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Abstract: Epilepsy, one of the most common neurological diseases in the world, affects
around 50 million people, with a notably disproportionate prevalence in individuals
residing in low- and middle-income countries (LMICs). Alarmingly, over 80% of annual
epilepsy-related fatalities occur within LMICs. The burden of the disease assessed using
Disability Adjusted Life Years (DALYs) shows that epilepsy accounts for about 13 million
DALYs per year, with LMICs bearing most of this burden due to the disproportionately
high diagnostic and treatment gaps. Furthermore, LMICs also endure a significant financial
burden, with the cost of epilepsy reaching up to 0.5% of the Gross National Product (GNP)
in some cases. Difficulties in the appropriate diagnosis and treatment are complicated by
the lack of trained medical specialists. Therefore, in these conditions, adopting artificial
intelligence (AI)-based solutions may improve epilepsy care in LMICs. In this theoretical
and critical review, we focus on epilepsy and its management in LMICs, as well as on the
employment of AI technologies to aid epilepsy care in LMICs. We begin with a general
introduction of epilepsy and present basic diagnostic and treatment approaches. We then
explore the socioeconomic impact, treatment gaps, and efforts made to mitigate these issues.
Taking this step further, we examine recent AI-related developments and their potential as
assistive tools in clinical application in LMICs, along with proposals for future directions.
We conclude by suggesting the need for scalable, low-cost AI solutions that align with the
local infrastructure, policy and community engagement to improve epilepsy care in LMICs.

Keywords: epilepsy; epilepsy eiagnosis; epilepsy care; artificial intelligence; low and
middle income countries
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1. Introduction
An epileptic seizure is defined as the transient occurrence of signs and/or symptoms

due to sudden and abnormally excessive neuronal activity in the brain [1]. Epilepsy,
often referred to as a seizure disorder, is a neurological condition characterized by a long-
lasting predisposition to recurring epileptic seizures [2]. Approximately 50 million people
worldwide (about 1.7 times the population of Nepal) are affected by epilepsy, resulting
in approximately 125,000 deaths per year, with over 80% of these occurring in low- and
middle-income countries (LMICs) [3,4]. Seizures should be differentiated from nonepileptic
events, which may arise from psychological, neurological, or physical causes such as
emotional stress, anxiety, migraine, stroke, or traumatic brain injury. [5,6]. An epileptic
seizure may cause convulsions, muscle spasms, loss of consciousness, and changes in
behavior, sensation, or cognition, depending on its type and location in the brain [7].

The International League Against Epilepsy has established a classification system for
seizures based on their onset [8], as depicted in Figure 1. Focal onset seizures: These seizures
originate in a localized region of the cerebral cortex within one hemisphere of the brain.
Focal seizures are further categorized based on the individual’s level of consciousness
during the event [8]. In focal aware seizures, the individual remains conscious and alert
throughout the episode. Conversely, focal impaired awareness seizures are characterized
by a disturbance in consciousness, during which the individual may experience confusion
or an altered state of awareness [9]. Generalized onset seizures: These seizures are also
characterized by their localized onset but with the subsequent rapid and simultaneous
involvement of multiple brain regions [8]. Generalized seizures are further classified into
various subtypes, including tonic (muscle stiffness), clonic (repeated jerking movements),
tonic–clonic (grand mal seizures, involving a combination of muscle stiffness and jerking),
atonic (loss of muscle control), myoclonic (sudden muscle jerks), and absence seizures
(petit mal, brief lapses in awareness) [9]. Unknown onset seizures: This category pertains to
seizures whose origin cannot be determined or was not observed [8]. These seizures are
classified as unknown onset due to the absence of direct witnesses or insufficient evidence
to ascertain their precise point of origin within the brain [9].
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Diagnosis. Epilepsy is diagnosed through a combination of medical history assess-
ments, neurological and neuropsychological examinations, and a series of diagnostic
tests [10]. Within the spectrum of diagnostic methods, electroencephalography (EEG)
is particularly notable in LMICs due to its economic viability and portability. EEG is a
diagnostic modality that quantitatively records the brain’s electrical activity [11]. This pro-
cedure involves the placement of electrodes on the scalp to capture the summated electrical
activity of numerous neurons firing synchronously, thereby providing a population-level
signal measurement. EEG plays a central role in resolving key inquiries in the diagnostic
process for individuals suspected of manifesting epileptic seizures [11]. In particular, it
can help us answer the following two questions: (1) Does the patient exhibit clinical man-
ifestations consistent with epilepsy? Interictal epileptiform discharges (IEDs) are episodes
of spike or sharp wave activity observable on the EEG during the interictal interval—the
period between seizures [11]. IEDs can appear in various patterns, including spikes, sharp
waves, spike–wave complexes, polyspikes, and hypsarrhythmia [11]. Their identification
via EEG is pivotal in distinguishing epileptic seizures from non-epileptic events. While
the occurrence of IEDs in individuals without epilepsy is rare, their prevalence can reach
up to 98% in certain demographic groups diagnosed with epilepsy [12]. Nevertheless, the
presence of IEDs, though strongly suggestive, is not sufficient for a definitive diagnosis,
and a comprehensive evaluation incorporating clinical history and additional diagnostic
findings is required [12]. (2) Where is the epileptogenic zone? EEG during the initial evaluation
is also essential for localizing the epileptogenic zone—the region of the brain responsible
for seizure generation [13]. The analysis of signal patterns and recordings provides valu-
able clues regarding the seizure onset location [12]. Moreover, specific patterns are often
associated with epilepsy syndromes, offering valuable insights into the type of epilepsy.
For instance, the presence of 3 Hz spike–wave complexes can indicate absence epilepsy [14].
Notably, ictal video-EEG recordings, which combine video recordings of seizures with
simultaneous EEG data acquisition, play a crucial role in localization [14]. By analyzing
the initial seizure semiology alongside EEG onset patterns, this technique can effectively
pinpoint the epileptogenic region in approximately 72% of cases [13].

While EEG is highly effective in diagnosing epilepsy, it is less useful for monitoring the
effectiveness of anti-seizure medications (ASMs) [12]. Moreover, the manual examination
of EEG signals by specialists is time-consuming and prone to human error, potentially
affecting diagnostic accuracy and reliability. These limitations underscore the need for
a robust, computer-based diagnostic system. In this context, a highly trained clinical
neurophysiologist or epileptologist would play a crucial role in developing, validating, and
operating such systems to ensure clinical applicability and precision.

Epilepsy care in LMICs faces numerous challenges, among which the limited availabil-
ity of diagnostic tools is a major issue. Therefore, the purpose of this review is to provide an
overview of epilepsy care in LMICs and to propose reliable solutions aimed at improving
the quality of care for epilepsy patients. We posit that artificial intelligence (AI)-based tools
may serve as substantial support in addressing these existing gaps in epilepsy care and
deliver more effective care to these patients.

2. Current State of Epilepsy in LMICs
At any given time, the global prevalence of active epilepsy—defined as indi-

viduals experiencing ongoing seizures or requiring treatment—is approximately 4 to
10 per 1000 people. Additionally, approximately 5 million people are diagnosed with
epilepsy worldwide each year [15–17]. Importantly, the distribution of epilepsy is highly
disproportionate across LMICs [4,18]. Table 1 highlights the stark contrasts in epilepsy-
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related metrics between high-income countries (HICs) and LMICs, underscoring the signif-
icantly greater burden of epilepsy in LMICs.

Table 1. Comparative analysis of epilepsy metrics between high-income and low- and middle-
income countries.

Metric High-Income
Countries

Low- and Middle-Income
Countries

Annual new epilepsy cases per
100,000 population 49 139

Lifetime prevalence of epilepsy per
1000 population 5.18 8.75

Median point prevalence of
epilepsy per 1000 population 5.49 6.68

Annual epilepsy-related deaths Less than 20% of
125,000 More than 80% of 125,000

Socio-economic impact. The economic impact of epilepsy is substantial. A recent
estimate indicates that the total global cost of epilepsy in 2019 was $119.27 billion, with
the annual cost per patient ranging from $204 in LMICs to $11,432 in HICs [19]. This
discrepancy in average cost is largely attributed to the higher treatment gap in LMICs,
which ranges from 25% to 100%, compared to only about 10% in HICs [20,21]. Although
the per-person cost is higher in HICs, approximately 90% of the total financial burden of
epilepsy is borne by LMICs [22,23]. Moreover, the cost of epilepsy in LMICs is dispropor-
tionately high relative to the Gross National Product (GNP). For instance, one estimate
suggests that epilepsy accounts for 0.5% of India’s annual GNP [22]. From the patient’s per-
spective, the costs of diagnosis and treatment can be financially catastrophic. For instance,
50% of epileptic children attending a tertiary care center in Nigeria incurred out-of-pocket
expenditures equivalent to 20% of their annual household income [24].

In addition to the economic burden, the social costs associated with stigma for epilepsy
patients are significant and widespread [25], which at times can be even greater than that as-
sociated with acquired immunodeficiency syndrome (AIDS) [26]. Due to persistent myths,
misconceptions, and cultural misunderstandings, people with epilepsy often face discrimi-
nation, including social rejection, public disapproval, shaming, and employment-related
stigma or job loss [27–29]. More critically, internalized or perceived stigma—experienced
as shame or embarrassment—can be particularly detrimental and may hinder treatment-
seeking behavior [30–32]. Such challenges are more common in LMICs compared to HICs.
For instance, multiple civil and human rights violations against people with epilepsy have
been reported in developing countries, many of which lacks legislation to protect against
such discrimination [33,34]. In addition to its seizure-related symptoms, epilepsy is also
reported to be the contributing factor to psychological distress in almost 70% of its pa-
tients [35]. This leads to a “double stigma” scenario, wherein individuals with epilepsy
also suffer from comorbid psychological conditions such as depression or anxiety—further
compounding the personal and societal burden [36].

Access to treatment and diagnosis. Most people with epilepsy reside in LMICs;
however, on average, 50 to 70% of them are deprived of treatment—a phenomenon known
as the epilepsy treatment gap (ETG) [4]. The ETG refers to the percentage of individuals
with active epilepsy who either do not have access to treatment or receive inadequate
treatment at a given point in time within a specific population. Alarmingly, in some
LMICs such as Tibet, Togo, and Uganda, the ETG approaches 100% [37]. Moreover, in
many LMICs, the ETG varies drastically between rural and urban areas. For example,
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in Pakistan, the prevalence of epilepsy is 0.98%, with an ETG of 98% in rural compared
to 75% in the urban population [38]. This higher rate of ETG in LMICs is multifactorial.
First, anti-epileptic drugs (AEDs) are often not adequately available. Data from 46 LMICs
showed that more than half of public sector pharmacies did not have any of the five AEDs
surveyed, except diazepam [39]. Even when AEDs are available, people with epilepsy in
LMICs face challenges associated with accessibility to health service facilities. For instance,
the recommended advice to have a brain scan to rule out any underlying brain lesion that
might be the cause of the seizures is not possible in many of these countries; as a result,
the diagnosis and treatment course often relies on the patient’s history and clinician’s
experience [40–42]. Affordability is another significant barrier. In the same survey of 46
LMICs, the prices for generic carbamazepine and phenytoin in the public sector were 5
to 17.5 times higher than international reference prices, which translates to a financial
burden equivalent to 2.6 to 16.2 days of wages for a monthly supply [39]. The low level of
awareness about treatment, including misconceptions and fear of stigmatization, has further
exacerbate the treatment gap [43]. Additionally, the lack of neurologists and epileptologists
and the limited availability of epilepsy surgery, needed by approximately 20–30% of
patients who do not respond to AEDs, contribute to the high ETG in LMICs [44,45].

In addition to the treatment gap, the underdiagnosis and misdiagnosis of epilepsy are
other major challenges in LMICs. This is mainly due to the limited availability of diagnostic
tools and the scarcity of neurologists and epileptologists [46]. For example, the Atlas of
Epilepsy Care in the World, published in 2005, showed that only 21.7% of low-income coun-
tries and 20.6% of LMICs in Africa had long-term video EEG and MRI, respectively [47].
Similarly, another study showed that a major cause of epilepsy in Nepal was neurocysticer-
cosis, a preventable infection from pork tapeworm larval cysts. However, many Nepalese
attribute epilepsy to a supernatural origin and seek traditional remedies instead of modern
medical care [48]. Therefore, the combination of lack of awareness and proper diagnostics
tools are some of the biggest hurdles in overcoming the misdiagnosis and underdiagnosis
of epilepsy in LMICs.

Efforts in compensating the access to treatment and diagnosis. Over the years, several
initiatives have been made to overcome some of these issues. To reduce the reliance on
specialists analyzing EEG data, a group of researchers in Colombia developed an intelligent
system to automatically detect, annotate, and visualize the abnormal segments of EEG
tests using machine learning algorithms [49]. Additionally, the algorithm could evaluate
intelligent components and compute various metrics to assist clinicians, which could then
be added to patients’ records. Similarly, a method for the automatic detection of epileptic
seizures in long-term scalp-EEG recordings, called EpiScan, was developed and tested in
a multi-center study; it was used as an alarm system to notify medical staff in epilepsy
monitoring units in the case of a seizure [50]. Another study highlighted the lack of trained
health professionals in the majority of LMIC areas and proposed training non-physician
health workers for basic epilepsy care in public health settings [51]. The study also re-
viewed the telemedicine approaches for epilepsy diagnosis and management and suggested
improvements for making it more accessible and efficient. The same group of researchers
developed a mobile phone-based application that uses the Bayesian approach to quantify
the likelihood of the patient having an epileptic seizure based on responses to 50 routinely
asked questions [52]. This application was validated using non-physician health work-
ers implementing the telemedicine approach in Nepal and Bolivia [53–55]. It was later
enhanced to classify whether the seizures were epileptic or not, and to further categorize
them as focal or generalized [56]. In another multicenter prospective validation study,
researchers developed and tested a web-based algorithm capable of accurately classifying
seizure types, which can be used for selecting antiseizure medications in adolescents and
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adults [57]. The algorithm achieved an 83.2% agreement rate with experts’ classification.
Moreover, the feasibility of the algorithm was tested by 32 healthcare professionals from
14 countries in their clinical settings, who found it to be both applicable and useful in
their practice.

3. Artificial Intelligence in Epilepsy
Recent advancements in artificial intelligence (AI) have significantly impacted the

field of epilepsy, enabling breakthroughs in seizure prediction, detection, and classification
(Figure 2). By leveraging machine learning algorithms, large datasets, and advanced data
analysis techniques, AI systems have been able to provide more accurate and timely insights
into seizure episodes. These approaches typically rely on either traditional statistical
and machine learning methods, such as Principal Component Analysis, Support Vector
Machines, Random Forests, K-Nearest Neighbors, etc. [58], or on more recent deep learning
methods [59] like Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long-Short-Term Memory networks (LSTMs) [60], and Transformers [61]. Machine
learning, a subfield of AI, encompasses algorithms that learn from data without explicit
programming and can make predictions or decisions [62,63]. These methods may be
supervised or unsupervised, depending on whether labeled data are available to guide
feature extraction. Deep learning, a subset of machine learning, employs artificial neural
networks inspired by human brain architecture, and its primary advantage lies in the
automated extraction of relevant features from raw data [62,63]. For a more detailed
overview of these techniques, readers are referred to the relevant literature [62–64].
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Figure 2. Brain states related to seizure occurrence and the artificial intelligence (AI)-based techniques
most frequently applied to predict, detect and classify seizures. Convolutional Neural Networks,
Support Vector Machines, and K-Nearest Neighbors are the most popular techniques used for seizure
prediction [65]. For seizure detection, one- and two-dimensional convolutional neural networks,
Recurrent Neural Networks, Support Vector Machines, and Random Forests are the most widely used
models [66], while for seizure classification, convolutional neural network, Support Vector Machine,
and K-Nearest Neighbor (KNN) algorithms take precedence.
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In the following subsections, we explore each of these critical aspects of diagnosis,
prediction, and management.

Seizure prediction. The seizure prediction problem refers to the challenge of forecasting
epileptic seizures before they occur. This involves identifying patterns or signals in the
brain’s electrical activity that precede seizures, known as pre-ictal states, and developing
algorithms or systems capable of detecting these signals in real time or near real time [67,68].
A general pipeline for a seizure prediction model is presented in Figure 3. The goal is
to provide warnings or interventions that can prevent the seizure, reduce its severity,
or alert the patient or caregivers to take precautionary measures. The complexity of
predicting a seizure is primarily due to the highly individualized nature of epilepsy and its
manifestations in different patients [67]. Typical factors that contribute to the complexity of
the seizure prediction include the following:

1. Variability of seizure patterns: Seizures can vary greatly in frequency, duration, and
type, not only across individuals but also within the same individual over time [69].
This variability makes it challenging to identify universal predictors or markers that
can reliably indicate an impending seizure.

2. Identification of predictive biomarkers: Finding reliable biomarkers (physiological
changes or patterns) that consistently precede seizures is crucial for prediction. These
biomarkers can include changes in brain electrical activity, as measured by EEG, and
other physiological signals [69].

3. Data collection and analysis: Continuous monitoring of brain activity and other
physiological signals generates large volumes of data. Analyzing these data requires
high computational capacity, sophisticated data processing algorithms, and advanced
machine learning techniques [70].

4. Real-time prediction and intervention: For seizure prediction to be clinically relevant,
it must operate in real time or near real time, providing timely alerts to patients or
triggering interventions to prevent or mitigate the seizure [71]. This necessitates highly
accurate prediction algorithms and user-friendly devices for monitoring and intervention.

5. Individualized prediction models: Due to the individual variability in seizure patterns
and physiological responses, seizure prediction models often need to be personalized
by adding patient-specific information such as medical history and demograph-
ics [67]. Developing and tuning these individualized models adds an additional layer
of complexity.
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Methods for predicting seizures are rapidly evolving, with ongoing research focused
on improving prediction accuracy, developing non-invasive monitoring methods, and
integrating multimodal data sources [69]. Despite the inherent challenges, recent studies
have utilized advancements in computational methods to enable more reliable seizure pre-
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diction. For instance, Wei et al. employed multichannel EEG signals and extracted features
using a long-term recurrent convolutional network (LRCN) with a long short-term memory
(LSTM) block, achieving an accuracy of 93.4% and a sensitivity of 91.88% in predicting
pre-ictal segments [72]. Similarly, another study utilized one- and two-dimensional convo-
lutional neural networks (1D and 2D CNNs) and a hybrid model combining approximate
entropy with Support Vector Machines (SVMs), where the 2D-CNN achieved an accuracy
of 95.2% and specificity of 92.9% for pre-ictal segments [73]. Cousyn et al. applied an SVM-
based model to classify pre-ictal and inter-ictal EEG data from patients with drug-resistant
epilepsy, yielding an area under the ROC curve of 0.80 (95% CI: 0.69–0.88) [74]. In another
comparative study, various machine learning algorithms, including K-Nearest Neighbors
(KNNs), Random Forest, Decision Tree, and SVM, were evaluated for seizure detection
tasks, with SVM achieving the highest reported accuracy of 98.4% [75].

However, it is important to clarify that these results should not be interpreted as
evidence that traditional machine learning models consistently outperform deep learning
approaches. In fact, several recent studies have demonstrated superior performance using
deep learning methods. For example, Ghaempour et al. reported 98.84% accuracy in seizure
detection and 94.29% in prediction using a CNN model on single-lead ECG data [76], while
Srinivasan et al. achieved 99.08% accuracy and 99.21% sensitivity using a hybrid deep
learning architecture that combines 3D convolutional auto-encoders with a neural network
classifier [77]. These findings underscore the growing potential of deep learning methods
in enhancing predictive performance, particularly as more sophisticated architectures and
larger datasets become available.

Seizure detection. Seizure detection typically refers to the process of identifying
epileptic seizures and is a critical component in the management and treatment of epilepsy.
This typically involves monitoring brain activity through various diagnostic tests and
employing specialized algorithms to recognize patterns indicative of seizures. In the past
decade, numerous studies have utilized AI-based methods to discern seizures. Given the
heterogeneity of epileptic seizures, the importance of Big Data concepts and techniques,
and the practicality of their implementation, has been explored. The use of Big Data
enables multimodal research, whose scope and granularity have the potential to change
our understanding of prognosis and mortality in epilepsy [78].

To mitigate delays in diagnosis and treatment, researchers have developed an AI-based
clinical decision support tool called EpiFinder, which enhances the collection and integra-
tion of patient/proxy respondent data [79]. EpiFinder is designed to extract key terms
from a patient’s history and incorporate them into a heuristic algorithm that dynamically
generates differential diagnoses of epilepsy syndromes. In a recent study, Fergus et al.
employed a supervised machine learning algorithm using the KNN classifier in the EEG
data to distinguish between seizure and non-seizure epochs without prior knowledge of
the focal points of seizures. The model achieved a sensitivity and specificity of 88% and
an AUC of 93% for classifying the epochs. Another such study utilized clustering and
regression analysis on the spectral and temporal features extracted from the electrographic
data, reporting sensitivities of more than 80% [80]. Researchers have also used a novel
approach that combines general tensor discriminant analysis (GTDA) followed by KNN
on the features extracted from the EEG data, achieving an accuracy of 98% in detecting
seizure events [81]. Wang et al. employed principal component analysis (PCA) and analysis
of variance on the time and frequency features extracted from EEG data, claiming 99%
accuracy for detecting epileptic seizures [82]. Lee et al. used frequency-based feature
extraction using PCA, effectively capturing the dynamics of epileptic seizure and reducing
false positive rates to only 1.4%, with no false negatives [83].
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Visual EEG plots are one of the primary tools used by an epileptologist to detect
seizures. To assist in the process, a study developed an artificial visual recognition method
of scalp EEG plot images using CNN, which could differentiate seizure versus non-seizure
patterns with a median true positive rate of 74% [84]. Another CNN-based study on raw
EEG data and frequency domain signals reported an average accuracy of more than 92%
for seizure detection across different datasets [85]. Deep neural networks (DNNs) have
also been heavily employed by researchers for seizure detection. Hussein et al. used a
LSTM network with EEG data, reporting 100% detection accuracy [86]. Another study
even enhanced the use of DNN by applying dual DNN on the periodograms of 5 s EEG
data, achieving 100% sensitivity and 98% detection accuracy [87]. In another machine
learning approach, Guttag et al. employed a SVM model on the features extracted from
scalp EEG, and they reported a detection accuracy of 96% [88]. A hybrid model combining a
genetic algorithm and particle swarm optimization for optimizing SVM, reported over 99%
detection accuracy using EEG data [89]. A comparative study evaluating the performance of
several machine learning modalities, including fully connected neural network, Recurrent
Neural Network, and CNN, found that CNNs performed the best with an AUC of 0.993
using two-dimensional images of raw EEG as input [90]. It is worth noting that due to
inherently noisy nature of EEG signals, using raw data for seizure detection is not always
optimal, and researchers have explored various statistical features extracted from EEG
and electrooculography (EOG) data to provide valuable information about the underlying
neurological mechanisms, in addition to seizure detection [91].

Emerging methods that automatically learn more complex EEG features, such as
three-dimensional deep convolution auto-encoder CNN (3D-CNN) architectures, show
potential in improving detection in specific datasets [77]. In certain sub-populations, like
neonatal EEG, preliminary studies suggests that scaling CNN models may achieve expert
level seizure detection performance [92]. Recent advances in Transformers and Attention-
based-neural networks [93] are being leveraged for seizure detection to better capture
spatio-temporal interrelationships in the signals [94]. While RNNs and LSTMs leverage
temporal relationships they still face vanishing gradient problems when processing long
sequences. In contrast, transformer-based models offer a much more versatile approach to
capture both temporal and spatial interrelationships in long-range contexts, which is the
key reason why transformers form the backbone of recent advancement in AI, including
Large Language Models, Foundation Models, and Generative AI systems [95]. Table 2
below depicts the time domain, frequency domain, and the wavelet transformation features
extracted using EEG and EOG data in different studies for seizure detection. The time-
domain features represent statistical measures (e.g., the mean, median, max, min, variance,
standard deviation, etc.) derived from a sequence of samples within a specific time window
of EEG data measured in milliseconds. Frequency-domain features represent measures
(e.g., power, entropy, mean/median frequency, etc.) derived from signal components in
the frequency domain, typically using methods like the Fast Fourier Transform. Statistical
features such as the mean, median, variance, and standard deviation can be computed in
both time and frequency domains. Wavelet transformation features are the parameters
(e.g., entropy, relative power, energy, etc.) extracted in the time-frequency domain.

As it can be observed from the table, the performance of the different features used
for seizure detection varied between 70% and 100%, depending on the analyzed brain
state and the applied AI technique. The most frequently used methods include Support
Vector Machines (SVM), Random Forests, Decision Trees, K-Nearest Neighbors (KNN),
and deep learning techniques such as Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs). Overall, these approaches have demonstrated over
90% accuracy in seizure detection, indicating high sensitivity and reliability. In recent
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years, deep learning algorithms have become increasingly preferred due to their ability
to overcome certain limitations of traditional machine learning methods, particularly the
issue of model overfitting.

Table 2. Features extracted from EEG and EOG data and used for seizure detection.

Features Brain State Technique Performance Citations

Time-domain features

Mean

Pre-ictal/ictal Decision forest Average accuracy: 98.5–99.7% [96]
Pre-ictal/ictal Random forest Sensitivity: 93.8% [97]
Pre-ictal/ictal/interictal Random forest Accuracy: 94.3% [98]
Ictal Random forest Area under the ROC curve: 0.99 [99]
Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]
Ictal/interictal Random forest Average accuracy: 98.6% [101]
Ictal Decision forest Area under the ROC curve: 0.64 [102]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%

Root mean
square

Ictal/interictal Support vector machine Accuracy: 95.6% [104]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]

Variance

Ictal/interictal Support vector machine Accuracy: 95.6% [104]
Pre-ictal, ictal Random forest Sensitivity: 93.8% [97]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]
Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]

Maxima and
minima

Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal Random forest Average accuracy: 98.6% [101]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%
Pre-ictal/ictal Decision forest Average accuracy: 98.5–99.7% [96]
Ictal Decision forest Area under the ROC curve: 0.67 [102]

Mode and
median Ictal/interictal Random forest Average accuracy: 98.6% [101]

Skewness

Pre-ictal/ictal Decision forest Average accuracy: 98.5–99.7% [96]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%
Ictal/interictal Random forest Average accuracy: 98.60% [101]
Pre-ictal/ictal/interictal Random forest Accuracy: 94.3% [98]
Pre-ictal/ictal Random forest Sensitivity: 93.8% [97]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]
Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]

Kurtosis

Pre-ictal/ictal Decision forest Average accuracy: 98.5–99.7% [96]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%
Ictal/interictal Random forest Average accuracy: 98.6% [101]
Pre-ictal/ictal/interictal Random forest Accuracy: 94.3% [98]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]
Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]
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Table 2. Cont.

Features Brain State Technique Performance Citations

Line length

Pre-ictal/ictal Decision forest
Support vector machine
K-nearest neighbors
Random forest
Random forest
Random forest
Support vector machine
Decision forest
Neural network
Burst detection algorithm
Multi-layer perceptron
neural network

Average accuracy: 98.5–99.7%
Accuracy: 99.4%
Accuracy: 99.4%
Area under the ROC curve: 0.90
Accuracy: 94.3%
Sensitivity: 93.8%
Area under the ROC curve: 0.88
Area under the ROC curve: 0.77
-Accuracy: 84.2%

Accuracy: 99.6%

[96]
[103]

[100]
[98]
[97]
[107]
[102]
[108]
[109]
[110]

Ictal

Ictal/interictal
Pre-ictal/ictal/interictal
Pre-ictal/ictal
Ictal/interictal
Ictal
Ictal
Ictal
Ictal
Ictal

Energy

Ictal Decision forest Area under the ROC curve: 0.74 [102]
Ictal/interictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%

Ictal Independent component
analysis Area under the ROC curve: 0.92 [111]

Ictal Support vector machine Accuracy: 95.6% [104]

Ictal Automated classification
algorithm Accuracy: 99.4% [112]

Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Pre-ictal/ictal Decision forest Average accuracy: 98.5–99.7% [96]

Power
Ictal Decision forest Area under the ROC curve: 0.74

Area under the ROC curve: 0.99
[102]
[99]Ictal Random forest

Shannon
entropy

Ictal/interictal Support vector machine Accuracy: 99.5% [113]
Ictal/interictal Random forest Average accuracy: 98.6% [101]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%
Pre-ictal, ictal Decision forest Average accuracy: 98.5–99.7% [96]

Sample and
approximate
entropies

Ictal K-nearest neighbor Accuracy: 98.0% [114]

Ictal Discrete wavelet
transformation Accuracy: 98.0% [115]

Ictal/interictal Extreme learning machine Accuracy: 95.6% [116]
Ictal/interictal Extreme learning machine Accuracy: 99.6% [117]

Support vector machine Accuracy: 100%
Pre-ictal Fuzzy Sugeno Classifier Accuracy: 98.1% [118]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]

Fuzzy entropy Ictal/interictal Support vector machine Accuracy: 99.5% [113]

Hurst exponent Ictal/interictal Random forest Average accuracy: 98.6% [101]

Standard
deviation

Pre-ictal, ictal Decision forest Average accuracy: 98.5–99.7% [96]
Ictal Random forest Area under the ROC curve: 0.99 [99]
Pre-ictal/ictal/interictal Random forest Accuracy: 94.3% [98]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal Random forest Average accuracy: 98.6% [101]
Ictal Support vector machine Accuracy: 99.4% [103]

K-nearest neighbors Accuracy: 99.4%

Autocorrelation
Pre-ictal, ictal Random forest Sensitivity: 93.8% [97]
Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]

Mean absolute
deviation Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]

Amplitude Ictal/interictal Extreme learning machine Sensitivity: 97.7% [119]

Pattern match
regularity
statistic

Ictal/interictal Extreme learning machine Sensitivity: 97.7% [119]
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Table 2. Cont.

Features Brain State Technique Performance Citations

Frequency-domain features

Spectral power

Pre-ictal/ictal Random forest Sensitivity: 93.8% [97]
Ictal Random forest Sensitivity: 80.8% [120]
Ictal Artificial neural network F-measure: 0.82 [121]
Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal Artificial neural network Accuracy: 97.7–100% [122]

Spectral entropy Ictal/interictal Support vector machine Accuracy: 99.1% [105]

Peak frequency Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]

Median
frequency

Ictal/interictal Support vector machine Accuracy: 99.1% [105]
Ictal/interictal K-nearest neighbors Area under the ROC curve: 0.91 [106]

Power spectral
density

Ictal Random forest Sensitivity: 80.8% [120]
Ictal/interictal Extreme learning machine Sensitivity: 97.7% [119]

Average power
and power ratio Ictal/interictal Random forest Area under the ROC curve: 0.90 [100]

Mean frequency Ictal/interictal Support vector machine Accuracy: 96.1% [123]

Total spectral
power

Ictal Random forest Sensitivity: 80.8% [120]
Ictal Artificial neural network F-measure: 0.82 [121]

Root mean
square
bandwidth

Ictal/interictal Support vector machine Accuracy: 96.1% [123]

Discrete cosine
transform Ictal/interictal Support vector machine Accuracy: 84.1% [124]

Wavelet transformation features

DWT features

Bounded
variation Ictal Decision forest Area under the ROC curve: 0.53 [102]

Coefficients
Ictal Decision forest Area under the ROC curve: 0.66 [102]
Interictal K-nearest neighbors Accuracy: 98.0% [125]
Ictal/interictal Support vector machine Accuracy: 84.1% [124]

Energy Ictal Decision forest Area under the ROC curve: 0.71 [102]
Interictal K-nearest neighbors Accuracy: 98.0% [125]

Relative power Interictal K-nearest neighbors Accuracy: 98.0% [125]
Ictal Decision forest Area under the ROC curve: 0.81 [102]

Entropy Ictal Decision forest Area under the ROC curve: 0.71 [102]

Relative
bounded
variation

Ictal Decision forest Area under the ROC curve: 0.54 [102]

Relative scale
energy Ictal Decision forest Area under the ROC curve: 0.61 [102]

CWT features

Energy
standard
deviation

Ictal Decision forest Area under the ROC curve: 0.70 [102]

Coefficient
z-score Ictal Decision forest Area under the ROC curve: 0.69 [102]

CWT: continuous wavelet transformation; DWT: discrete wavelet transformation; and ROC: receiver
operating characteristic.

Seizure classification. Transient loss of consciousness (TLC) and seizures have differ-
ent causes, different diagnoses, and require different treatment. Therefore, the accurate
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classification of these conditions becomes not only relevant but also clinically significant.
In one study, a Random Forest model was applied to the responses of 34 questions on
history, patient symptoms, and witness reports. The model was able to classify epilepsy,
syncope, and psychogenic nonepileptic (or dissociative seizures) attacks with an accu-
racy of 86.0% (95% CI = 76.9–92.6%) in 249 patients with TLC [126]. Similarly, Pevy et al.
explored the use of audio data recorded from the patients to distinguish epilepsy and
psychogenic nonepileptic seizures (PNESs), citing that these two are more difficult to distin-
guish compared to identifying syncope among the three most common causes of TLC [127].
In another study, the researchers classified seven variants of seizures with non-seizure
EEG through the application of CNNs and transfer learning [128]. The model achieved a
multi-class classification accuracy of 88.3% across seizure types, including simple partial,
complex partial, focal non-specific, generalized non-specific, absence, tonic, tonic–clonic,
and non-seizure events. Another study used graph CNNs with a recurrent network and
self-supervised pre-training to detect and classify seizure types using a publicly available
large dataset. This method demonstrated an improved accuracy over conventional CNNs,
and importantly improved the classification of rare seizure types [129]. Saputro et al.
employed Support Vector Machine to distinguish between focal non-specific, generalized
non-specific, and tonic–clonic seizures. Using the features, Mel Frequency Cepstral Coeffi-
cients (MFCC), and Hjorth descriptor, they were able to achieve an average classification
sensitivity of 90.25%, average specificity of 97.83% and average accuracy of 94% [130]. The
spike wave discharges have been used to predict the impaired consciousness in absence
epilepsy. Using both time- and frequency-domain features, Springer et al. employed
linear discriminator analysis (LDA) and SVM to classify between spared and impaired
behavior in epileptic patients. They reported a 100% rejection of minimal false discovery
rate for both classifiers. Moreover, for labeled data, the LDA achieved a sensitivity of 93%
while the SVM reached 91% [131]. A study using a wearable accelerometer-based system
evaluated the classification accuracy of tonic–clonic seizures in epilepsy patients, using
KNN, Random Forest, and SVM algorithms. The highest sensitivity was reported to be that
of the KNN (100%, 0.05 false positives/hour), while the lowest sensitivity was observed
for Random Forest (90%, 0.01 FP/h) [132]. Similarly to the studies for seizure predictions,
for the applications discussed above, deep learning methods exceed the traditional ma-
chine learning approaches due to several advantages including larger amounts of training
data, the automated extraction of relevant features, hierarchical data representation, and
adaptability (flexibility) [133].

4. Application of Assistive AI in Clinical Care for LMICs
One of the primary challenges to the proper diagnosis of epilepsy is the lack of

experts qualified to read EEG data. This shortage is not only present in LMICs, resulting
in 90% of individuals with epilepsy receiving no treatment, but also in HICs like the
United Kingdom, where charities such as tele-EEG support tele-readers to circumvent the
problem [51]. Moreover, it has been shown that the most common sources of error in EEG
readings occur due to the lack of adequate training among neurologists, who may lack the
specialized expertise to read EEG at the same level as an epilepsy specialist [134]. These
challenges may be addressed through the integration of artificial intelligence (AI), which can
assist clinicians by improving the sensitivity and specificity of EEG analyses and support
diagnostic accuracy [135]. Researchers have tested the use of low-cost EEG systems in
rural settings to evaluate their efficacy. For instance, Sokolov et al. deployed a tablet-based
EEG system with a 14-electrode cap in Guinea and showed that it maintained reproducible
signal quality across repeated testing and was effective for the detection of epileptiform
discharges [136]. Similarly, other studies have compared smartphone-based EEG [137],
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built on the Smartphone Brain Scanner2 (SBS2) which uses a 14-electrode EasyCap headset
(approx. cost of 300 USD) connected wirelessly to an android tablet [138], to a standard
clinical EEG in detecting epileptiform abnormalities. They found that the SBS2 had low to
moderate sensitivity but high specificity in detecting epileptiform abnormalities compared
to clinical EEG. In such settings, the use of AI could significantly enhance the processing
speed and seizure detection, classification, or prediction capabilities, as discussed in the
previous sections.

Anticipating and predicting seizures is crucial, as it has been evidenced that the
seemingly random nature of the seizure occurrence considerably increases the morbidity
and mortality risks of epilepsy [139]. Various studies have explored approaches to predict
seizure occurrence. One such study showed that patients experience prodromal symptoms,
with early warning signs and awareness when seizures are more likely to occur, and it
reported increased cerebral blood flow around 10 min prior to temporal lobe seizure [140].
Such findings present a perfect avenue for testing some AI-based algorithms in developing
non-EEG-based wearable devices to predict such physiological markers (e.g., variations
in blood flow). There has been limited research in detecting epilepsy using EEG during
seizure-free periods (or interictal periods). Recent studies using machine learning and
deep learning algorithms have shown encouraging results in this area. For example, a
recent study used specific epileptic EEG sub-bands to predict epilepsy occurrence using
seizure-free data with a 99% accuracy [141]. However, one should note that the high
accuracy in the study was likely because of the intracranial single-channel short EEG
segments. Another study adopted a more practical approach of applying non-invasive
21-channel EEG recordings and obtained a decent 75% accuracy in detecting epileptic
episodes [142]. Similarly, by using brain network structural and functional connectivity
measures and combining them with machine learning models, other studies have been able
to predict epileptic onset from seizure-free periods or improve the sensitivity of EEG-based
expert visual diagnosis [143,144]. For instance, Cao et al. used interictal seizure-free video-
EEGs to first estimate functional connectivity using mutual information and coherence
correlation and utilized them as features in a KNN model. The model achieved a 97%
classification accuracy for epilepsy patients when compared to healthy controls and an
accuracy of 73% for when compared to patients with non-epileptic events [145]. In a similar
study, researchers extracted 4 s segments of EEG recordings from epilepsy patients and
extracted 532 segments of epileptiform discharges to compare them with 100 segments from
healthy controls. Using a Random Forest classifier, they were able to determine epileptic
EEG signals with an accuracy of over 98% [146]. These examples noticeably emphasize
the usefulness of an AI-based data analytic framework that could be suitable for clinical
settings in a resource-limited environment.

However, it is important to acknowledge the systemic limitations of LMIC health
systems that may hinder the effective implementation of these promising assistive AI tools.
Key limitations are poor and intermittent power supply [147], unreliable internet connectiv-
ity [148], and poor health system resilience [149]. Additionally, the potential incompatibility
of these assistive AI tools with existing paper-based and/or electronic health systems and
the limited digital literacy among healthcare workers pose significant barriers [150] in inte-
grating these tools within national health management information systems. Apart from
these limitations, assistive AI tools may bring additional challenges. For example, adopting
these tools may further strain already overburdened health workers [151]. Similarly, weak
data infrastructure in many LMICs increases the risk of data privacy breaches [152]. In this
context, a phased approach, starting with pilot programs in feasible regions and gradual
adaptation and expansion based on lessons learned, could help ensure the effective and
sustainable use of assistive AI tools.
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5. The Socio-Economic Impact of Assistive AI for Epilepsy in LMICs
Assistive AI has the potential to bring impactful change in the diagnosis and treatment

of epilepsy, ultimately improving both health and socio-economic outcomes in LMICs.
One of its most significant contributions lies in enhancing diagnostic accuracy. This could
help reduce the diagnostic gap in LMICs and minimize the risk of misdiagnosis. As
discussed earlier, there is a severe lack of neurologists and epileptologists in LMICs. With
the help of algorithms developed through assistive AI, primary care physicians, who are
widely available, can diagnose epilepsy more quickly and with greater accuracy. Shifting
diagnostic tasks from scarce epileptologists to relatively abundant primary care physicians
can significantly help reduce the diagnostic gap. Moreover, given the higher disparity in
the distribution of diagnostic facilities between rural and urban areas within a country,
assistive AI can also help reduce health inequities in LMICs. Furthermore, the burden of
misdiagnosis can be astonishingly high, especially for the patient, and it can manifest in
the form of stigma, unnecessary exposure to AEDs, and drug resistance [153]. Improved
diagnostic precision through AI can help prevent such detrimental consequences related
to misdiagnosis. Second, beyond supporting clinical decision making, assistive AI can
also increase confidence among healthcare workers. For example, a scoping review on
clinical decisions using m-Health in sub-Saharan Africa found that a mobile clinical decision
support system increased self confidence among healthcare workers and reduced their
reliance on peers or referral facilities. From a doctor–patient relationship perspective,
some studies have reported that it can help build trust between patients and healthcare
providers [154]. Third, assistive AI can substantially reduce the time and cost associated
with diagnosing epileptic seizures. Usually, neurologists or epileptologists analyze the
recorded EEG through visual inspection to trace the patterns of epilepsy across time
series [155]. Since EEG data are non-linear and non-stationary, this process is usually
lengthy and inefficient, especially when the experts must analyze long-term EEG recordings
to accurately diagnose patterns of seizure. For example, recent evidence suggests that the
use of deep learning could reduce the need for human review by 65 – 99% depending on
the required level of diagnostic precision [155]. More importantly, with the growing use
of low-cost portable EEG systems, the diagnosis of epilepsy could become much cheaper,
increasing affordability among the poor population in LMICs. With evidence for cost
savings and improvements in efficiency associated with task-shifting strategies [156], the
diagnosis of epilepsy by trained primary healthcare workers instead of epileptologists or
neurologists could directly reduce out-of-pocket expenditure for patients and save costs for
the overall health system in LMICs.

6. Future Directions and Conclusions
In this review, we examined the application of artificial intelligence (AI) in clinical

settings for the diagnosis and management of epilepsy. Given the numerous challenges
associated with providing medical care for epilepsy patients in low- and middle-income
countries (LMICs), we posit that the development and implementation of sensitive, ac-
cessible, adaptable, and low-cost AI-based tools could significantly improve diagnostic
workflows and help alleviate the burden of epilepsy in these regions. The growing body
of evidence highlights a transformation in how epilepsy is managed across clinical con-
texts, whether in high-income countries (HICs) or LMICs. However, only a few of these
innovations have successful transitioned into the actual clinical settings of LMICs. Barriers
include the cost of EEG devices, long-term maintenance challenges, a shortage of trained
personnel, and limited awareness that perpetuates epilepsy-related stigma. On the one
hand, there is an urgent need to generate more robust evidence on the effectiveness of
AI-assisted diagnostic tools in epilepsy. On the other, it is essential to carefully weigh
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the unintended consequences associated with deploying such technologies [157]. While
AI has shown considerable promise in controlled studies, the large-scale validation of
the generalization, utility in LMICs settings, and trustworthiness of these systems is still
understudied. Generalizing the higher accuracy results obtained in curated dataset to the
real-world data in prospective, diverse clinical settings is a crucial research priority [62,158].
While some reviews have focused on what the pathway to the clinical translation of these
AI tools could be, they are still focused on HICs settings [62] and do not directly translate
to LMIC health settings.

Telemedicine-specific solutions are also highly context-dependent and must be tailored
to the unique infrastructural and policy environments of LMICs. Hence, dedicated research
to identify context-specific challenges and needs is necessary to inform the integration of
AI and telemedicine into epilepsy care in LMICs [159]. Although regional and national
plans in improving epilepsy care have emphasized the importance of the capacity building
of primary care centers and integrating innovative technologies [160], AI- and EEG-specific
details on how they could be integrated into such plans needs further investigation. In
this context, trustworthy AI and regulatory frameworks should be explored in using AI
for epilepsy in various settings. This should be built based on the existing body of work
such as FUTURE AI, which offers principled frameworks and practical guidelines on the
design, development, and deployment of AI in healthcare [161]. However, such general
frameworks need specialization in the following two specific directions: (1) epilepsy-
specific considerations, recognizing the unique challenges faced by people living with
epilepsy; and (2) health system contextualization, accounting for regulatory environments
and socio-cultural factors such as stigma, access to care, and support for people with
disabilities [162].

A multifaceted approach is essential to address these interrelated aspects. One avenue
is the development and testing of low-cost hardware solutions. For example, BioAmp EXG
Pill developed by a startup (Upside Down Labs) in India with a starting price of $60 that
can record high-quality biosignals from the heart (electrocardiography), brain (EEG), eyes
(EOG), and muscles (electromyography), and it may offer affordable, scalable options for
LMICs. Another key direction involves leveraging edge AI and low-resource models, where
algorithms can run locally on inexpensive hardware (e.g., low-cost GPUs or embedded pro-
cessors). Lightweight deep learning techniques, particularly those optimized for mobile or
resource-constrained environments, show promise in this direction for supporting epilepsy
diagnosis and management in LMICs. One example is the application of automated EEG
analysis using compact Convolutional Neural Networks (CNNs) embedded into portable,
affordable EEG systems to expand access to timely care while reducing dependence on
specialized infrastructure and personnel. This is particularly relevant in LMICs, where the
infrastructure for maintaining large-scale centralized servers is often lacking. Addition-
ally, there is a need for an open access, collaborative platform to unify ongoing work on
AI-based tools. Such a platform would allow researchers to contribute, share, and refine
algorithms in real time, while also offering easy access for clinicians, healthcare workers,
and epileptologists. This collective effort could accelerate innovation and translation into
practice. And finally, alongside technological development, efforts should be placed in
educating communities about the disease and the stigmas around it. Presenting educational
materials and research findings through targeted outreach in the form of blogs, newspa-
per articles, social media video clips, podcasts, public outreach, etc., would be the first
steps for researchers. Funding agencies should also prioritize educational and community
engagement proposals, recognizing their key role in the successful implementation and
sustainability of AI tools in epilepsy care.
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