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a b s t r a c t 

A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed 
convex cone. Prominent examples are linear programs (LP), second order cone programs (SOCP), semidefinite 
problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight 
the connections between nonconvex quadratic problems, binary quadratic problems, and copositive optimization. 
We review how tight bounds can be obtained by relaxing the copositivity constraint to semidefiniteness, and we 
discuss the effect that different modelling techniques have on the quality of the bounds. We also provide some new 

techniques for lifting linear constraints and show how these can be used for stable set and coloring relaxations. 
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. Introduction 

A conic optimization problem is a problem involving a constraint
hat the optimization variable be in some closed convex cone. The field
f conic optimization is a broad one, as any convex optimization prob-
em can be cast as a conic problem, see Nesterov and Nemirovski (1992) .
n this paper, we will focus on more specific conic problems which ap-
ear naturally when solving quadratic or combinatorial optimization
roblems. In particular, we will highlight developments in second or-
er cone programming (SOCP), semidefinite programming (SDP), and
opositive optimization. 

.1. The general linear conic problem and its dual 

Consider a proper cone  , i.e., a closed convex and full dimensional
one which is also pointed, meaning that  does not contain a straight
ine, or equivalently, that  ∩ (−  ) = {0} . For example, when consider-
ng linear optimization problems, the cone involved is the nonnegative
rthant  = ℝ 

𝑛 
+ ∶= { 𝑥 ∈ ℝ 

𝑛 ∣ 𝑥 ≥ 0} . In this paper, we will mostly con-
ider optimization problems in matrix variables, in which case  is a
roper cone in the set  𝑛 of symmetric matrices. For this reason, we will
se capital letters for the data matrices and variables, and we say that a
inear conic optimization problem over  is a problem of the form 

 

∗ = min ⟨𝐶, 𝑋⟩
s.t. ⟨𝐴 𝑖 , 𝑋⟩ = 𝑏 𝑖 ( 𝑖 = 1 , … , 𝑚 ) 

𝑋 ∈  , 
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here 𝐶, 𝑋, 𝐴 𝑖 are matrices (or vectors) of suitable dimension, and
 𝑖 ∈ ℝ for all 𝑖 = 1 , … , 𝑚 . In case of matrices, ⟨⋅, ⋅⟩ denotes the Frobe-
ius inner product ⟨𝐴, 𝐵⟩ ∶= trace ( 𝐴 

𝑇 𝐵) , in case of vectors, it denotes
he Euclidean inner product. Problem (P) therefore aims to minimize
 linear function over the intersection of a proper cone and an affine
ubspace. 

As in linear programming, a primal problem of the form (P) always
omes with a dual problem which involves the dual cone: given an ar-
itrary cone  ⊆ ℝ 

𝑚 ×𝑛 , the dual cone  

∗ is defined as 

 

∗ ∶= { 𝑋 ∈ ℝ 

𝑚 ×𝑛 ∣ ⟨𝑋, 𝐾⟩ ≥ 0 for all 𝐾 ∈  } . 

s usual, the Lagrangian function 𝐿 ∶  ×ℝ 

𝑚 → ℝ is defined as 

 ( 𝑋, 𝑦 ) ∶= ⟨𝐶, 𝑋⟩ + 

𝑚 ∑
𝑖 =1 

𝑦 𝑖 ( 𝑏 𝑖 − ⟨𝐴 𝑖 , 𝑋⟩) . 
his gives the dual problem 

max 
 ∈ℝ 𝑚 

min 
𝑋∈ 𝐿 ( 𝑋, 𝑦 ) = max 

𝑦 ∈ℝ 𝑚 

[ ⟨𝑏, 𝑦 ⟩ + min 
𝑋∈ ⟨𝐶 − 

𝑚 ∑
𝑖 =1 

𝑦 𝑖 𝐴 𝑖 , 𝑋⟩] 

. 

or the inner minimization problem to be finite, we require that
𝐶 − 

∑𝑚 

𝑖 =1 𝑦 𝑖 𝐴 𝑖 , 𝑋⟩ ≥ 0 for all 𝑋 ∈  , in other words, we require 𝐶 −
𝑚 

𝑖 =1 𝑦 𝑖 𝐴 𝑖 ∈  

∗ . Therefore, we arrive at the dual problem 

 

∗ = max ⟨𝑏, 𝑦 ⟩
s.t. 

𝑚 ∑
𝑖 =1 

𝑦 𝑖 𝐴 𝑖 + 𝑍 = 𝐶 

𝑍 ∈  

∗ , 𝑦 ∈ ℝ 

𝑚 . 
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It is easy to see that the duality gap ⟨𝐶, 𝑋⟩ − ⟨𝑏, 𝑦 ⟩ equals the inner
roduct of the primal and dual variables: ⟨𝐶, 𝑋⟩ − ⟨𝑏, 𝑦 ⟩ = ⟨𝑍, 𝑋⟩. Since
𝑍, 𝑋⟩ ≥ 0 for any pair of primal/dual feasible points 𝑋 ∈  , 𝑍 ∈  

∗ ,
e immediately get weak duality. 

Clearly, if the duality gap is zero for a pair of primal/dual feasible
oints 𝑋 ∈  and ( 𝑦, 𝑍) ∈ ℝ 

𝑚 × 

∗ , then 𝑋 is optimal for (P) and ( 𝑦, 𝑍)
s optimal for (D) . The converse is, however, not true in general: a posi-
ive duality gap may exist, or the optimal value of (P) or (D) may not be
ttained. Examples for this phenomenon in second order cone program-
ing can be found in Alizadeh and Goldfarb (2003) or in Ben-Tal and
emirovski (2001 , Section 2.4.1). For the SDP case, examples can be

ound in Helmberg (2002) , and a thorough analysis of this behavior can
e found in Pataki (2019) . 

In order to get strong duality, we need constraint qualifications: 

efinition 1.1. A point 𝑋 is called strictly feasible for (P) if 𝑋 is feasible
or (P) and 𝑋 ∈ int  . A pair ( 𝑦, 𝑍) is called strictly feasible for (D) if
 𝑦, 𝑍) is feasible for (D) and 𝑍 ∈ int  

∗ . If such points exist, then we say
hat the problem fulfills the primal (resp. dual) Slater condition. 

Note that strict feasibility can always be enforced by consider-
ng the so called skew-symmetric embedding of the original problem,
ee de Klerk et al. (1997) . Assuming strict feasibility gives us strong
uality: 

heorem 1.2 (Strong Duality Theorem) . Assume that problem ( D ) has a

trictly feasible solution ( 𝑦, 𝑍) . Then the primal and dual optimal values are

qual: 𝑝 ∗ = 𝑑 ∗ , and if 𝑝 ∗ < +∞, then 𝑝 ∗ is attained, i.e., there exists a primal

easible solution 𝑋 

∗ with 𝑝 ∗ = ⟨𝐶, 𝑋 

∗ ⟩. 
Conversely, assume that problem ( P ) has a strictly feasible solution 𝑋.

hen the primal and dual optimal values are equal: 𝑝 ∗ = 𝑑 ∗ , and if 𝑑 ∗ > −∞,

hen 𝑑 ∗ is attained, i.e., there exists a dual feasible solution ( 𝑦 ∗ , 𝑍 

∗ ) with

 

∗ = ⟨𝑏, 𝑦 ∗ ⟩. 
A proof of this theorem along with a thorough discussion of conic du-

lity can be found for example in Ben-Tal and Nemirovski (2001) . It has
een shown in Dür et al. (2017) that the Slater condition (and hence
trong duality) is a generic property of conic problems which loosely
peaking means that Slater’s condition is fulfilled (and hence strong du-
lity holds) for almost all feasible conic problems which are parameter-
zed in the space of data ( 𝐶, 𝐴 1 , ..., 𝐴 𝑚 , 𝑏 1 , ..., 𝑏 𝑚 ) . We stress that a con-
traint qualification is unnecessary if the cone  is polyhedral like in
inear programming, where  = ℝ 

𝑛 
+ . The reason why a positive duality

ap may occur in general conic programming lies in the geometry of the
roblem and happens if the feasible set is contained in a nontrivial face
f the cone. 

Note that existence of strictly feasible points is important not only for
heoretical purposes to ensure strong duality, but also many optimiza-
ion algorithms require this property. In the absence of strictly feasible
oints, a solver may not terminate or may produce a “solution ” with
o useful meaning. This is a feature that distinguishes general conic op-
imization from linear programming. Consequently, very careful mod-
lling is needed, since often existence of strictly feasible points can be
uaranteed if the problem is modelled in a proper way. We will return
o this point in Section 5 . 

Two approaches have been developed to tackle conic problems that
ail to fulfill a constraint qualification: (i) Facial reduction attempts to
dentify the so called minimal cone  min for problem (P) , such that prob-
em (P) with  replaced by  min is strictly feasible and has the same opti-
al solution as (P) . This facial reduction technique goes back to Borwein

nd Wolkowicz (1981a,b) . (ii) Other approaches (e.g. Ramana, 1997 )
ork on the dual side and construct an extended dual which achieves

trong duality without assuming a constraint qualification. A good ex-
osition of these two approaches can be found in Pataki (2013) . 
2 
.2. LP, SOCP, and SDP 

Depending on which cone  is considered, conic optimization in-
ludes various classes of problems: If  = ℝ 

𝑛 
+ , then (P) is a linear prob-

em, a well studied class which appears in numerous applications. LPs
re used to model not only straightforward linear constraints, but also
onstraints involving 𝓁 1 - or 𝓁 ∞- norms or absolute values. 

If the cone  in (P) is the second order cone, then (P) is called
 second order cone problem (SOCP). The second order cone in ℝ 

𝑛 

sometimes also called Lorentz cone or ice cream cone) is defined as
 𝑛 ∶= 

{
( 𝑥 0 , 𝑥 ) ∈ ℝ ×ℝ 

𝑛 −1 ∣ 𝑥 0 ≥ ‖𝑥 ‖2 }. It appears in optimization prob-
ems involving Euclidean norms: for example, the constraint ‖𝐴𝑥 +
 ‖2 ≤ 𝑐 𝑇 𝑥 + 𝑑 can be written as ( 𝑐 𝑇 𝑥 + 𝑑, 𝐴𝑥 + 𝑏 ) ∈  𝑛 +1 . This is often
sed in robust optimization when an ellipsoidal uncertainty set is con-
idered ( Ben-Tal et al., 2009 ). Other applications of SOCP can be found
n Alizadeh and Goldfarb (2003) , Lobo et al. (1998) . Certain risk mea-
ures in stochastic optimization may also lead to optimization problems
ver the so called 𝑝 -order cone  

𝑝 
𝑛 ∶= 

{
( 𝑥 0 , 𝑥 ) ∈ ℝ ×ℝ 

𝑛 −1 ∣ 𝑥 0 ≥ ‖𝑥 ‖𝑝 }
ith 𝑝 ≥ 1 , see e.g. Vinel and Krokhmal (2014) . Any 𝑝 -order cone with
 rational can be modeled as SOCP. We refer to Mosek (2021-10-11) for
etails. 

A third prominent setting is semidefinite programming (SDP), where
 is considered to be the cone of symmetric positive semidefinite matri-

es  + 
𝑛 
∶= { 𝑋 ∈ ℝ 

𝑛 ×𝑛 ∣ 𝑋 = 𝑋 

𝑇 , 𝑋 ⪰ 0} . SDPs are used to model prob-
ems with linear matrix inequalities. They appear in eigenvalue op-
imization and control theory, see Vandenberghe and Boyd (1996) ,
elmberg (2002) . Arguably two of the most important areas of applica-

ion for SDP are robust and combinatorial optimization. For an in depth
iscussion of SDP in robust optimization, we refer to the book ( Ben-
al et al., 2009 ) and the recent survey paper ( Yan ı ko ğlu et al., 2019 ).
he role of SDP in relaxations of combinatorial problems will be covered

n more detail below. 
The cones ℝ 

𝑛 
+ ,  𝑛 , and  + 

𝑛 
are self-dual, whereas the dual of  

𝑝 
𝑛 is

 

𝑞 
𝑛 with 𝑞 such that 1 

𝑝 
+ 

1 
𝑞 
= 1 . We mention that ℝ 

𝑛 
+ ,  𝑛 , and  + 

𝑛 
are

nstances of so called symmetric cones that can be studied in the unifying
ramework of Euclidean Jordan algebras, see Faybusovich (2008) and
eferences therein. 

These three problem classes have been studied for decades because of
heir countless applications and because they can be solved efficiently:
t has been shown in the vast literature on interior point methods pi-
neered by Nesterov and Nemirovskii (1994) (see also Renegar, 2001 )
hat these algorithms are able to solve LPs, SOCPs, and SDPs in polyno-
ial time. A different class of algorithms that solves SDPs is conic bundle
ethods, see Helmberg and Rendl (2000) , Helmberg et al. (2014) . Nu-
erous software implementations are available, and we refer the reader

o Hans Mittelmann’s website ( Mittelmann, 2021 ) for an up-to-date list
f the various packages. 

.3. Variants of SDP and SOCP 

So far, we discussed linear conic optimization problems. However,
he enormous modelling power of semidefinite and second order cone
rogramming only unfolds if we allow for nonlinearities or integer vari-
bles: 

Mixed integer conic optimization problems are linear conic problems
ith a constraint that some of the variables are integer valued: 

in ⟨𝐶, 𝑋⟩
s.t. ⟨𝐴 𝑖 , 𝑋⟩ = 𝑏 𝑖 ( 𝑖 = 1 , … , 𝑚 ) 

𝑋 ∈  , 

𝑋 𝑖𝑗 ∈ ℤ (( 𝑖, 𝑗) ∈ 𝐽 ) . 

ometimes binary constraints 𝑋 𝑖𝑗 ∈ {0 , 1} for ( 𝑖, 𝑗) ∈ 𝐽 are used instead.
Nonlinear conic problems are nonlinear problems that involve a cone

onstraint, mostly a semidefiniteness constraint (  =  + 
𝑛 

) or an SOCP
onstraint (  =  𝑛 ). Naturally, mixed integer nonlinear conic problems
ave been studied likewise. 
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2  
It would be beyond the scope of this paper to discuss the develop-
ent in mixed integer nonlinear conic optimization here. We mention

ust a few applications: 
Nonlinear SOCPs appear for example in facility location ( Chen et al.,

011 ). Mixed integer SOCPs appear in engineering (e.g. turbine bal-
ncing problems), in service system design ( Góez and Anjos, 2019 ),
n finance (e.g. cardinality-constrained portfolio optimization), or in
ombinatorial problems like the Euclidean Steiner Tree Problem,
ee ( Gally et al., 2018 ) and references therein. Solution approaches
or these problems include semismooth Newton methods ( Chen et al.,
011 ), outer approximation algorithms ( Drewes and Ulbrich, 2012 ),
utting plane algorithms ( Atamtürk and Narayanan, 2007; Drewes and
okutta, 2014; Kobayashi and Takano, 2020 ), and Branch-and-Bound
lgorithms ( Gally et al., 2018 ). 

Mixed integer SDPs have applications in truss topology optimiza-
ion ( Gally et al., 2018 ), in certain clustering problems ( Aloise and
ansen, 2009 ), or in sparse principal component analysis ( Li and
ie, 2020 ). References to numerous fields of application of nonlinear
DPs in engineering, (robust) control, finance and others can be found
n Andreani et al. (2020) and Yamashita and Yabe (2015) . 

Solution algorithms for these problems include augmented La-
rangian methods, sequential SDP methods, and primal-dual inte-
ior point methods, see e.g., Andreani et al. (2020) , Kocvara and
tingl (2012) , Yamashita and Yabe (2015) . For pointers to soft-
are implementations, we refer again to Hans Mittelmann’s web-

ite ( Mittelmann, 2021 ). 

. Conic reformulations of quadratic problems 

Conic optimization problems play a particularly fruitful role in the
heory of quadratic and binary quadratic optimization problems. This
s accomplished by a technique called lifting, which was pioneered
y Shor (1987) and Lovász and Schrijver (1991) . The main idea can be
een as follows: consider a quadratic expression 𝑥 𝑇 𝑄𝑥 with a symmetric
atrix 𝑄 ∈ ℝ 

𝑛 ×𝑛 and 𝑥 ∈ ℝ 

𝑛 . If we introduce a new variable 𝑋 ∈ ℝ 

𝑛 ×𝑛 

o represent the rank-1 matrix 𝑥𝑥 𝑇 , then we get 

 

𝑇 𝑄𝑥 = trace ( 𝑥 𝑇 𝑄𝑥 ) = trace ( 𝑄𝑥𝑥 𝑇 ) = ⟨𝑄, 𝑥𝑥 𝑇 ⟩ = ⟨𝑄, 𝑋⟩. (1)

y this technique, quadratic terms in 𝑥 ∈ ℝ 

𝑛 become linear terms in
 ∈ ℝ 

𝑛 ×𝑛 . Since many optimization problems considered in the sequel
ontain nonnegativity constraints 𝑥 ≥ 0 , this leads to the definition of a
onvex matrix cone that turns out very useful for modelling purposes:
he cone of completely positive matrices is defined as 

 ∶= conv { 𝑥𝑥 𝑇 ∣ 𝑥 ≥ 0} , 

nd its dual cone, the cone of copositive matrices, is defined as 

 ∶= { 𝑋 ∈  ∣ 𝑧 𝑇 𝑋𝑧 ≥ 0 for all 𝑧 ≥ 0} . 

or the ease of notation, we will omit the index 𝑛 in notations like  𝑛 

r  𝑛 unless it is necessary to stress the dimension. Both  and
 are proper cones and have been studied for decades in the linear
lgebra literature, see Berman and Shaked-Monderer (2003) and refer-
nces therein. They have numerous interesting properties but are still
ot fully understood, cf. Berman et al. (2015) . Note that the two cones
re given in different form:  is given by its extreme rays which are
recisely the rank-1 matrices 𝑥𝑥 𝑇 with 𝑥 ≥ 0 , whereas  is given as
he solution set of (infinitely many) inequalities. This fact plays a role
hen considering approximations of these cones, see Section 3 . A char-
cterization of the extremal rays of  𝑛 has only been given for 𝑛 ≤ 6 ,
f. Afonin et al. (2021) . Likewise, only limited knowledge is available
bout the facial structure of  and  , cf. Dickinson (2011) . 

The earliest use of these cones in optimization was a paper by
reisig (1996) who studied a particular fractional quadratic problem,
nd by Quist et al. (1998) , who were the first to introduce a conic op-
imization perspective while deriving relaxations for general quadratic
3 
ptimization problems. Bomze et al. (2000) introduced the term “copos-
tive optimization ” and showed for the first time equivalence of a non-
onvex quadratic optimization problem and a linear problem over  

esp.  : They considered standard quadratic optimization problems,
.e., nonconvex quadratic problems over the standard simplex Δ ∶= { 𝑥 ∈
 

𝑛 
+ ∣ 𝑒 

𝑇 𝑥 = 1} where 𝑒 ∈ ℝ 

𝑛 denotes the all-ones vector. Given a symmet-
ic matrix 𝑄 ∈ ℝ 

𝑛 ×𝑛 , a standard quadratic problem is of the form 

in 𝑥 𝑇 𝑄𝑥 

s.t. 𝑒 𝑇 𝑥 = 1 (StQP) 

𝑥 ≥ 0 . 

n spite of its simple structure, ( StQP ) is an NP-hard problem if 𝑄 has a
egative eigenvalue, see Pardalos and Vavasis (1991) . Alternatively, NP-
ardness of ( StQP ) can be seen from the fact that the maximum clique
roblem can be formulated as ( StQP ): consider a graph with 𝑛 vertices.
enote its adjacency matrix by 𝐴 , its clique number by 𝜔 , and define
 ∶= 𝑒𝑒 𝑇 . It was shown by Motzkin and Straus (1965) that 

1 
𝜔 

= min { 𝑥 𝑇 ( 𝐽 − 𝐴 ) 𝑥 ∶ 𝑥 ∈ Δ} . (2)

he max clique problem is a particularly difficult NP-hard problem,
nd even computing an approximation of any reasonable quality is NP-
ard ( Håstad, 1999 ). We will see below how copositive optimization
an be used to tackle this and other NP-hard problems. 

By squaring the constraint in ( StQP ) and applying the lifting trans-
ormation outlined in (1) , it is easy to see that the following problem is
 relaxation of ( StQP ): 

in ⟨𝑄, 𝑋⟩
s.t. ⟨𝐽 , 𝑋⟩ = 1 

𝑋 ∈  , 

(3) 

s is its dual problem 

ax { 𝜆 ∈ ℝ ∣ 𝜆𝐽 − 𝑄 ∈  } . (4)

t is easy to verify that Slater’s condition and hence strong duality holds
or (3) and (4) . Since the objective function of (3) is linear and the fea-
ible set is convex, it follows that the optimal solution is attained at an
xtreme point of the feasible set, which can be shown to be the matri-
es of the form 𝑥𝑥 𝑇 with 𝑥 ∈ Δ, cf. Bomze et al. (2000) . This implies
hat (3) and (4) are not merely relaxations but exact reformulations of
 StQP ) in the sense that all three problems have the same optimal value.
he optimal solutions of ( StQP ) and (3) fulfill the following relation: if 𝑥 ∗ 

s optimal for ( StQP ), then 𝑋 

∗ ∶= 𝑥 ∗ ( 𝑥 ∗ ) 𝑇 is optimal for (3) . Conversely,
f 𝑋 

∗ is optimal for (3) , then it can be decomposed as 𝑋 

∗ = 

∑𝑝 

𝑖 =1 𝑥 𝑖 ( 𝑥 𝑖 ) 
𝑇 

or some 𝑥 𝑖 ∈ ℝ 

𝑛 
+ ( 𝑖 = 1 , … , 𝑝 ) . Then each 𝑥 ∗ 

𝑖 
∶= 

1 
𝑒 𝑇 𝑥 𝑖 

𝑥 𝑖 is an optimal so-

ution of ( StQP ). 
These reformulations (3) and (4) are interesting because they show

hat the NP-hard ( StQP ) can be reformulated equivalently as a linear
roblem over the convex cones  or  . In these formulations, all lo-
al minima vanish, and the complexity of the problem is entirely moved
nto the cone constraint. This indicates that  and  must be in-
ractable. Indeed, it was shown in Dickinson and Gijben (2014) , that
hecking membership in  is NP-hard. Checking membership in  

s co-NP-complete, as was shown in Murty and Kabadi (1987) . Whether
r not checking membership in  is also in NP is still one of the many
pen problems related to these cones, cf. Berman et al. (2015) . 

Returning to the maximum clique problem for a graph with adja-
ency matrix 𝐴 , it follows from Bomze et al. (2000) that the clique num-
er 𝜔 equals the optimal value of the following copositive problem: 

 = min { 𝜆 ∣ 𝜆( 𝐽 − 𝐴 ) − 𝐽 ∈  } . 

any other graph parameters have a representation as a copositive or
ompletely positive problem. We refer to Dür (2010) for references. 

Copositive optimization experienced a breakthrough with Burer’s
009 paper Burer (2009) . He showed that every quadratic problem with
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inear and binary constraints can be rewritten as such a problem. More
recisely, he showed that a quadratic binary problem of the form 

in 𝑥 𝑇 𝑄𝑥 + 2 𝑐 𝑇 𝑥 
s.t. 𝑎 𝑇 

𝑖 
𝑥 = 𝑏 𝑖 ( 𝑖 = 1 , … , 𝑚 ) 

𝑥 ≥ 0 
𝑥 𝑗 ∈ {0 , 1} ( 𝑗 ∈ 𝐵) 

(5) 

ith 𝑄 ∈  𝑛 , 𝑐, 𝑎 𝑖 ∈ ℝ 

𝑛 ( 𝑖 = 1 , … , 𝑚 ), 𝑏 ∈ ℝ 

𝑚 , and 𝐵 ⊆ {1 , … , 𝑛 } can
quivalently be reformulated as the following completely positive prob-
em: 

in ⟨𝑄, 𝑋⟩ + 2 𝑐 𝑇 𝑥 
s.t. 𝑎 𝑇 

𝑖 
𝑥 = 𝑏 𝑖 ( 𝑖 = 1 , … , 𝑚 ) ⟨𝑎 𝑖 𝑎 𝑇 𝑖 , 𝑋⟩ = 𝑏 2 

𝑖 
( 𝑖 = 1 , … , 𝑚 ) 

𝑥 𝑗 = 𝑋 𝑗𝑗 ( 𝑗 ∈ 𝐵) ( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

∈  , 

(6) 

rovided that (5) satisfies the so-called key condition, i.e., 𝑎 𝑇 
𝑖 
𝑥 = 𝑏 𝑖 for

ll 𝑖 and 𝑥 ≥ 0 implies 𝑥 𝑗 ≤ 1 for all 𝑗 ∈ 𝐵. As noted by Burer, this condi-
ion can be enforced without loss of generality. Doing so may, however,
ave consequences when relaxing the cone constraint ( Bomze et al.,
017; Bomze and Jarre, 2010; Jarre, 2012 ). 

Similar techniques can be used to derive copositive or completely
ositive formulations for problems involving quadratic constraints or
eplacing the constraint 𝑥 ∈ ℝ 

𝑛 
+ in (5) by other closed convex cones.

his leads to reformulations involving so called generalized copositive and

ompletely positive cones : given a closed convex cone  ⊂ ℝ 

𝑛 , one can
efine 

  ∶= conv { 𝑥𝑥 𝑇 ∣ 𝑥 ∈  } , 

nd its dual cone of generalized copositive matrices 

  ∶= { 𝑋 ∈  ∣ 𝑧 𝑇 𝑋𝑧 ≥ 0 for all 𝑧 ∈  } . 

hese cones were introduced in Quist et al. (1998) and studied also
n Eichfelder and Jahn (2008) . As shown by Burer (2012) , the problem
here the nonnegativity constraints in (5) are replaced by the constraint
 ∈  is (under mild conditions) equivalent to a linear conic program
ver the cone of matrices which are completely positive over ℝ + × ,
.e., over the cone conv { 𝑦𝑦 𝑇 ∣ 𝑦 ∈ ℝ + × } . Eichfelder and Povh (2013) ,
ickinson et al. (2013) generalize this even more to the case where  is
n arbitrary set, and they also give a formulation for problems involving
ne quadratic constraint. 

When considering quadratic constraints, reformulating the problem
s a conic problem becomes more involved. Burer (2009) already con-
idered certain special cases, namely binary constraints (which can
e viewed as quadratic equations 𝑥 2 

𝑖 
= 𝑥 𝑖 ), and complementarity con-

traints. For more general quadratically constrained quadratic problems,
imilar reformulations have been obtained: consider a quadratically con-
trained quadratic problem of the form 

in 𝑥 𝑇 𝑄 

0 𝑥 + 2( 𝑐 0 ) 𝑇 𝑥 
s.t. 𝑥 𝑇 𝑄 

𝑖 𝑥 + 2( 𝑐 𝑖 ) 𝑇 𝑥 ≤ 𝑏 𝑖 ( 𝑖 = 1 , … , 𝑚 ) (QCQP) 

ith 𝑄 

𝑖 ∈  𝑛 , 𝑐 𝑖 ∈ ℝ 

𝑛 ( 𝑖 = 0 , … , 𝑚 ), and 𝑏 ∈ ℝ 

𝑚 . Burer and
ong (2012) show two different ways of formulating a ( QCQP ) as

uch a generalized completely positive problem over   : one where
 is a direct product of ℝ 

𝑛 
+ and second-order cones, and another where

 is the direct product of ℝ 

𝑛 
+ and semidefinite cones (viewed as vectors

y stacking the columns on top of each other). Bai et al. (2016) and
rima et al. (2013) derive similar formulations under milder assump-

ions. 
We remark that a different generalization of  is the cone of com-

letely positive semidefinite matrices, i.e., the cone consisting of all
 × 𝑛 matrices that admit a Gram representation by positive semidef-
nite matrices. This cone appears when studying quantum analogues
f graph parameters like the stability or chromatic numbers. We refer
o Laurent and Piovesan (2015) for an in-depth discussion. 
4 
It goes without saying that generalized completely positive and
opositive cones are even harder to work with than  or  . The ap-
eal of the formulations discussed above lies in the fact that by this tech-
ique difficult, NP-hard problems can be reformulated as linear prob-
ems over a convex cone. Hence these reformulations are convex prob-
ems which do not possess local minima, and the hardness of the problem
s completely captured by the cone constraint. Therefore, any progress
ade in understanding the cones can be used to help solving a whole

ange of different problems. As a first step, the approximation schemes
or  and  discussed in Section 3 can be extended to   and
  . However, more research on algorithmic approaches for problems
ver generalized copositive and completely positive cones is needed to
ake these approaches work numerically for bigger problems. 

.1. Extensions: polynomial optimization and infinite dimensional conic 

roblems 

It is easy to see that any polynomial optimization problem can be
ewritten as a quadratic problem by introducing extra variables and
onstraints. For example, by defining an extra variable and constraint
 = 𝑥 𝑗 𝑥 𝑘 , the cubic term 𝑥 𝑖 𝑥 𝑗 𝑥 𝑘 becomes the quadratic term 𝑥 𝑖 𝑦 . So the
eformulations discussed above can in principle be applied to polyno-
ial problems, as well. A different line of research has worked with

he cone of completely positive tensors . This concept was originally intro-
uced by Dong (2013) and consititutes another natural extension of  .
eña et al. (2015) consider optimization problems involving 𝑛 -variate
olynomials and show that under certain assumptions these can be re-
ormulated as linear problems over the cone of completely positive ten-
ors of order 𝑑 and dimension 𝑛 + 1 . They also show that in case of a
ompact feasible set order 𝑑 = 4 is sufficient. The approach has been ex-
ended in Kuang and Zuluaga (2018) , Xia and Zuluaga (2017) . We also
efer to Anjos and Lasserre (2012) for more discussion on the connection
etween conic and polynomial optimization. 

We mentioned above that the maximum clique problem (and, equiv-
lently, the stable set problem) on a graph with vertex set 𝑉 = {1 , … , 𝑛 }
an be formulated as an ( StQP ) and consequently as a copositive or com-
letely positive problem (3) and (4) . This can be generalized to infinite
raphs, i.e., to the setting where the vertex set is not finite but a compact
etric space 𝑉 equipped with a probability measure 𝜇. The problem of
etermining the stability number of an infinite graph appears e.g. in the
issing number problem ( Dobre et al., 2016 ) and other packing prob-
ems, see DeCorte et al. (2021) . Dobre et al. (2016) generalized the con-
ept of copositive matrices to the infinite dimensional setting by defining
opositive kernels : a kernel is a continuous function 𝐾 ∶ 𝑉 × 𝑉 → ℝ . Such
 kernel 𝐾 is called a copositive kernel if for all continuous nonnegative
unctions 𝑓 ∶ 𝑉 → ℝ + we have 

𝑉 ∫𝑉 𝐾( 𝑥, 𝑦 ) 𝑓 ( 𝑥 ) 𝑓 ( 𝑦 ) 𝑑 𝜇( 𝑥 ) 𝑑 𝜇( 𝑦 ) ≥ 0 . 

t can be shown that the cone of copositive kernels is independent of the
hoice of 𝜇. This cone as well as its dual (the cone of completely positive
easures) can be used to derive exact copositive and completely posi-

ive reformulations of the stability number problem for infinite graphs,
ee Dobre et al. (2016) . Since these cones are intractable, approxima-
ions have been proposed in Kuryatnikova and Vera Lizcano (2017) ,
uryatnikova and Vera (2018) . This in turn has been used to derive
ood bounds for the underlying problems. 

. Approximation hierarchies for  and  

Since the cones  and  are computationally intractable, ap-
roximations have to be used in order to solve an optimization problem
ver one of these cones. As outlined in (1) , the motivation to introduce
he cone  was by introducing a symmetric matrix 𝑋 to represent the
ank-1 matrix 𝑥𝑥 𝑇 . So a first straightforward relaxation is to replace the
onstraint 𝑋 = 𝑥𝑥 𝑇 by 𝑋 ⪰ 𝑥𝑥 𝑇 (meaning that 𝑋 − 𝑥𝑥 𝑇 ∈  + ), which by
𝑛 
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chur’s complement lemma is equivalent to 
 

𝑋 𝑥 

𝑥 𝑇 1 

) 

∈  + 
𝑛 +1 . 

his relaxation goes back to Shor (1987) and corresponds to the sim-
le fact that  𝑛 ⊆  + 

𝑛 
for any 𝑛 . It is interesting to note that the SDP-

elaxation of a quadratic problem corresponds to the Lagrangian dual
f that problem, whereas considering partial Lagrangian duals (i.e., du-
lizing the problem only with respect to a subset of the constraints)
eads to various copositive relaxations, cf. Bomze (2015) . The Shor re-
axation can be improved by adding more constraints to the SDP, or by
sing some relaxation-linearization techniques, yielding stronger SDP-
elaxations. This has been discussed in detail in Bao et al. (2011) . 

Shor’s approximation can be strengthened by using better approx-
mations to  and  : Denote by  𝑛 the set of symmetric entry-
ise nonnegative 𝑛 × 𝑛 matrices. Then it is obvious from the definition

hat  𝑛 ⊆  𝑛 . We therefore get that  𝑛 +  + 
𝑛 
⊆  𝑛 , and by dual-

ty  𝑛 ⊆  𝑛 ∩  + 
𝑛 

. Interestingly, both inclusions are equalities for 𝑛 ≤ 4
nd are strict for 𝑛 ≥ 5 , cf. Maxfield and Minc (1962/63 ). Matrices in
 𝑛 ∩  + 

𝑛 
are sometimes called doubly nonnegative (both the entries and

he eigenvalues are nonnegative). This cone has been frequently used to
btain bounds for certain combinatorial problems, with the most promi-
ent case being the Lovász–Schrijver bound 𝜗 + ( 𝐺) (sometimes called
 

′( 𝐺) ) on the clique number of a graph 𝐺, see Schrijver (1979) . 
In order to get better approximations of  and  , a number of

echniques have been developed which often lead to so called approxi-
ation hierarchies, i.e., monotonic sequences of inner or outer approx-

mations of  or  which are, in some sense, exact in the limit.
he approximating cones are constructed in such a way that optimizing
ver them amounts to solving an LP, an SOCP, or an SDP, all of which
an be done in polynomial time. Several of these hierarchies have been
roposed, and we discuss the most important ones next. Note that these
ierarchies were originally designed to approximate either  or  .
owever, it should be clear that any inner (resp. outer) approximation
ierarchy of one cone by duality yields an outer (resp. inner) approxi-
ation hierarchy for the dual cone. 

.1. Inner approximation hierarchies for  

Parrilo (2000) was the first to propose a hierarchy approximating
 from the interior. The basic idea is to reformulate the copositivity
ondition as a nonnegativity condition for certain polynomials, and then
o use the sufficient condition that a polynomial is nonnegative if it can
e represented as a sum of squares (sos) of other polynomials. Suppose
e are given a matrix 𝐴 ∈  𝑛 and we would like to determine whether
r not 𝐴 ∈  𝑛 . To this end, consider the polynomial 

 𝐴 ( 𝑥 ) ∶= 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑎 𝑖𝑗 𝑥 
2 
𝑖 
𝑥 2 
𝑗 

(7)

nd observe that 𝐴 ∈  𝑛 if and only if 𝑃 𝐴 ( 𝑥 ) ≥ 0 for all 𝑥 ∈ ℝ 

𝑛 . A
ufficient condition for this is that 𝑃 𝐴 ( 𝑥 ) is sos. Parrilo showed that the
et of matrices 𝐴 for which 𝑃 𝐴 ( 𝑥 ) is sos equals  + 

𝑛 
+  𝑛 . 

Moreover, he was able to refine this by using a result by
ólya (1928) and considering higher order polynomials. For any 𝑟 ∈ ℕ ,
efine the cone 

 

𝑟 ∶= 

{ 

𝐴 ∈  ∣ 𝑃 𝐴 ( 𝑥 ) 
( 

𝑛 ∑
𝑖 =1 

𝑥 2 
𝑖 

) 𝑟 

has an sos decomposition 

} 

. 

arrilo showed that 

 

+ +  =  

0 ⊂  

1 ⊂ … ⊂  and int (  ) ⊆
⋃
𝑟 ∈ℕ 

 

𝑟 , 

o the cones  

𝑟 approximate  from the interior. The sos condition
an be written as a system of linear matrix inequalities (LMIs), and there-
ore optimizing over  

𝑟 amounts to solving an SDP. However, it should
e noted that for increasing values of 𝑟 , the size of these SDPs increases
5 
apidly, resulting in problems that are beyond the range of current SDP-
olvers even for moderate values of 𝑟 and 𝑛 . 

Ahmadi and Majumdar (2019) developed a more general theory
or nonnegativity of polynomials which when applied in our context
oils down to relaxing the sos-condition by requiring that 𝑃 𝐴 ( 𝑥 ) resp.
 𝐴 ( 𝑥 ) 

(∑𝑛 

𝑖 =1 𝑥 
2 
𝑖 

)𝑟 
has a decomposition as a sum of squares of binomials .

his is clearly a weaker sufficient condition for nonnegativity of 𝑃 𝐴 ( 𝑥 ) ,
ut the advantage is that this condition can be verified by solving an
OCP. They also consider scaled versions and obtain hierarchies that
hey call 𝑟𝐷𝑆𝑂𝑆 𝑛 and 𝑟𝑆 𝐷𝑆 𝑂𝑆 𝑛 , referring to the 𝑟 th level of the hierar-
hies corresponding to diagonally dominant sum of squares ( 𝐷𝑆 𝑂𝑆 ) and
caled diagonally dominant sum of squares ( 𝑆 𝐷𝑆 𝑂𝑆 ). 

An alternative sufficient condition for nonnegativity of a polyno-
ial is that all of its coefficients are nonnegative. Exploiting this idea,
e Klerk and Pasechnik (2002) , cf. also Bomze and De Klerk (2002) ,
efine the cones 

 

𝑟 ∶= 

{ 

𝐴 ∈  ∣ 𝑃 𝐴 ( 𝑥 ) 
( 

𝑛 ∑
𝑖 =1 

𝑥 2 
𝑖 

) 𝑟 

has nonnegative coefficients 

} 

. 

hey showed that 

 =  0 ⊂  1 ⊂ … ⊂  and int (  ) ⊆
⋃
𝑟 ∈ℕ 

 𝑟 . 

ach of the cones  𝑟 is polyhedral, so optimizing over one of them is
olving an LP. 

Peña et al. (2007) refined the above approaches and derived a hi-
rarchy of cones  

𝑟 which in a sense sits between  𝑟 and  

𝑟 , i.e., it
ulfills  𝑟 ⊆  

𝑟 ⊆  

𝑟 for all 𝑟 ∈ ℕ . These cones can be described by LMIs
s well, so optimizing over  

𝑟 is again an SDP, however, optimizing over
 

𝑟 provides SDPs of smaller size compared to  

𝑟 . 
Each of the above hierarchies provides a uniform inner approxima-

ion to  , i.e., the approximation quality is independent of which
art of the cone is considered. However, this may not be desirable when
onsidering a specific optimization problem over  . In this case,
ne would rather like to obtain a good approximation of  in the
icinity of the optimal solutions, whereas in other parts of the feasi-
le set a coarse approximation is sufficient. This idea gave rise to the
pproach by Bundfuss and Dür (2009) : It is easy to see that the defi-
ition of  is equivalent to  = { 𝐴 ∈  ∣ 𝑥 𝑇 𝐴𝑥 ≥ 0 for all 𝑥 ∈ Δ} .
ow Bundfuss and Dür (2009) consider partitions  = { 𝑆 1 , … , 𝑆 𝑚 } of Δ

nto subsimplices and give conditions ensuring nonnegativity of 𝑥 𝑇 𝐴𝑥
ver each 𝑆 𝑖 . Let 𝑆 = conv { 𝑣 1 , … , 𝑣 𝑛 } ⊆ Δ be such a simplex. Then 𝑥 ∈ 𝑆

an be written as a convex combination 𝑥 = 

∑𝑛 

𝑖 =1 𝜆𝑖 𝑣 𝑖 with 
∑𝑛 

𝑖 =1 𝜆𝑖 = 1
nd 𝜆𝑖 ≥ 0 for all 𝑖 . Copositivity of a matrix 𝐴 then means that 

 ≤ 𝑥 𝑇 𝐴𝑥 = 

( 

𝑛 ∑
𝑖 =1 

𝜆𝑖 𝑣 𝑖 

) 𝑇 

𝐴 

( 

𝑛 ∑
𝑗=1 

𝜆𝑗 𝑣 𝑗 

) 

= 

𝑛 ∑
𝑖,𝑗=1 

( 𝑣 𝑇 
𝑖 
𝐴𝑣 𝑗 ) 𝜆𝑖 𝜆𝑗 . (8)

ince 𝜆𝑖 ≥ 0 by construction, a sufficient condition for (8) is that 𝑣 𝑇 
𝑖 
𝐴𝑣 𝑗 ≥

 for all 𝑖, 𝑗. Note that this constitutes a system of linear inequalities for
he entries of 𝐴 . Therefore, 

  ∶= { 𝐴 ∈  ∣𝑣 𝑇 𝐴𝑣 ≥ 0 for all vertices 𝑣 of simplices in  , 
𝑢 𝑇 𝐴𝑣 ≥ 0 for all edges { 𝑢, 𝑣 } of simplices in } . 

s a polyhedral inner approximation of  . It is shown in Bundfuss and
ür (2009) how the partition  can be refined in order to obtain a se-
uence of inner approximations that can either be tailored to yield a
niform approximation of  or an adaptive approximation with good
uality in the vicinity of the optimal solution of the underlying coposi-
ive optimization problem. 

.2. Outer approximation hierarchies for  

Since we can write  = { 𝐴 ∈  ∣ 𝑥 𝑇 𝐴𝑥 ≥ 0 for all 𝑥 ∈ Δ} , outer
pproximations of  can be obtained by picking suitable (possibly
nfinite) subsets 𝐼 ⊂ Δ and considering { 𝐴 ∈  ∣ 𝑥 𝑇 𝐴𝑥 ≥ 0 for all 𝑥 ∈ 𝐼} .
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ne option studied by Y ı ld ı r ı m (2012) is to consider regular grids of
ational points on the unit simplex defined as 

( 𝑟 ) ∶= 

𝑟 ⋃
𝑘 =0 

{ 𝑥 ∈ Δ ∣ ( 𝑘 + 2) 𝑥 ∈ ℕ 

𝑛 
0 } . (9)

hen the set  

𝑟 ∶= { 𝐴 ∈  ∣ 𝑥 𝑇 𝐴𝑥 ≥ 0 for all 𝑥 ∈ 𝛿( 𝑟 )} is clearly a poly-
edral outer approximation of  for any 𝑟 ∈ ℕ , and one can show that
 

0 ⊃  

1 ⊃ ⋯ ⊃  and  = 

⋂
𝑟 ∈ℕ  

𝑟 . This approximation scheme
ives again uniform approximations of  and allows for exact assess-
ent of the quality of the approximation. 

Alternatively one can use an approach developed by Lasserre in a
eries of papers which makes use of the vast body of theory on positive
resp. nonnegative) polynomials and polynomial optimization. Denote
y  

+ 
𝑛,𝑑 

the cone of 𝑛 -variate polynomials of total degree ≤ 𝑑 which are
onnegative on ℝ 

𝑛 (note that such a polynomial necessarily has even
egree). Then 𝐴 ∈  𝑛 is copositive if and only if the polynomial 𝑃 𝐴 
rom (7) fulfills 𝑃 𝐴 ∈  

+ 
𝑛, 4 . The Riesz–Haviland Theorem tells us that the

ual of  

+ 
𝑛,𝑑 

is the so called moment cone. Exploiting this, one can obtain
nother hierarchy of cones approximating  resp.  which is a spe-
ial case of the Lasserre–hierarchy applied to the setting of copositivity
nd complete positivity. We refer to the book by Lasserre (2010) and
he survey by Laurent (2009) which both give excellent introductions
o the general moment approach for polynomial optimization. The pa-
er by Lasserre (2014) explicitly describes how to construct hierar-
hies of outer approximations of  and inner approximations of  

y using this moment approach. It should be noted that these hierar-
hies are based on conditions that can be expressed as LMIs, and hence
ptimizing over these hierarchies amounts to solving SDPs. 

A third option is the adaptive approximation approach by
undfuss and Dür (2009) detailed in Section 3.1 which gives the outer
pproximation 

  ∶= { 𝐴 ∈  ∣ 𝑣 𝑇 𝐴𝑣 ≥ 0 for all vertices 𝑣 of simplices in } . 

his yields a hierarchy of polyhedral approximations that can again be
ailored to either yield a uniform outer approximation of  or a finer
pproximation in the vicinity of the set of optimal solutions but only a
oarse approximation in the remaining parts. 

.3. Inner approximation hierarchies for  

Recall that  𝑛 = conv { 𝑥𝑥 𝑇 ∣ 𝑥 ∈ ℝ 

𝑛 
+ } = cone conv { 𝑥𝑥 𝑇 ∣ 𝑥 ∈ Δ} .

herefore, inner approximations of  can be constructed analogous
o outer approximations of  , namely by chosing suitable subsets
 ⊂ Δ and considering ( 𝐼 ) ∶= cone conv { 𝑥𝑥 𝑇 ∣ 𝑥 ∈ 𝐼 } . A thorough
reatment investigating properties of the approximation in dependence
f the set 𝐼 is given in Y ı ld ı r ı m (2017) . 

If the set 𝐼 stems from a finite discretization of Δ, then ( 𝐼) is polyhe-
ral. A different approach was developed by Gouveia et al. (2020) based
n similar work in Ahmadi and Majumdar (2019) . They consider the
one 

DD 

𝑛 
+ ∶= conv { 𝑥𝑥 𝑇 ∣ 𝑥 ∈ ℝ 

𝑛 
+ , |supp ( 𝑥 ) | ≤ 2} ⊆  𝑛 , 

here the support of a vector 𝑥 is defined as supp ( 𝑥 ) ∶= { 𝑖 ∣ 𝑥 𝑖 ≠ 0} .
t can be shown (see Ahmadi and Majumdar, 2019; Gouveia et al.,
020 and references therein) that 𝐴 ∈ SDD 

𝑛 
+ if and only if 𝐴 is scaled

iagonally dominant, i.e., if there exists a diagonal matrix 𝐷 with pos-
tive diagonal entries such that 𝐷 𝐴𝐷 is diagonally dominant. From the
efinition we get that that 𝐴 ∈ SDD 

𝑛 
+ if and only if 𝐴 can be written

s 𝐴 = 

∑
𝑖<𝑗 𝑀 

𝑖𝑗 , where 𝑀 

𝑖𝑗 are symmetric nonnegative and positive
emidefinite matrices whose entries are zero everywhere except at the
ositions 𝑖𝑖, 𝑖𝑗, 𝑗𝑖, 𝑗𝑗. Observe that positive semidefiniteness of 2 × 2 sym-
etric matrices can be characterized by second order conditions. In-
eed, we have 
 

𝑎 𝑏 

𝑏 𝑐 

) 

∈  + 2 ⟺ 𝑎 ≥ 0 , 𝑐 ≥ 0 , 
𝑎𝑐 − 𝑏 2 ≥ 0 ⟺ 𝑎 ≥ 0 , 

𝑐 ≥ 0 , 

‖‖‖‖
( 

2 𝑏 
𝑎 − 𝑐 

) ‖‖‖‖ ≤ 𝑎 + 𝑐, 
‖ ‖2 
6 
nd the latter condition is equivalent to the second order cone constraint
 𝑎 + 𝑐, 2 𝑏, 𝑎 − 𝑐) 𝑇 ∈  3 . Therefore, optimizing over SDD 

𝑛 
+ amounts to

olving an SOCP. In Gouveia et al. (2020) , this approach is further re-
ned by considering scaled variants of SDD 

𝑛 
+ which can be tailored to

btain either uniform or problem-dependent approximation schemes. 

. Examples of binary quadratic problems 

In this section, we discuss a few combinatorial problems which can
e formulated as binary quadratic optimization problems. These prob-
ems are typically NP-hard, so it will be useful to consider reformula-
ions and relaxations which are tractable. It will turn out that relaxations
ased on conic optimization are particularly useful. We will mostly focus
n relaxations in the cone of positive semidefinite matrices. Throughout
his section, assume we are given an undirected graph 𝐺 = ( 𝑉 , 𝐸) with
 = {1 , … , 𝑛 } and adjacency matrix 𝐴 ∈  𝑛 . 
.1. Unconstrained binary quadratic optimization and MaxCut 

An unconstrained binary quadratic optimization problem takes as
nput a symmetric 𝑛 × 𝑛 matrix 𝑄 and asks to find 

in 𝑥 𝑇 𝑄𝑥 

s.t. 𝑥 ∈ {0 , 1} 𝑛 . (10) 

ince 𝑥 𝑖 = 𝑥 2 
𝑖 
, a possible linear term in the objective function could be

ntegrated in the main diagonal of 𝑄 , so it is not necessary to explicitly
nclude a linear term in this model. 

The MaxCut problem is defined by an edge weighted graph, given
hrough its adjacency matrix 𝐴 . Hence 𝐴 is symmetric, but we do not
mpose any further restrictions to the entries of 𝐴 . In particular, 𝑎 𝑖𝑗 < 0 is
ossible. If [ 𝑖, 𝑗] is not an edge of the graph, we set 𝑎 𝑖𝑗 = 0 . The Laplacian

atrix 𝐿 associated to 𝐴 is defined by 

 𝑖𝑗 ∶= − 𝑎 𝑖𝑗 for 𝑖 ≠ 𝑗, and 𝑙 𝑖𝑖 ∶= 

∑
𝑘 

𝑎 𝑖𝑘 . 

ote that 𝐿𝑒 = 0 , and if 𝐴 ≥ 0 , then 𝐿 is diagonally dominant and hence
 ⪰ 0 . It is a simple exercise to verify that for 𝑦 ∈ {−1 , 1} 𝑛 the value of

he cut defined by 𝑆 ∶= { 𝑖 ∣ 𝑦 𝑖 = 1} is given by 

𝑖<𝑗 

1 
2 𝑎 𝑖𝑗 (1 − 𝑦 𝑖 𝑦 𝑗 ) = 

1 
4 𝑦 

𝑇 𝐿𝑦, 

o the MaxCut problem can be formulated as 

ax 1 4 𝑦 
𝑇 𝐿𝑦 such that 𝑦 ∈ {−1 , 1} 𝑛 . 

etting 𝑥 ∶= 

1 
2 ( 𝑦 + 𝑒 ) ∈ {0 , 1} 𝑛 and using 𝐿𝑒 = 0 , we get that 1 4 𝑦 

𝑇 𝐿𝑦 =
 

𝑇 𝐿𝑥 which shows that MaxCut and the binary quadratic opti-
ization problem (10) are indeed equivalent optimization problems.

asserre (2016) showed an even more general result: Considering the
inearly constrained binary quadratic problem 

in { 𝑐 𝑇 𝑥 + 𝑥 𝑇 𝐹 𝑥 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ {0 , 1} 𝑛 } , (11)

asserre showed that this can by reformulated as a MaxCut problem on
 graph with 𝑛 + 1 nodes that can be explicitly constructed from the data
f the problem. So in a sense MaxCut is a canonical model for linear
nd quadratic binary problems. Note that (11) is a special instance of the
roblem (5) studied by Burer. It can therefore be formulated as a copos-
tive problem, and then approximation hierarchies from Section 3 can
e used. 

Historically, linear and then semidefinite relaxations were studied
efore copositivity came into play. In a celebrated paper, Goemans and
illiamson (1995) took the following approach: since 𝑦 𝑇 𝐿𝑦 = ⟨𝐿, 𝑦𝑦 𝑇 ⟩

hey introduce the matrix 𝑌 taking the role of 𝑦𝑦 𝑇 . Then 𝑌 ⪰ 0 and
iag ( 𝑌 ) = 𝑒 must hold, and this yields the semidefinite relaxation 

ax 1 4 ⟨𝐿, 𝑌 ⟩ such that diag ( 𝑌 ) = 𝑒, 𝑌 ⪰ 0 . (12)

or graphs with nonnegative edge weights, they were able to show the
elebrated result that the optimal value of (12) is at most 13 . 83% higher
han the optimal value of MaxCut . In other words, the SDP relaxation
as a performance guarantee of ≈ 87% . 
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.2. Partition and clustering problems 

We briefly discuss various extensions of unconstrained binary
uadratic optimization problems which lead to additional linear con-
traints on the binary variables. 

𝒌 -cluster problems 

The simplest extension of problem (10) consists in asking that exactly
 of the variables in (10) are set to 1. Let 𝐴 ≥ 0 be a symmetric 𝑛 × 𝑛

atrix. We may think of 𝑎 𝑖𝑗 as a measure for the interaction between 𝑖
nd 𝑗. The problem 

ax 1 2 𝑥 
𝑇 𝐴𝑥 such that 𝑒 𝑇 𝑥 = 𝑘 and 𝑥 ∈ {0 , 1} 𝑛 

sks for a subset of 𝑘 vertices having maximum total pairwise interac-
ion. Such a set may be viewed as a “cluster ” in the sense that it collects
 set of 𝑘 items with maximum mutual interaction. This type of problem
as found increased interest from applications in data mining, see for in-
tance ( Fortunato, 2010 ). Various SDP relaxations have been discussed
n Malick and Roupin (2012) . 

A different application of this type of problem is related to the stable
et problem. Let 𝐴 be the adjacency matrix of an unweighted graph 𝐺
nd let 𝑘 be given. Consider the minimization problem 

 ( 𝑘 ) ∶= min 1 2 𝑥 
𝑇 𝐴𝑥 such that 𝑒 𝑇 𝑥 = 𝑘 and 𝑥 ∈ {0 , 1} 𝑛 . 

f the optimal value fulfills 𝑧 ( 𝑘 ) > 0 , then we have a proof that 𝐺 has no
table set of size 𝑘 , so that the stability number 𝛼( 𝐺) fulfills 𝛼( 𝐺) ≤ 𝑘 − 1 .
his idea will be further exploited in Section 4.3 . 

Max - 𝒌 - Cut 

The MaxCut problem may also be seen as a very simple graph par-
ition problem as it asks to separate the vertices of the graph into two
arts such as to maximize the weight of the edges joining the two par-
ition blocks. It is a natural generalization to consider vertex partitions
nto (at most) 𝑘 partition blocks for some fixed 𝑘 ≥ 2 . 

We represent 𝑘 -partitions of 𝑉 = {1 , … , 𝑛 } by 0-1 matrices 𝑋 of or-
er 𝑛 × 𝑘 satisfying 𝑋𝑒 = 𝑒 . This condition simply states that ( 𝑋𝑒 ) 𝑖 = 1
or all 𝑖 , meaning that vertex 𝑖 is in exactly one partition block, namely
lock 𝑗 in case 𝑥 𝑖𝑗 = 1 . The sum of the elements of column 𝑗 of 𝑋 equals
he number of vertices (possibly zero) in partition block 𝑗. It is a sim-
le exercise to verify that the total weight of edges joining vertices in
istinct partition blocks is given by 

1 
2 trace ( 𝐿𝑋 𝑋 

𝑇 ) . 

herefore, the Max - 𝑘 - Cut problem may be formulated as 

ax 1 2 trace ( 𝐿𝑋 𝑋 

𝑇 ) such that 𝑋 𝑒 = 𝑒 and 𝑋 ∈ {0 , 1} 𝑛 ×𝑘 . 

The 𝒌 -partition problem is obtained by further constraining the par-
itions to have exactly 𝑘 partition blocks, and to require that partition
lock 𝑗 contains exactly 𝑚 𝑗 ∈ ℕ vertices, where 

∑
𝑗 𝑚 𝑗 = 𝑛 . We collect

he cardinalities 𝑚 𝑗 in the vector 𝑚 ∈ ℕ 

𝑘 , so that feasible partitions are
epresented by matrices 𝑋 ∈ {0 , 1} 𝑛 ×𝑘 satisfying 

𝑒 = 𝑒 and 𝑋 

𝑇 𝑒 = 𝑚. 

he special case where all the 𝑚 𝑖 are equal is of special interest
n certain telecommunication problems, and we refer to Lisser and
endl (2003) for a discussion of these applications and relaxations based
n semidefinite optimization. 

.3. Stable sets and graph coloring 

We briefly look at formulations for the stability and the chromatic
umber of a graph in connection with quadratic binary optimization. 

A subset 𝑆 of vertices of a graph 𝐺 is called stable (or independent ),
f the subgraph of 𝐺 induced by 𝑆 is empty. The stability number 𝛼( 𝐺)
enotes the cardinality of a largest stable set in 𝐺. Determining 𝛼( 𝐺) is
onsidered an extremely difficult combinatorial optimization problem,
f. Håstad (1999) . The following binary quadratic optimization problem
etermines 𝛼( 𝐺) : 

( 𝐺) = max 
∑

𝑥 𝑖 such that 𝑥 𝑖 𝑥 𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺) , 𝑥 ∈ {0 , 1} 𝑛 . 
7 
he optimal value 𝑧 ( 𝑘 ) of the following optimization problem can be
sed to check whether 𝐺 contains a stable set of size 𝑘 . As usual, 𝐴 de-
otes the adjacency matrix of 𝐺. Consider the following problem which
as already briefly discussed in Section 4.2 : 

 ( 𝑘 ) ∶= min 1 2 𝑥 
𝑇 𝐴𝑥 such that 𝑒 𝑇 𝑥 = 𝑘, 𝑥 ∈ {0 , 1} 𝑛 . (13)

f 𝑧 ( 𝑘 ) = 0 , then 𝐺 contains a stable set of size 𝑘 given by 𝑆 = { 𝑖 ∣ 𝑥 𝑖 = 1} .
n the other hand, 𝑧 ( 𝑘 ) > 0 shows that 𝐺 has no stable set of size 𝑘 and

herefore 𝛼( 𝐺) < 𝑘 . 
Let us now turn to vertex colorings of 𝐺. A 𝑘 -coloring of 𝑉 ( 𝐺) can be

een as a vertex partition of 𝑉 ( 𝐺) into 𝑘 stable sets (the color classes).
he chromatic number 𝜒( 𝐺) denotes the smallest number 𝑘 such that
is 𝑘 -colorable. A formulation to compute 𝜒( 𝐺) as the solution of a

opositive problem was given in Gvozdenovi ć and Laurent (2008) . 
Expressing 𝜒( 𝐺) as a binary optimization problem is usually done as

ollows. Let 𝑆 = { 𝑠 1 , 𝑠 2 , …} be the collection of characteristic vectors of
table sets in 𝐺. 

( 𝐺) = min 
∑
𝑖 

𝜆𝑖 such that 
∑
𝑖 

𝜆𝑖 𝑠 𝑖 = 𝑒, 𝜆𝑖 ∈ {0 , 1} . 

his is a linear optimization problem in binary variables 𝜆𝑖 . Unfortu-
ately, there may be an exponential number of them. Weakening the
ondition 𝜆𝑖 ∈ {0 , 1} to 0 ≤ 𝜆𝑖 ≤ 1 for all 𝑖 leads us to the fractional chro-

atic number 𝜒𝑓 ( 𝐺) : 

𝑓 ( 𝐺) = min 
∑
𝑖 

𝜆𝑖 such that 
∑
𝑖 

𝜆𝑖 𝑠 𝑖 = 𝑒, 0 ≤ 𝜆𝑖 ≤ 1 for all 𝑖. 

omputing the optimal value 𝜒𝑓 ( 𝐺) of this linear program is again
nown to be NP-hard, see for instance ( Lund and Yannakakis, 1994 ). 

Let us now consider testing whether 𝐺 contains a 𝑘 -coloring for some
iven 𝑘 . We introduce the 𝑛 × 𝑘 binary matrix 𝑋 and require 

∑𝑘 

𝑟 =1 𝑥 𝑖𝑟 = 1
or all 1 ≤ 𝑖 ≤ 𝑛 , which we write in a slight abuse of notation as 𝑋𝑒 = 𝑒 .
his condition asks that each row of 𝑋 contains exactly one entry equal
o one, so that the columns of 𝑋 provide a vertex partition of 𝑉 ( 𝐺) into
at most) 𝑘 partition blocks. Since each row of 𝑋 has exactly one nonzero
ntry, we see that 

∑𝑘 

𝑟 =1 𝑥 𝑖𝑟 𝑥 𝑗𝑟 = 1 for some 𝑖 ≠ 𝑗 is only possible if 𝑖 and
both belong to the same partition block 𝑟 for some 𝑟 ∈ {1 , … , 𝑘 } . As a
onsequence ∑
 𝑖,𝑗 ]∈𝐸 ( 𝐺) 

∑
𝑟 

𝑥 𝑖𝑟 𝑥 𝑗𝑟 = 

1 
2 ⟨𝑋 , 𝐴𝑋 ⟩

ounts the number of edges joining vertices in the same partition block.
e introduce 

 ( 𝑘 ) ∶= min 1 2 ⟨𝑋 , 𝐴𝑋 ⟩ such that 𝑋 𝑒 = 𝑒, 𝑋 ∈ {0 , 1} 𝑛 ×𝑘 . (14)

n a slight abuse of notation, we use 𝑧 ( 𝑘 ) again for the optimal value of
he relaxation with exactly 𝑘 columns in 𝑋. If 𝑧 ( 𝑘 ) = 0 , then the optimal

provides a partitioning of 𝑉 ( 𝐺) into (at most) 𝑘 stable sets and there-
ore 𝜒( 𝐺) ≤ 𝑘 . On the other hand 𝑧 ( 𝑘 ) > 0 implies that no 𝑘 -partition
xists where all partition blocks are stable sets, and therefore 𝜒( 𝐺) > 𝑘 .

We will come back to SDP relaxations for these problems and inves-
igate connections to the 𝜗 number in Section 5.2 . 

.4. Quadratic set cover 

The (linear) set cover problem is defined as follows. We are given a
et 𝐶 ∶= { 𝑣 1 , … , 𝑣 𝑛 } of 𝑛 elements and a collection 𝑆 of 𝑚 subsets of 𝐶
uch that their union equals 𝐶. Each subset 𝑆 𝑖 in 𝑆 has cost 𝑞 𝑖 . The task
s to select subsets in 𝑆 such that their union is 𝐶 and such that the cost
f the selected subsets in minimized. This problem is one of Karp’s 21
P-complete problems. 

To state this problem formally, define an 𝑛 × 𝑚 binary matrix 𝐴 with
 𝑖𝑗 = 1 if 𝑣 𝑖 ∈ 𝑆 𝑗 . Row 𝑖 of 𝐴 indicates which subsets 𝑆 𝑗 contain 𝑣 𝑖 , col-
mn 𝑗 of 𝐴 is the incidence vector of subset 𝑆 𝑗 . With this, the linear set
over problem reads: 

 

∗ ∶= min 
𝑚 ∑
𝑗=1 

𝑞 𝑗 𝑥 𝑗 s.t. 
𝑚 ∑
𝑗=1 

𝑎 𝑖𝑗 𝑥 𝑗 ≥ 1 for all 𝑖 = 1 , … , 𝑛 and 𝑥 ∈ {0 , 1} 𝑚 . 
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Let us denote the largest row sum of 𝐴 by 𝑓 and the largest col-
mn sum of 𝐴 by 𝑔. The following approximation results go back to the
980’s. Hochbaum (1982) introduces a primal-dual LP-rounding heuris-
ic which gives (in polynomial time) a feasible solution to set cover
ith value 𝑧 at most 𝑓𝑧 ∗ , i.e. 𝑧 ≤ 𝑓𝑧 ∗ . Chvátal (1979) proposes a greedy

ounding heuristic which yields (in polynomial time) a feasible solution
o set cover with value 𝑧 at most (1 + log ( 𝑔)) 𝑧 ∗ , i.e., 𝑧 ≤ (1 + log ( 𝑔)) 𝑧 ∗ . 

The quadratic set cover problem differs from the linear one only in
he objective function which now also may contain quadratic terms: 

𝑚 

𝑖 =1 

𝑚 ∑
𝑗=1 

𝑞 𝑖𝑗 𝑥 𝑖 𝑥 𝑗 . 

t is clear that if 𝑞 𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗, then we recover the linear set cover
roblem (as 𝑥 𝑗 = 𝑥 2 

𝑗 
). 

A good summary on complexity issues related to quadratic set cover
s given by Escoffier and Hammer (2007) . They relate quadratic set cover
o deciding whether a graph has chromatic number 3: Let 𝐺 be a (nonbi-
artite) graph on 𝑛 vertices and construct a quadratic set cover instance
s follows. The ground set is 𝑉 = {1 , … , 𝑛 } and we have 3 𝑛 subsets 𝑆 𝑖𝑟
ith 

 𝑖𝑟 ∶= { 𝑖 } for 𝑟 = 1 , 2 , 3 , 

o each set consists of only one element, and we have three copies of
ach set. The 𝑛 covering conditions ask that 

 𝑖 1 + 𝑥 𝑖 2 + 𝑥 𝑖 3 ≥ 1 for all 𝑖 = 1 , … , 𝑛. 

e may think of these constraints as asking that each vertex should re-
eive color 1 or 2 or 3. Thus we do not allow that all three of these vari-
bles are zero but more than one of them may be set to one. Escoffier and
ammer (2007) show the following theorem. 

heorem 4.1. Let 𝐺 be a nonbipartite graph and consider 

 

∗ ∶= min 
∑

[ 𝑖,𝑗 ]∈𝐸 ( 𝐺) 
𝑥 𝑖 1 𝑥 𝑗1 + 𝑥 𝑖 2 𝑥 𝑗2 + 𝑥 𝑖 3 𝑥 𝑗3 

s.t. 𝑥 𝑖 1 + 𝑥 𝑖 2 + 𝑥 𝑖 3 ≥ 1 for all 𝑖 = 1 , … , 𝑛 

𝑥 𝑖𝑟 ∈ {0 , 1} for all 𝑖 = 1 , … , 𝑛, 𝑟 = 1 , 2 , 3 . 

hen 𝑧 ∗ = 0 if and only if 𝜒( 𝐺) = 3 . 

As a consequence, it is NP-hard to decide whether a quadratic set
over problem has optimal value 0 or greater than 0. The covering prob-
em in this construction is quite simple. Each set consists of only one
lement ( 𝑆 𝑖𝑟 = { 𝑖 } ), and each cover constraint involves only three ele-
ents from the ground set. This problem would therefore be trivial to

olve with a linear objective function. 

.5. Quadratic assignment problem 

The Quadratic Assignment Problem (QAP) asks to minimize a
uadratic objective function over the set of permutation matrices. It
ontains many prominent NP-hard problems as special cases, see for
nstance ( Pardalos et al., 1994 ). We define it through three data matri-
es 𝐴, 𝐵 and 𝐶 of order 𝑛 × 𝑛 and assume that 𝐴 and 𝐵 are symmetric.
he set of 𝑛 × 𝑛 permutation matrices is denoted by Π𝑛 or Π for short.
he QAP then reads: 

in ⟨𝐴𝑋 𝐵 + 𝐶, 𝑋 ⟩ such that 𝑋 ∈ Π. 

ote that Π is contained in the affine space 

 ∶= { 𝑋 ∈ ℝ 

𝑛 ×𝑛 ∣ 𝑋𝑒 = 𝑋 

𝑇 𝑒 = 𝑒 } 

f all matrices having row and column sums equal to 1. Let the ( 𝑛 − 1) ×
 matrix 𝑉 represent a basis of 𝑒 ⟂, the orthogonal complement to the
ector 𝑒 ∈ ℝ 

𝑛 . It is well known that any 𝑋 ∈  may be written as 

 = 

1 𝐽 + 𝑉 𝑀𝑉 𝑇 

𝑛 

8 
here 𝐽 ∶= 𝑒𝑒 𝑇 and 𝑀 ∈  is an arbitrary symmetric matrix of order
 − 1 . Note in particular that 𝑉 𝑀𝑉 𝑇 lies in the linear space of matrices
aving row and column sums equal to 0. 

Povh and Rendl (2009) proposed a copositive formulation of QAP
nd semidefinite relaxations based upon it. To this end, it is useful to
ewrite the objective function of QAP in terms of 𝑥 ∶= vec ( 𝑋) , where
ec ( 𝑋) is a vector obtained from the matrix 𝑋 by stacking the columns
f 𝑋 on top of each other. Using the Kronecker product 𝐵 ⊗𝐴 of the
atrices 𝐵 and 𝐴 , it is not difficult to see that 

𝐴𝑋 𝐵, 𝑋 ⟩ = 𝑥 𝑇 ( 𝐵 ⊗𝐴 ) 𝑥 

e also set 𝑐 ∶= vec ( 𝐶) and derive 

𝐴𝑋 𝐵 + 𝐶, 𝑋 ⟩ = 𝑥 𝑇 ( 𝐵 ⊗𝐴 ) 𝑥 + 𝑐 𝑇 𝑥. 

e are now interested in the set 

 ∶= conv { 𝑥𝑥 𝑇 ∶ 𝑥 = vec ( 𝑋) , 𝑋 ∈ Π} . 

e have just seen that 

 = vec ( 𝑋) = vec ( 1 
𝑛 
𝐽 + 𝑉 𝑀𝑉 𝑇 ) = 

1 
𝑛 
𝑒 ⊗ 𝑒 + ( 𝑉 ⊗ 𝑉 ) 𝑚 

sing 𝑚 ∶= vec ( 𝑀) . Let 𝑧 ∶= 

(1 
𝑚 

)
and set 𝑊 ∶= ( 1 

𝑛 
𝑒 ⊗ 𝑒, 𝑉 ⊗ 𝑉 ) . Then

 = 𝑊 𝑧 and 𝑥𝑥 𝑇 = 𝑊 𝑧𝑧 𝑇 𝑊 

𝑇 . The definition of 𝑧 implies ( 𝑧𝑧 𝑇 ) 1 , 1 = 1 .
he SDP relaxation of QAP is now obtained by allowing any semidefinite
atrix 𝑅 with ( 𝑅 ) 1 , 1 = 1 in place of 𝑧𝑧 𝑇 . For ease of notation we intro-
uce 𝑌 ∶= 𝑊 𝑅𝑊 

𝑇 , and we get the following semidefinite relaxation of
AP: 

min ⟨𝐵 ⊗𝐴 + diag ( 𝑐) , 𝑌 ⟩ such that 𝑌 = 𝑊 𝑅𝑊 

𝑇 , ( 𝑅 ) 1 , 1 = 1 , 

𝑦 = diag ( 𝑌 ) , 𝑌 − 𝑦𝑦 𝑇 ⪰ 0 . 

ince 𝑌 takes the role of 𝑥𝑥 𝑇 we may think of the 𝑛 2 × 𝑛 2 matrix 𝑌 as
eing partitioned into 𝑛 × 𝑛 matrices 𝑌 𝑖,𝑗 such that 𝑌 𝑖,𝑗 corresponds to
he matrix 𝑋 .,𝑖 ⋅𝑋 

𝑇 
.,𝑗 

. Since 𝑋 𝑖,𝑘 𝑋 𝑖,𝑙 = 0 for 𝑘 ≠ 𝑙, it follows immediately

hat the submatrix 𝑌 𝑖,𝑖 is 0 outside its main diagonal, i.e., ( 𝑌 𝑖,𝑖 ) 𝑘,𝑙 = 0 for
ll 𝑘 ≠ 𝑙. In a similar way we conclude that diag ( 𝑌 𝑖,𝑗 ) = 0 for 𝑖 ≠ 𝑗. We
efer to Povh and Rendl (2009) for further details. 

. Modelling linear equalities and inequalities in SDP relaxations 

In this section we take a closer look at modelling issues related to
ombinatorial optimization problems. We stress that formulations which
re equivalent in the binary setting may give different results when we
ove to conic relaxations. For instance, suppose we have binary vari-

bles 𝑥 𝑖 ∈ {0 , 1} and we would like to express the constraint that for a
iven pair 𝑖, 𝑗 at most one of the associated variables 𝑥 𝑖 and 𝑥 𝑗 is al-
owed to be equal to 1. This could be done either by imposing the linear
nequality 𝑥 𝑖 + 𝑥 𝑗 ≤ 1 or by requiring the quadratic equation 𝑥 𝑖 𝑥 𝑗 = 0 to
old. In the binary setting, both conditions are equivalent, but once we
ove to relaxations, they may yield different results. 

Moreover, various ways of constructing SDP relaxations have been
roposed in the literature which may also lead to bounds of varying
uality. We refer to Anjos et al. (2021) for a recent discussion of various
DP models related to the stable set problem. 

Finally, the idea of using approximation hierarchies as detailed in
ection 3 has found a lot of interest. Applied to combinatorial optimiza-
ion problems, these hierarchies typically have the property that the
uality of the relaxation gets tighter as one moves up in the hierarchy,
ielding the integer optimum as one moves up high enough in the hi-
rarchy. Unfortunately, it is computationally challenging to tackle even
he first few levels in these hierarchies. If the initial problem has 𝑛 bi-
ary variables, the SDP in the first level of the hierarchy is formulated
n matrices of order 𝑛 + 1 , but already the second level uses matrices of
rder 

(𝑛 ) which is prohibitive once 𝑛 is much larger than 100. 
2 
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.1. Lifting linear constraints 

Here we focus on the modelling issue and investigate how linear
onstraints may be lifted into the SDP relaxation. The precise method
f lifting linear constraints can be a subtle issue and can, if not done
arefully, destroy strict feasibility of the lifted problem. For given 𝑎 0 > 0 ,
e consider the SDP relaxation of 

ax 𝑥 𝑇 𝐶𝑥 such that 𝑥 ∈ {0 , 1} 𝑛 , 𝑎 𝑇 𝑥 = 𝑎 0 . 

his is a binary quadratic optimization problem with a single linear
quality constraint 𝑎 𝑇 𝑥 = 𝑎 0 . How should this equation be included in
he SDP relaxation? 

The semidefiniteness constraint 𝑋 − 𝑥𝑥 𝑇 ⪰ 0 with diag ( 𝑋) = 𝑥 im-
ediately shows that 

 

𝑇 𝑋𝑎 ≥ ( 𝑎 𝑇 𝑥 ) 2 . 

ince we should have equality it seems plausible to optimize over the
et 

 1 ∶= {( 𝑋, 𝑥 ) ∣
( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

⪰ 0 , diag ( 𝑋) = 𝑥, 𝑎 𝑇 𝑥 = 𝑎 0 , 𝑎 
𝑇 𝑋𝑎 = 𝑎 2 0 } . 

nfortunately, this construction makes feasible matrices singular, as we
how in the next lemma: 

emma 5.1. Let ( 𝑋, 𝑥 ) ∈  1 . Then the matrix 

( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

is singular and

𝑎 = 𝑎 0 𝑥 . 

roof. We first note that 
 

𝑎 

− 𝑎 0 

) 𝑇 ( 

𝑋 𝑥 

𝑥 𝑇 1 

) ( 

𝑎 

− 𝑎 0 

) 

= 𝑎 𝑇 𝑋𝑎 − 2 𝑎 0 𝑎 𝑇 𝑥 + 𝑎 2 0 = 0 . 

ince 

( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

⪰ 0 , this implies 

( 

𝑋 𝑥 

𝑥 𝑇 1 

) ( 

𝑎 

− 𝑎 0 

) 

= 0 , and therefore

𝑎 = 𝑎 0 𝑥 . □

It is well known that the set of singular positive semidefinite matri-
es equals the boundary of  + 

𝑛 
and the set of positive definite matrices

quals the interior of  + 
𝑛 

. Therefore, Lemma 5.1 implies that if we work
ith the set  1 in an SDP-relaxation, then the Slater condition is nec-

ssarily violated, and we already saw that this is disadvantageous both
rom a theoretical perspective (strong duality may not hold) and from a
ractical perspective (solvers may not be able to handle the problem).
s an alternative, we propose the set 

 2 ∶= {( 𝑋, 𝑥 ) ∣ 𝑋 ⪰ 0 , diag ( 𝑋) = 𝑥, 𝑎 𝑇 𝑥 = 𝑎 0 , 𝑋𝑎 = 𝑎 0 𝑥 } . 

A formulation similar to  2 appeared in Burer, 2010 , Proposition 1.
e next show that the two sets are actually equal: 

emma 5.2. We have that  1 =  2 . 

roof. We first take ( 𝑋, 𝑥 ) ∈  1 . Then 𝑋 ⪰ 0 , diag ( 𝑋) = 𝑥 and 𝑎 𝑇 𝑥 = 𝑎 0 .
emma 5.1 shows that 𝑋𝑎 = 𝑎 0 𝑥 and therefore ( 𝑋, 𝑥 ) ∈  2 . 

Conversely, let ( 𝑋, 𝑥 ) ∈  2 . We immediately get that 𝑎 𝑇 𝑥 = 𝑎 0 and
 

𝑇 𝑋𝑎 = 𝑎 2 0 . It remains to show that 

 ∶= 

( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

= 

⎛ ⎜ ⎜ ⎝ 
𝑋 

1 
𝑎 0 
𝑋𝑎 (

1 
𝑎 0 
𝑋𝑎 

)𝑇 
1 

⎞ ⎟ ⎟ ⎠ ⪰ 0 . 

et 𝑋𝑣 = 0 . Then 𝑤 ∶= 

(𝑣 
0 

)
is in the null-space of 𝑌 , as 𝑌 𝑤 = 

( 𝑋𝑣 
1 
𝑎 0 
𝑎 𝑇 𝑋𝑣 

)
=

 . This shows that the null-space of 𝑋 (extended with an additional
omponent equal to 0) is contained in the null-space of 𝑌 . We also
ave 𝑌 

( 𝑎 

− 𝑎 0 

)
= 0 , so that 𝑋 and 𝑌 have the same rank. If 𝑋 ⪰ 0 then

ll nonzero eigenvalues of 𝑌 are positive by the interlacing property
etween the eigenvalues of 𝑋 and 𝑌 . □

emark 5.3. The matrix 𝑌 above is sometimes called a flat extension of
. It is a well known fact that flat extensions of semidefinite matrices

re also semidefinite. 
9 
Next we investigate the situation where a linear term 𝑎 𝑇 𝑥 is required
o be contained in some interval, say |𝑎 𝑇 𝑥 | ≤ 𝑎 0 , with 𝑎 0 > 0 . The con-
traints 𝑋 − 𝑥𝑥 𝑇 ⪰ 0 and diag ( 𝑋) = 𝑥 imply 

 

𝑇 𝑋𝑎 ≥ ( 𝑎 𝑇 𝑥 ) 2 . 

e conclude that 𝑎 2 0 ≥ 𝑎 𝑇 𝑋𝑎 is at least as strong as the original inequal-
ty |𝑎 𝑇 𝑥 | ≥ 𝑎 0 . 

Finally, we observe that the situation is different for one-sided linear
nequalities of the form 

 

𝑇 𝑥 ≥ 𝑎 0 

ith 𝑎 0 > 0 . Arguing as before we see that 

 

𝑇 𝑋𝑎 ≥ ( 𝑎 𝑇 𝑥 ) 2 , 

ence the original inequality 𝑎 𝑇 𝑥 ≥ 𝑎 0 is at least as strong as 𝑎 𝑇 𝑋𝑎 ≥ 𝑎 2 0 .

.2. Stable set and coloring relaxations 

We recall the formulation for the stability number 𝛼( 𝐺) for a graph
: 

( 𝐺) ∶= max { 𝑒 𝑇 𝑥 ∣ 𝑥 𝑖 𝑥 𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺) , 𝑥 ∈ {0 , 1} 𝑛 } . 

ne of its first relaxations using SDP was introduced in a seminal paper
y Lovász (1979) . It may be derived from nonzero binary vectors 𝑥 by
ntroducing 𝑋 ∶= 

1 
𝑥 𝑇 𝑥 

𝑥𝑥 𝑇 . Note that 𝑒 𝑇 𝑥 = 𝑒 𝑇 𝑋𝑒 holds for any feasible
 . Let 

 ( 𝐺) ∶= max { 𝑒 𝑇 𝑋𝑒 ∣ 𝑋 ⪰ 0 , 𝑥 𝑖𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺)} . 

s any characteristic vector 𝑥 of a stable set leads to a feasible ma-
rix 𝑋 for this problem, it is clear that 𝛼( 𝐺) ≤ 𝜗 ( 𝐺) . Lovász and Schri-
ver (1991) showed that 𝜗 ( 𝐺) can also be obtained as the optimal value
f the following SDP: 

 ( 𝐺) = max { 𝑒 𝑇 𝑥 ∣ 𝑥 = diag ( 𝑋) , 𝑋 𝑖𝑗 = 0 ∀ [ 𝑖, 𝑗] ∈ 𝐸( 𝐺) , 
( 

𝑋 𝑥 

𝑥 𝑇 1 

) 

⪰ 0} . 

We now return to the parameter 𝑧 ( 𝑘 ) from (13) and derive upper
ounds on 𝛼( 𝐺) based on it. We denote by 𝐴 the adjacency matrix of
ur graph 𝐺. For given 𝑘 ∈ ℕ we have 

 ( 𝑘 ) ∶= min 1 2 𝑥 
𝑇 𝐴𝑥 such that 𝑒 𝑇 𝑥 = 𝑘 and 𝑥 ∈ {0 , 1} 𝑛 . 

f 𝑧 ( 𝑘 ) > 0 , then clearly 𝐺 has no stable set of size 𝑘 and there-
ore 𝛼( 𝐺) < 𝑘 . Computing 𝑧 ( 𝑘 ) is an NP-complete problem, see for in-
tance ( Billionnet and Roupin, 2008 ), so we consider the following
ractable relaxation denoted by 𝑃 ( 𝑡 ) for some 𝑡 > 1 : 

 ( 𝑡 ) min 1 2 ⟨𝐴, 𝑌 ⟩ such that 𝑌 ⪰ 0 , 𝑌 ≥ 0 , trace ( 𝑌 ) = 𝑡, 𝑌 𝑒 = 𝑡 diag ( 𝑌 ) 

ote that this is a doubly nonnegative relaxation, since the constraints
 ⪰ 0 , 𝑌 ≥ 0 mean that 𝑌 should be in the cone of doubly nonnega-
ive matrices. We denote the optimal value of 𝑃 ( 𝑡 ) by val ( 𝑃 ( 𝑡 )) . Note
hat val ( 𝑃 ( 𝑡 )) > 0 implies 𝛼( 𝐺) ≤ ⌊𝑡 ⌋, so we are interested in finding the
mallest 𝑡 such that val ( 𝑃 ( 𝑡 )) > 0 . It turns out that the answer to this
uestion is closely related to Schrijver’s refinement 𝜗 + = 𝜗 + ( 𝐺) (some-
imes denoted by 𝜗 ′( 𝐺) ) of the original theta function 𝜗 ( 𝐺) : 

 

+ ∶= max trace ( 𝑌 ) 
s.t. 𝑌 − 𝑦𝑦 𝑇 ⪰ 0 , diag ( 𝑌 ) = 𝑦, 

𝑦 𝑖𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺) , 𝑌 ≥ 0 . 
( S 1 )

efore we establish this connection we recall the following alternative
ormulation of 𝜗 + : 

 

+ = max ⟨𝐽 , 𝑋⟩
s.t. 𝑋 ⪰ 0 , trace ( 𝑋) = 1 , 𝑥 𝑖𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺) , 𝑋 ≥ 0 . ( S 2 )

We set 𝑛 ∶= |𝑉 ( 𝐺) | and 𝑚 ∶= |𝐸( 𝐺) |. The next two theorems can be
sed to get bounds for 𝛼( 𝐺) and 𝜒( 𝐺) . Contrary to the computation of
 

+ ( 𝐺) which requires the solution of an SDP with more than 𝑚 equality
onstraints, the SDP relaxation 𝑃 ( 𝑡 ) contains 𝑛 + 1 equality constraints,
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ndependent of 𝑚 . As a drawback, one has to guess the proper value 𝑡
hich might require solving several SDPs for different values of 𝑡 . 

The following property of optimal solutions to ( S 1 ) will be used later
n. 

emma 5.4. Let ( 𝑌 ∗ , 𝑦 ∗ ) be optimal for ( S 1 ). Then 𝑌 ∗ 𝑒 = 𝜗 + 𝑦 ∗ . 

roof. We first note that 𝑋 

∗ ∶= 

1 
𝜗 + 
𝑌 ∗ is feasible for ( S 2 ) and there-

ore ⟨𝐽 , 𝑋 

∗ ⟩ ≤ 𝜗 + . This means that ⟨𝐽 , 𝑌 ∗ ⟩ ≤ ( 𝜗 + ) 2 . On the other hand,
 

∗ − 𝑦 ∗ ( 𝑦 ∗ ) 𝑇 ⪰ 0 so that ⟨𝐽 , 𝑌 ∗ ⟩ ≥ ( 𝑒 𝑇 𝑦 ∗ ) 2 = ( 𝜗 + ) 2 . Thus we have shown
hat ⟨𝐽 , 𝑌 ∗ ⟩ = ( 𝜗 + ) 2 . This implies that 𝑒 𝑇 ( 𝑌 ∗ − 𝑦 ∗ ( 𝑦 ∗ ) 𝑇 ) 𝑒 = 0 and to-
ether with the semidefiniteness of the matrix 𝑌 ∗ − 𝑦 ∗ ( 𝑦 ∗ ) 𝑇 we get
 𝑌 ∗ − 𝑦 ∗ ( 𝑦 ∗ ) 𝑇 ) 𝑒 = 0 , showing that 𝑌 ∗ 𝑒 = 𝜗 + 𝑦 ∗ . □

We are now ready to show the following result. 

heorem 5.5. Let 𝐴 be the adjacency matrix of a graph 𝐺. Then val ( 𝑃 ( 𝑡 )) >
 if and only if 𝑡 > 𝜗 + ( 𝐺) . 

roof. We first consider the problem 𝑃 ( 𝑡 ) for the value 𝑡 = 𝜗 + ∶=
 

+ ( 𝐺) : 

 ( 𝜗 + ) min 1 2 ⟨𝐴, 𝑌 ⟩ s.t. 𝑌 ⪰ 0 , 𝑌 ≥ 0 , trace ( 𝑌 ) = 𝜗 + , 𝑌 𝑒 = 𝜗 + diag ( 𝑌 ) . 

ow take an optimal solution ( 𝑌 , 𝑦 ) for problem ( S 1 ), so trace ( 𝑌 ) =
 

+ , 𝑌 − 𝑦𝑦 𝑇 ⪰ 0 , 𝑦 𝑖𝑗 = 0 for all [ 𝑖, 𝑗 ] ∈ 𝐸 ( 𝐺) , 𝑦 𝑖𝑗 ≥ 0 for all [ 𝑖, 𝑗 ] ∉ 𝐸 ( 𝐺) .
emma 5.4 shows us that 𝑌 𝑒 = 𝜗 + 𝑦 . We conclude that ( 𝑌 , 𝑦 ) is feasible
or problem 𝑃 ( 𝜗 + ) . Since 𝑦 𝑖𝑗 = 0 on 𝐸( 𝐺) we conclude that val ( 𝑃 ( 𝜗 + )) =
 . 

Next, suppose that val ( 𝑃 ( 𝑡 )) = 0 and consider 𝑡 ′ with 1 < 𝑡 ′ < 𝑡 . Sup-
ose that ( 𝑌 , 𝑦 ) is optimal for 𝑃 ( 𝑡 ) . It is a simple exercise to verify that 

 

′ ∶= 

𝑡 ′

𝑡 ( 𝑡 − 1) 
[
( 𝑡 ′ − 1) 𝑌 + ( 𝑡 − 𝑡 ′) diag ( 𝑌 ) 

]
s feasible for 𝑃 ( 𝑡 ′) with objective value 0, hence val ( 𝑃 ( 𝑡 )) = 0 for all
 < 𝑡 ≤ 𝜗 + . 

Finally, the definition of problem ( S 1 ) shows that 𝜗 + is the largest
ossible value for the trace of a matrix 𝑌 which satisfies 𝑌 ⪰ 0 , 𝑌 ≥
 , 𝑦 𝑖𝑗 = 0 for all [ 𝑖, 𝑗 ] ∈ 𝐸 ( 𝐺) , and therefore val ( 𝑃 ( 𝑡 )) > 0 for any 𝑡 >
 

+ . □

A similar approach can also be used to get lower bounds for the
hromatic number 𝜒 . We recall the binary quadratic problem from (14) : 

 ( 𝑘 ) ∶= min 1 2 ⟨𝑋 , 𝐴𝑋 ⟩ such that 𝑋 𝑒 = 𝑒, 𝑋 ∈ {0 , 1} 𝑛 ×𝑘 . 

f 𝑧 ( 𝑘 ) > 0 for some given 𝑘 , then 𝜒( 𝐺) > 𝑘 . As before, we need a tractable
elaxation for this problem. It is obtained by first extending 𝑋 with an
dditional row of all ones, so we introduce 

̃
 ∶= 

( 

𝑋 

𝑒 𝑇 

) 

nd observe that 

̃
 𝑋̃ 

𝑇 = 

( 

𝑋 𝑋 

𝑇 𝑒 

𝑒 𝑇 𝑘 

) 

. 

he main diagonal of the matrix 𝑋 𝑋 

𝑇 clearly equals the all-ones vector,
ecause each row of the 0-1 matrix 𝑋 has exactly one entry equal to 1. A
elaxation is obtained by allowing arbitrary matrices 𝑌 instead of 𝑋 𝑋 

𝑇 .
e get 

 𝑃 ( 𝑡 )) min 1 2 ⟨𝐴, 𝑌 ⟩ such that 

( 

𝑌 𝑒 

𝑒 𝑇 𝑡 

) 

⪰ 0 , diag ( 𝑌 ) = 𝑒, 𝑌 ≥ 0 . 

rom val ( 𝑃 ( 𝑡 )) > 0 we may conclude that 𝜒( 𝐺) ≥ ⌈𝑡 ⌉. Thus we would
ike to find the largest value 𝑡 such that val ( 𝑃 ( 𝑡 )) > 0 . It turns out that
he strengthening of the 𝜗 number towards the chromatic number 𝜒( 𝐺)
roposed by Szegedy (1994) provides the answer to this question. The
arameter 𝜗 − ( 𝐺 ) defined for the complement 𝐺 of 𝐺 was introduced by
10 
zegedy as a lower bound on the chromatic number of 𝐺: 

𝜗 − ( 𝐺 ) ∶= min 𝑡 such that 

( 

𝑌 𝑒 

𝑒 𝑇 𝑡 

) 

⪰ 0 , diag ( 𝑌 ) = 𝑒, 

𝑌 ≥ 0 , 𝑦 𝑖𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺 ) . 

e have 𝜗 ( 𝐺 ) ≤ 𝜗 − ( 𝐺 ) ≤ 𝜒( 𝐺) . 

heorem 5.6. For a given graph 𝐺 we have that 

al ( 𝑃 ( 𝑡 )) > 0 if and only if 𝑡 < 𝜗 − ( 𝐺 ) . 

roof. We first consider problem 𝑃 ( 𝑡 ) for 𝑡 = 𝜗 − ( 𝐺 ) . Let 𝑌 be an optimal
olution for 𝜗 − ( 𝐺 ) . Then 𝑌 is also feasible for 𝑃 ( 𝜗 − ( 𝐺 )) with value 0, so
 ( 𝜗 − ( 𝐺 )) = 0 . The solution 𝑌 remains feasible for any 𝑡 ′ > 𝑡 = 𝜗 − ( 𝐺 ) so
hat val ( 𝑃 ( 𝑡 ′)) = 0 also in this case. Finally, the definition of 𝜗 − ( 𝐺 ) shows
hat for any 𝑡 < 𝜗 − ( 𝐺 ) , the system 

 

𝑌 𝑒 

𝑒 𝑇 𝑡 

) 

⪰ 0 , diag ( 𝑌 ) = 𝑒, 𝑌 ≥ 0 , 𝑦 𝑖𝑗 = 0 for all [ 𝑖, 𝑗] ∈ 𝐸( 𝐺 ) 

s infeasible. Therefore, any 𝑌 satisfying 

( 

𝑌 𝑒 

𝑒 𝑇 𝑡 

) 

⪰ 0 , diag ( 𝑌 ) =

, 𝑌 ≥ 0 will have an entry 𝑦 𝑖𝑗 > 0 for some [ 𝑖, 𝑗] ∈ 𝐸( 𝐺 ) , and hence
al ( 𝑃 ( 𝑡 )) > 0 . □

. Conclusions 

We have seen that conic optimization is an extremely versatile tool
ith an abundance of applications. Depending on the cone in question,
ifferent complexities may occur: while linear programming, second or-
er cone programming as well as semidefinite programming are solvable
n polynomial time, optimizing over the cones of copositive or com-
letely positive matrices is NP-hard. 

The cones  and  are highly useful modelling tools for non-
onvex quadratic or combinatorial optimization. In many cases, it is
ossible to reformulate such problems equivalently as linear problems
ver  or  . Relaxing the cone constraint to a semidefiniteness or
ouble nonnegativity constraints yields very good bounds which are of-
en provably tighter than LP-based bounds. When using approximation
ierarchies, one can often show that some finite level of the hierarchy
ives the exact solution of the underlying combinatorial problem. 

In this paper, we have discussed various conic approaches to binary

uadratic problems. It is noteworthy that not much literature is avail-
ble for conic approaches to nonconvex quadratic problems involving
eneral integer or mixed integer variables, i.e., problems with a vari-
ble 𝑥 ∈ ℝ 

𝑝 
+ × ℤ 

𝑟 
+ . This type of problems is studied in Burer and Letch-

ord (2014) and Buchheim and Traversi (2015) , however many open
uestions remain in this area. 

In contrast to linear programming, the existence of strictly feasible
olutions plays a crucial role in conic optimization. In the absence of
trictly feasible points, strong duality may not hold and algorithms may
ail to solve the problem. This is therefore a point that should be care-
ully considered when modelling the problem in question as a conic
ptimization problem. 

At the moment, the main bottleneck for using SDP relaxations or
onic optimization in a broader context of applications is the lack
f algorithms that can solve large scale problems in reasonable time.
emidefinite relaxations of a problem in ℝ 

𝑛 clearly involve matrices of
rder at least 𝑛 × 𝑛 , so the number of variables is roughly squared. If
ne works with approximation hierarchies, the the SDPs get larger at
ach level of the hierarchy. Very quickly, these SDPs are out of reach
or current computational algorithms. 

A possible remedy when the underlying combinatorial problem is
ighly structured is to exploit the symmetry by using the theory of ma-
rix ∗ -algebras. Roughly speaking, the idea is to pre-process the SDP
y applying a suitable unitary transformation in such a way that the
esulting matrices in the SDP exhibit block diagonal structure. This
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tructure can then be exploited by interior point methods. We refer
o de Klerk (2010) for a survey on this approach, and to Dobre and
era (2015) for a discussion on how it can be used in approximation
ierarchies. 

Unfortunately however, not all SDPs exhibit symmetries, and so
here is a need for faster algorithms. Maybe in the future other al-
orithms than interior point methods will turn out to be efficient.
irst attempts are a semismooth Newton-CG augmented Lagrangian
ethod ( Yang et al., 2015 ) and an augmented Lagrangian method com-

ined with a suitable randomization technique ( Yurtsever et al., 2021 ).
he ADMM method has already proved successful when applied to
DP relaxations of binary quadratic problems ( Wen et al., 2010 ), the
uadratic assignment problem ( Oliveira et al., 2018 ), or the quadratic
hortest path problem ( Hu and Sotirov, 2020 ). 

As we have outlined, the past decades have seen an enormous
rogress in understanding conic problems and using them for modelling
urposes. The next decades should be particularly devoted to the nu-
erical side. 
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