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ABSTRACT

Gene set analysis, a popular approach for analyzing high-throughput gene expression data, aims to identify sets of genes that
show enriched expression patterns between two conditions. In addition to the multitude of methods available for this task, users
are typically left with many options when creating the required input and specifying the internal parameters of the chosen method.
This flexibility can lead to uncertainty about the “right” choice, further reinforced by a lack of evidence-based guidance. Especially
when their statistical experience is scarce, this uncertainty might entice users to produce preferable results using a “trial-and-error”
approach. While it may seem unproblematic at first glance, this practice can be viewed as a form of “cherry-picking” and cause
an optimistic bias, rendering the results nonreplicable on independent data. After this problem has attracted a lot of attention
in the context of classical hypothesis testing, we now aim to raise awareness of such overoptimism in the different and more
complex context of gene set analyses. We mimic a hypothetical researcher who systematically selects the analysis variants yielding
their preferred results, thereby considering three distinct goals they might pursue. Using a selection of popular gene set analysis
methods, we tweak the results in this way for two frequently used benchmark gene expression data sets. Our study indicates that
the potential for overoptimism is particularly high for a group of methods frequently used despite being commonly criticized. We
conclude by providing practical recommendations to counter overoptimism in research findings in gene set analysis and beyond.

son, and Simonsohn 2011). A thorough investigation of these
researchers’ degrees of freedom in GSA with a focus on analyzing

1 | Introduction

When performing gene set analysis (GSA), a researcher must
decide on a suitable analysis strategy, including all analytical
choices concerning the method, its internal parameter setting,
and the preprocessing approach used to format the gene expres-
sion data as required by the selected method. The particular
difficulty in this decision lies in the great multiplicity the
researcher faces in all three aspects. Generally, the multiplicity
of possible data analysis (and data collection) strategies is also
referred to as researchers’ degrees of freedom (Simmons, Nel-

the data is provided in our previous work (Wiinsch et al. 2023),
in which we observe that there is little guidance on most of
them. This leads to a considerable uncertainty about the “right”
or most suitable analysis strategy from the multitude of available
options.

In genomics and related fields, new research findings often
heavily rely on gene set analyses (Ballouz, Pavlidis, and Gillis
2017). Researchers might thus be tempted to exploit this

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
© 2024 The Author(s). Biometrical Journal published by Wiley-VCH GmbH.

Biometrical Journal, 2025; 67:¢70016
https://doi.org/10.1002/bimj.70016

1of15


https://doi.org/10.1002/bimj.70016
https://orcid.org/0009-0001-1982-9260
https://orcid.org/0000-0002-2729-0947
mailto:milena.wuensch@ibe.med.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/bimj.70016
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbimj.70016&domain=pdf&date_stamp=2024-12-19

uncertainty, that is, to choose the analysis strategy that yields the
“best” or most promising results after trying out several different
analysis strategies concerning the choice of the GSA method,
data preprocessing approach, and internal parameters. Especially
researchers with little statistical experience are often unaware
that such tweaking, which appears unproblematic at first view,
is a form of the questionable research practice known as cherry-
picking. If they selectively report the chosen analysis strategy and
corresponding results while withholding the remaining “worse”
results, the research findings are likely to be optimistically biased.
As such, they may be poorly replicable based on new and
independent data.

Note that the definition of the term “replicable” differs consid-
erably across scientific fields and even between scientists and
publications within the fields. See Nosek and Errington (2020)
for a broad epistemological discussion of the concept. In the
context of this study, we define replication as the attempt to
recreate a previously obtained research finding by applying the
same methods as in the original study on independent data. A
research finding (or a whole study) is considered as “replicable”
if the replication attempt is successful—where success can be
defined in various ways depending on the substantive context
and the considered data analysis methods. See, for example, the
criteria proposed by Held, Micheloud, and Pawel (2022) in the
context of classical statistical testing.

Failure to replicate may have various reasons. The finding of the
original study may be simply a type-1 error (in case a test is used)
or an inflated effect in the absence of methodological flaw, or may
result from flaws in design, implementation or analysis (Open
Science Collaboration 2012). Even if flaws are not always involved
in the lack of replicability of research findings, replicability is
considered a core quality that all empirical research findings
should fulfill. As claimed by Popper (2005), nonreplicable single
findings are of “no significance to science.”

The statistical mechanisms behind the lack of replicability of
research findings are well understood in the context of classical
statistical testing. Ioannidis (2005) outlines that results are often
presented as “conclusive” even if they were derived from only
a single (potentially flawed) study, and that flexibility in the
design or the analytical mode can enable researchers to transform
results from negative to positive, that is, from nonsignificant to
significant. It then does not come as a surprise that such results
are not confirmed in later replication studies.

However, the lack of replicability of data analysis results has
alarmingly drawn little attention beyond the context of statistical
testing until very recently. A contribution to this topic is given
in Ullmann et al. (2023), who demonstrate the mechanisms of
cherry-picking and its quantitative impact in terms of replicability
in the specific context of unsupervised (clustering and network)
analysis of microbiome data. In a study investigating the vari-
ability of the results generated across 13 popular GSA methods,
Maleki et al. (2019) observe that the number of gene sets detected
as differentially enriched differs by up to two orders of magnitude
between the methods. This suggests that GSA may potentially
be similarly subject to cherry-picking mechanisms, although
in a different, perhaps less decipherable manner than classical
significance testing or unsupervised analysis. An assessment of

the impact of cherry-picking in GSA taking all types of degrees of
freedom into account is still pending. The present study aims to
fill this gap.

More precisely, we quantitatively illustrate the questionable
research practices that lead to overoptimistic (and therefore
nonreplicable) results in the context of GSA using real gene
expression data sets. In our study, we imitate hypothetical
researchers tweaking the GSA results by exploiting the inherent
uncertainty about the analytical choices. We thereby proceed in
a stepwise manner, reflecting the typical approach of researchers
who are unaware of the impact of cherry-picking yet funda-
mentally well intentioned. Using real gene expression data sets,
we mimic their search for the “best” results across a wide
variety of analytical choices for seven popular GSA methods,
considering successively three different goals they might pursue.
In particular, we investigate settings in which no gene sets are
expected to be detected as differentially enriched so that the
achievement of any statistically significant results through the
modification of the analysis strategy can be directly interpreted as
overoptimism.

This paper is structured as follows. We elaborate on the connec-
tion between the inherent uncertainty in the choice of the analysis
strategy in GSA and overoptimism in Section 2. In Section 3, we
describe the design of our study to assess the potential of GSA
to generate overoptimistic and therefore nonreplicable research
findings, followed by the results in Section 4. Finally, we provide
a discussion together with guidance to prevent overoptimism in
Section 5.

2 | From Uncertainty to Overoptimism in Gene
Set Analysis

When selecting an appropriate analysis strategy to perform GSA,
a researcher faces a noteworthy number of choices. This can
lead to a considerable uncertainty about the “right” (i.e., most
suitable) choice among the corresponding options. Note that this
uncertainty is to be distinguished from the uncertainty about
which practical steps are generally necessary when carrying out
GSA. In our study, we assume that the user knows which steps
are required to run GSA, but in each of these steps, they face a
variety of options that lead to uncertainty about the right choice.

In the following, we are guided by the work of Hoffmann
et al. (2021) who provide a framework of common sources of
uncertainty in the general context of data analyses. We thereby
focus on the four epistemic sources of uncertainty resulting from
a lack of knowledge about the right strategy to analyze the data,
namely, method uncertainty, model uncertainty, data preprocess-
ing uncertainty, and parameter uncertainty. We translate this
general framework to the context of GSA to outline the choices
a researcher is confronted with. See Table 1 for an overview.
Thereby, we assume that the data generation has been completed
and the (raw) gene expression data set is available. Note that there
are additional sources of uncertainty anchored in the generation
of the gene expression data set that can also lead to variability in
the results even if the analysis strategy is fixed. While we do not
include these sources of uncertainty in our analysis, we address
them briefly in Section 1 in the Supporting Information.
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TABLE 1 | Overview of the sources of uncertainty arising in the analysis of the gene expression data using gene set analysis.

Uncertainty source Description

Example

Model uncertainty
best?

Method uncertainty

Data preprocessing
uncertainty

Parameter uncertainty

Which model describes the underlying system

Which method should I choose?

Which approach should I choose to generate
the input object required by the GSA method?

Which values of the input parameter for the
GSA method should I choose?

Should I choose an ORA or an FCS method?

Should I choose GSEA or DAVID?

Which approach to prefiltering should I
choose?

Should I choose Gene Ontology or KEGG as
the gene set database?

In the context of GSA, method uncertainty refers to the uncer-
tainty about the choice of a method to investigate differential
enrichment of the gene sets between the conditions. The wide
variety of available methods from which a researcher has to
choose becomes clear when inspecting the comprehensive ref-
erence database on GSA methods by Xie, Jauhari, and Mora
(2021). This database contains around 150 GSA methods assigned
to Overrepresentation Analysis (ORA) and Functional Class
Scoring (FCS) alone. However, there is little guidance on how to
make a suitable choice. Ballouz, Pavlidis, and Gillis (2017) claim
that there is even no general consensus on how to benchmark
the available methods to derive such guidance. Furthermore,
Xie, Jauhari, and Mora (2021) make a threefold observation.
First, each benchmark study typically compares only a small
subset of all available methods, meaning that the performance
of the majority of methods has not even been investigated
beyond the original papers that introduced them. Second, the
benchmark studies often contradict each other in their results
regarding the best and poorest performers, resulting in some
methods simultaneously occupying the top and bottom positions
in different performance rankings. Lastly, there appears to be
a discrepancy between the performance of these methods and
their popularity among the users. These observations underline
that the right choice of a GSA method is far from clear in
practice.

Of important note, we use the general term method to refer
to both theoretical and computational methods. By theoretical
method, we mean the method’s general concept and features as
typically described textually in an original scientific article. In
contrast, we refer to their practical implementations in the form
of web-based applications or software packages as computational
methods (and use typewriter font for their corresponding name,
that is, “method”). For instance, the theoretical method “Gene
Set Enrichment Analysis” from the publication of Subramanian
et al. (2005) is implemented in several computational methods.
While the computational method GSEA (Mootha et al. 2003;
Subramanian et al. 2005), which is a web-based application,
exactly implements Gene Set Enrichment Analysis as introduced
in the original paper, the user can also choose from computational
methods that implement variations of it, such as GSEAPreranked
and GSEA provided by the R package clusterProfiler (Wu
et al. 2021). In the remainder of this paper, we will use the
generic terms “method” and “method uncertainty” and not
further address the distinction between theoretical and compu-
tational methods.

In the context of GSA, model uncertainty, which arises from
the uncertainty about how to adequately model the underlying
system, is implicitly included in method uncertainty. Imagine,
for instance, that a researcher chooses between the two popular
methods DAVID and Gene set Enrichment Analysis. This implies
the choice between the general approaches ORA and FCS and
their assumptions on the underlying biological system on which
the corresponding methods are based. For instance, while ORA
methods typically assume a hypergeometric distribution as the
underlying null distribution, FCS methods assess differential
enrichment nonparametrically.

No less pronounced than method uncertainty (and the implied
model uncertainty) is the uncertainty about how to process the
gene expression data into the format required by the chosen
method (data preprocessing uncertainty). In earlier work, we
have observed that this aspect is often neglected in practical
applications of GSA as well as user manuals provided alongside
the corresponding methods (Wiinsch et al. 2023). This, again,
results in little guidance for researchers. One of many examples
is the choice of a method for differential expression analysis to
generate the required input for ORA methods, for which the
popular methods limma (Law et al. 2014), DESeq2 (Love, Huber,
and Anders 2014), and edgeR (Robinson, McCarthy, and Smyth
2010) are only a small selection of all available options.

Finally, the researcher is confronted with uncertainty about
the choice of parameter values within the chosen GSA method
(parameter uncertainty), arising from existing flexibility in the
parameters to adapt the analysis strategy to the given research
question. An example is the parameter “gene set database,” for
which there are a variety of options that differ in structure and
additional aspects related to the modelling of the underlying
biological system. Note that a loose form of guidance is available
for some parameters in the form of default values, while for
others, such as the gene set database, the user has to make the
decision autonomously.

Combined with a lack of clear practical guidance, these uncer-
tainties might impel users to select the GSA method, its under-
lying parameters (including parameters such as the gene set
database), and data preprocessing approach based on which
choice(s) yield(s) preferable results to their research question.
Such practice may seem natural at first glance. After all, pitfalls
of analysis strategies often only come to light when the analyses
are run, and it is then acceptable to modify the original planned
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FIGURE 1 | Overview of the study design to investigate the potential for overoptimistic results in a total of 638 optimization settings, resulting in

638 separate optimization processes. The asterisk “x” refers to the fact that for goals 2 and 3, the choice gene set database cannot be exploited in the

corresponding optimization processes.

strategy. Some researchers may not realize that choosing the
method that yields preferable results is more than just a reaction
to unforeseen problems of the planned analysis strategy. It
indeed amounts to the questionable research practice termed
cherry-picking.

Hoffmann et al. (2021) accentuate that a selective reporting of
research findings generated using this “cherry-picking approach”
often results in presenting overoptimistic and thus nonrepli-
cable findings including false positive test results and inflated
effect sizes, as outlined in the introduction. Assuming the well-
intentioned nature of researchers engaging in cherry-picking (as
opposed to someone who maliciously intends to manipulate the
results), we want to realistically assess the extent to which their
tweaking of the GSA results in the above-described manner leads
to overoptimism.

3 | Design of the Study

The study aims to systematically assess the potential of GSA for
the generation of overoptimistic and thus nonreplicable results as
a consequence of the exploitation of the inherent uncertainties
combined with selective reporting. We expect the potential of
overoptimism to vary depending on the considered GSA method,
gene expression data set, and goal of the analysis. Therefore,

we imitate the behavior of a hypothetical researcher in their
attempt to tweak (i.e., to optimize) the GSA results in a variety of
settings described in Section 3.1. The exploitation of uncertainty
in each fictive setting leads to a separate optimization process.
While the details of the uncertainty exploited are presented in
Section 3.2, the structure underlying each optimization process
with its different steps is described in Section 3.3. For a graphical
illustration of the overall study design, see Figure 1.

3.1 | Settings

Each setting (also referred to as optimization setting) is defined
through a unique combination of

(i) one (of three) optimization goal(s) that drive(s) the opti-
mization,
(ii) one (of two) gene expression data set(s),

iii) one specific assignment of the conditions to the samples
P g p
(either the true sample labels or one of the ten random
permutations),

(iv) one (of seven) GSA method(s),

(v) for two of the goals mentioned in (i): one (of two) gene
set(s).
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This results in a total of 638 optimization settings and corre-
spondingly 638 optimization processes. For each optimization
process, overoptimism in the tweaked results is assessed relative
to the “default” results, that is, the results arising from the default
choice in all analysis steps of GSA in which the hypothetical
researcher faces uncertainty. For a description of the specification
of the default choices, see Section 3.3. In the remainder of this
section, we elaborate on aspects (i)-(v) that define the individual
optimization settings.

(i) Optimization goals

When exploiting the uncertainty inherent to GSA in an attempt
to tweak the results, a researcher typically has a specific criterion
(i.e., “goal”) in mind. In the following, we define three (distinct)
possible goals, resulting in three different ways the hypothetical
researcher tries to induce results that they consider satisfactory.

First, it can be assumed that a researcher would not undergo the
complex and laborious procedure of generating a gene expression
data set and analyzing it without hoping for significant results
in the first place. Furthermore, a large number of significantly
enriched gene sets provides flexibility when reporting a study.
One may focus on those significantly enriched gene sets that
better fit the “storyline” of the paper. In the framework of
our study, we translate this preference for a large number of
significantly enriched gene sets by formulating optimization
goal 1 as “maximizing the number of differentially enriched gene
sets.”

The two remaining goals follow an alternative intuition.
Researchers often have an explicit expectation as to which gene
set constitutes an interesting research finding and therefore try
to maximize its relevance in the GSA results. Relevance of a
specific gene set may be defined in different ways, leading us to
consider the optimization goals 2 and 3: “minimizing its adjusted
p-value” and “minimizing its rank among the remaining gene
sets,” respectively. We thereby assess the extent to which a user
can influence the ranking of the gene sets in the GSA results to
induce a significant association between the condition of interest
and a particular gene set. In the context of our study mimicking
a hypothetical researcher’s approach, we have to choose the gene
sets to be involved in goals 2 and 3, see below (v).

(ii) Gene expression data sets

The three goals are separately considered for two RNA-Seq gene
expression data sets. The selection criteria for the data sets,
leading to two real data sets frequently used for benchmarking,
can be found in Section 3.1 in the Supporting Information. The
first data set, in the following referred to as “Pickrell data set,”
contains gene expression measurements of 52,580 genes that were
extracted from the lymphoblastoid cell lines of 69 independent
Nigerian individuals (Pickrell et al. 2010). The samples are labeled
according to the sex of the individuals (n = 29 males, n = 40
females). We obtained the data set from version 1.34.0 of the R
package TweeDEseqCountData (Gonzalez and Esnaola 2022).

The second data set, referred to as “Bottomly data set,” was used
to detect genes that are differentially expressed between the two
inbred mouse strains “C57BL/6J” (n =10) and “DBA/2J” (n =11)

from a total of 36,536 genes (Bottomly et al. 2011). We obtained this
data set from the ReCount project (Frazee, Langmead, and Leek
2011).

(iii) Sample labels

In our study, we focus on scenarios where the ground truth is that
no gene sets are differentially enriched between the conditions
of interest. Any improvement of the GSA results through the
exploitation of uncertainty (in the respective contexts of goals
1-3) can thus be interpreted as overoptimism. Given the above-
described gene expression data sets, we obtain such scenarios by
permuting the true sample labels randomly across the samples,
thereby removing the biological meaningfulness from the data.
We repeat the permutation procedure 10 times, resulting in 10
random permutations of the true sample labels.

However, in reality, overoptimism might also occur when the
ground truth is truly unknown. Researchers might still aim to
improve the results, for instance, to obtain a better storyline of
the gene sets to report as findings. We therefore repeat our study
on the true (i.e., nonpermuted) sample labels. Note, however,
that we cannot interpret the corresponding improvement as
overoptimism exclusively. It may also be possible that the default
analytical choice(s) did not model the underlying biological
system adequately—and that the “optimized” choice of the anal-
ysis strategy (parameter setting, data preprocessing approach)
happens to better do so. When considering data sets with the true
sample labels, our focus is therefore on the quantification of the
variability in the GSA results as the consequence of parameter and
data preprocessing uncertainty, rather than on overoptimism.

(iv) GSA methods

We consider a selection of seven GSA methods from the reference
database provided by Xie, Jauhari, and Mora (2021). Six of these
seven methods are chosen for their popularity, whereas the
seventh is selected for its good overall performance. Note that this
selection procedure results in a restriction to methods categorized
as ORA or FCS. For further details on the selection process and
short descriptions of the resulting GSA methods, inspect our
earlier work (Wiinsch et al. 2023). An overview of the methods
included in our study can be found in Table 2.

Itis important to note that while the choice of a GSA method (and
the underlying model) is a source of uncertainty in practice, we
do not exploit method uncertainty in the individual optimization
processes in our study. Instead, the optimization for a given
optimization goal, gene expression data set, and assignment of
the sample labels is performed for each GSA method separately:
in each optimization process, the GSA method is considered to
be fixed. This has the advantage that we can better investigate
and compare the behaviors of the methods. Method uncertainty
is, however, implicitly considered when comparing the results of
the optimization processes across the GSA methods. Of additional
note is that three methods from our selection, namely, DAVID,
GSEA, and GSEAPreranked, are web-based applications for which
all optimization processes have to be performed manually (i.e.,
by hand). Time constraints lead us to limit our study for these
three methods to the optimization goals 1 and 2, whereas goal 3
is omitted.
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TABLE 2 | Overview of the GSA methods included in our study.

GSA method Implemented in Selection criterion Introduced by

GOSeq R Popularity Young et al. (2010)

DAVID ‘Web Popularity Huang, Sherman, and Lempicki (2009a, 2009b)
ORA by clusterProfiler Popularity Wu et al. (2021)

PADOG Performance Tarca, Bhatti, and Romero (2013)

GSEA by clusterProfiler Popularity Wu et al. (2021)

GSEA Web Popularity Subramanian et al. (2005), Mootha et al. (2003)
GSEAPreranked Web Popularity Subramanian et al. (2005), Mootha et al. (2003)

(v) Gene sets (for goals 2 and 3)

Goals 2 and 3 refer to a specific gene set whose adjusted
p-value or rank, respectively, is to be minimized within the
optimization process. In practice, the preferences of researchers
for a specific gene set arise from previous experiences, literature,
or the hypotheses they want to investigate. In the context of
our study, we have to define the preferences of our hypothetical
researcher in an arbitrary but plausible way. In our initial
attempt to select two common gene sets for all GSA methods,
we encountered obstacles that led us to consider different gene
sets for the different methods. A description of the selection
process alongside an overview of the selected gene sets for
all methods and both gene expression data sets is provided
in Section 3.1 in the Supporting Information. For simplicity,
we only refer to “gene set 1” and “gene set 2” in the rest of
this paper.

6
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3.2 | Exploited Uncertainties

An overview of the numbers of exploited data preprocessing and
parameter uncertainties for each of the seven investigated GSA
methods can be found in Figure 2. This figure illustrates that
the ratio between data preprocessing and parameter uncertainties
can differ notably between the methods. For instance, PADOG does
not offer any flexibility in terms of the parameter setting, while for
GOSeq, four of the six exploited uncertainties arise from parameter
uncertainty. Our underlying assumption that researchers are well
intentioned implies that we deliberately renounce to exploit some
uncertainties when we consider that this would amount to a
willful manipulation of the results. This concerns adaptions in the
GSA workflow that might be inappropriate in the given statistical
or biological context or those explicitly discouraged by the author
of the respective method. Furthermore, we only consider those
adaptions that can be carried out without excessive effort.

Uncertainty

. Parameters

. Data Preprocessing

3

FIGURE 2 | Overview of the number of choices affected by uncertainty that are exploited in our study for each method under investigation. The
numbers are additionally split based on the type of uncertainty the corresponding choice is associated with.
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Data preprocessing uncertainty

We exploit the uncertainty about the approach to prefiltering
of lowly expressed genes, the removal of duplicated gene IDs
as a result of gene ID conversion (while we do not exploit the
choice of an approach to gene ID conversion itself), the method
for differential expression analysis (“DE method”) for ORA and
some of the FCS methods, and the method for transformation
(which typically includes normalization) for the remaining FCS
methods. Note that not all of these steps apply to each of the
GSA methods from our selection because the methods often differ
in the required input object. Furthermore, the options available
for one step might depend on the choice made in a previous
step. For instance, the approach to prefiltering typically differs
between different DE methods. For a more detailed description
of the exploited uncertainties in the data preprocessing steps,
including a description of the respective options, see Section 2.1
in the Supporting Information.

Parameter uncertainty

In the process of optimizing the results, we exploit uncertainty
about the choice of the gene set database, the so-called “universe”
(for ORA), the method for the calculation of the p-value, as well
as the gene-level statistic and the weight for FCS. Note that not
all uncertainties apply to all GSA methods. For a more detailed
overview, refer to Section 2.2 in the Supporting Information. Note
that we exploit the choice of the gene set database only for goal 1,
that is, when maximizing the number of differentially enriched
gene sets. Indeed, the specific gene sets considered for goals 2
and 3, stemming from a certain gene set database, typically do
not exist in the same form in another gene set database. The
reason for this is that the gene set databases can differ greatly
in their structure and the gene sets they contain. Furthermore,
for goal 1, we restrict ourselves to the gene set databases
offered alongside the individual GSA methods and do not work
with a customized gene set database that can be uploaded to
the method.

3.3 | Stepwise Optimization Process

In this section, we focus on the structure underlying all optimiza-
tion processes of the GSA results. Real researchers, particularly
if well intentioned, are unlikely to try out all combinations of
analytical choices affected by uncertainty. Instead, they are more
likely to tweak the results in a stepwise manner—consciously or
subconsciously. We also adopt a stepwise approach in our opti-
mization processes. This means that we exploit the uncertainties
in a specific order such that the optimal choice of a specific step
(in the context of the corresponding optimization goal) is based
on the optimal choices from the previous step(s). Optimization
is thus not performed globally for all uncertainties simulta-
neously, because we consider such an approach unrealistic in
practice.

More precisely, we specify the order of the choices a priori and
(roughly) in alignment with the natural order of the correspond-
ing steps required to conduct GSA. For instance, uncertainties
arising from data preprocessing uncertainty are exploited before

addressing those emerging from parameter uncertainty. The
intuition behind this order is that a user of GSA must perform
data preprocessing before running the actual GSA method (and
specifying the corresponding parameters). However, there are
instances where we have to make exceptions to this order,
namely, when it leads to practical difficulties in the optimization
processes. For example, for ORA methods, the choice of the DE
method is optimized before prefiltering (while the natural order
is reversed). The reason for this is the previously mentioned
fact that different DE methods propose different prefiltering
approaches.

For each uncertain choice in the GSA workflow, we set a default
option a priori. For those steps where a common default option
exists (which is often the case for parameters), we set the default
choice for our study accordingly. For those steps for which no
default exists (such as the gene set database for many methods),
we set the default choice for our analysis arbitrarily. Furthermore,
we specify an ordering of the alternative options, which will be
used as a criterion in case several alternative options yield exactly
the same improvement; see below.

Having specified the set of uncertain choices (i.e., steps), their
order, the default, and valid alternative options including their
order, the optimization process proceeds as follows. The optimiza-
tion process starts with all choices in their default configuration
(step 1). The value to be optimized (i.e., the number of differ-
entially enriched gene sets for goal 1, the adjusted p-value, or
rank of the considered gene set for goals 2 and 3, respectively)
obtained in this default configuration is reported as the starting
point (default results). Then, in step 2, the first uncertain choice is
exploited such that the default results are compared to all results
stemming from the alternative options. An alternative option is
then adopted as the optimal option for this step if it leads to
an improvement of the results, namely, an increased number of
differentially enriched gene sets (for goal 1), a decreased adjusted
p-value of the considered gene set (for goal 2), or a decreased rank
of the considered gene set among the remaining ones (for goal 3).
If several alternatives lead to an improvement of the GSA results,
the alternative that leads to the greatest improvement is selected.
If the improvements are equally strong, the alternative option is
selected according to the preliminary fixed ordering. In contrast,
the default option for this step is retained if none of the alternative
options leads to an improvement. The GSA results arising from
the optimal option are then denoted as the current optimal results.

In the third step, the procedure just described is repeated for
the second uncertain choice. Thereby, the current optimal results
from step 2 serve as the default results in this step. This procedure
is carried out in the same manner for each uncertain step and
in the order established previously. That way, the optimal choice
in each step is based on the optimal choices and corresponding
optimal results from all previous steps.

By examining the results optimized in this stepwise manner and
comparing them to the respective default results, it is possible
to assess the variability in the results generated by exploiting
uncertainty. Most importantly, for the permuted sample labels,
it is possible to assess the level of overoptimism induced by this
optimization process.
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4 | Results

The presentation of the results of our study is structured accord-
ing to the three optimization goals. For each goal, the results
are further split according to the assignment of the sample
labels (10 permutations versus true sample labels). For each
method considered for the respective goal, we then contrast
the “tweaked” GSA results from the associated optimization
processes to the corresponding “default” results. This allows for
a comparison between the GSA methods regarding the potential
for overoptimism.

Since the results are generally similar for the Pickrell and the
Bottomly data set, we focus on the results for the former data
set, while referring to Section 4.2 the Supporting Information
for the results of the Bottomly data set. To gain a better under-
standing of the stepwise structure of the optimization processes
using a concrete example, see Section 4.1 in the Supporting
Information.

For simplified readability, we abbreviate the term “sample label
permutation” with “permutation” in the following.

4.1 | Results for Goal 1: Maximize Number of
Differentially Enriched Gene Sets (DEGS)

For a graphical illustration of the results for goal 1, see figure 3.
Random sample label permutations:

Overoptimism concerning goal 1 mainly affects the GSEA-
based methods (GSEA, GSEAPreranked, and clusterProfiler’s
GSEA). In particular, the number of DEGS cannot be increased
for any of the permutations for GOSeq and DAVID and only in
a small minority of permutations for clusterProfiler’s ORA
and PADOG. For PADOG especially, the number of DEGS does not
exceed 1 DEGS after the exploitation of uncertainty in any of
the permutations.

For the web-based application GSEA, an increase in the number
of DEGS is obtained for just over half of the permutations,
in three of which the initial number of 0 can be tweaked to
a nonzero one. For instance, we observe an increase from 0
to 40 DEGS in one permutation solely through the specifica-
tion of an alternative weighting pattern of the genes in the
computation of the enrichment score. Note that for the web-
based method GSEA, the set of analytical choices leading to a
tweak in the corresponding results differs greatly between the
permutations.

The observations for the remaining (GSEA-based) methods
GSEAPreranked and clusterProfiler’s GSEA are particularly
striking. Even before exploiting any uncertainty, the initial
numbers of DEGS considerably exceed 0 in the vast majority of
permutations. Note that this observation cannot be viewed as
overoptimism in the sense considered in this paper. However, it
provides information about the general reliability of these GSA
methods. In particular, it coincides with the observation that FCS
methods that require as input an already ranked list of the genes

(as opposed to generating the ranking internally) have inflated
false discovery rates (Maleki et al. 2020; Wu and Smyth 2012).

Furthermore, an increase in the number of DEGS can be observed
with these two methods for all permutations, amounting to
several magnitudes in the great majority of cases. Thereby,
a striking pattern as to which analytical choices in the data
preprocessing and parameters trigger an increased number of
DEGS is particularly visible for GSEAPreranked. Consisting of
the choice of the DE method and the assignment of equal
weight to all genes in the computation of the enrichment
score, the increase from 12 to 196 DEGS in one permutation
is only one of many examples where it leads to overoptimistic
results.

According to the wuser manual provided alongside
GSEAPreranked, the option of assigning equal weight to
each gene in the computation of the enrichment score can be
viewed as a “conservative scoring approach.” It is recommended
over the default of weighting each gene by its absolute value
of the gene-level statistic when unsure about the biological
meaningfulness of the magnitude of the ranking metric for the
user’s research question (Mootha et al. 2003; Subramanian et al.
2005). A user could thus easily justify the exploitation of this
uncertainty with the recommendations from the user manual.

For clusterProfiler’s GSEA, the set of uncertain choices
leading to the highest increase in the number of DEGS varies
more strongly between the permutations. Nevertheless, we also
observe notable increases for this method, such as from 0
to 38 DEGS through the choice of the DE method and the
prefiltering approach.

True sample labels:

For the true sample labels, an increase in the number of DEGS
by exploiting data preprocessing and parameter uncertainty is
achieved for all GSA methods apart from GOSeq and DAVID.
For the latter two, the number of DEGS amounts to 0 before
and after the exploitation of uncertainty. For PADOG, a moderate
increase from O to 1 DEGS is achieved through the choice of
prefiltering. In contrast, for GSEAPreranked, the initial number
of DEGS, amounting to almost 200, is already exceptionally high
and can even be further doubled through the choice of the DE
method as part of data preprocessing. This choice proves to be
a trigger for increase not only for GSEAPreranked. While for
clusterProfiler’s ORA, the number of DEGS is thus increased
from O to 26, the initial number of 20 DEGS is further raised
by factor six through the modification of the DE method for
clusterProfiler’s GSEA.

4.2 | Results for Goal 2: Minimize Adjusted
p-Value of a Specific Gene Set

Note that the significance threshold considered by the web-based
applications GSEA and GSEAPreranked is a g-value of <0.25;
see Storey (2002) for a definition of the g-value. The remaining
methods detect a gene set as differentially enriched if its p-value
adjusted using the Benjamini-Hochberg procedure is lower than
0.05. We stick to these default settings in our interpretation of the
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FIGURE 3 | Goal 1: The optimized numbers of differentially enriched gene sets in the Pickrell data set (“Maximum”), obtained through the

exploitation of uncertainty, are compared to the corresponding numbers resulting from the default analytical choices (“Default”). For each optimization

process, the associated optimized and the default number are connected through a line. (A) presents the results for the 10 random permutations and
(B) for the true sample labels. On the x-axis, the individual methods investigated in the context of goal 1 are displayed. Special attention must be paid to
the transformed scale of the y-axis. This transformation enables visibility of small increases in the number of DEGS, while particularly large increases

appear smaller than they actually are.

analyses of goal 2. See Figure 4 for a graphical illustration of the
results for goal 2.

Random sample-label permutations:

Analogous to goal 1, the degree of overoptimism regarding goal 2
is the highest for the GSEA-based methods. Before and especially
after exploiting uncertainty, these three methods generally indi-
cate lower adjusted p-values (/g-values), respectively, compared
to the remaining methods.

Similar to goal 1, the adjusted p-values of the respective gene sets
cannot be tweaked for GOSeq and DAVID (all adjusted p-values are
equal to 1 even after optimization). Similar observations are made
for clusterProfiler’s ORA and PADOG, where decreases in the
adjusted p-value through the exploitation of data preprocessing
and parameter uncertainty are, if at all existent, negligible (i.e.,
less than 0.02 in the vast majority of permutations).

For the web-based application GSEA, we observe moderate to
notable decreases in the g-value in the vast majority of permuta-
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FIGURE 4 | Goal 2: The optimized adjusted p-values (/g-values) in the Pickrell data set (“Minimum”), obtained through the exploitation of
uncertainty, are compared to the corresponding values resulting from the default analytical choices (“Default”). Note that for the web-based applications
GSEA and GSEAPreranked, the g-value is used to assess differential enrichment instead of the adjusted p-value. For each optimization process, the
associated optimized and the default adjusted p-value (/g-value) are connected through a line. (A) presents the results for the 10 random permutations

and (B) for the true sample labels. On the x-axis, the individual methods investigated in the context of goal 2 are displayed. The results for gene set 1
are shown in red and those for gene set 2 in blue. The dashed gray line indicates the significance threshold for each method below which a gene set is

considered differentially enriched.

tions. However, none of the optimizations applied in the analysis
of the permuted data turns an initially nonsignificant g-value into
a significant one.

In contrast, there are three permutations for GSEAPreranked in
which the tweaking of the GSA results leads to the detection
of differential enrichment of the respective gene set that was
initially not found to be enriched. In particular, we observe a g-
value decrease from 1 to 0.19 in one permutation. As can also
be observed in the majority of the remaining permutations, this
strong decrease is triggered by the choice of the DE method and

the modification of the weighting pattern of the genes in the
computation of the enrichment score.

For clusterProfiler’s GSEA, we also observe the just-described
set of analytical choices to trigger a decrease in the adjusted
p-value of the respective gene sets in the majority of permu-
tations. Note that we additionally observe the approach to the
removal of duplicated gene IDs to be a common trigger of
decrease. However, the corresponding effect is always negligible.
The strongest decreases using clusterProfiler’s GSEA are
observed in one permutation for both gene sets, each. They lead
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from 0.47 to 0.077 and from 1 to 0.058, respectively, such that the
corresponding “tweaked” adjusted p-values remain just above the
significance threshold.

True sample labels:

Similar to goal 1, a reduction of the adjusted p-value cannot
be achieved for GOSeq, DAVID, and clusterProfiler’s ORA
for any of the gene sets. In contrast, for GSEAPreranked, an
initially nonsignificant g-value of 0.29 is reduced to the significant
value of 0.20 through the change of the DE method in data
preprocessing. For the web-based application GSEA, the initial
g-value of one of the considered gene sets is 0.13, indicating
significant differential enrichment even before the exploitation
of uncertainty. The modification of the weighting pattern of the
genes in the computation of the enrichment score leads to a
further decrease to a g-value of 0.001.

4.3 | Results for Goal 3: Minimize Rank of a
Specific Gene Set

In our study, we define the rank of a gene set in the GSA results
based on the listing of all gene sets that typically stems from the
order of their adjusted p-values. Thereby, the gene set with the
lowest adjusted p-value (indicating the strongest association with
the condition of interest) occupies the first position. If several
gene sets have an identical adjusted p-value, we assign them the
same rank. Furthermore, we take into account that the number
of contained gene sets often varies between GSA results tables,
particularly when generated using different GSA methods that
often refer to distinct versions of the corresponding gene set
database. To ensure comparability between the rank of a gene
set across GSA results tables, we therefore divide each rank
in the given GSA results table by the maximum assigned rank
from that table. The resulting relative ranks range from O to 1.
Thereby, a lower relative rank indicates that the corresponding
gene set’s adjusted p-value is generally lower compared to the
remaining genes (and vice versa). In particular, an adjusted
p-value of 1 automatically results in a relative rank of 1. In
the following interpretation of the analyses of goal 3, we use
the expressions “rank” and “relative rank” interchangeably. A
graphical illustration of the results is provided in Figure 5.

Random sample-label permutations:

For GOSeq and clusterProfiler’s ORA, we observe the same
pattern as with goals 1 and 2, namely, that the ranks of the two
considered gene sets remain at the highest possible value of 1
before and after the exploitation of uncertainties.

In contrast, for PADOG, we observe many slight to moderate
decreases in the relative ranks for the majority of permutations,
triggered through the choice of the prefiltering approach or the
method to transform the RNA-Seq data. Note that the relative
ranks are generally low even before exploiting any uncertainty,
especially compared to the adjusted p-values from goal 2; see
Figure 4. For instance, with all uncertain choices in their default,
gene set 2 has a relative rank of 0.12 in one permutation
(whereas the corresponding adjusted p-value amounts to 0.82).
This relative rank is further decreased to 0.07 through the choice

of the method to transform the RNA-Seq data, whereas the
adjusted p-value increases to 0.92. This indicates that while the
initial adjusted p-values of all gene sets are already generally
high, the adjusted p-values of the majority of the remaining
gene sets increase even more strongly through the exploitation
of uncertainties than the adjusted p-value of gene set 2.

We observe notable decreases in the relative ranks across the
permutations for clusterProfiler’s GSEA. Analogous to opti-
mization goals 1 and 2, many of these decreases are triggered
through the choice of the DE method to generate the required
input and the specification of an equal weighting for all genes
in the computation of the enrichment score. The observations
coincide with the corresponding ones from goal 2, meaning that
through the exploitation of the uncertainty, a user does not trigger
a decrease in the adjusted p-value of all gene sets, but specifically
modifies the ranking of the gene sets in the GSA results in favor
of their “preferred” gene set. For instance, for gene set 2, there is
one permutation in which the choice of the DE method and the
specification of an equal weight of all genes in the computation
of the enrichment score results in a decrease of the relative rank
from 1 to 0.026. At the same time, the adjusted p-value decreases
from 1 to 0.058.

True sample labels:

For GOSeq, the relative ranks cannot be decreased from their
respective initial value of 1 for either of the gene sets. In contrast,
for clusterProfiler’s ORA, a reduction from 0.31 to 0.17 is
triggered through the choice of the universe for gene set 2.
For PADQG, the already low relative rank of 0.16 of gene set
2 can be further decreased to 0.09 through the choice of the
method for RNA-Seq transformation. Note, however, that the
corresponding adjusted p-values before and after the exploitation
of the uncertainties, respectively, amount to 0.92 and 0.90. This
indicates that the adjusted p-values of the vast majority of
remaining gene sets are even closer to 1.

5 | Discussion

In our analysis, we quantified overoptimism effects resulting
from the multiplicity of analysis strategies combined with selec-
tive reporting for several popular gene set analysis methods.
We thereby considered several types of expectancies/hopes the
researchers might have when tweaking their analyses, which
we translated into three distinct goals. The maximization of
the number of differentially enriched gene sets (goal 1) grants
the researcher greater flexibility in generating hypotheses. By
minimizing a specific gene set’s adjusted p-value or rank among
the remaining gene sets, a researcher attempts to fulfill their
expectations as to what constitutes interesting results.

Our study shows that the potential for the generation of overop-
timistic results in the context of all three goals particularly
affects two methods, namely, GSEA provided by the R package
clusterProfiler and the web-based method GSEAPreranked.
Both methods apply variations of Gene Set Enrichment Analysis
(Subramanian et al. 2005) commonly known to produce inflated
false discovery rates (FDRs) (Wu and Smyth 2012; Maleki et al.
2020). However, we observe their frequent use; see, for example,
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FIGURE 5 | Goal 3: The (relative) ranks in the Pickrell data set (“Minimum”), obtained through the exploitation of uncertainty, are compared to
the corresponding values resulting from the default analytical choices (“Default”). For each optimization process, the associated optimized and the

default rank are connected through a line. (A) presents the results for the ten random permutations and (B) for the true sample labels. On the x-axis,

the individual methods investigated in the context of goal 3 are displayed. The results for gene set 1 are shown in red and those for gene set 2 in blue.

Reimand et al. (2019) and Lopes-Ramos et al. (2020). Our study
shows that, in addition to the above-described problem, both
methods commonly grant the user to further tweak the results,
for example, by changing the weighting pattern of the genes
in the assessment of differential enrichment, a modification
easily justifiable through information from corresponding user
manuals. Since the evidence from our study casts even further
doubt on the reliability of thus made research findings, our
study should therefore be considered a reinforcement of the
recommendation against these methods.

While our work focuses on the exploitation of uncertainty in GSA
at the analysis stage, a researcher is in reality already confronted

with additional uncertainties during the generation of the gene
expression data set. These include (but are not limited to) the
choice of the library preparation kit, the quality filter to remove
sequences likely to contain errors, and the source of references for
gene annotation. A modification in one or more of these aspects
can lead to additional variability in the GSA results even when
the downstream analysis strategy remains the same. Our focus
on later stages of the research process can therefore result in an
underestimation of the potential for overoptimistic results. The
other way around, the strictly systematic manner of optimizing
the results as employed in our work does certainly not fully reflect
the reality of data analysis practice, which, in turn, suggests that
our study might overestimate overoptimism.
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First, the probability of exploiting an existing uncertainty is
likely to vary between the different steps, depending on the
required effort as well as the researcher’s programming expertise
and mindset. For example, the adjustment of a preprocessing
step, such as changing the method for differential expression
analysis when generating the required input for ORA (which
requires modifying several lines of code), generally comes with
a greater effort compared to changing a parameter value, which
can often be done by a single click. Furthermore, the needed
efforts are generally higher if the researcher is equipped with
little programming experience. The amount of tweaking a real
researcher may realistically perform in a practical project is
therefore individual. Our selection of analysis steps and options
the fictive researcher may choose from does not take this
individual variability into account and thus inevitably involves
some arbitrariness. This arbitrariness extends to other aspects
such as the specification of default options, despite being based
on extensive literature research. Most importantly, it may be
argued that researchers would not consider as many options in
practice.

Second, it is more likely that a real researcher adopts a change
in a flexible step if it leads to a noticeable improvement in the
results instead of (as is the case in our study design) accepting
each improvement, however, small it may be. Indeed, researchers
know that each change from the default might require a justifica-
tion eventually, and may thus be reluctant to engage in changes
that do not bring substantial benefits.

Third, we consider the three optimization goals separately, while
a real researcher might have several of these goals in mind. For
instance, they might want to increase the number of differentially
enriched gene sets while, at the same time, trying to reduce the
adjusted p-value of a specific gene set. Likewise, they may have
two or more gene sets in mind whose relevance they want to
simultaneously increase in the GSA results. On the one hand,
considering a single optimization goal as fixed, as in the fashion
of our study, might lead to an underestimation of the potential
for overoptimistic results since we ignore an additional source
of multiplicity. However, pursuing multiple goals simultaneously
might make it more difficult to induce satisfactory results in
a cherry-picking manner, such that the resulting overoptimism
in the GSA results may actually be less pronounced. In future
work, it would therefore be interesting to investigate the effect
on the level of overoptimism resulting from the consideration of
multiple optimization goals.

Fourthly, in the context of goal 1, there are several optimization
processes in which the default number of differentially enriched
gene sets (i.e., before performing any optimization) is already
substantial. It could be increased even further for many of these
cases; in reality, however, a researcher would be unlikely to
increase an already high number of significant results. While
a higher number of differentially enriched gene sets offers
a higher flexibility regarding the storyline of the paper and
biological understanding of the results, it can also complicate
their interpretation and reporting, even forcing the researcher to
report only a subset of the detected gene sets. Our study does
not take this into account and assumes that the researcher would
always be interested in increasing the number of significant gene
sets.

To sum up, our study unavoidably requires a certain amount of
simplifications, which may not only imply an underestimation of
the overoptimistic effect of interest but also its overestimation.

A further aspect of our study that is subject to arbitrariness
is the choice of the gene sets whose adjusted p-value or rank
(for optimization goals 2 and 3, respectively) we attempted to
minimize. Different choices of gene sets might lead to different
extents to which overoptimistic results can be achieved and
the gene sets considered in our study only make up a small
fraction of the gene sets provided by the gene set database in the
individual methods. Furthermore, for goals 2 and 3, our study
focused mainly on gene sets provided by the gene set database
GO (with subontology “Molecular Function”). It would therefore
be interesting to extend the selection of gene sets, additionally
considering gene sets from other gene set databases.

To address the arbitrariness in our study design when mimicking
a hypothetical researcher, it would be interesting to perform a
real-life multianalyst experiment in the spirit of Silberzahn et al.
(2018). This would imply recruiting several teams of analysts and
presenting them with the same research question and RNA-Seq
data set. The task would then be to investigate the variation in the
different steps of the chosen analysis strategies and in the results
between the teams. This experiment would additionally allow
for an assessment of the meaningfulness of the tweaked GSA
results in the context of the conditions of interest. Note that such
experiments may also be conducted with students as analysts in
the context of undergraduate teaching, see, for example, Heyman
and Vanpaemel (2022).

Despite its limitations, our study clearly encourages read-
ers of publications presenting GSA results to interpret them
cautiously—that is, with the inherent uncertainties and possible
overoptimism in mind. Our study reveals that for some methods,
it is relatively easy to cherry-pick in the context of GSA and that
the resulting overoptimism is sometimes substantial. Although
we obviously cannot provide evidence of the extent of cherry-
picking in practice (since it happens behind closed doors and
is naturally never reported), we conjecture that its incidence
is nonnegligible.

What can “real” researchers do to avoid overoptimism when con-
ducting gene set analysis? It is important to not only report those
analyses that are identified as “most preferable” after inspecting
the results. GSA is often performed as part of exploratory
research, which makes it difficult to decide on all aspects and
details of the analysis before running it. Helpful guidance—
may it be in the form of neutral comparison studies supporting
the method’s choice or user manuals provided alongside the
GSA methods—is often scarce, making the prespecification of
the analysis strategy even more complex. In this context, it is
certainly not realistic to require researchers to fix all analytical
choices in advance. A valid alternative approach would be to
report the GSA results obtained with several analysis strategies
in an effort to transparently disclose and integrate the underlying
uncertainties while refraining from reporting only the “best” ones
in a cherry-picking manner. Alternatively, one may select the
analysis strategy after running the analyses—and thus identi-
fying potential problematic behaviors of some of the analysis
strategies—but without looking at the “main results” (which is
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formalized in terms of “goals” in our study). This latter approach
can be seen as a relatively safe compromise between the full
prespecification of the analysis strategy, which lacks flexibility in
an exploratory setting, and the results-driven selection of analysis
strategies, which often leads to overoptimism as demonstrated
through our study.
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