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1. Introduction

Manufacturing companies are currently exposed to a turbu-
lent economic environment. Globalisation, the aggravation of
product life cycles and the penetration of new technologies are
just a few of the mega trends that manufacturing companies
must face in order to be competitive [1, 2]. The customer
expects an extensive product portfolio with individual charac-
teristics with simultaneously short delivery times and a high
level of punctuality [3]. This increases the demands on the
production systems. In addition to technical product quality,
logistical quality is also becoming an increasingly important
criterion for a company’s competitiveness [4]. As a result of the
diversity of variants and the high pressure to innovate, compa-
nies are increasingly concentrating on their core competences
and reducing their vertical range of manufacture [5].
Increasingly networked value creation makes modern supply
chains vulnerable to disruptive events, and companies have a
great need to identify unplanned events early and initiate imme-
diate responses. Event-oriented systems fulfil the requirement
of high reactivity to unplanned events, since they can recognise
and respond to certain events or event constellations [6]. These

disturbances cannot all be ruled out in a complex product.
Simulation and prediction software systems are unlikely to
predict the disturbance, but the impact of negative events can
be illustrated.

Since the 1990s, with the advent of user-friendly simulation
software and growing computational capacities, both model-
based and, in particular, control-theoretic approaches to produc-
tion planning and control (PPC) have gained increasing poten-
tial [7, 8]. A crucial step in this development was the contribu-
tion of Dirk Petermann [9]. Petermann and other authors who
established a control-theoretic concept in order to model and
simulate the transient behaviour of arbitrary work systems, e.g.
production machines [10, 11, 12]. A respectable work system
model should be able to react to certain events such as rush or-
ders or capacity disturbances in real-time. Above all, the model
is supposed to draw up an estimate for the production duration
of any incoming order, so that simulating the model may help
in keeping to schedule.
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Abstract

Cyber-Physical Production Systems (CPPS), with their features such as distributed organization, autonomous control, real-time capability,
and intelligent data processing, provide new production planning and control (PPC) capabilities. These possibilities are decisive in a market
environment with characterised by smaller batch sizes, a large number of variants and shorter delivery times. However, it is necessary to have
early-warning markers to take any measures.
In this paper, we deal with a particular control-theoretic model that is capable of simulating a work system, e.g.; a production machine. In particular,
the model is able to predict the production duration of all incoming orders and, thus, serves the purpose of improving adherence to schedule of an
arbitrary production environment. This paper aims to establish an appropriate stability analysis concept for this specific model. As it turns out, due
to the nonlinearity of the model, we want to introduce a mathematically more challenging stability notion, the so-called input-to-state stability.
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2. Background - control-theoretic approaches

The origin of Petermann’s approach is the so-called funnel
formula [9, 13]. This states that, assuming the production fol-
lows a first come first served scheme, the mean throughput time
(MTT) can be deduced from the quotient of the work system’s
mean stock (MS) and its mean performance (MP), i.e.,

MTT =
MS
MP
. (1)

Based on the funnel formula and control technology ap-
proaches, Petermann has created a continuous model of the
production process based on the continuous element [9] and
the operating characteristic. Through the classical application
of control theory, he realises continuous inventory and residue
controllers (Fig.1). The lack controller uses the access rate
as the control value for the stock, while the backlog uses the
capacity of the work system. The deviation of the target/actual
power is integrated over time and forms the basis for the
calculation of the required power for residue minimisation. If
the target stock balance deviates, the stock controller adjusts
the access rate until the variances have vanished. Using this
controller concept, throughput times and stock can be kept
constant even under dynamic conditions by synchronising
capacity and capacity.
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Fig. 1. Petermann’s fundamental control-theoretic model [14]

In both feedback loops, there is have the same system which
can be interpreted as the work system itself. It is shown in Fig.
2. At this point merely discuss the ”performance curve” (PC)
subsystem here, which is the core part of the model in the sense
that it establishes a certain relationship between the stock and
the performance of the work system. The PC defines how fast
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Fig. 2. The plant ”work system” in Petermann’s control-theoretic model Fig. 1

the current stock is processed by the machine.

Hofmann [14] shows the Petermann model implemented in
the simulation software. In particular, he conceived the idea of
implementing the PC as a linear feedback loop, for instance, a
generic loop with a proportional–integral–derivative controllert
(PID) controller to a second-order lag element (PT2) element
plant, as shown in Fig. 3. The advantage of a PT2 function
to represent the PC over the most commonly used first-order
lag element (PT1) function [14], is the possibility it allows for
the real-time simulation of temporal behaviour. This allows PT2
functions to be used, for example in model machines that have
a capacity of greater than 100% over a short period of time.
Model machines that have a capacity of greater than 100% over
a short period of time. The PT2 element is a linear transfer
element and in its easiest form mathematically defined by a
second-order ordinary differential equation (ODE)

ÿ(t) + 2 dẏ(t) + y(t) = u(t), (2)

where y is the state and at the same time the output of the sys-
tem, u is an input and d > 0 is the damping factor [15]. Intro-
ducing the state vector x = [y, ẏ]T , we can rewrite this in the
form of a linear, time-invariant system

ẋ(t) = A x(t) + b u(t),

y(t) = cT x(t),
(3)

with

A =
[

0 1
−1 −2d

]
, b =

[
0
1

]
, c =

[
1
0

]
. (4)
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Fig. 3. Implementation of a PC with PT2 behaviour

Alternatively, we can describe the PT2 element in the fre-
quency domain in terms of a transfer function

G(s) =
1

s2 + 2d s + 1
, s ∈ C. (5)

Hofman [14] implemented an abrasion controller and a
maintenance element in addition to Petermann’s basic model
of a work system. These functionalities enable the model to
simulate an abrasion-driven decrease in the work system’s
maximum performance and to turn off the work system
during a maintenance period, in the event that the maximum
performance falls below a predefined threshold. Hofmann
presented some convincing simulation results, considering
practice-oriented events such as rush orders and capacity
disturbances. Nevertheless, he could not find a satisfactory
answer to the question of the system’s stability.

Indeed, stability analysis is a poorly investigated discipline
of PPC [10]. This may be due to the fact, that work system
models, such as Petermann’s and Hofmann’s, typically turn out
to be nonlinear, which is the reason why performing an appro-
priate stability analysis is a highly nontrivial task. The stabil-
ity concept most widely known among engineers most com-
monly known stability concept, the bounded-input, bounded-
output (BIBO) stability notion, fails in this situation, because
standard tools such as the well-known Nyquist criterion [15] are
only applicable to linear systems. For this reason, we present
a new, mathematically correct approach to solve this problem
here. In particular, we establish a relation between the stability
of the PC and the system as a whole.

3. Methodology and main results

The method in this paper analysing the stability of the work
system model basically consists of three steps. In the first step,
the method apply certain simplifications to the model which
shell enable us in the second step to deduce its mathematical
representation in form of the nonlinear ODE system. In the
third step, its shall briefly introduce the input-to-state stability
(ISS) notion [16, 17], which we require here, due to the
nonlinearity of the ODE system. In particular, we will state an
appropriate version of the so-called small-gain theorem, which
will be the major tool in proving of the ISS of the work system
model.
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Fig. 4. Simplified model

The above-mentioned model offers the following simplifica-
tions:

• Assumption that the input signals MS min and MWtar to
be constant, i.e., time-independent.
• The input signal MS tar to be known immediately, i.e.,

we do not need to compute it MS tar = MS min MS rel,tar as
depicted in Fig. 1.
• Reduction of the model about all Simulink blocks Switch.
• Renouncement of all parts of the model that implement

the abrasion controller or maintenance element.

These simplifications should not affect the stability of the sys-
tem. However, we will not be able to perform stability analy-
sis with respect to the input signals MS min and MWtar, as they
are assumed to be constant, on the basis of the first assumption
above. As a result, we obtain the simplified model shown in
Fig.4.

Now, it is possible to derive an ODE system that describes
the simplified model in Fig. 4. Clearly, the form of this ODE
system - in particular the number of states - depends on the im-
plementation of the PC. In general, if the PC is a linear control
system with system matrix A = APC and input vector b = bPC

(corresponding to (3)), the ODE system can be written as

ẋl(t) = APC xl(t) + bPC xnl(t), (6)

ẋnl(t) = −xnl(t) +
1
c1

u1(t) + u2(t) − 2 u1(t)
x(1)

l (t)

c2 + x(1)
l (t)

 , (7)

where

c1 := MS min, c2 := MWtar
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are positive constants,

u1 := MPplan, u2 := MS tar

are the inputs of the simplified system, and x(1)
l is the first com-

ponent of xl which we take as x(1)
l = MW. By definition, it

holds that x(1)
l (t) = MW(t) ≥ 0 for all t ≥ 0. As a consequence,

on the right-hand side of (7), no division by zero can occur. If
we assume that the PC has PT2 behavior and omit the D part of
the PID controller for the sake of computational simplicity, we
obtain

APC =


0 1 0

−(1 + KP) −2d 1
−KI 0 0

 , bPC =


0

KP

KI

 , (8)

where KP,KI > 0 are the controller parameters, and d is the
damping factor of the PT2 plant, see formula (2).

Note that the simplified model can be considered as a cou-
pled system of the linear subsystem (6) with the state xl de-
scribing the PC and the scalar nonlinear equation (7) with the
state xnl. The two systems are coupled in the sense that the state
xnl of the nonlinear equation (7) is fed into the linear equation
(6) as a so-called internal input. Conversely, the first state com-
ponent x(1)

l of (6) serves as an internal input for the nonlinear
equation (7). Accordingly, we henceforth refer to u1 and u2 as
the external inputs of the system. Fig. 5 illustrates this setting.
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Fig. 5. Breakdown of the simplified model to a linear and a nonlinear part

Now that we have found a correct mathematical represen-
tation of the work system model, we must provide a suitable
stability notion that can be applied here. As for nonlinear con-
trol systems, the so-called input-to-state stability is typically an
appropriate choice [16, 17, 18].

Definition 3.1. We define the function classesK ,L andKL as
following.

• ClassK is the set of all functions γ : [0,∞)→ [0,∞) that
are continuous, nondecreasing and which satisfy
γ(0) = 0.
• Class L is the set of all functions α : [0,∞)→ [0,∞)

that are continuous, nonincreasing and which satisfy
lim
t→∞
α(t) = 0.

• Class KL is the set of all functions
β : [0,∞) × [0,∞)→ [0,∞) that satisfy β(·, t) ∈ K
and β(r, ·) ∈ L for all t, r ≥ 0.

Definition 3.2. A control system in the form

ẋ(t) = f (x(t), u(t)), x(0) = x0

is called input-to-state stable (ISS), if for all initial states x0
and for all bounded (external) inputs u, there exist γ ∈ K and
β ∈ KL such that the inequality

‖x(t)‖ ≤ β(‖x0‖, t) + γ
(‖u‖[0,t])

holds for all t ≥ 0, where we denote

‖u‖[0,t] := sup
0≤τ≤t

‖u(τ)‖.

The function γ is referred to as the (external) gain.

The main advantage of the ISS concept is the possibility if
offers to analyse the stability properties of interconnected sys-
tems. We now introduce the corresponding tool, the so-called
small-gain theorem, in a convenient manner.

Theorem 3.3. Consider a control system Σ that consists of n
pairwise interconnected systems Σ1, . . . ,Σn given by

Σi : ẋi(t) = fi(x1(t), . . . , xn(t), ui(t)), i = 1, . . . , n,

where u1, . . . , un are the external inputs. Assume these sys-
tems to be ISS with linear internal gains, i.e., there exist
β1, . . . , βn ∈ KL, γ1, . . . , γn ∈ K , and constants γi j ≥ 0 with
γii = 0, i, j = 1, . . . , n, such that for all t ≥ 0 the inequality

‖xi(t)‖ ≤ βi(‖xi(0)‖, t) +
n∑

j=1

γi j ‖x j‖[0,t] + γi
(‖ui‖[0,t]

)
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holds for i = 1, . . . , n. Then Σ is also ISS, if the internal gain
matrix

Γ =



γ11 · · · γ1n
...

...
γn1 · · · γnn



satisfies the condition ρ(Γ) < 1, where ρ(Γ) denotes the spectral
radius of Γ, i.e. the largest absolute value of the eigenvalues of
the matrix Γ.

We wish to apply the small-gain theorem for n = 2 to the
interconnected system given by (6) and (7). In [18] it is shown
that a linear control system in the form (6) is ISS, if it is asymp-
totically stable, i.e., if all the eigenvalues of its system matrix
(in our case APC) have negative real parts. For the PT2 example
given by (8), this is the case if and only if it holds that

d >
KI

2(1 + KP)
. (9)

Furthermore, the corresponding gain is a linear function
γin

l (r) = γr for some γ ≥ 0. For the nonlinear equation (7),
we can directly prove that it is ISS. Indeed, introducing the no-

tation w(t) = x(1)
l (τ)

c2+x(1)
l (τ)

for the nonlinearity and observing that

|w(t)| ≤ 1 for all t ≥ 0, we have

|xnl(t)| ≤ e−t |xnl(0)| +
∣∣∣∣∣

t∫

0

eτ−t 1
c1

(u1(τ) + u2(τ) − 2u1(τ)w(τ)) dτ
∣∣∣∣∣

(10)

≤ e−t |xnl(0)| + 1
c1

t∫

0

eτ−t (3‖u1‖[0,t] + ‖u2‖[0,t]
)

dτ (11)

≤ e−t |xnl(0)| + 4
c1
‖u‖[0,t]

t∫

0

eτ−t dτ (12)

= e−t |xnl(0)| + 4
c1
‖u‖[0,t] (1 − e−t) (13)

≤ e−t |xnl(0)|︸�����︷︷�����︸
=:β(|xnl(0)|,t)

+ 0 · ‖x(1)
l ‖[0,t]︸��������︷︷��������︸

=:γin
nl

(
‖x(1)

l ‖[0,t]
)
+

4
c3
‖u‖[0,t]

︸�����︷︷�����︸
=:γex

nl (‖u‖[0,t])

. (14)

Choosing β, γin
nl and γex

nl suitably as shown above, we con-
clude that the nonlinear system is ISS and the corresponding
internal gain is γin

nl ≡ 0. Thus, in this case, the internal gain

matrix Γ from the small-gain theorem reads

Γ =

[
0 0
γ 0

]
,

which yields ρ(Γ) = 0. From the small-gain theorem, we have
the following final result.

Theorem 3.4. The simplified work system model is ISS, if the
PC is asymptotically stable.

An interesting interpretation of this result is that not only
the ISS of the work system model follows from the stability
of the PC, but also the BIBO (bounded input, bounded output)
stability, i.e., it responds to the bounded inputs u1 = MPplan

and u2 = MS tar with bounded outputs MPact and MS act. So far,
we have not considered the output equations of the simplified
model. These read

MPact(t) = 2 MPplan(t)
MW(t)

MWtar + MW(t)
, (15)

MS act(t) = MS min MS rel(t). (16)

Suppose that the system is ISS and that the external inputs
are bounded, then it follows from (3.2) and the properties of the
function classes in Definition 3.1 that all the states are bounded
as well. Considering the output equations (15) and (16), we see
that the outputs are also bounded. As far as the output signal
MS act is concerned, this is obvious from the corresponding out-
put equation (16). For the ouput signal MPact, we have from the
output equation (15)

|MPact(t)| = 2 |MPplan(t)|
∣∣∣∣∣

MW(t)
MWtar + MW(t)

∣∣∣∣∣
︸�����������������︷︷�����������������︸

<1

< 2|MPplan(t)| < ∞.

This result can easily be extended to a series of two (or
more) work systems in the sense that the output signals MPact

and MS act of the first system serve as input signals MPplan and
MS tar of the second system and so on. These signals generally
undergo a dead time, which simulates the transport time. The
implementation of a series consisting of multiple work systems
is shown in Fig. 6. If required, additional bearings can be added
using integrals.

If all the work systems have stable PCs, then the series is
BIBO stable. This can be verified by observing that if the first
work system has a stable PC, it responds to bounded input sig-
nals with bounded output signals. Of course, the dead time el-
ement preserves the boundedness. The second work system re-
sponds with bounded output signals again, if it has a stable PC,
and so on.
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Fig. 6. Simulink implementation of a series of multiple work system models

4. Application

This section explains the prototypical realisation and
evaluation of the model-based stability calculation in the case
of the highly automated one-off production of spectacle lenses.
These systems are linked by conveyor belts and perform up
to 75.000 operations out on five systems per day, see Fig.7.
These systems report their performance and any disruptions to
a service in a cloud.

Output 2

Output 1

WS_4 WS_3

WS_2 WS_1

WS_5

Input 2

Belt Switch point WS_n Work station

Fig. 7. Production system for glasses

Under certain circumstances, the system shown in Fig. 7 can
be modelled as a series of work systems as shown in Fig. 6.
We interpret the signals in the figure as currents of production
orders, or the mean performance MP. Assume that all the or-
ders pass each of the five work systems (WS 1 to WS 5, in that
order) exactly once, we have a series of these five work sys-
tems from ”Input” to ”Output 1” or ”Output 2”, whereas the
conveyor belts are modelled as dead times, as discussed before.
If each of the five work systems is modeled using Petermann’s
or Hofmann’s technique and each of the models exhibits a PC
with PT2 behaviour - specified by (8) -, the simplified ODE sys-
tem describing the production has 20 states. If all these PCs are
asymptotically stable, which can be investigated by means of
the Nyquist criterion, for instance, the production system model
as a whole is BIBO stable in the sense that for all bounded ”In-
put” signals, the output signal ”Output 2” is also bounded.

5. Service application

This section explains the prototypical realization and evalua-
tion of the real-time forecasting service in the case of the highly
automated one-off production of spectacle lenses. For technical
reasons and the possibility of scaling hardware performance, a
public cloud was chosen.

Output_2

Output_1
WS_2 WS_1

WS_5

Input_1

Belt Switch point WS_n Work station

Forecasting service

master- and 
movement date

production 
control

... ...

PUBLIC CLOUD

PRIVATE NETWORK 

Communication

Fig. 8. Real-time forecasting service

The service operates a data exchange with

• master- and movement data,
• production resources (machines, warehouses and trans-

port units) and
• production control.

The forecasting service starts with the production planning
of orders. For this, the current information on order processing
is used to create a total transfer function, see Fig.8. In order
to form these, the required production resources are extracted
from the production plan in a first step. In a second step, the pa-
rameters from the master data are entered into the PT1, PT2 and
deadtime elements. Third, the overall transfer function is up-
dated with the current state of the production machines (WS 1,
WS 2 and WS 5). This includes the e.g. the maximum produc-
tion capacity. Each of these listed production machines corre-
sponds to a transfer function as shown in formula (5).
Now all parameters of the overall transfer function (17) are de-
termined and can be calculated in the cloud. The function (17)
include all production elements from Input 1 to the two Out-
puts.

G(all) =
WS 1 ∗WS 2 ∗WS 5

1 +WS 1 ∗WS 2 ∗WS 5
(17)

The result of the calculation gives an indication of how stable
the current production will be. Initial applications show that a
low stability in a longer turnaround time. Here is a strong con-
nection to see. The user can view the values of stability and
adjust the production control accordingly.
This service was realized with a service in the cloud. In the
cloud, every new event like changes in order sequence or ma-
chine control performed a new calculation of the stability of
production in a service. To transfer the information from the
machines to the service, the protocol OPC UA (Unified Archi-
tecture) is used. As described in DIN SPEC 92222, different
protocol and communication types can be used.
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6. Summary and outlook

This section explains the prototypical realization and eval-
uation of the real-time forecasting service in the case of the
highly automated one-off production of spectacle lenses. For
technical reasons and the possibility of scaling hardware perfor-
mance, a public cloud was chosen. The service operates a data
exchange with master and movement data, production resources
(machines, warehouses and transport) and production control.
The forecasting service starts with production planning. For this
purpose, the current information about the order processing is
used to create a total transfer function. In conclusion, the states
of the machines are added to the PT2, the transport times and
the stocks. In the cloud, every new event like Changes in job
order or machine control performed a new calculation of the
stability of the production.
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