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 A B S T R A C T

Modern network monitoring applications often rely on traditional machine learning models conceived for 
specific analysis tasks, which require extensive feature engineering, retraining for different use cases, and 
struggle with generalization. This lack of adaptability makes the deployment of AI/ML solutions in network 
monitoring a daunting task, as each new scenario requires significant reconfiguration, manual tuning, and 
retraining efforts, undermining the broader adoption of AI/ML for network traffic analysis.

Time Series Foundation Models (TSFMs), pre-trained on vast and diverse time-series datasets, offer a 
promising alternative in the network monitoring realm by enabling zero-shot and few-shot adaptability across 
different monitoring scenarios. In this work, we explore the potential of TSFMs for network monitoring 
by evaluating their performance in a challenging analysis task: estimating video streaming Quality of 
Experience (QoE) from encrypted network traffic. Our study assesses the zero-shot and few-shot capabilities 
of state-of-the-art TSFMs, the impact of time-series granularity, and the role of common traffic features in 
performance.

Using real-world video streaming QoE datasets, we show that TSFMs achieve competitive results in a 
zero-shot setting — plug-and-play approach, and that their performance can be easily and cost-effectively 
improved through few-shot learning techniques, even when applied on NetFlow-like features with coarse 
granularity. Beyond the specific video streaming QoE monitoring application, our findings demonstrate the 
viability and broader applicability of TSFMs to network monitoring tasks, opening the door to more scalable 
and generalizable network management solutions.
1. Introduction

Estimating application-level Quality of Experience (QoE) from en-
crypted network traffic remains a complex-to-tackle challenge for mod-
ern network management systems. With the proliferation of encryption 
techniques, traditional packet inspection methods have become obso-
lete, leaving network operators with limited visibility into the perfor-
mance of highly relevant services like video streaming. Recent years 
have witnessed a surge in Artificial Intelligence and Machine Learning 
(AI/ML) approaches to address this challenge. These methods typically 
extract session-based or window-based features from encrypted net-
work traffic time-series data to predict QoE. While promising, AI/ML 
approaches come with significant hurdles when it comes to model train-
ing, deployment, and maintenance. Indeed, even if these approaches 
are data-driven, they often require extensive feature engineering, model 
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architecture tailoring, and fine-tuning for specific applications. In ad-
dition, their limited generalization capabilities and transfer learning 
challenges require individual models or retraining for each service and 
each network, thereby reducing scalability [1,2].

To address these limitations, a new paradigm has recently emerged 
for time-series data: Time Series Foundation Models (TSFMs) [3]. 
Inspired by the success of Large Language Models (LLMs), TSFMs 
are designed to leverage extensive pre-training on diverse time-series 
datasets, enabling them to learn complex temporal patterns and make 
accurate predictions for unseen time series in a zero-shot learning (ZSL) 
or few-shot learning (FSL) setting [4]. With ZSL, no training is required 
at all, while with FSL only a few samples are utilized to fine-tune a 
model on a specific downstream task, e.g., video quality classification 
or anomaly detection. These capabilities are particularly appealing for 
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network monitoring, as they reduce the need for extensive training 
for each specific application. TSFMs have demonstrated remarkable 
performance across various domains without the need for task-specific 
training [5–10], significantly reducing the associated costs of model 
development and deployment. Further, a single TSFM can general-
ize across multiple services, addressing the scalability challenges of 
conventional methods.

The application of TSFMs to network monitoring holds several 
promising advantages: (i) firstly, it significantly reduces model train-
ing effort — TSFMs are ‘‘plug-and-play’’ models, and unlike tradi-
tional AI/ML approaches, TSFMs can potentially perform well without 
domain-specific training; (ii) due to their universal applicability, a 
single TSFM could potentially be used across multiple domains, signif-
icantly enhancing scalability, not only in a per-service or per-network 
basis, but also when it comes to deal with hundreds or thousands of 
time series generated by network monitoring systems; (iii) by elimi-
nating the need for continuous retraining and maintenance of multiple 
models, TSFMs may substantially reduce operational costs. For these 
reasons, as model architectures evolve and become more efficient, 
we expect TSFMs to play an increasingly important role in network 
management.

Both the ZSL and FSL concepts are powerful and appealing for 
network monitoring applications. These approaches offer several in-
herent advantages: first, ZSL simplifies the application of the model 
for time-series modeling, in the best case, eliminating the requirement 
for specialized knowledge of fine-tuning techniques; secondly, they 
naturally align with scenarios characterized by limited data availabil-
ity, where training or fine-tuning data is limited; lastly, by harnessing 
the comprehensive pattern extrapolation capabilities of extensively 
pre-trained models, it circumvents the substantial time, effort, and 
domain-specific expertise typically demanded for crafting dedicated 
time-series models.

There is a recent surge in papers targeting the conception of foun-
dation models for time-series data, capable of generating accurate 
predictions for diverse datasets not seen during training. The underly-
ing concept of these models is to rely on highly expressive, large-scale 
architectures which are trained on billions of time-series data points, 
coming from very diverse domains and having high heterogeneity 
in terms of temporal behaviors and characteristics. TimeGPT-1 [11], 
PromptCast [12], LLMTime [13], TimesFM [14], Lag-Llama [15], and 
Time-LLM [16] are examples of novel foundation models for time-series 
forecasting targeting ZSL and FSL applications. Adapting these models 
to network monitoring tasks remains a largely unexplored field, with 
only a few initial works exploring this problem [17].

Despite their promising advantages, the application of TSFMs is 
not without challenges. One significant limitation is the high computa-
tional cost associated with pre-training and inference of many models, 
which can render their deployment infeasible for resource-constrained 
environments or real-time network monitoring scenarios. Additionally, 
while TSFMs offer broad applicability, their generalist nature may lead 
to suboptimal performance in specific use cases where domain-specific 
fine-tuning can significantly enhance results. Furthermore, TSFMs often 
lack explainability, making it difficult to interpret model decisions or 
detect biases. These challenges underscore the importance of system-
atically evaluating state-of-the-art TSFMs to understand their practical 
applicability, identify scenarios where they excel, and determine the 
trade-offs involved in their deployment. This study aims to address 
these gaps by benchmarking state-of-the-art TSFMs for video streaming 
monitoring. We further analyze the impacts of network traffic granular-
ity and effectiveness of common features on the performance of TSFMs. 
Additionally, the study evaluates the ZSL and FSL capabilities of TSFMs.

In this paper, we thus explore the potential of TSFMs for estimating 
video streaming Quality of Experience (QoE) from encrypted network 
traffic. Our key contributions are as follows:
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• Application of TSFMs to Network Monitoring: we demonstrate 
the applicability of TSFMs for network monitoring, focusing on 
the analysis of encrypted traffic to estimate video streaming 
session health, while also providing an introduction to TSFMs for 
networking engineers or researchers unfamiliar with this domain.

• Benchmarking State-of-the-Art TSFMs: we evaluate the perfor-
mance of state-of-the-art TSFMs on a large-scale video streaming 
QoE dataset, assessing their ability to predict QoE metrics in a 
zero-shot setting without task-specific training.

• Analysis of Common Traffic Features: we assess the role of 
widely used NetFlow-like network traffic features in shaping 
TSFM predictions, offering guidance for feature selection in net-
work monitoring applications.

• Analysis of Traffic Granularity Levels: we investigate the im-
pact of different temporal granularities on TSFM performance, 
providing insights into the most effective temporal resolution for 
network monitoring tasks.

• Fine-Tuning with Tiny Time Mixers: we showcase the per-
formance improvements achievable by fine-tuning a TSFM such 
as Tiny Time Mixers in the few shot setting, provide guidance 
on fine-tuning techniques, and demonstrate that existing models 
can be effectively fine-tuned in practice, while maintaining low 
hardware and time requirements.

2. Related work

2.1. QoE estimation from encrypted network traffic

Traditionally, deep packet inspection (DPI) has been employed to 
analyze complete packet streams, enabling the identification of appli-
cations and their QoE within a network, e.g., in [18]. However, the 
widespread adoption of end-to-end encryption has significantly reduced 
network operators’ visibility into the performance of services consumed 
by their users. To address these challenges, artificial intelligence (AI) 
and machine learning (ML) technologies are increasingly being adopted 
as scalable solutions for advanced traffic monitoring and performance 
assessment. To address this, [19] explored the use of features exclu-
sively derived from encrypted traffic, although the application-level 
ground truth was obtained from non-encrypted flows captured via 
a web proxy. Subsequently, [20–23] introduced methodologies fully 
operable in encrypted traffic contexts relying solely on the statistical 
properties of encrypted traffic volumes, and thus, eliminating the need 
for access to packet payloads at any stage of model development or 
training. These studies demonstrated the feasibility of accurately clas-
sifying YouTube video streams into QoE categories on a per-video and 
session-level basis. A related approach was developed in [24], where 
ML-based QoE prediction used simple flow-level traffic characteristics 
in combination with mobile network connectivity features derived from 
passive in-device measurements as input.

In addition to session-level solutions, which are better suited for 
long-term network planning, network operators also desire real-time 
monitoring capabilities to dynamically monitor QoE and allocate re-
sources more effectively. Several real-time KPI estimation methods 
have been proposed [25–35]. While these approaches perform well in 
lab environments, the practical deployment of these solutions often 
falls short. The deployment of ML-based models in the 5G NWDAF 
(Network Data Analytics Function) was tackled in [36–38] and assessed 
via simulations. Marina [2] provides accurate ML-based real-time QoE 
monitoring at terabit scale by spreading monitoring over a highly 
efficient data plane, such as P4, which can extract traffic statistics 
at line rate, and a powerful ML server, which can run monitoring 
inference using complex ML models. This approach is applicable to 
a wide range of real-time network monitoring tasks including traffic 
classification, device classification, and intrusion detection, which can 
also be tackled with representation learning [39].
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The proposed approaches for QoE estimation have demonstrated 
strong performance when tailored to specific use cases, such as a par-
ticular streaming service or a controlled experimental setup. However, 
their ability to generalize across diverse networks and varying network 
conditions remains uncertain. In practical applications, the input data 
for prediction models often evolves over time, leading to performance 
degradation as new data diverges from the original training distribu-
tion. Additionally, subtle differences can arise between similar datasets 
generated by different sources or environments. This challenge, broadly 
known as dataset shift or dataset drift, can significantly affect model 
reliability [40,41].

Cross-testing efforts have highlighted the challenges of generaliza-
tion. For instance, studies such as [22,42] evaluated the transferability 
of YouTube QoE/KPI classification models trained in a controlled lab 
environment when applied to data collected from an operational mobile 
network. Similarly, models trained on data from Android platforms 
were tested on datasets from iOS, revealing significant performance 
declines [22]. Despite these limitations, the creation of general mod-
els trained on heterogeneous datasets containing samples from both 
platforms has shown promise, achieving performance comparable to 
platform-specific models [32]. Similar conclusions have been presented 
in [31], where general models could perform well if the training set 
included data from all services. General models can also be learned 
via federated learning and model sharing from local data and models, 
which has already been explored in the QoE domain, e.g., in [43–46].

Given that the availability of labeled data in general, and from 
different sources in particular, for training a general model is of-
ten very limited, another option is explicitly improving the transfer 
of specialized models, i.e., trained on a single domain, to other do-
mains. Reference [47] examined the performance of ML-based QoE 
estimation models for encrypted network traffic using video stream-
ing measurements from two different locations. It was found that 
general models perform comparably to network-specific ones, while 
cross-network testing shows significant performance degradation. Ex-
tending this work, reference [1] subsequently explored the performance 
of different methods to enhance cross-network applicability requiring 
no or only minimal additional labeled data from the new domain, 
including methods based on scaling, decomposition, manifold learn-
ing, ML-based feature representation transfer, drift elimination, and 
enrichment with labeled data from the new domain. Reference [48] 
demonstrates for the domain of cloud gaming that transfer learning and 
fine-tuning significantly improve the generalization of QoE estimation 
models across diverse gaming contexts, reducing both error and the 
need for extensive labeled data in new environments.

In this work, we tackle a third approach to this challenge by relying 
on foundation models, which are pre-trained using large amounts of di-
verse data, such that they can generalize and perform well on arbitrary 
prediction tasks with little additional information, including network 
monitoring in the presence of dataset shift or drift.

2.2. Generative artificial intelligence for time series

Modern approaches to time-series analysis based on deep learn-
ing technology have flourished in recent years, in particular for the 
problem of anomaly detection [49], a cornerstone of network man-
agement and a critical application in time-series analysis. Due to their 
data-driven nature and outstanding performance in multiple domains, 
generative models such as Variational Autoencoder (VAEs) and Gener-
ative Adversarial Networks (GANs) [50] have gained relevance in the 
anomaly detection field [51–57].

VAEs [58–60] represent a powerful and widely-used class of models 
to learn complex data distributions. Unlike GANs, a potential limitation 
of VAEs is the prior assumption that latent sample representations are 
independent and identically distributed. While this is the most common 
assumption followed in the literature, there is ongoing research on 
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the benefits of accounting for covariances between samples in time to 
improve model performance [61–64].

Modeling data sequences through a combination of variational in-
ference and deep learning architectures has been vastly researched in 
other domains in recent years, mostly by extending VAEs to Recurrent 
Neural Networks (RNNs), with architectures such as STORN [65], 
VRNN [66], and Bi-LSTM [67] among others. Convolutional layers 
with dilation have been also incorporated into some of these ap-
proaches [68,69], allowing to speed up the training process based on 
the possibilities of parallelization offered by these architectures. One of 
these approaches using Dilated Convolutional Neural Networks as the 
encoder–decoder architecture for VAEs is the DC-VAE model [70,71].

Transformer-based models [72] are gaining popularity in recent 
years for time-series analysis, given their remarkable performance 
in large-scale settings, such as long sequence time-series forecast-
ing (LSTF). LSTF requires capturing long-range dependencies between 
input and output efficiently. Earlier examples include the TFT inter-
pretable model [73] and the MQTransformer model [74]. The Informer 
model [75] introduced Transformers for long sequence forecasting 
through sparse self-attention mechanisms. This concept has since been 
further refined through various forms of inductive bias and attention 
mechanisms in models like Autoformer [76] and FEDformer [77].

Finally, there is a recent surge in papers targeting the conception 
of TSFMs, capable of generating accurate predictions for diverse time-
series datasets not seen during training. The underlying concept of 
these models is to rely on highly expressive, large-scale architectures 
which are trained on millions or billions of time-series data points, 
coming from very diverse domains and having high heterogeneity in 
terms of temporal behaviors and characteristics [5,8–16].

2.3. Generative artificial intelligence for networks

Similarly, there has been a recent interest in generative applications 
for networking, for example, for the generation of synthetic network 
traffic and for network monitoring and management or other related 
tasks [78–80].

In earlier days, many works attempted to generate synthetic net-
work traffic with GANs [81–83], the standard for image generation in 
Computer Vision (CV) at that time. Today, mainly diffusion models [84] 
are used for image generation. As a consequence, researchers have also 
recently proposed diffusion-based models suitable for the generation 
of synthetic network traffic [85–87]. Additionally, there are now also 
Transformer-based approaches, such as PAC-GPT  [88], to produce 
realistic synthetic traffic traces. This GPT-3-based model translates nat-
ural language descriptions of network flow requirements into tabular 
data, then passes them onto the Transformer-based packet generator to 
produce a PCAP file.

Similarly to the time-series domain, Transformer-based models have 
also been adopted in various works for network monitoring [89–94]. 
Most of these models utilize a modified form of Masked Language 
Modeling for pre-training [95], where parts of the input are masked and 
have to be reconstructed from context. As Transformer-based models 
require either discrete input tokens or embeddings as input, the con-
sidered network traffic has to be transformed to meaningful tokens or 
embeddings first. The preparation of these tokens or embeddings is also 
one of the major differences between existing works. While one work 
directly uses packet payloads [89], another work uses the concept of 
building datagrams from packet bursts [90], and other works consider 
(multi-)flow representations as inputs [92,94]. After pre-training, these 
models are evaluated on common encrypted network traffic down-
stream tasks, e.g., service and application classification, IoT device 
classification, or intrusion detection.

Unlike previously discussed methods that involve training
Transformer-based models directly on networking data, there exist also 
approaches that exploit the capabilities of already pretrained Large 
Language Models (LLMs). NetLLM [96] leverages LLMs combined with 
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Table 1
Overview of TSFMs considered in this work. The character T corresponds to Tiny, B to Base, S to Small, L to Large, R1 to Revision 1, and R2 to Revision 2. The representation 
corresponds to the number of elements in the 1D vector representing the encoded time series.
 Chronos-T5 [5] Lag-LLama [6] TimesFM [7] Moirai [8] MOMENT [9] Tiny Time Mixers [10] 
 Publication 2024 2023 2023 2024 2024 2024  
 Publisher Amazon Meta Google Salesforce Auton lab IBM  
 Statistics Univ. Univ. Univ. Multiv. Multiv. Multiv.  
 Model variants T B B S/B/L S/B/L R1/R2  
 Model size [MB] 34 9.8 814 55/365/1240 152/454/1390 0.377  
 Parameters [M] 8.4 2.45 200 13.8/91.4/311 37.9/113/346 0.805  
 Representation 256 144 1280 384/768/1024 512/768/1024 1536  
 Context length 512 512 512 512 512 512/1024/1536  
 Tokenization Quantization Lagging Patching Patching Patching Patching  
 Backbone Encoder+Decoder Decoder Decoder Encoder Encoder TSMixer  
Fig. 1. A simplified overview of TSFMs internals.
a multimodal encoder and low-rank adaptation [97] to tackle various 
networking tasks, e.g., viewport prediction, adaptive bitrate streaming, 
and cluster job scheduling. The multimodal encoder is required to map 
arbitrary networking data inputs like time series, image, or graphs to 
token embeddings, which are then fed to an LLM. With ShieldGPT [98], 
the authors propose a method to perform automated Distributed Denial 
of Service (DDoS) mitigation with LLMs. The method first classifies the 
DDoS attack type with a pre-trained classifier and additionally extracts 
network traffic representations. Together with domain knowledge, an 
explanation and a mitigation prompt are generated based on pre-
defined templates for an LLM. The LLM then returns an explanation 
for the DDoS behavior and a DDoS mitigation strategy.

In the networking domain, too, foundation models recently tracted 
interest, leading to the development of models like LENS [99] and 
netFound [100]. However, these models share many similarities to 
earlier transformer-based approaches like ET-BERT [90].

In contrast to previous work, we deploy already pretrained TSFMs 
for tackling QoE estimation from encrypted network traffic, neither 
directly relying on LLMs nor pretraining any model from scratch.

3. Time series foundation models

The recent advances in AI, in particular, in the domain of Natural 
Language Processing (NLP) and CV, led to the development of founda-
tion models [101], which are models pre-trained on huge amounts of 
data at scale and usable across different downstream tasks, e.g., GPT-
4 [102], SAM [103], and DALL-E [104]. This paradigm shift also 
generated research interests in other domains, e.g., geography [105] or 
medicine [106], and subsequently also in the time series domain [3].
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3.1. Overview

TSFMs are pre-trained on large amounts of time-series data and 
are thus able to perform different tasks effectively, e.g., imputation, 
classification, anomaly detection, and forecasting [3]. In this work we 
consider six TSFMs, published since end of 2023, and evaluate their 
applicability for network monitoring. We provide an overview of these 
models in Table  1.

All models, except for Tiny Time Mixers (TTM) [10], are based 
on the Transformer architecture [107] and use either the Transformer 
encoder, decoder or both the encoder and decoder in their architecture. 
In contrast, TTM is based on TSMixer [108,109], a time-series fore-
casting architecture that relies only on Multilayer Pereceptrons (MLPs). 
As a consequence, TTM contains fewer model parameters, leading to a 
smaller model size compared to the Transformer-based models.

We refer the reader to the individual papers for an in-depth expla-
nation on how the architecture of each foundation model specifically 
looks and how each foundation model was exactly trained. In Fig. 
1, we provide only an abstract view of the most common techniques 
used to make TSFMs work: First, the input time series is scaled (either 
manually or by the model). In the multivariate case, the time series 
of each channel, i.e., time-series feature, is scaled independently of 
other channels. The scaled time series are then split into tokens using 
either most commonly patching, quantization (Chronos-T5 [5]), or 
lagged features (Lag-Llama [15]). Again, this processing is performed 
simultaneously and independent for each channel.

Patching consists of two operations: First, the time series is split into 
non-contiguous, fixed length sub-sequences. Second, the sub-sequences 
are then projected to d-dimensional embeddings, which represent the 
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actual tokens. With quantization, the continuous time series is binned 
uniformly or based on quantiles, so that the bin number corresponds 
to the respective token. Lagged features for a timestamp comprise past 
values with different lag steps along with date-time features charac-
terizing the current timestamp t, e.g., the second of t, the minute of
t, the month of t, etc. The resulting vector corresponds to the token 
for the timestamp. The tokenized or embedded time series are next 
encoded with the pre-trained backbone architecture, i.e., Transformer 
encoder, Transformer decoder, or TSMixer encoder. The representa-
tions produced by this encoding are then fed to the fine-tuned head 
of the foundation model, i.e., the final layer, to perform the desired 
downstream task. In the multivariate setting, the channel-wise rep-
resentations must be additionally mixed first by using for example 
average pooling, maximum pooling, or more sophisticated methods 
like Tiny Time Mixer’s exogenous channel mixing to obtain the final 
representations. Afterwards, the head of the model performs the actual 
prediction based on these representations. Note that we also exploit 
these representations to perform our zero-shot inference later.

Similar to related work and most foundation models from NLP and 
CV, most TSFMs are also pretrained by masking random parts of the 
input time series (or random tokens of the quantized time series) and 
then learn to predict the masked parts or tokens based on context 
only. Additionally, data augmentation is an often used tool to increase 
variance in the training data. The pretraining is performed on a training 
corpus consisting of several datasets from different domains (electricity, 
weather, sensor data, etc.) with huge amounts of time-series data.

3.2. Implementation

All models and variants presented in Table  1 are publicly available 
on HuggingFace1 and each of these models comes by default with 
a head trained on the forecasting task. Note that we do not use all 
existing model variants for our analysis in this work, e.g., Chronos-
T5 has also larger variants with more parameters, but list only the 
used variants in this work. Inference time increases for larger models 
significantly, making these variants in their current state undesirable 
for efficient network management. Additionally, we want to remark 
that all these models were trained on a granularity of one minute or 
higher, i.e., they were not trained to perform predictions on intervals 
of seconds at all, as would be required for real-time network monitoring 
tasks, e.g., Marina [2].

To perform zero-shot inference, we need to extract the representa-
tions of the time series provided by the backbone encoder. Fortunately, 
the HuggingFace models of Chronos-T5 and MOMENT already provide 
methods to retrieve these representations. We adjust the code of the re-
maining four models such that they also provide methods to return the 
representations. For Tiny Time Mixers, we extract the representations 
returned by the TSMixer backbone encoder. For the other three models, 
we use the representations returned by the respective Transformer 
encoder or decoder.

4. Data & preprocessing

4.1. Datasets

To assess the potential of TSFMs for network monitoring, we evalu-
ate their performance on a challenging analysis task: estimating video 
streaming QoE from encrypted network traffic, using source files from 
a video streaming measurement dataset [1,47]. These measurements 
were conducted with a Selenium-based framework [26,110] that au-
tomatically starts an isolated Chrome browser session and browses to 
the video streaming service main page to access a single video page. A 
JavaScript-based monitoring script is then injected into the web page 

1 https://huggingface.co/.
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by the browser to monitor the current timestamp, the current video 
playtime, buffered playtime, video resolution, and player state peri-
odically every 250 ms. Simultaneously, tshark captures the resulting 
network traffic. As a consequence, the data provides both network-
level and application-level information. Measurements were conducted 
in Würzburg, Germany and in Zagreb, Croatia, in both cases in a fixed 
broadband network. To generate variation in the network, network 
conditions were emulated with Linux tc. In detail, no limitation, a 
fixed limitation of 1 Mbps, and a stochastic limitation following an 
exponential distribution with a mean of 1 Mbps were applied. During 
2020 and 2021, a total of 2000 different, popular videos were streamed 
for around 180 s or till the end of the video for the various network 
conditions in both locations, with and without ad-blocking, resulting in 
a total of approximately 48,000 streamed video sessions. In this work, 
we take about half of these video sessions to accelerate the analysis.

4.2. Preprocessing

In the following, we describe the methodology to perform zero-shot 
classification with TSFMs on the video streaming use case, i.e., we 
do not perform any training at all, but simply download the models 
and weights, extract the representations during inference, and com-
pare them to context samples. We provide a general overview of 
this methodology in Fig.  2. Time series with network-level feature 
inputs are transformed with TSFMs to vector representations, which 
are supposed to encode characteristics of the input time series. In the 
figure, we use t-SNE to perform dimensionality reduction to visualize 
the relationship between the representations of the instances (each dot 
is a test instance). Using an expert’s domain knowledge, we generate 
representations for context samples with known labels, such that the 
distances between the representations of context samples and test 
instances can be used to label test instances in a zero-shot manner.

4.3. Inputs

While packet-level monitoring, e.g., with Intel Tofino P4 switches, 
allows the computation of packet inter-arrival times or more sophisti-
cated features, commonly implemented solutions like Netflow provide 
only flow summary statistics, e.g., the total downlink and uplink vol-
ume or the number of downlink and uplink packets, in specific time 
intervals. However, many works have also shown that packet inter-
arrival times are an important feature for encrypted network traffic 
analytics [2]. To have a trade-off, we thus restrict our feature set to the 
total volume and the mean inter-arrival times for uplink and downlink. 
For each timestep in our time series, regardless of granularity, we 
calculate the following four features based on all packets since the pre-
vious timestep: downlink volume (DV), uplink volume (UV), downlink 
mean inter-arrival time (DI), and uplink mean inter-arrival time (UI). 
To analyze the impact of flow statistics granularity, we aggregate the 
streaming sessions with different granularities, resulting in different 
time series lengths. In detail, we consider granularities of 1 s, 3 s, 5 s, 
and 10 s. The resulting CDF for the number of timesteps per granularity 
is depicted in Fig.  3(a).

As ML models require a fixed input shape and the duration of the 
video streaming sessions varies, our inputs must be padded to the same 
length. We refer to this length here as context length as it provides 
the context for our classification and is a commonly used term in 
time-series modeling. As depicted in Table  1, most models require an 
input with context length 512. We can easily see that most of our 
(resampled) video streaming sessions do not get even close to this 
context length. This may become problematic as TSFM performance is 
supposed to deteriorate with fewer inputs. To nevertheless obtain these 
context lengths, we pad all time series with zeros and provide masks to 
the TSFMs if applicable. Note further that we assume a perfect global 
standard scaler, i.e., the features of each time series are standardized 
across all samples in our dataset.

https://huggingface.co/
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Fig. 2. An overview of zero-shot inference with TSFMs.
Fig. 3. Data and class characterization.
4.4. Encoding

We feed the padded time-series inputs to the TSFM backbone en-
coder to extract time-series representations of the individual models. 
For the univariate models, we extract the representation for each fea-
ture separately, before we perform an additional average or maximum 
pooling on the stacked feature representations to obtain the final time-
series representation. For the multivariate models, MOMENT directly 
provides the representations, while Moirai and Tiny Time Mixer return 
a representation for each timestep in the time series. To obtain the 
final time-series representation, we thus apply average or maximum 
pooling over the timesteps. The vector representations are supposed to 
capture input time-series characteristics, clustering similar time series 
and distancing dissimilar ones in representation space.

4.5. Labels

Seufert and Orsolic infer QoE KPIs from encrypted network traffic 
using window-based and session-based (i.e., per video, tabular data) 
features [1] and discuss how to improve transfer learning on these 
features. Opposed to their work, we consider time-series data here, 
covering the entire video session. As both our time-series data and 
the session-based data consider the whole session, we reuse parts 
of the session-based classification settings of Seufert and Orsolic in 
this work. In detail, we define binary classification settings for the 
application-level KPIs initial delay (<5 s), stalling (true/false), video 
resolution (<700 p), and mean video bitrate (<500 kbps) [111]. The 
initial delay refers to the waiting time between the user initiating the 
playback and the actual video playback start. During this period, the 
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video player downloads the initial video segments, potentially causing 
bursts of downlink traffic in the network. Stalling is defined as the 
playback interruption caused by buffer underrun, i.e., the video buffer 
contains no more content for playback. Buffer underrun is caused by 
the network not being able to sustain the current video quality or 
by network outages, often leading to periods of low network activity. 
Here, we do not distinguish between single or multiple stalling events 
within a session. Instead, we focus on predicting whether any stalling 
event occurred in a session. Video quality is determined by the video 
resolution and the bitrate used to encode video segments (measured 
here as the mean bitrate across the entire video). Higher video quality 
generally results in larger video segment download sizes, leading to 
more network traffic. While the video bitrate is designed to align with 
the downlink bitrate, video resolution is more challenging to infer 
as it is not directly reflected in the network. An overview on the 
characteristics of the waiting times (initial delay and stalling in form 
of total stalling time) and the video quality (video resolution and mean 
bitrate) is provided in the form of CDFs over the entire dataset in 
Figs.  3(b) and 3(c), respectively. The vertical dashed lines denote the 
classification setting, i.e., the point where the respective classes start 
and end. Note further that there are two 𝑥-axes in Fig.  3(c) and that 
the lower 𝑥-axis belongs to the video resolution (orange) and that the 
upper 𝑥-axis belongs to the mean bitrate (brown). We justify the choice 
of binary classification with the fact that, from the perspective of a 
network or service provider, a rough binary estimate might be sufficient 
to judge service or network performance. Additionally, it allows us to 
compare our results to related work [1].
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5. Zero-shot learning

With zero-shot learning (ZSL), a model is able to perform tasks 
on data or recognize classes never seen during training. To make this 
work, the model requires supplementary context information to be able 
to generalize beyond the training data. In NLP, this supplementary 
context is generated by extending the actual prompts, e.g., by providing 
a written description of how classes are defined. However, in this 
work, we focus on a zero-shot classification task for time-series data, 
where the concept of textual prompting does not apply. Nevertheless, 
we must define classification context to enable the model to identify 
classes never seen during training. To create this context, we thus 
define samples used as anchors for indicating where the new class is 
located in representation space. We refer to these samples as context 
samples for the rest of this work. Obtaining such context samples 
requires a context sampling strategy and domain knowledge though, 
as these samples should be highly representative for a specific class. 
In this work, however, we focus only on random sampling, leveraging 
domain knowledge by utilizing the actual labels. Fig.  2 shows that a 
domain expert identified context samples (in representation space) for 
two classes (brown and orange) and that the context samples are used 
to classify the test instances with unknown labels. The classification of 
a test instance corresponds to either comparing the distances between 
the representation of the test instance and the representations of the 
context samples, or to training an additional supervised classifier, 
such as Support Vector Machine or Decision Tree, on the extracted 
representations. In this work, we use K-Nearest Neighbor (KNN) for 
classification, which classifies a sample based on a majority vote of 
the k closest neighbors, with closeness defined as the distance between 
representations, e.g., Euclidean distance. For all experiments, we fix 
𝑘 = 5 as it aligns with the number of context samples considered, 
and use the Euclidean metric for distance computation. Note that these 
hyperparameters could be tuned in practice to optimize results.

We conduct extensive experiments covering the introduced param-
eter space and consider six TSFMs with different sizes and different 
pooling strategies, resulting in 19 model variations. We evaluate model 
performance with the macro F1-score as it incorporates both precision 
and recall and counterbalances class imbalances. For all experiments, 
we evaluate 30 folds and compute mean and standard deviation for the 
observed macro F1-scores. Additionally, we set the same random seed 
before each such experiment so that always the same context samples 
per experiment are sampled and results for different parameter settings 
are comparable.

5.1. Baseline

As an initial experiment, we evaluate all 19 model variants using 
a single feature – downlink volume (DV) – with a 1-s granularity, a 
context length of 512, and a context size of 100. The results from this 
experiment serve as the baseline for all subsequent analyses.

Fig.  4 depicts the obtained results for the baseline experiment. 
The figure contains a sub-figure for each application-level target KPI, 
i.e., initial delay, stalling, resolution, and average bitrate. The 𝑥-axis 
denotes the macro F1-score from 0 to 1, where higher scores indicate 
better performance. The shared 𝑦-axis lists the model variations, with 
the model size and model pooling strategy in brackets. The horizontal 
bars show the achieved macro F1-score and the error bars indicate the 
standard deviation observed over the 30 folds, i.e., 30 context sample 
variations. The numbers to the right of the bars indicate the mean. 
This applies to all bar figures throughout this work. Here, we focus 
on the filled bars, indicating a perfect global scaler. We observe that 
most models perform excellent for the initial delay, achieving macro 
F1-scores of at least 0.80 and up to 0.85, e.g., MOMENT (Large). 
Only TimesFM fails to perform well here. It can be easily seen that 
TimesFM fail to perform well for the other KPIs, too. For the stalling 
estimation, i.e., the presence of stalling events in a session, we observe 
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that the performance is generally low. Most models achieve a macro 
F1-score of around 0.52, with TTM (R2) achieving the highest scores 
of 0.55. Our results thus indicate that the models were not able to 
derive any meaningful relationships between specific time-series pat-
terns and the appearance of stalling events in the zero-shot setting. 
For the estimation of the video resolution and the average bitrate, we 
obtain macro F1-scores of up to 0.72 and 0.68, respectively, a generally 
acceptable performance. MOMENT (Large) and Chronos-T5 (Tiny +
Max) achieved the best performance across the KPIs, although the 
performance differences compared to the other models were relatively 
minor.

When comparing the results to related work [1], as depicted by 
the blue horizontal bars, we detect that the session model trained on 
tabular data (Seufert & Orsolic ’23) outperforms the zero-shot TSFMs by 
0.13 points for the KPIs initial delay, resolution, and average bitrate, 
and by a substantial 0.34 points for stalling detection. Note that the 
performance is not completely comparable, as different parts of the 
datasets were used and the test set varied in size. Nevertheless, under-
standing the reasons for these performance differences, in particular 
for stalling detection, is an interesting research question and should 
be addressed in the future. Since the tabular session model uses sta-
tistical descriptors for six features as model input, TSFM performance 
in stalling detection may be enhanced by identifying key statistical 
descriptors and incorporating them into the TSFM input, too.

5.2. Impact of scaling

In our next experiment, we analyze the impact of the scaling tech-
nique. Remember that we assumed a perfect scaler in the previous 
experiment, i.e., the standard scaler was fitted on the entire dataset. 
In this experiment, we compare this perfect standard scaler to a local 
standard scaler, i.e., a scaler which standardizes each session (time 
series) independently of all other sessions. Note that we explicitly 
utilize the standard scaler here, as most TSFMs require standardized 
input. A local standard scaler would be beneficial from the point of 
deployment as it would reduce dependencies on other data points. 
Empty bars in Fig.  4 correspond to the results of the local scaler. 
First of all, we observe that some models are more robust to scaling 
changes than others. For example, MOMENT and TTM show stronger 
differences for all KPIs compared to MOMENT and Moirai-1.1. Further, 
it is visible that basically all models perform slightly better with a 
global scaler for all KPIs, except for stalling where performance is rather 
identical. In particular for video quality estimation (resolution and 
average bitrate), the global scaler clearly improves the performance of 
most models. This is reasonable, as the amplitudes of an independently 
standardized session are not comparable to other sessions. Without 
comparable amplitudes, estimating video quality based on download 
volume becomes more challenging.

Summarizing, a well-designed global standard scaler can improve 
TSFM performance, particularly for video quality estimation. However, 
local scaling offers slightly lower performance while providing a prac-
tical trade-off by removing the need to collect representative samples 
for fitting a high-performing standard scaler.

5.3. Impact of features

So far, we used only the downlink volume to characterize a video 
session. Next, we analyze whether additional or alternative features sig-
nificantly improve performance compared to the baseline experiment. 
We keep all parameters as in the baseline experiment, and vary the 
feature set only. We analyze the following feature sets: each feature 
individually (DV, UV, DI, or UI); combined downlink features (DV +
DI); combined uplink features (UV + UI); volume-related features only 
(DV + UV); inter-arrival time features only (DI + UI); and all features 
together (DV + UV + DI + UI).
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Fig. 4. Performance evaluation of baseline and scaling experiment.
Fig.  5 depicts the results for selected, best performing variants per 
model and the individual feature sets. Bars are colored according to 
the selected feature set and indicate mean and standard deviation of 
the observed macro F1-scores across 30 folds. Additionally, the bar for 
the feature downlink volume is hatched and represents the baseline, 
corresponding to the results of the previous experiments. For Chronos-
T5, we observe that the gains of using additional features than the 
downlink volume is rather low, but that there is still a small positive 
effect visible. The same applies to Moirai-1.1 and MOMENT. On the 
other hand, for the low-performing TimesFM in previous experiments, 
we can see that additional or other features significantly increase 
performance here, leading to performances comparable to the other 
models. Interestingly, TTM also gains a minor performance boost for 
the initial delay when utilizing the uplink volume only or both uplink 
and downlink volume as features. In this case, TTM achieves a macro 
F1-score of 0.91 for the initial delay (compared to 0.83 for downlink 
volume only). In general, the figure shows that the uplink volume is 
also a suitable feature to perform such a classification. Further, inter-
arrival time features unexpectedly are of less relevance to the models 
and provide only marginal gains.

Summarizing, the results suggest that both the downlink volume 
and the uplink volume are indeed suitable and sufficient standalone fea-
tures for the considered use case and for most TSFMs to achieve accept-
able performance for most KPIs in the video streaming QoE scenario. 
Nevertheless, using additional features can boost TSFM performance.

5.4. Impact of traffic granularity

The granularity of time-series data is an important factor when it 
comes to deployment of efficient network monitoring. Fine granular-
ities, e.g., below 1 s as required for real-time analytics [2], consume 
more hardware resources on one hand, but usually also provide bet-
ter performance as more information is available on the other hand. 
Network monitoring with coarser granularities (above 1 s) is easier to 
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deploy, but usually suffers from the fact that important information 
gets lost due to aggregation strategies. As a consequence, we analyze 
in this experiment how the performance of TSFMs is affected by dif-
ferent monitoring granularities. We reuse the baseline experiment with 
granularity 1 s and now evaluate additional granularities of 3 s, 5 s, and 
10 s, to observe its impact on performance. We simulate the different 
granularities by aggregating the 1 s data to the targeted granularity and 
prepare the resulting time series for the TSFMs as before. Remember 
that the number of timesteps in the time series, i.e., the context lengths, 
are subsequently reduced, as depicted in Fig.  3(a). To meet the required 
context length of 512 time steps, the time series is padded by either 
prepending or appending NaNs to the original time series until the 
desired context length is reached. In this work, we exclusively append 
NaNs. For example, when resampling a 200 s video session at a granu-
larity of 10 s, the resulting time series of length 20 requires appending 
512 − 20 = 492 NaNs. We intentionally use NaNs for padding as some 
TSFMs generate observation masks based on them. These models are 
able to ignore regions padded with NaNs. However, since padding 
reduces the amount of usable context for model prediction, it is still to 
be expected that increased padding generally leads to decreased model 
performance.

We show the results for selected model variants in Fig.  6. Each 
bar is hatched according to the used traffic granularity, and mean and 
standard deviation across the 30 folds are depicted. The baseline bar, 
representing a granularity of 1 s, is solely color-filled and does not 
contain any hatching. For the initial delay, for example, we can see that 
the TSFMs suffer slight performance losses for coarser granularities. 
The strength of this performance loss, however, strongly depends on 
the considered TSFM. While Chronos-T5 performs relatively similarly 
across all granularities, the performance of MOMENT starts to decrease 
strongly. Similar observations can be made for the other KPIs.

Summarizing, it is difficult to identify the best suitable granularity 
with respect to performance, for which to target in network monitoring. 
Instead, our results suggest that coarser granularities of 5 s to 10 s are 
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Fig. 5. Performance evaluation of feature set experiment.
still sufficient to obtain reasonable results, when selecting appropri-
ate TSFMs. Note that in Section 6, we reconsider this finding after 
fine-tuning TTM for different granularities.

5.5. Impact of number of context samples

So far, we have focused on the data preparation in our experiments. 
Next, we want to shortly discuss some parameters of the zero-shot 
methodology. In previous experiments, we have always used 100 con-
text samples per class. However, it is not yet clear how performance is 
affected when using less context samples. Remember that context sam-
ples are required to guide the TSFM into the right direction for getting 
an intuitive understanding of the considered classes. For the purpose of 
this experiment, we thus set the number of available context samples 
either to 5, 10, 20, 50, or 100. Note that this number corresponds to 
the number of context samples per class, i.e., for a context size of 100 
and two classes we actually select 200 context samples.

The obtained results for varying numbers of context samples are 
displayed in Fig.  7. The 𝑥-axis depicts the number of context samples, 
while the 𝑦-axis denotes the macro F1-score. Each marker, styled ac-
cording to the used TSFM, denotes mean macro F1-score with standard 
deviation as error bars across the 30 folds. The major observation from 
the figure is that an increasing number of context samples leads to 
more stable macro F1-scores. With only 5 to 20 context samples, the 
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error bars are easily visible. The standard deviations range from 0.03 
to 0.07 for the initial delay, 0.02 to 0.07 for stalling, 0.05 to 0.11 
for resolution, and 0.06 to 0.09 for the average bitrate, and are thus 
rather high. As we increase up to 100 context samples, the error bars 
are basically no longer visible for most TSFMs. Chronos-T5 shows a 
particularly robust behavior, as the standard deviation is high only 
when the number of context samples is 10 or lower. Summarizing, 
fewer context samples lead to higher variations in the results, but can 
be sufficient to approximate the true performance, in particular, when 
evaluating multiple folds. To obtain accurate results, though, a higher 
number of context samples is required. Our results suggest that 50 
context samples per class may be sufficient.

5.6. Impact of measurement points

So far, we have not differentiated between video sessions originat-
ing from Würzburg and Zagreb, even though we know from previous 
work that these sessions differ in terms of network behavior [1]. In 
these experiments, we thus analyze the transfer learning performance of 
TSFMs by randomly selecting context samples either from the Würzburg 
measurement point only, from the Zagreb measurement point only, or 
from both, and then evaluate the TSFMs’ zero-shot performance for all 
remaining data, while distinguishing between the measurement points.

Fig.  8 summarizes the results for this experiment. The 𝑥-axis de-
notes the macro F1-score, while the 𝑦-axis denotes the used TSFM. 
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Fig. 6. Performance evaluation of granularity experiment.
Fig. 7. Performance evaluation of number of context samples experiment.
Each horizontal bar again denotes mean macro F1-score and standard 
deviation across the 30 folds, and each bar is colored according to 
the used test data, where all data is black, Würzburg is brown, and 
Zagreb is orange. Hatched bars correspond to context samples drawn 
from all data, filled bars to context samples drawn from Würzburg data 
only, and empty bars to context samples drawn from Zagreb data only. 
Interestingly, for the initial delay, stalling, and the average bitrate the 
differences in performance between the measurement points are rather 
small, indicating that no strong data drifts are present in the data. For 
the resolution, however, differences between the measurement points 
can be observed. Surprisingly, the TSFM performance is much lower 
when evaluating Würzburg data only (macro F1-score of approx. 0.60), 
independent of the used context samples, compared to the Zagreb test 
data (macro F1-score of approx. 0.80).

Our results indicate that feature drifts are less prevalent for most 
KPIs when using time-series data and TSFMs. One reason for this is 
likely closely related to the general performance differences between 
the TSFMs and related work, as discussed previously (cf. Fig.  4). Some 
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of the features and statistical descriptors used for training the tabular 
session model seem to be required to obtain high performance for 
all KPIs, but are explicitly not present in our time-series data, such 
that the TSFMs cannot overfit on these aspects of the data (and lose 
generalizability across different datasets), leading to similar perfor-
mance across KPIs and measurement points. As a consequence, using 
(univariate) time-series data, instead of tabular data, seems to increase 
generalizability across measurement points. Nevertheless, we could 
also observe minor performance differences for the resolution between 
measurement points, suggesting that small drifts are still present.

5.7. Inference times

Last but not least, we shortly want to discuss TSFM inference times. 
Low inference times play a fundamental role in the practical deploy-
ment of such models. Therefore, we reuse the baseline experiment and 
measure the time it takes to infer 1000 samples for each model with 
a batch size of 1. First, we conduct experiments on a CPU (Apple M1 
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Fig. 8. Performance evaluation of zero-shot transfer learning experiment.
Fig. 9. Performance evaluation of inference times experiment.

Chip, 8 cores), repeating each run 30 times. This allows to assess the 
feasibility of running TTM on commodity hardware, which offers a 
cheaper alternative to dedicated GPUs.

Fig.  9 depicts the mean relative slowdown and standard deviation 
of all models normalized relative to the fastest model TTM (R2), with a 
mean inference time of 4.13 s. The 𝑥-axis depicts the normalized relative 
slowdown and the 𝑦-axis lists the models along with their sizes. The 
models are already sorted in an ascending fashion according to the 
achieved inference times and thus slowdowns. TTM (R1 & R2) exhibited 
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by far the lowest inference times, followed by Moirai-1.1 (Small) with 
a relative slowdown of 2.68 and MOMENT (Small) with a relative 
slowdown of 5.61, i.e., the models take 2.68 and 5.61 times longer 
for predictions than TTM. In contrast, even for the Tiny version of 
Chronos-T5 a slowdown of 75 could be observed, making the model 
less usable in practice. Considering both performance and inference 
times, we argue that TTM is thus the best suited model for network 
monitoring, especially for reactive network management.

To assess the suitability of TTM for real-time network monitor-
ing, we measure inference times on a single GPU (NVIDIA GeForce 
RTX 2080 TI). We infer 100,000 samples across various batch sizes 
(1024, 2048, 4096, 8192, 16384), repeating each configuration over 
30 iterations to maximize GPU utilization. Under these conditions, 
TTM achieves an average throughput of approximately 67,000 session 
predictions per second. However, real-time constraints typically require 
keeping the end-to-end monitoring delay below 1 s. This limits the 
usable inference window to a fraction of 1 s, e.g., 0.4 s–0.6 s for systems 
like Marina [2], resulting in an effective throughput of 27,000 to 
40,000 predictions per second for TTM. While this is considerably lower 
than the 524,000 sessions per second reported for Marina, it remains 
within an acceptable range for real-time monitoring use cases. The 
size of the inference window and thus the inference throughput is 
primarily constrained by data access latency, which depends on the 
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Fig. 10. Few-shot learning with Tiny Time Mixers (TTM).
monitoring hardware, and network transmission delays, which depend 
on the network stack. Performance can thus be further improved by 
adopting newer technologies such as field programmable gate arrays 
(FPGAs), data processing units (DPU) and smart network interface 
cards (SmartNICs) [112]. Additionally, optimizing the network stack 
with low-latency transport protocols such as RDMA over Converged 
Ethernet (RoCE) [113], which has not been implemented in Marina, 
could reduce transmission delays. Finally, inference scalability can 
be improved by leveraging multi-GPU setups and optimizing resource 
orchestration across the system.

6. Few-shot learning

In the following, we analyze whether fine-tuning a TSFM yields 
additional benefits, in particular, in the few-shot learning (FSL) setting. 
With FSL, a model is fine-tuned on a small number of training examples 
for a particular, but novel task. Remember that the TSFMs have been 
designed for time-series forecasting and that we fine-tune them now 
on a classification downstream task. Fine-tuning generally refers to the 
task of adapting the model weights of an existing pre-trained model 
during training such that its performance for a specific downstream 
task is improved. For our few-shot experiment, we restrict our analysis 
on TTM (R2), as we could see in the previous evaluations that the 
model is extraordinarily fast and simultaneously offers an acceptable 
performance compared to other models.

We provide an overview of our few-shot methodology in this work 
in Fig.  10. Similar to the zero-shot setting, we first require context sam-
ples based on domain knowledge, i.e., representative training samples 
for the two classes, our few-shots. Note that, if applicable, we reuse 
the same context samples as in the zero-shot setting for training. As 
we operate in the few-shot setting, we only collect small amounts of 
context samples, i.e., 5, 10, 20, 50, 100, 200, and 500 samples per class. 
We also use large sample sizes of 200, and 500 here to see if there 
are any additional benefits when using many samples, even though 
it theoretically can no longer be considered FSL. All other samples 
comprise our test dataset, which is used to quantify the performance of 
the fine-tuned models. Before fine-tuning TTM, it is possible to freeze 
the weights of the backbone encoder for training, i.e., they become 
untrainable and remain as they are, while the weights of the head 
are adjusted. We evaluate both scenarios, the one, in which we freeze 
the backbone encoder and only the head is fine-tuned, and the one, 
in which the entire model is fine-tuned. Additionally, we replace the 
original head for the forecasting downstream task with a new head 
designed for our classification downstream task. The head of TTM 
consists of a light TSMixer-based decoder block and a linear layer, 
which projects the decoded representation to the forecast. To adapt it to 
the classification downstream task, we initialize a new TSMixer decoder 
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block, add a Dropout layer for regularization, and finally a linear 
layer with a single neuron. As with the forecasting head, the output 
of the decoder block is flattened, before the linear layer projects this 
input to the final logits, used to derive the prediction. Negative logits 
correspond to a prediction of class 0, while positive logits including 
zero correspond to a prediction of class 1. As predictions can now be 
directly inferred from the model, an additional supervised classifier like 
KNN is no longer required.

6.1. Baseline

For all our experiments, we fine-tune the model with the AdamW 
optimizer and test different learning rates (1e−2, 1e−3, 1e−4, 1e−5) for 
a different number of epochs (1, 3, 5, 10, 30, 50, 100). We choose a 
batch size of 1024 such that in each training round all training samples 
(context samples or shots) are simultaneously fed to the model. As a 
consequence, the number of epochs also corresponds to the number 
of training steps. To optimize the model, we then use the binary 
cross-entropy loss based on the obtained logits.

In the baseline experiment, we fine-tune a model for each parameter 
combination. Except for the number of training epochs (which is fixed 
to 100 here), Fig.  11 provides an overview of the obtained results, 
where each subfigure shows the results for a specific KPI and learning 
rate, and where the 𝑥-axis always denotes the number of training 
samples (two times the number of context samples) and the 𝑦-axis 
always quantifies performance in terms of macro F1-score. The results 
for head only and complete model fine-tuning are illustrated with 
different marker shapes and colors. Additionally, the dotted dark blue 
line indicates the baseline performance of the zero-shot setting for the 
respective KPIs.

Considering the learning rate, we can quickly observe that lower 
learning rates like 1e−04 and 1e−05 resulted in lower performance, 
and that especially for a learning rate of 1e−02 the best performance 
was obtained. Subsequently, we focus only on this learning rate in the 
following. Further, the figure displays that a higher number of training 
samples results in higher performance, e.g., the average bitrate and 
resolution only start to improve upon the baseline when more than 200 
training samples are used. On the other hand, stalling and initial delay 
require less training samples (around 40) to improve upon the baseline, 
suggesting that fine-tuning is more effective for these KPIs.

Even though the model has been fine-tuned now and performance 
has improved for all KPIs, the stalling detection of TTM performs still 
worse than window-based approaches [2,33]. As a consequence, we 
assume that stalling detection from pure time-series data is impractical 
and highly difficult. This finding is also kind of intuitive, as a time-
series model cannot relate specific points in a time series with stalling 
events. These events are not directly visible in the time-series data and 
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Fig. 11. Performance evaluation of baseline fine-tuning experiment.
Fig. 12. Performance evaluation of number of epochs fine-tuning experiment.
are actually caused by the application’s video player buffer. To make 
such a stalling detection approach feasible, it would be necessary to 
label specific points in a time series as indicators for stalling such that 
a TSFM can learn to identify stalling patterns. However, we leave this 
open for future work.

6.2. Impact of number of epochs

As we have not considered the number of training epochs or steps 
in the previous experiment, we analyze its impact on the fine-tuned 
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model’s performance in the following. We keep the learning rate fixed 
to 1e−02 and the number of training samples fixed to 1000.

The impact of the number of epochs on the performance is shown 
in Fig.  12. The 𝑥-axis denotes the number of epochs from 1 to 100 and 
the 𝑦-axis denotes the macro F1-score. Again, the markers differentiate 
between fine-tuning the head only (brown) and fine-tuning the entire 
model (orange). The results indicate that performance starts to improve 
only with a higher number of training epochs (30+) and that only a few 
epochs (1–5) are not sufficient to obtain better results than the dotted 
dark blue baseline from the zero-shot setting. Subsequently, training 
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Fig. 13. Performance evaluation of granularity fine-tuning experiment.
Fig. 14. Performance evaluation of training durations.
times may affect the deployment of such fine-tuning approach, which 
we investigate later.

6.3. Impact of granularity

In the zero-shot setting, we have observed strong performance 
decreases for TTM when confronted with coarser monitoring granu-
larities. In this experiment, we fine-tune the model on each of the 
different granularities and compare the resulting performance to the 
zero-shot performance. We use 100 epochs, 500 context samples, and 
a learning rate of 1e−02 as these parameters yielded the best results 
for a granularity of 1 s.

The obtained results are depicted in Fig.  13, where the 𝑥-axis 
denotes the macro F1-score, the 𝑦-axis denotes the traffic granularity 
of 1 s, 3 s, 5 s, or 10 s, and each horizontal bar denotes the mean 
performance for the different experiment settings and KPIs. We show 
the respective zero-shot results in black as baseline, and the brown and 
orange bars depict fine-tuning of the model head only and the entire 
model, respectively. Foremost, the figure shows significant performance 
gains for all granularities and KPIs compared to the zero-shot setting. 
Further, we observe only minor differences between fine-tuning the 
model head only and the entire model. Nevertheless, even in the fine-
tuning setting, we can observe minor performance losses for higher 
granularities, e.g., a macro F1-score of 0.87 for the initial delay and a 
granularity of 10 s as compared to approx. 0.95 for a granularity of 1 s. 
Similar, but less severe observations can be made for the other KPIs. As 
a result, it depends on the network operator to trade-off the prediction 
accuracy and monitoring granularity. Nevertheless, our results indicate 
that even with higher granularities good performance can be achieved 
when additionally fine-tuning the TSFM.
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6.4. Training times

Finally, we analyze the fine-tuning training duration in dependency 
of the number of training epochs/steps and the number of training 
samples. In practice, low training times are desirable for network 
operators to enable them to quickly adapt their monitoring system to 
new requirements.

Fig.  14 depicts the observed training durations for the fine-tuning 
of TTM for the head only (cf. Fig.  14(a)) and for the entire model 
(cf. Fig.  14(b)). The 𝑥-axis denotes the number of overall training 
samples, i.e., two times the number of context samples, and the 𝑦-
axis denotes the training time in seconds. The marker shape and color 
denote the number of training epochs. The figure shows the highest 
observed training time of around 60 s for 1000 training samples and 
100 training epochs, when fine-tuning the entire model (cf. Fig.  14(b)). 
In contrast, when freezing the backbone encoder weights, we observe a 
training time of around 40 s, and thus, a 33% training time reduction. 
As noted earlier, the performance gap between head-only fine-tuning 
and full-model fine-tuning is only marginal. Both aspects thus suggest 
to fine-tune the head only to save resources, even though the training 
times are generally very low in this case. Note that the increase of 
training time can be modeled with a linear function in dependency of 
the number of training samples, and can thus be easily interpolated for 
more training samples. Summarizing, we note that a TSFM like TTM 
can be quickly fine-tuned while simultaneously increasing performance.

7. Discussion

Our evaluation demonstrated that acceptable performance can be 
achieved in zero-shot settings for most KPIs, even when leveraging only 
the downlink volume as a feature. This confirms that simple NetFlow 
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features, already available in most network monitoring systems, are 
sufficient for a TSFM to capture the patterns necessary to perform 
adequate predictions. Achieving such performance, however, relies 
significantly on a global scaler with excellent knowledge of the rep-
resentation space, especially for video-quality-related KPIs. Carefully 
curating representative samples from the data used to derive such 
a scaler is thus very important in practice. Once a perfect scaler is 
obtained, it is sufficient to randomly sample context samples from the 
data, thereby simplifying data preparation efforts. In general, it can 
be stated that the performance improves the more context samples are 
used. Moreover, lower temporal monitoring granularities lead to better 
model performance as less information content is lost in the data.

Aside from the evaluation of the impact of technical model param-
eters, we have observed that time-series modeling can prove advanta-
geous in managing feature drifts across different networks, a common 
challenge in network traffic analysis. TSFMs, however, achieve robust 
performance by capturing temporal patterns, effectively handling the 
inherent variability present in encrypted network traffic. Additionally, 
low inference times for models such as Tiny Time Mixers (TTM), Moirai, 
and MOMENT indicate their practicality in real-world settings, even 
feasible for real-time deployments.

Our findings have several implications for network monitoring, in 
particular, and network management, in general. The feasibility of zero-
shot inference with lightweight and easy to measure features enables 
rapid deployment of monitoring systems. Optional fine-tuning can yield 
significant additional benefits, as shown for TTM. The quick fine-tuning 
of this model, e.g., 100 epochs with 1000 samples in less than one 
minute, makes the model highly suitable for situations where rapid 
adaptation to specific use cases or settings is required. Furthermore, 
we have observed that fine-tuning can even yield high model perfor-
mance for coarser monitoring granularities, e.g., 10 s. This is especially 
interesting for network operators aiming to reduce monitoring efforts 
by sampling at larger intervals while maintaining precise predictions. 
Even though we focused on video session health, we emphasize that the 
methodologies presented in this work are easily transferable to other 
use cases, e.g., intrusion detection or fingerprinting, as only the input 
time-series data has to be substituted.

When comparing the zero-shot and few-shot performance of TSFMs 
in this work to the lightweight Random Forests from related work [1], 
we observed that TSFMs performed significantly worse in the zero-
shot setting. However, fine-tuning TSFMs significantly narrowed the 
performance gap. As previously noted, the results are not directly 
comparable. In this work, TSFMs were limited to a small set of input 
features (at most four), derived from time-series data readily available 
via telemetry systems like NetFlow, commonly deployed in today’s 
networks. However, TSFMs are expensive to deploy as they usually 
require dedicated GPUs and inference times are significantly higher 
compared to lightweight models. In contrast, the Random Forests in 
related work considered 207 input features in the form of tabular 
data, covering a variety of different network traffic statistics, which 
enabled more accurate predictions of video session health. However, 
obtaining such extensive feature sets (in real-time) typically requires 
specialized telemetry systems and thus expensive hardware, e.g., pro-
grammable switches capable of line-rate statistics extraction and high 
engineering efforts. This highlights a fundamental trade-off between 
feature engineering and telemetry complexity, and model deployment 
costs. Using complex, extensive feature sets with lightweight models 
shifts the burden to feature engineering and telemetry infrastructure. 
Conversely, relying on simple features with more complex models shifts 
the complexity to the models themselves, which must learn to perform 
well given the limited input.

We also stress the fact that current TSFMs are not explicitly designed 
for network traffic. This presents an opportunity for future research, 
as the development of TSFMs tailored to encrypted network traffic 
analytics could result in further zero-shot performance improvements, 
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even in the presence of coarse monitoring granularities and shorter con-
text lengths. Such zero-shot networking-specific models would advance 
data-driven network management significantly, while also strongly 
reducing monitoring costs. While current TSFMs are well-suited for 
real-time network monitoring at moderate scale, their relatively high 
inference times compared to lightweight models limit their scalability 
for monitoring hundreds of thousands of sessions concurrently. Scaling 
to such levels would require infrastructure investments, e.g., multi-
ple GPUs, advanced resource orchestration, and optimized hardware 
and network stacks, which in turn increases overall complexity and 
deployment costs. Nonetheless, future technological advances and the 
development of TSFMs tailored specifically for networking are ex-
pected to improve their scalability and cost-efficiency for large-scale 
deployment.

In summary, the combination of zero-shot capabilities, rapid and 
effective fine-tuning, and swift inference underscores the practicality of 
most TSFMs for network management. Our work, thus, demonstrated 
the feasibility of deploying TSFMs in both zero-shot and few-shot 
settings in practice.

8. Conclusion

In this work, we explored the use of Time Series Foundation Models 
(TSFMs) for network monitoring tasks. TSFMs are models pre-trained 
on large-scale time-series data, enabling them to perform well in ZSL 
and FSL scenarios across diverse downstream tasks. To assess their 
potential for network monitoring, we focused on the specific challenge 
of estimating video streaming session QoE from encrypted network 
traffic. We first evaluated the zero-shot capabilities of TSFMs, assessing 
their ability to estimate session health without any prior task-specific 
training. We then studied their performance when fine-tuned on a 
limited amount of training data. Additionally, we investigated relevant 
model and monitoring parameters, including the temporal monitoring 
granularity, the applied data scaler, the used features, and the size of 
the context and training data.

Our analysis revealed that TSFMs are indeed ready for practical 
deployments and that they perform acceptable in a zero-shot setting, 
while most models also provide low inference times. Our fine-tuning 
experiments with Tiny Time Mixers emphasized the fact that only few 
samples are sufficient for training to improve performance significantly, 
even for monitoring granularities beyond 5 s, while keeping training 
times low.

The considered TSFMs were all pretrained on data from different 
domains, such as weather, finance, energy, and sensors [3]. These 
data captured various time series lengths, sampling frequencies (rang-
ing from seconds to years), trends, and seasonal patterns. However, 
network traffic data has not been included in the pretraining data of 
those models, but usually exhibits unique characteristics, such as the 
on-off burst patterns seen in video streaming [114,115]. Furthermore, 
network traffic often operates at a millisecond granularity, a resolution 
not covered by the domains used for pretraining. Despite this mismatch, 
the benchmarked TSFMs demonstrated strong few-shot performance 
on network tasks. This, however, also highlights the opportunity of 
developing TSFMs specifically pretrained on network monitoring data 
in the future. Such TSFMs may yield significant improvements in zero-
shot performance, and thus decrease operational costs for network 
operators.

CRediT authorship contribution statement

Nikolas Wehner: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Project administration, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization. Pedro 
Casas: Writing – review & editing, Writing – original draft, Valida-
tion, Methodology, Data curation, Conceptualization. Katharina Di-
etz: Writing – review & editing, Writing – original draft, Validation, 



N. Wehner et al. Computer Networks 269 (2025) 111395 
Methodology, Conceptualization. Stefan Geißler: Writing – review & 
editing, Writing – original draft, Validation, Conceptualization. Tobias 
Hoßfeld: Writing – review & editing, Validation, Supervision, Method-
ology, Conceptualization. Michael Seufert: Writing – review & editing, 
Writing – original draft, Validation, Supervision, Methodology, Data 
curation, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work the author(s) used ChatGPT in 
order to improve language and readability. After using this tool, the 
author(s) reviewed and edited the content as needed and take(s) full 
responsibility for the content of the publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work was partly funded by Deutsche Forschungsgemeinschaft 
(DFG), Germany under grant SE 3163/3-1, project number: 500105691. 
The authors alone are responsible for the content.

Data availability

The data that has been used is confidential.

References

[1] M. Seufert, I. Orsolic, Improving the transfer of machine learning-based video 
QoE estimation across diverse networks, IEEE Trans. Netw. Serv. Manag. 
(2023).

[2] M. Seufert, K. Dietz, N. Wehner, S. Geißler, J. Schüler, M. Wolz, A. Hotho, P. 
Casas, T. Hoßfeld, A. Feldmann, Marina: Realizing ML-driven real-time network 
traffic monitoring at terabit scale, IEEE Trans. Netw. Serv. Manag. (2024).

[3] Y. Liang, H. Wen, Y. Nie, Y. Jiang, M. Jin, D. Song, S. Pan, Q. Wen, Foundation 
models for time series analysis: A tutorial and survey, in: Proceedings of the 
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024, 
pp. 6555–6565.

[4] S. Rahman, S. Khan, F. Porikli, A unified approach for conventional zero-shot, 
generalized zero-shot, and few-shot learning, IEEE Trans. Image Process. 27 
(11) (2018) 5652–5667.

[5] A.F. Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, 
S.S. Rangapuram, S.P. Arango, S. Kapoor, et al., Chronos: Learning the language 
of time series, 2024, arXiv preprint arXiv:2403.07815.

[6] K. Rasul, A. Ashok, A.R. Williams, A. Khorasani, G. Adamopoulos, R. Bhag-
watkar, M. Biloš, H. Ghonia, N.V. Hassen, A. Schneider, et al., Lag-llama: 
Towards foundation models for time series forecasting, 2023, arXiv preprint 
arXiv:2310.08278.

[7] A. Das, W. Kong, R. Sen, Y. Zhou, A decoder-only foundation model for 
time-series forecasting, 2023, arXiv preprint arXiv:2310.10688.

[8] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, D. Sahoo, Unified training 
of universal time series forecasting transformers, 2024, arXiv preprint arXiv:
2402.02592.

[9] M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, A. Dubrawski, Moment: 
A family of open time-series foundation models, 2024, arXiv preprint arXiv:
2402.03885.

[10] V. Ekambaram, A. Jati, N.H. Nguyen, P. Dayama, C. Reddy, W.M. Gifford, 
J. Kalagnanam, TTMs: Fast multi-level tiny time mixers for improved zero-
shot and few-shot forecasting of multivariate time series, 2024, arXiv preprint 
arXiv:2401.03955.

[11] A. Garza, M. Mergenthaler-Canseco, TimeGPT-1, 2023, arXiv:2310.03589.
[12] H. Xue, F.D. Salim, PromptCast: A new prompt-based learning paradigm for 

time series forecasting, IEEE Trans. Knowl. Data Eng. (2023) 1–14, http://dx.
doi.org/10.1109/TKDE.2023.3342137.

[13] N. Gruver, M. Finzi, S. Qiu, A.G. Wilson, Large language models are zero-shot 
time series forecasters, 2023, arXiv:2310.07820.

[14] A. Das, W. Kong, R. Sen, Y. Zhou, A decoder-only foundation model for 
time-series forecasting, 2024, arXiv:2310.10688.
16 
[15] K. Rasul, A. Ashok, A.R. Williams, H. Ghonia, R. Bhagwatkar, A. Khorasani, 
M.J.D. Bayazi, G. Adamopoulos, R. Riachi, N. Hassen, M. Biloš, S. Garg, A. 
Schneider, N. Chapados, A. Drouin, V. Zantedeschi, Y. Nevmyvaka, I. Rish, 
Lag-llama: Towards foundation models for probabilistic time series forecasting, 
2024, arXiv:2310.08278.

[16] M. Jin, S. Wang, L. Ma, Z. Chu, J.Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. 
Li, S. Pan, Q. Wen, Time-LLM: Time series forecasting by reprogramming large 
language models, in: International Conference on Learning Representations, 
ICLR, 2024.

[17] G.G. González, P. Casas, E. Martínez, A. Fernández, On the quest for foundation 
generative-AI models for anomaly detection in time-series data, in: 2024 IEEE 
European Symposium on Security and Privacy Workshops, 2024, pp. 252–260, 
http://dx.doi.org/10.1109/EuroSPW61312.2024.00034.

[18] P. Casas, M. Seufert, R. Schatz, YOUQMON: A system for on-line monitoring 
of YouTube QoE in operational 3G networks, ACM SIGMETRICS Perform. Eval. 
Rev. 41 (2) (2013) 44–46.

[19] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, Measuring video 
QoE from encrypted traffic, in: Internet Measurement Conference, 2016, pp. 
513–526.

[20] I. Orsolic, D. Pevec, M. Suznjevic, L. Skorin-Kapov, YouTube QoE estimation 
based on the analysis of encrypted network traffic using machine learning, in: 
2016 IEEE Globecom Workshops, IEEE, 2016, pp. 1–6.

[21] I. Orsolic, D. Pevec, M. Suznjevic, L. Skorin-Kapov, A machine learning 
approach to classifying YouTube QoE based on encrypted network traffic, 
Multimed. Tools Appl. 76 (21) (2017) 22267–22301.

[22] I. Orsolic, M. Suznjevic, L. Skorin-Kapov, YouTube QoE estimation from 
encrypted traffic: Comparison of test methodologies and machine learning based 
models, in: 10th International Conference on Quality of Multimedia Experience, 
QoMEX, IEEE, 2018, pp. 1–6.

[23] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, N. Feamster, Enhancing 
Transparency: Internet Video Quality Inference from Network Traffic, TPRC, 
2018.

[24] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind, P. Tran-
Gia, R. Schatz, Predicting QoE in cellular networks using machine learning and 
in-smartphone measurements, in: 9th International Conference on Quality of 
Multimedia Experience, QoMEX, Erfurt, Germany, 2017.

[25] M.H. Mazhar, Z. Shafiq, Real-time video quality of experience monitor-
ing for HTTPS and QUIC, in: INFOCOM 2018 - Conference on Computer 
Communications, IEEE, 2018, pp. 1331–1339.

[26] M. Seufert, P. Casas, N. Wehner, L. Gang, K. Li, Stream-based machine learning 
for real-time QoE analysis of encrypted video streaming traffic, in: 2019 22nd 
Conference on Innovation in Clouds, Internet and Networks and Workshops, 
ICIN, IEEE, 2019, pp. 76–81.

[27] M. Seufert, P. Casas, N. Wehner, L. Gang, K. Li, Features that matter: Feature 
selection for on-line stalling prediction in encrypted video streaming, in: 
Conference on Computer Communications Workshops, INFOCOM WKSHPS, 
IEEE, 2019, pp. 688–695.

[28] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, G. Zussman, 
Requet: Real-time QoE detection for encrypted YouTube traffic, in: 10th ACM 
Multimedia Systems Conference, 2019, pp. 48–59.

[29] S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li, Let me decrypt your 
beauty: Real-time prediction of video resolution and bitrate for encrypted video 
streaming, in: Network Traffic Measurement and Analysis Conference, TMA, 
IEEE, 2019, pp. 199–200.

[30] S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li, I see what you see: 
Real time prediction of video quality from encrypted streaming traffic, in: 
4th Internet-QoE Workshop on QoE-Based Analysis and Management of Data 
Communication Networks, 2019, pp. 1–6.

[31] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, N. Feamster, 
Inferring streaming video quality from encrypted traffic: Practical models and 
deployment experience, Meas. Anal. Comput. Syst. 3 (3) (2019) 1–25.

[32] I. Orsolic, L. Skorin-Kapov, A framework for in-network QoE monitoring of 
encrypted video streaming, IEEE Access 8 (2020) 74691–74706, http://dx.doi.
org/10.1109/ACCESS.2020.2988735.

[33] S. Wassermann, M. Seufert, P. Casas, L. Gang, K. Li, Vicrypt to the rescue: Real-
time, machine-learning-driven video-qoe monitoring for encrypted streaming 
traffic, IEEE Trans. Netw. Serv. Manag. 17 (4) (2020) 2007–2023.

[34] F. Loh, F. Poignée, F. Wamser, F. Leidinger, T. Hoßfeld, Uplink vs. downlink: 
Machine learning-based quality prediction for http adaptive video streaming, 
Sensors 21 (12) (2021) 4172.

[35] P. Casas, S. Wassermann, M. Seufert, N. Wehner, O. Dinica, T. Hoßfeld, X-
Ray goggles for the ISP: Improving in-network web and app qoe monitoring 
with deep learning, in: V. Bajpai, H. Haddadi, O. Hohlfeld (Eds.), 6th Network 
Traffic Measurement and Analysis Conference, TMA 2022, June 27-30, 2022, 
IFIP, 2022.

[36] S. Schwarzmann, C. Cassales Marquezan, M. Bosk, H. Liu, R. Trivisonno, 
T. Zinner, Estimating video streaming QoE in the 5G architecture using 
machine learning, in: 4th Internet-QoE Workshop on QoE-Based Analysis and 
Management of Data Communication Networks, 2019, pp. 7–12.

http://refhub.elsevier.com/S1389-1286(25)00362-7/sb1
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb1
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb1
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb1
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb1
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb2
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb2
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb2
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb2
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb2
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb3
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb4
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb4
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb4
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb4
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb4
http://arxiv.org/abs/2403.07815
http://arxiv.org/abs/2310.08278
http://arxiv.org/abs/2310.10688
http://arxiv.org/abs/2402.02592
http://arxiv.org/abs/2402.02592
http://arxiv.org/abs/2402.02592
http://arxiv.org/abs/2402.03885
http://arxiv.org/abs/2402.03885
http://arxiv.org/abs/2402.03885
http://arxiv.org/abs/2401.03955
http://arxiv.org/abs/2310.03589
http://dx.doi.org/10.1109/TKDE.2023.3342137
http://dx.doi.org/10.1109/TKDE.2023.3342137
http://dx.doi.org/10.1109/TKDE.2023.3342137
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2310.10688
http://arxiv.org/abs/2310.08278
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb16
http://dx.doi.org/10.1109/EuroSPW61312.2024.00034
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb18
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb18
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb18
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb18
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb18
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb19
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb19
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb19
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb19
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb19
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb20
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb20
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb20
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb20
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb20
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb21
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb21
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb21
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb21
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb21
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb22
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb23
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb23
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb23
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb23
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb23
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb24
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb25
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb25
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb25
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb25
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb25
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb26
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb27
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb28
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb28
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb28
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb28
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb28
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb29
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb30
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb31
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb31
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb31
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb31
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb31
http://dx.doi.org/10.1109/ACCESS.2020.2988735
http://dx.doi.org/10.1109/ACCESS.2020.2988735
http://dx.doi.org/10.1109/ACCESS.2020.2988735
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb33
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb33
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb33
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb33
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb33
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb34
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb34
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb34
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb34
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb34
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb35
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb36


N. Wehner et al. Computer Networks 269 (2025) 111395 
[37] S. Schwarzmann, C.C. Marquezan, R. Trivisonno, S. Nakajima, T. Zinner, 
Accuracy vs. Cost trade-off for machine learning based QoE estimation in 5G 
networks, in: International Conference on Communications, ICC, IEEE, 2020, 
pp. 1–6.

[38] S. Schwarzmann, C.C. Marquezan, R. Trivisonno, S. Nakajima, V. Barriac, T. 
Zinner, ML-based qoe estimation in 5g networks using different regression 
techniques, IEEE Trans. Netw. Serv. Manag. 19 (3) (2022) 3516–3532.

[39] N. Wehner, M. Ring, J. Schüler, A. Hotho, T. Hoßfeld, M. Seufert, On learning 
hierarchical embeddings from encrypted network traffic, in: NOMS 2022-2022 
IEEE/IFIP Network Operations and Management Symposium, IEEE, 2022, pp. 
1–7.

[40] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection, in: 
Brazilian Symposium on Artificial Intelligence, Springer, 2004, pp. 286–295.

[41] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, Dataset 
Shift in Machine Learning, The MIT Press, 2009.

[42] I. Orsolic, P. Rebernjak, M. Suznjevic, L. Skorin-Kapov, In-network QoE and 
KPI monitoring of mobile YouTube traffic: Insights for encrypted iOS flows, in: 
14th International Conference on Network and Service Management, CNSM, 
IEEE, 2018, pp. 233–239.

[43] S. Ickin, K. Vandikas, F. Moradi, J. Taghia, W. Hu, Ensemble-based synthetic 
data synthesis for federated QoE modeling, in: 2020 6th IEEE Conference on 
Network Softwarization, NetSoft, 2020, pp. 72–76, http://dx.doi.org/10.1109/
NetSoft48620.2020.9165379.

[44] S. Ickin, M. Fiedler, K. Vandikas, QoE modeling on split features with 
distributed deep learning, Network 1 (2) (2021) 165–190.

[45] S. Porcu, A. Floris, L. Atzori, CB-FL: Cluster-based federated learning applied 
to quality of experience modelling, in: 2022 16th International Conference 
on Signal-Image Technology & Internet-Based Systems, SITIS, IEEE, 2022, pp. 
585–591.

[46] S. Porcu, A. Floris, L. Atzori, A clustered federated learning approach for 
estimating the quality of experience of web users, in: 2023 IEEE International 
Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW, 
IEEE, 2023, pp. 1–5.

[47] I. Orsolic, M. Seufert, On machine learning based video QoE estima-
tion across different networks, in: 2021 16th International Conference on 
Telecommunications, ConTEL, IEEE, 2021, pp. 62–69.

[48] M. Carvalho, D. Soares, D.F. Macedo, Transfer learning-based qoe estimation 
for different cloud gaming contexts, in: 2023 IEEE 9th International Conference 
on Network Softwarization, NetSoft, IEEE, 2023, pp. 71–79.

[49] G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: 
A review, ACM Comput. Surv. 54 (2) (2021).

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural 
Information Processing Systems, vol. 27, 2014.

[51] S. Zavrak, M. Iskefiyeli, Anomaly-based intrusion detection from network flow 
features using variational autoencoder, IEEE Access 8 (2020) 108346–108358.

[52] H. Zenati, C.S. Foo, B. Lecouat, G. Manek, V.R. Chandrasekhar, Efficient 
GAN-based anomaly detection, 2018, arXiv preprint arXiv:1802.06222.

[53] R.-Q. Chen, G.-H. Shi, W. Zhao, C.-H. Liang, A joint model for IT operation 
series prediction and anomaly detection, Neurocomputing 448 (2021) 130–139.

[54] J. Donahue, P. Krähenbühl, T. Darrell, Adversarial feature learning, 2016, arXiv 
preprint arXiv:1605.09782.

[55] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.-K. Ng, MAD-GAN: Multivariate 
anomaly detection for time series data with generative adversarial networks, 
in: International Conference on Artificial Neural Networks, Springer, 2019, pp. 
703–716.

[56] A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, K. Veeramachaneni, 
TadGAN: Time series anomaly detection using generative adversarial networks, 
in: 2020 IEEE International Conference on Big Data, Big Data, IEEE, 2020, pp. 
33–43.

[57] G. García González, P. Casas, A. Fernández, G. Gómez, On the usage of 
generative models for network anomaly detection in multivariate time-series, 
SIGMETRICS Perform. Eval. Rev. 48 (4) (2021) 49–52, http://dx.doi.org/10.
1145/3466826.3466843.

[58] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, 2013, CoRR abs/
1312.6114. arXiv:1312.6114. URL https://arxiv.org/abs/1312.6114.

[59] C. Doersch, Tutorial on variational autoencoders, 2016, arXiv preprint arXiv:
1606.05908.

[60] D.P. Kingma, M. Welling, An introduction to variational autoencoders, 2019, 
arXiv preprint arXiv:1906.02691.

[61] F.P. Casale, A.V. Dalca, L. Saglietti, J. Listgarten, N. Fusi, Gaussian process 
prior variational autoencoders, in: Advances in Neural Information Processing 
Systems, 2018.

[62] L. Girin, F. Roche, T. Hueber, S. Leglaive, Notes on the use of variational 
autoencoders for speech and audio spectrogram modeling, in: DAFx 2019-22nd 
International Conference on Digital Audio Effects, 2019, pp. 1–8.

[63] V. Fortuin, D. Baranchuk, G. Rätsch, S. Mandt, GP-VAE: Deep probabilistic time 
series imputation, in: International Conference on Artificial Intelligence and 
Statistics, PMLR, 2020, pp. 1651–1661.
17 
[64] S. Ramchandran, G. Tikhonov, K. Kujanpää, M. Koskinen, H. Lähdesmäki, 
Longitudinal variational autoencoder, in: International Conference on Artificial 
Intelligence and Statistics, PMLR, 2021, pp. 3898–3906.

[65] J. Bayer, C. Osendorfer, Learning stochastic recurrent networks, 2014, arXiv 
preprint arXiv:1411.7610.

[66] J. Chung, K. Kastner, L. Dinh, K. Goel, A.C. Courville, Y. Bengio, A recurrent 
latent variable model for sequential data, Adv. Neural Inf. Process. Syst. 28 
(2015).

[67] S. Shabanian, D. Arpit, A. Trischler, Y. Bengio, Variational bi-LSTMs, 2017, 
arXiv preprint arXiv:1711.05717.

[68] Z. Yang, Z. Hu, R. Salakhutdinov, T. Berg-Kirkpatrick, Improved variational 
autoencoders for text modeling using dilated convolutions, in: International 
Conference on Machine Learning, PMLR, 2017, pp. 3881–3890.

[69] G. Lai, B. Li, G. Zheng, Y. Yang, Stochastic WaveNet: A generative latent 
variable model for sequential data, 2018, arXiv preprint arXiv:1806.06116.

[70] G. García González, S. Martinez Tagliafico, A. Fernández, G. Gómez, J. Acuña, 
P. Casas, One model to find them all – deep learning for multivariate time-series 
anomaly detection in mobile network data, IEEE Trans. Netw. Serv. Manag. 
(2023) http://dx.doi.org/10.1109/TNSM.2023.3340146, 1–1.

[71] G. García González, S. Martinez Tagliafico, A. Fernández, G. Gómez, J. 
Acuña, P. Casas, DC-VAE, fine-grained anomaly detection in multivariate time-
series with dilated convolutions and variational auto encoders, in: 2022 IEEE 
European Symposium on Security and Privacy Workshops, 2022, pp. 287–293.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, 
I. Polosukhin, Attention is all you need, in: Advances in Neural Information 
Processing Systems, vol. 30, 2017.

[73] B. Lim, S. Arik, N. Loeff, T. Pfister, Temporal fusion transformers for inter-
pretable multi-horizon time series forecasting, Int. J. Forecast. 37 (4) (2021) 
1748–1764.

[74] K.C. Chen, L. Dicker, C. Eisenach, D. Madeka, MQTransformer: Multi-horizon 
forecasts with context dependent attention and optimal bregman volatility, 
in: KDD 2022 Workshop on Mining and Learning from Time Series – Deep 
Forecasting: Models, Interpretability, and Applications, 2022.

[75] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: 
Beyond efficient transformer for long sequence time-series forecasting, in: 
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI Press, 2021, pp. 
11106–11115, http://dx.doi.org/10.1609/AAAI.V35I12.17325.

[76] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with 
auto-correlation for long-term series forecasting, 2021, CoRR abs/2106.13008. 
arXiv:2106.13008. URL https://arxiv.org/abs/2106.13008.

[77] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, R. Jin, FEDformer: Frequency 
enhanced decomposed transformer for long-term series forecasting, 2022, CoRR 
abs/2201.12740. arXiv:2201.12740. URL https://arxiv.org/abs/2201.12740.

[78] S. De, M. Bermudez-Edo, H. Xu, Z. Cai, Deep generative models in the industrial 
internet of things: a survey, IEEE Trans. Ind. Inform. 18 (9) (2022) 5728–5737.

[79] K. Dietz, M. Seufert, T. Hoßfeld, Want more WANs? Comparison of traditional 
and GAN-based generation of wide area network topologies via graph and 
performance metrics, IEEE Trans. Netw. Serv. Manag. (2023).

[80] A. Karapantelakis, P. Alizadeh, A. Alabassi, K. Dey, A. Nikou, Generative AI in 
mobile networks: a survey, Ann. Telecommun. 79 (1) (2024) 15–33.

[81] M. Ring, D. Schlör, D. Landes, A. Hotho, Flow-based network traffic generation 
using generative adversarial networks, Comput. Secur. 82 (2019) 156–172.

[82] Z. Lin, A. Jain, C. Wang, G. Fanti, V. Sekar, Generating high-fidelity, synthetic 
time series datasets with doppelganger, 2019, arXiv preprint arXiv:1909.13403.

[83] Y. Yin, Z. Lin, M. Jin, G. Fanti, V. Sekar, Practical gan-based synthetic ip header 
trace generation using netshare, in: Proceedings of the ACM SIGCOMM 2022 
Conference, 2022, pp. 458–472.

[84] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural 
Inf. Process. Syst. 33 (2020) 6840–6851.

[85] S. Zhang, T. Li, D. Jin, Y. Li, NetDiff: A service-guided hierarchical diffusion 
model for network flow trace generation, Proc. ACM Netw. 2 (CoNEXT3) (2024) 
1–21.

[86] N. Sivaroopan, D. Bandara, C. Madarasingha, G. Jourjon, A.P. Jayasumana, 
K. Thilakarathna, Netdiffus: Network traffic generation by diffusion models 
through time-series imaging, Comput. Netw. 251 (2024) 110616.

[87] X. Jiang, S. Liu, A. Gember-Jacobson, A.N. Bhagoji, P. Schmitt, F. Bronzino, 
N. Feamster, Netdiffusion: Network data augmentation through protocol-
constrained traffic generation, Proc. ACM Meas. Anal. Comput. Syst. 8 (1) 
(2024) 1–32.

[88] D.K. Kholgh, P. Kostakos, PAC-GPT: A novel approach to generating synthetic 
network traffic with GPT-3, IEEE Access (2023).

[89] H.Y. He, Z.G. Yang, X.N. Chen, PERT: Payload encoding representation from 
transformer for encrypted traffic classification, in: 2020 ITU Kaleidoscope: 
Industry-Driven Digital Transformation, ITU K, IEEE, 2020, pp. 1–8.

[90] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, J. Yu, Et-bert: A contextualized datagram 
representation with pre-training transformers for encrypted traffic classification, 
in: Proceedings of the ACM Web Conference 2022, 2022, pp. 633–642.

[91] X. Meng, C. Lin, Y. Wang, Y. Zhang, Netgpt: Generative pretrained transformer 
for network traffic, 2023, arXiv preprint arXiv:2304.09513.

http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb37
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb38
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb38
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb38
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb38
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb38
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb39
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb40
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb40
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb40
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb41
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb41
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb41
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb42
http://dx.doi.org/10.1109/NetSoft48620.2020.9165379
http://dx.doi.org/10.1109/NetSoft48620.2020.9165379
http://dx.doi.org/10.1109/NetSoft48620.2020.9165379
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb44
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb44
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb44
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb45
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb46
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb47
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb47
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb47
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb47
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb47
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb48
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb48
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb48
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb48
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb48
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb49
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb49
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb49
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb50
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb50
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb50
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb50
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb50
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb51
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb51
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb51
http://arxiv.org/abs/1802.06222
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb53
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb53
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb53
http://arxiv.org/abs/1605.09782
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb55
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb56
http://dx.doi.org/10.1145/3466826.3466843
http://dx.doi.org/10.1145/3466826.3466843
http://dx.doi.org/10.1145/3466826.3466843
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1906.02691
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb61
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb61
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb61
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb61
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb61
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb62
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb62
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb62
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb62
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb62
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb63
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb63
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb63
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb63
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb63
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb64
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb64
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb64
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb64
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb64
http://arxiv.org/abs/1411.7610
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb66
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb66
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb66
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb66
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb66
http://arxiv.org/abs/1711.05717
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb68
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb68
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb68
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb68
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb68
http://arxiv.org/abs/1806.06116
http://dx.doi.org/10.1109/TNSM.2023.3340146
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb71
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb72
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb72
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb72
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb72
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb72
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb73
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb73
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb73
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb73
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb73
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb74
http://dx.doi.org/10.1609/AAAI.V35I12.17325
http://arxiv.org/abs/2106.13008
http://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
http://arxiv.org/abs/2201.12740
http://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb78
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb78
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb78
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb79
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb79
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb79
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb79
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb79
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb80
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb80
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb80
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb81
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb81
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb81
http://arxiv.org/abs/1909.13403
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb83
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb83
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb83
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb83
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb83
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb84
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb84
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb84
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb85
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb85
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb85
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb85
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb85
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb86
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb86
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb86
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb86
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb86
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb87
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb88
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb88
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb88
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb89
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb89
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb89
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb89
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb89
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb90
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb90
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb90
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb90
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb90
http://arxiv.org/abs/2304.09513


N. Wehner et al. Computer Networks 269 (2025) 111395 
[92] R. Zhao, M. Zhan, X. Deng, Y. Wang, Y. Wang, G. Gui, Z. Xue, Yet another 
traffic classifier: A masked autoencoder based traffic transformer with multi-
level flow representation, in: Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 37, 2023, pp. 5420–5427, 4.

[93] Z. Shi, N. Luktarhan, Y. Song, G. Tian, BFCN: A novel classification method of 
encrypted traffic based on BERT and CNN, Electronics 12 (3) (2023) 516.

[94] Z. Hang, Y. Lu, Y. Wang, Y. Xie, Flow-MAE: Leveraging masked AutoEncoder 
for accurate, efficient and robust malicious traffic classification, in: Proceedings 
of the 26th International Symposium on Research in Attacks, Intrusions and 
Defenses, 2023, pp. 297–314.

[95] J. Devlin, Bert: Pre-training of deep bidirectional transformers for language 
understanding, 2018, arXiv preprint arXiv:1810.04805.

[96] D. Wu, X. Wang, Y. Qiao, Z. Wang, J. Jiang, S. Cui, F. Wang, NetLLM: Adapting 
large language models for networking, in: Proceedings of the ACM SIGCOMM 
2024 Conference, 2024, pp. 661–678.

[97] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, 
Lora: Low-rank adaptation of large language models, 2021, arXiv preprint 
arXiv:2106.09685.

[98] T. Wang, X. Xie, L. Zhang, C. Wang, L. Zhang, Y. Cui, ShieldGPT: An LLM-
based framework for DDoS mitigation, in: Proceedings of the 8th Asia-Pacific 
Workshop on Networking, 2024, pp. 108–114.

[99] Q. Wang, C. Qian, X. Li, Z. Yao, G. Zhou, H. Shao, Lens: A foundation model 
for network traffic, 2024, arXiv preprint arXiv:2402.03646.

[100] S. Guthula, R. Beltiukov, N. Battula, W. Guo, A. Gupta, netFound: Foundation 
model for network security, 2023, arXiv preprint arXiv:2310.17025.

[101] R. Bommasani, D.A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M.S. 
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., On the opportunities and 
risks of foundation models, 2021, arXiv preprint arXiv:2108.07258.

[102] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida, 
J. Altenschmidt, S. Altman, S. Anadkat, et al., Gpt-4 technical report, 2023, 
arXiv preprint arXiv:2303.08774.

[103] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. 
Rolland, L. Gustafson, et al., Sam 2: Segment anything in images and videos, 
2024, arXiv preprint arXiv:2408.00714.
18 
[104] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, I. 
Sutskever, Zero-shot text-to-image generation, in: International Conference on 
Machine Learning, PMLR, 2021, pp. 8821–8831.

[105] G. Mai, W. Huang, J. Sun, S. Song, D. Mishra, N. Liu, S. Gao, T. Liu, G. Cong, 
Y. Hu, et al., On the opportunities and challenges of foundation models for 
geospatial artificial intelligence, 2023, arXiv preprint arXiv:2304.06798.

[106] M. Moor, O. Banerjee, Z.S.H. Abad, H.M. Krumholz, J. Leskovec, E.J. Topol, 
P. Rajpurkar, Foundation models for generalist medical artificial intelligence, 
Nature 616 (7956) (2023) 259–265.

[107] A. Vaswani, Attention is all you need, Adv. Neural Inf. Process. Syst. (2017).
[108] S.-A. Chen, C.-L. Li, N. Yoder, S.O. Arik, T. Pfister, Tsmixer: An all-mlp 

architecture for time series forecasting, 2023, arXiv preprint arXiv:2303.06053.
[109] V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, J. Kalagnanam, Tsmixer: 

Lightweight mlp-mixer model for multivariate time series forecasting, in: 
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and 
Data Mining, 2023, pp. 459–469.

[110] M. Seufert, R. Schatz, N. Wehner, P. Casas, Quicker or not?-an empirical 
analysis of quic vs tcp for video streaming qoe provisioning, in: 2019 22nd 
Conference on Innovation in Clouds, Internet and Networks and Workshops, 
ICIN, IEEE, 2019, pp. 7–12.

[111] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, P. Tran-Gia, A survey on 
quality of experience of HTTP adaptive streaming, IEEE Commun. Surv. Tutor. 
17 (1) (2014) 469–492.

[112] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman, In-
network machine learning using programmable network devices: A survey, IEEE 
Commun. Surv. Tutor. 26 (2) (2023) 1171–1200.

[113] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Ratnasamy, 
S. Shenker, Revisiting network support for RDMA, in: Proceedings of the 2018 
Conference of the ACM Special Interest Group on Data Communication, 2018, 
pp. 313–326.

[114] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A buffer-based 
approach to rate adaptation: Evidence from a large video streaming service, in: 
Proceedings of the 2014 ACM Conference on SIGCOMM, 2014, pp. 187–198.

[115] N. Wehner, T. Karagioules, E. Halepovic, F. Simonovski, T. Hossfeld, M. Seufert, 
To cap or not to cap: Bandwidth capping effects on network interactions 
and QoE of competing short video streams, in: Proceedings of the 16th ACM 
Multimedia Systems Conference, 2025, pp. 90–100.

http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb92
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb93
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb93
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb93
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb94
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb96
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb96
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb96
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb96
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb96
http://arxiv.org/abs/2106.09685
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb98
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb98
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb98
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb98
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb98
http://arxiv.org/abs/2402.03646
http://arxiv.org/abs/2310.17025
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2408.00714
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb104
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb104
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb104
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb104
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb104
http://arxiv.org/abs/2304.06798
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb106
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb106
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb106
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb106
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb106
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb107
http://arxiv.org/abs/2303.06053
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb109
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb110
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb111
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb111
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb111
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb111
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb111
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb112
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb112
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb112
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb112
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb112
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb113
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb114
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb114
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb114
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb114
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb114
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115
http://refhub.elsevier.com/S1389-1286(25)00362-7/sb115

	Exploring the application of Time Series Foundation Models to network monitoring tasks
	Introduction
	Related Work
	QoE Estimation from Encrypted Network Traffic
	Generative Artificial Intelligence for Time Series
	Generative Artificial Intelligence for Networks

	Time Series Foundation Models
	Overview
	Implementation

	Data & Preprocessing
	Datasets
	Preprocessing
	Inputs
	Encoding
	Labels

	Zero-Shot Learning
	Baseline
	Impact of Scaling
	Impact of Features
	Impact of Traffic Granularity
	Impact of Number of Context Samples
	Impact of Measurement Points
	Inference Times

	Few-Shot Learning
	Baseline
	Impact of Number of Epochs
	Impact of Granularity
	Training Times

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


