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A B S T R A C T

A new retrieval method, based on a hybrid decomposition technique and the extended (x-) Fresnel model, is 
proposed for estimating trunk permittivity from polarimetric P-band SAR observations. P-band SAR observations 
of NASA’s Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission campaign are 
employed to test the proposed retrieval method at individual measuring stations across the U.S. between 2013 
and 2015. In order to test the feasibility of the x-Fresnel model for such analyses and its sensitivity to required 
input parameters, a detailed sensitivity study revealed that at P-band frequencies there is a need to account for 
scattering losses, phase differences, as well as potential depolarization effects due to surface roughness. The 
decomposed dihedral scattering component increases with increasing vegetation cover from barren land at one 
station (control station) to homogeneously forested stations (target stations). Overall, no clear correlation be
tween the amount of dihedral scattering and estimated trunk permittivity could be found, which is expected due 
to the architecture of the employed method. With the proposed approach, the estimated trunk permittivity varies 
between 2.4 and 59.7 [-], where the barren land and less dense forested stations show lower trunk permittivity. 
At these stations, the dihedral scattering is not the dominant scattering mechanism within the total SAR signal, 
which violates the physics of the proposed approach. At stations with dominant dihedral scattering, reasonable 
correlations (with r ranging from ±0.1 to ±0.64) between estimated trunk permittivity and AMSR2 relative 
water content (RWC), MODIS evapotranspiration (ET), in-situ measured relative humidity (RH), and air tem
perature (Tair) could be found. These parameters are used for analyzing the feasibility of the proposed approach 
as no in-situ trunk moisture measurements are available for the investigated stations and years. Hence, P-band 
SAR observations that exhibit sufficiently high dihedral scattering portions can be used for estimating trunk 
permittivity and extend the potential applications of remote sensing for climate research.

1. Introduction

Vegetation serves as a dynamic component within the soil-plant- 
atmosphere system (SPAS), influencing energy, carbon, and water 
fluxes at various scales (Arora, 2002; Orlowski et al., 2023). Vegetation 
moisture content is a key parameter in the regulation of energy exchange 
processes within ecosystems. It directly impacts transpiration rates, and 
hence, contributes to the redistribution of water vapor in the atmo
sphere, influencing regional precipitation patterns and the hydrological 
cycle. Through transpiration, vegetation modulates surface tempera
tures and influences local climate conditions. Further, changes in 
vegetation moisture content can alter canopy throughfall, runoff 

generation, soil moisture dynamics, and ground water recharge. These 
affect water availability and ecosystem resilience to drought and other 
extreme events (Notarnicola and Posa, 2007; Orlowski et al., 2023; 
Ruichen et al., 2023). Therefore, accurate estimation of vegetation 
moisture content, particularly at the trunk level, is essential for under
standing forest ecosystems, modeling energy balance dynamics, and 
predicting climate responses (Konings et al., 2021). In the context of 
environmental monitoring, understanding vegetation moisture content 
is crucial for assessing ecosystem health and resilience (Gaulton et al., 
2013). Moisture stress in vegetation can serve as an early indicator of 
environmental stressors, such as drought, heatwaves, or land use 
changes (Gaulton et al., 2013; Konings et al., 2021). Besides the 
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environmental importance, vegetation moisture influences interactions 
with electromagnetic waves, including those emitted and received by 
Synthetic Aperture Radar (SAR) systems. For one, the amount of vege
tation moisture in canopy and trunk is directly related to the waves 
ability to penetrate the vegetation (Ulaby and Long, 2014; Fluhrer et al., 
2022). Second, SAR observations are sensitive to vegetation, mainly due 
to the two-way canopy attenuation of reflected signals from the soil 
surface and the direct volume scattering from the canopy (Van Emmerik 
et al., 2015).

Besides biophysical variables, such as the vegetation water content 
and above ground biomass, several indices exist, such as the normalized 
difference vegetation index (NDVI), leaf area index (LAI), and normal
ized difference water index (NDWI). These have been used in remote 
sensing and ecological studies for characterizing vegetation properties 
as well as understanding ecosystem dynamics and environmental pro
cesses (Gao, 1996; Gu et al., 2008; Yihyun Kim et al., 2012). The vari
ables and indices are mainly derived from optical, thermal, infrared, 
multi- and hyperspectral remote sensing, i.e., Landsat (Wulder et al., 
2019), Terra/Aqua Moderate Resolution Imaging Spectroradiometer 
(MODIS) (e.g., Didan, 2021), and Sentinel-2 (Misra et al., 2020). In the 
field of active microwave remote sensing, only few attempts have been 
made in the past to retrieve vegetation moisture from SAR observations, 
e.g., (Jagdhuber, 2016; Quemada et al., 2021; Weiss, 2015). The recent 
review article of (Quemada et al., 2021) on vegetation water content 
monitoring based on remote sensing techniques proved the need for a 
remote sensing based method for estimating vegetation moisture from 
microwave SAR observations directly. That is why we are proposing an 
improved method for estimating trunk permittivity, the permittivity of 
the stem layer of woody plants between the ground surface and the tree 
canopy, from airborne polarimetric P-band SAR observations.

The motivation for this study originates from a previous study, where 
we have analyzed airborne P-band SAR signals across different land
cover classes within the U.S. (Fluhrer et al., 2022). The aim of that study 
was the proof-of-concept of a revised hybrid decomposition method 
(combined eigen and model-based technique), specially designed for 
P-band (430 MHz) wavelengths. With this proposed hybrid decompo
sition method, we improved the removal of the vegetation component 
from the total SAR signal, a well-known problem within polarimetric 
decomposition techniques (He et al., 2016; Sato et al., 2012; van Zyl 
et al., 2011). By accounting for many different vegetation shapes and not 
just one as in many previous studies (Jagdhuber et al., 2015; Alemo
hammad et al., 2018), the vegetation component was modeled in a more 
realistic way. All these major adaptions led to a more robust and solid 
decomposition of the total P-band SAR signal into the individual scat
tering components from soil, vegetation and their combination (dihe
dral). The reader is referred to (Fluhrer et al., 2022) for more details.

One of the main findings of (Fluhrer et al., 2022) was that over dense 
forests, the normalized dihedral scattering component is the most 
dominant scattering mechanism within the total SAR signal. This finding 
was confirmed by other previous studies, which found predominantly 
dihedral scattering in strongly vertically oriented landcover classes like 
forests (Lucas et al., 2004; Moghaddam and Saatchi, 1995). Here, we 
want to conduct a follow-on study and analyze the decomposed dihedral 
scattering component from P-band SAR observations in perspective of 
estimating trunk permittivity. For that, we focus only on the landcover 
class ‘forest’ and try to evaluate which model is most suited for simu
lating P-band backscatters that are dominated by dihedral scattering 
scenarios. Further, we analyze whether trunk permittivity can be esti
mated from the decomposed dihedral scattering component, and how 
well the P-band SAR estimated trunk permittivity fits to in-situ field 
observations and remote sensing-based retrievals.

There have already been few attempts to estimate soil and trunk 
moisture from L-band (1.4 GHz) SAR signals over agricultures based on 
the dihedral scattering component (Weiss, 2015; Jagdhuber, 2016). 
However, these studies, for one, did apply less enhanced decomposition 
methods (i.e., referring to description of volume scattering component 

as well as static input parameters) for extracting the dihedral scattering 
component from the total SAR signal. Here, the enhanced decomposition 
method from (Fluhrer et al., 2022), which we use and adapt, improves 
the decomposition of the total SAR signal into the individual scattering 
components, and hence, improves the subsequent moisture retrieval. 
The adapted decomposition method allows, i.e., many different vege
tation shapes depending on land cover conditions and variable input 
parameters. Second, in the previous published approaches, several as
sumptions have been made on important input parameters (e.g., con
cerning scattering losses, phase differences, or potential depolarization 
effects due to surface roughness) during model simulations (more details 
in sec. 3.). Some of them are justified because of the analysis of L-band 
wavelengths, some of them are made for the sake of simplicity. In this 
study, we show that several of these assumptions do not hold when 
analyzing P-band SAR signals. We adapt them accordingly based on 
detailed sensitivity studies and thorough model analyses (Sec. 4.).

2. Data

In this study, fully polarimetric P-band (430 MHz) SAR observations 
with a spatial resolution of ~90 m from the National Aeronautics and 
Space Administration’s (NASA) Airborne Microwave Observatory of 
Subcanopy and Subsurface (AirMOSS) mission, conducted between 
2013 and 2015 across North and Central America, are employed. We 
focus on the AirMOSS monitoring sites within the U.S. that are covered 
by forests, namely Howland Forest, ME, Harvard Forest, MA, Duke 
Forest, NC, and Metolius, OR. While three sites are located on the east 
coast, one site is located on the west coast of the U.S. (Fig. 1). Hence, 
Metolius is rather characterized by a temperate climate with dry sum
mers (Csb), almost similar to Duke with a temperate climate but mild 
summers (Cfa), while Harvard and Howland are characterized by cold 
humid continental climate with warm summers and significant precip
itation in all seasons (Dfb) (Peel et al., 2007). This means that Howland 
and Harvard are described by a boreal transitional or mixed forest, Duke 
is covered by a temperate or mixed forest as well as croplands, while 
Metolius is characterized by a temperate, evergreen needle-leaf forest 
(Alemohammad et al., 2018).

Due to missing input parameters at comparable spatial resolution to 
the AirMOSS observations, we focus only on single stations within each 
monitoring site, where in-situ measurements are available. For one, in- 
situ measured soil moisture is used as input to the retrieval method for 
estimating trunk permittivity. Second, in-situ measurements of relative 
humidity (RH; [%]) and air temperature (Tair; [◦C]) are used for com
parison later on.

The locations of in-situ measuring stations are shown in Fig. 1. It can 
be seen that the forest density varies at each site around the employed 
stations. We have no forest around the station Durham 11 W (control 
station) from the US Climate Reference Network (US-CRN) (Bell et al., 
2013) within the SAR pixel footprint at monitoring site Duke, NC 
(Fig. 1B), partly sparsely forested stations within Metolius, OR, from the 
AmeriFlux (2022) and Cosmic-ray Soil Moisture Observing System 
(COSMOS) (Montzka et al., 2017) networks (Fig. 1A), and homoge
neously dense forested stations within Harvard Forest, MA, and How
land Forest, ME, from the AmeriFlux and COSMOS networks or the 
Harvard University (Munger and Hadley, 2023) (Fig. 1C and D).

Due to the lack of in-situ measured trunk permittivity observations at 
the test sites between 2013 and 2015, we focus on the comparison of 
retrieval results with suitable (trunk permittivity related) parameters of 
the soil-plant-atmosphere system (SPAS). For that, we are using relative 
water content (RWC; [%]) of vegetation at 10 km spatial resolution from 
the Advanced Microwave Scanning Radiometer 2 (AMSR2) C-band 
radiometer sensor of the Japan Aerospace Exploration Agency (JAXA) 
(Jeu and Owe, 2014), and evapotranspiration (ET; [mm/day]) at 500 m 
spatial resolution from NASA’s Moderate Resolution Imaging Spectror
adiometer (MODIS) sensor on Terra (Running et al., 2017). This is no 
direct validation of the proposed method and emphasizes the need for 
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in-situ trunk permittivity measurements in the future. The time series of 
in-situ measured Tair and RH as well as RWC are smoothed over time and 
cleaned for daily dynamics using the Savitzky-Golay filter (Savitzky and 
Golay, 1964) with a window size of 21 (days), while for the ET time 
series a window size of 3 (21 days) is used, due to the 8-daily temporal 
resolution.

3. Methods

For the retrieval of trunk permittivity (εt, [− ]) from P-band SAR 
signals, the decomposed dihedral scattering component is compared to 
model simulations of the dihedral scattering mechanism. Through the 
best fit (minimum error approach) between the remote sensing infor
mation and the model simulations, the final permittivity is estimated. 
The comparison of data and model is performed on the level of the 
dihedral scattering angle αd and the dihedral scattering intensity fd. Both 
parameters can be retrieved by decomposing the P-band SAR signal as 
well as from forward scattering model simulations. In this study, we 
tested the common known Fresnel model and the extended (x-) Fresnel 
model for simulating the dihedral scattering components.

3.1. Fresnel scattering model

For simulations of the model-based dihedral scattering angle αFresnel
d 

and dihedral intensity fFresnel
d , the well-known Fresnel model, e.g., 

(Freeman and Durden, 1998; Ulaby and Long, 2014; Yamaguchi et al., 
2006), is used.

First, the horizontal (1) and vertical (2) reflection coefficients for 
respective soil (s) and trunk (t) are calculated based on the incidence 
angle ϴi as well as the permittivity ε (Cloude, 2010; Jagdhuber, 2016): 

Rs/t
H =

cosϴs/t −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εs/t − sin2ϴs/t

√

cosϴs/t +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εs/t − sin2ϴs/t

√ , (1) 

Rs/t
V =

εs/t cosϴs/t −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εs/t − sin2ϴs/t

√

εs/t cosϴs/t +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

εs/t − sin2ϴs/t

√ , (2) 

with ϴs = ϴi and ϴt = π/2 − ϴi.
Second, the model-based αFresnel

d and fFresnel
d can be estimated 

(Jagdhuber, 2016): 

αFresnel
d =

RsHRtH − RsVRtVeiφ

RsHRtH + RsVRtV eiφ , (3) 

fFresnel
d =

mD
2

2
⃒
⃒RsHRtH + RsVRtVeiφ

⃒
⃒2, (4) 

with 

mexpo
D = e− 2k*s*cosϴi , (5) 

mGauss
D = e− 2k2*s2*cosϴi

2
. (6) 

The loss factor mD [− ], for exponential or Gaussian autocorrelation 
function (ACF) respectively, accounts for scattering losses (e.g., due to 
roughness) at the soil plane on the dihedral scattering intensity. Besides 
ϴi, mD depends on the wave number k [cm− 1] and the vertical root mean 
square (RMS) height s [cm] in order to reflect natural, lossy surfaces with 
variable roughness (Jagdhuber, 2016). k is dependent on the 

wavelength (~69.7 cm at 430 MHz) of the employed SAR data and set to 
k = 2π/λ = 901.2 cm− 1 in this study. The phase angle φ [◦] in the term 
eiφ of equations (3) and (4) expresses the phase differences between 
horizontal and vertical polarized backscatters (Jagdhuber, 2016). For 
the assumption of negligible propagation in oriented vegetation, as 
emphasized in previous L-band studies (Weiss, 2015; Jagdhuber, 2016), 
φ = 0◦ and hence, eiφ becomes zero. Whether this assumption holds also 
for P-band backscatters will be analyzed in more detail in sec. 4.

3.2. Extended fresnel scattering model

Complementary to the Fresnel model (Sec. 3.1.), we are additionally 
using the x-Fresnel model from (Jagdhuber, 2016) in order to examine 
the most suitable scattering model for P-band analyses. The x-Fresnel 
model computes the Fresnel reflection coefficients of the soil and trunk 
scattering plane in the same way as the standard Fresnel model (Eqs. (1) 
and (2)), but additionally accounts for potential phase differences be
tween horizontal and vertical polarized backscatters by calculating the 
model-based dihedral scattering angle αx− Fresnel

d and intensity fx− Fresnel
d in 

a more sophisticated way (Jagdhuber, 2016): 

αx− Fresnel
d =TD

12
/
TD

22, (7) 

fx− Fresnel
d =mD

2* TD
22, (8) 

with 

TD
12 = −

1
4

(
Rs

V
2
− Rs

H
2
)(

Rt
V

2eiφ +Rt
H

2
)

sinc(2θ1)

−
(

Rt
V

2ei2φ − Rt
H

2
)( 1

16

(
3Rs

V
2
+2Rs

VRs
H +3Rs

H
2

+
(
Rs

V − Rs
H
)2sinc(4θ1)

))

,

(9) 

and 

TD
22 =

1
16

((
2Rs

VRs
H

(
Rt

V
2ei2φ +6Rt

VRt
Heiφ +Rt

H
2
)

+Rs
V

2
(

3Rt
V

2ei2φ +2Rt
VeiφRt

H +3Rt
H

2
)

+Rs
H

2
(

3Rt
V

2ei2φ +2Rt
VeiφRt

H +3Rt
H

2
))

+4
((

Rs
V

2
− Rs

H
2
)(

Rt
V

2ei2φ − Rt
H

2
)

sinc(2θ1)
)

+
((

Rs
V − Rs

H
)2( Rt

Veiφ − Rt
H
)2sinc(4θ1)

))
.

(10) 

Here, the rotation limit angle θ1 [◦] is used ‘to account for soil- 
roughness induced depolarization’ (Jagdhuber, 2016). In previous 
L-band studies over agricultural areas, θ1 was always assumed to be 
zero, neglecting any potential depolarization due to surface roughness 
(Weiss, 2015; Jagdhuber, 2016). How this rotation limit angle affects 
the simulation of dihedral scattering components at P-band will be 
analyzed in sec. 4.

3.3. Hybrid decomposition technique

For separating the total P-band SAR signal into individual scattering 
components, the hybrid decomposition method from (Fluhrer et al., 
2022) is employed. However, instead of using the extracted soil scat
tering component for soil moisture estimation as in (Fluhrer et al., 
2022), the focus is on the dihedral scattering component for analyzing 
the potential to estimate trunk permittivity.

Fig. 1. Overview of the eight employed in-situ measuring stations within each ~90 m x ~90 m SAR footprint. A) Metolius, OR, with the stations US-Me2, US-Me6, 
and Metolius from the AmeriFlux and COSMOS network, respectively. B) Duke Forest, NC, with the station Durham 11 W from the US-CRN network. C) Harvard 
Forest, MA, with the stations Harvard Forest and EMS from the COSMOS network and the Harvard University, respectively. D) Howland Forest, ME, with the stations 
US-Ho1 and Howland from the AmeriFlux and COSMOS network respectively. Optical images are from Google Earth Pro© with the respective recording dates in the 
lower right corners. Political state boundaries of the U.S. in the upper plot are from (Homeland Infrastructure Foundation-Level Data (HIFLD), 2012).
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As described in (Fluhrer et al., 2022), the polarimetric coherency 
matrix [T], based on co- and cross-polarized SAR signals, is decomposed 
into the three individual components of surface [Ts], dihedral [Td] and 
volume [Tv] scattering (Jagdhuber et al., 2015; Fluhrer et al., 2022): 
⎡

⎢
⎢
⎣

T11 T12 T13

T*
12 T22 T23

T*
13 T*

23 T33

⎤

⎥
⎥
⎦= [Ts] + [Td] + [Tv], (11) 

where the superscript * denotes the complex conjugate.
By assuming reflection symmetry (since pixels, where this assump

tion normally does not hold, such as urban or high mountain regions, are 
not analyzed in this study), we can solve for soil and dihedral scattering 
components. For that, the volume scattering component [Tv] is sub
tracted from [T], calculated based on the particle anisotropy (Ap; [− ]), 
the width of the orientation angle distribution (Δψ; [◦]), and the volume 
scattering intensity (fv; [− ]): 

[Tv] =
fv

2 + 2A2
p

⎡

⎢
⎢
⎣

V11 V12 0
V*

12 V22 0
0 0 V33

⎤

⎥
⎥
⎦, (12) 

with the volume scattering components V11, V12, V22, V33, and fv 
described in (Fluhrer et al., 2022). Since fv is dependent on the dihedral 
scattering angle αd, it is modeled with the Fresnel (Sec. 3.1.) as well as 
the x-Fresnel (Sec. 3.2.) model, denoted by αFresnel

d and αx− Fresnel
d , 

respectively. Finally, the dihedral scattering angle αSAR
d and intensity 

fSAR
d can be estimated from the total SAR signal (Fluhrer et al., 2022).

In this study, we employ the decomposition method twice, once 
based on the Fresnel model, and again based on the x-Fresnel model. In 
sec. 4., we are analyzing, which model is most suited for P-band 
analyses.

3.4. Retrieval approach for trunk moisture

For final trunk permittivity estimation, a non-iterative approach is 
used with realistic ranges for input permittivity values. Since αModel

d is 
used as input for the separation of the total SAR signal, a directory of 
αModel

d and fModel
d for every εt ∈ [2,60] is created (Sec. 3.1. & 3.2.). The 

final εt is then estimated from the best fit between modeled (αModel
d ; 

fModel
d ) and data-based components (αSAR

d ; fSAR
d ): 

εt =min
(⃒
⃒αSAR

d − αModel
d

⃒
⃒+

⃒
⃒
⃒fSAR

d − fModel
d

⃒
⃒
⃒

)
, (13) 

with Model ∈ [Fresnel, x-Fresnel].
In theory, it is possible to retrieve soil and trunk moisture simulta

neously from this approach. However, we decided to use in-situ 
measured soil moisture measurements as input during simulations 
since the focus is on trunk permittivity, and to reduce the computational 
costs as well as the retrieval complexity. For variable soil moisture in
puts ranging from 6 to 40, variable trunk permittivity ranging from 2 to 
60, and variable rotation limit angles ranging from 0◦ to 90◦, we would 
end up with 187.915 simulations for every individual SAR pixel. This 
would take weeks up to months for the investigated study areas. Hence, 
as there are many approaches for sufficiently estimating the soil mois
ture from SAR remote sensing, we focus on estimating and analyzing the 
trunk permittivity.

4. Sensitivity study

Until now, model simulations for polarimetric scattering angle and 
intensity are performed with static values for important input parame
ters, i.e., the loss factor mD, the phase angle φ (Sec. 3.1.), and the 
rotation limit angle θ1 (Sec. 3.2.). In this section, sensitivity studies for 

analyzing the impact of dynamizing these model parameters are 
performed.

For that, we built on knowledge gained from previous studies (Weiss, 
2015). investigated the influence of the local incidence angle θi and the 
vertical RMS height s on the loss factor mD, see Figs. 6–7 in (Weiss, 
2015). This study showed that for increasing θi, mD decreases towards 
zero, while for increasing s, mD increases from zero towards higher 
values. The differences in mD-values are hereby always greater for the 
Gaussian ACF compared to the exponential ACF. These findings can be 
confirmed by sensitivity analyses shown in Fig. 2. In addition to 
analyzing the influence of θi and s on simulated mD, we also show the 
influence of the employed frequency. With increasing frequency (from 
P- to C-band), lower mD values are estimated at already lower surface 
roughness values. This is in line with previous studies which showed less 
influence of surface roughness at P-band wavelengths (Shen et al., 2022; 
Ulaby and Long, 2014). However, since at P-band, mD is still varying 
between 0.4 and 1, depending on the incidence angle and surface 
roughness (Fig. 2, first row), we are calculating mD for every SAR pixel 
individually. For one, we are using the AirMOSS incidence angle as 
input. Second, similar to the previous study from (Fluhrer et al., 2022), 
we are fixing s for every individual SAR pixel based on TanDEM-X 
derived surface roughness indicators (Tab. 3 in (Fluhrer et al., 2022)), 
to account for surface irregularities due to roughness. Lastly, we are 
focusing on the exponential loss factor mexpo

D (Eq. (5)), since differences 
are not that significant but to save computational costs.

Further (Weiss, 2015), investigated the relationship between 
modeled Fresnel parameters, αFresnel

d and fFresnel
d (Eqs. (3) and (4), Sec. 

3.1.), and varying θi as well as increasing soil εs and trunk εt permit
tivity. It can be noticed that for θi smaller than 45◦, αFresnel

d is mainly a 
function of εt, while fFresnel

d is mainly a function of εs. For θi greater than 
45◦, the relation of the scattering angle and intensity is reversed, 
respectively. At θi equal to 45◦, the relation between αFresnel

d and fFresnel
d is 

linear and both parameters are function of both permittivity inputs 
(Fig. 9 in (Weiss, 2015)).

Similar to the study of (Weiss, 2015) for the Fresnel parameters, the 
same behavior can be confirmed also for the x-Fresnel parameters 
(Fig. 3). However, besides θi, also the phase angle influences the rela
tionship of αx− Fresnel

d and fx− Fresnel
d across varying permittivity (Fig. 3). As 

mentioned before, φ is set to 0◦ in previous studies (Weiss, 2015; 
Jagdhuber, 2016), since the assumption of negligible propagation in 
oriented vegetation makes it unnecessary to account for phase differ
ences between horizontal and vertical polarized backscatters. For 
non-oriented vegetation and at P-band however, this assumption can 
lead to an overestimation of model parameters, as shown in Fig. 3. It can 
be seen that for increasing φ, meaning increasing phase differences be
tween horizontal and vertical polarized backscatters, overall lower 
αx− Fresnel

d and higher fx− Fresnel
d values are reached. At φ = 0◦, αx− Fresnel

d 

varies between 102◦ and 130◦ and fx− Fresnel
d varies between 0.02 and 0.6 

(Fig. 3, first row). In contrast, when accounting for highest possible 
phase differences between backscatters (φ = 90◦), the simulated dihe
dral scattering parameters vary in a much broader value range (αx− Fresnel

d 

between 62◦ and 116◦, fx− Fresnel
d between 0.02 and 4.4). Although, the 

influence of φ is reported here only for the x-Fresnel model parameters, 
the same influence can be stated for the Fresnel model parameters.

Due to the significant influence of φ on model parameters, we are 
calculating φ for every analyzed SAR pixel individually in this study, 
based on the recorded SAR observations: 

φ= |tan− 1
(

〈SHHSVV
*〉ʹ́ 2

〈SHHSVV
* 〉́ 2

)⃒
⃒
⃒
⃒, (14) 

where 〈SHHSVV
* 〉́  is the real part and 〈SHHSVV

*〉ʹ́  is the imaginary part of 
the 〈SHHSVV

*〉 phase information. ‘〈〉 denotes spatial ensemble average in 
the data processing‘ (Alemohammad et al., 2018).
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Lastly (Jagdhuber, 2016), investigated the influence of the rotation 
limit angle θ1 on the x-Fresnel scattering components TD

12 and TD
22 (Eqs. 

(9) and (10), Sec. 3.2.) for varying θi and εt . Overall, this study could 
show only minor impacts with differences smaller than 3 dB between 
θ1 = 0◦ and θ1 = 90◦ (Figs. 2–4 in (Jagdhuber, 2016)). Further, this 
study investigated the relation of θ1 and αx− Fresnel

d for varying θi and 
showed that the simulated αx− Fresnel

d varies between ~5◦ and 40◦

depending on θ1 and θi (Fig. 26 in (Jagdhuber, 2016)). Generally, 
αx− Fresnel

d increases across all investigated θi for increasing θ1 between 
0◦ and 50◦ and decreases for θ1 greater than 50◦. The highest variability 

and strongest decrease in αx− Fresnel
d values along θ1 is estimated for the 

smallest θi of 30◦. In Fig. 4, the same behavior of simulated αx− Fresnel
d can 

be seen along increasing θ1. In addition, we investigated the influence of 
variable permittivity input on simulations. As shown, αx− Fresnel

d decreases 
for increasing εs and εt . Hereby, the influence of εt is greater compared to 
εs since the decrease in αx− Fresnel

d values is greater at increasing εt (Fig. 4A 
and B).

Complementary, the simulation results for fx− Fresnel
d are shown. 

Overall, fx− Fresnel
d decreases for θ1 angles between 0◦ and 65◦ and then 

Fig. 2. Sensitivity of the simulated loss factor mD on the vertical surface roughness parameter s ∈ [0, 5] cm and the incidence angle θi ∈ [0, 90]◦ for varying frequencies 
from P- to C-band. Left column: exponential ACF (Eq. (5)); right column: Gaussian ACF (Eq. (6)).
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slightly increases until θ1 = 90◦. Further, fx− Fresnel
d increases with 

increasing soil and trunk permittivity, with higher decrease in fx− Fresnel
d at 

higher permittivity. The influence of both permittivity inputs on fx− Fresnel
d 

is rather minor, since value ranges are comparable for increasing εs and 
εt (Fig. 4C and D). In this Fig. 4, simulations are only shown for discrete 
permittivity values (εs and εt) due to visualization limitations. Overall, 
when analyzing all possible permittivity input values with εs ∈ [6, 40]
and εt ∈ [2, 60] at one step, the same patterns can be reported but at 
different value levels, with αx− Fresnel

d varying in total between 36.8◦ and 
131.2◦, and fx− Fresnel

d between 0.01 and 0.6. This means, θ1, εs and εt have 

significant influence on the simulation performances of αx− Fresnel
d and 

fx− Fresnel
d . In summary it can be stated, that neglecting potential depo

larization due to surface roughness is insufficient since varying θ1 lead to 
different simulation results. Hence, in this study, variable values for θ1 

with θ1 ∈ [0, 90]◦ are employed.
Based on the findings of conducted sensitivity studies (Figs. 2–4), we 

found that all three in previous studies neglected input parameters (mD, 
φ, and θ1), next to permittivity variations (εs, εt), have significant impact 
on modeling results. However, accounting for all three parameters, 
especially for depolarization effect due to soil surface roughness, is only 
possible with the x-Fresnel model and not with the standard Fresnel 

Fig. 3. Sensitivity of the simulated dihedral scattering angle αx− Fresnel
d and intensity f x− Fresnel

d on the soil (εs ∈ [6,40]) and trunk (εt ∈ [2,60]) permittivity as well as the 
phase angle φ ∈ [0, 45,90]◦. In this example, f = 430 MHz, θi = 30◦, md = 1, and θ1 = 0◦.
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model. Hence, in the following section, only results based on the x- 
Fresnel model are shown and analyzed.

5. Results

5.1. Analyses regarding x-Fresnel modeling parameters

In Fig. 5, the three important input parameters, whose influence on 
the x-Fresnel model simulations were analyzed in detail in sec. 4., are 
compared to the resulting trunk permittivity for all AirMOSS monitoring 

dates and stations. The loss factor mexpo
D and phase angle φ were hereby 

calculated for every analyzed SAR pixel individually based on equations 
(5) and (14). For simulations, the rotation limit angle θ1 was kept var
iable in the range θ1 ∈ [0, 90]◦, and based on the best fit between 
simulations and SAR estimates, the corresponding θ1 is shown. Signifi
cance tests between all corresponding variables in Fig. 5 revealed p- 
values varying between ~0 and 0.0029. Since the p-values of a two- 
sided Wilcoxon rank-sum test indicate the acceptance (>0.05) or 
rejection (<0.05) of the null hypothesis regarding continuous 

Fig. 4. Sensitivity of the simulated dihedral scattering angle αx− Fresnel
d and intensity f x− Fresnel

d on the rotation limit angle θ1 [◦] and the soil εs and trunk εt permittivity. 
In this example, θi = 30◦, md = 1, and φ = 0◦. (A) Results for αx− Fresnel

d with εt = 15 and εs ∈ [6,36]. (B) Results for αx− Fresnel
d with εs = 20 and εt ∈ [8,48]. (C) Results 

for f x− Fresnel
d with εt = 15 and εs ∈ [6, 36]. (D) Results for f x− Fresnel

d with εs = 20 and εt ∈ [8, 48].

A. Fluhrer et al.                                                                                                                                                                                                                                 Science of Remote Sensing 11 (2025) 100236 

8 



distributions with equal medians at the 5 % significance level, the dis
played results can be regarded as significant.

Since mexpo
D is calculated from given surface roughness and AirMOSS 

incidence angles (Eq. (5)), which are almost the same across all dates at 

one respective station, it does not vary significantly within one station 
for multiple dates with varying εt, only when comparing different sta
tions. Further, since the Pearson’s correlation coefficients (r) vary in 
total between 0.05 and 0.38 or − 0.22, no significant correlation 

Fig. 5. Comparison of estimated trunk permittivity εt [− ] with respective loss factor mexpo
D [− ] (see Eq. (5)), phase angle φ [◦] (see Eq. (14)), and rotation limit angle 

θ1 [◦] at all measuring stations and dates, except US-Me6. The red numbers give the Pearson’s correlation coefficient r between two variables, respectively.
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between estimated trunk permittivity and mexpo
D can be confirmed. At all 

stations, mexpo
D values around 0.95 are calculated, except at AirMOSS 

monitoring site Howland, where both stations (Howland, US-Ho1) show 

mexpo
D values around 0.8. These are also the two stations with the overall 

smallest estimated εt range across all dates and the lowest correlations 
(except for Durham 11 W) with r = 0.15 and r = 0.05, respectively. 
While at station Howland, the smallest εt range with values between 5.4 

Fig. 6. Estimated normalized dihedral scattering component Pd/Pt [− ] at all measuring stations with indication on vegetation cover within each SAR footprint 
above. Blue dots: Pd/Pt is not the dominant scattering mechanism within the P-band SAR signal. Green dots: Pd/Pt is the dominant scattering mechanism within the P- 
band SAR signal. Optical images on the top are from Google Earth Pro© (Fig. 1).

Fig. 7. The average normalized dihedral scattering component Pd/Pt [− ] against the average trunk permittivity εt [− ] for each station. Blue dots: Pd/ Pt is not the 
dominant scattering mechanism within the P-band SAR signal. Green dots: Pd/Pt is the dominant scattering mechanism within the P-band SAR signal (from Fig. 6).
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and 19.6 is estimated, station US-Ho1 shows values between 15.07 and 
42.7. The overall highest εt values are estimated at station US-Me2, 
varying between 18.1 and 54.8. The highest r of 0.38 are estimated at 
both Metolius sites (Fig. 5, left column).

For calculated φ, values across the entire possible range from 0◦ to 
90◦ are found at the non-forested station Durham 11 W with low cor
relation between φ and εt of r = − 0.16. At both Howland stations 
(Howland, US-Ho1) φ varies between 50◦ and 90◦, at both Metolius 
stations (Metolius, US-Me2) between 69◦ and 90◦, and at both Harvard 
Forest stations (Harvard Forest, EMS) φ values between 51◦ and 90◦ are 
mainly estimated, with respectively one date at φ = 22◦ showing the 
highest εt of 48 at these two stations. The latter two stations at Harvard 
Forest are also the stations showing the highest correlations between φ 
and εt with r = − 0.91 and r = − 0.93. While at all stations, an overall 
negative correlation can be found with increasing trunk permittivity at 
decreasing φ, a positive correlation is found at Howland (r = 0.37) and 
no correlation at US-Ho1 (r = 0.02) (Fig. 5, middle column). These are 
the two stations with the lowest dihedral scattering component after the 
non-forested station Durham 11 W (Fig. 6).

Lastly, the respectively highest correlations at every station can be 
found between estimated εt and the rotation limit angles θ1 (except for 
both Harvard Forest stations, where the correlation between εt and φ is 
slightly higher). θ1 varies between 48◦ and 90◦ at Durham 11 W, be
tween 6◦ and 68◦ at Howland, 20◦–65◦ at both Metolius stations 
(Metolius, US-Me2), and 57◦–90◦ at both Harvard Forest stations (Har
vard Forest, EMS). The lowest range of θ1 values can be found at US- 
Ho1, varying between 29◦ and 60.1◦. At all stations, a positive corre
lation of r > 0.36, meaning increasing trunk permittivity for increasing 
θ1, is found except at the both rather sparsely vegetated stations 
(Metolius, US-Me2) of the AirMOSS monitoring site Metolius in Oregon, 
where high negative correlation of r = − 0.75 and r = − 0.62 are found 
(Fig. 5, right column).

5.2. Analyses regarding decomposed dihedral scattering component

For analyzing the decomposition results, we are using the relative 
indices of soil (Ps), dihedral (Pd), and volume (Pv) scattering normalized 
to the total SAR signal (Pt), which can be calculated from decomposed 
scattering angles and intensities (Alemohammad et al., 2018; Fluhrer 
et al., 2022). In Fig. 6, the estimated average normalized dihedral 
scattering component (Pd/Pt) is shown for all measuring stations, sorted 
from lowest to highest Pd/Pt. The blue dots represent stations, where the 
dihedral scattering component is not the dominant scattering mecha
nism in the SAR signal. Here, soil (Ps/Pt) or vegetation (Pv/ Pt) scattering 
is dominating the total P-band SAR signal. Green dots give the stations, 
where the dihedral scattering component is the dominant scattering 
mechanism, namely Harvard Forest, EMS, and US-Me2. At these sta
tions, Pd/Pt is also highest compared to all other stations, ranging 
around 0.44. At station Metolius, the highest value of the non-dihedral 
dominated stations can be found with Pd/Pt = 0.39, which is a bit 
lower compared to average Pv/Pt of 0.57. At all other stations, Pd/ Pt 
below 0.3 are estimated, with the lowest value at Durham 11 W at 0.11, 
which is also is the only station where no forest appears and serves as 
control station. Overall, the results match with the approximate vege
tation cover within every SAR footprint, since Pd/Pt approximately in
creases with increasing forest density around each station. Only at the 
two Howland Forest stations, namely Howland and US-Ho1, Pd/ Pt is 
lower than expected, since these are located within a dense boreal 
broad-leaf forest.

In order to get an idea about the resulting trunk permittivity at every 
station, the average Pd/Pt is compared to the average estimated εt at 
every station in Fig. 7. It can be seen that the lowest εt of two can be 
found at the station US-Me6, which has the 2nd lowest Pd/ Pt due to the 
very sparsely vegetated SAR pixel (Fig. 1). At this station, εt is a constant 
of two across all dates indicating that the method is not applicable, and 
hence, will be excluded in further analyses. The highest average εt of 36 

is found at the station with highest Pd/Pt, namely US-Me2. However, the 
other two stations with dominant dihedral scattering, Harvard Forest 
and EMS, show significantly lower permittivity results around 15 than 
US-Ho1 (21.8) and Metolius (25.9). In contrast, the station with the 
lowest Pd/Pt (Durham 11 W) gives the third lowest εt of 10.2. Hence, the 
amount of dihedral scattering within the total SAR signal is not directly 
linked to the trunk permittivity. This is not surprising as the employed 
method builds not only on intensity (fd) but also mechanism (αd) (Sec. 
3.).

5.3. Analysing results with SPAS variables at US-Me2

In Fig. 8, the daily averaged time series of in-situ measured Tair and 
RH, ET from MODIS, as well as RWC from AMSR2 (Sec. 2.) are shown for 
the period from March 2013 to October 2015. In addition, the in-situ 
measured εs, which is used as input for the x-Fresnel model simula
tions, and the estimated εt are displayed for the respective AirMOSS 
monitoring dates, where SAR measurements were recorded during the 
campaign. The time series is shown here only for station US-Me2, since 
this is the station with the highest average Pd/Pt .

Across the entire period, seasonal patterns are visible with Tair, ET 
and RWC showing highest values during summer months and lowest 
during winter months, with RH showing the opposite trend. Overall, 
there is a slight increase in the yearly averages from 2013 to 2015 in Tair 
of 0.9◦ and RWC of 0.93 %, and decrease in yearly averages in RH of 
0.96 %, and ET of 0.04 mm/8days. Meaning, it is getting a bit warmer 
with slightly increasing RWC and decreasing RH and ET. The in-situ 
measured εs shows no clear trend with in average lowest values in 
2014 (6.1) compared to 2013 (8.7) and 2015 (7.2). The estimated εt 
however, also shows a decreasing trend in yearly averages from 45.6 in 
2013 to 29.3 in 2015.

More detailed analyses at specific dates indicate the in general good 
agreement between estimated εt and environmental conditions. It seems 
that, in general, estimated εt is positively correlated with RWC, ET, and 
RH, meaning increasing εt during increasing RWC, ET and RH, and 
negatively correlated with Tair, meaning decreasing εt during increasing 
Tair. For example, at the first three AirMOSS dates (April, 21, 25, and 29, 
2013), Tair, ET, and RWC are increasing, while RH and εs are decreasing. 
During these first two dates, εt is increasing from 48 to 54.8 and then 
slightly decreasing to 52.1. In contrast, when Tair, RWC and ET are 
decreasing, while RH is increasing and εs is constant, the estimated εt is 
decreasing slightly as well from 37.3 to 35.8 (Fig. 8). The same trends 
can be observed at some other AirMOSS dates. However, one has always 
keep in mind the discrepancy in spatial resolutions between in-situ 
measurements (point precise), AirMOSS estimates (90 m) as well as 
MODIS (500 m), and AMSR2 (10 km) pixels, and the coarse temporal 
resolution of the AirMOSS dates (in total 20 dates in three years), which 
allows no time series analyses.

5.4. Analysing results with SPAS variables at selected stations

In Table 1, the statistics of estimated εt at evaluated stations are 
given. The highest average εt of 36 and standard deviation of 14.6 is 
found at the two stations (US-Me2, Metolius) within the AirMOSS 
monitoring site Metolius, which are the stations with the highest Pd/Pt 
and highest non-dominant Pd/Pt (Fig. 6). The lowest εt of 9.4 and 
standard deviation of 3.1 is found at station Howland, the station with 
the 2nd lowest average Pd/Pt (Fig. 6). This is also the station with the 
lowest range in estimated εt, varying from 5.5 (5 % percentile) to 14.8 
(95 % percentile). The highest range in εt is found at station Metolius, 
ranging between 12.3 (5 % percentile) and 52.5 (95 % percentile), 
closely followed by the neighboring station US-Me2.

For more detailed analyses, the trunk permittivity results at all sta
tions for all available AirMOSS dates are compared to auxiliary pa
rameters in Fig. 9. For one, the stations appear in the order of their 
average Pd/Pt (Fig. 6) from top to bottom. Second, the scatterplots show 
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the comparison of RWC (1st column), ET (2nd column), RH (3rd col
umn), and Tair (4th column) with estimated εt. The colors indicate the 
amount of Pd/Pt for every AirMOSS date.

In general, with increasing Pd/Pt, meaning higher portion of dihedral 
scattering in the total SAR signal, Pearson’s correlation coefficient r is 
increasing as well. Further, a positive correlation is observable between 
εt and RWC, ET, and RH, while Tair is negatively correlated with εt . 
These trends can be mostly observed at the stations, where the Pd/ Pt is 
dominant in the total SAR signal and at Metolius, which is the one with 
the highest Pd/Pt of the non-dihedral dominated stations (Fig. 6). The 
latter is also the station which gives almost always the highest r. Here, 
the respectively highest r can be found between εt with RWC of 0.47, ET 
of 0.6, and RH of 0.31. Only in comparison with Tair, the r of − 0.31 is 
lower than the one at station US-Ho1 with r = -0.58. For individual 
dates, no clear pattern regarding the amount of Pd/Pt and estimated εt 
can be found. In general, realistic εt are estimated for higher Pd/ Pt but 
the trend that can be observed from these analyses is nonlinear. First 
reason is that not only intensity plays a role in the employed method (fd) 
but also mechanism (αd) (Sec. 3.). Second reason is that a certain amount 
of dihedral scattering, coming from soil-stem interactions, is necessary 
in the first place in order for the method to be applicable and produce 
realistic εt.

6. Discussion

The proposed retrieval method incorporates the x-Fresnel scattering 
model, which showed to be most appropriate when decomposing P-band 
SAR signals for trunk permittivity estimation (sec. 4.). It could be 
demonstrated that the model is sensitive to input parameters that are 
kept constant in previous studies, the loss factor mD, the phase angle φ 
(sec. 3.1.), and the rotation limit angle θ1 (sec. 3.2.). mD accounts for 
scattering losses at the soil plane on the dihedral scattering intensity and 
is set to one in previous studies (Jagdhuber, 2016). However, detailed 
sensitivity analyses in this study revealed that mD should be calculated 
for every SAR signal individually depending on the given surface 
roughness and local incidence angle in order to reflect natural, lossy 

surfaces with changing surface roughness. Final results for individual 
SAR pixels across boreal transitional or mixed as well as temperate 
evergreen needle-leaf forests in the U.S. (Sec. 2.) showed that mD varies 
between 0.8 and 0.95 (Fig. 5). A fixed mD of one would have led to an 
underestimation of estimated εt. In future studies, the calculation of mD 
can even be improved by available soil surface roughness information at 
high resolution, e.g. from airborne or terrestrial lidar surveys.

Further, as stated in sec. 3.1., φ expresses the phase differences be
tween horizontal and vertical polarized backscatters. Previous studies 
based on L-band assumed negligible propagation in oriented vegetation, 
which makes it dispensable to account for phase differences and hence, 
used φ = 0 (Jagdhuber, 2016; Weiss, 2015). However, this assumption 
does not hold when using P-band SAR observations with distinct pene
tration and transmission capabilities into the forest canopy and can lead 
to an overestimation of model parameters and consequently false εt 
estimates. Here, we calculated φ for every SAR pixel and observation 
individually based on the complex phase information 〈SHHSVV

*〉 
(Alemohammad et al., 2018). Estimated φ vary mostly in the range 
between 20◦ and 90◦. Hence, a fixed value of 0◦ would significantly 
influence resulting εt, and potentially lead to an overestimation of 
simulated dihedral scattering angle αx− Fresnel

d and intensity fx− Fresnel
d and 

hence, εt. Lastly, the extension of the x-Fresnel model to account for 
potential depolarization due to soil surface roughness, in comparison to 
the Fresnel model without this possibility, showed to be essential since 
scattering power and trunk permittivity results vary significantly for 
different θ1. Results showed that θ1 varies between the entire possible 
range from 0◦ to 90◦ at specific AirMOSS stations (Fig. 5). This means, a 
fixed θ1 of 0◦, assuming no depolarization (rotation) of the soil and trunk 
plane (Jagdhuber, 2016), leads to potentially erroneous εt estimates.

The average decomposed dihedral scattering component matches the 
forest conditions at all stations, with almost no contribution of dihedral 
scattering within the total SAR signal at the bare soil station Durham 
11W (acting as control station), and highest contribution at the 
moderately dense temperate, evergreen needle-leaf forest station, with 
the most dense, homogeneously covered boreal forest stations in be
tween. Hence, the dihedral scattering component shows sensitivity for 

Fig. 8. Seasonal patterns of daily averaged in-situ measured air temperature (Tair; [◦C]), relative humidity (RH; [%]), MODIS evapotranspiration (ET; [mm/8days]), 
and AMSR2 relative water content (RWC; [%]) for the period 2013–2015 together with in-situ measured soil permittivity (εs; [− ]) and estimated trunk permittivity 
(εt ; [− ]) at AirMOSS measuring dates of station US-Me2, Metolius, OR. The time series of Tair, RH, and RWC are cleaned for daily dynamics using the Savitzgy-Golay 
filter with a window size of 21 (days), the MODIS ET time series with a window size of three (21 days). Dashed grey lines in the first two subplots indicate the dates of 
available AirMOSS measurements.
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Fig. 9. Comparison of AMSR2 relative water content (RWC; [%]), MODIS evapotranspiration (ET; [mm/days]), in-situ measured relative humidity (RH; [%]), and in- 
situ measured air temperature (Tair; [◦C]) with estimated trunk permittivity (εt ; [− ]) at all measuring stations, except US-Me6. The stations are sorted after the 
average normalized dihedral scattering component Pd/Pt from top to bottom. The color represents the amount of normalized dihedral scattering Pd/ Pt [− ] within the 
total P-band SAR signal. Black lines give the linear regression fit between respective parameters and the red numbers give the Pearson’s correlation coefficient r 
between two variables, respectively.
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different site conditions and forest types. In general, estimated εt from 
AirMOSS P-band data varies between 2.4 and 59.7. At pixels, where the 
dihedral scattering mechanism is dominating the total SAR signal 
(Harvard Forest, EMS, and US-Me2) and station Metolius (highest 
average dihedral scattering component of non-dominated dihedral sta
tions), in average higher εt could be estimated, ranging from 14 to 25.9 
(Table 1). Here, estimated εt varies between the 5 % and 95 % percentile 
from 6.4 to 52.5 (Table 1).

This is in line with previous studies analyzing εt. For example 
(Franchois et al., 1998), presented a study conducting laboratory mea
surements of permittivity of two types of coniferous trees (prevalent in 
many forested regions) using microwave techniques for frequencies 
from 1 to 10 GHz. They found, that εt decreases with increasing fre
quency and reported values between 8.9 and 54.4, with generally higher 
values in the phloem (inner side of the bark of a trunk) and lower values 
in the xylem (major constituent of a trunk surrounded by cambium and 
bark) (Franchois et al., 1998). This means, a trunk shows increasing 
permittivity from the center of the trunk to the outside, which is also 
reported by, e.g., (Dobson et al., 1991; McDonald et al., 1999, 2002). 
Hence, differences in εt are not only influenced by atmospheric and 
meteorological conditions, but also the composition of individual tree 
trunk. Further, in the study of (McDonald et al., 2002), the authors 
investigated the diurnal and spatial variations of the xylem permittivity 
in Norway Spruce trees and its correlation with microclimate, xylem sap 
flow, and xylem chemistry. They found significant diurnal variations in 
the xylem permittivity, which were strongly correlated with changes in 
microclimate conditions such as temperature, humidity, and solar ra
diation. A similar correlation between εt and Tair as well as RH is found 
in this study (McDonald et al., 2002). also found spatial variations in the 
xylem permittivity within the tree canopy, with lower values observed 
at higher heights.

In summary we can state, that thicker trunks and trunks at greater 
heights appear rather dry compared to thinner trunks at lower heights 
due to the reduced penetration ability of microwaves with increasing 
trunk density, height, and width. This is confirmed by results shown in 
this study. The in average highest εt values are found at both stations 
within the AirMOSS monitoring site Metolius, which are characterized 
by a less dense and high temperate, evergreen needle-leaf forest. In 
contrast, at the monitoring site Harvard Forest, characterized by a dense 
boreal transitional or mixed forest, overall lower εt values are found. 
Although at station Metolius, the average dihedral scattering is not 
dominant in the total SAR signal, but sufficiently high (at 0.39, Fig. 6), 
reasonable εt could be estimated, even showing the highest correlations 
with RWC from AMSR2, ET from MODIS, and in-situ measured RH. The 
stations at monitoring site Howland Forest with rather low dihedral 
scattering proportion (in average ~0.28) show significantly lower 
permittivity values and almost no correlations with auxiliaries.

However, we always have to remember not only the discrepancies in 
spatial resolutions between in-situ measurements (point precise), Air
MOSS estimates (90 m), AMSR2 (10 km), and MODIS (500 m) data, but 
also the differences in sensing depths and frequencies. Here, we pro
posed a method for εt estimation based on P-band SAR data (430 MHz). 
MODIS in contrast, retrieves ET from a simple physically-based method, 
the Penman-Monteith, combining remote sensing (i.e., landcover, leaf 
area index, albedo, etc.) from thermal or surface reflectance data with 
global meteorological measurements (i.e., vapor pressure deficit, RH, 

Tair, etc.) (Running et al., 2017). In addition, RWC from AMSR2 is based 
on observed brightness temperatures from a passive radiometer at 
C-band (6.925 GHz) and the Land Parameter Retrieval Model (LPRM) 
with underlying radiative transfer theory (Jeu and Owe, 2014; Owe 
et al., 2008). Thus, while the proposed approach predominantly de
scribes εt and less canopy permittivity (since the dihedral scattering is 
used and not the volume scattering), the results are hence, not repre
sentative for the entire biomass of trees. In contrast, the RWC from 
AMSR2 is defined by dry biomass and the amount of water per unit 
biomass, describing the entire biomass and not only trunks, similar to 
MODIS ET, which predominantly constitutes of canopy transpiration 
(along with soil evaporation). The VWC is hence, correlated to the 
amount of biomass, which means, higher VWC occurs already with 
dense vegetation, as given within forests, and not only with higher 
vegetation moisture (Chaparro et al., 2024). This means in summary, 
very high correlations (e.g., >0.8) are unrealistic. However, the com
parison between estimated P-band εt with other vegetation water con
tent related parameters indicate apparent correlations at medium level 
at stations with sufficient dihedral scattering within the total SAR signal, 
indicating the feasibility of the proposed approach for εt estimation.

7. Conclusions and outlook

In this study, the decomposed dihedral scattering component of the 
total P-band SAR signal is analyzed to estimate trunk permittivity. The 
proposed hybrid decomposition method is combined with the x-Fresnel 
model for dihedral scattering. Within the x-Fresnel model we account, 
among others, for scattering losses, phase differences and depolarization 
effects (e.g., due to roughness) in backscatter observations. The con
ducted sensitivity study led to the need for the more sophisticated 
dihedral scattering model x-Fresnel to improve the performance of the 
proposed method for εt estimation. We focused on single SAR pixels at 
measuring stations, where in-situ observations are available due to 
missing input parameters at comparable spatial resolution to the Air
MOSS data (~90 m). Results overlap with reported εt ranges in previous 
studies and are in line with site dependent environmental conditions. 
Results show, that thicker trunks and trunks at greater heights appear 
rather dry compared to thinner trunks at lower heights due to the 
reduced penetration ability of microwaves with increasing trunk den
sity, height, and width. The in average highest εt values are found at the 
less dense vegetated evergreen needle-leaf forest stations (at the Meto
lius site) since here, as compared to more dense vegetated forests like the 
broad-leaf forest stations (at the Howland site), due to the clear line of 
sight the dihedral scattering mechanisms is stronger. Further, the ever
green needle-leaf forest stations showed clear dependencies between 
estimated permittivity and relative water content from AMSR2, evapo
transpiration from MODIS, and in-situ measured relative humidity and 
air temperature. Overall, calculated correlations range between ±0.1 
and ± 0.64. However, we always have to remember not only the dis
crepancies in spatial resolutions between in-situ measurements, Air
MOSS estimates, AMSR2, and MODIS data, but also the differences in 
sensing depths and frequencies. Further, the proposed approach pre
dominantly describes trunk permittivity and less canopy permittivity 
(since the dihedral scattering is used and not the volume scattering). 
Hence, the results are not representative for the entire biomass of trees, 
as, for example, the RWC from AMSR2 or ET from MODIS. The station 

Table 1 
The mean, standard deviation (STD) as well as the 5 % and 95 % percentiles of estimated trunk permittivity at all measuring stations, except US-Me6. The stations are 
sorted after the average normalized dihedral scattering component Pd/Pt from left to right as shown in Fig. 6.

Durham 11 W Howland US-Ho1 Metolius Harvard Forest EMS US-Me2

Mean 10.2 9.4 21.8 25.9 14 16 36
Std 13 3.1 6.1 14.6 9.2 10 10.8
5 % 2.8 5.5 17.8 12.3 6.4 7.6 18.9
95 % 45.3 14.8 33.6 52.5 24.1 30.3 52.2
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(Durham 11 W), which was used as control case, since no trees appeared 
within the radar footprint of this station, delivered the worst results. 
Here, the expected lowest amount of dihedral scattering within the total 
SAR signal is estimated due to the missing possibility of wave interaction 
between tree trunks and the soil. Hence, the lowest permittivity values 
are found at this station since the proposed method violates the physical 
boundaries.

This study demonstrated the potential of the dihedral scattering 
component of polarimetrically decomposed SAR signals for εt estima
tion. Future add-on studies regarding the simultaneous retrieval of soil 
and trunk permittivity can even extend the possibility of the proposed 
method. However, this is complicated due to the interdependence of soil 
and trunk permittivity within the dihedral scattering mechanism. Since 
soil moisture is used here as input to the εt retrieval, and no available soil 
moisture datasets at comparable spatial resolution (90 m) during the 
study period (2013–2015), an aerial determination of εt was not feasible 
within this study. However, the proposed method can be used to deliver 
global trunk/vegetation moisture maps at high spatial and temporal 
resolution when appropriate datasets will be available, as for example, 
with the upcoming NASA-ISRO (National Aeronautics and Space 
Administration, Indian Space Research Organization) Synthetic Aper
ture Radar (NISAR) mission (Kellogg et al., 2020) in 2024, and the future 
BIOMASS mission from the European Space Agency (ESA) in 2025 
(Gelas et al., 2021).
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