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A B S T R A C T

We investigate the percolation properties of a planar reinforced network model. In this model, at every time step, every vertex chooses 𝑘 ⩾ 1
incident edges, whose weight is then increased by 1. The choice of this 𝑘-tuple occurs proportionally to the product of the corresponding edge 
weights raised to some power 𝛼 > 0.

Our investigations are guided by the conjecture that the set of infinitely reinforced edges percolates for 𝑘 = 2 and 𝛼 ≫ 1. First, we study the 
case 𝛼 = ∞, where we show the percolation for 𝑘 = 2 after adding arbitrarily sparse independent sprinkling and also allowing dual connectivities. 
We also derive a finite-size criterion for percolation without sprinkling. Then, we extend this finite-size criterion to the 𝛼 < ∞ case. Finally, we 
verify these conditions numerically.

1. Introduction

We target the interesting though challenging question which mechanism gives networks the shape and property they have. 
This has been addressed from various perspectives. A challenge for mathematicians is the rigorous derivation of global network 
properties from local interactions. The topic of this paper is to propose a network model giving rise to global connectivities based 
on a mechanism of local self-enhancement. More precisely, we consider a model where vertices are given a priori, and it is the edges 
that are forming according to preferential attachment. 

The motivation for our network layout comes from neural networks. The vertices indicate neural cells whilst edges represent 
neural connections through axons. Neuroplasticity postulates that neural connections are strengthened through usage, and a neural 
connection that has been used frequently is thus more likely to be used in the future. A strong form of neuroplasticiy has been 
suggested by Markram et al. as tabula-rasa hypothesis [1]. There they start from a theoretical all-to-all connectivity, and then 
enhance the links between cells upon usage to ultimately become functional connections (synapses), whereas rarely used links 
deteriorate. The new research field of graph-based reinforcement models aims to understand the mathematical feasibility of such 
scenarios. 

In this work, we propose a percolating model of graph-based reinforcement, which is based on the idea of 𝑘-out networks. The 
evolution of the network takes place in rounds, i.e., discrete time steps. In each round, each vertex 𝑧 ∈ Z𝑑 reinforces precisely 
𝑘 of its incident edges. The selection of such a 𝑘-tuple is proportional to the product of the current edge weights raised to some 
reinforcement parameter 𝛼 > 0, see Section 2.2 below for a precise model definition. We also consider the setting where only 
the maximal-weight edges incident to a node are eligible for reinforcement. As we will explain in more detail below, this can be 
considered as the case 𝛼 = ∞, where even a small weight difference makes an edge infinitely stronger than another one with lower 
weight.

∗ Corresponding author.
E-mail addresses: gideon.amir@biu.ac.il (G. Amir), markus.heydenreich@uni-a.de (M. Heydenreich), hirsch@math.au.dk (C. Hirsch).
https://doi.org/10.1016/j.spa.2025.104706
Received 29 July 2024; Received in revised form 27 March 2025; Accepted 19 May 2025
vailable online 4 June 2025 
304-4149/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/spa
https://www.elsevier.com/locate/spa
https://orcid.org/0000-0001-7738-0441
https://orcid.org/0000-0002-3749-7431
https://orcid.org/0000-0003-4136-3740
mailto:gideon.amir@biu.ac.il
mailto:markus.heydenreich@uni-a.de
mailto:hirsch@math.au.dk
https://doi.org/10.1016/j.spa.2025.104706
https://doi.org/10.1016/j.spa.2025.104706
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2025.104706&domain=pdf
http://creativecommons.org/licenses/by/4.0/


G. Amir et al. Stochastic Processes and their Applications 189 (2025) 104706 
Our main focus is the question of percolation of the set of infinitely-reinforced edges, which we denote by ∞. More specifically, 
we concentrate on the case 𝑑 = 𝑘 = 2. Here, our overarching conjecture is that percolation occurs once 𝛼 is sufficiently large. 
Our main result, Theorem  3 below, is a major step towards this conjecture in the case 𝛼 = ∞. More precisely, we show that there 
is percolation after an arbitrarily sparse sprinkling of independent open edges when using a modified notion of connectivity that 
will be specified precisely below. Here, the sprinkling means that we consider the union of ∞ with an i.i.d. 𝜀-bond percolation on 
Z𝑑 . Moreover, we provide several rigorously proven finite-range criteria for percolation, for which we then obtain overwhelming 
numerical evidence by Monte Carlo simulation. All of these results are stated in full detail in Section 2 below.

We conclude the present introduction by elaborating on the connections of our work to two vibrant fields of research, namely 
(i) graph-based reinforcement, and (ii) dependent models for percolation, especially those violating the FKG condition.

Graph-based reinforcement. Pioneering works in the area of graph-based reinforcement are [2,3] where the reinforcement is 
set on the vertices of the graph. In the context of neuroscience, it is more natural to consider edge-based reinforcement, and those 
were introduced in the seminal work [4]. One of the major drawbacks of this model is that even for 𝛼 ≫ 1, it does not give rise to 
percolating structures [5]. Percolation could be achieved when relying on tree-based models [6,7]. However, this imposes already 
very strong a priori structures. An interesting alternative form of graph reinforcement comes from ant-based walks [8,9].

Percolation without FKG. In recent years, the investigation of dependent percolation models has attracted considerable 
attention. We refer the reader to [10] and references therein. However, although a broad range of models has been considered, 
the vast majority satisfies the FKG inequality, i.e., positive correlation of increasing events. When considering questions beyond the 
validity of the FKG inequality, only a few isolated results are available. The results treated in [11,12] fundamentally rely on the 
Gaussian field and Poisson point process setting, respectively, and therefore do not apply in our setting. To solve this problem in 
our setting, we develop a completely novel stochastic domination property.

While our investigation concerns a reinforced model for 𝑘-out percolation, we stress here that already the question of independent
𝑘-out percolation has been the topic of vigorous research. More precisely, to put our investigation into perspective, we first review 
the independent 𝑘-out model discussed in [13]. Here, at each site 𝑧 ∈ Z𝑑 , we select independently and uniformly at random a 
𝑘-element subset 𝐸(𝑘)

𝑧  of all bonds incident at 𝑧. We let 𝐺𝑑
𝑘 =

⋃

𝑧∈Z𝑑 𝐸(𝑘)
𝑧  denote the random graph obtained as the union of all these 

bonds. Then, we let
𝑘𝑐 (𝑑) ∶= min{𝑘 ⩾ 1∶P(𝐺𝑑

𝑘 percolates) > 0}

denote the smallest value of 𝑘 ⩾ 1 such that 𝐺𝑑
𝑘 percolates, noting that 𝑘𝑐 (𝑑) ⩽ 𝑑 + 1. A key property of this model is the negative 

correlation of the vacant edges. 

Proposition 1 (Percolation of Independent 𝑑-out Percolation on Z𝑑 ; [13]).  For every 𝑑 ⩾ 3, we have that 𝑘𝑐 (𝑑) ⩽ 3. Moreover, 𝑘𝑐 (2) = 2. 
The rest of the manuscript is organized as follows. In Section 2, we give a detailed description of our 𝑘-out percolation model 

and state all our main results. Section 3 contains the proof of a crucial domination property. In Section 4, we prove a sprinkling 
result by establishing a sharp phase transition and combining it with the domination result. Subsequently, in Section 5, we derive 
certain finite-size criteria for percolation, for which we then present overwhelming numerical evidence in Section 6.

2. Model and main results

In this work, we consider a reinforced model for 𝑘-out percolation, which depends on a reinforcement parameter 𝛼 > 0. First, in 
Section 2.1, we focus on the case 𝛼 = ∞. Then, in Section 2.2, we consider the setting of finite 𝛼.

2.1. The case 𝛼 = ∞

In this model, we assign weights (𝑊𝑒) to the edges 𝐸 of the hyper-cubic lattice Z𝑑 = (𝑉 ,𝐸), which evolve in discrete time steps. 
Initially, all edges have weight 𝑊𝑒(0) = 1. Then, at every discrete time 𝑡 ⩾ 1 the weights are updated as follows.

(1) At every site 𝑧 ∈ 𝑉 , we select one tuple 𝜎 ∈ 𝐸(𝑘)
𝑧 , where 𝐸(𝑘)

𝑧  denote the family of 𝑘-tuples of edges incident to 𝑧: we order 
all adjacent edges 𝑒1,… , 𝑒2𝑑 according to their momentary weights 𝑊𝑒1 (𝑡),… ,𝑊𝑒2𝑑 (𝑡) in decreasing order (breaking ties by 
independent coin flips). We set 𝜎 to be the 𝑘-tuple consisting of first 𝑘 of these edges in this decreasing order.

(2) The weight 𝑊𝑒 of each edge 𝑒 ∈ 𝜎 is then increased by the number of times it was selected. This selection is done 
simultaneously for all vertices 𝑧 ∈ 𝑉  based on the weights {𝑊𝑒(𝑡)}𝑒∈𝐸 . As it can happen that an edge is selected by each 
of its two endpoints, one has 𝑊𝑒(𝑡 + 1) −𝑊𝑒(𝑡) ∈ {0, 1, 2}.

This results in the ‘‘final’’ configuration 
∞ ∶=

{

𝑒 ∈ 𝐸 ∶ lim inf
𝑡↑∞

(𝑊𝑒(𝑡) −𝑊𝑒(𝑡 − 1)) ⩾ 1
}

(1)

of edges that are eventually reinforced in every round. Our arguments in Section 3 show that this set coincides with the set of edges 
that are reinforced infinitely often. The same set of arguments shows that our percolation model is stochastically dominated by the 
independent 𝑘-out model mentioned in Proposition  1. This is explained in the proof of Proposition  7 below.

To simplify the terminology, we call an edge 𝑒 ∈ 𝐸 open if 𝑒 ∈ ∞ and closed otherwise. As elucidated in the introduction, we 
hypothesize that   percolates for 𝑑 = 𝑘 = 2. That is, we make the following conjecture.
∞
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Fig. 1. Illustration of the crossings in an (𝑀,𝑛)-open rectangle.

Conjecture 2 (Percolation for 𝑑 = 𝑘 = 2).  Assume that 𝑑 = 𝑘 = 2. Then, P(∞ percolates) = 1.

The aim of this work is to present a series of results supporting this core conjecture. First, superpose the edges of interest it with 
some sprinkling, i.e., by adding an independent Bernoulli percolation process with some small parameter 𝜀 > 0. We write 𝜀,𝗌𝗉𝗋 for 
the sprinkled set of edges and put ∞,𝜀 ∶= ∞ ∪ 𝜀,𝗌𝗉𝗋. Adding the sprinkled edges makes it substantially easier to find an infinite 
connected component. One of the striking properties of planar Bernoulli bond percolation is its self-duality. While our dependent 
model is still planar, it is no longer self-dual. This means that when applying classical techniques from percolation theory, the 
implications are often different than in Bernoulli bond percolation. However, for our argument to work, we still need to allow the 
alternative that there is an infinite component where the adjacency notation from the original lattice is replaced by the adjacencies 
from the dual lattice. That is, two edges of Z2 are dually adjacent if there exists 𝑧 ∈ Z2 such that 𝜕(𝑧 + [0, 1]2) contains both edges.

We say that the model percolates if there exists an infinite sequence of distinct edges (𝑒0, 𝑒1, 𝑒2,…) in ∞ such that for all 𝑖 ∈ N, 
we have that 𝑒𝑖−1 and 𝑒𝑖 are adjacent. We further say that the model percolates dually if there exists an infinite sequence of distinct 
edges (𝑒0, 𝑒1, 𝑒2,…) in ∞ such that for all 𝑖 ∈ N, we have that 𝑒𝑖−1 and 𝑒𝑖 are dually adjacent. 

Theorem 3 (Percolation of the Model with Sprinkling).  Let 𝑑 = 𝑘 = 2 and 𝜀 > 0. Then,
P(∞,𝜀 percolates) = 1  or P(∞,𝜀 percolates dually) = 1.

The proof of Theorem  3 relies fundamentally on the OSSS inequality from [14]. In order to apply it, we need to derive bounds on 
influences and revealment probabilities. Here, we note that the influences are intimately related to probabilities of pivotal events, 
which have been studied for geometrically challenging models such as Voronoi percolation [15]. However, the arguments of [15] 
heavily rely on the FKG inequality, which is not available for our model. While recently, there has been progress in applying the 
OSSS inequality in models without FKG inequality [11,16], these arguments are highly model dependent and do not extend to 
the present setting. We will address this challenge through a completely novel stochastic domination property in our setting, see 
Proposition  7 below. It is when extending the techniques of [11,16] to our model that the finite range of dependence will be crucial.

Conjecture  2 is a percolation result for a model with parameter 𝑘, which is similar to the continuous model considered in [17]. 
Here points of a Poisson point process are connected to their 𝑘 ⩾ 1 nearest neighbors. To study this percolation process, the authors 
develop a rigorous finite-size criterion, which is then verified ‘‘with high confidence’’ through a simulation.

We next aim to transfer this finite-size approach to our situation, similar adaptations were considered in [18,19]. The key idea 
is to identify edges 𝑒, where it is already possible to say after a finite number of rounds whether 𝑒 ∈ ∞. More precisely, an edge is 
after 𝑛 ⩾ 1 rounds

(1) certainly vacant if it is reinforced at most 𝑛 − 1 times;
(2) potentially occupied if it is reinforced precisely 𝑛 times;
(3) certainly occupied if it is reinforced at least 𝑛 + 1 times. Moreover, if a node is incident to two certainly vacant edges, then 

the remaining two edges are also 𝑛-certainly occupied.

The reason for this terminology is that as shown in the proof of Lemma  8, if an edge is certainly occupied, then it is eventually 
reinforced in every round. Similarly, if an edge is certainly vacant, it is only reinforced a finite number of times.

Given 𝑀 > 2𝑛 we say that a 2𝑀×𝑀 rectangle is (𝑀,𝑛)-open if there exist a horizontal crossing of the central ((2𝑀−2𝑛)×(𝑀−2𝑛))-
rectangle and vertical crossings of the left and right ((𝑀 − 2𝑛) × (𝑀 − 2𝑛))-squares in the central rectangle, all consisting only of 
edges that are certainly occupied after 𝑛 rounds. 

Fig.  1 shows the crossings of the central rectangle. Henceforth, we often think of the (2𝑀 ×𝑀)-rectangle as being a horizontal 
edge in a coarse-grained lattice.

Having introduced the notion of (𝑀,𝑛)-openness, 𝑛 < 𝑀∕2, we define 𝐸𝖿𝗌,∞(𝑀,𝑛) as the event that the coarse-grained edge 
(0, 0) → (1, 0) is (𝑀,𝑛)-open. Then, we show that if P(𝐸𝖿𝗌,∞(𝑀,𝑛)) > 0.8457, then P(∞ percolates) = 1. The deeper reason behind 
the value 0.8457 is the recent paper [20, Theorem 1], which shows that any 1-dependent 2D bond percolation model percolates if 
the marginal probability exceeds this value.
3 
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Theorem 4 (Finite-Size Criterion).  Let 𝑑 = 𝑘 = 2 and 1 ⩽ 𝑛 < 𝑀∕2 be such that P(𝐸𝖿𝗌,∞(𝑛)) > 0.8457. Then,

P(∞ percolates) = 1.

Using Monte Carlo simulation with 𝑀 = 40 and 𝑛 = 4, we verify numerically that with a certainty exceeding 1 − 10−300, the 
finite-size crossing probability in Theorem  4 indeed exceeds the threshold 0.8457 of 1-dependent percolation, this is explained in 
Section 6.

2.2. The case 𝛼 < ∞

Next, we deal with the case 𝛼 < ∞. We go through the algorithm for the weight evolution similarly as in the case where 𝛼 = ∞
and again initialize the weights with 𝑊𝑒(0) = 1 for every 𝑒 ∈ 𝐸. Then, for each 𝑡 ⩾ 1, we carry out the following updates

(1) At every site 𝑧 ∈ Z𝑑 , we select one tuple 𝜎 ∈ 𝐸(𝑘)
𝑧  whose edge weights are increased by 1.

(2) These edges are selected with probability proportional to ∏𝑒∈𝜎 𝑊𝑒(𝑡 − 1)𝛼 .

In the limiting case 𝛼 = ∞, we recover the simplified reinforcement mechanism discussed above. Therefore, it is plausible to extend 
Conjecture  2 from 𝛼 = ∞ to the case of large but finite 𝛼.

Conjecture 5 (Percolation of Reinforced 2-Out Percolation on Z2; Finite 𝛼).  Assume that 𝑑 = 𝑘 = 2. Then, there exists 𝛼0 > 0 such that 
P(∞ percolates) = 1 whenever 𝛼 > 𝛼0.

As before, we add independent sprinkling on the edges with a sprinkling probability 𝑝𝗌𝗉𝗋 > 0. As in the case of 𝛼 = ∞, we consider 
then the union ∞,𝜀 ∶= ∞ ∪ 𝜀,𝗌𝗉𝗋 of edges that are reinforced infinitely often together with the sprinkled edges.

Ideally, as a first step, we would like to present a finite-size criterion as in Theorem  4. The key difficulty is that now, it is 
more complicated to identify edges where we know that they will be reinforced either finitely or infinitely often. For instance, if an 
edge has weight 1 after 10 rounds, it could still happen (although extremely unlikely) that it will still be reinforced in each of the 
following 100 rounds.

Hence, we need to introduce a process of corrupted vertices to take into account such effects. More precisely, let 𝑝∗ ∈ [0, 1] be a 
fixed (small) corruption probability. Then, each vertex incident to at least one edge of weight at most 𝑛 after 𝑛 rounds is declared 
𝑛-corrupted independently with probability 𝑝∗. Having introduced the corrupted vertices, we can now extend the concept of certainly 
occupied edges. More precisely, after 𝑛 ⩾ 1 rounds, we say that an edge that is not incident to a corrupted vertex is 

• certainly vacant if it is reinforced at most 𝑛 − 1 times;
• certainly occupied if it is not certainly vacant and is incident to a node which itself is incident to two certainly vacant edges. 

To introduce the finite-size criterion, we now proceed in the same way as in 𝛼 = ∞. Again, to avoid boundary effects, we consider 
a central rectangle (2𝑀 − 2𝑛) × (𝑀 − 2𝑛) rectangle with edges that are certainly occupied after 𝑛 rounds. Then, we say again that it 
is (𝑀,𝑛)-open if there exist the three types of crossings considered in the case 𝛼 = ∞. Now, we say that a horizontal edge between 
(𝑥, 𝑦) and (𝑥+1, 𝑦) is (𝑀,𝑛)-open if the rectangle [𝑀𝑥−𝑀,𝑀𝑥+𝑀) × [𝑀𝑦−𝑀∕2,𝑀𝑦+𝑀∕2) has this property in the above sense. 
Similarly, we define the openness of vertical edges. Now, we let 𝐸𝖿𝗌,𝛼 = 𝐸𝖿𝗌,𝛼(𝑛) denote the event that the coarse-grained edges 
(0, 0) → (1, 0) is (𝑀,𝑛)-open with corruption probability 𝑝∗ set as 

𝑝∗(𝛼, 𝑛) ∶= 1 ∧
(

(𝑛 − 1)𝛼
∑

𝑗⩾𝑛
𝑗−𝛼

)

. (2)

We note that the infinite sum cannot be evaluated in closed forms. However, it would be possible to present closed-form bounds 
through suitable integral bounds. For fixed 𝑛, we can (and will) choose 𝛼 so that 𝑝∗ is sufficiently small.

Theorem 6 (Percolation of Reinforced 2-Out Percolation on Z2; 𝛼 ≫ 0).  Let 𝑑 = 𝑘 = 2. Furthermore, assume that 𝛼 > 0 and 𝑛 are such 
that P(𝐸𝖿𝗌,𝛼(𝑛)) > 0.8457. Then, P(|∞| = ∞) = 1.

We note that the bound on 𝑝∗ is the result of a comparison with a strongly-reinforced Pólya urn process, which we elaborate on in 
Lemma  15 below. Again, in Section 6, we provide overwhelming evidence from Monte Carlo simulations that P(𝐸𝖿𝗌,𝛼,𝑝∗ (𝑛)) > 0.8457.

Finally, we stress again that the difficulty of analyzing the reinforced model is that it exhibits long-range dependencies and does 
not satisfy the FKG inequality. This means that the vast majority of the standard percolation arguments break down for this model. 
Nevertheless, in the case 𝛼 = ∞, the model enjoys the following intriguing domination property.

Proposition 7 (Domination of ∞ When 𝛼 = ∞).  If 𝛼 = ∞, then the random set ∞ stochastically dominates 𝐸 ⧵ ∞. 

It is unclear if the stochastic-domination property holds for 𝛼 < ∞. However, we believe that an analog of Proposition  7 could 
be possible for a clever choice of the finite reinforcement function.
4 
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3. Proof of Proposition  7

We will describe a new colored process, equivalent to our original reinforcement process for 𝛼 = ∞, from which the derivation 
of Proposition  7 will be straightforward. In this colored process, each edge 𝑒 ∈ 𝐸(Z𝑑 ) has a blue counter 𝑏𝑡(𝑒) and a red counter 
𝑟𝑡(𝑒) that increase with time. At the beginning we set 𝑟0(𝑒) = 𝑏0(𝑒) = 1 for all edges.

At each step, every vertex chooses 𝑑 of its adjacent edges, which increase their blue counter by 1, and the other 𝑑 increase their 
red counter by 1. The choice is made according to the same reinforcement mechanism as in our regular process — we choose the 
𝑑 edges incident to 𝑣 with the highest 𝑏(𝑒) values and increase their blue counter, breaking ties by choosing uniformly at random, 
while all the other 𝑑 incident edges increase their red counter. Set

𝐵𝑛 ∶= {𝑒 ∶ 𝑏𝑛(𝑒) > 𝑛 + 1}, 𝑅𝑛(𝑒) ∶= {𝑒 ∶ 𝑟𝑛(𝑒) > 𝑛 + 1},  and 𝑈𝑛 ∶= {𝑒 ∶ 𝑏𝑛(𝑒) = 𝑛 + 1}.

Finally set
𝐵∞ ∶=

⋃

𝑛
𝐵𝑛, 𝑅∞ ∶=

⋃

𝑛
𝑅𝑛 and 𝑈∞ =

⋂

𝑛
𝑈𝑛.

We make the following simple observations: 

Lemma 8. 
(1) For every edge 𝑒 and every 𝑛 ⩾ 0, 𝑏𝑛(𝑒) + 𝑟𝑛(𝑒) = 2𝑛 + 2.
(2) For every 𝑛 ⩾ 0, it holds that 𝐵𝑛 ⊔ 𝑅𝑛 ⊔ 𝑈𝑛 = Z𝑑 , where ⊔ means that the union is disjoint.
(3) 𝐵𝑛, 𝑅𝑛 are increasing sequences, 𝑈𝑛 is decreasing.
(4) 𝐵∞ ∪ 𝑅∞ ∪ 𝑈∞ = Z𝑑 .
(5) 𝐵𝑛 and 𝑅𝑛 have the same distribution, 𝐵∞ and 𝑅∞ have the same distribution.
(6) 𝐵∞ ∪ 𝑈∞ = {𝑒 ∶ 𝑏𝑛(𝑒) → ∞}, 𝑅∞ ∪ 𝑈∞ = {𝑒 ∶ 𝑟𝑛(𝑒) → ∞}.

Before proving Lemma  8, we explain how to deduce Proposition  7, where the main step will be to identify the models in such a 
way that ∞ = 𝐵∞ ∪ 𝑈∞. This identification also gives that 𝑅1 ∩ ∞ = ∅, which implies that our model is stochastically dominated 
by the independent 𝑘-out model with 𝑘 = 𝑑.

Proof of Proposition  7. The connection to our reinforcement model comes by looking only at the blue counters. Under this 
identification we get that 𝐵𝑛 is the set of all certainly occupied edges and 𝑅𝑛 is the set of certainly vacant edges at time 𝑛. Also 
∞ = 𝐵∞ ∪ 𝑈∞. The claim now follows directly from clause (4) of Lemma  8. □

Now, we give the proof of Lemma  8.

Proof of Lemma  8. 
(1) The assertion follows from the fact that each edge gets either a red counter or a blue counter from each of its endpoints.
(2) Clause (1) implies that 𝑅𝑛, 𝐵𝑛, 𝑈𝑛 are a disjoint partition of E(Z𝑑 ).
(3) We will show this for 𝐵𝑛, and 𝑅𝑛 follows by symmetry. Take some edge 𝑒 = (𝑣+, 𝑣−) ∈ 𝐵𝑛 and consider the first time 𝑚 < 𝑛

for which 𝑒 ∈ 𝐵𝑚+1. Then at time 𝑚, the edge 𝑒 got a blue counter from both its endpoints.  Therefore, 𝑏𝑚(𝑒) was greater 
or equal to the median of the blue counters of the edges incident to 𝑣+ (at time 𝑚). Since the blue counter of any edge can 
increase by at most 2 at every step, it follows that 𝑏𝑚+1(𝑒) is strictly larger than the 𝑑 lowest blue counters of edges incident 
to 𝑣+ (and similarly for 𝑣−). As a consequence, the edge 𝑒 will keep being chosen by both 𝑣+ and 𝑣− for all rounds 𝑘 ⩾ 𝑚+1. 
This implies that 𝑒 ∈ 𝐵𝑘 for all 𝑘 ⩾ 𝑚 + 1. Finally, the fact that 𝑈𝑛 is decreasing now follows from clause (2).

(4) Clause (3) implies that the unions defining 𝐵∞ and 𝑅∞ are increasing, and that the intersection defining 𝑈∞ is decreasing. 
Therefore, the statement follows from clause (2).

(5) By clause (1), choosing the edges with the highest blue counter is the same as not choosing those with the highest red counter. 
This makes the definition of the process symmetric w.r.t. flipping the colors.

(6) This follows from a similar argument to the monotonicity clause (2). □

4. Proof of Theorem  3

In this section, we prove Theorem  3. That is, we show that percolation occurs in the dual or original lattice after adding arbitrarily 
sparse independent sprinkling. In (1), we defined the set ∞ of edges that are eventually reinforced in every round. One challenge 
of dealing with this set is that it has an unbounded range of dependencies. To overcome this difficulty, we now introduce an 
approximated version 𝑁  of the set ∞ after a finite number of 𝑁 ⩾ 1 rounds. We say that an edge 𝑒 is 𝑁-potentially occupied (and 
write 𝑒 ∈ 𝑁 ) given the configuration after 𝑁 rounds if it is still possible with positive probability that 𝑒 ∈ ∞. Further, we call an 
edge 𝑒 strictly 𝑁-potentially occupied if 𝑒 ∈ 𝑁 ⧵ ∞. The main idea is to show percolation for each of the approximated sets 𝑁  and 
then to use a stochastic domination result to control the difference 𝑁 ⧵ ∞.

This strategy is similar to that used in [15], where the authors prove a similar result for Voronoi percolation. The key similarity 
is that both Voronoi percolation and our model are spatial percolation models with exponential decay of correlations.

To summarize, the proof of Theorem  3 relies on two central results, namely Propositions  9 and 10 below.
5 
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Proposition 9 (Sharp Threshold for Approximation).  Fix 𝑁 ⩾ 1 and let 𝑝𝗌𝗉𝗋(𝑁) denote the critical sprinkling probability in the 
𝑁-approximated model. Then, for 𝑝 < 𝑝𝗌𝗉𝗋(𝑁), the diameter of the clusters has exponentially decaying tails. 

Let 𝑆𝑁  denote the collection of sites that are incident to at least one edge that is strictly 𝑁-potentially occupied. 

Proposition 10 (Stochastic Domination).  Let 𝑁 ⩾ 2. Then, 𝑆𝑁  is dominated by a Bernoulli site percolation process with marginal probability 
𝛿𝑁 = 6−𝑁∕2. 

We first discuss how to prove Theorem  3 subject to the validity of Propositions  9 and 10. Then, we prove these propositions in 
the subsequent subsections.

Proof of Theorem  3. Proposition  10 gives a stochastic domination of 𝑆𝑁  by a Bernoulli site percolation process with marginal 
probability 𝛿𝑁 . We first claim that from this result, we can conclude that the edges incident to sites in 𝑆𝑁  are stochastically 
dominated by a Bernoulli bond percolation process with probability √𝛿𝑁 . Indeed, consider an arbitrary finite edge set 𝐹 ⊆ 𝐸. 
Let 𝑉𝐹  denote the set of left or lower endpoints of the edges in 𝐹 . Then, by Proposition  10,

P(𝐹 ⊆ 𝑆𝑁 ) ⩽ 𝛿|𝑉𝐹 |𝑁 ⩽ 𝛿|𝐹 |∕2
𝑁 ,

thereby proving the claimed stochastic domination. A consequence is that 𝑁(𝜀) ⊆ ∞ ∪ 𝜀,𝗌𝗉𝗋 provided that 𝑁(𝜀) is so large that 
𝛿1∕2𝑁 ⩽ 𝜀. We also note that the independent superposition of two Bernoulli bond percolation processes with parameter 𝜀 > 0 is again 
a Bernoulli bond percolation process, whose parameter is then 1 − (1 − 𝜀)(1 − 𝜀) = 2𝜀 − 𝜀2.

Now, to derive a contradiction, assume that for some 𝜀 > 0

P(∞ ∪ 2𝜀−𝜀2 ,𝗌𝗉𝗋 percolates) = P(∞ ∪ 2𝜀−𝜀2 ,𝗌𝗉𝗋 percolates dually) = 0.

Then, Proposition  10 implies that,
P(𝑁(𝜀) ∪ 𝜀,𝗌𝗉𝗋 percolates) = P(𝑁(𝜀) ∪ 𝜀,𝗌𝗉𝗋 percolates dually) = 0.

In other words, 𝜀 is a subcritical sprinkling probability both with respect to original and dual connectivities of the 𝑁(𝜀)-approximated 
model. In particular, 𝑁(𝜀) = 𝑁(𝜀) ∪ 0,𝗌𝗉𝗋 is in the strictly subcritical regime, where Proposition  9 guarantees the exponential tail 
decay of the cluster sizes.  In particular, by Proposition  9, both the sizes of the clusters with respect to the original connectivities 
and with respect to the dual connectivities have exponentially decaying tails. Consequently, the probability to have left–right vacant 
crossings of large squares tends to 1 as the side length of the square tends to infinity.

Now, by Proposition  7, the occupied edges dominate the vacant ones in  , thereby contradicting the exponential decay of the 
cluster sizes. □

We will prove Propositions  9 and 10 in Sections 4.1 and 4.2 below. For both results, it is convenient to describe more precisely 
how our model can be constructed as a factor of a model with independent inputs. First, we introduce an iid sequence {𝑈 𝑝𝗌𝗉𝗋

𝑒 }𝑒∈𝐸
that encodes the sprinkling of edges. More precisely, each 𝑈 𝑝𝗌𝗉𝗋

𝑒  is uniformly distributed in [0, 1] and the set of sprinkled edges is 
then given by

𝑋 ∶= {𝑒 ∈ 𝐸 ∶𝑈 𝗌𝗉𝗋
𝑒 ⩽ 𝑝𝗌𝗉𝗋},

Second, we attach to each site 𝑧 ∈ Z2 a sequence of iid decision variables 𝑈 (1)
𝑧 , 𝑈 (2)

𝑧 ,… . All variables are independent for different 
values of 𝑧 and also independent of the sprinkling variables 𝑋.

Given the configuration of edge reinforcements up to iteration 𝑛, the variable 𝑈 (𝑛)
𝑧  is used to decide which of the edges are 

reinforced by 𝑧 in iteration 𝑛. We write
𝑌𝑧 ∶= {𝑈 (𝑘)

𝑧 }𝑘⩾1

for the sequence of all decision variables at 𝑧. Then, we write 𝑌 ∶= {𝑌𝑧}𝑧∈Z2  for the collection of all 𝑌𝑧. Hence, the entire randomness 
of the model can be encoded in the pair

𝑍 ∶= (𝑋, 𝑌 ).

4.1. Proof of sharp thresholds for approximation – Proposition  9

We will deduce Proposition  9 from a differential inequality in the spirit of [10, Lemma 1.7]. We also write 𝜃𝑛(𝑝𝗌𝗉𝗋(𝑁)) for the 
probability that in the sprinkled model the connected percolation component of the origin has 𝓁∞-diameter exceeding 𝑛, which we 
denote as 𝑜 ↭ 𝜕𝐵𝑛.

To make the argumentation self-contained, we first give a general introduction to the OSSS inequality (after O’Donnell, Saks, 
Schramm and Servedio, [14]). In the presentation, we follow [21]. Let 𝑋 = (𝑋𝑖)𝑖∈𝐼  be a finite collection of independent random 
variables defined on some Borel spaces 𝛺𝑖 and let 𝑓 ∶

∏

𝑖∈𝐼 𝛺𝑖 → {0, 1} be measurable. Then,
𝖨𝗇𝖿 (𝑓 ) ∶= P(𝑓 (𝑊 ) ≠ 𝑓 (𝑊̃ )),
𝑖

6 
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denotes the influence of the 𝑖th coordinate, where 𝑊̃  results from 𝑊  by resampling the 𝑖th coordinate. The second ingredient to the 
OSSS inequality is an algorithm 𝑇  revealing the entries of 𝑊 . This is done sequentially where the index 𝑖 of the next variable 𝑊𝑖
to be revealed is chosen based on the already revealed values. The algorithm stops once the value of 𝑓 (𝑊 ) is determined by the 
already revealed values. Now,

𝛿𝑖(𝑇 ) ∶= P(𝑇  reveals 𝑊𝑖)

denotes the probability that the algorithm 𝑇  reveals 𝑊𝑖. Then, the OSSS inequality states that 
𝖵𝖺𝗋(𝑓 (𝑊 )) ⩽

∑

𝑖∈𝐼
𝛿𝑖(𝑇 )𝖨𝗇𝖿 𝑖(𝑓 ). (3)

Proposition 11 (Differential Inequality).  There exists 𝑐𝖣𝗂𝖿𝖿 > 0 such that for every 𝑛 ⩾ 1 and 𝑝𝗌𝗉𝗋 > 0 we have
d

d𝑝𝗌𝗉𝗋
𝜃𝑛(𝑝𝗌𝗉𝗋) ⩾ 𝑐𝖣𝗂𝖿𝖿

𝑛
∑

𝑠⩽𝑛 𝜃𝑠(𝑝𝗌𝗉𝗋)
𝜃𝑛(𝑝𝗌𝗉𝗋)(1 − 𝜃𝑛(𝑝𝗌𝗉𝗋)).

We note that once Proposition  11 is established, the derivation of the sharp-threshold property asserted in Proposition  9 is 
standard. However, to make our presentation self-contained, we repeat the derivation here. First, we reproduce a key technical 
lemma from [22, Lemma 3.7]. 

Lemma 12 ([22]). Consider a converging sequence of differentiable functions 𝑓𝑛 ∶ [0, 𝑝0] ⟶ [0,𝑀] which are increasing in 𝑥 and satisfy
𝑓 ′
𝑛 ⩾

𝑛
𝛴𝑛

𝑓𝑛

for all 𝑛 ⩾ 1, where 𝛴𝑛 =
∑𝑛−1

𝑘=0 𝑓𝑘. Then, there exists 𝑝1 ∈ [0, 𝑝0] such that

P1 For any 𝑝 < 𝑝1, there exists 𝑐𝑝 > 0 such that for any 𝑛 large enough, 𝑓𝑛(𝑝) ⩽ exp(−𝑐𝑝𝑛).
P2 For any 𝑝 > 𝑝1, 𝑓 = lim

𝑛→∞
𝑓𝑛 satisfies 𝑓 (𝑝) ⩾ 𝑝 − 𝑝1.

Next, we follow the arguments in [22] to deduce Proposition  9 from Proposition  11 and Lemma  12. 

Proof of Proposition  9. We fix first 𝑝0 ∈ (𝑝𝗌𝗉𝗋(𝑁)) and note that inf𝑝⩽𝑝0 1− 𝜃1(𝑝) > 0. Then, Proposition  11 shows that we can apply 
Lemma  12 to 𝑓𝑛 = (𝑐𝖣𝗂𝖿𝖿 (1 − 𝜃1(𝑝0)))−1𝜃𝑛. Hence, we deduce that there exists 𝑝𝑐,1 ∈ [0, 𝑝0] such that

(1) For any 𝑝 < 𝑝𝑐,1, we have lim sup𝑛→∞ log 𝜃𝑛(𝑝) < 0.
(2) For any 𝑝 > 𝑝𝑐,1, we have 𝜃(𝑝) ⩾ 𝑝 − 𝑝𝑐,1.

Combining these two items shows that 𝑝𝑐,1 = 𝑝𝗌𝗉𝗋(𝑁) and therefore implies the asserted sharp threshold property. □

We apply the OSSS inequality to 𝑍 = (𝑋, 𝑌 ), which is indexed by 𝑧 ∈ Z𝑑 and 𝑒 ∈ 𝐸(Z𝑑 ). Hence, inequality (3) applied to an 
algorithm 𝑇  determining 𝑓𝑛 ∶= 1{𝑜 ↭ 𝜕𝐵𝑛} gives that 

𝜃𝑛(𝑝𝗌𝗉𝗋)(1 − 𝜃𝑛(𝑝𝗌𝗉𝗋)) = 𝖵𝖺𝗋(𝑓𝑛(𝑍)) ⩽
∑

𝑧∈Z𝑑

𝛿𝑧(𝑇 )𝖨𝗇𝖿𝑌𝑧 +
∑

𝑒∈𝐸(Z𝑑 )

𝛿𝑒(𝑇 )𝖨𝗇𝖿𝑋𝑒 . (4)

Henceforth, we rely on a specific algorithm 𝑇  from [10], which involves an additional randomization through a uniform integer 
𝑈 ∈ {1,… , 𝑛}. For the convenience of the reader, and to make the manuscript self-contained, we briefly recall the idea behind this 
algorithm. The idea is to explore the clusters by starting from 𝜕𝐵𝑈 . More precisely, we proceed as follows:

(1) Reveal the value of 𝑈𝑝𝗌𝗉𝗋
𝑒  for all edges incident to 𝜕𝐵𝑈 . Also reveal 𝑌𝑧 for all 𝑧 ∈ Z2 at 𝓁∞-distance at most 𝑁 from a point 

in 𝜕𝐵𝑈 .
(2) Suppose that the values of 𝑋𝑒1 ,… , 𝑋𝑒𝑘  and of 𝑌𝑧1 ,… , 𝑌𝑧𝓁  have already been revealed at the start of iteration 𝑡 of the algorithm. 

Let 𝑡 be the union of all connected components that are revealed by this iteration. Then, according to some arbitrary rule, 
we pick out some unrevealed site 𝑧0 that is incident to an edge in 𝑡. We then reveal the values of 𝑋𝑒 for any edge adjacent 
to 𝑧0. We also reveal the values of 𝑌𝑧 for all 𝑧 ∈ Z2 at 𝓁∞-distance at most 𝑁 from 𝑧0.

The proof of Proposition  11 relies on the following two central auxiliary results (Lemmas  13 and 14 below) concerning a 
comparison of the two influences, and a bound on the revealment probabilities, respectively. Let 𝐵𝑁 (𝑧) denote the box around 
𝑧 ∈ Z2 with 𝓁∞-radius 𝑁 ⩾ 1.

Lemma 13 (Comparison of Influences).  Let 𝑁 ⩾ 1. Then, there is 𝑐1 = 𝑐1(𝑑,𝑁) > 0 such that for every 𝑧 ∈ Z2, 𝖨𝗇𝖿𝑌𝑧 ⩽ 𝑐1
∑

𝑒⊆𝐵𝑁 (𝑧) 𝖨𝗇𝖿
𝑋
𝑒 . 

Lemma 14 (Bound on Revealment Probabilities).  Let 𝑁 ⩾ 1. Then, there is 𝑐2 = 𝑐2(𝑑,𝑁) > 0 with the following property. Let 𝑇  be the 
randomized algorithm starting the exploration from 𝜕𝐵𝑈 , with 𝑈 uniform in {1,… , 𝑛}. Then,

(

sup 𝛿𝑒(𝑇 )
)

∨
(

sup 𝛿𝑧(𝑇 )
)

⩽
𝑐2

∑

𝑠⩽𝑛 𝜃𝑠(𝑝𝗌𝗉𝗋)
𝑒∈𝐸 𝑧∈Z2 𝑛

7 
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Before proving Lemmas  13 and 14, we explain how to conclude the proof of Proposition  11. 

Proof of Proposition  11. First, by the OSSS inequality (4) and Lemmas  13 and 14, we obtain that
𝜃𝑛(𝑝𝗌𝗉𝗋)(1 − 𝜃𝑛(𝑝𝗌𝗉𝗋)) ⩽ 𝑐1𝑐2|𝐵𝑁 (𝑜)|𝑛−1

∑

𝑠⩽𝑛
𝜃𝑠(𝑝𝗌𝗉𝗋)

∑

𝑒∈𝐸(Z𝑑 )

𝖨𝗇𝖿𝑋𝑒 .

Now, Russo’s formula gives that
∑

𝑒∈𝐸(Z𝑑 )

𝖨𝗇𝖿𝑋𝑒 = d
d𝑝𝗌𝗉𝗋

𝜃𝑛(𝑝𝗌𝗉𝗋),

thereby concluding the proof. □

Hence, we now prove the auxiliary results Lemmas  13 and 14, starting with Lemma  13. The idea is similar to [15], where a 
comparison between different forms of pivotality also plays a crucial role. However, our situation is a bit simpler in the sense that 
𝑁-approximated model has bounded dependence range 𝑁 . 

Proof of Lemma  13. For 𝜎 ∈ {0, 1}, we introduce the event 𝐸𝖼𝗈𝖺𝗋𝗌𝖾,𝜎 ∶= {𝑓𝑛(𝑍𝜎 ) = 𝜎}, where 𝑍𝜎 denotes the configuration obtained 
from 𝑍 by setting 1 − 𝑈 𝗌𝗉𝗋

𝑒 ∶= 𝜎 for every 𝑒 ∈ 𝐸 ∩ 𝐵𝑁 (𝑧).
Now, using that the 𝑁-approximated model has dependence range 𝑁 , we see that if the resampling of 𝑌  at 𝑧 changes the value 

of 𝑓𝑛, then 𝐸𝖼𝗈𝖺𝗋𝗌𝖾 ∶= 𝐸𝖼𝗈𝖺𝗋𝗌𝖾,0 ∩ 𝐸𝖼𝗈𝖺𝗋𝗌𝖾,1 must occur. In other words, 𝖨𝗇𝖿𝑌𝑧 ⩽ P(𝐸𝖼𝗈𝖺𝗋𝗌𝖾). Hence, it suffices to relate the probability of 
𝐸𝖼𝗈𝖺𝗋𝗌𝖾 with the sum of the influences 𝖨𝗇𝖿𝑋𝑒  for 𝑒 ∈ 𝐵𝑁 (𝑧).

To achieve this goal, we write 𝑋∗ for the configuration of the model with the sprinkled edges 𝑋𝑒 replaced by independent copies 
for every 𝑒 ∈ 𝐵𝑁 (𝑧). Then, we let 𝐸𝖿 𝗂𝗇𝖾,− denote the event that in 𝑋 none of the edges in 𝐵𝑁 (𝑧) is sprinkled. We also let 𝐸𝖿 𝗂𝗇𝖾,+ denote 
the event that in the resampled configuration all edges in 𝐵𝑁 (𝑧) are sprinkled. Then, by independence and the definition of 𝐸𝖼𝗈𝖺𝗋𝗌𝖾,

𝑐P(𝐸𝖼𝗈𝖺𝗋𝗌𝖾) ⩽ P
(

𝐸𝖼𝗈𝖺𝗋𝗌𝖾 ∩ 𝐸𝖿 𝗂𝗇𝖾,− ∩ 𝐸𝖿 𝗂𝗇𝖾,+
)

⩽ P
(

𝑓𝑛(𝑋, 𝑌 ) ≠ 𝑓𝑛(𝑋∗, 𝑌 )
)

for some 𝑐 = 𝑐(𝑁) > 0. Noting that the right-hand side is bounded above by ∑𝑒⊆𝐵𝑁 (𝑧) 𝖨𝗇𝖿
𝑋
𝑒  concludes the proof. □

Hence, it remains to establish the revealment bounds asserted in Lemma  14. Here, we proceed similarly as in [10], noting that 
again the finite-range property of our model simplifies the argument.

Proof of Lemma  14. We only bound the revealment probability 𝛿𝑧(𝑇 ), as the bound on 𝛿𝑒(𝑇 ) is easier. The key observation is that 
if the randomized algorithm starts from exploring 𝜕𝐵𝑈  with 𝑈 = 𝑚 for some 𝑚 ⩽ 𝑛, then the following holds. If 𝑇  reveals the state 
of 𝑌𝑧 for some site 𝑧 ∈ Z2, then 𝜕𝐵𝑚 ↭ 𝐵𝑁 (𝑧). Therefore,

P(𝑇  reveals 𝑧) ⩽ P
(

𝜕𝐵𝑚 ↭ 𝐵𝑁 (𝑧)
)

⩽ 𝜃
|𝑚−|𝑧|∞|−𝑁 ,

where we use the convention 𝜃𝑘 = 1 for 𝑘 ⩽ 0. Thus, picking 𝑚 ∈ {1,… , 𝑛} uniformly at random, we obtain that

𝛿𝑧(𝑇 ) ⩽
1
𝑛

(

2𝑁 +
∑

𝑚⩽𝑛
𝜃𝑚

)

⩽ 𝑐
𝑛
∑

𝑚⩽𝑛
𝜃𝑚,

for a suitable 𝑐 = 𝑐(𝑁) > 0. This concludes the proof. □

4.2. Proof of stochastic domination of approximation – Proposition  10

To prove Proposition  10, we need to describe more precisely how the decision variables {𝑈 (𝑘)
𝑧 }𝑘⩾1 determine the state of the 

edges.

Proof of Proposition  10. Our construction depends on the parity of 𝑘, and we first discuss the case of odd 𝑘. Henceforth, we 
implicitly consider Z2 to be endowed with a checkerboard pattern so that we can speak of black and white sites.

For a black site 𝑧 ∈ Z2, we let 𝑈 (𝑘)
𝑧  encode in some arbitrary way a random selection of two of the highest-weight edges incident 

to 𝑧. Next, to determine the reinforcements at a white site 𝑧′ ∈ Z2, we work conditioned on the edge weights up to iteration 𝑘 and 
also on the decision variables 𝑈 (𝑘)

𝑧  for all black sites 𝑧 ∈ Z2. We note that the probability space 𝛺 of selecting two highest-weight 
edges incident to 𝑧′ consists of (42

)

= 6 elements.
First, consider the case where, in step 𝑘, at least 2 of the black neighbors of 𝑧′ reinforced their corresponding edge to the white 

vertex 𝑧′. Then, there is a probability of at least 𝛿 = 1∕6 that, in step 𝑘, the vertex 𝑧′ selects the same two edges, which are therefore 
reinforced infinitely often, see clause (3) in Lemma  8.

Second, consider the case when there are at least 2 neighboring black vertices of 𝑧′ that did not reinforce their corresponding 
edge to the white vertex 𝑧′. Then, again with probability of at least 𝛿 = 1∕6, in step 𝑘, the vertex 𝑧′ selects the other two edges. 
Then, again by Lemma  8, these two edges are never reinforced again. Therefore, the vertex 𝑧′ is no longer incident to any strictly 
𝑁-potentially occupied edges.

Writing 𝑌 (𝑘)
−  for the collection of decision variables of all sites up to step 𝑘 − 1 together with the decision variables at the black 

sites at step 𝑘, we conclude that there exists a state 𝜔∗(𝑌 (𝑘)
− ) ∈ 𝛺 such that almost surely, (i) P(𝑈 (𝑘)

𝑧′ = 𝜔∗(𝑌 (𝑘)
− ) | 𝑌 (𝑘)

− ) ⩾ 𝛿 and (ii) if 
𝑈 (𝑘) = 𝜔 (𝑌 (𝑘)), then after step 𝑘, all potentially reinforced edges incident to 𝑧′ are in fact reinforced infinitely often. 
𝑧′ ∗ −

8 
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Taking into account these observations, we now present a two-step construction of the variables 𝑈 (𝑘)
𝑧′ . For this, let {𝑊

(𝑘)
𝑧 }𝑘⩾1,𝑧∈Z2

be an iid sequence of Bernoulli random variables with parameter 𝛿. If 𝑊 (𝑘)
𝑧 = 1, then we let 𝑈 (𝑘)

𝑧  be the state 𝜔∗(𝑌 (𝑘)
− ). Otherwise, if 

𝑊 (𝑘)
𝑧 = 0, then we let 𝑈 (𝑘)

𝑧  be the state 𝜔∗(𝑌 (𝑘)
− ) with probability 𝑞0(𝑌 (𝑘)

− ) ∶=
(

P(𝑈 (𝑘)
𝑧 = 𝜔∗(𝑌 (𝑘)

− ) | 𝑌 (𝑘)
− )−𝛿

)

∕(1−𝛿), and with probability 
1 − 𝑞0(𝑌 (𝑘)

− ) the random variable 𝑈 (𝑘)
𝑧  is sampled according to the conditional distribution (𝑈 (𝑘)

𝑧 |𝑈 (𝑘)
𝑧 ≠ 𝜔∗(𝑌 (𝑘)

− ), 𝑌 (𝑘)
−

)

.
This describes the construction for odd steps 𝑘. For even 𝑘, we proceed in precisely the same manner except that the roles 

of black and white sites are interchanged. In particular, if an edge 𝑒 incident to a black site 𝑧 is contained in  ⧵ 𝑁 , then 
𝑊 (1)

𝑧 = 𝑊 (3)
𝑧 = ⋯ = 𝑊 (𝑁)

𝑧 = 0. This proves the asserted domination. □

5. Proofs of Theorems  4 and 6

We deal separately with the cases 𝛼 = ∞ and 𝛼 < ∞. We start with 𝛼 = ∞, where we use a result for 1-dependent percolation 
with sufficiently high marginal probabilities from [20]. We apply this result to the coarse-grained model. The key observation is 
that if the coarse-grained edge (0, 0) → (1, 0) is 𝑛-open, then we are guaranteed three crossings of infinitely-reinforced edges in the 
rectangle [0, 2𝑀) × [0,𝑀). Namely,

(1) a horizontal crossing of the ((2𝑀 − 2𝑛) × (𝑀 − 2𝑛))-rectangle;
(2) vertical crossings of the left and of the right ((𝑀 − 2𝑛) × (𝑀 − 2𝑛))-squares inside the central rectangle.

Moreover, the existence of such crossings depends only on coarse-grained edges sharing at least one of the end points. Hence, we 
conclude from planarity that any path of 𝑛-open coarse grained edges gives rise to a path of infinitely-reinforced edges. Hence, it 
suffices to establish the percolation of the coarse-grained model, which we do now.

Proof of Theorem  4; 𝛼 = ∞. The collection of 𝑛-open edges defines a 1-dependent family. Now, by our assumption on the finite-
size criterion, a coarse-grained edge is open with marginal probability exceeding 0.8457. Now, we can conclude the proof by 
invoking [20, Theorem 1], which states that any 1-dependent site percolation model with marginal probability exceeding 0.8457 
percolates. □

We now turn to the case 𝛼 < ∞. We first argue that percolation of the 𝑛-open edges in the coarse-grained model implies 
percolation of the infinitely-reinforced model in the original model.

Lemma 15 (Stochastic Domination Property of Certainly Occupied Edges).  Let 𝑛, 𝛼 > 1 and assume
𝑝∗ > (𝑛 − 1)𝛼

∑

𝑗⩾𝑛
𝑗−𝛼 .

Then, the process of edges that are reinforced only finitely often in the original model is stochastically dominated by the process of edges 
that are not certainly occupied. 

Proof. The idea of the proof is as follows. If after 𝑛 rounds an edge 𝑒 has weight at most 𝑛, then for large 𝛼, it is highly likely never 
to be chosen again. Then, loosely speaking, the vertex corruption is used to account for the possibility of this exceptional event.

To make this precise, we let 𝐸𝑒(𝑛) denote the event that the edge 𝑒 with weight at most 𝑛−1 in round 𝑛 is reinforced by at least 
one of its incident vertices in some round 𝑗 ⩾ 𝑛. Then, we claim that (1{𝐸𝑒(𝑛)})𝑒 is stochastically dominated by a directed Bernoulli 
bond percolation process with probability 𝑝∗. To achieve this goal, we note that at the beginning of round 𝑗 ⩾ 𝑛 there are at least 2 
high-weight edges, i.e., edges of weight at least 𝑗. Hence, the probability that one of the low-weight edges 𝑒 is reinforced from one 
of its incident vertices is at most

2
(𝑛 − 1)𝛼

2𝑗𝛼
=
( 𝑛 − 1

𝑗

)𝛼
.

We stress that this upper bound holds irrespective of the weight evolution at any of the other directed edges. Hence, the union 
bound shows that, as asserted, the edge process (1{𝐸𝑒(𝑛)})𝑒∈𝐸 is dominated by a Bernoulli bond process with probability 𝑝∗.

Proof of Theorem  6; 𝛼 < ∞. After the reduction step from Lemma  15, the proof is very similar to that in the case 𝛼 = ∞. Arguing as 
in the case 𝛼 = ∞, Lemma  15 guarantees that any path of (𝑀,𝑛)-open coarse grained edges gives rise to a path of infinitely-reinforced 
edges. Moreover, we conclude from the condition (2) that the probability for a coarse-grained edge to be 𝑛-open exceeds 0.8457. 
The theorem then follows, as for 𝛼 = ∞, by invoking [20, Theorem 1]. □

6. Numerical evidence for the finite-size criteria

Now, we give numerical evidence that the finite-size criteria from Theorems  4 and 6 are satisfied.
We start with Theorem  4, i.e., where 𝛼 = ∞. Here, we carried out 𝑁 = 10,000 simulations of the process in a (80 × 40)-rectangle 

with periodic boundary conditions. In 𝑁0 = 9, 553 of these simulations we found a horizontal crossing of the central (72×36)-rectangle 
of the nodes that are certainly occupied after 𝑛 = 4 steps. Using that the Monte Carlo variance is 

√

0.0447 ⋅ 0.9553, this implies that 
with a certainty exceeding 1 − 10−300, the actual crossing probability is above the threshold of 0.8457 for 1-dependent percolation 
9 
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Fig. 2. The left panel shows an example for a crossing with the largest component in color. The right panel shows an example of a non-crossing with a dual 
vertical crossing in color. In both examples, we have 𝛼 = ∞.

Fig. 3. The left panel shows an example for a crossing with the largest component in color. The right panel shows an example of a non-crossing with a dual 
vertical crossing in color. In both examples, we have 𝛼 = 15. The circled vertices are the corrupted ones.

The simulations took 22 min 17 s on a 13th Gen Intel Core i5-1345U. Fig.  2 illustrates examples for crossing and non-crossing 
realizations.

Finally, we discuss Theorem  6, i.e., where 𝛼 < ∞. Our simulations concern 𝛼 = 15. The basic setting is the same as above, 
namely 𝑁 = 10,000 simulations on a (80 × 40)-rectangle with periodic boundary conditions. In 𝑁0 = 9, 512 of these simulations we 
found percolation of the central (72×36)-rectangle of the nodes that are certainly occupied after 𝑛 = 4 steps. Again, with a certainty 
exceeding 1 − 10−300, the actual crossing probability is above the threshold of 0.8457 for 1-dependent percolation. The simulations 
took 1 h 42 min 52 s on a 13th Gen Intel Core i5-1345U. Note that additional time is needed for sampling from a discrete probability 
distribution and for dealing with the corruption. Fig.  3 illustrates examples for crossing and non-crossing realizations.
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