (𝜌𝑐 − Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜) < 0 ∀𝑜 ∈ 𝒪
𝑓), the 

provider can reject the request by not offering any ride. Replacing Constraints (7) by equations 

leads to the non-selective variant. Then, all feasible rides must be offered at some price multiplier. 

We compare both variants in our computational study (Section 5). 

By Constraints (8), the secondary objectives are incorporated into the model. More precisely, the 

constraints require that the price of each feasible ride 𝑜 ∈ 𝒪𝑓  must be at least equal to its marginal 

cost in terms of variable routing cost and external cost of emissions.  

In the selective variant of the model, Constraints (8) may lead to potential request rejections if the 

highest price multiplier in 𝒩 is insufficient relative to the cost parameter 𝜖. Then, 𝑥𝑜𝑛 = 0 ∀𝑜 ∈

𝒪𝑓 , 𝑛 ∈ 𝒩, i.e., no feasible rides are offered. To prevent infeasibility in the non-selective variant, 

either 𝒩 must include sufficiently large price multipliers, or a post-processing step is needed to 

offer infeasible rides at the highest price multiplier. 

4 Solution Method 

To solve the provider’s sequential decision problem (Section 3.2.1) including the dynamic pricing 

subproblem (Section 3.2.2), we propose a decomposition-based solution concept. We divide the 

explanation in three parts: First, we provide an overview of the basic algorithmic structure (Sec-

tion 4.1). Second, we present the post-decision rollout algorithm for ride evaluation (Section 4.2). 

Third, we show how the dynamic pricing subproblem can be solved by full enumeration (Section 

4.3).  

4.1 Overview of the Decomposition-based Solution Concept 

The basic idea behind the decomposition-based solution concept is as follows: Upon receiving a 

customer request, ride evaluation is performed for all feasible rides, determined by a feasibility 

check. Then, the dynamic pricing subproblem is solved based on the results of feasibility check 

and ride evaluation. The basic algorithmic structure of our solution method reflects this idea (see 

Fig. 2). In the initial state 𝑠0, the set of pending orders 𝐶0 and the current route plan 𝜙0 are empty 

(lines 1-2). At each decision epoch, the first step (line 4) is to update 𝐶𝑡  and 𝜙𝑡  based on the legs 

of the route plan completed since the previous decision epoch. The feasibility check (lines 6-9) is 

performed by based on the current route plan 𝜙𝑡  using a parallel insertion heuristic (Anzenhofer 

et al., 2024). If a feasible insertion position could be found (𝜙𝑡(𝑜) ≠ ∅), ride 𝑜 is added to the set 

of feasible rides 𝒪𝑐𝑖𝑡
𝑓

. Then, ride evaluation is performed for each feasible ride 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓

 (line 10) 

to approximate displaced booked passenger km Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) and marginal vehicle km 

Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜). Given the results of feasibility check and ride evaluation, the dynamic pricing 
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subproblem is solved to determine the offer set 𝑔𝑡
∗ (line 11). Next, the exogeneous information 

about the customer’s purchase choice realizes in the form of the chosen product 𝑘𝑗𝑡 ∈ 𝑔𝑡
∗ (line 

12). If 𝑘𝑗𝑡 ≠ 0, the newly collected order is added to 𝐶𝑡  (lines 13-14) and a vehicle routing deci-

sion is made using the route plan 𝜙𝑡(𝑜𝑗𝑡) resulting from the feasibility check for the ride 𝑜𝑗𝑡 

chosen by the customer. Note that in case of a no-purchase, the route plan is not changed.  

1 𝐶0 ≔ ∅  

2 Initialize 𝜙0 as empty 

3 forall 𝑡 ∈ 𝒯 do 

4       𝜙𝑡 , 𝐶𝑡 ≔ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝑟𝑜𝑢𝑡𝑒_𝑝𝑙𝑎𝑛(𝜙𝑡−1 , 𝐶𝑡−1, 𝜏𝑖𝑡)  

5       𝒪𝑐𝑖𝑡
𝑓 ≔ ∅ 

6       forall 𝑜 ∈ 𝒪𝑐𝑖𝑡  do 

7             𝜙𝑡(𝑜) ≔ 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 (𝜙𝑡, 𝒪𝑐𝑖𝑡
𝑓 , 𝑖𝑡 , 𝑜)  

8             if 𝜙𝑡(𝑜) ≠ ∅: 

9                   𝒪𝑐𝑖𝑡
𝑓 ≔ 𝒪𝑐𝑖𝑡

𝑓 ∪ {𝑜} 

10       {(Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜), Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜)) : 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 } ≔ 𝑟𝑖𝑑𝑒_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝒪𝑐𝑖𝑡

𝑓 , 𝜙𝑡 , {𝜙𝑡(𝑜): 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 }) 

11       𝑔𝑡
∗ ≔ 𝑑𝑒𝑚𝑎𝑛𝑑_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑖𝑡, 𝒪𝑐𝑖𝑡

𝑓 , {(Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜), Δ𝐹𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜)) : 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 }) 

12       Observe 𝑘𝑗𝑡 ∈ 𝑔𝑡
∗ 

13       if 𝑘𝑗𝑡 ≠ 0 then 

14             𝐶𝑡 ≔ 𝐶𝑡 ∪ {𝑗𝑡} 

15              𝜙𝑡 ≔ 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝜙𝑡(𝑜𝑗𝑡),𝐶𝑡) 

Fig. 2 Basic solution algorithm 

4.2 Ride Evaluation 

Ride evaluation is equivalent to approximating opportunity cost (displacement cost and marginal 

cost-to-serve), in profit-based i-DMVRPs (Fleckenstein et al., 2024a). For sustainable dynamic 

pricing, displaced booked passenger km Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) are needed to formulate objective func-

tion (6). Marginal vehicle km Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) enter Constraints (8) as a parameter. Their true 

values depend on the final set of orders (see Lang et al. (2021) who introduce the term “set-

related”). For this reason, authors propose ex-post pricing (Andrejszki and Török, 2018, Karaenke 

et al., 2023) as a solution. It allows calculating Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜) and Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) at the end 

of the booking horizon. However, for dynamic pricing, both values must be calculated in real-

time, and the final set of orders must be anticipated to compute accurate approximations 

Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) and Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜).  

To this end, we propose a post-decision rollout algorithm (Bertsekas et al., 1997). The main rea-

son is that its properties are well-suited to the characteristics of the rural SMOD dynamic pricing 

problem. First, it requires no offline training and hardly any parameter tuning, which makes it 
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readily applicable in practice. Second, as shown by Ulmer et al. (2016), it outperforms learning-

based approaches if the explicit consideration of customer locations is advantageous. This is in-

deed the case in our problem since requests occur in small villages scattered across the service 

area with no demand at all in the areas in-between. Third, a post-decision rollout algorithm can 

identify detailed structure in the MDP (Ulmer et al., 2019), which is crucial in the rural problem 

setting with small instances and generally few pooling opportunities (Anzenhofer et al., 2024).  

The basic idea underlying post-decision rollout algorithms is to explicitly explore multiple 

branches of the decision tree starting from the possible post-decision states at the current decision 

epoch. In less technical terms, the algorithm simulates the possible future evolution of the booking 

horizon resulting from making a certain decision now. Applied to the problem at hand, we can 

compare the observed total booked passenger km and total vehicle km in case a certain order is 

confirmed to the case that no order is confirmed. The respective difference yields an approxima-

tion of Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) and Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜). 

The key design elements of the algorithm are the set of sample paths Ω ≔ {𝜔𝑞: 𝑞 = 1,… , |Ω|} of 

future customer requests and the base policy. In the following, we briefly describe the design we 

propose: 

• Sample paths: Each sample path 𝜔 ∈ Ω corresponds to a sequence of request arrivals. In our 

algorithm, this sequence covers the entire remaining booking horizon. This is necessary for 

an SMOD system with advance requests because the desired time of arriving requests has no 

natural ordering (Elting and Ehmke, 2021). Hence, the impact of a decision at the current 

decision epoch can extend to any point in the future and does not systematically decline, 

which would call for a limited sampling horizon as it is the case for similar i-DMVRPs, e.g., 

arising in same-day delivery (Klein and Steinhardt, 2023). 

For generating the sample paths Ω, we use instance-based sampling, which performs superior 

to distribution-based sampling techniques (Köhler et al., 2024). Each instance-based sample 

path corresponds to the request arrivals (with their original features) of a specific historical 

booking horizon. To ensure that the sample path starts at the correct time, we remove all 

requests placed before the current decision epoch. 

Finally, we determine the number of sample paths |Ω| = min{𝐵𝑠𝑡𝑎 , 𝐵𝑑𝑦𝑛} as the minimum 

of a static upper bound 𝐵𝑠𝑡𝑎 ≔ 𝛼 and a dynamic upper bound 𝐵𝑑𝑦𝑛 ≔ ⌊
𝛽

𝑤

|𝒪𝑐𝑖𝑡
𝑓
|+1
⌋. The latter 

is computed as follows: We measure the runtime 𝑤 of the first simulated sample path. Using 

a pre-defined time budget 𝛽 for the rollout algorithm per decision epoch, we then estimate 

the total number of sample paths that can be simulated within the time budget. Finally, we 

divide this value by the number of feasible rides (including the no-purchase option) to obtain 

an upper bound on the sample paths that can be simulated for all feasible rides within the time 

budget. With this definition of |Ω|, we avoid two undesirable effects: At the beginning of the 

booking horizon, even a rather small number of sample paths can consume much runtime, so 
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𝐵𝑑𝑦𝑛  prevents excessive loading times of the smartphone app. At the end of the booking 

horizon, sample paths are very short and yield limited information. Hence, 𝐵𝑠𝑡𝑎  prevents the 

simulation of too many sample paths. 

• Base policy: We offer each feasible ride at the base price 𝑔𝑡
𝑏𝑎𝑠𝑒 ≔ {𝑘 ∈ 𝒦𝑐: 𝑜𝑘 ∈ 𝒪𝑐𝑖𝑡

𝑓 , 𝑛𝑘 =

1} ∪ {0}, which ensures a short runtime of the simulation. While this would also be true for, 

e.g., rule-based dynamic pricing policies, there is a strong argument for using static pricing: 

A dynamic pricing base policy would tend to price out requests that, based on the known 

orders, cannot be pooled well and would instead “cherry-pick” requests that can be pooled 

well. Hence, the anticipation would cause a “self-fulfilling prophecy”: If it is anticipated that 

a certain subset of requests that currently cannot be pooled well will be priced out in the 

future, a currently arriving request of this subset will actually be priced out due to its high 

marginal vehicle km. With static pricing, requests receive comparable offers, which ensures 

that actual decisions are also more balanced, especially in the critical early phase of the book-

ing process (Fleckenstein et al., 2024b) 

Fig. 3 depicts a pseudocode of the ride evaluation algorithm, which is initiated in line 10 of the 

basic solution algorithm (Fig. 2). In the initialization, the set of sample paths Ω is generated (line 

1). Then, starting with the no-purchase option 𝑜 = 0, each sample path is simulated for each ride 

starting from the post-decision state (𝐶𝑜,𝑞 , 𝜙𝑜,𝑞) that results from collecting a hypothetical order 

𝑗𝑡
′(𝑜) for this ride (lines 4-6). To perform the simulation, the dynamic pricing subproblem is 

solved (Fig. 4) using the base policy (line 11 in Fig. 2). Finally, for all rides 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓

, the realized 

total booked passenger km 𝑉̂𝑜,𝑞 is compared to that of the no-purchase option 𝑉̂0,𝑞. The average 

difference over all sample paths yields an approximation of displaced booked passenger km 

Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) (line 8). Likewise, we approximate the marginal vehicle km Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) 

(line 9). 

Input: Set of feasible rides 𝒪𝑐𝑖𝑡
𝑓

, current route plan 𝜙𝑡, set of route plans including potential orders {𝜙𝑡(𝑜):𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 } 

1 Draw set of sample paths Ω ≔ {𝜔𝑞: 𝑞 = 1,… , |Ω|} of future customer requests 

2 forall 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 ∪ {0} do 

3       forall 𝜔𝑞 ∈ Ω do  

4             𝐶𝑜,𝑞 ≔ 𝐶𝑡 ∪ {𝑗𝑡
′(𝑜)} 

5             𝜙𝑜,𝑞 ≔ 𝜙𝑡(𝑜) 

6             𝑉̂𝑜,𝑞 , 𝐹𝑜,𝑞 ≔ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑏𝑎𝑠𝑒_𝑝𝑜𝑙𝑖𝑐𝑦(𝐶𝑜,𝑞, 𝜙𝑜,𝑞 ,𝜔𝑞)  

7       if 𝑜 ≠ 0 then 

8             Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) ≔
∑ (𝑉0,𝑞−𝑉𝑜,𝑞)
|Ω|
𝑞=1

|Ω|
 

9             Δ𝐹𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜) ≔
∑ (𝐹𝑜,𝑞−𝐹̂0,𝑞)
|Ω|
𝑞=1

|Ω|
 

Fig. 3 Post-decision rollout algorithm for ride evaluation 
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4.3 Solving the Dynamic Pricing Problem 

In this section, we consider the dynamic pricing subproblem for an individual request 𝑖𝑡 at deci-

sion epoch 𝑡. Given the set of feasible rides, the approximations of displaced booked passenger 

km and marginal vehicle km, and the choice probabilities, Model (6)-(9) must be solved to deter-

mine the offer set 𝑔𝑡
∗. Since prices are discrete, Model (6)-(9) corresponds to a constrained assort-

ment optimization problem. As an alternative to dedicated solution algorithms (Heger and Klein, 

2024), full enumeration can also be applied if the number of possible offer sets is not prohibitively 

large. For the problem at hand, this is a valid assumption: 

• Low number of price multipliers: Naturally, the price multiplier has a lower bound (1) and an 

upper bound well below taxi fares. Also, for simplicity, the provider likely selects only a few 

price multipliers. 

• Low number of potential rides: Similarly, the number of potential rides is likely low because 

of the display capacity of smartphones (Arian et al., 2022, Haferkamp, 2024). 

• Preprocessing opportunities: Constraints (7) and Constraints (8) can be exploited in pre-pro-

cessing steps, such that infeasible offer sets can be excluded from the enumeration process a-

priori.  

Input: Current customer request 𝑖𝑡, set of feasible rides 𝒪𝑐𝑖𝑡
𝑓

, set of estimated displaced booked passenger km and 

marginal vehicle km {(Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜), Δ𝐹𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜)) : 𝑜 ∈ 𝒪𝑐𝑖𝑡
𝑓 } 

1 𝒦𝑐𝑖𝑡
′ ≔ {𝑘 ∈ 𝒦𝑐𝑖𝑡 : 𝑜𝑘 ∈ 𝒪𝑐𝑖𝑡

𝑓 , 𝜌𝑐𝑖𝑡 −Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜𝑘) ≥ 0, 𝑟𝑐𝑖𝑡 ,𝑘 ≥ 𝜖 ⋅ Δ𝐹𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜𝑘)}  

2 𝒢(𝑠𝑡−1, 𝑐𝑖𝑡) ≔ {𝑔 ∈ 2
𝒦𝑐𝑖𝑡
′

: 𝑜𝑘 ≠ 𝑜𝑘′∀𝑘, 𝑘
′ ∈ 𝑔, 𝑘 ≠ 𝑘′}  

3 𝑔𝑡
∗ ≔ argmax

𝑔𝑡∈𝒢(𝑠𝑡−1,𝑐𝑖𝑡)

(∑ 𝑃𝑘(𝑔𝑡) [𝜌𝑐𝑖𝑡 ⋅ 𝟏𝑜𝑘≠0 − Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜)]𝑘∈𝑔𝑡
)  

Fig. 4 Solution algorithm for dynamic pricing subproblem 

Accordingly, the algorithm we propose for solving Model (6)-(9) consists of two pre-processing 

steps before full enumeration is performed to determine 𝑔𝑡
∗ (Fig. 4). The first pre-processing step 

computes the set of feasible products 𝒦𝑐𝑖𝑡
′ ⊆ 𝒦𝑐𝑖𝑡  (line 1). A feasible product 𝑘 ∈ 𝒦𝑐𝑖𝑡  must sat-

isfy three conditions: 

• First, the associated ride 𝑜𝑘 must be feasible based on the result of the feasibility check. 

• Second, the displaced booked passenger km 𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜𝑘) attributable to the associated 

ride 𝑜𝑘 must not exceed the booked passenger km 𝜌𝑐𝑖𝑡  gained with the request.  

• Third, the price 𝑟𝑐𝑖𝑡 ,𝑘 of product 𝑘 must at least equal its marginal cost 𝜖 ⋅ Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜𝑘). 

Next, the enumeration is performed including another pre-processing step (line 2). Based on the 

first pre-processing step, any element of the power set of the set of feasible products 2
𝒦𝑐𝑖𝑡
′

 must 

be enumerated. However, due to Constraints (7), we can exclude any offer set that contains at 

least one ride at multiple price points. Thus, line 2 yields the action space 𝒢(𝑠𝑡−1, 𝑐𝑖𝑡) for the 
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dynamic pricing decision. In line 3, we solve the maximum operator in Bellman equation (3) 

drawing on the approximated displaced booked passenger km Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜).  

5 Computational Results 

This section presents the results of a computational study evaluating sustainable dynamic pricing 

against benchmarks from practice and literature. After introducing the experimental setup (Sec-

tion 5.1), we analyze the base scenario (Section 5.2). Then, we conduct sensitivity analyses re-

garding the cost parameter (Section 5.3). Finally, we provide insights into the benefits of antici-

patory ride evaluation (Section 5.4). 

5.1 Experimental Setup 

All experiments are based on a real-world data set provided by our industry partner FLEXIBUS 

and are conducted on an Intel© Core© i7-8700 processor with 6 cores, 3.20 GHz, and 32 GB 

RAM. The algorithms were implemented in PYTHON (Version 3.11). In the following, we first 

describe how we generate problem instances from the real-world data set (Section 5.1.1) and 

which benchmark policies we consider (Section 5.1.2). 

5.1.1 Generation of Problem Instances 

FLEXIBUS operates an SMOD service across multiple areas, each requiring separate operational 

planning. For this study, we use data from the Krumbach service area, where FLEXIBUS has 

been active since 2009. For instance generation, we draw on data for 200 service horizons (work-

ing days) during an observation period between February 2022 and February 2023, excluding 

weekends and holidays. Each instance matches one of the 200 historical days and is defined by 

two subsets of parameters: request parameters and scenario parameters.  

Request parameters are derived directly from historical data. Request arrival sequence and request 

parameters match the original data set. Scenario parameters represent higher planning level deci-

sions (system parameters), customer choice behavior (choice parameters), and the configuration 

of the solution method (hyperparameters). These parameters are assumed to be given and intro-

duced below, along with their values in the base scenario. 

System parameters: In the considered service area, FLEXIBUS offers transportation between 

|ℋ| = 563 stops, including a depot. We determine travel distances and travel times (including a 

service time of one minute) using Open Source Routing Machine (OSRM, n.d.). The values de-

fining fleet plan, ride options, and time windows are based on service quality targets set by the 

Association of German Transport Companies (VDV, 2023):  

• Vehicle fleet: We assume |𝒱| = 2 vehicles: one throughout the service day, the second oper-

ates an additional eight-hour shift (10 a.m. to 4 p.m.). This setup ensures request acceptance 

rates within the rural service quality target (between 70% and 90%).  
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• Ride options: For any type of request, the provider can offer |𝒪𝑐| = 5 potential rides allowing 

pick-up and drop-off times 30 (60) minutes earlier or later than the desired time, which itself 

is also a potential ride. 

• Time windows: Pick-up and drop-off time windows are constructed using a waiting time of 

10 minutes and a maximum added ride time factor of 0.5. 

The base prices follow the pricing scheme applied by FLEXIBUS during the observation period, 

which derives prices from the number of fare zones a direct ride from pick-up stop to drop-off 

stop traverses and the number of passengers. Hence, prices roughly depend on the booked pas-

senger km and range from 2.4€ (one zone) to 9.9€ (eight zones) per passenger. Further, we define 

|𝒩| = 5 price multipliers (1, 1.4, 1.8, 2.2, and 2.6). It is worth noting that even the highest price 

multiplier still only equals about 50% of the local taxi price. The cost parameter is set to 𝜖 =

0.3
€

𝑘𝑚
+ 0.2

€

𝑘𝑚
= 0.5

€

𝑘𝑚
, combining FLEXIBUS’s operational experience with variable routing 

costs and recent estimates of external cost from the literature (Lethmate and Paegert, 2024). 

Choice parameters: To define choice probabilities, we generalize the consider-then-choose dis-

crete choice model proposed in Anzenhofer et al. (2024). It assumes that the customer population 

can be divided into customer segments 𝑙 ∈ ℒ with a unique consideration set of products 𝒮𝑙 ⊆ 𝒦. 

In addition to the quality cutoff that restricts the deviation from the desired time 𝑡𝑐 that the cus-

tomer is willing to accept in both directions, we also define a price cutoff, i.e., a maximum ac-

ceptable price increase beyond the base price. Combining both cutoffs results in |ℒ| = 15 cus-

tomer segments. To determine the segment shares 𝛾𝑙, we rely on rough assumptions due to the 

lack of empirical data specific to rural SMOD systems. On the one hand, we assume a price sen-

sitivity of −0.5, which is in line with the empirical findings for public transport in general (Hans-

son et al., 2019, Holmgren, 2007, Hörcher and Tirachini, 2021). On the other hand, we assume 

that 25% of the customers are inflexible (cutoff at deviation of 0 minutes), 50% have a low 

flexibility (cutoff at deviation of 30 minutes), and 25% have a high flexibility (cutoff at deviation 

of 60 minutes). Within their consideration set 𝒮𝑙, customers from all segments 𝑙 ∈ ℒ rank the 

products according to a uniform ranking function 𝜁. We assume that the price serves as the pri-

mary ranking criterion, and the deviation from the desired time serves as the secondary ranking 

criterion, with earlier rides ranked higher than later rides with the same deviation. 

Table 3 provides an overview of the choice model. To apply the different policies to solve the 

instances, we use a simulator that replays the historical sequence of requests and determines a 

realization of the customers’ purchase choice according to the consider-then-choose model. 

Table 3 Discrete choice model 

𝑙 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Quality cutoff 0 0 0 0 0 30 30 30 30 30 60 60 60 60 60 

Price cutoff 1 1.4 1.8 2.2 2.6 1 1.4 1.8 2.2 2.6 1 1.4 1.8 2.2 2.6 

𝛾𝑙 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.05 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

273 

Hyperparameters: The anticipatory post-decision rollout algorithm has two hyperparameters 

defining how the set of sample paths is computed. First, parameter 𝛼 sets a fixed upper bound for 

the number of sample paths. In the base scenario, we set 𝛼 = 15. Second, parameter 𝛽 defines 

the time budget available for executing the post-decision rollout algorithm at a decision epoch. 

For this parameter, we select a value of 𝛽 = 10 seconds. A sensitivity analysis regarding the 

values of both hyperparameters can be found in Appendix C. 

5.1.2 Benchmark Policies 

We compare the performance of the proposed method to several benchmarks. In the following, 

we introduce them by explaining their modeling differences and algorithmic differences com-

pared to the MDP model presented in Section (3.2.1) and the solution method presented in Section 

4, i.e., sustainable dynamic pricing (S).  

• Base price policy (B): This policy represents the status-quo at our industry partner FLEXI-

BUS. In response to any type of request 𝑐 ∈ 𝒞, it offers the full set of feasible rides 𝒪𝑓  at the 

base price 𝑏𝑐. Hence, from a modeling perspective, prices are static and the dynamic pricing 

subproblem is entirely omitted. Accordingly, in Fig. 2, line 10 is removed because no ride 

evaluation is necessary. Further, line 11 is replaced by 𝑔𝑡
∗ ≔ {𝑘 ∈ 𝒦𝑐: 𝑜𝑘 ∈ 𝒪𝑐𝑖𝑡

𝑓 , 𝑟𝑐,𝑘 = 𝑏𝑐} ∪

{0}. 

• Profit-based dynamic pricing policy (P): To compare our proposed approach to the state-

of-the-art in the scientific literature, we consider a profit-based benchmark policy. It results 

from changing the reward definition of the MDP model such that the provider receives a 

positive reward for selling a product, which equals its price, and a negative reward for the 

variable routing cost caused by routing decisions (see Anzenhofer et al. (2024) for a formal 

definition). Analogously, Bellman equation (3) and the objective function (6) of the model 

for the dynamic pricing subproblem must be adapted. Further, Constraints (8) must be re-

moved. For the ride evaluation algorithm, this means that Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) encodes the mon-

etary opportunity cost. Other than that, we make no changes to the ride evaluation algorithm 

(Fig. 3). In the algorithm for solving the dynamic pricing subproblem (Fig. 4), the third con-

dition in line 1 is removed. 

• Sustainable dynamic pricing policy with primary objectives (S-P): To analyze the impact 

of considering the secondary objectives by Constraints (8), we apply a policy without these 

constraints. This means that, in Fig. 4, the third condition in line 1 is removed and the policy 

can offer rides at any price multiplier. 

• Non-selective sustainable dynamic pricing policy (S-N): In practice, providers may not 

want to deny customers the booking of rides that are feasible but have a negative contribution 

in terms of booked passenger km or have marginal cost exceeding even the highest possible 

price. Hence, we also test a non-selective benchmark policy that offers every feasible ride. 

From a modeling point of view, this means that Constraints (7) are replaced by the 
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corresponding equations. To adapt the solution method, we insert an additional pre-pro-

cessing step between line 1 and line 2 (Fig. 4). It (re-)inserts the product with the highest price 

point for each ride into the feasible products (𝒦𝑐𝑖𝑡
′ ≔ 𝒦𝑐𝑖𝑡

′ ∪ {𝑘 ∈ 𝒦𝑐𝑖𝑡 : 𝑜𝑘 ∈ 𝒪𝑐𝑖𝑡
𝑓
, 𝑛𝑘 =

|𝒩|}). Also, we add a condition in line 2, ensuring that feasible offer sets contain all feasible 

rides (|𝑔| = |𝒪𝑐𝑖𝑡
𝑓 |). 

• Sustainable dynamic pricing policy with myopic marginal vehicle km (S-MM): To ana-

lyze the benefit of the anticipatory approximation of marginal vehicle km, we consider a 

partly myopic benchmark policy. It draws on the marginal increase in vehicle km due to in-

serting the hypothetical ride into the tentative route plan. Hence, we replace line 9 in Fig. 3 

by Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) ≔ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜙𝑡(𝑜)) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜙𝑡(0)). Note that the policy still ap-

proximates the displaced booked passenger km (no change to line 8 in Fig. 3). 

• Sustainable dynamic pricing policy without displacement (S-MD): To analyze the benefit 

of considering displaced booked passenger km, we apply a policy that is partly myopic since 

it does not capture displaced demand. It results from replacing line 8 by Δ𝑉𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜) ≔

0 in Fig. 3. Again, the policy is not fully myopic due to the anticipatory approximation for 

the marginal vehicle km (no change to line 9 in Fig. 3). 

5.2 Base Scenario 

In this section, we analyze performance of the policies in the base scenario as defined in Section 

5.1.1. All reported values are arithmetic means over 200 instances generated from the FLEXIBUS 

data set. For now, we only consider the non-myopic benchmark policies B, P, S-P, and S-NS. We 

begin with analyzing the solution quality regarding the (proxy) attributes defined in Section 3.1.2, 

i.e., booked passenger km, pooling rate, and profit (Section 5.2.1). Then, we analyze the offers 

made to different types of requests (Section 5.2.2). 

5.2.1 Solution Quality Analysis 

Table 4 compares the solution quality of the newly introduced Policy S to benchmark policies.  

B vs. S-P: We observe an increase in the primary objective (3%) and both secondary objectives 

(pooling rate: 7%, profit: 15%). This result implies that dynamic pricing, even if based purely on 

the primary objective, raises the general solution quality including the secondary objectives. The 

relatively small gain in terms of the primary objective can be explained by weak displacement 

effects because of the low vehicle utilization of 65%.  

S vs. S-P: Policy S leads to a re-distribution of solution quality from the primary objective to the 

secondary objectives due to Constraints (8). The improvement compared to Policy S-P by 4% 

(pooling rate) and 25% (profit) comes at a loss of −7% in terms of booked passenger km.  

S vs. S-N: Policy S-N shows a very similar performance compared to Policy S. Seemingly, most 

demand with a negative contribution in booked passenger km or very high marginal cost can be 
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successfully priced out by Policy S-N. If this is the case, withholding feasible fulfillment options 

from these customers is not beneficial. 

P vs. B or S: Finally, for Policy P, we observe a drastic growth in profit (138%) and a small 

growth in the pooling rate (8%) compared to Policy B, which is associated with a considerable 

loss in booked passenger km (−29%). Policy S largely avoids this loss and still improves the 

secondary objectives considerably. 

Table 4 Overview of solution quality 

Policy B P S-P S-N S 

Booked passenger km 375.28 265.15 387.76 360.35 360.03 

Pooling rate 0.6414 0.6911 0.6859 0.7102 0.7137 

Profit [€] 89.69 213.72 103.18 135.33 128.74 

5.2.2 Characteristics of Offers and Orders 

Now, we additionally analyze the request level to better understand the root causes of the perfor-

mance differences and find out how customers would perceive the behavior of the different poli-

cies. To this end, we first define suitable metrics and analyze the entire customer population. 

Then, we consider groups of similar requests and search for disparities in terms of the offers they 

receive. Table 5 shows the metrics characterizing the offers.  

Entire customer population:  

In terms of acceptance and rejection rates, all policies show similar results, which are at the upper 

end of the target corridor of 70% to 90% (VDV, 2023). Static pricing yields the lowest ac-

ceptance rate, which implies that with any dynamic pricing policy, customers have a higher 

chance of receiving an offer. For selective sustainable dynamic pricing (Policy S-P and Policy S), 

only a small share of requests is rejected despite feasible rides exist, which again points toward 

weak displacement effects in general.  

Greater differences are observable regarding the offers made.  

• Policy S-P gently steers demand: Compared to Policy B, the abandonment rate increases 

slightly since offer sets become smaller. The base offer rate, and thus, also the lower bound 

offer rate, remains at 100%, i.e., no monopoly markup is charged. Hence, prices are increased 

only slightly to steer customers toward rides with a higher gain in booked passenger km.  

• For Policy S, changes are greater because the consideration of secondary objectives causes 

more steering of demand. The average price level increases, and the base price is only avail-

able to 80% of accepted requests. Still, the lower bound offer rate is at 100%, which shows 

that no monopoly markup is charged.  

• The corresponding non-selective policy (Policy S-N) makes more offers with larger offer sets, 

but the additional offers are accompanied by a higher average price and a higher abandonment 

rate. The 5% of offers without a base price correspond to requests that the selective Policy S 

would reject and that are priced out.  
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• For profit-based dynamic pricing (Policy P), demand management is aggressive: Despite of-

fering many rides overall, hardly any customer is offered a ride at the base price. Only 27% 

of all offers contain at least one option at the lowest price above marginal cost, so the provider 

charges a monopoly markup with 73% of all offers. Together with the high average price, 

this causes a no-purchase for almost half of the accepted requests. This explains the loss in 

booked passenger km observed in Section 5.2.1. Even though more customers receive offers 

with, on average, more rides, demand is lost due to the high abandonment rate. 

Table 5 Results of metrics characterizing offers and orders 

Metric Description B P S-P S-N S 

Acceptance rate Share of requests with at least one offered ride. 0.83 0.93 0.84 0.89 0.84 

Rejection rate Share of requests without an offer. 0.17 0.07 0.16 0.11 0.16 

   Feasibility Share of requests for which no feasible ride is found. 0.17 0.07 0.11 0.11 0.11 

   Displacement 
Share of requests for which no feasible ride with a positive 

contribution in booked passenger km is found. 
0 0 0.05 0 0.05 

   Marginal cost 
Share of requests for which all feasible rides have a higher 

marginal cost than the highest possible price. 
0 0 0 0 0 

Abandonment 

rate 
Share of accepted requests that did not convert into an order. 0.12 0.43 0.17 0.25 0.22 

Base price offer 

rate 

Share of accepted requests whose offer includes at least one 

ride at the base price. 
1 0.02 1 0.75 0.80 

Lower bound  

offer rate 

Share of accepted requests whose offer includes at least one 

ride at the lowest possible price above the marginal cost. 
1 0.27 1 0.95 1 

Average offer  

set size 
Average number of rides in the offer set. 3.31 3.63 2.81 3.46 2.83 

Average price 

multiplier 
Average price multiplier of all rides in the offer set. 1 1.79 1.06 1.52 1.25 

Groups of requests – Price paid, marginal vehicle km, and deviation from desired time 

Now, we analyze the relationship between the price paid by a customer and two key factors: a) 

the marginal vehicle km of their request and b) the deviation from the desired time. The former 

relation reveals how policies S-P, S, and P set prices for requests that are progressively unfavor-

able in terms of the secondary objectives. The latter relation shows if customers can get cheaper 

prices if they are more time flexible.  

We visualize the results in the form of heatmaps in Fig. 5, where the vertical axis plots the price 

multiplier of the product the customer ordered (including no-purchases). The horizontal axis plots 

the marginal vehicle km of the ordered ride in 2.5 km bins. In case of a no-purchase (np), we 

calculate the average over all feasible rides. Each pixel value represents the percentage share of 

offers resulting in the same outcome (price multiplier/np) among all offers for rides of a marginal 

vehicle km bin. 

• Policy S-P: We observe that most customers order a ride at the base price, irrespective of its 

marginal vehicle km. Price multipliers above 1.4 are practically never chosen. Hence, the 
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policy only gently steers customers toward more favorable rides in terms of displaced de-

mand, and prices do not reflect marginal vehicle km.  

• Policy S: For requests with low marginal vehicle km, Policy S behaves similarly since mar-

ginal cost is still below the base price. With increasing marginal vehicle km, we observe a 

stepped increase of the paid price multiplier, which is very “sharp”, indicating a strong de-

pendency between both features. The increasing share of no-purchases shows that customers 

not willing to pay the marginal cost of their ride are priced out.  

• Policy P: We observe a general price increase, which is independent from marginal vehicle 

km. This is further evidence for the monopoly markup charged by a profit-maximizing pro-

vider. We still find that the extent of the price increase depends on the marginal vehicle km, 

albeit much more “loosely” compared to Policy S. The reason is that higher marginal cost 

requires a higher revenue to make a request profitable. 

 

Fig. 5 Dependency of price and marginal vehicle km over all offers 

 

Fig. 6 Dependency of price and deviation from desired time over all offers 

In Fig. 6, the horizontal axis plots the deviation of the ordered pick-up (drop-off) time from the 

desired time. Pixel values are percentage shares among all orders with the same deviation from 
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the desired time. For all three policies, we find that customers who are flexible regarding their 

pick-up (drop-off) time can get cheaper rides. For Policy S-P, a flexibility of 60 minutes guaran-

tees a ride at the base price. While it is consistently observable, this pattern is generally weaker 

compared to the relation between price and marginal vehicle km (Fig. 5).  

Groups of requests – Time of request, desired time, direct distance between pick-up and 

drop-off 

Next, we analyze selected metrics for different groups of requests. Therewith, we can find dis-

parities in the offers made based on time of request, desired time, or direct distance between pick-

up and drop-off. To this end, we compare the Policy B and Policy P to the sustainable dynamic 

pricing by Policy S and Policy S-P. Since they are quite extensive, we refer the reader to Appendix 

B for the detailed results. In the following, we provide a high-level presentation (Table 6) com-

plemented by an explanation of the most prominent observations. 

The columns of Table 6 correspond to the combination of a certain request attribute and a bench-

mark policy. A row lists a certain metric, in terms of which disparities can potentially occur. The 

table entries indicate whether sustainable dynamic pricing (Policy S and Policy S-P), exacerbates 

(-/--), alleviates (+/++) or does not alter (o) the disparities regarding the respective metric (row) 

and request parameter compared to the respective benchmark policy (column). Below, we elabo-

rate on the disparities that are exacerbated and alleviated. 

Exacerbated: 

• Regarding the acceptance rate, we observe discrimination against very short requests by both 

sustainable dynamic pricing policies. In comparison, Policy P achieves a much more balanced 

acceptance rate. 

• For Policy S, the base price offer rate deteriorates slightly for same-day requests, requests 

with very early or very late desired times, and more strongly for long requests.  

• Policy S and Policy S-P offer markedly less rides to short requests. The benchmarks’ offers 

are balanced. 

• Compared to both benchmarks, we observe slightly more unbalanced average price multipli-

ers offered by Policy S. Prices are higher for long requests and requests with a very early or 

very late desired time. 

Overall, we do not see strong indications of discriminatory behavior by the sustainable dynamic 

pricing policies. Even the strongest inequalities regarding request length are not systematic: Short 

requests face a lower acceptance rate and offer set size yet also lower price multipliers, and vice 

versa for long requests. 
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Alleviated: 

• Due to its first-come-first-served nature, Policy B favors early advance requests over later 

requests. Policy S and Policy S-P behave in a more balanced way, also in terms of the aban-

donment rate. 

• Policy B achieves a progressively lower acceptance rate the greater the longer a request is. In 

contrast, Policies S and S-P accept fewer of the very short requests but more of the longer 

requests. 

• Policy P causes long requests to abandon exceedingly. Policy S and Policy S-P show more 

balanced rates. 

• With a lower bound offer rate of 1, both Policy S and Policy S-P alleviate disparities observed 

for Policy P, which discriminates against requests based on their desired time and direct dis-

tance.  

In summary, we find that sustainable dynamic pricing alleviates crucial imbalances compared to 

the benchmark policies regarding time of request and request length. 

Table 6 Impact of sustainable dynamic pricing on disparities in terms of offers compared to benchmarks 

Request parameter Time of request Desired time Direct distance 

Benchmark Policy B Policy P Policy B Policy P Policy B Policy P 

Acceptance rate ++ o o o ++ -- 

Abandonment rate + o o o o ++ 

Base price offer rate - - - - -- o 

Lower bound offer rate o o o ++ o ++ 

Average offer set size o o o o -- -- 

Average price multiplier o o - - -- o 

5.3 Sensitivity Regarding Cost Parameter 

In this section, we vary the cost parameter value 𝜖 with the aim of analyzing the shift of solution 

quality between primary objective and secondary objectives by adjusting the cost parameter 𝜖. 

In the underlying computational experiment, we maintain the parameter setting of the base sce-

nario and vary the cost parameter starting with 𝜖 = 0
€

𝑘𝑚
 and increasing it successively by 0.25

€

𝑘𝑚
 

until we reach 𝜖 = 1.5
€

𝑘𝑚
. To allow for a visualization given the three objectives of interest, we 

separately investigate the trade-off between the primary objective, and each of the secondary ob-

jectives. Hence, Fig. 7a (Fig. 7b) plots the booked passenger km against the pooling rate (profit) 

achieved. Each data point corresponds to the result of applying a certain policy with a certain cost 

parameter value 𝜖. For now, we only consider Policy S (blue points). The different shades of blue 

encode the value of 𝜖, with the lightest indicating 𝜖 = 0
€

𝑘𝑚
 and the darkest indicating 𝜖 = 1.5

€

𝑘𝑚
.  

Starting with 𝜖 = 0
€

𝑘𝑚
, we observe that increasing the cost parameter sacrifices booked passenger 

km but steadily improves the pooling rate. In contrast, the relation with profit is non-monotonous. 
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Steady improvement can only be observed for small cost parameter values, with 𝜖 = 0.75
€

𝑘𝑚
 

yielding maximum profit. From this value onward, profit deteriorates. Underlying the observed 

parabolic profit trend are two inverse effects: On the one hand, increasing 𝜖 leads to higher reve-

nue per order and lower cost per order since prices for rides with high marginal vehicle km are 

higher such that less of these rides are ordered and, those that are, yield a higher revenue. On the 

other hand, these improvements in a relative way are accompanied by a declining absolute number 

of orders. For low 𝜖 values, the positive relative effect prevails causing revenues to increase. For 

higher values, it is increasingly outweighed by the negative absolute effect. 

 

Fig. 7 Solution quality depending on cost parameter 

5.4 Benefit of Anticipation 

To measure the benefit of computing anticipatory approximations for the displaced booked pas-

senger km 𝛥𝑉̃(𝑠, 𝑐, 𝑜) and the marginal vehicle km Δ𝐹̃(𝑠, 𝑐, 𝑜), we benchmark the (fully) antici-

patory policy against the two partly myopic policies (see Section 5.1.2). The results are also vis-

ualized in Fig. 7.  

To isolate the benefit of the anticipatory approximation of displaced booked passenger km 

𝛥𝑉̃(𝑠, 𝑐, 𝑜), we consider Policy S-MD, which assumes 𝛥𝑉̃(𝑠, 𝑐, 𝑜) = 0 in general but still features 

the same anticipatory approximation of Δ𝐹̃(𝑠, 𝑐, 𝑜) as Policy S. Comparing both policies, we find 

that Policy S-MD does not yield any pareto-efficient solution. E.g., for 𝜖 = 0.5
€

𝑘𝑚
, Policy S out-

performs Policy S-MD by 3%, 6%, and 14% in terms of booked passenger km, pooling rate, and 

profit, respectively. This shows that an anticipatory approximation of 𝛥𝑉̃(𝑠, 𝑐, 𝑜) raises the solu-

tion quality in general, i.e., independent from the value of parameter 𝜖. The reason is the price 

penalty for those rides that cause high displacement. Hence, if a customer still orders such a ride, 

the revenue is high, which positively impacts profit. If the customer orders an alternative ride that 

causes less displacement because the ride is shifted into a period with less demand, only the 

booked passenger km improve. However, if less displacement occurs due to better pooling, the 

pooling rate also improves.  

Analogously, we can analyze the impact of using an anticipatory approximation of the marginal 

vehicle km Δ𝐹̃(𝑠, 𝑐, 𝑜) (Policy S) compared to the myopic approximation, which draws on the 
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insertion cost into the tentative route plan (Policy S-MM). With increasing cost parameter values 

𝜖, we observe that the shift of solution quality away from booked passenger km toward pooling 

rate and profit is much more pronounced than for Policy S. E.g., for 𝜖 = 5, Policy S-MM yields 

20% less booked passenger km but profit increases by 27% and the pooling rate improves by 

4%.  

 

Fig. 8 Impact of fully anticipatory ride evaluation on the average price multiplier 

The reason behind this performance is that the myopic approximation systematically overesti-

mates the true marginal vehicle km. This effect is fundamental to i-DMVRPs and has been first 

described extensively in Fleckenstein et al. (2024b). The overestimation error arises because the 

myopic approximation does not account for consolidation with future rides and, hence, is strong-

est in the beginning of the booking horizon. Fig. 8, which plots the average price multiplier over 

the booking horizon, shows that this overestimation error translates into higher prices, especially 

for early requests. Interestingly, Policy S-MM still yields pareto-efficient solutions. However, its 

price increases compared to Policy S can be viewed as an undesirable markup since prices rise 

due to a systematic overestimation of the true marginal cost. This is especially problematic since 

it creates disparities between early requests and late requests (Andrejszki and Török, 2018). 

6 Managerial Insights and Future Research Directions 

In this work, we presented the first approach to sustainable dynamic pricing for rural SMOD 

systems. Relative to existing research, we bridge the gap between transportation economics, 

where the transfer of marginal cost pricing to SMOD systems is proposed but not practically 

implemented, and operations research, where existing dynamic pricing approaches are purely 

profit-based and multi-objective problems are hardly considered. Having thoroughly derived the 

relevant objectives in practice by means of multi-attribute decision analysis, we modeled the pro-

viders’ sequential decision problem as a constrained MDP, with a particular focus on the dynamic 

pricing subproblem. The model maximizes the demand served while ensuring that any ride’s price 

is at least equal to its marginal cost, i.e., the provider’s variable routing cost and external cost due 
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to emissions. With this structure, undesirable monopoly markups are avoided. To enable this 

model’s application, we also proposed an anticipatory post-decision rollout algorithm, which 

evaluates rides regarding their expected displacement of future demand and expected marginal 

vehicle km. We comprehensively validated our approach using a real-world data set provided by 

our industry partner FLEXIBUS.  

In this section, we summarize the key managerial insights (Section 6.1), derive recommendations 

for practice (Section 6.2), address limitations (Section 6.3), and sketch future research directions 

(Section 6.4). 

6.1 Managerial Insights 

• Favorable performance from the provider’s perspective: Sustainable dynamic pricing 

shows superior performance in balancing the relevant objectives in line with the preferences 

of municipal authorities. We find the following results in the base scenario: Compared to 

static pricing, which is the real-world status-quo, a small loss in booked passenger km (−4%) 

leads to an 11% improvement in the pooling rate and a 44% improvement in profit. Compared 

to profit-based dynamic pricing, which is the state-of-the-art in the operations research liter-

ature, the provider obtains less profit (−40%) but collects 36% more booked passenger km, 

and the pooling rate is 3% higher. This confirms earlier theoretical findings about the poten-

tial severity of monopoly markups resulting from profit-based dynamic pricing (Bahamonde-

Birke et al., 2021). In turn, sustainable dynamic pricing guarantees that any offer includes a 

least one ride at the lowest possible price point above its marginal cost. Thereby, given an 

accurate approximation of marginal vehicle km, monopoly markups are entirely avoided.  

• Small impact of selectiveness: We observe hardly any performance difference between the 

non-selective variant and the selective variant of sustainable dynamic pricing. This means 

that providers can choose whether they prefer rejecting unfavorable requests (selective) or 

pricing them out (non-selective). 

• Weak demand displacement: Our results point toward demand displacement being rather 

weak in general. The likely root cause for this is that for reaching an acceptance rate above 

80%, the required supply-demand ratio is high enough that supply is not restrictive for most 

requests. 

• Favorable performance from the customer’s perspective: Considering the base scenario, 

sustainable dynamic pricing achieves a similar request acceptance rate compared to static 

pricing. Further, abandonment rate and average price multiplier increase moderately, and 

80% of offers include at least one ride at the base price. Customers will likely perceive these 

changes in offers due to sustainable dynamic pricing as moderate, while the behavior of 

profit-based dynamic pricing would probably be seen as overly aggressive. 

• Mitigation of undesirable disparities between different groups of requests: We do not 

observe indications for an increase in discriminatory behavior of sustainable dynamic pricing 
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compared to the benchmarks. Most prominently, short requests face a lower acceptance rate 

and offer set size yet also lower price multipliers (vice versa for long requests). Some of the 

disparities shown by the benchmarks regarding same-day requests and long requests are even 

mitigated by sustainable dynamic pricing. 

• Shaping of served demand: Sustainable dynamic pricing successfully prices out demand 

with insufficient willingness-to-pay relative to marginal cost. Also, time flexible customers 

can order cheaper rides.  

• Redistribution of performance due to the cost parameter: We find that higher cost param-

eter values shift performance from the primary objective to the secondary objectives. Hence, 

they lead to monotonically decreasing booked passenger km and an increasing pooling rate. 

However, the relation with profit is non-monotonous because profit first increases for small 

cost parameter values driven by a higher revenue and lower cost per order and then decreases 

again due to the lost demand. 

• Benefits of anticipatory ride evaluation: Anticipation is essential for both the approxima-

tion of demand displacement and marginal vehicle km. The consideration of displaced booked 

passenger km yields performance benefits of around 10%. An anticipatory marginal vehicle 

km approximation also prevents overestimation errors. These are problematic because they 

cause undesirable markups and a systematic discrimination against advance requests, which 

then face higher prices. 

6.2 Recommendations 

• Adoption of sustainable dynamic pricing with anticipatory ride evaluation: Our results 

provide strong evidence for the superiority of sustainable dynamic pricing over static pricing 

and profit-based dynamic pricing. Therefore, we recommend its adoption in practice for pub-

licly funded rural SMOD services together with anticipatory ride evaluation, which is supe-

rior compared to myopic algorithms. 

• Integration into existing static pricing schemes: By design, our sustainable dynamic pric-

ing approach can be applied together with an arbitrary scheme for the base prices. Thus, as 

demonstrated in our computational study, we encourage providers to set base prices equal to 

existing static pricing schemes. Thereby, they can ensure that the change in the pricing system 

is perceived as small as possible, especially given that, for realistic cost parameters, a vast 

majority of offers still includes at least one ride at the base price. 

• Stressing the advantages for customers: Customers may have a skeptical stance toward 

dynamic pricing in general (e.g., Friesen et al., 2024, Schlereth et al., 2018). Therefore, its 

introduction should be accompanied by a communication strategy. We recommend highlight-

ing the benefits for the individual customer: 

o Groups of customers with compatible OD pairs (families, neighbors, company employ-

ees) can jointly place a single request, increasing the chance of riding at the base price 
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compared to individual requests. A similar indirect effect occurs when customers con-

vince their social environment to become SMOD service users because this reduces the 

marginal vehicle km of their own rides.  

o Customers can still book cheap rides if they are flexible regarding their desired pick-up 

or drop-off time. Conversely, unfavorable requests that would be rejected under static 

pricing are more likely to receive an offer, albeit at a higher price.  

o Compared to static pricing, the acceptance rate of same-day requests and ad-hoc requests 

increases, which makes the system more reliable if customers need a ride at short notice. 

o The avoidance of monopoly markups and the adherence to marginal cost pricing ensures 

that every individual offer is adequate and fair. 

• Contractual or regulatory enforcement: Since sustainable dynamic pricing leads to smaller 

profit compared to profit-based dynamic pricing, the provider should be obliged to apply it, 

including an accurate ride evaluation algorithm to avoid “hidden” markups by erroneous mar-

ginal vehicle km approximation. Similar price regulation is commonly applied in markets 

with natural monopolies, e.g., the district heating market (Billerbeck et al., 2023). In the con-

text of SMOD, it may appear unusual to enforce a certain price calculation method instead of 

directly setting certain system performance requirements. In fact, current legislation in Ger-

many states that municipal authorities can impose such a requirement in the form of a mini-

mum pooling rate (Deutscher Bundestag, 2021). However, Anzenhofer et al. (2025) show 

that such regulation is problematic for both providers and authorities since it is difficult to 

adhere to it and requirements must be adjusted based on extensive computational experiments 

under potentially limited data availability.  

6.3 Limitations 

While we find very promising results, there are some limitations in both our approach for sustain-

able dynamic pricing and its analysis in the computational study. We discuss them in the follow-

ing: 

• Approach: 

o No consideration of alternative modes: In our model of the dynamic pricing subproblem, 

prices depend only on the future impact of the different rides within the SMOD system 

itself. This means that alternative modes and the associated side-impact are not consid-

ered explicitly. E.g., short rides tend to be offered at lower price multipliers, which may 

encourage the cannibalization of active modes, such as walking or cycling (Rich, 2024). 

Similarly, existing scheduled public transport services could be overly cannibalized if 

they are not explicitly considered in the pricing decisions (Lu et al., 2024). 

o Scalability of ride evaluation algorithm: Since our ride evaluation algorithm is tailored 

to rural instances, its scalability is limited due to the high computational effort. While 
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sustainable dynamic pricing is generally transferable to urban settings, this would require 

a scalable ride evaluation algorithm. 

• Computational study: 

o Limited generalizability to other systems: For validating our approach, we use a real-

world data set provided by FLEXIBUS. While the high-level findings should generalize 

well, some of the observations, especially regarding the characteristics of offers and or-

ders, may be specific to our data set. 

o Lack of reliable data on customers’ time preferences and price sensitivity: Since FLEX-

IBUS applies a first-come-first-served policy with static prices, the data set does not pro-

vide reliable information on price sensitivities and customers’ time preferences. Hence, 

some observations could result from assumptions about the choice model.  

o No consideration of long-term impact: In our computational study, we do not consider 

the long-term side-effects of sustainable dynamic pricing. These include possible changes 

in the demand structure such as long-term modal shift (Kaddoura et al., 2021, Kaddoura 

et al., 2020b) or strategic behavior by customers (Anzenhofer and Fleckenstein, 2024). 

6.4 Future Research Directions 

Finally, we discuss potential avenues for future research resulting from the findings and limita-

tions of our work: 

• Exploration of customer preferences and price sensitivity: Since rural SMOD services are 

still an emerging mode of transport, there is a general lack of demand data. Moreover, most 

existing systems use static pricing, which yields no data at all about price sensitivities. Hence, 

we suggest actively and systematically exploring customer choice behavior to obtain this data 

(Jain et al., 2024, Te Morsche et al., 2019). This would allow the data-based estimation of 

discrete choice models and improve the accuracy of computational analyses. Likewise, the 

long-term behavior of customers should be thoroughly investigated to allow for the consid-

eration of side-effects, especially regarding modal shift. 

• Consideration of alternative modes: Since we present the first approach for sustainable dy-

namic pricing, there is potential for extending it in different ways. We believe that the most 

important extension is the consideration of alternative modes. E.g., recent work by Lu et al. 

(2024) presents promising results regarding the rejection of requests with a good alternative 

transport option (walking, cycling, or scheduled public transport). Combining this approach 

with sustainable dynamic pricing would result in prices also reflecting the sustainability of 

available alternative modes. 

• Ride evaluation for large systems: The most important limitation of our approach lies in its 

scalability to larger instances due to the computationally intensive ride evaluation. Hence, 

future research could develop faster ride evaluation algorithms that allow the approach to be 

transferred to (sub-)urban systems. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

286 

Acknowledgment 

We sincerely thank the FLEXIBUS KG, in particular Josef Brandner and Daniel Mayer, for 

providing access to the real-world data set used in this study. In addition, we highly appreciate 

their valuable support, the insightful discussions, and the practical experiences they shared with 

us.  

Data Availability 

The real-world data set provided by the FLEXIBUS KG is not publicly available since it contains 

confidential company data.  

  



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

287 

References 

Al-Kanj, L., Nascimento, J., & Powell, W. B. (2020). Approximate dynamic programming for 

planning a ride-hailing system using autonomous fleets of electric vehicles. European Jour-

nal of Operational Research, 284(3), 1088-1106. https://doi.org/10.1016/j.ejor.2020.01.033. 

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Acad-

emy of Sciences of the United States of America, 114(3), 462-467. 

https://doi.org/10.1073/pnas.1611675114. 

Altman, E. (1999). Constrained Markov Decision Processes. New York, NY: Routledge. 

Andrejszki, T., & Török, Á. (2018). New pricing theory of intelligent flexible transportation. 

Transport, 33(1), 69-76. https://doi.org/10.3846/16484142.2015.1056828. 

Anzenhofer, F., & Fleckenstein, D. (2024). Extended booking horizons in rural shared mobility-

on-demand systems: Insights and implications for demand management. Working paper, Uni-

versity of Augsburg. 

Anzenhofer, F., Fleckenstein, D., Klein, R., & Steinhardt, C. (2024). Analyzing the impact of 

demand management in rural shared mobility-on-demand systems. Working paper, Univer-

sity of Augsburg. http://dx.doi.org/10.2139/ssrn.4682056. 

Anzenhofer, F., Schmidbaur, S., Klein, R., & Steinhardt, C. (2025). The potential of governmental 

regulation on shared mobility-on-demand systems. Transportation Research Part A: Policy 

and Practice, 192, 104360. https://doi.org/10.1016/j.tra.2024.104360. 

Arian, E., Bai, X., & Chen, X. (2022). Joint pricing and routing for a ride-sharing platform in 

low-density rural areas. Working paper, University of Illinois at Urbana-Champaign. 

https://doi.org/10.2139/ssrn.4073828. 

Atasoy, B., Ikeda, T., Song, X., & Ben-Akiva, M. E. (2015). The concept and impact analysis of 

a flexible mobility on demand system. Transportation Research Part C: Emerging Technol-

ogies, 56, 373-392. https://doi.org/10.1016/j.trc.2015.04.009. 

Bahamonde-Birke, F. J., Goletz, M., & Ettema, D. (2021). The provision of mobility as a service 

with autonomous vehicles. The necessity of regulatory schemes for a natural monopoly. Re-

search in Transportation Economics, 90, 100993. https://doi.org/10.1016/j.re-

trec.2020.100993. 

Bento, N., & Gianfrate, G. (2020). Determinants of internal carbon pricing. Energy Policy, 143, 

111499. https://doi.org/10.1016/j.enpol.2020.111499. 

Bertsekas, D. P., Tsitsiklis, J. N., & Wu, C. (1997). Rollout algorithms for combinatorial optimi-

zation. Journal of Heuristics, 3, 245-262. https://doi.org/10.1023/A:1009635226865.  

Billerbeck, A., Breitschopf, B., Winkler, J., Bürger, V., Köhler, B., Bacquet, A., ... & Ragwitz, 

M. (2023). Policy frameworks for district heating: A comprehensive overview and analysis 

of regulations and support measures across Europe. Energy Policy, 173, 113377. 

https://doi.org/10.1016/j.enpol.2022.113377. 

Bimpikis, K., Candogan, O., & Saban, D. (2019). Spatial pricing in ride-sharing networks. Oper-

ations Research, 67(3), 744-769. https://doi.org/10.1287/opre.2018.1800. 

Burghard, U., & Scherrer, A. (2022). Sharing vehicles or sharing rides - Psychological factors 

influencing the acceptance of carsharing and ridepooling in Germany. Energy Policy, 164, 

112874. https://doi.org/10.1016/j.enpol.2022.112874.  

Byrne, L., Bach, V., & Finkbeiner, M. (2021). Urban transport assessment of emissions and re-

source demand of climate protection scenarios. Cleaner Environmental Systems, 2, 100019. 

https://doi.org/10.1016/j.cesys.2021.100019. 

Carroll, P., Caulfield, B., & Ahern, A. (2019). Measuring the potential emission reductions from 

a shift towards public transport. Transportation Research Part D: Transport and Environ-

ment, 73, 338-351. https://doi.org/10.1016/j.trd.2019.07.010.  

Chen, H., Jiao, Y., Qin, Z., Tang, X., Li, H., An, B., Hongtu, Z., & Ye, J. (2019). InBEDE: Inte-

grating contextual bandit with TD learning for joint pricing and dispatch of ride-hailing 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

288 

platforms. In 2019 IEEE International Conference on Data Mining (ICDM), 61-70. 

https://doi.org/10.1109/ICDM.2019.00016. 

Chen, Z., Zhang, H., Li, H., & Webster, S. (2024). Multi-Objective Assortment Optimization: 

Profit, Risk, Customer Utility, and Beyond. Foundations and Trends® in Technology, Infor-

mation and Operations Management, 18(1), 103-115. 

http://dx.doi.org/10.1561/0200000114-5.  

Cohen, M. C., Miao, S., & Wang, Y. (2024). Dynamic pricing with fairness constraints. Working 

paper, McGill University. http://dx.doi.org/10.2139/ssrn.3930622. 

Currie, G., & Fournier, N. (2020). Why most DRT/Micro-Transits fail – What the survivors tell 

us about progress. Research in Transportation Economics, 83, 100895. 

https://doi.org/10.1016/j.retrec.2020.100895. 

Dauer, A., Dias, T. G., de Sousa, J. P., & de Athayde Prata, B. (2024). Configurations and features 

of demand responsive transports. Transportation Research Procedia, 78, 71-78. 

https://doi.org/10.1016/j.trpro.2024.02.010. 

Davis, J., Gallego, G., & Topaloglu, H. (2013). Assortment planning under the multinomial logit 

model with totally unimodular constraint structures. Working paper, Cornell University.  

De Jong, W., Vogels, J., van Wijk, K., & Cazemier, O. (2011). The key factors for providing 

successful public transport in low-density areas in The Netherlands. Research in Transporta-

tion Business & Management, 2, 65-73. https://doi.org/10.1016/j.rtbm.2011.07.002.  

Deutscher Bundestag (2021). Personenbeförderungsgesetz § 50 Gebündelter Bedarfsverkehr. Re-

trieved from https://www.gesetze-im-internet.de/pbefg/__50.html. Last accessed: 

22/11/2024. 

Eliasson, J. (2021). Efficient transport pricing – Why, what, and when?. Communications in 

Transportation Research, 1, 100006. https://doi.org/10.1016/j.commtr.2021.100006. 

Elting, S., & Ehmke, J. F. (2021). Potential of shared taxi services in rural areas – A case study. 

Transportation Research Procedia, 52, 661-668. https://doi.org/10.1016/j.trpro.2021.01.079. 

Fleckenstein, D., Klein, R., Klein, V., & Steinhardt, C. (2024a). On the concept of opportunity 

cost in integrated demand management and vehicle routing. Transportation Science, online 

first. https://doi.org/10.1287/trsc.2024.0644. 

Fleckenstein, D., Klein, R., Klein, V., & Steinhardt, C. (2024b). From approximation error to 

optimality gap – Explaining the performance impact of opportunity cost approximation in 

integrated demand management and vehicle routing. Working paper, University of Augsburg. 

https://doi.org/10.48550/arXiv.2412.13851. 

Fleckenstein, D., Klein, R., & Steinhardt, C. (2023). Recent advances in integrating demand man-

agement and vehicle routing: A methodological review. European Journal of Operational 

Research, 306(2), 499-518. https://doi.org/10.1016/j.ejor.2022.04.032. 

Friesen, M., Albers, S., Wajerski, J., & Laeremans, J. (2024). The diffusion of dynamic pricing 

in the European parking industry. Journal of Revenue and Pricing Management, 23(1), 3-13. 

https://doi.org/10.1057/s41272-023-00439-5. 

Gallego, G., & Topaloglu, H. (2019). Revenue management and pricing analytics. New York, 

NY: Springer. https://doi.org/10.1007/978-1-4939-9606-3. 

García-Afonso, Ó. (2023). Impact of powertrain electrification on the overall CO2 emissions of 

intercity public bus transport: Tenerife Island test case. Journal of Cleaner Production, 412, 

137365. https://doi.org/10.1016/j.jclepro.2023.137365. 

Goodson, J. C., Thomas, B. W., & Ohlmann, J. W. (2017). A rollout algorithm framework for 

heuristic solutions to finite-horizon stochastic dynamic programs. European Journal of Op-

erational Research, 258(1), 216-229. https://doi.org/10.1016/j.ejor.2016.09.040. 

Haferkamp, J. (2024). Design of multi-optional pickup time offers in ride-sharing systems. EURO 

Journal on Transportation and Logistics, 100134. https://doi.org/10.1016/j.ejtl.2024.100134. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

289 

Haferkamp, J., & Ehmke, J. F. (2022). Effectiveness of demand and fulfillment control in dy-

namic fleet management of ride‐sharing systems. Networks, 79(3), 314-337. 

https://doi.org/10.1002/net.22062. 

Hahn, A., Pakusch, C., & Stevens, G. (2023). The impact of service expansion on modal shift 

from private car to public transport. A quantitative analysis in the Bonn/Rhein-Sieg area, 

Germany. Journal of Urban Mobility, 4, 100064. https://doi.org/10.1016/j.ur-

bmob.2023.100064. 

Haliem, M., Mani, G., Aggarwal, V., & Bhargava, B. (2021). A distributed model-free ride-shar-

ing approach for joint matching, pricing, and dispatching using deep reinforcement learning. 

IEEE Transactions on Intelligent Transportation Systems, 22(12), 7931-7942. 

https://doi.org/10.1109/TITS.2021.3096537. 

Hansson, J., Pettersson, F., Svensson, H., & Wretstrand, A. (2019). Preferences in regional public 

transport: a literature review. European Transport Research Review, 11(1), 1-16. 

https://doi.org/10.1186/s12544-019-0374-4. 

Heger, J., & Klein, R. (2024). Assortment optimization: A systematic literature review. OR Spec-

trum, 46, 1099-1161. https://doi.org/10.1007/s00291-024-00752-4. 

Heinitz, F. (2022). Sustainable development assessment of incentive-driven shared on-demand 

mobility systems in rural settings. European Transport Research Review, 14(1), 1-16. 

https://doi.org/10.1186/s12544-022-00565-y.  

Heitmann, R. J. O., Soeffker, N., Klawonn, F., Ulmer, M. W., & Mattfeld, D. C. (2024). Accel-

erating value function approximations for dynamic dial-a-ride problems via dimensionality 

reductions. Computers & Operations Research, 167, 106639. 

https://doi.org/10.1016/j.cor.2024.106639.  

Heitmann, R. J. O., Soeffker, N., Ulmer, M. W., & Mattfeld, D. C. (2023). Combining value 

function approximation and multiple scenario approach for the effective management of ride-

hailing services. EURO Journal on Transportation and Logistics, 12, 100104. 

https://doi.org/10.1016/j.ejtl.2023.100104. 

Hensher, D. A. (2020). Bus transport: Demand, economics, contracting, and policy. Amsterdam: 

Elsevier.  

Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey 

of dial-a-ride problems: Literature review and recent developments. Transportation Research 

Part B: Methodological, 111, 395-421. https://doi.org/10.1016/j.trb.2018.02.001. 

Hörcher, D., & Graham, D. (2020a). MaaS economics: Should we fight car ownership with sub-

scriptions to alternative modes?. Economics of Transportation, 22, 100167. 

https://doi.org/10.1016/j.ecotra.2020.100167. 

Hörcher, D., & Graham, D. (2020b). Pricing and efficient public transport supply in a mobility as 

a service context. Working paper, Imperial College London. 

Hörcher, D., & Tirachini, A. (2021). A review of public transport economics. Economics of 

Transportation, 25, 100196. https://doi.org/10.1016/j.ecotra.2021.100196. 

Holmgren, J. (2007). Meta-analysis of public transport demand. Transportation Research Part A: 

Policy and Practice, 41(10), 1021-1035. https://doi.org/10.1016/j.tra.2007.06.003. 

Hungerländer, P., Maier, K., Pachatz, V., & Truden, C. (2021). Improving sharing rates of a dial-

a-ride problem implemented for an Austrian mobility provider. Transportation Research Pro-

cedia, 52, 525-532. https://doi.org/10.1016/j.trpro.2021.01.062. 

Imhof, S., & Mayer, H. (2024). How social innovations emerge in a rigid regulatory context: the 

case of demand responsive transport in Switzerland. Transportation Planning and Technol-

ogy, 1-24. https://doi.org/10.1080/03081060.2024.2350535. 

Jain, L., Li, Z., Loghmani, E., Mason, B., & Yoganarasimhan, H. (2024). Effective adaptive ex-

ploration of prices and promotions in choice-based demand models. Marketing Science, 

43(5), 1002-1030. https://doi.org/10.1287/mksc.2023.0322. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

290 

Jochem, P., Frankenhauser, D., Ewald, L., Ensslen, A., & Fromm, H. (2020). Does free-floating 

carsharing reduce private vehicle ownership? The case of SHARE NOW in European cities. 

Transportation Research Part A: Policy and Practice, 141, 373-395. 

https://doi.org/10.1016/j.tra.2020.09.016. 

Jung, J., Jayakrishnan, R., & Park, J. Y. (2016). Dynamic shared‐taxi dispatch algorithm with 

hybrid‐simulated annealing. Computer‐Aided Civil and Infrastructure Engineering, 31(4), 

275-291. https://doi.org/10.1111/mice.12157. 

Kaddoura, I., Bischoff, J., & Nagel, K. (2020a). Towards welfare optimal operation of innovative 

mobility concepts: External cost pricing in a world of shared autonomous vehicles. Transpor-

tation Research Part A: Policy and Practice, 136, 48-63. 

https://doi.org/10.1016/j.tra.2020.03.032. 

Kaddoura, I., Kickhöfer, B., Neumann, A., & Tirachini, A. (2015). Optimal public transport pric-

ing: Towards an agent-based marginal social cost approach. Journal of Transport Economics 

and Policy, 49(2), 200-218. 

Kaddoura, I., Leich, G., & Nagel, K. (2020b). The impact of pricing and service area design on 

the modal shift towards demand responsive transit. Procedia Computer Science, 170, 807-

812. https://doi.org/10.1016/j.procs.2020.03.152. 

Kaddoura, I., Leich, G., Neumann, A., & Nagel, K. (2021). From today’s ride-sharing services to 

future mobility concepts: A simulation study for urban and rural areas. Working paper, Tech-

nische Universität Berlin.  

Karaenke, P., Schiffer, M., & Waldherr, S. (2023). On the benefits of ex-post pricing for ride-

pooling. Transportation Research Part C: Emerging Technologies, 155, 104290. 

https://doi.org/10.1016/j.trc.2023.104290.  

Ke, Z., & Qian, S. (2023). Leveraging ride-hailing services for social good: Fleet optimal routing 

and system optimal pricing. Transportation Research Part C: Emerging Technologies, 155, 

104284. https://doi.org/10.1016/j.trc.2023.104284.  

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value 

tradeoffs. Cambridge: Cambridge University Press. 

Klein, R., Koch, S., Steinhardt, C., & Strauss, A. K. (2020). A review of revenue management: 

Recent generalizations and advances in industry applications. European Journal of Opera-

tional Research, 284(2), 397-412. https://doi.org/10.1016/j.ejor.2019.06.034. 

Klein, V., & Steinhardt, C. (2023). Dynamic demand management and online tour planning for 

same-day delivery. European Journal of Operational Research, 307(2), 860-886. 

https://doi.org/10.1016/j.ejor.2022.09.011. 

Koch, S., & Klein, R. (2020). Route-based approximate dynamic programming for dynamic pric-

ing in attended home delivery. European Journal of Operational Research, 287(2), 633-652. 

https://doi.org/10.1016/j.ejor.2020.04.002. 

Köhler, C., Campbell, A. M., & Ehmke, J. F. (2024). Data-driven customer acceptance for at-

tended home delivery. OR Spectrum, 46(2), 295-330. https://doi.org/10.1007/s00291-023-

00712-4. 

Lang, M. A. K., Cleophas, C., & Ehmke, J. F. (2021). Multi-criteria decision making in dynamic 

slotting for attended home deliveries. Omega, 102, 102305. 

https://doi.org/10.1016/j.omega.2020.102305. 

Laws, R. (2008). DRT schemes in England and Wales and considerations for their future. In 87th 

Annual Meeting of the Transportation Research Board, 08-0892.  

Letmathe, P., & Paegert, M. (2024). External effects of urban automated vehicles on sustainabil-

ity. Journal of Cleaner Production, 434, 140257. https://doi.org/10.1016/j.jcle-

pro.2023.140257. 

Lotfi, S., & Abdelghany, K. (2022). Ride matching and vehicle routing for on-demand mobility 

services. Journal of Heuristics, 28(3), 235-258. https://doi.org/10.1007/s10732-022-09491-

7. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

291 

Lotze, C., Marszal, P., Jung, F., Manik, D., Timme, M., & Schröder, M. (2023). Identifying the 

threshold to sustainable ridepooling. Working paper, Technical University Dresden. 

https://doi.org/10.48550/arXiv.2306.05851. 

Lu, C., Tiwari, S., Nassir, N., & Nagel, K. (2024). Efficient operation of demand-responsive 

transport (DRT) systems: Active requests rejection. Procedia Computer Science, 238, 81-90. 

https://doi.org/10.1016/j.procs.2024.06.001. 

Ma, H., Fang, F., & Parkes, D. C. (2022). Spatio-temporal pricing for ridesharing platforms. Op-

erations Research, 70(2), 1025-1041. https://doi.org/10.1287/opre.2021.2178. 

Mortazavi, A., Ghasri, M., & Ray, T. (2024). Integrated demand responsive transport in low-

demand areas: A case study of Canberra, Australia. Transportation Research Part D: 

Transport and Environment, 127, 104036. https://doi.org/10.1016/j.trd.2023.104036. 

Mounce, R., Beecroft, M., & Nelson, J. D. (2020). On the role of frameworks and smart mobility 

in addressing the rural mobility problem. Research in Transportation Economics, 83, 100956. 

https://doi.org/10.1016/j.retrec.2020.100956. 

Ni, L., Sun, B., Wang, S., & Tsang, D. H. (2021). Dynamic pricing mechanism design for electric 

mobility-on-demand systems. IEEE Transactions on Intelligent Transportation Systems, 

23(8), 11361-11375. https://doi.org/10.1109/TITS.2021.3103199. 

Nobis, C. & Kuhnimhof, T. (2018). Mobilität in Deutschland – Ergebnisbericht. Retrieved from 

https://www.mobilitaet-in-deutschland.de/archive/pdf/MiD2017_Ergebnisbericht.pdf. Last 

accessed: 23/12/2024. 

OSRM (n.d.). Open source routing machine. https://project-osrm.org/. Last accessed: 23/12/2024.  

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle 

routing problems. European Journal of Operational Research, 225(1), 1-11. 

https://doi.org/10.1016/j.ejor.2012.08.015. 

Poltimäe, H., Rehema, M., Raun, J., & Poom, A. (2022). In search of sustainable and inclusive 

mobility solutions for rural areas. European Transport Research Review, 14(1), 13. 

https://doi.org/10.1186/s12544-022-00536-3. 

Psaraftis, H. N., Wen, M., & Kontovas, C. A. (2016). Dynamic vehicle routing problems: Three 

decades and counting. Networks, 67(1), 3-31. https://doi.org/10.1002/net.21628. 

Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of concep-

tual origins. Sustainability Science, 14, 681-695. https://doi.org/10.1007/s11625-018-0627-5. 

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic program-

ming. New York, NY: John Wiley & Sons. https://doi.org/10.1002/9780470316887. 

Qiu, H., Li, R., & Zhao, J. (2018). Dynamic pricing in shared mobility on demand service. Work-

ing paper, Massachusetts Institute of Technology.  

Rammohan, S., Marathe, R. R., & Sudarsanam, N. (2024). Recent advancements in revenue man-

agement of taxi services: A systematic review and research agenda. Management Review 

Quarterly, 74(2), 1029-1055. https://doi.org/10.1007/s11301-023-00326-8.  

Rich, J. (2024). Let’s walk! The fallacy of urban first-and last-mile public transport. Transporta-

tion, online first. https://doi.org/10.1007/s11116-024-10505-5.  

Rios, B. H. O., Xavier, E. C., Miyazawa, F. K., Amorim, P., Curcio, E., & Santos, M. J. (2021). 

Recent dynamic vehicle routing problems: A survey. Computers & Industrial Engineering, 

160, 107604. https://doi.org/10.1016/j.cie.2021.107604. 

Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective 

sequential decision-making. Journal of Artificial Intelligence Research, 48, 67-113. 

https://doi.org/10.1613/jair.3987. 

Saharan, S., Bawa, S., & Kumar, N. (2020). Dynamic pricing techniques for intelligent transpor-

tation system in smart cities: A systematic review. Computer Communications, 150, 603-625. 

https://doi.org/10.1016/j.comcom.2019.12.003. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

292 

Schasché, S. E., Sposato, R. G., & Hampl, N. (2022). The dilemma of demand-responsive 

transport services in rural areas: Conflicting expectations and weak user acceptance. 

Transport Policy, 126, 43-54. https://doi.org/10.1016/j.tranpol.2022.06.015.  

Schasché, S. E., Wankmüller, C., & Hampl, N. (2023). Understanding the behavioral intention of 

the rural population to use demand-responsive transport services. Transportation Research 

Interdisciplinary Perspectives, 22, 100984. https://doi.org/10.1016/j.trip.2023.100984. 

Schilde, M., Doerner, K. F., & Hartl, R. F. (2011). Metaheuristics for the dynamic stochastic dial-

a-ride problem with expected return transports. Computers & Operations Research, 38(12), 

1719-1730. https://doi.org/10.1016/j.cor.2011.02.006. 

Schlereth, C., Skiera, B., & Schulz, F. (2018). Why do consumers prefer static instead of dynamic 

pricing plans? An empirical study for a better understanding of the low preferences for time-

variant pricing plans. European Journal of Operational Research, 269(3), 1165-1179. 

https://doi.org/10.1016/j.ejor.2018.03.033. 

Schwedes, O. (2021). Öffentliche Mobilität. Voraussetzungen für eine menschengerechte Ver-

kehrsplanung. Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-32106-2. 

Sharif Azadeh, S., Atasoy, B., Ben-Akiva, M. E., Bierlaire, M., & Maknoon, M. Y. (2022). 

Choice-driven dial-a-ride problem for demand responsive mobility service. Transportation 

Research Part B: Methodological, 161, 128-149. https://doi.org/10.1016/j.trb.2022.04.008. 

Sieber, L., Ruch, C., Hörl, S., Axhausen, K. W., & Frazzoli, E. (2020). Improved public trans-

portation in rural areas with self-driving cars: A study on the operation of Swiss train lines. 

Transportation Research Part A: Policy and Practice, 134, 35-51. 

https://doi.org/10.1016/j.tra.2020.01.020. 

Soeffker, N., Ulmer, M. W., & Mattfeld, D. C. (2022). Stochastic dynamic vehicle routing in the 

light of prescriptive analytics: A review. European Journal of Operational Research, 298(3), 

801-820. https://doi.org/10.1016/j.ejor.2021.07.014. 

Sörensen, L., Bossert, A., Jokinen, J. P., & Schlüter, J. (2021). How much flexibility does rural 

public transport need? – Implications from a fully flexible DRT system. Transport Policy, 

100, 5-20. https://doi.org/10.1016/j.tranpol.2020.09.005. 

Strauss, A. K., Klein, R., & Steinhardt, C. (2018). A review of choice-based revenue management: 

Theory and methods. European Journal of Operational Research, 271(2), 375-387. 

https://doi.org/10.1016/j.ejor.2018.01.011. 

Talluri, K. T., & Van Ryzin, G. J. (2004). The theory and practice of revenue management. New 

York, NY: Springer. https://doi.org/10.1007/b139000. 

Te Morsche, W., Puello, L. L. P., & Geurs, K. T. (2019). Potential uptake of adaptive transport 

services: An exploration of service attributes and attitudes. Transport Policy, 84, 1-11. 

https://doi.org/10.1016/j.tranpol.2019.09.001.  

Ulmer, M. W. (2020a). Dynamic pricing and routing for same-day delivery. Transportation Sci-

ence, 54(4), 1016-1033. https://doi.org/10.1287/trsc.2019.0958.  

Ulmer, M. W. (2020b). Horizontal combinations of online and offline approximate dynamic pro-

gramming for stochastic dynamic vehicle routing. Central European Journal of Operations 

Research, 28(1), 279-308. https://doi.org/10.1007/s10100-018-0588-x. 

Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., & Hennig, M. (2019). Offline-online approximate 

dynamic programming for dynamic vehicle routing with stochastic requests. Transportation 

Science, 53(1), 185-202. https://doi.org/10.1287/trsc.2017.0767. 

Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., & Thomas, B. W. (2020). On modeling stochastic 

dynamic vehicle routing problems. EURO Journal on Transportation and Logistics, 9(2), 

100008. https://doi.org/10.1016/j.ejtl.2020.100008. 

Ulmer, M. W., Mattfeld, D. C., Hennig, M., & Goodson, J. C. (2016). A rollout algorithm for 

vehicle routing with stochastic customer requests. In Logistics Management: Contributions 

of the Section Logistics of the German Academic Association for Business Research, 2015, 

217-227. https://doi.org/10.1007/978-3-319-20863-3_16. 



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

293 

Vansteenwegen, P., Melis, L., Aktaş, D., Montenegro, B. D. G., Vieira, F. S., & Sörensen, K. 

(2022). A survey on demand-responsive public bus systems. Transportation Research Part 

C: Emerging Technologies, 137, 103573. https://doi.org/10.1016/j.trc.2022.103573. 

VDV (2023). Linienbedarfsverkehr: zukunftsgerecht, integriert und nachfragegesteuert. Re-

trieved from https://www.vdv.de/positionspapier-linienbedarfsverkehr-maerz23.pdfx. Last 

accessed: 15/11/2024. 

Vickerman, R. (2024). The transport problem: The need for consistent policies on pricing and 

investment. Transport Policy, 149, 49-58. https://doi.org/10.1016/j.tranpol.2024.02.009.  

Wang, Y., Shi, W., & Chen, Z. (2021a). Impact of ride-hailing usage on vehicle ownership in the 

United States. Transportation Research Part D: Transport and Environment, 101, 103085. 

https://doi.org/10.1016/j.trd.2021.103085.  

Wang, H., & Yang, H. (2019). Ridesourcing systems: A framework and review. Transportation 

Research Part B: Methodological, 129, 122-155. https://doi.org/10.1016/j.trb.2019.07.009. 

Wang, L., Zeng, L., Ma, W., & Guo, Y. (2021b). Integrating passenger incentives to optimize 

routing for demand-responsive customized bus systems. IEEE Access, 9, 21507-21521. 

https://doi.org/10.1109/ACCESS.2021.3055855. 

Wu, W., Zhu, Y., & Liu, R. (2024). Dynamic scheduling of flexible bus services with hybrid 

requests and fairness: Heuristics-guided multi-agent reinforcement learning with imitation 

learning. Transportation Research Part B: Methodological, 190, 103069. 

https://doi.org/10.1016/j.trb.2024.103069. 

Zhang, C., Xie, J., Wu, F., Gao, X., & Chen, G. (2020). Pricing and allocation algorithm designs 

in dynamic ridesharing system. Theoretical Computer Science, 803, 94-104. 

https://doi.org/10.1016/j.tcs.2019.05.045. 

Zwick, F., Kuehnel, N., & Axhausen, K. W. (2022). Review on theoretical assessments and prac-

tical implementations of ride-pooling. In 22nd Swiss Transport Research Conference (STRC 

2022). https://doi.org/10.3929/ethz-b-000548675. 

  



Article A6: Sustainable Dynamic Pricing for Rural Shared Mobility-on-Demand Systems 

294 

Appendix A: Notation 

Table 7 Notation Markov decision process model 

𝑡 ∈ 𝒯 =
{1,… , 𝑡𝑠 ,… , 𝑇}  

Decision epoch 

𝑡𝑠  Start of the service horizon 

𝑝𝑐 ,𝑑𝑐 ∈ ℋ  Pick-up (drop-off) stop of request type 𝑐 

𝑐 ∈ 𝒞  Customer request type 

𝑖 ∈ ℐ  Request 

𝑡𝑐 ∈ {𝑡
𝑠,… ,𝑇}  Desired time of request type 𝑐 

𝑚𝑐  Number of passengers of request type 𝑐 

𝑏𝑐  Base price of request type 𝑐 

𝜌𝑐  Booked passenger km of request type 𝑐 

𝜏𝑖 ∈ 𝒯  Time of request for request 𝑖 

𝑜 ∈ 𝒪𝑐  Ride defined for request type 𝑐 

𝑘 ∈ 𝒦𝑐  Product defined for request type 𝑐 

𝑛 ∈ 𝒩  Price multiplier 

𝑟𝑐,𝑘  Price of product 𝑘 for request type 𝑐 

𝑗 ∈ 𝒥  Order 

𝑔 ⊆ 𝒪𝑐  Offer set that can be presented to customer type 𝑐 

𝑃𝑐,𝑘(𝑔)  
Probability of customer placing a request of type 𝑐 choosing product 𝑘 when presented of-

fer set 𝑔 

𝑣 ∈ 𝒱  Vehicle 

𝑄𝑣  Seat capacity of vehicle 𝑣 

𝑠𝑡  Post-decision state at decision epoch 𝑡 

𝐶𝑡  Set of confirmed but not yet fulfilled orders at decision epoch 𝑡 

𝜙𝑡  Route plan at decision epoch 𝑡 

𝑎𝑡  Action at decision epoch 𝑡 

𝑔𝑡 ∈ 𝒢(𝑠𝑡−1, 𝑐)  Demand control decision at decision epoch 𝑡 

𝜙𝑡(𝑜)  
Route plan at decision epoch 𝑡 including a potential order resulting from combining the 
newly arrived request with option 𝑜 

(𝜙𝑡(𝑜𝑘))𝑘∈𝑔𝑡
∈

∏ Φ(𝑠𝑡−1 , 𝑐, 𝑜𝑘)𝑘∈𝑔𝑡
  

Vehicle routing decision at decision epoch 𝑡 for request type 𝑐 demand control decision 𝑔𝑡 

𝑠𝑡
pre

  Pre-decision state at decision epoch 𝑡 

𝜆𝑐
𝑡   Arrival rate of request type 𝑐 in stage 𝑡 

𝑠𝑡
′  Interim state at decision epoch 𝑡 

𝑘𝑗𝑡  Product chosen by the customer placing order 𝑗𝑡 

𝑜𝑗𝑡  Ride chosen by the customer placing order 𝑗𝑡 

𝑉𝑡(𝑠𝑡)  Value of post-decision state 𝑠𝑡 

𝑉𝑡
′(𝑠𝑡

′)  Value of interim state 𝑠𝑡
′ 

Δ𝑉𝑡(𝑠𝑡−1 , 𝑐, 𝑜)  Opportunity cost of an order by request type 𝑐 with fulfillment option 𝑜 
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Table 8 Notation of dynamic pricing subproblem model 

𝑥𝑜,𝑛  Decision variable encoding whether ride 𝑜 is offered with price multiplier 𝑛 

𝒪𝑓 ⊆ 𝒪𝑐  Set of feasible rides for request type 𝑐 

𝜖  Cost parameter consisting of variable routing cost and carbon cost per vehicle km 

Δ𝐹𝑡(𝑠𝑡−1 , 𝑐, 𝑜)  
Expected marginal vehicle km c caused by selling ride 𝑜 to a customer placing a request of 

type 𝑐 in state 𝑠𝑡−1 

 

Table 9 Notation of solution algorithms 

Δ𝑉𝑡̃(𝑠𝑡−1 , 𝑐𝑖𝑡 , 𝑜)  
Approximation of displaced booked passenger km of an order by request type 𝑐 with ful-

fillment option 𝑜 

Δ𝐹𝑡̃(𝑠𝑡−1, 𝑐𝑖𝑡 , 𝑜)  
Approximation of marginal vehicle km of an order by request type 𝑐 with fulfillment op-

tion 𝑜 

𝜔 ∈ Ω  Sample path 

𝐵𝑠𝑡𝑎 = 𝛼  Static upper bound for the number of sample paths 

𝐵𝑑𝑦𝑛  Dynamic upper bound for the number of sample paths 

𝛽  Time budget for rollout algorithm per decision epoch 

𝑤  Estimate of runtime for simulating a single sample path 

𝑗𝑡
′(𝑜)  Hypothetical order for ride 𝑜 

(𝐶𝑜,𝑞 , 𝜙𝑜,𝑞)  Post-decision state resulting from a hypothetical order 𝑗𝑡
′(𝑜) for ride 𝑜 

𝑉̂𝑜,𝑞  Realized total booked passenger km for ride 𝑜 and the 𝑞-th sample path 

𝐹𝑜,𝑞  Realized total vehicle km for ride 𝑜 and the 𝑞-th sample path 

𝒦𝑐𝑖𝑡
′

  Set of feasible products for request 𝑖𝑡 

 

Table 10 Notation of customer choice model 

𝑙 ∈ ℒ  Customer segment  

𝒮𝑙  Consideration set of customer segment 𝑙 

Δ𝑙
+ +Δ𝑙

−  Total time flexibility provided by segment 𝑙 

𝜁  Ranking function over fulfillment options 

𝛾𝑙  Share of segment 𝑙 in the customer population 
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Appendix B: Detailed Results Regarding the Characteristics of Of-

fers and Orders 

 

Fig. 9 Characteristics of offers and orders based on the arrival time of the request 
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Fig. 10 Characteristics of offers and orders based on the desired time of the request 
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Fig. 11 Characteristics of offers and orders based on the OD pair length of the request 

Appendix C: Sensitivity Regarding Hyperparameters 

The post-decision rollout algorithm for ride evaluation consumes around 99,8% of the average 

runtime per decision epoch, which equals around 4.7 seconds in the base scenario. Due to this 

high computational effort, we now investigate the sensitivity of solution quality and runtime re-

garding the hyperparameters 𝛼 (maximum number of sample paths) and 𝛽 (time budget for rollout 

per decision epoch). Considering Policy S, we conduct a grid search around the values (15,10) 

used in the base scenario. We test 𝛼 ∈ {10,15,20} and 𝛽 ∈ {10,15,20}. Fig. 12a (Fig. 12b) shows 

the solution quality (runtime) for the 9 resulting settings relative to the base scenario. 

Both on the runtime and on the solution quality, the impact of 𝛼 is smaller for small values of 𝛽 

since, in this case, the time budget is restrictive over a larger portion of the booking horizon, and 

vice versa. Regarding solution quality, there is a clear pattern for both 𝛼 and 𝛽: 

For all objectives, a higher value of 𝛼 generally tends to improve the solution quality. This can 

be explained by a reduction in the stochastic approximation error. However, the marginal change 

in solution quality decreases, and may even become negative, especially for the secondary objec-

tives. A potential explanation is that raising the static upper bound on the number of sample paths 

only leads to more sample paths being considered at the end of the booking horizon, where antic-

ipation is hardly beneficial. 
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Considering, the impact of 𝛽, we find that it particularly affects the booked passenger km. The 

reason is that a higher time budget allows more sample paths especially in the early phase of the 

booking horizon, where displacement effects are the strongest. As expected, this benefit seems to 

converge with higher values of 𝛽. In comparison, the secondary objectives are hardly affected 

because marginal vehicle km are not time-dependent.  

Overall, we can conclude that the time budget must be sufficiently large. This is especially true 

for approximating displaced booked passenger km. Hence, a rough parameter tuning is required 

before applying our approach. 

 

Fig. 12 Solution quality and runtime dependent on hyperparameter values 
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III    Conclusion 

This dissertation covers theoretical, high-level considerations around i-DMVRPs in its first part 

(articles A1-A3) and application-oriented topics in rural SMOD in its second part (articles A4-

A6). Over the course of the dissertation, i-DMVRPs are addressed with a focus on the demand 

management subproblem and the opportunity cost approximation. The latter is a key component 

of the popular decomposition-based solution concept.  

Both parts differ in their target audience: The theoretical insights presented in the first part provide 

a foundation and guidance for algorithm selection and development. On the one hand, we consol-

idate research that up to now has been application-centric. This fosters knowledge transfer be-

tween application areas of i-DMVRPs. On the other hand, we provide new impetus for the further 

development of solution algorithms. 

In the second part of the dissertation, the results are particularly relevant for practitioners in public 

transport who are involved in the introduction or the enhancement of demand management ap-

proaches in a rural SMOD system. Articles A4-A6 provide a readily applicable and innovative 

methodology for the preparatory analysis of the demand structure, for the sustainability-oriented 

selection of demand control policies at the strategic planning level, and for sustainable dynamic 

pricing at the operational planning level. By applying the methodology to real-world data form 

FLEXIBUS, an experienced German industry partner, we gain manifold insights and formulate 

recommendations for practice. 

The remainder of this conclusion critically discusses the main results from an overarching per-

spective including their implications, limitations, and directions for future research. The discus-

sion is organized according to the two main parts of the dissertation at hand, i.e., articles A1-A3 

(first part) and articles A4-A6 (second part). 

First part of the dissertation 

The first part of this dissertation yields results that are valid for the entire family of i-DMVRPs 

and concern problem definition, modeling, and solution approaches. 

• Problem definition: Article A1 shows how large the family of i-DMVRPs has become, com-

prising a variety of problem definitions and applications with the same basic structure. De-

spite this, there is a surprising homogeneity in the objective: The vast majority of works con-

sider single-objective i-DMVRPs with the maximization of profit after fulfillment or closely 

related objectives like maximizing the number of orders. Future research should more fre-

quently address the multi-objective nature of many i-DMVRPs in practice. This applies to 

AHD and SDD, where maximizing long-term market share (Lang et al., 2021) is also relevant. 

It is especially valid for MOD, where the all-inclusive objective in practice is often maxim-

izing the different pillars of sustainability (Article A6). Another trend that can be observed 

across application areas is that fulfillment option definitions become more complex. In con-

nection, a shift from simple accept/reject demand control toward availability control and 
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dynamic pricing occurs. While this results in more complex i-DMVRPs, it also makes ser-

vices more customer-centric and allows for more sophisticated demand management. 

• Modeling: Regarding modeling, we observe an increasing standardization with more and 

more authors using MDP models to formalize the considered i-DMVRP. In general, this is a 

positive development since a mathematically accurate documentation of the problem facili-

tates reproducibility, e.g., when implementing a simulator of the provider’s operations and 

customers’ behavior. Further, the analytical analysis or numerical analysis of MDP models 

yields actionable insights for the development of solution approaches. Articles A2 and A3 

provide various contributions in this regard, namely generic model formulations and trans-

formations, the interim state as a novel modeling instrument, proofs of opportunity cost prop-

erties, and explainability techniques. Still, the downside of MDP models is their complexity, 

which may pose an entry barrier for researchers and practitioners. To overcome this issue, the 

establishment of a few standard models may be helpful, as in, e.g., static, deterministic vehicle 

routing. 

• Solution approaches: As detailed in Article A1, there has been considerable progress in the 

development of solution approaches. As a result, researchers and practitioners can now draw 

on an extensive toolbox of potential solution algorithms. In contrast to modeling, however, 

the design of solution algorithms is far less standardized. Hence, there is a need for bringing 

guidance and structure into algorithm selection and development for specific i-DMVRPs. Ar-

ticle A3 presents such contributions in the form of an application-independent explainability 

technique. It can directly support the development process and provides a characterization of 

fundamental opportunity cost approximation errors. A valuable contribution that could be 

provided by future research is a large-scale computational study comparing the performance 

of the most popular solution algorithms. 

Next to standardization, the targeted expansion of the toolbox of solution approaches is still 

important. Exploring entirely new approaches and revisiting myopic approaches appears par-

ticularly interesting. E.g., in Article A2, we propose hybrid reward approximations that take 

advantage of the decomposability of opportunity cost. Article A3 suggests that advanced my-

opic approaches, which are commonly used only as benchmarks, deserve a more thorough 

investigation. 

Finally, in view of the rather limited performance gains that can be achieved at the operational 

level, decision support at the tactical level and the strategic level should receive more atten-

tion (Waßmuth et al., 2023). However, this does not mean a loss of relevance of the opera-

tional planning level. Since the operational consequences of potential decisions at higher 

planning levels must be evaluated, diligently simplified methodology is required that is rea-

sonably accurate and resembles actual operational decision-making as closely as possible. 

We present an example in Article A5 and demonstrate that our methodology is suitable for 
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providing decision support not only for demand management but also for other strategic de-

cisions such as shift planning. 

Second part of the dissertation 

In the second part of the dissertation at hand, we investigate the application of demand manage-

ment for improving the sustainability of rural SMOD services. The main findings can be grouped 

into four topics: 

1. Benefits of demand management: The overall impact of applying demand management in 

rural SMOD is positive. In the computational results of both Article A5 and Article A6, a 

consistent improvement in solution quality can be observed compared to first-come-first-

served decision-making. Thereby, offering multiple fulfillment options is crucial: If a request 

is only unfavorable due to the desired time, the customer can be steered toward choosing a 

more favorable alternative time. The empirical results in Article A4 indicate that this is real-

istic since customers have substantial time flexibility. As a result, only entirely unfavorable 

requests must be rejected or priced out. 

Anticipatory opportunity cost approximation (ride evaluation) also proves to be beneficial 

based on the results in articles A5 and A6. Although sustainability improvements are limited, 

it avoids overestimation errors for early requests. This mitigates disparities in the offer qual-

ity, which would make round trips more difficult and incentivize strategic reservation be-

havior (Article A4). 

The central limitation of the analyses in Articles A4-A6 is the lack of data revealing custom-

ers’ true time flexibility and price sensitivity. While we can at least determine a lower bound 

for the former, the latter remains unknown. We address this issue by drawing on supplemen-

tary data from public transport in general and by conducting sensitivity analyses. However, 

collecting and analyzing data specifically from rural SMOD services is an important topic 

for future research. Another limitation is that our approaches do not consider cancellations. 

In Article A4, we show that they can have a major impact on operational planning. Since we 

also find that cancellation probabilities can be estimated reliably from historical data, incor-

porating them into demand management approaches appears very promising for future re-

search. 

2. Managing the trade-off between sustainability objectives: Due to the multi-dimensional 

nature of the all-inclusive objective of maximizing sustainability, sustainable demand man-

agement must balance multiple conflicting objectives. In Article A5, we find that single-

objective demand management based on profit maximization can be a viable option that is 

easy for the provider to implement. However, the prioritization of economic sustainability 

can lead to undesirable outcomes in terms of social sustainability and environmental sustain-

ability. Further, Article A6 shows that this approach is clearly not suitable in connection with 

dynamic pricing since it can lead to aggressive demand management with severe monopoly 

markups. To resolve this issue, we propose a multi-objective approach with the primary 
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objective being the maximization of served demand under restricted prices according to sec-

ondary objectives reflecting environmental sustainability and economic sustainability. With 

our work, we show that explicitly considering all relevant objectives in a multi-objective 

approach is similarly easy to implement for the provider as a single-objective approach. 

3. Comparison of availability control and dynamic pricing: Based on the results from Arti-

cle A5 and Article A6, we can conclude that dynamic pricing has crucial advantages over 

availability control. By design, demand is steered persuasively and not coercively. This 

means that customers ultimately decide whether to order a ride based on a price signal instead 

of the provider deciding to withhold unfavorable rides. Thereby, unfavorable rides are not 

avoided sweepingly but only if the customer’s willingness-to-pay is insufficient. We show 

that, from the customers’ perspective, our sustainable dynamic pricing approach would likely 

be perceived as moderate. It can be seamlessly built on top of a pre-existing static pricing 

scheme and causes only a slight increase in the general price level. 

4. Absolute performance: It is important to note that the computational studies conducted in 

articles A5 and A6 are designed to yield insights about the relative performance impact of 

different demand management approaches within the SMOD system in isolation. Hence, the 

absolute values of performance attributes must be interpreted with caution as we discuss in 

the following:  

Regarding social sustainability, the absolute values indicating served demand strongly de-

pend on the fleet size, which determines the supply-demand ratio. Hence, the strategic fleet 

sizing decision and the tactical shift planning decision have a strong influence on social sus-

tainability. Providing decision support for these decisions is rudimentary discussed in Article 

A5 and certainly deserves more attention in future research. 

The absolute values of attributes measuring environmental sustainability consistently indi-

cate that the vehicle km driven by the SMOD fleet exceed the (booked) passenger km. This 

means that a hypothetical scenario, in which all customers are assumed to use a private car, 

yields less vehicle km in total. However, this observation does not allow any clear-cut con-

clusions since it ignores important effects within the SMOD system itself and the entire 

transport system. Among them are several effects with a positive sustainability impact:  

• The SMOD system often (partially) replaces inefficient scheduled services such that 

their vehicle km are saved (Mortazavi et al., 2024, Sieber et al., 2020, Viergutz and 

Schmidt, 2019).  

• The higher service level of public transport due to the SMOD service can lead to house-

holds reducing the number of private cars or switching to public transport entirely, 

which could cause knock-on emission savings (e.g., Wang et al., 2021 or Jochem et al., 

2020).  

• People who cannot travel by private car are often driven by friends or relatives, which 

generates only half a passenger km per vehicle km (Thao et al., 2023).  
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• Finally, the Mohring Effect (Mohring, 1972) is not only valid in scheduled public 

transport systems but also in SMOD systems. Hence, serving more demand by scaling 

up SMOD services improves ridepooling and thereby environmental sustainability 

(Kaddoura und Schlenther, 2021, Lotze et al., 2023).  

Contrary to these positive effects, there are also negative ones, first and foremost induced 

demand and cannibalization of active modes and (remaining) scheduled public transport 

(Rich, 2024). Overall, we can conclude that more research is necessary to holistically assess 

the environmental sustainability impact of rural SMOD and its interrelation with other modes 

of future rural public transport. 

Finally, the absolute results regarding economic sustainability indicate a very large gap to a 

positive operating result, meaning that subsidies will be necessary in the foreseeable future. 

However, as for environmental sustainability, it is important to consider that some of these 

subsidies can be shifted from previously existing scheduled transport that the SMOD system 

replaces.   
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