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Production issues at Volkswagen in 2016 led to dramatic losses in sales of up to 400 million Euros per week.
This example shows the huge financial impact of a working production facility for companies. Especially in the
data-driven domains of Industry 4.0 and Industrial IoT with intelligent, connected machines, a conventional,
static maintenance schedule seems to be old-fashioned. In this paper, we present an overview of the current
state of the art in predictive maintenance for Industry 4.0. Based on a structured literature survey, we present a
classification of predictive maintenance in the context of Industry 4.0 based on 249 publications. Additionally,

we discuss identified challenges, i.e., complexity issues, as well as missing benchmark datasets that are relevant
for production and the integration of machine learning.

1. Introduction

Maintenance has always been a severe cost driver in the production
industry. Studies show that depending on the industry, between 15 and
70 percent of total production costs originate from maintenance activi-
ties (You, Yi, Liu, et al., 2010). Nevertheless, most of the production
industry still relies on regular maintenance (Mobley, 2002), leading
to reduced production time and product quality due to inappropri-
ate maintenance policies. On the other hand, comprehensive research
regarding modern maintenance policies using modern technologies is
conducted in different academic fields, such as computer science, pro-
duction, and artificial intelligence. The usage of well-developed sensors
and prognostic techniques allows a relatively reliable prediction of
the remaining useful life of plant equipment. This so-called predictive
maintenance policy is especially relevant to Industry 4.0 and severely
enhances the efficiency of modern production facilities.

Predictive maintenance is based on the idea that certain machinery
characteristics can be monitored and the gathered data can be used
to estimate the equipment’s remaining useful life. Hence, this kind of
maintenance policy implicates several important improvements in the
manufacturing and maintenance process, which can severely reduce
production costs (Grall, Dieulle, Berenguer, & Roussignol, 2002), such
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as reducing unnecessary maintenance activities and avoiding belated
activities resulting in equipment failures. This results in increased pro-
ductivity and reduced production downtime. Therefore, depending on
the accuracy of the prognostic method applied, predictive maintenance
can be considered an overall efficiency improvement in contrast to
conventional maintenance (Nguyen, Do, & Grall, 2015; Yam, Tse, Li,
& Tu, 2001).

The existing research on predictive maintenance is comprehensive
and dates back decades ago. Nevertheless, as the environment changes
and new technologies (especially new forms of data analytics such as
deep learning) become more affordable, there is still a wide range of
potential for new research in predictive maintenance. The possibilities
to integrate predictive maintenance and connect it to other systems of
the production process are increasing, especially in the context of the
(Industrial) Internet of Things (IoT) and Industry 4.0. The objective of
the present article is to structure the complexity of topics regarding
predictive maintenance and put the extensive research into a transpar-
ent and comprehensible framework to identify potential starting points
for further research. Such a framework can help practitioners to decide
which aspects are relevant for implementing predictive maintenance.
Additionally, it helps researchers to classify relevant literature and
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Fig. 1. Maintenance policies (Schmidt & Wang, 2018).

identify research challenges. We apply this framework in this paper
to structure the identified literature. Further, we focus on the ma-
chine learning aspect and resulting challenges and discuss the rising
complexity of those approaches.

We applied a structured literature review (SLR) to achieve our
research goals. After filtering based on exclusion criteria, all relevant
attributes of the selected 249 papers are captured for constructing
the framework. Further, we cluster the identified literature using the
derived framework. Based on this analysis, we discuss in detail different
aspects that are relevant for research in the field of predictive main-
tenance with a focus on the required data, the complexity of sensor
data analysis, and machine learning challenges. We decided to focus
on machine learning aspects, as there is recently fast development in
the field with new types of algorithms and fewer comparative works
yet. However, due to the large body of research and space limitations,
we will neither provide a comparative analysis between the studies nor
discuss the differences of mathematical models or the applied machine
learning techniques/algorithms.

The remainder of the survey is structured as follows: Section 2
explains the theoretical foundations of predictive maintenance. Next,
Section 3 describes the methodical procedure of the literature review
and the framework construction. Section 4 explains in detail the cate-
gories and the most important attributes of the predictive maintenance
framework. Section 5 follows a discussion of different research chal-
lenges and trends we identified while analyzing the literature. Section 6
summarizes related surveys and distinguishes this work from others.
Finally, Section 8 concludes the survey by summarizing the main
findings and giving recommendations for future research.

2. Foundations of predictive maintenance

This section introduces terminology and concepts relevant to the
remainder of this paper. First, a short overview of the common main-
tenance policies is given as context. Next, a definition of predictive
maintenance is built upon that overview. The main advantages of
predictive maintenance over conventional policies are discussed to
conclude the foundations.

2.1. Maintenance policies

Generally, maintenance policies can be divided into two categories:
Corrective maintenance and preventive maintenance. The main differ-
ence between these policies is the timing relative to the possible ma-
chine failure. An illustration and overview of conventional maintenance
policies can be seen in Fig. 1.

The first approach, called corrective maintenance or reactive main-
tenance (Mobley, 2002), occurs after a failure. A production plant using
this approach follows a run-to-failure management (Mobley, 2002).
Afterward, the machine can be repaired immediately or at a later point,
which will result in machine downtime and critical equipment failure.
Corrective maintenance incurs the lowest upfront costs, as it does
not involve any investment in monitoring systems. When downtimes
are acceptable and do not lead to significant costs upstream, this
approach can prove to be highly cost-effective. However, if downtimes

are critical to the business, production facilities should closely monitor
the condition of their equipment, as is the case with preventive or
proactive maintenance strategies (Mobley, 2002). This maintenance
approach is carried out before a fatal failure occurs. These additional
measures incur costs that must be carefully weighed against the costs
associated with downtimes or disruptions, which can have cascading
effects throughout the production process.

Preventive maintenance policies can be further divided into two
categories: Predetermined and condition-based. First, predetermined
maintenance, where the maintenance activities are conducted at pre-
scheduled intervals based on historic average equipment lifetime
(Schmidt & Wang, 2018). On the contrary, condition-based mainte-
nance monitors the current condition of a machine and schedules
maintenance activities based on the observations made (Schmidt &
Wang, 2018). Here, three distinct condition monitoring methods are
feasible: Monitoring on request, scheduled monitoring, and continuous
monitoring (Grall et al., 2002; Zhou, Xi, & Lee, 2007). The first
two methods are mostly inspection-based, while sensors generally
implement continuous monitoring.

The issue with condition-based maintenance is that even with con-
tinuous monitoring, the acquired data only represents a snapshot of
a machine’s current condition. The approach does not allow for ef-
ficiently scheduled maintenance activities ahead of failure because it
lacks knowledge about a machine’s or component’s presumable future
state.

2.2. Definition of predictive maintenance

The paradigm of predictive maintenance has been introduced to
improve the drawbacks of condition-based maintenance further. It
builds on the idea of continuous condition-based monitoring but in-
cludes using data-driven models to determine the future state of a
machine or component (Mobley, 2002). This approach is based on
condition monitoring, ideally conducted by sensors, allowing for con-
tinuous monitoring of relevant machine parameters such as vibration or
temperature. Suitable analytics models can be implemented for various
tasks, such as anomaly detection, failure classification, remaining useful
lifetime estimation, or trend detection, using historical data recordings.

Predictive maintenance is a policy that improves efficiency in the
overall operation and maintenance process (Mobley, 2002). This im-
provement in efficiency can be observed in multiple facets: more ma-
chine uptime, reduced overall cost, reduced resource consumption, and
a more transparent information presentation.

First, the machine uptime is increased by mitigating breakdowns
or complete machine failures. In those cases, reactive maintenance
would be implemented, which is generally slow as not all information
about the needed repairs is available immediately. Second, reducing
downtime through preventive methods and executing maintenance
before a critical failure reduces overall monetary cost. Maintenance
actions after such a failure are usually more expensive than scheduled
repairs. Third, resource usage is more efficient as a component’s useful
lifetime is effectively used for machine operation. Unlike scheduled
preventive maintenance, components still in working condition are not
replaced. Additionally, a less efficient machine operation is a state
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Fig. 2. Visualized workflow of literature search.

that can be detected and fixed using the available monitoring data.
Finally, continuously monitoring equipment improves the efficiency of
conveying information about the machine. Not only can the current
status be monitored at any time, but suitable analytics algorithms can
also extract more specific or aggregated information for maintenance
personnel.

These advantages make predictive maintenance a highly valuable
application of modern techniques and are why much effort is put into
researching the possibilities for the industry.

3. Methodical procedure

The following section describes the methodology used to select the
relevant papers and construct the framework. In total, 249 papers are
selected to derive the framework. All the attributes are clustered into
9 categories that build the main layer of the framework (see Fig. 2).

3.1. Structured literature review

The Structured Literature Review (SLR) is a systematic approach to
finding relevant literature to answer one or multiple research questions
by searching for papers based on a set of keywords (Kofod-Petersen,
2014). The method allows us to identify, sort, and categorize the most
relevant articles among a vast amount of literature. Even though SLR
does not provide a guarantee to find all relevant articles, it has the
advantage of approaching a selected topic from numerous directions,
allowing authors to cover an entire field of research. Thereby, SLR helps
uncover existing research gaps and identify areas where additional
research might be needed (Kofod-Petersen, 2014).

The field of predictive maintenance is broad and the existing pool of
papers is large. As this survey aims to construct a framework addressing
the distinctive facets of predictive maintenance in Industry 4.0, we
needed to identify the relevant papers from this domain. However,
the only keyword we used in the present survey to detect the relevant
literature with a Google Scholar search was Predictive Maintenance. We
then selected those peer-reviewed articles from the results that dealt
thematically with the area of Industry 4.0 by screening the papers’ titles
and abstracts. We refrained from explicitly using the term “Industry
4.0” in our search queries, as otherwise, papers that were thematically
related to this area but did not explicitly use the term would fall
through the cracks. Therefore, the selection was done manually by
checking the list of results from a Google Scholar search from the top
down. As in Google Scholar, the publications are sorted according to
their relevance for the search term; this allows us to find the most
relevant papers first while the usefulness of the later papers is steadily
decreasing. A paper for the framework was selected by first scanning
the title and abstract to identify the detail in which the paper covers
the topics of predictive maintenance and Industry 4.0. If a paper
explains the applied predictive maintenance approach and its context,
e.g., system size and condition monitoring in detail, it was selected to
build the framework. The first search was conducted in October 2018

and resulted in 140 articles from journals and conference proceedings
that we considered relevant. These articles were published between the
years 1993 and 2018. We conducted another search in June 2023. This
search resulted in an additional 109 results that we also used to build
our framework.

Another literature review method considered for the present sur-
vey is the berry-picking method. In this method, the review starts
by identifying a starting paper that matches the addressed topic and
objectives (Booth, 2008). The following step in the process is footnote
chasing, where the list of references for the starting paper is checked for
more relevant literature. Furthermore, the search for relevant literature
can be extended by checking the references of the starting paper and
the papers that cite the starting paper. The drawback of this method is
that the papers are most likely connected based on a similar sub-theme
that is addressed by these papers, thereby potentially missing important
other subsections of the main topic. This issue can be approached by
choosing multiple starting papers to cover the missing sub-themes.
As the amount of literature addressing predictive maintenance is so
broad and contains numerous sub-themes, the berry-picking method
would likely still miss relevant fields even with an increased number
of starting papers. Hence, the SLR is considered a better method for
the present survey as it allows us to find more diversified relevant
literature to cover a much broader scope of the topic, and we applied
it for building the framework.

3.2. Overview of selected publications

In total, 249 publications have been selected for this survey. Fig. 3
shows a stacked bar chart to provide an overview over the publication
year, grouped by publication type (conference, journal, others).

As can be seen, the number of journal entries is higher than con-
ference papers. Additionally, some book chapters are included in the
study because of their relevance; those are listed as Other.

Another interesting aspect is that the number of relevant publica-
tions has risen to the present. This can be due to the selection procedure
using the search engine, but it may indicate that the application in
Industry 4.0 has become more important for the industry and is tech-
nically feasible. A few papers were selected for 2023 as the selection
was carried out before June.

3.3. Construction of the framework

To construct the framework of predictive maintenance approaches
in Industry 4.0 scenarios, we started by examining the first paper
selected from the potentially relevant literature of the Google Scholar
search. Note that it is not important with which paper this process
is started as the whole process has an iterative characteristic. While
a paper is examined, a table is filled with data about the relevant
attributes covered. Thus, whenever an important attribute or character-
istic concerning predictive maintenance is identified, a new column is
added to the table, and the attribute is ticked for this paper. Thereafter,
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Fig. 3. Yearly overview of the selected publications, grouped by publication type (conference, journal, others).

every paper categorized in the table gets a separate row to mark the
attributes covered. The following papers are checked iteratively for
each attribute listed in the table and for additional relevant attributes.
After all papers are checked, the data grid resembles a triangle, as
the papers at the beginning of the process were not tested for the
relevant attributes identified later in the process. Thus, a second round
of scanning is performed, and the data grid is completed. The result
of this process serves as the foundation of the predictive maintenance
framework.

For the framework, we only included primary research papers that
directly addressed issues in predictive maintenance applications. We
excluded surveys and literature reviews in this step. However, we
discuss these papers in Section 6 to situate our approach within existing
related work.

In the final step, we mapped the data grid from the SLR to a set
of categories by clustering the attributes into discrete categories. Each
category is named by a term that represents the content of this cluster.
These umbrella terms build the main categories of the framework. If
appropriate, the clusters can have further subdivisions to allow for a
finer classification within the categories. Thus, the entire framework
can be best represented as a tree. The main categories of the predictive
maintenance framework and the tree structure for every category are
presented in Section 4.

4. Framework for predictive maintenance

For the purpose of analyzing the collected papers, a framework of
attributes has been constructed. The attributes consist of information

about the scope, type, and complexity of the application proposed
in the respective articles and have been guided by three research
questions:

How can the scope of the application be described? By including
a flag for the implemented step in the PdM pipeline, which are con-
dition monitoring, fault detection, degradation process modeling, and
scheduling.

How can the complexity of the application in the article be
estimated? By including the system size and maintenance scope.

How can similar approaches be grouped in the category? This
includes the application methodology, which consists of prognostic
techniques, data handling, and evaluation.

The analysis of the papers resulted in a grid that consists of a
total of 73 different attributes, described in the following sections.
The framework built from this data grid can be found at Predictive
Maintenance Literature Review Framework (2023). The entire frame-
work for predictive maintenance consists of 9 categories: Condition
Monitoring, Maintenance Scope, Degradation Process, Fault Detection,
System Size, Scheduling, Prognostic Techniques, Data Handling, and
Evaluation. Fig. 4 shows these 9 categories, which represent the highest
level of the framework. In the remainder of this section, we describe
the categories in detail, with all the attributes summarized within a
specific category. It is important to mention that some papers dealt with
multiple attributes within a category. Therefore, the frequency does not
represent the total number of papers in a category.
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Fig. 4. Overview over the categories of the framework for predictive maintenance.
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4.1. Condition monitoring

A predictive maintenance approach is based on collecting data from
a machine or component, which indicates its health status and allows
the prediction of the residual useful life based on this monitoring
data (Gebraeel, Lawley, Li, & Ryan, 2005). The analysis of the papers
has identified 4 different attributes for the category of condition mon-
itoring: Sensor-Based Monitoring, Online/Real Monitoring, Continuous
Monitoring, and Inspection-Based Monitoring. 219 out of 249 papers
dealt with at least one of the 4 attributes within their research. All
attributes and their corresponding frequency of occurrence are shown
in Fig. 5.

Since advancements in sensor technology made sensors for various
types of parameters more affordable, most studies base their research
on sensor-based monitoring (80%). With sensor-based monitoring, dif-
ferent sensors, such as observing vibration and temperature, are used

to collect the relevant data (Orhan, Akturk, & Celik, 2006). Generally,
sensor technology is more appropriate for an integrated predictive
maintenance system as it is crucial for efficient continuous monitoring.

Online/real monitoring is a condition monitoring technique (58%)
that allows data collection in the running state of a machine (Lind-
strom, Larsson, Jonsson, & Lejon, 2017). Furthermore, it is the pre-
requisite for continuous monitoring as a continual collection of data is
merely feasible in the machine’s running state. Therefore, researchers
always address online monitoring when implementing a continuous
monitoring approach in their studies. However, online monitoring is
also possible for inspection-based methods, but it does not resemble a
requirement in this case.

As the term already indicates, continuous monitoring (35%) is
the continual collection of relevant monitoring data to estimate the
remaining useful life of a machine or component (Traore, Chammas,
& Duviella, 2015). In contrast to inspection-based monitoring, the
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Fig. 6. Overview of the category maintenance scope.

amount of data collected is significantly higher since inspection-based
monitoring is simply a periodic snapshot of a machine’s conditional
state. Hence, inspection-based monitoring and continuous monitoring
are the only two attributes in this category that are mutually exclusive.
All other attribute combinations are feasible.

Finally, inspection-based monitoring (12%), the least addressed ap-
proach, enables assessing a machine’s condition and gathering crucial
data. With inspection-based monitoring, the data is merely collected in
inspection intervals. However, the intervals are not predefined, as in
conventional maintenance policies. The intervals are adapted concern-
ing the observed and collected data about a machine’s or component’s
current and predicted conditional state (Jardine, Lin, & Banjevic, 2006).
Note that sensor-based and inspection-based monitoring are not mutu-
ally exclusive, as sensor equipment is often necessary to perform the
inspection (Kaiser & Gebraeel, 2009).

4.2. Maintenance scope

The category of maintenance scope is not often addressed explicitly.
Each maintenance action requires an assumption about the mainte-
nance scope, yet only a few studies (N = 41) explicitly address this
category. Therefore, the framework solely integrates the number of
times the topic of maintenance scope is mentioned. The present survey
makes no assumptions about the maintenance scope in cases where no
maintenance scope is mentioned directly. The analysis of the papers
revealed three different attributes for the category maintenance scope:
Perfect Maintenance, Imperfect Maintenance, and Grouping Mainte-
nance Actions. Fig. 6 shows all attributes belonging to the category of
maintenance scope.

First, perfect maintenance assumes that every maintenance action
conducted at a machine or component restores functionality and dura-
bility to its original level (Dieulle, Berenguer, Grall, & Roussignol,
2001).

This assumption follows an as good as new approach for every
maintenance action (Dieulle et al., 2001). In contrast to this approach,
the assumption of imperfect maintenance is based on the premise that
a maintenance action cannot restore the functionality and durability
of a particular machine into an as good as new state, but only into
an as good as old condition (Tan & Raghavan, 2010). Thus, the ma-
chine or component is still assumed to be used equipment even after
maintenance. Generally, the category of maintenance scope is rare in
predictive maintenance research because continuous monitoring and
prediction updates usually make the assumption about the maintenance
scope obsolete.

The third and final attribute of the category of maintenance scope is
far more important for predictive maintenance but is not severely rep-
resented in the academic literature. The possibility to efficiently group
maintenance actions leads to an overall cost reduction for maintenance
activities as downtimes can be reduced (Ladj, Varnier, & Tayeb, 2016;
Nguyen, Do, & Grall, 2017). A precondition for grouping maintenance
actions is a holistic predictive maintenance approach that monitors
the entire manufacturing equipment to identify certain maintenance
actions best-conducted simultaneously (Nguyen et al., 2017). While the
assumptions about perfect and imperfect maintenance are mutually ex-
clusive, the attribute of grouping maintenance actions can be addressed
in combination with the other two attributes of the category.

4.3. Fault detection

A pure predictive maintenance approach solely focuses on pre-
dicting the future conditional state of machinery and components to
schedule maintenance activities appropriately and in scope. Neverthe-
less, 67 of the examined academic papers additionally address the topic
of fault detection, meaning that the predictive maintenance approach
does not only attempt to predict the remaining useful life of the
machine but also tries to identify the root cause of the failure based on
the collected data (Yam et al., 2001). The category of fault detection
includes the following attributes: Root Cause Analysis and Machinery
Diagnostics.

Fault detection covers the additional function of diagnostics. Thereby,
root cause analysis and machinery diagnostics address the same issue.
More researchers refer to machinery diagnostics (80%) when dealing
with fault detection, while others specify their fault detection technique
as root cause analysis (28%) or mention both terms. The general idea
is processing acquired monitoring data to uncover the reasons for
future failure. Thus, vibration or other machine monitoring data is
used for diagnostic purposes (De Faria, Costa, & Olivas, 2015). The
feasibility and accuracy of a fault detection approach depends on the
level of monitoring activity, i.e., monitoring more machine parts and
components individually improves the feasibility of identifying the root
cause for a future failure (De Faria et al., 2015).

4.4. Scheduling

The scheduling category is addressed by 108 of the papers and,
therefore, has an important role in predictive maintenance. It does not
seem unusual as the main motivation behind a predictive maintenance
approach is to identify the need and timing for maintenance activities
in advance, allowing efficient scheduling. The attributes identified in
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Fig. 7. Overview of the category system size.

this category are Dynamic Action Scheduling and Dynamic Spare Part
Availability.

First, dynamic action scheduling describes the possibility of dy-
namically adapting the maintenance schedule based on new and pro-
cessed condition monitoring data (Yang, Djurdjanovic, & Ni, 2008).
This dynamic scheduling is only possible in a predictive maintenance
environment due to the forecast of a machine’s future conditional state.
Optimization algorithms can be applied to define the most cost-effective
maintenance schedule and continuously update this schedule when
new machinery prognostics information becomes available (Yang et al.,
2008). Hence, the maintenance schedule is not static as it would be for
conventional maintenance policies but rather dynamic.

Additionally, a few papers cover the attribute of dynamic spare part
availability, where the maintenance activities and the necessary spare
part ordering are linked to the predictive maintenance system (Nguyen
et al., 2017). Compared to an isolated policy, this broader and more
integrated approach better fits the modern idea of Industry 4.0 and
smart factories.

4.5. System size

Another relevant parameter identified during the literature review
is the category of system size. This category addresses how the predic-
tive maintenance approach is applied or assumed to be applied when
implemented in real life. The analysis revealed two attributes: Single-
Component Systems and Multi-Component Systems. Furthermore, the
attribute of multi-component systems is further divided into the subcat-
egory of component dependencies, which are divided into the following
attributes: Structural Component Dependence, Economic Component
Dependence, Stochastic Component Dependence, and Without Depen-
dencies. Fig. 7 shows all category attributes. 160 papers analyzed in
the present survey mention or reveal the addressed system size.

First, single-component systems are defined by the present survey
as single components, e.g., experimental studies that conduct labora-
tory tests with mere bearings of single machine components or single
machines considered solely in an isolated context (Hashemian, 2011),
i.e., the machine might consist of multiple components. However, the
whole machine is considered as a single unit. The definition cho-
sen for this category results in less mentioned true multi-component
systems (46%) compared to single-component systems (56%).

As described in the previous paragraph, the true multi-component
system consists of separate components that form or are part of a
larger system, e.g., an entire manufacturing line (Van Horenbeek &
Pintelon, 2013), or multiple machines. Implementing a successful pre-
dictive maintenance system is much more complicated for these multi-
component systems since more data needs to be processed and depen-
dencies between the system’s components become relevant (Van Horen-
beek & Pintelon, 2013). However, while a significant number of pa-
pers address multi-component systems, 39 of the 73 papers (54%)
additionally address the topic of dependencies.

Dependency in multi-component systems can be divided into three
different types. First, structural dependencies result from components
that form a unified part in that the maintenance of one component
directly implies the maintenance of all structural dependent compo-
nents (Nguyen et al., 2015). Second, economic dependencies are such
dependencies that enable cost reduction when parts of the system are
maintained simultaneously, e.g., because, for the maintenance of one
component, other components have to be offline as well, thereby re-
ducing downtime when maintenance actions for these components are
conducted jointly (Nguyen et al., 2015). Finally, stochastic dependen-
cies are dependent on stochastic relations between components of their
deterioration process. Hence, the degradation of one component affects
the state of one or multiple other components of the system (Nguyen
et al., 2015). Furthermore, the existence of these dependencies is why
single-component predictive maintenance approaches are not simply
scalable to a multi-component level but must be adapted about the
effects of these dependencies (Nguyen et al., 2015).

4.6. Prognostic techniques

The category of prognostic techniques is one of the most important
ones for predictive maintenance. While all the monitoring and data ac-
quisition is indispensable, the prognostic technique is what transforms
the raw data into valuable information. Note that since a prognostic
technique attempts to predict a prospective failure of a machine or
component, the generated information is just probabilities. For the
predictive maintenance framework of the present survey, 29 different
prognostic techniques were identified and shown with their occurrence
count in Table 1.

The analysis of the papers showed that the number and diver-
sity of different techniques are enormous. Many techniques are often
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Table 1
List of prognostic techniques identified through the SLR.

Prognostic techniques Count
Artificial Neural Network 74
Random Forest 28
Bayesian Model/Networks 23
Statistical Pattern Recognition 21
(Semi-Hidden/Hidden) Markov Model 17
Fuzzy Logic 15
(Multiple) Linear Regression 11
Kalman Filter/Prediction 11
Decision Tree 11
Auto-Regressive Moving Average (ARMA) 10
Gamma Process 10
Support Vector Machines (SVM) 10
Genetic Algorithm 8
Regression Trees 4
XG Boost 4
k-Nearest Neighbors (kNN) 4
Particle Filtering 3
Logistic Regression 3
Hazard Rate Model 3
Wiener Process 3
Multiple Classifier 2
Kriging Statistical Technique 1
Linear Discrimination Analysis 1
Multiple Logistic Function 1
Non-homogeneous Poisson Process 1
Rules (SWRL) 1
Rough Set Theory Algorithm 1
Bansal-Jones Estimation Algorithm 1
Margin Analysis 1

found only once or twice within all the publications. Thus, the present
survey will not present and discuss all the different techniques in
detail. 222 out of the 249 examined papers explicitly mention the
prognostic technique, whilst the remaining articles do not directly men-
tion their applied approach. This section delves into the most promi-
nent prognostic techniques, elucidating their application in predictive
maintenance.

In recent years, a noticeable shift has been observed towards inte-
grating artificial intelligence (AI) and machine learning (ML) in prog-
nostics. With 74 counts, Artificial Neural Networks (ANN) (e.g., Gar-
cia, Sanz-Bobi, & del Pico, 2006; Garga et al., 2001; Wu, Gebraeel,
Lawley, & Yih, 2007; Yam et al., 2001) lead the pack in prognostic
techniques. In the case of an ANN, nodes, also called neurons, are
structured in multiple layers where every neuron passes on a value
to all nodes in the next layer (Agatonovic-Kustrin & Beresford, 2000).
Every value is weighted by some real number representing the weight
of the connection between two neurons. The idea of the network is
that a specific input results in a specific outcome with a certain prob-
ability (Agatonovic-Kustrin & Beresford, 2000). The network mostly
depends on the weights of every connection. However, finding these
weights is not easy and requires tremendous training data to build
a reliable artificial neural network (Agatonovic-Kustrin & Beresford,
2000).

Also, classification methods, such as Random Forest (RF), are often
used in predictive maintenance. This technique was used by 28 authors
in their papers (e.g., Mattes, Schopka, Schellenberger, Scheibelhofer,
& Leditzky, 2012; Scheibelhofer & Gleispach, 2012, Traini, Bruno,
D’Antonio, & Lombardi, 2019, Ayvaz & Alpay, 2021). RF is an ensemble
learning technique aggregating predictions from multiple decision trees
to enhance accuracy and robustness Mattes et al. (2012), Scheibel-
hofer and Gleispach (2012). Bootstrap sampling creates diverse subsets
of training data, with each subset responsible for training an indi-
vidual tree. The collective votes of these trees determine the final
classification.

In predictive maintenance, uncertainties are inevitable, often arising
from sensor errors, unpredictable wear and tear, or machinery-related
factors. Bayesian networks suit this environment, offering a structured
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approach to represent and process these uncertainties. This approach
was mentioned by 23 publications (e.g., Engel, Gilmartin, Bongort, &
Hess, 2000; Gebraeel, 2006; Gebraeel et al., 2005; Kaiser & Gebraeel,
2009). To cope with aging equipment or operating under varying
conditions, the network can be updated with new data, refining the
probabilities and predictions. One of the pivotal advantages of Bayesian
networks in predictive maintenance is their ability to quantify the
probability of potential failures. This is invaluable for maintenance
planning, as it allows for prioritization based on the likelihood and
potential impact of failures.

Another more often appearing technique for predictive mainte-
nance is statistical pattern recognition (N = 21; e.g., Chen & Blue,
2009; Hashemian, 2011; Liao, Wang, & Pan, 2012; Pedregal, Garcia, &
Schmid, 2004). This technique detects and interprets patterns or trends
within datasets Liao et al. (2012). Machines and equipment often
exhibit specific behavioral trends or data signatures as they approach
the end of their remaining useful life or when defects begin to manifest.
Recognizing these patterns early on allows for proactive intervention,
significantly reducing, e.g., the risk of failures or unplanned downtime.

(Semi-Hidden/Hidden) Markov Models (HMM) (mentioned by, e.g.,
Carnera, 2005; Carnero, 2006; Cartella, Lemeire, Dimiccoli, & Sahli,
2015; De Saporta, Dufour, Zhang, & Elegbede, 2012) are statistical
frameworks designed to estimate the remaining useful lifetime, pri-
marily drawing insights from present conditions and historical data.
These models operate on the principle of states, where each state
represents a specific condition or configuration of a system. In the
realm of predictive maintenance, the applicability of HMMs becomes
evident. Over their life, machines transition through various health
states, some of which may not be directly observable through sensors or
measurements. HMMs assist in inferring these hidden states, providing
a clearer picture of the machine’s health trajectory Jardine et al.
(2006).

In addition, mathematical approaches like Fuzzy Logic are also used
in predictive maintenance. The primary purpose of this approach is to
provide a structured framework that deals with uncertainty Jardine
et al. (2006). In predictive maintenance, sensor readings often come
with a degree of uncertainty. Fuzzy Logic becomes helpful in these
scenarios, allowing for better interpretations of the data. This supports
better decision-making when determining machinery or systems’ health
and potential risks. This approach has been discussed and highlighted
in various studies (N = 15; e.g., Garcia et al., 2006; Swanson, 2000;
Traore et al., 2015; Yan, Lu, & Andrew, 2005).

In predictive maintenance, regression models are a frequently used
prognostic technique. For example, (Multiple) Linear Regression seeks
to establish a relationship between variables. The complexity of Multi-
ple Linear Regression allows us to predict potential future failures by
correlating different indicators from a maintenance dataset (Lucifredi,
Mazzieri, & Rossi, 2000). Such predictions are crucial for the reduction
of downtime. The significance and application of these regression mod-
els in maintenance contexts have been elaborated upon in 11 studies
(e.g., Lucifredi et al., 2000; Onanena, Oukhellou, Candusso, Same,
Hissel, & Aknin, 2010; Susto, Beghi, & De Luca, 2011; Zhou et al.,
2005). However, for a reliable regression model, there must be a
tremendous amount of training data to define the model before it can be
applied to new test data. The same holds for Bayesian-based models (Si,
Wang, Hu, & Zhou, 2011).

The significance of the Kalman filter is emphasized in 11 studies
(e.g., Abdennadher, Venet, Rojat, Retif, & Rosset, 2010; Susto et al.,
2011; Wang et al., 2017; Yang, 2002). It is a renowned algorithm in the
world of data processing and estimation. In predictive maintenance, the
Kalman filter assumes an indispensable role. Many assets and systems
rely on sensor data, which can be subject to various forms of noise
or interference. The Kalman filter helps isolate the genuine signals
from this noise, providing a clearer picture of asset health (Jardine
et al., 2006). Doing so assists in making informed decisions regarding
maintenance, ensuring longevity and efficiency.
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Fig. 8. Overview of the category degradation process.

Furthermore, other trend analysis techniques are time series models,
for example, the Auto-Regressive Moving Average (ARMA) approach
(N = 10; e.g., Baptista et al., 2018; Lee, Qiu, Ni, & Djurdjanovic, 2004;
Liao et al., 2012; You, Yi, Li, et al., 2010). In predictive maintenance,
machinery and assets often generate time-series data, capturing their
operational behavior over periods. ARMA models help to analyze pat-
terns, anomalies, or trends. By forecasting, ARMA aids in anticipating
potential issues or machinery faults Assis-lopes, Steiger-gagiio, and
Campus (1996).

Another stochastic approach that provides a mathematical frame-
work to understand machinery’s wear and tear dynamics is the Gamma
Process (mentioned by ,e.g., Grall et al., 2002; Langeron, Grall, &
Barros, 2015; Nguyen et al., 2015; Van Horenbeek & Pintelon, 2013).
A more detailed and probabilistic model of how machinery degrades
over time can be derived. Moreover, it offers deep insights into the
degradation process of various assets.

This category’s main purpose is not to find a generally valid clas-
sification of every prognostic technique. Instead, we highlighted the
range of techniques we found in 249 research papers, which shows how
diverse this field is. There are many different approaches to improve
and create new feasible methods for predictive maintenance.

4.7. Degradation process

The category degradation process is addressed by 83 of the 249 ana-
lyzed papers. It covers the direct modeling of the degradation process of
a machine or using a predefined model of its deterioration course. The
different assumptions on which the predefined models rely are Random
Failure Assumption, Weibull Distribution Assumption, Linear Degrada-
tion Assumption, and Exponential Degradation Assumption. Please note
that papers often indicated that the degradation process was modeled
but did not provide further modeling details. Hence, the number of
papers in this category is much higher than the accumulated sum of the
four assumption models. Fig. 8 shows the category degradation process
and all its attributes.

Initially, the process of degradation modeling is the derivation
of the deterioration course of a machine or component based on
relevant machine health indication data such as vibration or temper-
ature (Gebraeel, 2006). This procedure gathers information about a
particular machine’s typical conditional state over its lifetime (Ge-
braeel, 2006). Modeling the deterioration process is beneficial because
knowledge about a machine’s degradation pattern can support a predic-
tive maintenance system to predict future breakdowns more accurately.
Nevertheless, the predictive maintenance approach is not meant to
merely rely on the average degradation of a machine to decide on
the maintenance intervals. The primary indicator is still the predictive
maintenance system and its prognostic approach, which the infor-
mation of the degradation modeling could support. Fig. 9 shows an

Fig. 9. Vibration-based degradation modeling (Gebraeel, 2006).

example of a vibration-based degradation course where phase I repre-
sents the non-defective state and phase II is the conditional state close
to failure (Gebraeel, 2006). Thus, the objective is to model these phases
to support the machinery prognostics of the predictive maintenance
decision regarding the timing and need for maintenance activities.

A few papers make an assumption about the degradation process
instead of following a modeling approach. However, since the pre-
dictive maintenance approach is based on monitoring the conditional
state and prognostics, the assumption about the deterioration course
of a machine is not relevant for a predictive maintenance approach.
Hence, only a fraction of the academic literature mentions such an as-
sumption before implementing a predictive maintenance approach. The
assumptions about linear degradation, exponential degradation, and
random failure are straightforward (Elwany & Gebraeel, 2008; Gebraeel
et al.,, 2005; Hashemian & Bean, 2011). A predictive maintenance
approach would be most efficient in the presence of random failure
since conventional maintenance policies usually fail. Additionally, the
academic literature mentions a distribution called Weibull Distribu-
tion (Gebraeel et al., 2005). It is a continuous probability distribution
based on adjustable parameters used to model the lifespan of machines
or components (Gebraeel et al., 2005). By characterizing the probabil-
ity of failure over time, the Weibull Distribution aids in anticipating
equipment breakdowns and optimizing intervention schedules.

4.8. Data handling

The category data handling deals with the amount of data acquired
by condition monitoring. Especially in continuous monitoring with mul-
tiple sensors, the amount of data collected by these sensors results in an
enormous amount of data to be handled (Munirathinam & Ramadoss,
2014; Yan, Meng, Lu, & Li, 2017). The analysis of the papers covered
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in the present survey reveals the following relevant attributes: Data
Filtering, Storage, Access, and Data Fusion. Additionally, the attributes
of storage and access are divided into the sub-attributes of Local Storage
and Remote/Cloud Storage, as well as Local Access and Remote Access.
Of those attributes, at least one is mentioned in 217 out of 249 papers.
Fig. 10 shows all category attributes and their corresponding frequency
of occurrence.

First, data fusion and data filtering are two methods that deal with
big data generated by continuous monitoring. The data fusion approach
utilizes the idea of integrating multiple data sources to generate more
reliable data compared to any individual data source. In the case
of sensor-generated data, data fusion combines the data of multiple
sensors. The resulting more reliable and accurate data is then processed
and analyzed (Kandukuri, Klausen, Karimi, & Robbersmyr, 2016; Lee,
Ni, Djurdjanovic, Qiu, & Liao, 2006). On the other hand, data filtering
also deals with the issue of large amounts of data by filtering uninfor-
mative data (Yamato, Fukumoto, & Kumazaki, 2017). For the most part,
continuous monitoring will generate data that shows that a particular
machine is in a normal state (Wang, 2016). Therefore, data filtering
models identify the useless data and only analyze the informative parts
of the total amount of data, thus making the data processing more
accurate and efficient (Schirru, Pampuri, & De Nicolao, 2010).

Second, unlike data fusion and filtering, data storage and access
are attributes often addressed by papers. Every paper includes some
monitoring, which inevitably generates data that needs to be stored
and made accessible for further processing. The analysis shows that for
storage location and data access, the remote alternative is addressed
less and mostly in combination with IoT, Industry 4.0, and cloud
computing (Chiu, Cheng, & Huang, 2017; Lee et al., 2006; Yan et al.,
2017). This fact is interesting as the remote approach seems more
suitable for an efficient predictive maintenance system in an Industry
4.0 environment, especially with a manufacturing structure consisting
of multiple production sites. Hence, the methods of remote storage and
access are not covered as much as expected in the recent academic
literature. We will discuss this issue in Section 5.

4.9. Evaluation

Finally, the evaluation category concludes the framework of the
present survey for predictive maintenance. This category covers the
application-oriented part of the studies. Most studies (N = 227) imple-
ment some way of testing their predictive maintenance approach and
prove its feasibility. The following attributes were identified for this
category: Evaluation based on Real Data, (Numerical) Simulation, Ex-
periment Evaluation, and Comparison with Conventional Maintenance
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Policies. Fig. 11 shows all category attributes and their corresponding
frequency of occurrence.

Note that none of the attributes are mutually exclusive. First, for
the evaluation based on real data (63%), the researchers acquire ac-
tual data from companies who monitor their machines (Elwany &
Gebraeel, 2008; Schmidt, Wang, & Galar, 2017). The data includes the
monitoring data as well as information about the corresponding state
of the machine, e.g., whether a failure occurred. This data can then
be used to validate the accuracy and performance of the introduced
predictive maintenance approach. The advantage of real data is that
it allows the testing of the predictive maintenance approach with
long-term data and data gathered from multiple large and complex
machines. For example, the NASA Dataset, which can be seen as a
benchmark dataset in this area, was used to test approaches for predic-
tive maintenance techniques in some publications (e.g., Kumar Sharma,
Brahmachari, Singhal, & Gupta, 2022, Xiong, Wang, Fu, & Xu, 2021).
The provided dataset includes sensor data from turbofan engines or a
milling dataset till their failure (Traini et al., 2019). The use of such
benchmark datasets to increase the validity of the different methods
will be discussed in Section 5.2

Second, studies mentioned that experiments (35%) were used to
validate the different approaches. Mostly, the experiments are kept
very small because merely one component, e.g., bearings or a de-
tached engine, are used as experimental subjects (Gebraeel et al., 2005;
Yang, 2002). Thus, experiments are usually limited to small-scale test
setups, making them unsuitable to validate approaches that include
multi-component systems and dependencies and connections with other
related processes.

Further, the numeric simulation (30%) is an evaluation based
merely on simulated data, e.g., a Monte Carlo Simulation that generates
data about hypothetical failures, which must then be identified by
the researcher’s predictive maintenance approach (De Saporta et al.,
2012; Lei, Sandborn, Goudarzi, & Bruck, 2015). Finally, some authors
benchmarked their predictive maintenance approach with conventional
maintenance policies (16%). These comparisons are generally based
on comparing total costs for different maintenance policies, includ-
ing predictive maintenance (Nguyen et al., 2015; Van Horenbeek &
Pintelon, 2013), thus attempting to prove predictive maintenance’s
superior efficiency and cost reduction opportunities.

5. Discussion
In the literature review we identified various aspects that motivate

the use of predictive maintenance. The goal that was mentioned the
most is cost minimization (N = 150). Three further highly mentioned
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goals are: availability (N = 103), downtime minimization (N = 98), and
productivity (N = 60)—all represent a need for improving efficiency in
the current industrial setting. Further, the aspects of reliability (N = 98)
and safety (N = 58) can be seen as a third field of motivation, driven
by more critical industrial applications.

The number of papers analyzed in this survey is merely a fraction
of the available academic literature addressing predictive maintenance.
However, the analysis provides insights about which aspects the liter-
ature mostly focuses on. Based on the observations from the collected
sources, the following section will discuss the topics of (i) implemen-
tation complexity, (ii) data handling, and (iii) the trend from machine
learning to deep learning. Furthermore, we summarize important as-
pects for practitioners that can be derived from our framework and
help implement predictive maintenance processes. Additionally, we
discuss possible threats to the validity of our results. Please note:
We reference existing works as examples of approaches that apply a
specific technique. The main objective of the section is a technique-
based discussion of the literature; hence, also, due to space limitations,
we will not explain the details of those approaches.

5.1. Complexity of current implementations

The first point of discussion is based on the categories System Size
(cf. Section 4.5), Fault Detection (cf. Section 4.3), and Scheduling (cf.
Section 4.4). Those three factors describe aspects of complexity issues
that arise from predictive maintenance.

When looking at the system size, it is clear that only a small part of
the publications mention systems with multiple components, with still
fewer dependencies among those components. This means that most
applications focus on machines or systems that have only one piece of
hardware for the analysis, where no interdependence or influence from
other parts of the systems would complicate the problem.

The task of fault detection is another important point that most
publications fail to include. This could be due to the predominance of
single-component applications, where an anomaly can be immediately
related to a failure without further root cause analysis. However, the
actual diagnostics of a detected anomaly are key to effectively using a
predictive maintenance system in a real-world scenario.

Going even further in the maintenance process, less than half of the
publications, especially recent ones, address scheduling appropriate ac-
tions. This point is also important in deploying predictive maintenance
in real-world scenarios.

Considering these three observations, the current complexity and
scope of applications for the industry is still quite low. Not only could
more complex machines be the focus of research, but the implementa-
tion of the predictive maintenance process could also be more advanced
by:

1. including fault detection or diagnosis on top of anomaly detec-
tion and
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2. including the problem of maintenance scheduling to use the
extracted information in actual operations.

Research Gaps in Application Complexity: The first research gap
identified here is that research should focus on machines and systems
built from multiple components. Further, the dependencies between
the components and the resulting influences upon each other need
to be accounted for. Handling increased complexity is an issue that,
once solved, can enable many more realistic applications of predictive
maintenance in the industry.

A second gap emerges in the completeness of implementations.
Predictive maintenance can be seen as a holistic process ranging from
data collection to pre-processing, anomaly detection, failure diagnosis,
scheduling, and mitigation. However, current research fails to go far
beyond anomaly detection. To implement the paradigm in real appli-
cations, research needs to focus on implementing all of these process
activities, from gathering data to including relevant results in plant
operations.

5.2. Common datasets and data handling

This second point of discussion is based on the observations for the
framework categories Data Handling (cf. Section 4.8), Evaluation (cf.
Section 4.9), and Condition Monitoring (cf. Section 4.1). When looking
at how data is gathered, handled, and used in current applications,
some possible directions for future research can be defined.

Gathering data for an application is the first important step of
predictive maintenance. In our observation, most applications use a
sensor-based monitoring approach, mostly in real-time. Only a portion
of these sensor-based approaches are mentioned to be continuous,
which means that most implementations are restricted to selected
processes or test runs.

Most publications describe their process of data handling for their
specific implementation. Looking at these descriptions, the most widely
used approach is to store and access data locally. Only about 13% of
publications mention a cloud or remote infrastructure for gathering,
storing, or accessing data. Such infrastructures would enable aggregat-
ing data from different machines or production lines, e.g., to facilitate
learning of ML models. Those ML models would be more robust through
data aggregation and can be re-used across different production lines
or plants, e.g., through transfer learning.

Real data is the predominant method when evaluating implemented
solutions, with simulated data being less prominent. There were 61
experimental evaluations mentioned, which means there are many in-
dependently evaluated applications that are difficult to compare. Only
7% (19) of publications specifically mention using a NASA benchmark
dataset for comparability. Using a standard dataset like the NASA
dataset as a benchmark might be beneficial for reproducibility and
comparison with state-of-the-art algorithms; however, the data must
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fit the specific patterns of the targeted application domain and ma-
chines. Additionally, only 14% of publications compare the predictive
maintenance performance to regular maintenance paradigms.

Combining these observations creates a clear image of current im-
plementation setups. Data is often recorded from specifically selected
tests and stored locally for specific research applications. This straight-
forward approach leads to fast results when testing a single application;
however, it does not incorporate the possibilities and flexibility of a
remote or cloud solution. Also, errors are highly important in analyzing
the resulting data patterns. Naturally, errors do not happen frequently,
hence, those might be triggered artificially. Continuous real-time mon-
itoring would support the data collection in a productive environment.
Further, those data is not bound to any locale. Data from multiple
devices could also be combined using remote technologies to extract
even more information across machines.

Another conclusion based on the observed statistics is that evalua-
tions are specific to every study and are often isolated from comparable
applications. This conclusion is supported by the fact that only a small
amount of publications evaluate their models using the well-known
NASA datasets.

Research Gaps for Data Handling: An obvious gap in research is
the lack of using remote infrastructure for data gathering. Implement-
ing cloud technologies could gather more data from different machines
and locations and incorporate it into more sophisticated models.

Further, although each application is unique in some points, evalua-
tions should compare themselves to other methods, either conventional
maintenance or similar applications, to enable a basis for discussion
and to find common problems. This could be made possible by creating
more application-specific benchmark datasets, such as the sets provided
by NASA, and using them for evaluation purposes.

5.3. Machine learning for predictive maintenance

Our analysis identified a shift from mathematical methods towards
machine learning (and, more recently, deep learning) for predictive
maintenance in the last decade. While traditional mathematical meth-
ods for anomaly detection or identification of degradation patterns
handle linear correlations and simple patterns, machine learning mod-
els handle complex, non-linear relationships and interactions in data,
resulting in more accurate failure predictions, improved efficiency, and
reduced downtime. In this section, we describe the differences between
the identified types of machine learning and the respective challenges.

Machine Learning for Predictive Maintenance: Machine learning
for predictive maintenance utilizes historical and real-time data to
anticipate equipment failures, enabling proactive actions to prevent
downtime. It involves anomaly detection, failure prediction, and lifecy-
cle estimation, using techniques like regression, classification, and deep
learning to provide timely alerts and optimize maintenance schedules.
Traditional machine learning employs algorithms for pattern recogni-
tion and computational learning, typically using handcrafted features
and statistical models. Deep learning, a subset of machine learning, uses
artificial neural networks with many layers (‘“deep” architectures). As
shown by Fig. 12, the amount of deep learning algorithms increased
in the last years, especially the last five years. The main reason is
that deep learning avoids time-consuming feature engineering and data
manual pre-processing, as both are integrated into the learning process.
Further, the technology involved has evolved and become more easily
used as the required approaches are integrated into common machine
learning frameworks.

Deep Learning for Predictive Maintenance: As deep learning
focuses on the application of artificial neural networks, we discuss them
in detail. Fig. 12 shows which types of artificial neural networks we
identified in the literature research. As can be seen, a wide range of
techniques were applied. This includes approaches using autoencoders,
Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), Generative Adversarial Networks (GANs), and Transformers,
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especially for deep learning. In general, it can be observed that recent
models got more sophisticated, including one instance of Reinforce-
ment Learning (RL) and some Hybrid approaches. Autoencoders find
applications by learning intrinsic patterns from sensor data collected
from machinery. By compressing raw sensor readings into a lower-
dimensional representation, autoencoders enable anomaly detection
and fault identification, aiding in predicting potential breakdowns be-
fore they occur (e.g., Kim, Lee, & Kim, 2021; Sun et al., 2019). RNNs
prove indispensable for predictive maintenance because they can model
sequential data, such as time-stamped sensor readings. By analyzing the
temporal dependencies in sensor data, RNNs can forecast equipment
failures, allowing for proactive maintenance interventions (e.g., Abidi,
Mohammed, & Alkhalefah, 2022; Yam et al., 2001). Often, Long Short-
Term Memory (LSTM) networks as a specialized type of RNNs are used
to address the vanishing gradient problem, and it can be applied in pre-
dictive maintenance by effectively modeling sequential sensor data to
forecast equipment failures based on temporal dependencies (e.g., Ab-
basi, Lim, & Yam, 2019; Chen, Shi, Lu, Zhu, & Jiang, 2022; Nguyen
& Medjaher, 2019). CNNs are well-suited for analyzing images and
visual data from equipment components. In predictive maintenance,
CNNs can detect visual defects, identify wear and tear on parts, and
assist in the early detection of impending failures, ultimately optimizing
maintenance schedule (e.g., De Santo, Ferraro, Galli, Moscato, & Sperli,
2022; Jiang, Dai, Fang, Zhong, & Cao, 2022; Mitici, de Pater, Barros,
& Zeng, 2023; Silva & Capretz, 2019). GANs are increasingly used to
generate synthetic sensor data for training predictive models, making
them more robust and adaptable to different conditions. The synthetic
data can also detect sensor anomalies (e.g., Lu, Du, Qian, He, & Wang,
2022). Transformers play a role in predictive maintenance by handling
multivariate time series data from diverse sensors. Their ability to
capture complex temporal relationships and dependencies is crucial in
accurately predicting equipment failures (e.g., Luca et al., 2023).

Despite their versatility and strong predictive capabilities, deep
learning models come with certain limitations that need to be consid-
ered. A primary challenge is the interpretability of these models, often
called the “black-box” problem, which complicates understanding the
rationale behind predictions and decisions. This lack of transparency
can hinder their adoption in critical maintenance scenarios where
explainability is essential for trust and accountability. Furthermore,
deploying deep learning models requires substantial computational
resources, including high-performance hardware and energy consump-
tion, which may not be feasible in resource-constrained environments.
These limitations highlight the importance of balancing predictive per-
formance with practical considerations, especially in industries where
explainability and cost-efficiency are pivotal.

Hybrid Deep Learning for Predictive Maintenance: Further, some
approaches also combine techniques that differ from the mentioned
categories of deep learning. The authors of Liu et al. (2022) propose
an intelligent predictive maintenance framework for machine tools
using CNN-LSTM, where CNN extracts features from vast IoT-acquired
data, and LSTM models their nonlinear relationships. Another approach
introduces a new predictive maintenance method using improved deep
adversarial learning combining LSTM and GAN (Liu, Tang, Zhu, & Nie,
2021). The LSTM network addresses the issues of vanishing gradients
and mode collapse in GAN, enabling self-detection of abnormal data.
In Bampoula, Siaterlis, Nikolakis, and Alexopoulos (2021), the authors
present a novel approach for prediction and fault detection relying on
autoencoders with LSTM networks to evaluate the operational status of
production equipment. The approach utilizes multiple neural networks,
each trained for a specific label, and capitalizes on the reconstruction
error when the LSTM-autoencoder encounters unfamiliar data. This
work in Dangut, Jennions, King, and Skaf (2023) introduces a new deep
learning method that combines autoencoders and bidirectional gated
recurrent unit networks for addressing infrequent failure predictions.
The autoencoder is tailored and trained to identify these rare failures,
and its output is then input into the convolutional bidirectional gated
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Fig. 12. Overview of the trend in deep learning.

recurrent unit network (type of RNN) to anticipate the next failure
event. The suggested network design, together with the rescaled focal
loss, tackles the issue of data imbalance during training.
Comparisons of Machine Learning for Predictive Maintenance:
The “No Free Lunch” theorem (Wolpert & Macready, 1997) posits
that no single algorithm consistently outperforms all other algorithms
across all possible problem domains. In essence, there is no universally
superior machine learning algorithm, and the best choice always de-
pends on the specific problem and pattern of the data. Accordingly,
several papers compare different machine learning or deep learning
techniques. In the following, we summarize those papers; however,
we do not report the specific performances of the approaches but
rather want to show pointers for the comparison studies. Several studies
evaluate different techniques for RNN. Koprinkova-Hristova, Hadjiski,
Doukovska, and Beloreshki (2011) compared the Elman architecture
with Echo State Networks. The study of Mateus, Mendes, Farinha,
Assis, and Cardoso (2021) focuses on the differences between Gated
Recurrent Units and LSTMs. The authors of Chen, Chen, Liu, Cheng,
and Li (2021) extensively analyze different RNN variations, namely
Vanilla RNN, LSTM, Bidirectional LSTM, and Gated Recurrent Units.
Further studies compare CNNs and RNNs. The study of Zonta, da
Costa, Zeiser, de Oliveira Ramos, Kunst, and da Rosa Righi (2022)
compares traditional CNNs with a range of RNN structures, namely
Gated Recurrent Units, the straightforward Simple Recurrent Network,
and the LSTMs. The work of Kumar Sharma et al. (2022) analyzes the
performance of Temporal Convolutional Networks (a type of CNNs),
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hybrid CNN-LSTM networks, and meta-heuristically optimized LSTMs.
Similarly, the authors of Silvestrin, Hoogendoorn, and Koole (2019)
provide an examination of LSTMs and Temporal Convolutional Net-
works. The authors of Ding, Yang, and Yang (2019) contribute to the
discourse by focusing on the differences between autoencoders and
RNNs, specifically emphasizing the Deep Bidirectional Gated Recurrent
Units. The studies mentioned so far, compared solely deep learning
approaches. The work of Del Buono, Calabrese, Baraldi, Paganelli, and
Regattieri (2022) casts a wider view, juxtaposing Multilayer Perceptron
(i.e., traditional neural networks) with LSTMs and CNNs as examples
for deep learning approaches. Serradilla, Zugasti, Ramirez de Okariz,
Rodriguez, and Zurutuza (2021) compare Extreme Learning Machines,
a feedforward neural network variant, with autoencoders. This inclu-
sion is a gentle reminder that while RNNs and CNNs might dominate
the discourse, the broader machine-learning field remains vast and
varied.

Summary: Machine learning models, particularly simpler ones,
have an edge over deep learning regarding interpretability. They offer a
clear understanding of the key features driving predictions. Moreover,
they often require less data to make reasonable predictions and are
less computationally intensive, making them more efficient and suitable
for devices with limited resources. However, machine learning models
have their drawbacks when compared to deep learning. They rely
heavily on time-consuming feature engineering and domain knowledge.
In contrast, deep learning models automatically extract features from
raw data. While traditional methods may outperform simpler tasks with
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structured data, deep learning excels with large, complex, unstructured
data like images and text, capturing intricate structures for high-level
abstraction. Furthermore, deep learning models tend to improve as data
availability increases, outpacing machine learning models, which often
plateau after a certain data size. However, in contrast to traditional
machine learning, the required amount of data for deep learning ap-
proaches is way larger, ending up in millions of required data points.
Independent from the decision for traditional machine learning or
deep learning, according to the “No Free Lunch” theorem (Wolpert &
Macready, 1997), it is important to compare different techniques to find
the one that best suits the specific application and data pattern.

5.4. Implications for practitioners

In this section, we describe several aspects of the framework from a
practitioner’s point of view. This shows how such a framework can help
practitioners to decide which aspects are relevant for implementing
predictive maintenance.

With the progression in sensor technology making various parame-
ter sensors more cost-effective, a significant portion of research (69%)
relies on sensor-driven monitoring. Such monitoring employs diverse
sensors, like those measuring vibration and temperature, to gather
pertinent data (Orhan et al.,, 2006). Nowadays, manufacturing ma-
chines usually have over 100 sensors that record different metrics in
crucial machine components. In general, sensor technology appears
well-suited for a comprehensive predictive maintenance system due
to its capability for effective ongoing monitoring. In many instances,
the makers of these production machines already offer analytical tools
designed to identify the wear and tear patterns of essential machine
components.

In academic writings, the aspect of maintenance scope should be
explicitly tackled. This dimension determines whether maintenance can
entirely restore a machine’s condition or only do so partially. Such a
narrow perspective might suffice for studies primarily concentrating
on degradation patterns. However, every maintenance activity in real-
world applications necessitates understanding its scope since it could
affect subsequent predictive maintenance observations. The notion that
maintenance brings a machine back to a pristine state is not of much
concern: after parts replacement, the machine is assumed to be in
brand-new condition. However, incomplete maintenance could have
ramifications for the predictive maintenance workflow. It could alter
future degradation patterns if we presume that the machine does
not revert to a “brand-new” state post-maintenance. This is espe-
cially relevant for machine learning techniques, as the degradation
process’s recognition might need recalibration, learning, or changing
the prediction algorithm. Future studies must consider these long-
term predictive maintenance and degradation trajectories. For now,
professionals should recognize the potential effects of maintenance on
subsequent degradation detection.

Fault identification encompasses the extended role of diagnostics.
The central premise involves analyzing collected monitoring data to
discern potential causes for upcoming malfunctions. Data from vibra-
tion or other machine monitoring activities is utilized for diagnostic
evaluations. The viability and precision of a fault identification strategy
are contingent upon the extent of monitoring, meaning that observ-
ing more machine elements individually enhances the likelihood of
pinpointing the primary reason for a future malfunction (De Faria
et al.,, 2015). While academic pursuits largely center on degradation
patterns, pinpointing the primary cause can be crucial for businesses,
particularly when faced with unusual or recurrent wear of certain
components. Making the identified malfunction comprehensible poses a
challenge, demanding the algorithm interpret specific data and provide
an intelligible summary. Achieving this is no simple task; it demands
understanding degradation patterns and insights into the process, as
factors like process parameters and attributes of manufactured items
can affect machine component wear.
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Research’s emphasis on degradation patterns has led to a somewhat
narrowed approach towards scheduling. We pinpointed two crucial ac-
tions in this domain: dynamic action scheduling and dynamic spare part
readiness. While the former occasionally garners attention, the latter is
touched upon by only a handful of research studies. Incorporating both
actions is challenging, especially since they necessitate understanding
the primary cause of degradation. This becomes even more intricate in
multiple-part scenarios, where one component’s wear and tear might
affect others. Some of these critical components might not be monitored
under the predictive maintenance strategy. Furthermore, timing is of
the essence. Spare parts must be ordered well in advance to ensure their
availability before maintenance, especially if they need to be readily
stocked. Maintenance tasks are sometimes outsourced, making ample
lead time imperative for proper planning. For instance, an industry
associate once said they needed a two-week notice to coordinate main-
tenance with the relevant firm. All these facets are integral in practical
applications, with the prediction time frame for degradation being a
pivotal research topic.

During the literature review, system size emerged as a significant
parameter. This category delves into how the predictive maintenance
methodology is envisioned or expected to function in real-world ap-
plications. The review discerned two main traits: Single-Component
Systems and Multi-Component Systems. While academia tends to focus
on individual system parts, a broader perspective encompassing multi-
ple components or levels is crucial in practical settings. In processes like
batch production of food products, subsequent machines might have
interdependencies. This adds another layer of intricacy to the process.
Such intricacies necessitate a comprehensive approach to data manage-
ment. Although much of the research is centered around localized data
storage, in practice, accumulating data from (edge) servers might offer
a more cohesive data overview.

As discussed in the previous subsection, the set of identified ap-
proaches for machine learning in degradation prediction is large. One
reason is the “No Free Lunch” theorem (Wolpert & Macready, 1997),
i.e., the machine learning algorithm must be chosen depending on the
specific data pattern. It is essential to know about the assumed degrada-
tion process to support this. This covers either the direct modeling of a
machine’s degradation process (e.g., based on historical data) or a pre-
defined assumption about its deterioration course (e.g., assumptions of
the machine producer). We identified the frequent use of the following
patterns: Random Failure Assumption, Weibull Distribution Assump-
tion, Linear Degradation Assumption, and Exponential Degradation
Assumption. Having an assumption about the degradation process helps
limit the possible prognostic techniques. Further, adaptive software
systems (Krupitzer, Roth, VanSyckel, Schiele, & Becker, 2015) might
support the choice of the prognostic technique. For example, in Zuefle
et al. (2019), we describe an approach for a recommendation system
for choosing at runtime the best algorithm for time series forecasting
depending on the characteristics of the data that should be analyzed.
Such a recommendation system can be integrated directly, or the
corresponding workflow for setting up the recommendation system can
be used with the relevant set of algorithms. Similarly, in Ziifle, Moog,
Lesch, Krupitzer, and Kounev (2022), we describe a workflow that first
identifies the machine’s activities (hence, the production process) and
chooses, depending on this profile, a suitable algorithm for degradation
prediction.

5.5. Threats to validity

In the following, we discuss several threats to validity that might
impact the quality of this study and further evaluate their potential
impact.

We conducted a structured literature review to provide a structured
analysis. One of the authors read and classified each identified paper;
unclear classifications were discussed by all authors. We followed a
well-defined approach. This significantly helps to reduce human bias in
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the process. Still, subjective bias cannot be entirely excluded as humans
are involved.

The choice of keywords might be restricted as we fully focus on
“predictive maintenance” as a keyword. Although this survey revealed
many relevant publications, we did not explicitly search with keywords
concerning variations of the term or other similar concepts. This may
lead to a lower outcome of search results. However, it is common
practice to narrow the scope to handle a topic’s complexity.

Further, the free web search using a search engine (rather than a
scientific database) provided many results, including scientific publi-
cations, press releases, offered product ranges, project announcements,
explanation videos, and more. Despite our great efforts for this survey,
we could not analyze all search results in detail and to the fullest extent.
Therefore, non-peer-reviewed applications (e.g., company whitepaper)
are not analyzed even though they might deliver valuable insights.
However, our analysis also showed that non-scientific publications
from the industry often missed the required depth of detail to ana-
lyze and classify those publications thoroughly. Hence, the additional
contribution would be limited.

Although the number of papers in the research field of predictive
maintenance ranges into the thousands, the number of papers in this
survey represents an informative cross-section of the topic, focused on
works in the field of Industry 4.0. Hence, the framework provides a
comprehensive overview of predictive maintenance. The concept of
deducing attributes, grouping them into categories, and building a
framework related to a specific topic is very beneficial for gaining
a structured and deeper understanding of a subject and revealing
potential gaps in the existing literature. The framework structures and
classifies papers published between 1993 and 2023. We make no claims
of the framework’s or attributes’ completeness.

6. Related work

Predictive maintenance has gained more importance with the in-
creased availability of sensors for data collection and higher compu-
tational capacity for real-time data analytics. Hence, various surveys
and overviews presented the state of the art in various topics related
to predictive maintenance. The following section discusses the aspects
covered and distinguishes our work.

Several surveys focus on remaining life estimation, e.g., Si et al.
(2011) or Zhang, Si, Hu, and Kong (2015). Those works focus on
predicting when one or several components might fail, which is an
integral part of predictive maintenance. Mostly, the works focus on
either data-driven or statistical approaches.

Estimating the remaining life describes only the prediction of when
an error in a component might appear. Further, a diagnostic of the
resulting errors and how this influences the production is important.
Several overviews in this regard are available. Bousdekis et al. high-
light the state of the art for decision-making for predictive mainte-
nance (Bousdekis, Lepenioti, Apostolou, & Mentzas, 2019). Other works
(e.g., Baur, Albertelli, & Monno, 2020) target machines’ prognostics and
health management.

Industry 4.0 relies on sensors for real-time data collection and
analysis, enabling automation, predictive maintenance, and process
optimization in smart factories. Several works provide an overview
of the Industry 4.0 concept, e.g., Zonta, da Costa, da Rosa Righi, de
Lima, da Trindade, and Li (2020) or Dalzochio et al. (2020). Often,
industry 4.0 approaches integrate technology known from IoT for pre-
dictive maintenance. Some survey papers highlight this combination,
e.g., Compare, Baraldi, and Zio (2020) or Hafeez, Xu, and Mcardle
(2021).

Recently, the application of machine learning gained more impor-
tance in the field. Several overviews highlight specific topics concern-
ing machine learning. Some works present a general overview for
applying machine learning, e.g., Carvalho, Soares, Vita, da P. Francisco,
Basto, and Alcala (2019) or Cinar, Abdussalam Nuhu, Zeeshan, Korhan,
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Asmael, and Safaei (2020). Other focus on more specific topics, such as
transfer learning (Azari, Flammini, Santini, & Caporuscio, 2023), con-
tinual learning (Hurtado, Salvati, Semola, Bosio, & Lomonaco, 2023),
explainable artificial intelligence (Vollert, Atzmueller, & Theissler,
2021), specific unsupervised learning techniques (Amruthnath & Gupta,
2018), or deep learning (Zhang et al., 2019; Zhao, Yan, Chen, Mao,
Wang, & Gao, 2019).

Further works target a more specific topic or machine/industry
domain. For example, Wang, Tsui, and Miao present an overview
of vibration-based bearing and gear health indicators (Wang, Tsui,
& Miao, 2018). Lee et al. target the field of rotary machines (Lee,
Wu, Zhao, Ghaffari, Liao, & Siegel, 2014). In contrast, we focus on
different production machines, not limiting them to a specific type of
machine. As a different approach, You, Chen, Hu, Liu, and Ji (2022)
present an overview of the application of digital twins for predictive
maintenance. In Xia, Zheng, Li, Gao, and Wang (2022), the authors
discuss graph-based approaches to predictive maintenance.

Unlike existing overviews, we strive to encompass a wider range
of methodologies. Our review includes remaining life estimation, root
cause analysis, and scheduling facets rather than an isolated view of
one of those topics. We concentrate on developing machine learning
applications but also incorporate the analysis of applied statistical
approaches. Further, we incorporate practical aspects like managing
complexity and reference datasets as benchmarks, providing a holistic
perspective.

7. Future work

In the discussion of this survey we identified multiple research
gaps that should be the focus of future research. This section provides
outlines for the next steps of addressing the identified research gaps.

Enhancing complexity of PAM applications: The first actionable
point of this research gap is to aid the discussion on complexity by
setting a discussion baseline. There is an article that aims at establishing
a taxonomy that can be used for categorizing the complexity of any
PdM application (Meitz, Heider, Scholer, & Hahner, 2024). The authors
give an overview of existing definitions of complexity in the field and
refer to other review papers highlighting the lack of complexity in
recent research. A further step from this article is to elaborate on
the taxonomy, for example by including measurable metrics instead of
continuous scales. Further, a more comprehensive overview of appli-
cations that have been categorized inside of this taxonomy could aid
further discussion. As mentioned in the conclusion of that article, the
taxonomy will aid the discussion and provide a tool to identify the lack
or presence of complexity in a data-driven application. This in turn
will further highlight open gaps in applications, that can be selected
as subject for further research.

By incorporating complex machinery in future research projects, the
necessity for more sophisticated diagnosis and prediction will become
dominant. Simple anomaly detection models are not sufficient for fail-
ure diagnosis in a machine consisting of multiple sensors and actuators,
which could lead to research for more sophisticated models to use in
real-world scenarios.

Creation of new public benchmark datasets: The creation of
benchmark datasets is one step that could enable research on the
behavior of existing models in new and more complex applications.
Among those could be machines consisting of multiple interdependent
actuators and sensors, such as product automation systems or produc-
tion lines. There is one article that describes the creation of a dataset
based on sensor recordings of a fischertechnik factory model (Klein &
Bergmann, 2019). Analogous to this approach, the just mentioned tax-
onomy article (Meitz et al., 2024) proposes the use of easily accessible
product automation systems, such as hobby-grade cnc mills, 3d printers
or coffee makers for dataset generation. These machines can exe-
cute complex processes and consist of multiple different components,
creating new challenges in the generated datasets for benchmarking
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PdAM models. By collecting these data from easily accessible machines,
contrary to most industrial research projects, the resulting datasets do
not contain proprietary information and can be published.

Improvement of remote infrastructure in PdM applications:
Most research projects consist of efforts for data collection and analysis
at the same time. By dividing this into two separate steps, first estab-
lishing a stable and long-lasting monitoring solution and afterwards
focusing on the analysis of the collected data, this issue could be ad-
dressed. We highly recommend implementing cloud-based monitoring
solutions as a basis for collecting operational data of machinery that is
subject to future PdM research. By including more than one instance
of a machine, e.g. monitoring a fleet of the same machine type, the
resulting datasets contain more variation and enable more sophisticated
model training.

Comparative analysis of model performances and applications:
In this survey paper, we did not include an in-depth comparison of
model performances for PAM. This is due to the fact that a comparison
of different models in PAM remains a major challenge. Most of the
reviewed applications are set in a unique environment, with proprietary
datasets, different machines and models that have been fine-tuned to
the specific application domain. In the majority of the articles, there is
no exact explanation of the implementation details. The reproducibility
of the results is hard to achieve without access to all of the original
authors resources. We again refer to the effort of creating a taxonomy
for categorization of PAM applications. By using such a taxonomy to ex-
actly describe the complexity of a given system, similar applications can
be identified and compared. Afterwards, a group of similar applications
can be used for model performance evaluation.

This enables another way of implementing PdM, which would con-
sist of first identifying the type and complexity of the available data,
and based on this knowledge compare the application to similar other
ones. If there already are models that work well with the type of data,
these can be seen as a starting point for development.

Focus not only on neural networks and machine learning for
future applications: Machine Learning is a tool that has proved its
versatility and capability of dealing with data. This knowledge was
gained by researching the application of machine learning, especially
deep learning using neural networks, in many different scenarios and
articles. As shown in the previous discussion of this review, most of
the recent applications are about implementing deep learning models
for PAM. However, there are scenarios in which this may not be the
most useful tool. Especially in simple applications, applications with a
computational power constraint or in the case of low data availability,
simple models are often more appropriate. There is still an open gap
in researching classical models for the different tasks in predictive
maintenance. This is why we propose to further focus on implementing
simpler models in scenarios that do not necessitate big deep learning
models.

8. Conclusion

The present survey represents a comprehensive analysis of the topic
of predictive maintenance. Predictive maintenance distinguishes itself
from conventional maintenance policies by attempting to detect an
anomaly of a machine or component and predict when the failure might
occur in order to schedule maintenance actions in advance efficiently.
Minimized downtime, prolonged machine life, increased productivity,
and reduced costs are merely a few promising prospects of predictive
maintenance. The objective of the present survey is to detect and
categorize a variety of aspects with regard to the comprehensive topic
of predictive maintenance. Given the extensive body of research and
space constraints, we could not include a comparative analysis of the
studies or delve into the distinctions between the mathematical models
and applied machine learning techniques or algorithms — this would
be an interesting possibility for future work.
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For the survey, 249 papers were analyzed and categorized. The
result is a data grid with 73 attributes, which are clustered into the fol-
lowing 9 categories: Condition Monitoring, Maintenance Scope, Degra-
dation Process, Fault Detection, System Size, Scheduling, Prognostic
Techniques, Data Handling, and Evaluation. These categories and their
corresponding attributes built a framework for predictive maintenance.
The framework structures and classifies papers published between 1993
and 2023. The framework does not claim completeness; neither are the
attributes within each category. Nevertheless, the framework of the
present survey covers relevant aspects and facets of predictive main-
tenance and provides a comprehensive introduction to the research
field. We decided to focus on approaches that apply machine learning,
as recently, new algorithms were used, and fewer overview works
exist. However, the analysis can be extended to other categories, like
statistical models or hybrid approaches.

The framework of the present survey shows that further research
might be appropriate in certain directions of the topic. This survey
specifically discussed three points: application complexity, data han-
dling, and the trend towards deep learning models.

Regarding application complexity, this study finds that future ap-
plications should incorporate more complex machines regarding com-
ponents and applications. Additionally, the implementations often lack
completeness, with only a part of the predictive maintenance paradigm
realized. Data handling still suffers from the lack of comparability over
different applications. More benchmark datasets, such as NASA Turbo-
fan, should be available to compare different predictive maintenance
systems. However, those benchmark datasets need to represent differ-
ent applications and, hence, various data patterns. By using cloud and
remote infrastructure for data collection, future projects could profit
from a more flexible approach to data processing and the collection of
information from multiple devices. When looking at the trend towards
deep learning, one must not forget that simpler machine learning
algorithms exist and sometimes have the edge over the big neural net-
works, especially when the results’ interpretability and explainability
are highly relevant. Depending on the amount and structure of data,
an individual decision has to be made to select the best model for each
use case.

By conducting more focused research on realistic implementations,
the paradigm of predictive maintenance could be implemented more
effectively and for a broader spectrum of applications in the future.
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