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Motivation

The characterisation of different states of matter through the mathematical
discipline of topology is a relatively young field of solid state physics. Compared
to the widely applied Landau theory which classifies condensed matter phases by
an order parameter, spontaneously breaking underlying symmetries of the system,
the topological classification relies on equivalence classes and the possibility
to map the properties of different systems onto each other by small and slow
(adiabatic) deformations, without inducing a quantum phase transition [1]. While
the order parameter is a locally measurable quantity, e. g. the magnetisation,
topological phases are distinguished by a global invariant, e. g. the Chern number.
The first success of topology was the explanation of the integer quantum Hall
effect in 1982 [2], while interest was significantly boosted after the year 2000 with
the prospect of explaining the anomalous Hall effect in ferromagnets by both real–
and momentum–space topological contributions [3, 4]. Focusing on electronic
topology, subsequent theoretical efforts lead to the formulation of a periodic table
of topological systems for gapped and gapless electronic phases depending on
dimensionality and non–spatial symmetries [1], including topological insulators,
Dirac and Weyl semimetals as well as topological superconductors. Although
originally considered exotic phenomena, recent analysis estimates that more then
27% of known materials host some type of topological order [5]. Therefore, aside
from potential technological applications in memory devices, spintronics and
topological quantum computing [6, 7], investigating and engineering material
systems which realise these quantum phases generates tremendous fundamental
interest for understanding the interplay of single particle electronic properties,
spin–orbit coupling, interacting (quasi)particles, magnetism and external stimuli
such as strain and pressure or electromagnetic fields [8–10].

A material platform which provides an extremely versatile playground for
the emergence and study of these phenomena is the kagome network. In this
triangular lattice of corner sharing triangles, a plethora of exotic quantum states
was theoretically predicted and experimentally observed, among them electronic
and phononic flat–bands with enhanced correlations, charge density waves and
topological superconductivity, as well as the quantum–spin–liquid state [8]. One
of the earliest considered and most heavily investigated aspects is electronic
topology under broken time–reversal symmetry, leading to a Chern insulator
state and Weyl and nodal–line semimetals, for which the coupling with spin–orbit
interaction produces highly unusual transport and optical properties that are the
focus of this work.

Similar to the Haldane model for the quantum anomalous Hall state on the
honeycomb lattice, imaginary hoppings also produce a quantised Hall conductance
on a spin–chiral ferromagnetic kagome layer [11]. When such layers are stacked
and coupled to form a 3D magnet, it can inherit the topological properties of
its building block, resulting in a 3D topological–insulating or Weyl–semimetallic
state [12]. This straightforward theoretical construction inspires the search for
kagome lattice based materials realising these phases, although such realisations
may be more complicated due to electronic correlations, finite–temperature effects
or disorder. Central hallmarks of the presence of these states are the intrinsic
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Figure 1.
Magneto–optical response in (gapped) kagome semimetals. Gapped linearly dispersing bands (dark
blue and red) emerging from a magnetic kagome layer produce large anomalous Hall conductivity
(green arrow) and optical activity, where incoming linear polarisation (purple) is turned elliptical
upon reflection (red) with the other chirality (blue) absorbed by the bands (adapted from [8]).

anomalous Hall effect (AHE) and magneto–optical activity, which arise from the
Berry curvature generated by the topological band structure in the presence of
spin–orbit coupling. An artistic attempt to illustrate this concept is presented in
Fig. 1. If generalised to finite frequencies, the two effects can be connected by the
optical Hall conductivity which can be conveniently determined by measuring e. g.
the magneto–optical Kerr effect (MOKE) in magnetic metals. Since the latter
is experimentally accessible by analysing the polarisation state of light reflected
from the surface of the kagome magnet, I use magneto–optical spectroscopy to
investigate the topological properties of several kagome systems in this thesis.
The goals of this analysis are to (1) disentangle the AHE contributions of

itinerant electrons and interband transitions to quantify the extrinsic and intrinsic
proportions respectively, (2) from the multitude of bands for each material, identify
the specific band structure features generating the intrinsic part to learn about
the requirements for enhancing the anomalous response, (3) elucidate the role of
spin–orbit coupling, (4) establish magneto–optical spectroscopy as a reliable tool
to study topological band structures and to (5) monitor their variation through
chemical pressure or external forces, e. g. doping or magnetic fields. The latter
are predicted to provide an efficient control knob to vary the electronic band
structure as both crystal symmetries and time–reversal may be altered by the
applied field.
Along this line, the first chapter of this thesis shortly summarises the basic

concepts of electronic topology and its implications for the response of kagome
magnets, followed by an introduction to magneto–optical spectroscopy in Chapter
2. The last four chapters present the experimental results for a selection of
kagome magnets. Chapters 3 and 5 investigate and compare the origin of the
large AHEs in the archetypical kagome Weyl semimetal Co3Sn2S2 and the room
temperature kagome magnet Fe3Sn2, while Chapters 4 and 6 respectively analyse
how external magnetic fields manipulate the band structure in Co3Sn2S2 and
how the peculiar metamagnetic phases of the kagome spin–ice material HoAgGe
influence its magneto–optical response.
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1

Electronic and Optical Properties of Topological Magnets

This first chapter summarises the most important background information neces-
sary to interpret the experimental results. In the first section, I give a short intro-
duction to electronic topology and Weyl semimetals through a one–dimensional
model and its generalisation. The second section describes the kagome lattice
as a material platform and its topological properties. In the third section, we
will see how the interplay of magnetic order and electronic topology influences
transport properties and optical responses.

1.1 Electronic Topology in a Nutshell: The Su–Schrieffer–Heeger
Model

Topological insulators (TIs) are one of the most heavily investigated material
classes in the context of electronic topology. While being insulating in the bulk,
they host conductive edge states as a direct consequence of their electronic band
structure. The unusual properties of these edge states such as spin–momentum
locking and the topological protection inspire applications, e. g. in next generation
random access memory devices and topological quantum computing [6, 7]. The
emergence of such a peculiar phase of matter can already be understood on the
basis of a one–dimensional chain, the Su–Schrieffer–Heeger (SSH) model. The
bulk part of this section introduces the model based on the lecture notes on TIs
by Asbóth, Oroszlány and Pályi [13].
The SSH model is schematically illustrated in Fig. 1.1. It describes a finite

one–dimensional lattice with N units, each consisting of two sites A and B.
The remainder of the section is formulated for the choice of unit cell indicated
by the dashed ellipse, for which electrons can hop between the two sites with
an amplitude v within one unit cell, while they hop between two cells with w.
Electron–electron interactions and the spin are neglected. For v ̸= w, the hopping
amplitudes are termed staggered and make the lattice bipartite. The blue and red
shaded regions respectively indicate the left and right boundaries of the chain,
potentially hosting edge states, meaning wavefunctions with highest weight at
the boundary. In this setting, the single–particle real–space Hamiltonian is

H = v
N∑

m=1

(|m,B⟩⟨m,A|+ h.c.) + w
N−1∑
m=1

(|m+ 1, A⟩⟨m,B|+ h.c.). SSH model(1.1)

The states |m,α⟩ are labelled according to the lattice vectors via m ∈ 1, 2, . . . , N
with the two different sites α ∈ A,B and h.c. denotes the hermitian conjugate.

v w

A B

Figure 1.1
Schematic illustration of the Su–
Schrieffer–Heeger model. Sites
A/B are shown by grey/white cir-
cles [13].
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2 1 Electronic and Optical Properties of Topological Magnets

Figure 1.2
Fully dimerised limits of the SSH
model. Top: trivial limit v, w =
1, 0. Bottom: topological limit
v, w = 0, 1 with one edge state
on each sublattice A (blue) and
B (red) (adapted from [13]).

v

w

Before the evaluation of the Hamiltonian and the details of the electronic
structure, let us investigate the possibility of edge states in the SSH model.

1.1.1 Edge States of the SSH model

In the SSH model, it is possible to give an intuitive picture of edge states by
considering the fully dimerised limits of the chain and open boundary conditions.
If either the intercell hopping v or intracell hopping w are set to zero, the chain
breaks up into dimers, as illustrated in Fig. 1.2. The energy eigenstates are
restricted to each dimer and are the even and odd superpositions of the states
from each site with energies E = ±1, if the finite hopping amplitude is set to 1.

In the case w = 0, termed trivial limit, the Schrödinger equation becomes

H (|m,A⟩ ± |m,B⟩) = ± (|m,A⟩ ± |m,B⟩) , (1.2)

whereas in the so–called topological case, v = 0, the dimers are shared between
two unit cells and we have:

H (|m,B⟩ ± |m+ 1, A⟩) = ± (|m,B⟩ ± |m+ 1, A⟩) . (1.3)

However, this does not capture all states of the topological limit. At the boundaries,
there are two states |1, A⟩ and |N,B⟩ which do not belong to any dimer and
therefore form edge states. As we do not consider an onsite potential, these
localised states have E = 0:

H|1, A⟩ = H|N,B⟩ = 0 (1.4)

and therefore lie in the energy gap of the bulk states.

This property of the edge state persist even if we turn on a small v ≠ 0. Figure
1.3 shows the energy of the states of an SSH model with 10 unit cells and w = 1
as a function of v. The topological dimerised limit is obtained for v = 0 in panel
(a). For values of v ≲ 0.75, we still obtain zero–energy edge states in the energy
gap of the bulk as indicated by the purple line (doubly degenerate for edge states
on each end). Here, states are coloured purple if they have dominant weight in the
first four sites on each the edge, as illustrated in panels (b) and (c) which show
the wavefunctions at the position of the black marker. Note, that the state on
the left edge (blue) only has weight on the A sites, whereas the state on the right
edge (red) is only non–zero on B sites, identical to the fully dimerised case. Since
for v ̸= 0 the edge states are no longer sharply but exponentially localised on the
boundaries, their wavefunctions hybridise forming symmetric and antisymmetric
superpositions. The degeneracy of these states is lifted above a threshold value
of v. At this point, where the gap is also closed, a topological phase transition
occurs in the thermodynamic limit. If v gets even larger the chain becomes trivial.
This case is indicated by the green marker in Fig. 1.3(a) for v > w. The states no
longer have zero energy and they obtain bulk character, as shown in panel (d).
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Figure 1.3
Bands and edge states for a SSH
model with 10 sites. (a) Band
structure for w = 1 as func-
tion of v. The purple line indi-
cates the presence of zero–energy
edge states. (b,c) Wavefunctions
of the two bands for the pa-
rameters at the black dot in (a)
(v = 0.3), showing the symmetric
and antisymmetric hybridisation
of the edge states on sublattices
A (blue) and B (red). (d) Wave-
function for the point marked
with green (v = 1.5) with bulk
character (adapted from [13]).

Note that the exact value of v where the states leave zero energy also depends on
the system size N . For larger N , this point moves closer to v = w = 1.
From the above discussion, it seems that the energy of the edge state with

respect to the bulk band gap plays an important role, so we will now consider
the energy of the bulk states.

1.1.2 Bulk–Boundary Correspondence

From Eq. 1.1, we can obtain the bulk momentum–space Hamiltonian if we impose
periodic boundary conditions. Then Eq. 1.1 becomes

H =

N∑
m=1

(v|m,B⟩⟨m,A|+ w|(mmodN) + 1, A⟩⟨m,B|) + h.c., (1.5)

where the modulo operator mod closes the chain to a ring. In order to apply the
Bloch–Theorem, it is necessary to split the basis |m,α⟩ = |m⟩⊗ |α⟩ and represent
the two–site basis by Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.6)

which delivers the bulk momentum–space Hamiltonian

H(k) =

(
0 v + we−ik

v + weik 0

)
= d(k)σ̂. (1.7)

The second equality introduces the d vector representation, where σ̂ is a three–
component vector with the three Pauli matrices and d is given by

dx(k) = v + w cos k, dy(k) = w sin k, dz(k) = 0. (1.8)

This notation turns out to be useful, because the energy eigenvalues can be
calculated from the absolute value of d, as

E(k) = ±|d(k)| = ±
√

v2 + w2 + 2vw cos k (1.9)

and because d(k) contains the topological information. It can be shown that the
winding number ν of the d(k) vector around the origin of the dx–dy plane is
defined by

ν =
1

2π

∫
dk

(
d̃(k)× d

dk
d̃(k)

)
z

, with d̃ =
d

|d|
Winding number(1.10)
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Figure 1.4
Top row: Bulk band structure of
the SSH model. For all parameter
sets of v and w, two bands are ob-
tained. Bottom row: d vector rep-
resentation for the same param-
eter sets. The red dot indicates
that the origin lies on the loop
for v = w, the purple dots high-
light the origin within the loop
(adapted from [13]).
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and that it characterises the topological properties of the bulk. To illustrate this,
Fig. 1.4 plots the energy eigenvalues and d(k) for some combinations of v and
w. From panel (a) to (e), we gradually move from the trivial to the topological
limit of the SSH chain. For all cases of staggered hopping amplitudes, we obtain
two bands with a distinct gap. For v = w in (c), the gap closes at the edge of the
Brillouin zone (BZ), resulting in metallic behaviour.

In the bottom row, the corresponding d(k) vectors are shown. We find that
d(k) traces a circle in the dx–dy plane, whose centre is shifted along dx by v and
its radius is given by w, as indicated by the blue lines in panel (b). For the trivial
(normal) insulators (NI) in Fig. 1.4(a) and (b), the circle lies far away from the
origin of the plane resulting in ν = 0. For the metallic case, the origin is a point
on the circle indicated by the red dot and the winding number is undefined as
|d| = 0. In the TIs panel (d) and (e), the origin (purple dot) lies within the circle
yielding ν = 1.

There are two important consequences from the above considerations: If (and
only if) we find an edge state at the end of a finite SSH chain, we can immediately
predict that the bulk winding number is non–zero and vice versa. This is an
example for bulk–boundary correspondence of TIs, the topological information is
always carried by both bulk and surface. Secondly, the transition from a TI to NI
can only happen if the bulk band gap closes at some point in between. Therefore,
ν is a topological invariant which can only be changed if we induce a topological
phase transition through a metallic state. Consequently, the edge states and
winding number are protected by the bulk gap, leading to a strong robustness of
these states against external forces, e. g. temperature, disorder or magnetic field,
as long as the gap remains open.Topological protection For the SSH model, this protection is ensured
by the lattice being bipartite, represented by the existence of a chiral symmetry
operation

σzHσz = −H. (1.11)

This symmetry connects the two sites of the unit cell and forces the energy bands
to be symmetric with respect to the Fermi energy. This requires dz = 0, excluding
e. g. different onsite potentials on sites A and B, which forces the d vector to lie
in the dx–dy plane. This ensures that ν is properly defined.

However, there are phases of matter, termed topological semimetals, where
the bulk gap closes at distinct points in the BZ and we observe surface states
nonetheless. This behaviour can also be understood based on the SSH model if
we extend the dimension of the model to 2D.
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v
wx

wy

x
y

Figure 1.5
Construction of a WSM from the
SSH model. Nearest neighbour
SSH chains are coupled with an
interchain hopping wy between
sites A and B. The dots at the
top and bottom indicate exten-
sion to a ribbon (adapted from
[13]).

1.1.3 Two–Dimensional Generalisation: Weyl–Semimetals

We can obtain a two–dimensional lattice model if we couple several SSH chains
with a nearest–neighbour interchain hopping wy (the former w becomes wx). This
construction is illustrated in Fig. 1.5. Importantly, the interchain hopping again
only connects two different sites A and B, so the lattice remains bipartite and
the chiral symmetry defined in Eq. 1.11 is preserved. The corresponding bulk
momentum–space Hamiltonian is obtained by extending Eq. 1.7 with wy and ky

HWSM(k) =

(
0 v + wxe

−ikx + wye
−iky

v + wxe
ikx + wye

iky 0

)
= dWSM(kx, ky)σ̂,

(1.12)
with the associated dWSM(kx, ky) vector

dx = v + wx cos kx + wy cos ky, dy = wx sin kx + wy sin ky, dz = 0. (1.13)

If wy = 0, the system breaks apart into individual SSH chains, which depending
on v and wx can be either trivial or topological with a sharp transition at v = wx.
Most interestingly, we investigate the influence of a small wy on a topological
chain with v = 0.7 and wx = 0.9 in the following. First, we can calculate the
energy eigenvalues presented in Fig. 1.6.
We obtain two bands which are fully gapped except at two isolated points in

the BZ where they touch each other. Their position can be best estimated from
the axis projections. In the vicinity of these points termed as Weyl nodes Weyl nodethe
dispersion is linear as highlighted in the insets. As it will turn out later, the Weyl
nodes, characteristic of the Weyl–semimetallic (WSM) phase, are topologically
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Figure 1.6
Bulk band structure of a WSM
generalised from the SSH model
for the parameters v, wx, wy =
0.7, 0.9, 1/3. Two gap closing
points with linear dispersion
(Weyl nodes) are obtained close
to the BZ edge. The insets
show cuts through these points
(adapted from [13]).
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Figure 1.7
Band structure of a WSM rib-
bon along ky for the parameters
v, wx, wy = 0.7, 0.9, 1/3 for a
width of 15 unit cells (a). Bands
are coloured in purple if their
wavefunction resides in the first
40% of sites counted from the
edges. Around the edge of the
BZ (ky = ±π), a zero–energy
edge state is obtained. Panel (b)
shows the absolute square of the
corresponding wavefunction at
the black dot. In the BZ centre
(ky = 0), there are no edge states
(panel (c), green dot). (d–f) Cor-
responding d vector representa-
tion at different ky. The lengths
of the hoppings are indicated by
the blue lines in panel (e). The
small dashed circle represents the
path of the centre of the solid cir-
cle (small blue dot) as a function
of ky. (d) ky = 0: The solid circle
does not contain the origin, it is
a NI. (e) The origin (red dot) lies
on the solid circle, resulting in a
closing of the gap (Weyl point).
(f) The origin is contained in the
solid circle, case of a TI (adapted
from [13]).
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protected. These quasiparticles have their analogues in high energy physics, where
Hermann Weyl proposed a model for chiral massless Fermions [14]. In the 3D
case, the model reads

i∂tΨ± = H±Ψ± (1.14)

H± = ∓p · σ̂ (1.15)

where the momentum operator p can be either parallel or antiparallel to the
spin defining a chirality for the Weyl Fermion. This property is associated with
the notion of spin–momentum locking [9]. Although these particles have not
been found isolated in nature, the linearly dispersing bands we have obtained
produce quasiparticles with the corresponding properties in solids which will be
investigated in this thesis.

Returning to the SSH–WSM, the bands are derived from topological SSH
chains, so it is likely that edge states also exist here. In order to evaluate their
presence, the band structure is calculated on a ribbon of finite width, as shown in
Fig. 1.7. In this plot, bands are coloured in purple if their wavefunction is located
within the first 40% of sites counted from the edges. This is the case for the
zero–energy bands close to the BZ edge (ky = ±π). An exemplary wavefunction
at the black dot is shown in panel (b). In contrast, the same band has bulk
character in the BZ centre (green dot, wavefunction in panel (c)). From this
consideration, it seems that the system is either a NI or TI depending on the
value of ky. The two regions come in contact at the two points highlighted by
crosses which are the Weyl nodes.
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Figure 1.8
Band structures for
wy = 1/3 and (a–e)
v = [1.1, 0.9, 0.8, 0.7, 0.4]
wx = [0.4, 0.7, 0.8, 0.9, 1.1].
States coloured in purple have
more than 40% weight on the
edges (compare Fig. 1.7). Panels
(a) and (e) respectively show
NI and TI phases, while (b–d)
are Weyl semimetals with finite
Fermi arcs (adapted from [13]).

In order to understand this behaviour, we can again consider the winding
number of the dWSM(kx, ky) vector shown in Fig. 1.7(d–f). The values of the
hopping parameters are indicated by the blue lines in panel (e). In Eq. 1.13, kx
describes a circle with radius wx that is represented by the large solid circle in
the figures. Its centre (small blue dot) is shifted from the origin by v and lies on
the circle of ky with radius wy, indicated by the dashed line. For ky = 0 (panel
(d)), the origin lies outside of the solid circle as in the case of a NI with ν = 0.
For ky = k0 in (e), the origin is a point on the solid circle (red dot). Same as for
the SSH chain, this results in a gap closing, here forming a Weyl node. In (f), the
origin lies within the circle, yielding a TI with ν = 1. The result is an edge state
which spans only part of the BZ connecting the two Weyl nodes and is therefore
termed as Fermi arc.
From the d vector maps, we can deduce the different phases of this model.

For wx < v − wy, the large circle can never contain the origin for any ky, so the
system is a NI. If v − wy < wx < v + wy we obtain the WSM state described
above whereas for v + wy < wx the system is a TI. In summary:

wx < v − wy Trivial insulator

v − wy <wx < v + wy Weyl–semimetal

v + wy <wx Topological insulator.

In order to illustrate the behaviour of the Fermi arcs for these cases, the band
structure for several hopping parameters is plotted in Fig. 1.8. In panel (a), a NI
without edge states is obtained. In (b), surface states appear on the edge of the
BZ which expand towards the BZ centre in (c) and (d), all three corresponding
to WSM states. Finally, the two arcs merge at ky = 0 resulting in a TI for (e). In
the bottom row, only small fractions of surface states appear along kx because
v > wy for all cases, leading to trivial chains.
As we see, the positions of the Weyl nodes change depending on the hopping

parameters. They can be calculated from the condition d(Kx,Ky) = 0 (compare
the triangle in Fig. 1.7(e)) which gives the defining equations

0 = v + wx cosKx + wy cosKy

0 = wx sinKx + wy sinKy.
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Figure 1.9
d̃ vector map for the WSM
with the parameters v, wx, wy =
0.7, 0.9, 1/3. The green dots
mark the positions of the Weyl
nodes calculated from Eq. 1.16.
The insets show a magnified view
of the local structures around
the nodes. For the left node, the
winding number is −1, for the
right one +1 leading to differ-
ent topological charges (adapted
from [13]).

The solutions are

cosKx =
w2
y − v2 − w2

x

2vwx

cosKy =
w2
x − v2 − w2

y

2vwy
.

(1.16)

There is a second node, which due to inversion symmetry is located at (−Kx,−Ky),
so importantly, the total number of Weyl nodes is even. In Fig. 1.8(b), a pair
of Weyl nodes is created at the BZ edge, which then travel through the BZ as
we tune the hoppings and then annihilate with each other in (e). Aside from
the symmetry consideration (which is not a necessary condition), this behaviour
has an underlying topological reason that can be illustrated by plotting the d̃
vector in the kx–ky plane as depicted in Fig. 1.9. For comparison, the bulk band
structure is shown on the right. The green dots mark the positions of the Weyl
nodes as calculated from Eq. 1.16. The overall vector field is rather featureless,
except for two vortices around the position of the nodes. The insets magnify
the local structures. The winding numbers around the nodes can be determined
with a simple experiment: Take a finger and let it point in the direction of one
of the arrows. Now go around the node anticlockwise and adjust your finger
to the direction of the arrows one after the other. For the left node, this will
rotate the finger one full turn in a clockwise direction, for the right node it will
be anticlockwise, revealing integer winding numbers of −1 and +1, respectively.
This property is directly linked to opposite chiralities of the Weyl–quasiparticles.
Their sum has to be zero, since the total winding number has to be conserved
(zero as in the NI case where no nodes are present), leaving only the possibility
to create nodes in pairs with opposite winding numbers.Topological charge Consequently, these
winding numbers serve as topological charges which protect the nodes, making an
annihilation with the opposite partner the only possibility to reduce the number
of nodes. This doubling theorem was originally proven by Nielsen and Ninomiya
[15].
Although the SSH model is conceptually simple, we have seen fundamental

properties of topological matter. Ensured by bulk–boundary correspondence,
protected edge states are a benchmark of the presence of non–trivial electronic
topology. A WSM is an intermediate phase between NI and TI that can be
created by stacking topologically non–trivial building blocks. For interchain
hopping values in the specified range, this results in Fermi arcs spanning only
part of the BZ and connecting pairs of nodes with opposite chiralities/topological
charges.
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Figure 1.10
The kagome network and its
tight–binding band structure. (a)
Unit cell of the kagome lat-
tice with unit vectors a and
b of the triangular lattice and
the shaded triangles indicate the
three–atomic basis. The param-
eters of the tight–binding model
are illustrated. (b) Band struc-
ture of the kagome lattice for
tij = t = −1 and ϕ = 0. Three
bands are obtained, two of which
form a 4–fold degenerate linear
band crossing (Dirac point) at
K (and K′) and one band is flat
(blue, λSO = 0). The band degen-
eracies are gapped by λSO = 0.1
(red dotted). The inset shows
the hexagonal BZ with the high–
symmetry points [11, 20].

In the above considerations, the topological features rely on the lattice models
being bipartite, therefore possessing chiral symmetry [1, 13]. In general, if global
symmetries like inversion and/or time–reversal are present, they force bands to
be degenerate by an even number, e. g. by Kramer’s theorem, thus Weyl points
cannot appear as the minimal degeneracy of a band crossing would be four. Hence,
in the scope of this thesis, we will consider systems with broken time–reversal
symmetry when we investigate magnetic materials based on the kagome network.

1.2 Topological Properties of Kagome Magnets

Named after an Asian weaving pattern, the kagome lattice receives much attention
in modern solid state physics as it can host a variety of quantum phenomena,
ranging from frustrated magnetism over superconductivity to topological insula-
tors and semimetals [16–18]. The general structure is presented in Fig. 1.10(a),
showing its triangular Bravais lattice with three atoms in the basis. Since the
structure is closely related to the honeycomb lattice, a linear band crossing is
obtained at the K and K′ points of the hexagonal BZ in a simple tight–binding
model shown in panel (b), protected by inversion and time–reversal symmetry.
Including spin, this crossing is a 4–fold degenerate Dirac point without chirality
and does not possess a Fermi arc, compared to the formerly discussed Weyl nodes.
In addition, there is a third, completely flat band emerging due to destructive
interference of electron wavefunctions living on this peculiar lattice [19]. We will
consider the topological properties of this system in the following.

1.2.1 Chern Insulators and Berry Phase

The Hamiltonian used for Fig. 1.10 reads as

H =
∑
⟨i,j⟩,σ

tije
iϕij/3c†i,σcj,σ + iλSO

∑
⟨i,j⟩

(
c†i,↑cj,↑ − c†i,↓cj,↓

)
. (1.17)

The angular bracket denotes nearest neighbours and c†i,σ/cj,σ are electron cre-
ation/annihilation operators on site i/j with spin σ, tij = t is the hopping



10 1 Electronic and Optical Properties of Topological Magnets

Figure 1.11
Edge states on a kagome ribbon
with 10 unit cells. (a) Schematic
of the ribbon, (b–e) Band struc-
tures for t = −1 for different
values of ϕ and λ. The states
coloured in blue/red are located
within the top/bottom 20% of
sites. For ϕ ̸= 0, edge states
are present in the bulk band gap
with blue/red states always hav-
ing negative/positive slopes, re-
sulting in unidirectional electron
propagation as indicated by the
arrows in panel (a). Spin–orbit
coupling lifts the degeneracy, but
does not gap the edge states [21].
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amplitude and ϕij = ϕ is a geometric phase factor. The second term introduces
Kane–Mele spin–orbit coupling which gaps all band touching points at Γ and K
(red–dotted lines in Fig. 1.10(b)) [11, 20, 21]. Conceptually, the complex hopping
amplitude may be induced by non–collinear magnetic order with canted local
spins on each site A–C interacting with the electron. If it hops along a closed
loop, e. g. A → B → C → A, its wavefunction obtains an additional phase ϕ
which encodes the vector potential induced by the three local moments via their
scalar spin chirality hence breaking time–reversal symmetry [11].

In order to illustrate the effects of the complex phase ϕ, Fig. 1.11 plots the band
structure of a ribbon with 10 unit cells along y for different values of ϕ. Panel
(a) shows a schematic of the ribbon from the kagome lattice with the top and
bottom edges coloured in blue and red. In (b–e), states are respectively coloured
if their weight lies within the top or bottom 20% of sites on the ribbon. In (b)
with ϕ = 0, two edge states are present, but they do not lie in the bulk band gap
centred around E = −1. If the Fermi energy is in the gap, the system therefore is
a NI. Cases (c) and (d) are different: For ϕ ̸= 0, time–reversal symmetry is broken
which gaps the Dirac crossing and we find edge states in both bulk band gaps.
Hence, we obtain TIs for accordingly tuned Fermi energy. Due to the broken
time–reversal symmetry in 2D, this class of TIs are called Chern insulators. In
(e), finite spin–orbit coupling is included which breaks the degeneracy, but is
unable to gap the edge states, illustrating their robustness.

As we have seen in the SSH model, the presence of edge states predicts a bulk
topological invariant by bulk–boundary correspondence, which we need to find
for a Chern insulator. To do so, we can take a look at the evolution of the state
of the electron if it propagates through the vector potential of the local spins. Its
state vector will acquire a phase factor eiγn , called Berry phase [22, 23], which for
a path ∂S in a general parameter space spanned by coordinates s can be written
as

γn =

∫
∂S

ds ·An(s),Berry phase (1.18)

where An(s) is termed the Berry connection or Berry vector potential defined by

An(s) = i⟨n(s)|∇s|n(s)⟩ (1.19)

= i⟨n,k|∇k|n,k⟩ for Bloch electrons.
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The states |n(s)⟩ form a complete orthonormal basis for the HamiltonianH(s)|n(s)⟩ =
εn(s)|n(s)⟩ [23]. In our example, this can be the evolution of Bloch states |n,k⟩ in
the BZ, in which case n becomes the band index and s is the crystal momentum
k. If we now integrate the Berry phase for a closed loop, its state vector will come
back to the original point, hence γn = 2π · Cn with Cn ∈ Z. The Chern number
Cn is the topological invariant we are looking for: It is zero for a NI, but finite in
the TI. It can be calculated directly for each band via

Cn =
1

(2π)2

∫
BZ

Bn(k)d
2k, Chern number(1.20)

where we write the Berry phase as a flux density rather than a vector potential,
which leads to the definition of the Berry curvature

Bn(s) = ∇s ×An(s), (1.21)

Bn(k) = ∇k × i⟨n,k|∇k|n,k⟩, (1.22)

inspired by Stokes theorem
∫
∂S Ads =

∫
S ∇s ×A d2s [13].

Let us evaluate this invariant for the bands of the kagome model in Fig. 1.11(c)
and (d), where the integration is performed over the entire BZ. Importantly, the
Chern number is properly defined only if the bands are separated by gaps, so
in the present example, we can evaluate this number for the three groups of
overlapping bands centred around E ≈ 2, 0,−2 (upper, middle, lower). It can
be shown that the sum of Chern numbers for the middle bands is always zero,
irrespective of ϕ, while for the upper and lower bands

Cupper, lower = ±sgn(sinϕ) (1.23)

holds, resulting in Cupper, lower = ±1 for (c) and (d) [11]. Hence, if the Fermi
energy lies in a gap, the sum of Chern numbers of the occupied bands is always
1 which is the reason for the existence of edge states. This is a characteristic
behaviour of a Chern insulator [13]. Compared with the zero–energy edge states in
the SSH model, we now obtain dispersive behaviour, hence these states contribute
to conduction which we investigate in the following.

1.2.2 Quantum Anomalous Hall Effect

For all energies in the band gaps of the Chern insulators in Fig. 1.11, we find a
pair of edge states residing on opposite sides of the bulk. Interestingly, the blue
bands always have a negative slope while it is positive for the red states. Since the
group velocity of the electron wave can be calculated by vn = 1/ℏ ∂En/∂k, the
electrons which are confined to the edge propagate in a unidirectional conduction
channel, as indicated by the arrows in panel (a). This is a direct consequence of
broken time–reversal symmetry in this system, which prohibits the inversion of
the velocity.
If we also make the sample finite in the x direction, a single channel forms

which circles all around the full edge of the system. Now we apply an electric
field E to the system. This will modify the group velocity resulting in

vn =
1

ℏ
∂En(k)

∂k
− e

ℏ
E×Bn(k) (1.24)

where the second term is denoted as anomalous velocity [23]. The Berry curvature
takes the role of a fictitious magnetic field, leading to a perpendicular component
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of the velocity as in the normal Hall effect. This is one key how topological
phenomena can manifest in physical quantities [3, 10]. As a result, we can
calculate the Hall conductivity for our two–dimensional example which yields

σxy =
e2

h

∫
BZ

d2k

(2π)2
Bn(k) =

e2

h
· Cn,Quantum anomalous Hall

effect
(1.25)

expressing a conductance quantised by the Chern number in units of the conduc-
tion quantum e2/h. This is known as the quantum anomalous Hall effect (QAHE)
[23, 24]. In contrast to the quantum Hall effect of a 2D electron gas which relies
on the Landau quantisation in very clean samples, no external fields are required
here as the conductivity is directly encoded in the band structure of the system.

In summary, an individual kagome layer with broken time–reversal symmetry
can host a Chern insulating phase with topologically protected, unidirectional edge
states which manifest in physical observables like the off–diagonal conductivity
via the Berry curvature. As a side note, the Berry phase can also be defined in
real–space and is non–zero e. g. in non–collinear magnets showing spin chirality
as in skyrmion lattices. The Hall effect arising from these real–space structures is
generally termed topological Hall effect (THE).

Similar to the discussion of the SSH model, we now have a n–dimensional TI.
In Sec. 1.1.3, we have seen that it is possible to construct a n+ 1–dimensional
WSM from such a system by stacking and coupling which we will next consider
for 2D layers.

1.2.3 From Chern–Insulators to Weyl–Semimetals

A minimal model for the formation of a magnetic WSM from stacked TI layers
was proposed by Balents and Burkov [12, 25]. The general setup is a multilayer
heterostructure of TIs and NIs, shown in Fig. 1.12(a).
Each of the TI layers possesses 2D Dirac surface states which determine the

low–energy properties, e. g. they could be Chern insulators. First, let us take a
look at a single TI layer that can be described by

H = vFτ
z(ẑ × σ) · k+∆Sτ

x + bσz, (1.26)

where vF is the Fermi velocity of the Dirac nodes, σ are the Pauli matrices for
the spin, ẑ is the surface normal. ∆S is the intralayer hopping amplitude from the
top to the bottom surface which are allocated to the second set of Pauli matrices
τ , while b denotes the spin exchange splitting, hence the corresponding term
breaks time–reversal symmetry. This can be brought to a diagonal form, yielding

H± = vF(ẑ × σ) · k+m±σ
z (1.27)

which describes massive 2D Dirac Fermions with effective masses m± = b±∆S

and hence a gap between positive and negative energy bands [25]. If the Fermi
energy lies in that gap, the system has a Hall conductivity of

σ±
xy =

e2

2h
sgn(m±). (1.28)

If the TI layers are Chern insulators, this corresponds to a Chern number of ±1
by comparison with Eq. 1.25. The factor 1/2 is included to resolve contributions
from the top and bottom surface. If the gap closes for m± = 0 and reopens
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Figure 1.12
Stacked TI model. (a) The model
and its parameters. (b) Weyl
nodes at k±

z and their connect-
ing Fermi arc (purple). To show a
continuous arc, k values beyond
the first BZ are used. The pur-
ple/grey shades indicate topolog-
ical/trivial regions. (c) Quantum
Hall phase transition as function
of b/∆S (adapted from [9, 12]).

below this critical ratio of b/∆S, this conductivity vanishes resulting in a NI. This
behaviour is identical to what we have seen for the SSH model in Fig. 1.4, with a
direct transition from a NI to TI through a metallic state at one critical point. In
the present case this is accompanied by a quantum Hall transition from σxy = 0
to σxy = e2/h.

Now we turn to the stack and couple different TI layers with NI spacers with a
hopping amplitude ∆D across them along the stacking direction z and a total
periodicity d, as shown in Fig. 1.12(a). This modifies the above Hamiltonian to

H = vFτ
z(ẑ × σ) · k+ [∆S +∆D cos (kzd)] τ

x −∆D sin (kzd) τ
y + bσz (1.29)

which after diagonalisation again yields Eq. 1.27, but with a modified mass

m± = b±
√
∆2

S +∆2
D + 2∆S∆D cos(kzd) = b±∆(kz). Because of the explicit kz

dependence, the critical value of b/∆(kz) can now be reached for certain points
k±z in the BZ, yielding Weyl nodes for

k±z d = π ± k0 = π ± arccos

(
∆2

S +∆2
D − b2

2∆S∆D

)
, (1.30)

if |∆S −∆D| < b < ∆S + ∆D. These points are depicted in Fig. 1.12(b) (kx =
ky = 0). Again, this resembles what we have seen in Fig. 1.8: For b smaller than
the lower critical value, the system is a NI. At this value, two Weyl nodes form at
kz = π/d which travel through the BZ in opposite direction upon increasing b until
they annihilate at the higher critical value at kz = 0. So again, the WSM phase
broadens the transition from NI (grey) to TI (purple region). This broadening is
also reflected in the Hall conductivity which is shown in Fig. 1.12(c). As before,
σxy = 0 in the trivial phase, while it takes the value of e2/hd of a 3D–TI for large
b. It can be shown that in the WSM phase, the conductivity takes the value of

σxy =
e2

h

k0
π

(1.31)

and therefore depends only on the momentum–space separation 2k0 of the nodes,
making the conductivity vary continuously between the two critical values [25].
Consequently, in the search for topological semimetals with large anomalous Hall
response, a large Weyl node separation is desirable.

We expect that the separated nodes span a Fermi arc in the surface BZ (purple
line in Fig. 1.12(b)) which becomes the surface state of the 3D–TI at the higher
critical value of b. Hence, if we consider a plane for any kz in the purple region,
e. g. π/d, we find a topological charge of 1 for the occupied band, so the 2D
Hamiltonian representing that plane is a 2D–TI. Similarly, for any kz in the grey
region (e. g. kz = 0), the charge is 0 and the 2D Hamiltonian trivial. Consequently,
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Figure 1.13
Berry phase in the SSH–WSM.
Two Berry phase hot spots of op-
posite sign are present in the sys-
tem, exactly at the locations of
the Weyl nodes. The band struc-
ture is shown for comparison. The
vector field displays the distribu-
tion of Berry curvature, though
smoothed significantly to make
the local structures visible. Con-
sequently, one of the nodes is a
source, the other a sink of Berry
curvature.
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a source of Berry curvature must lie between these two planes accounting for this
difference which is provided by the presence of a Weyl point [9]. To gain intuition,
we can reconsider the WSM based on the SSH model from Sec. 1.1.3 and calculate
the distribution of Berry curvature in the 2D–BZ. This is shown in Fig. 1.13. The
Berry flux (integrated Berry phase per plaquette) is zero everywhere in the BZ,
except for the position of the Weyl nodes, where it takes the value of π with
opposite sign for the two nodes. This reveals the opposite topological charge of
the nodes and the doubling theorem discussed before, now in the language of
Berry phase [15]. The vector map shows the corresponding Berry curvature, but
significantly smoothed so that the local structures are resolved. As a result, one
of the nodes is a sink, the other a source of Berry curvature. Fig. 1.13 also shows
that if we integrate over the entire BZ as we did for the Chern insulator, the sum
of the topological charges adds up to zero. Consequently, if we consider a gapless
semimetal, we have to look at isolated Fermi surfaces to determine topological
charges, thus integrating only locally in their vicinity [1]. Hence, we get charges
of −1 for the blue and +1 for the red node when integrating on a circle (a sphere
in 3D) around each node, respectively. Comparing with the expression for the
anomalous velocity in Eq. 1.24, this shows that the Weyl points can be interpreted
as monopoles of the fictitious magnetic field in momentum–space, thus we expect
signatures of the nodes in transport properties which we will consider in Sec. 1.3
[9, 10].

Summing up, we have found that a 3D–WSM phase can emerge from stacked 2D–
TI layers. Its Hall conductivity takes a transitional value between the NI and TI
phase and is determined by the separation of the nodes acting as momentum–space
monopoles of Berry curvature. So far, we have investigated these topological
properties purely theoretically. Regarding material realisations, the shandite
Co3Sn2S2 was proposed to be a WSM generated by stacking kagome Chern
insulator layers, similar to the above considerations [18]. We will investigate the
magneto–optical response of this compound in Chapters 3 and 4. However, it
turns out that this is not the only possibility to create a 3D topological semimetal
from kagome layers, so we will consider another option next.

1.2.4 Nodal Line Semimetals

As a starting point, let us use simple kagome layers with in–plane hopping t
(ϕ = 0, λSO = 0) and stack them along the z direction such that the lattice
sites are aligned. This results in a so–called AA–stack as shown in Fig. 1.14(a),
where nearest neighbour hopping tz from A → A, B → B, C → C is used
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Figure 1.14
AA–stacked kagome layers. (a)
Structure with in–plane hopping
t = −1 and out–of–plane hop-
ping tz = 0.1t. (b) In–/out–of–
plane band structure. (c) Hexago-
nal BZ, the coloured points mark
where the lower two bands touch.
(d) 2D projection along kz. The
4–fold degenerate band touch-
ing persists all along H′−K−H′′,
forming a straight nodal line
(adapted from [26]).

for coupling, preserving the hexagonal symmetry. For weak interlayer hopping
tz = 0.1t, the in–plane band structure in panel (b) is unmodified, still showing
the Dirac node at the K point. However, the out–of–plane dispersion reveals
that this degenerate point persist along kz, following the H′−K−H′′ line. The
same behaviour is obtained at K′. As a result, the red and blue colours in panels
(c) and (d) indicate where the lower two bands touch. Consequently, we do not
obtain a 0D isolated node, but a 1D nodal line [26]. Nodal line semimetal

This is one example how to obtain higher dimensional nodal features in a
simple lattice model. In general, it is even possible to obtain 2D nodal planes,
as Fig. 1.15 summarises. Because of their higher dimensionality, these extended
crossings usually require additional protecting symmetries. While the simple 0D
nodes are generically stable as long as translation symmetry is preserved [1], the
stability of nodal lines and planes requires additional crystal symmetries such
as mirror planes or even non–symmorphic screw axes as in the case of MnSi [27,
28]. Thus, when perturbations like spin–orbit coupling or symmetry breaking
external fields are included, these features can be gapped out completely, e. g. to
a TI phase, or leave a set of 0D nodes behind, resulting in a WSM. Nevertheless,
the former nodal feature can concentrate Berry curvature even when gapped, as
long as the gap is not too large [26]. Thus, they can still contribute significantly,
e. g. to anomalous Hall conductivity.

As long as the protecting symmetry is preserved, changing other symmetries
can at most alter the shape of the nodal line. An illustrative example is shown in
Fig. 1.16. Compared to the AA–alignment of kagome planes, now the electrons
from the A site of one layer can only hop to B and C sites on the neighbouring
plane, resulting in an ABC–stack, as displayed in panel (a). This reduces the
symmetry from hexagonal to rhombohedral, but for better comparability we
keep using the hexagonal reciprocal unit cell. In contrast to the AA–stack, this
stacking order also modifies the in–plane band structure displayed in panel (b).
The former flat band acquires a dispersion and the two lower bands are gapped
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along H′−K−H′′. Nevertheless, the band crossing survives as it is shifted away
from K and K′ points towards M. As shown in panel (c), this shift is kz–dependent
thus produces a nodal line which winds helically around H′−K−H′′. The 2D
projection in panel (d) reveals that the winding direction is opposite for K and K′

as result of these points being time–reversed partners. When magnetic order and
spin–orbit coupling are included, these lines are gapped to a quantum anomalous
Hall insulating or WSM phase for out–of–plane/in–plane ferromagnetic moments,
respectively [26]. So again, we can obtain a 3D topological semimetal from a stack
of kagome layers. A material for which this mechanism was suggested to produce
topological properties is Fe3Sn2, where kagome bilayers form an ABC–stack. Due
to the bilayer nature, each K and K′ point hosts a double helix formed by two
nodal lines [26]. We will investigate the optical response of this peculiar feature
in Chapter 5.

So, in order to understand the experimental signatures of the discussed topo-
logical band structures, we will next consider which observables can be influenced
by topological states in magnetic materials.

1.3 Signatures of Topology in Physical Observables

In the previous section we have already seen at several points that non–trivial
band topology can leave signatures in the Hall conductivity. Although the the-
oretical considerations leading to these signals are relatively straightforward in
simple models with only few bands, their direct experimental observation may
be challenging in actual material systems, so we review these effects in more
detail in the following. In addition, we will see that magneto–optical responses
are closely related and that their investigation can provide additional insight into
the topological properties.

1.3.1 Anomalous Hall Effect

During his experiments on electric transport in magnetic field in conducting
materials, Edwin Hall found that the emergent transverse voltage, subsequently
termed Hall effect, is about one order of magnitude larger in ferromagnetic
iron than in non–magnetic materials [29]. The general configuration is shown
in Fig. 1.17(a). In a non–magnetic metal, the Hall resistivity ρxy scales linearly
with the external field H, while it shows saturation in ferromagnets due to the
magnetisation M , which leads to an additional Hall constant

ρxy = R0H +RsM. (1.32)

Figure 1.15
Higher dimensional linear band
degeneracies. The point node (a)
can be generalised to a 1D nodal
line (b) or even a 2D nodal plane
(c). At every point marked in
green, the two bands touch with
linear dispersion.
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ky
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Figure 1.16
ABC–stacked kagome layers. (a)
Structure with in–plane hopping
t = −1 and out–of–plane hop-
ping tz = 0.1t. (b) In–/out–of–
plane band structure. (c) Hexag-
onal reciprocal unit cell, the
coloured points mark where the
lower two bands touch. (d) 2D
projection along kz. The 4–fold
degenerate band touching winds
around the H′−K−H′′ line. For
the ABC–model, the band touch-
ing is shifted away from the K
point, resulting in a nodal line
winding along kz in a helical fash-
ion. The 2D–projection shows
circles around K and the slight
colour gradient reveals the oppo-
site winding direction for K and
K′ (adapted from [26]).

a)

E M or H

σxx

σ xy

b) intrinsic ∝σxx
0

d) side-jump ∝σxx
0c) skew ∝σxx

Figure 1.17
The different contributions to the
AHE. (a) General geometry of a
Hall effect measurement. (b) In-
trinsic (Berry phase) contribution.
Magnetic impurities (diffuse pur-
ple) can lead to spin dependent
extrinsic scattering of electrons
(green) via skew (c) or side–jump
mechanisms (d) (adapted from
[3]).

This unusual behaviour coined the term anomalous Hall effect (AHE). Because
of the quantum mechanical nature of this phenomenon and the underlying
topological mathematical framework, it took until the change of millennia to
develop a physical understanding. Based on the review by Nagaosa et al. [3], we
will summarise the most important concepts in the following.

Experimental studies on magnetic metals indicated that the anomalous Hall
resistivity should depend on the diagonal resistivity ρxx by a power law Rs ∝ ρβxx.
One main source of the AHE involves skew scattering from magnetic impurities
as proposed by Smit [30]. This mechanism predicts β = 1 for σskew

xy . A second

possibility σsj
xy was introduced by Berger which considers side–jumps of scattered

electrons leading to β = 2 [31]. Both are extrinsic mechanisms as they rather
depend on impurities than on intrinsic material properties. A first attempt to
describe the unusual nature of the AHE from band theory was performed by
Karplus and Luttinger [32], who found that electrons in a perfect crystal with
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applied electric field acquire a perpendicular velocity in the presence of spin–orbit
coupling, predicting an exponent β = 2. Consequently, it is not possible to
distinguish e. g. intrinsic and side–jump contributions solely by static magneto–
transport experiments. Later, this finding could be equivalently reformulated in
the framework of Berry curvature, yielding the anomalous velocity from Eq. 1.24.
Because it depends only on the crystal Hamiltonian, this is termed the intrinsic
contribution σint

xy to the AHE. All three mechanisms are summarised in Fig. 1.17(b–
d). Since there may exist other scattering sources and in order to unambiguously
define the above mechanisms, it is convenient to look at their dependence on the
lifetime τ of the Bloch state. While the intrinsic mechanism does not depend on
the lifetime, skew scattering is defined as the linearly dependent contribution ∝ τ .
Historically, all other dependencies and possible contributions are summarised
under the side–jump conductivity, which therefore contains also other microscopic
possibilities beside the mechanism from panel (d) [3].
If a material possesses a large anomalous Hall conductivity, it is therefore

usually unclear whether the dominant mechanism is intrinsic or extrinsic. Magneto–
transport experiments can give a first indication but require phenomenological
scaling functions, which analyse the dependence of the Hall conductivity on the
diagonal conductivity by a power law [33, 34], but their applicability may depend
on sample properties or quality. A more rigorous decomposition of the AHE can
be obtained by taking a closer look at the definition of the intrinsic conductivity
which in the linear response framework can be calculated directly employing the
Kubo formula

σint
xy = e2ℏ

∑
n,n′

∫
dk

(2π)3
⟨n,k|px|n′,k⟩⟨n′,k|py|n,k⟩

(ϵn(k)− ϵn′(k))2
· (fn(k)− fn′(k))Intrinsic AHE

= −e2

ℏ
∑
n

∫
dk

(2π)3
fn(k)Bz

n(k),

(1.33)

where the second identity makes the relation to the Berry curvature explicit [3].
|n,k⟩ denote the occupied Bloch state with eigenenergy ϵn(k), the connected
Fermi function fn(k) and the momentum operators px,y. The above equation
contains information about interband transitions at finite energies, the static
intrinsic Hall effect is therefore defined as the zero–energy extrapolation of this
response. In this thesis, we will employ this definition experimentally by measuring
the optical Hall effect σxy(ω)Optical Hall effect with broadband magneto–optical spectroscopy. This
allows experimental application of the Kramers–Kronig relation

Reσxy(0) =
2

π
P
∫ ∞

0
dω′ Imσxy(ω

′)

ω′ (1.34)

with the angular frequency of the light ω and thereby a separation of the intrin-
sic Hall conductivity from extrinsic scattering mechanisms which only involve
conduction electrons at the Fermi level.
Previously, we have only determined the static intrinsic AHE response of a

WSM (Fig. 1.12), so naturally the question arises how the frequency dependent
response looks like.

AHE of WSMs

In a previous section, we have found that the dc AHE response of a WSM takes
the form of Eq. 1.31. This is valid for a pair of identical nodes which are located
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Weyl nodes in real materials. (a)
Symmetric Weyl cone described
by p·σ̂ with the degenerate point
shifted away from the Fermi en-
ergy. The green shading indicates
the filled states. (b) Type I WSM:
The term p0 · 1 introduces a tilt
of the cone which in the extreme
case (c) turns to a type II WSM
with electron and hole pockets
on either side of the degeneracy
(adapted from [36]).

directly at the Fermi level. If we include a finite interband response in this setting,
the frequency dependent Hall conductivity takes the form

Reσxy(ω) =
e2k0
hπ

+
e2

6v2Fhπ

k0
k2c − k20

ω2 (1.35)

showing an ω2 dependence [35]. vF is the Fermi velocity and kc is a cutoff
wavevector measured from the position of the node along the node separation.
These terms can be considered as a “universal” AHE response of a WSM since
they only depend on the separation of the nodes k0.

However, it turns out that for real materials, the above situation is highly
idealised. Therefore, we need to take a look at more general characteristics of Weyl
nodes first. So far, we were investigating systems whose low–energy physics could
be described by the Weyl points of the form introduced by Eq. 1.15. In a general
material, the bands which form the Weyl node do not necessarily have to lie at
the Fermi energy, but the degenerate point can be shifted away by a chemical
potential µ. In addition, the ideal symmetric form of the node dictated by p · σ̂,
as shown in panel (a) of Fig. 1.18, is not protected in a lattice. For example,
crystal field anisotropy can lead to an additional term p0 · 1 which introduces a
tilt of the Weyl cone as illustrated in panel (b). This version is termed type I
WSM with the symmetric node being one representative. In extreme cases, the
cone can be overtilted producing an electron and hole pocket on either side of the
node (panel c), leading to a finite Fermi surface and a type II WSM [9]. Since
the tilt and shift together produce different frequency scales on either side of the
node, it is especially interesting to investigate interband transitions, as we will
see in the following.

We consider a single type I Weyl node which is shifted from the Fermi level
in energy by µ, as sketched in Fig. 1.19 [37]. Due to the tilt, the free states on
the two sides of the node become accessible at different energies ωmin and ωmax.
They can be calculated using ℏωmin,max = 2µ/(1± |αt|) with the tilt parameter
αt = vt/vF where vt is the tilt velocity, determined e. g. from the dashed line
in panel (a) [36]. As a result, the node is type I (type II) if |αt| < 1 (> 1). The
resulting intrinsic anomalous Hall response for a pair of nodes with opposite tilt
and same chemical potential are shown in Fig. 1.19(b) by the dashed spectra
(Int). The imaginary part is

Imσxy(ω) = sgn(αt)
e2ω

6hvF

[
1

α2
t

(
1

8
− µ

2ℏω
+

µ2

2ℏ2ω2

)
− 1

8

]
, ωmin < ω < ωmax

(1.36)
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Figure 1.19
Frequency dependent Hall re-
sponse of a type I Weyl node pair
with αt = ±0.2. (a) Band struc-
ture under consideration. The
green shading indicates the filled
states according to the chemical
potential µ = 1. Due to the tilt,
two frequencies ωmin and ωmax ex-
ist where Pauli–blocking is over-
come. (b) Intrinsic off–diagonal
response for these nodes (Int),
extrinsic contributions below the
scattering rate Γ (Ext) shaded in
grey and total optical Hall effect
(Tot) spectrum (adapted from
[37, 39, 40]).
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and zero everywhere else [36]. This can be intuitively understood by viewing it
as the dissipative part of the response. In the interval ω < ωmin, all transitions
are blocked due to the Pauli principle, so no absorption is possible. Because
of Onsager symmetry, the Hall response is odd in momentum relative to the
node σxy(ω,k) = σyx(ω,−k) and consequently, the contributions above ωmax

cancel upon integration [37]. Hence, the only finite response comes from the
intermediate region where the transitions to unoccupied states are not symmetric
in k. This is also the reason why this term does not appear for the ideal symmetric
node [38]. The sign of the peak is determined by the product of signs of the
chemical potential, the tilt parameter and the chirality. If the Weyl nodes differ in
chemical potential and tilt, the total response is the sum of the individual nodes.
As an example, the faint purple line in panel (b) is the response of a system
of four nodes with arbitrary combination of parameters (µ = 0.5, 0.9, 1,−1.4,
αt = 0.3, 0.05, 0.2, 0.05 and χ = 1,−1, 1,−1) [37]. In this respect, the contribution
of a nodal line can be viewed as a sum of individual nodes, depending on the
evolution of the tilt and chemical potential along the line. The results for type II
Weyl nodes are omitted here for brevity, but may be found in Ref. 36.

The real part can be calculated by Kramers–Kronig transformation and has a
static and a frequency dependent component as

Reσxy(ω) = Reσdc
xy +Reσac

xy(ω) =

=
e2k0
hπ

+
e2µ

h2vF

[
2

αt
+

1

α2
t

ln

(
1− αt

1 + αt

)]
+ (1.37)

+ sgn(αt)
e2µ

h2vF

[
−1

α2
t

ln

(
|ω2

max − ω2|ω2
min

|ω2
min − ω2|ω2

max

)
+

(
µ

2ℏωα2
t

+
ℏω
8µ

1− α2
t

α2
t

)
ln

(
|ωmax − ω|(ωmin + ω)

|ωmin − ω|(ωmax + ω)

)
− 1

|αt|

]
.

(1.38)

The first term is the universal response from the node separation obtained before
with a correction due to the tilt and energy shift in the second term of the dc
response [36]. The frequency dependent response shows two resonant structures
at the limiting frequencies, but also extrapolates to ω → 0 with finite magnitude
(dashed line in panel (b)). In this case, the signs of the chemical potential, the
tilt parameter and the chirality do not influence the universal term, but the
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resonant peaks may be flipped. Additionally, the above results do not consider a
free carrier intraband (Drude) contribution which can influence the ω → 0 range,
as shown by the grey shaded area in Fig. 1.19(b) [36, 39, 40]. Since these free
carriers are responsible for the extrinsic contributions to the AHE (Ext), the
frequency scale provided by the scattering rate Γ of the Drude peak can separate
the intrinsic contributions to the total spectrum unambiguously. In addition,
the finite frequency peak and resonant structures provide clear spectroscopic
signatures for Weyl nodes in σxy(ω). So next, we will discuss an experimental
probe to measure the frequency dependent Hall conductivity.

1.3.2 Magneto–Optical Activity

In a crystal with cubic symmetry, Neumann’s principle dictates a dielectric tensor
of the form ε̂ = ε · 1 due to the isotropy along all spatial directions [41]. Applying
a magnetic field, e. g. along the z axis of the crystal, reduces the symmetry
leading to a modified permittivity

ε̂ =

 εxx εxy 0
−εxy εxx 0
0 0 εzz

 (1.39)

which will determine the light propagation in the material by Maxwell’s equations

k×E = ωµ0H
k×H = −ωε0ε̂E

}
→ k× (k×E) = k20 ε̂E. (1.40)

with k20 = ω2µ0ϵ0. For k ∥ z and E in the xy plane, k ·E = 0 and with N2 = k2/k0
it follows

N2E = ε̂E. (1.41)

From this eigenvalue equation, we obtain the refractive indices

N2
z = εzz (1.42)

N2
± = εxx ± iεxy. (1.43)

Nz describes the optical properties for an electric field linearly polarised along
the z axis. By contrast, the modes in the xy plane have left and right circularly
polarised eigenvectors which take the form

s± =
1√
2

(
1
±i

)
. (1.44)

As a consequence, the difference in the real part of the refractive index between
these two modes produces magnetic circular birefringence (MCB), while the
anisotropy in the imaginary part causes magnetic circular dichroism (MCD)
which are the signatures of magneto–optical activity. If we consider a magnetic
material where time–reversal symmetry is broken (also in combination with
translations), these effects appear naturally even without external field because
of the finite off–diagonal tensor elements [42].
One phenomenon derived from these considerations is the polar magneto–

optical Kerr effect (MOKE) sketched in Fig. 1.20(a). In 1877, John Kerr found
that upon reflection from a magnetic surface, an originally linearly polarised light
beam becomes elliptical with rotated principle axis [43]. In order to understand
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Figure 1.20
The magneto–optical Kerr effect.
(a) Upon reflection from a mag-
netic surface, a formerly linearly
polarised light beam becomes el-
liptical with rotated principle axis.
(b–d) Rotation θ and ellipticity η
can be related to MCB and MCD,
respectively (adapted from [42]).
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this effect, we can decompose the linear polarisation into two circularly polarised
components with the same magnitude (panel b). The different refractive indices
N± for the two components will lead to different reflectivities r± derived from
the Fresnel formula for normal incidence as

r± =
N± − 1

N± + 1
. (1.45)

Without loss of generality, we choose an incident polarisation in the Cartesian
basis Ein = E0(1, 0). Because the Fresnel equation gives the reflectivities for
the circular eigenmodes, we need to do a basis transformation into the circular
reference frame provided by the eigenvectors s± according to

Û = (s+|s−) =
1√
2

(
1 1
i −i

)
⇒ Û−1 =

1√
2

(
1 −i
1 i

)
. (1.46)

The reflected field can then be calculated from

Eref = Û

(
r+ 0
0 r−

)
Û−1Ein =

E0

2

(
r+ + r−

i (r+ − r−)

)
= E0

(
rx
ry

)
, (1.47)

yielding the change of the polarisation state by

tanϕK =
ry
rx

≈ −θ + iη =
i (r+ − r−)

r+ + r−
=

i (N+ −N−)

N+N− − 1
(1.48)

with the approximation for small angles. θ and η are the Kerr rotation and
ellipticity, respectively. The former is related to a phase difference between the
two circular polarisations (MCB), while the latter is caused by an absorption
difference (MCD), as illustrated in Fig. 1.20(c) and (d). Since both angles are
usually small, typical values for θ and η are below 1◦, justifying the above
approximation [42] (MOKE is typically termed giant for angles larger than
1◦). We can express the complex Kerr rotation in terms of the dielectric tensor
elements, which under the assumption of a weakly absorbing medium yields

θ + iη = − εxy
(εxx − 1)

√
εxx

(1.49)

or analogously with the conductivity tensor using εαβ = δαβ + i
ε0ω

σαβ as

Magneto–optical Kerr
effect

θ(ω) + iη(ω) = − σxy(ω)

σxx(ω)
√
1 + i 1

ε0ω
σxx(ω)

(1.50)

where we make the dependence on the light frequency explicit.
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Figure 1.21
Line shapes of the optical Hall
effect. (a) When a spin and or-
bitally allowed transition is split
by magnetism and spin–orbit cou-
pling, the absorption difference
for the two circular components
causes a diamagnetic line shape.
(b) If the energy remains the
same but the transition matrix el-
ements P± become different, we
obtain a paramagnetic line shape
(adapted from [45]).

Eq. 1.50 enables the calculation of the optical Hall conductivity σxy(ω) from
measurements of the diagonal conductivity and the Kerr effect over a broad
range of light frequencies and therefore is one of the central formulas for this
thesis. We will see an introduction to the measurement techniques in Sec. 2.1
and 2.3. Hence, if Weyl points determine the off–diagonal response, we are able
to measure the spectroscopic signatures from Fig. 1.19 which makes magneto–
optical spectroscopy a suitable tool to investigate the interplay of electronic band
topology with magnetism.
However, not only the presence of Weyl nodes produces a finite off–diagonal

response. From the above considerations, a finite σxy and the presence of MCD
and MCB are linked, so it is instructive to rewrite the Kubo formula in terms
of the circular momentum operators p± = px ± ipy. For Re σxx and Im σxy this
yields [44]

Reσxx =
e2π

4m2V

∑
k,n,n′

|f(εn(k))− f(ε′n(k))|
ℏωnn′

δ(ω − ωnn′)

·
[∣∣⟨n,k|p+|n′,k⟩

∣∣2 + ∣∣⟨n,k|p−|n′,k⟩
∣∣2] (1.51)

Imσxy =
e2π

4m2V

∑
k,n,n′

|f(εn(k))− f(ε′n(k))|
ℏωnn′

δ(ω − ωnn′)

·
[∣∣⟨n,k|p+|n′,k⟩

∣∣2 − ∣∣⟨n,k|p−|n′,k⟩
∣∣2] . (1.52)

Focusing on σxy, Eq. 1.52 provides two possibilities for a finite optical Hall effect:
Either the transition energies for p+ and p− are different or their matrix elements.
Both options are sketched in Fig. 1.21 in panels (a) and (b), respectively [45].
When a spin and orbitally allowed transition, e. g. a charge transfer excitation, is
split by the exchange field together with spin–orbit coupling, a double transition
with so–called diamagnetic line shape can be observed in σxy (panel a). Because
of the absorption difference for the two circular photons, this causes a derivative
structure around the central frequency in the imaginary part. By contrast, the
single transition or paramagnetic line shape (panel b) shows a peak at ω0 due to
the different matrix elements P± = ⟨n,k|p±|n′,k⟩. This may appear for spin and
electric dipole forbidden transitions, e. g. between crystal field levels. Because of
the forbidden character, these contributions are usually weaker [45, 46].
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With these considerations, it is clear that a general optical Hall effect spec-
trum may have topological (intrinsic) as well as trivial (extrinsic) contributions.
Hence, the assignment of features and line shapes requires detailed knowledge of
the momentum dependent band structure, which can be provided by ab initio
calculations. An introduction to the theoretical framework is beyond the scope of
this thesis, but we will see how the symbiosis with the experiment can provide
deep insights into the nature of the AHE in materials in Chapters 3 and 5. So
next, we will introduce the measurement techniques which provide the basis for
this type of investigation.



2

Experimental Methods for Magneto–Optical Spectroscopy

In this chapter, we will review the experimental techniques necessary for magneto–
optical spectroscopy. After a short section introducing the measured quantities,
we will see how to deduce the diagonal conductivity tensor elements as function
of temperature and magnetic field. Then, we will cover a polarisation modulation
technique for sensitive detection of the Kerr parameters and a method to extend
these spectra into the far–infrared range. The combination of these techniques
will yield broadband optical Hall effect spectra, which we will analyse in the
subsequent chapters for several materials potentially hosting electronic band
structure with non–trivial topology.

2.1 Infrared Spectroscopy

Generally, for light propagation in matter, any process which couples to the
electromagnetic wave can modify the propagation in the respective material.
Derived from Maxwell’s equation, this coupling can be described phenomenolog-
ically by the complex refractive index which includes a dispersive component
that modifies the wavelength and velocity of light, and a dissipative component
related to absorption. Instead of the refractive index, the optical conductivity or
the dielectric function may be used alternatively. There are a variety of different
excitations which can contribute to the material response, among them

▷ magnons,

▷ lattice vibrations,

▷ free charge carriers,

▷ excitons,

▷ interband absorption,

▷ transitions from core levels,

all of which have an associated energy scale that can be analysed by optical
spectroscopy with light waves of up to near ultraviolet frequencies [47]. The
photon energy, (angular) frequency, wavenumber or wavelength may be used in-
terchangeably. Depending on the strength of absorption, we require measurements
of the light transmitted through or reflected from the surface of the sample. Since
all of the materials investigated in this thesis are metallic, only the reflectivity
spectroscopy will be discussed further.

We have already seen the Fresnel formula which relates the reflectivity to the
refractive index

r =
N − 1

N + 1
=

√
Reiϕ. (2.1)

Because detectors for visible and infrared frequencies are only able to measure
the light intensity, but not the phase ϕ, they can only provide the reflectance
R. In order to separate the characteristics of the spectrometer from the sample,

25
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reflectivity measurements require a reference spectrum recorded on an ideal
mirror. For this purpose, noble metals like gold and silver with reflectivity close to
unity are usually used. From the intensity spectra of the sample and the mirror,
the sample reflectance can then be calculated as

R =
Isam
Iref

= |r|2. (2.2)

Unfortunately, this measurement does not give access to the phase spectrum ϕ
which is required for the determination of the complex N . In order to obtain it,
we can use the Kramers–Kronig relations which connect the real and imaginary
parts of the optical constants due to causality [47]. For the phase they yield

ϕ(ω) = −ω

π

∫ ∞

0

ln [R(ω′)]− ln [R(ω)]

ω′2 − ω2
dω′. (2.3)

Since the boundaries of the integral are not accessible experimentally, we need
to perform broadband measurements and then rely on extrapolation for R. In
the ω → 0 limit, the Hagen–Rubens relation R ∝ 1− 8

√
ϵ0ω/σ0 dependence is

reasonable for metals, with the vacuum permittivity and dc conductivity ϵ0 and
σ0, respectively, while we can use a power law R ∝ ω−α at high frequencies [48].
With the complex reflectivity determined and neglecting the contribution of the
magnetic permeability, we can calculate the complex refractive index from Eq. 2.1
which gives access to the other optical constants like the dielectric function via
N =

√
ε and the conductivity ε = 1 + i

ε0ω
σ.

Here, it is important to note that the optical constants are tensorial quantities.
The effective value of the dielectric constant or conductivity is therefore deter-
mined by the geometry of the measurement system. If we consider a sample with
tetragonal symmetry and z ∥ c, the permittivity tensor reads as

ε̂ =

εxx 0 0
0 εxx 0
0 0 εzz

 (2.4)

which yields two eigenvalues for the refractive index N2
1,2 = εxx and N2

3 = εzz.
Hence, if the incoming light is polarised in the ab plane of the crystal, we can
measure εxx (and therefore σxx). For polarisation along the c axis, we determine
εzz (σzz). The correct alignment of the crystallographic axes must be ensured
during the sample preparation to avoid mixing the eigenvalues in the measurement.

So next, we need to obtain the intensity spectra Isam(ω) and Iref(ω) experi-
mentally.

2.1.1 Grating Spectrometer

Conceptually, the most simple type of spectrometer relies on a monochromator.
A dispersive element like a prism or grating splits the incoming wavelengths
spatially, which can then be selected by a slit. This is schematically shown for a
grating spectrometer in Fig. 2.1(a). Here, the path difference between neighbouring
grooves of the grating must be an integer multiple of the wavelength in order to
obtain constructive interference. Hence, the grating equation is

a(sinα− sinβ) = mλ (2.5)
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Figure 2.1
(a) Working principle of a grat-
ing spectrometer. The light from
the source is split due to dif-
ferent diffraction angles for ev-
ery wavelength. A slit selects
the wavelength for the exper-
iment (b) Schematic lightpath
for the Oriel Instruments Corner-
stone 260 used during the ex-
periments. The wavelengths are
scanned by rotation of the grating
(adapted from [49]).

where a is the lattice constant of the grating, α and β are the angles of incoming
and diffracted beam with respect to the grating normal and m the diffraction order
[49]. The wavelength can be scanned e. g. by rotating the grating, as employed in
the Oriel Instruments Cornerstone 260 spectrometer used during the experiments,
which is schematically shown in panel (b). With the monochromated beam, we
can then determine I(ω). In the grating equation, we only considered interference
from neighbouring sites. Taking the other grooves into account sharpens the
diffraction peak, hence the wavelength resolution becomes better with increasing
density of lines on the grating. As the slit will eventually select a section of the
diffracted beam, the experimental resolution will be determined by its width [49].

This spectroscopic technique has two major disadvantages. Firstly, it is slow
because the intensity can only be measured for one wavelength at a time. Secondly,
the intensity of the source is distributed over all diffraction orders m, so only a
fraction will eventually be used for the experiment. This limits the application
to wavelength ranges where high intensity light sources like halogene or gas
discharge lamps are available which are typically near–infrared (NIR), visible
(VIS) and near–ultraviolet (UV) [47]. An alternative approach which overcomes
both drawbacks is Fourier spectroscopy.

2.1.2 Fourier Spectroscopy

In a Fourier transform infrared (FTIR) spectrometer, an interferometric approach
is taken for detection of I(ω). Because it does not suffer from the above loss of
intensity, this technique can also cover the far– and mid–infrared (FIR, MIR)
spectral ranges. The operation principle is based on a Michelson interferometer, as
for example realised in the Bruker Vertex 80v, schematically shown in Fig. 2.2(a).
The light from the broadband sources is guided to the interferometer, where it is
separated into two (equal) parts by a beamsplitter (BMS). One of the arms is
terminated by a standing mirror, while the other arm has a moving mirror that
can travel in direction x for a total distance L. The corresponding beam acquires
an additional phase shift of ei(ω/c)2x. The position of the mirror is recorded via a
HeNe reference laser. Afterwards, the beamsplitter recombines the two beams
which are subsequently guided to the sample and detector.

If the source has a spectrum S(ω), the intensity on the detector is obtained
from interference of the two arms as

I(x) =

∫ ∞

−∞
S(ω) cos

(ω
c
2x
)
dω (2.6)
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Figure 2.2
Schematic of a Bruker Vertex
80v FTIR configured for reflec-
tivity measurements. The light
provided by the sources is guided
to the Michelson interferometer
where it is separated by a beam-
splitter (BMS). The interferome-
ter arms have one standing and
one moving mirror that can travel
along x by a total distance L. Af-
ter the two beams interfere, the
light is guided to the sample by a
mirror array and after reflection
to the detector chamber. An ex-
ternal bolometer may be used for
FIR measurements. The aperture
(APT) controls the spot size and
the available intensity (adapted
from [50]).
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which is called the interferogram and has the form of a cosine Fourier transform
of the source spectrum. Therefore, we can calculate the source spectrum from
the inverse transformation

S(ω) =

∫ ∞

−∞
I(x) cos

(ω
c
2x
)
dx. (2.7)

and get the spectrum at all frequencies simultaneously. With the sample or
reference mirror in the lightpath, we thereby obtain Isam(ω) and Iref(ω) [51].

The application of the above ideal formulas is limited in an actual experiment.
First of all, it is not possible to measure I(x) on an infinite range, as the mirror can
only travel by L. This provides a limit to the frequency resolution as illustrated
in Fig. 2.3. Panel (a) shows the interferogram for a monochromatic light source if
the mirror could travel infinite distances (green) or only finite L (purple). The
corresponding Fourier transforms are shown in panel (b). We obtain the single
frequency ω0 of the monochromatic source for infinite integration boundaries.
For the limited case however, this line is broadened in a sinx/x fashion. The
full width at half maximum (FWHM) of this peak will therefore determine the
frequency resolution, hence, we need to set L according to the sharpest spectral
features to be properly resolved. In a similar fashion, the smallest step size ∆x of
the travelling mirror will provide an upper bound for measurable frequencies by
the Nyquist theorem. In addition, the stepping turns the Fourier integral to a
sum over discrete x, which can cause aliasing at high frequencies and must be
taken into account for operation towards the UV [47, 51].
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Figure 2.3
Spectral artefacts for finite travel
distance. (a) The interferogram
of a monochromatic light source
(ω0) is a cosine wave (green), fi-
nite L cuts a section (purple). (b)
Fourier transforms: For infinite
limits, the result is a delta peak
at ω0 (green) which is smeared by
finite L to a sinx/x shape includ-
ing oscillations around the base-
line (purple) that need to be cor-
rected by apodisation, e. g. with
a Gaussian (blue).

Another source of error from finite L can be seen in panel (b). Next to the
sharp central peak additional oscillations appear around the baseline of the purple
spectrum. The occurrence of these “feet” around any sharp spectral feature results
from the abrupt cutoff of I(x) at the travel limits. In order to avoid them, the
interferogram can be multiplied by a window function e. g. a Gaussian (blue
in panel a) to obtain smooth boundaries, although this also slightly affects the
resolution in (b). This process is called apodisation [47, 51].

Despite these difficulties, FTIR spectroscopy is the most commonly used tool
for broadband optical spectroscopy from FIR to UV frequencies. This requires a
proper configuration of the optical elements. Usually, FTIR systems are equipped
with a variety of different sources, beamsplitters, windows and detectors for
ideal measurement conditions in the respective range [51]. A summary of optical
components and materials used may be found in Fig. 2.9.

As in magnetic materials the band structure and the free carrier response may
change upon applying external magnetic fields, performing reflectivity measure-
ments with varying field strength may give additional insights into the response
functions and the coupling between electronic structure and magnetism. The
following section discusses a setup where the sample can be placed in magnetic
field in a FTIR spectrometer.

2.2 Magneto–Reflection Experiments

During the PhD, I assembled a setup coupling a Bruker Hyperion FTIR micro-
scope to a 5T Oxford optical magnet, which is in principle able to cover the
relevant frequency and field ranges for the study presented in Chapter 6 (com-
pare AppendixA.1). Initial measurements on this new setup were unfortunately
inconclusive since a relatively high noise level in the FIR and parasitic cryostat
motion in field compromised the reliability of the data. Therefore, and due to the
necessity to apply higher fields for Co3Sn2S2, magneto–reflection experiments
were performed during research visits at the LNCMI Grenoble in the lab of Milan
Orlita.

Schematics of the available setups are shown in Fig. 2.4. The light from a globar
or mercury lamp in a Vertex 80v spectrometer is coupled into a light pipe by a
parabolic mirror, which guides the beam into a solenoid. This can either be a
resistive coil for fields up to 34T or a superconducting solenoid able to produce
magnetic fields up to 16T. The sample holder can be configured for both Faraday
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Figure 2.4
(a) Schematic of the magneto–
reflection setup in Voigt and Fara-
day configuration with an exter-
nal bolometer. The light from
a Vertex 80v is guided through
a beamsplitter (BMS) into the
solenoid, where a mirror (M) in
the sample holder selects the
configuration. (b) Setup for po-
larised reflection measurements
in Voigt configuration. In the
sample holder, a mirror (M) and
beamsplitter (BMS) guide the
light via the sample (S) and a po-
lariser (P) to an internal bolome-
ter.
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and Voigt configurations with an external bolometer (panel a). Due to spatial
limitations, polarised reflectivity measurements can only be performed in Voigt
configuration (panel b), hence the light is reflected from a mirror (M) before
passing through a beamsplitter (BMS) onto the sample (S). The beamsplitter
guides the reflected light through a polariser (P) to the internal bolometer. The
probe is filled with a small amount of helium as exchange gas which ensures
proper thermalisation of sample and detector at 4K.

We measure the magnetic field dependence of the intensity with respect to the
zero–field spectrum used as a reference, resulting in R(B)/R(0) spectra. Since the
bolometer response also has a small field dependence, the measurement is repeated
using a gold mirror instead of the sample. The R(B)/R(0) spectra were corrected
with these as reference, assuming that the reflectivity of gold has a negligible
field dependence. By using KRS–5 and wiregrid polarisers in combination with
KBr and Si beamsplitters, the FIR–MIR range between 12− 500meV could be
covered in these experiments.

So far, the introduced measurement techniques only detected the intensity
changes of the reflected light. In the following, we will consider methods to
monitor the polarisation state in addition.

2.3 Magneto–Optical Kerr Effect Spectroscopy

In order to calculate the optical Hall effect spectra, we need to measure both
Kerr parameters over a broad energy range. In principle, the same spectroscopic
techniques introduced above can be employed, but we need additional optical
components which enable the detailed analysis of the polarisation state. We
consider two possibilities in the following.

2.3.1 MOKE Measurement with a Photoelastic Modulator

One convenient way to measure both Kerr parameters simultaneously with high
precision uses a photoelastic modulator (PEM) as a polarisation modulation
component. This method was originally proposed by Sato in Ref. 52 and the
schematic lightpath is shown in Fig. 2.5.

The incoming light is polarised at 45◦ with respect to the optical axis of
the PEM by a polariser P producing EP = E0/

√
2(1, 1). The PEM contains
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Figure 2.5
Lightpath for PEM–based MOKE
spectroscopy. A polariser (P) set
at 45◦ provides the input polarisa-
tion for the photoelastic modula-
tor (PEM). After reflection from
the sample (S), an analyser (A)
set to angle ϕ selects one projec-
tion of the electric field before
the detector (D) measures the
intensity. Two measurements for
±M are antisymmetrised to ob-
tain the MOKE parameters odd
in field (adapted from [52]).

an isotropic crystal which is turned birefringent by periodically applied strain,
providing a retardation of the form

δ = δ0 sinω0t (2.8)

for the y axis which alternates the electric field continuously between left and
right circular polarisation states (compare Fig. 2.6(a,b)). In matrix form, this

element is represented by

(
1 0
0 eiδ

)
. After reflection from the sample with the

reflectivities r+ and r− for the eigenstates known from Sec. 1.3.2, an analyser at
angle ϕ projects one linearly polarised component whose intensity is measured
by the detector. Thus the electric field at the detector is given by

E = (cosϕ sinϕ)
1√
2

(
1 1
i −i

)(
r+ 0
0 r−

)
1√
2

(
1 −i
1 i

)(
1 0
0 eiδ

)
E0√
2

(
1
1

)
(2.9)

which turns into

E =
E0

2
√
2
(cosϕ sinϕ)

(
r+(1− ieiδ) + r−(1 + ieiδ)

i
[
r+(1− ieiδ)− r−(1 + ieiδ)

]) =

E0

2
√
2

[
r+(1− ieiδ)eiϕ + r−(1 + ieiδ)e−iϕ

]
. (2.10)

We introduce the short notations 2R = r2++r2−, ∆R = r2+−r2− and ∆ϑ = ϑ+−ϑ−
(r± = |r±| eiϑ±) and write the intensity proportional to the absolute square of
the electric field as

I ∝ |E|2 = E2
0R

4
[1 + 2η sin δ + sin (2θ + 2ϕ) cos δ] (2.11)

with the condition that ∆R/R ≪ 1. For this equation, we used that

θ + iη = −1

2
∆ϑ+ i

1

4

∆R

R
. (2.12)

We can now insert Eq. 2.8 and expand the intensity using the Jacobi–Anger
identities

sin (δ0 sinω0t) = 2J1(δ0) sinω0t . . . (2.13)

cos (δ0 sinω0t) = J0(δ0) + 2J2(δ0) sin 2ω0t . . . (2.14)
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Figure 2.6
Polarisation modulation of the
MOKE components. (a) repre-
sents one period of retardation,
which produces the polarisation
sequence after the PEM shown
in the first row in panel (b). The
second and third row present the
horizontal projection by the anal-
yser and the resulting modulation
of the intensity. Consequently,
panels (c) and (d) explain how
rotation and ellipticity influence
the polarisation state and thus
produce intensity signals propor-
tional to the 2ω0 and ω0 compo-
nents, respectively (adapted from
[52]).

a) Retardation

b) PEM

c) Rotation

d) Ellipticity

t

I

t

I

t

I

t

where the Jis are the ith order Bessel functions which yields the following Fourier
series for the detector intensity

I = I(0) + I(ω0) sinω0t+ I(2ω0) sin 2ω0t+ . . . (2.15)

with

I(0) = I0R [1 + J0(δ0) sin(∆ϑ+ 2ϕ)] (2.16)

I(ω0) = aI0∆RJ1(δ0) (2.17)

I(2ω0) = bI0RJ2(δ0) sin(∆ϑ+ 2ϕ). (2.18)

Here, a and b are constant prefactors depending on the transfer function of the
preamplifiers. By using a Lock–In detection, we can now measure the ω0 and
2ω0 intensities, beside the dc. Assuming only small phase shifts ∆ϑ and setting
the analyser angle to small values ϕ ≈ 0, the ratios of the intensity components
become

I(ω0)

I(0)
= AJ1(δ0)η (2.19)

I(2ω0)

I(0)
= BJ2(δ0)(θ + ϕ) (2.20)

with constants A and B summarising the prefactors including sensitivities for
the detection and amplification system. Fig. 2.6 explains why the ω0 and 2ω0

components represent ellipticity and rotation, respectively. During one period of
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retardation, displayed in panel (a), the PEM produces the polarisation sequence
between the two circular polarisations as shown in panel (b). With the analyser
picking up e. g. the horizontal component of the polarisation, this modulation
does not alter the detector intensity. By contrast, if the sample shows MOKE,
panels (c) and (d) show how rotation and ellipticity influence the polarisation
state and thereby produce the intensity modulations at 2ω0 and ω0, respectively.

However, there is one additional peculiarity to take into account. Non–magnetic
phenomena such as linear birefringence of optical components like lenses or
windows in the lightpath can also influence the polarisation state and need to
be separated from the MOKE contribution. Onsager relations require that the
off–diagonal conductivity is odd under time–reversal, therefore, in general, the
Hall conductivity is measured in two time–reversed states [53]. For the present
case of a ferromagnet this implies measurement with reversed magnetisation

σxy(M) = −σxy(−M). (2.21)

By Eq. 1.50, this translates to the Kerr parameters being antisymmetric in
the magnetisation. Thus, in order to obtain the MOKE signal, we need to
antisymmetrise two measurements with ±M as indicated in Fig. 2.5.
Because of the prefactors AJ1(δ0) and BJ2(δ0), we need to calibrate the

antisymmetrised data. For the rotation, this can be achieved by manually rotating
the analyser by an angle ±ϕ0, thus simulating the intensity change of a rotation by
that angle. Dividing the intensity difference by ϕ0 therefore gives the calibration
according to [

I(2ω0)

I(0)

∣∣∣∣
+ϕ0

− I(2ω0)

I(0)

∣∣∣∣
−ϕ0

]
/2ϕ0 = BJ2(δ0). (2.22)

For the ellipticity, the calibration works similarly, but we have to insert another
retarding element, e. g. a quarter–wave plate into the lightpath behind the PEM.
The total retardation therefore becomes

δ = δλ + δ0 sinω0t (2.23)

with δλ = π/2 · λ/λ0, where λ0 is the wavelength where the quarter–wave plate
has a retardation of exactly π/2. This modifies Eqs. 2.16 and 2.17 according to:

I(0)′ =
1

2
I0R [1± J0(δ0) cos δλ] (2.24)

I(ω0)
′ = ∓AI0RJ1(δ0) sin δλ sinω0t (2.25)

So now, rotation of the analyser by an angle ±ϕ0 yields an intensity difference
determining the prefactor AJ1(δ0), calibrating the ellipticity with[

I(ω0)
′

I(0)′

∣∣∣∣
+ϕ0

− I(ω0)
′

I(0)′

∣∣∣∣
−ϕ0

]
/2ϕ0 = AJ1(δ0). (2.26)

The above considerations hold for both monochromatic and broadband sources.
In the latter case, we obtain a calibration value for every wavelength. Fig. 2.7(a)
and (b) show exemplary calibration curves for the NIR–range for rotation and
ellipticity. The black spectra represent the measured intensity difference for
rotated analyser divided by the angle and the green curve the deduced calibration.
For the ellipticity, the sin δλ term introduces a parasitic oscillation (dashed), that
we compensate by using the envelope function of the absolute value.
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Figure 2.7
Exemplary calibrations for PEM
measured MOKE components.
(a,b) The black spectra are the
measured intensity differences di-
vided by the angle while the green
curves are the resulting calibra-
tions. For the ellipticity, we have
to take the envelope function of
the absolute value due to oscil-
lations coming from the quarter–
wave plate. (c) The three Bessel
functions appearing in prefactors.
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Panel (c) shows the three Bessel functions that appear in the prefactors. For
optimal sensitivity for the rotation, the retardation should be set to the maximum
of J2 around λ/2, while for the ellipticity the optimum of J1 would be around
0.29λ. For simultaneous measurements, a compromise of 0.4λ can be used.
This technique works well in the MIR–VIS range because of readily available

industrial PEM devices. As it turns out, there is no commercially available PEM–
option for the FIR, so we need to consider a different detection mechanism for
this range.

2.3.2 FIR–Rotation Measurements

In order to gain information on bands closer to the Fermi energy, we would like to
extend the MOKE spectra to the FIR range. Although the sensitivity is smaller
than for PEM–based techniques, we employ a setup with fixed polarisers of high
extinction ratio with the schematic lightpath shown in Fig. 2.8. The polariser
P provides an incoming polarisation of the form Ein = E0 (1, 0), so with the
analyser set at an angle ϕ, the electric field on the detector is

E ∝
(
cosϕ sinϕ

)(cos θ − sin θ
sin θ cos θ

)(
1

i tan η

)
= cosϕ+ sinϕ (θ + iη) .

(2.27)

Consequently, with the intensity being proportional to the square of the field and
under the assumption that the Kerr parameters are small thus neglecting higher
then linear order terms, we find

I ∝ |E|2 ∝ |cosϕ+ θ sinϕ+ iη sinϕ|2

≈ cos2 ϕ+ θ sin(2ϕ).
(2.28)

Thus, the intensity is linearly proportional to the rotation with the highest
sensitivity for ϕ = 45◦. To get the rotation odd in field, we again antisymmetrise
measurements for opposite fields. As before, the calibration is performed by
manual rotation of the analyser. Unfortunately, we do not have access to the
ellipticity in this measurement scheme, but we can recover it using the Kramers–
Kronig relationship. Because of the broadband nature of our experiments, we can
simultaneously fit the rotation and ellipticity spectra with an oscillator model in
the software Reffit [54]. With a satisfactory fit of the measured ranges, we can
deduce the shape of the ellipticity also in the FIR. With this method, we can
push the low–frequency cutoff down to 25meV, depending on the overall detector
intensity determined by sample characteristics such as dimensions as well as the



2.3 Magneto–Optical Kerr Effect Spectroscopy 35

45°

P

A

S

D

M

∓

0°

Figure 2.8
Lightpath for FIR rotation mea-
surements. Polariser (P) and anal-
yser (A) are set at 45◦ relative ori-
entation before and after the sam-
ple (S) with detector (D) mea-
suring the transmitted intensity.
Again, two measurements for op-
posite fields are antisymmetrised.

magnitude of the MOKE and reflectivity. After introduction to the measurement
principles, next we summarise the experimental setups.

2.3.3 MOKE–Spectroscopy Setups

The polarisation modulation technique can be used in combination with monochro-
mator or FTIR spectrometers. Due to available equipment, both techniques are
employed. A summary of the optical components and materials used is shown in
Fig. 2.9, grouped to the corresponding frequency range by the colour code. All
setups are summarised in Fig. 2.10.

The NIR/VIS spectrometer employs an Oriel Instruments Cornerstone 260
grating monochromator (panel a). The light from a Xenon or a halogene lamp for
VIS/NIR, respectively, is turned monochromatic by the grating. Subsequently,
the beam is collimated by an array of lenses, made from BK7 glass or CaF2,
and shaped by an iris aperture (APT), before passing into the polarisation
modulation setup. This consists of an initial polariser (P) set at 45◦, the PEM
(Hinds PEM 90, fused silica), an optional quarter–wave plate for the ellipticity
calibration and an analyser (A), located after the sample (S). The polarisers
are Glan–Thompson prisms made of Quartz. The sample is placed in an Oxford
cryostat for temperature dependent recording which is equipped with a Quartz
window and small NdFeB permanent magnets that provide 300mT at the sample
position and can be flipped by a rotation mechanism. The intensity is measured
with a photomultiplier (PMT) or InGaAs diode. The detector signal is passed
to a multimeter for the dc spectrum and two Lock–In amplifiers, set to measure
the ω0 and 2ω0 modulated components. The setup is operated from a PC with
custom Labview software for data acquisition. Since all three intensity components
necessary for evaluating the Kerr parameters are recorded simultaneously, only two
measurement runs for opposite magnetic fields are needed at each temperature.

For the MIR setup, a Varian 670–IR spectrometer is used (panel b). It is based
on a similar Michelson interferometer as the Vertex 80v. The source is a SiC
globar, whose light is guided to an output port of the spectrometer housing, where
the polarisation modulation setup is attached. Two off–axis parabolic mirrors
collimate the light followed by the same arrangement of optical components from
before, but now made from ZnSe (yellow). The polarisers are evaporated wiregrids
on a ZnSe substrate and the light intensity is detected by a HgCdTe (MCT)
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Figure 2.9
Configuration of optical compo-
nents for the different frequency
ranges indicated by the back-
ground shades. The colour en-
codes the range a device or ma-
terial is typically used in. There
is no commercial PEM solution
for the FIR which makes the fixed
polariser setup necessary.
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detector. Its signal is passed back to the spectrometer to record the interferogram.
On a second input, a Lock–In amplifier is attached to demodulate at local oscillator
frequencies to either ω0 or 2ω0 providing the respective interferogram. Since the
interferometer does not have a third input, the two components cannot be recorded
simultaneously, so four measurement cycles are necessary per temperature to
obtain the full information. The lightpath is placed in an acrylic box flushed with
nitrogen to remove sharp absorption lines of water and CO2.
In the FIR, we cannot use the polarisation modulation method, so a fixed

polariser setup is attached to the output of the interferometer (panel c). The
polarisers are wiregrids on a polypropylene substrate and the window is made
from KRS–5 (red). Off–axis parabolic mirrors were used to guide the light
and a bolometer operated at 4K is the detector. Since the intensity is directly
proportional to the Kerr rotation, the detector signal is fed directly to the
spectrometer. Again, two measurements per temperature for opposite fields are
recorded.

With the techniques described in this chapter, we are able to measure the full
conductivity tensor in an energy range from 25meV to 4 eV. This is the range
where we would expect topological signatures of the band structure, especially in
the optical Hall effect. So finally, we turn to the results of these experiments for
kagome magnets.
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Figure 2.10
Summary of the MOKE spec-
troscopy setups. (a) The NIR/VIS
spectrometer employing a Oriel
Instruments Cornerstone 260.
The operating principle is de-
scribed in the main text. The
abbreviations are: iris aperture
(APT), polariser (P), quarter–
wave plate (λ/4), analyser (A)
and sample (S). The blue colour
of the optical components indi-
cate their fabrication from Quartz
glass and its derivates. (b) The
MIR setup based on a Varian 670-
IR FTIR. In principle, the same
optical components are used, but
here made from ZnSe (yellow).
(c) The FIR lightpath is also at-
tached to the Varian FTIR. The
optical components are shown in
red because of the used KRS–5
window and polypropylene polaris-
ers.





3

Giant Magneto–Optical Response of a Nodal Line
Resonance in Co3Sn2S2

Previously, we have seen that a WSM phase can arise in materials composed of
stacked ferromagnetic kagome layers. A prototypical example for this construction
is the shandite Co3Sn2S2, for which we investigate the magneto–optical properties
in this chapter. Here, the ab plane Co kagome layers are stacked along the c axis in
an ABC–fashion, resulting in the space–group R3̄m [55]. A representative section
of the crystal structure is shown in Fig. 3.1(a). Below TC = 177K, Co3Sn2S2
becomes an easy–axis ferromagnet with the moments of the Co atoms pointing
along the c axis. Originally, anomalies in the magnetisation and susceptibility
as well as muon spin resonance (µSR) spectra suggested an in–plane antifer-
romagnetic component just below the transition temperature [56, 57], whereas
recent neutron diffraction and MOKE microscopy results show that the domain
configuration changes instead [58, 59]. We therefore do not expect any topological
Hall effect from real–space Berry curvature.

The non–trivial electronic topology under broken time–reversal symmetry was
heavily investigated in this material. The band structure obtained from non–
relativistic density functional theory (DFT) calculations along high–symmetry
directions is presented in Fig. 3.1(d) which reveals a closed nodal line formed by
the two red spin up bands around the Fermi energy. The evolution of the loops
on high–symmetry planes of the BZ is shown in panel (c), where the colouring
encodes the position of the crossing relative to Fermi energy EF. Nodal loops and Weyl

points
When spin–orbit

coupling (SOC) is included, each nodal line is gapped to a remaining pair of Weyl
points at positions indicated in (c), about 60meV away from EF [60–62]. On the
surface, linear band degeneracies were observed in angle resolved photoemission
spectroscopy (ARPES) studies which also suggest the existence of Fermi arcs
(see Fig. 3.1(f)) [63, 64]. Scanning tunnelling microscopy (STM) studies found
chiral edge modes and observed their hybridisation on crystal terraces [18], shown
in Fig. 3.1(e). Therefore, the overall experimental evidence indeed suggests that
Co3Sn2S2 is a magnetic Weyl semimetal.

Further interest in the consequences of this topological state was raised as
a large anomalous Hall conductivity was measured in this material [60, 65].
The corresponding magneto–transport data is shown in Fig. 3.1(b) [62]. Earlier
magneto–optical and theoretical studies suggest that the origin of this anomalous
response is the gapped nodal line [61, 66], while an ARPES study claims that the
Weyl points are the governing feature [60], but neither succeeded in observing the
responsible interband transitions directly due to the vicinity of the topological
features to the Fermi energy. It therefore remained unclear whether the Weyl
points or the nodal loops give the dominant contribution to the static AHE,
and whether extrinsic scattering mechanisms play a crucial role. Both of these
questions could be addressed by the broadband MOKE study performed in the
course of this thesis which is presented in the following.

39
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Figure 3.1
Topological properties of
Co3Sn2S2. (a) Crystal structure
highlighting the ABC–stacked
Co kagome layer sequence.
(b) Giant AHE with values
up to 1200Ω−1cm−1 at low
temperatures. (c) Nodal loops
on high–symmetry planes of the
BZ, the colour scale encodes the
position of the crossing relative
to the Fermi energy. When SOC
is included, each nodal line is
gapped to a pair of Weyl nodes
60meV away from the Fermi
energy, as indicated for the top
right loop. (d) Band structure
along high–symmetry directions
with and without SOC. The band
crossings of the nodal loop are
highlighted with dashed circles
(adapted from [62]). (e) STM
images of hybridised edge states
on a crystal terrace of Co3Sn2S2

with particle in a box behaviour
(Reproduced Fig. 3(c-f) and 4(b)
from S. Howard et al., Nature
Communications 12, 4269
(2021) under Creative Commons
license). (f) ARPES constant
energy contour at the Fermi level.
Features connecting Weyl points
of opposite chirality (blue/green
dots) are identified as Fermi arcs
(FA) (Reprinted Fig. 4(a) with
permission from I. Belopolski
et al., Physical Review Letters
127, 256403 (2021), Copyright
2021 by the American Physical
Society).
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3.1 Reflectivity and Kerr Effect Spectra

In the magnetically ordered phase, the conductivity tensor in Co3Sn2S2 takes the
form

σ̂(ω) =

 σxx(ω) σxy(ω) 0
−σxy(ω) σxx(ω) 0

0 0 σzz(ω)

 (3.1)

due to symmetry (for better readability, the explicit frequency dependence of
the quantities is omitted in the following). Here, the z coordinate aligns with
the c axis of the crystal, while x and y lie in the kagome plane. Determining all
tensor elements therefore requires polarised reflectivity measurements parallel
and perpendicular to the kagome layer. These measurements were carried out
on the polished ab and ac surfaces of single crystals with a lateral sizes of
≈ 5mm and ≈ 3mm, respectively. The individual samples were cut from a large
single crystal which was grown by Mohamed Kassem at the group of Hiroyuki
Nakamura with a modified Bridgman method [67, 68]. The high quality and
stoichiometric chemical composition of the crystal were confirmed by powder
x–ray diffraction and spectroscopy. The samples were glued on copper plates with
circular apertures of 5 and 3mm diameter, respectively, which were mounted
on the coldfinger of a Cryovac Helium–flow cryostat for temperature dependent
measurements down to 10K. The MIR–VIS spectra were recorded in a Bruker
IFS66v/S FTIR spectrometer and the FIR range was covered with a Bruker
Vertex 80v. On the low–energy side, the reflectivity spectra were extrapolated by
using the dc conductivity values. For the UV, the spectra were merged with a
single high–temperature UV spectrum ranging up to 4 eV and then extrapolated
with free electron behaviour setting in at 106 cm−1 and an exponent for the
high–frequency regime of 1.5. The broadband MOKE spectra were measured on
the same ab cut crystal in the spectrometers described in Sec. 2.3.3. Because of
the large uniaxial anisotropy, the sample had to be field–cooled to reverse the
magnetisation direction and allow the antisymmetrisation of the MOKE angles. In
addition, the strong anisotropy results only in a small magnetisation component
in the kagome plane for the available magnetic fields, so no MOKE spectra were
recorded on the ac plane.
The obtained reflectivity and MOKE spectra for temperatures between 10–

200K are shown in Fig. 3.2. Both reflectivities approach unity towards zero
frequency, implying metallic character. The ab plane spectra in panel (a) drop
sharply around 0.125 eV, followed by a local, slightly temperature dependent
minimum around 0.4 eV, agreeing with the spectra published in Ref. 69. For the
c direction (panel (b)), the reflectivity drops significantly for temperatures above
100K in the ω → 0 limit, with a small peak forming around 40meV. For higher
energies, the spectra decrease towards a local minimum at 0.45 eV which becomes
sharper at low temperatures. Above 0.7 eV there is no significant temperature
dependence. We therefore observe a clear optical anisotropy which reflects the
layered crystal structure.
Panels (c) and (d) show the Kerr rotation and ellipticity, respectively. Beside

a small paramagnetic contribution, we start to detect a finite Kerr effect only
below TC due to the required broken time–reversal symmetry. Above 0.5 eV, both
Kerr parameters are small showing several sign changes. By contrast, we observe
giant Kerr effect in the low–energy range where the rotation shows a global
minimum of −3.3◦ at 90meV for low temperatures. Giant MOKEThe corresponding feature
in the ellipticity is a sequence of a peak at 50meV up to 2◦ followed by a clear
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Figure 3.2
Reflectivities and Kerr parame-
ters for Co3Sn2S2. (a) Reflectiv-
ity in and (b) perpendicular to
the kagome plane. The insets
highlight the measurement geom-
etry. The optical anisotropy for
in– vs. out–of–plane directions
is evident. Kerr rotation (c) and
ellipticity (d) spectra measured
on the ab plane, showing giant
magneto–optical activity in the
energy range of the nodal line
(adapted from [62]).
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sign change and a broad minimum with −2◦ at 0.25 eV. Comparing with the
colour scale of Fig. 3.1(c), it is evident that this giant magneto–optical response
appears in the energy range of the nodal line. These MOKE spectra agree with
those published in Ref. 66 in the overlapping energy range, but have a lower
cutoff energy of 25meV compared to former 80meV due to the FIR extension.
Importantly, the measured Kerr effect spectra follow the Kramers–Kronig relation
[70] and both angles approach 0 for ω → 0. This is also evident from Eq. 1.50,
where the denominator makes the Kerr angles vanish with

√
1/ω.

The temperature dependence of the MOKE spectra can have several contribu-
tions. To linear order, the polar Kerr effect is proportional to the out–of–plane
magnetisation. In addition, it is sensitive to the temperature evolution of the
band structure. In Co3Sn2S2, ARPES studies suggest that in the paramagnetic
phase, a 4–fold degenerate Dirac nodal loop exists, which upon the magnetic
transition is exchange split into two 2–fold degenerate Weyl loops [63]. One of
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them moves away from the Fermi energy remaining unoccupied, it’s partner
being the loop discussed in Fig. 3.1. The evolution of the latter will therefore
influence the temperature dependence of the low–energy MOKE spectra. An
earlier theoretical study further suggests that the Weyl point separation evolves
as function of the ordered moment, inheriting the temperature dependence of
the magnetisation. As discussed in Sec. 1.2.3, the node separation will influence
the AHE and in turn the MOKE, but their position in energy depends on the
loop evolution, complicating the resulting temperature dependence. Therefore,
a quantitative separation of these influences would required detailed knowledge
of the temperature evolution of the band structure. Due to the difficulties of
including temperature on the theoretical level, this goes beyond the scope of the
present work.

From the four presented spectral quantities, we can obtain the diagonal conduc-
tivity elements as described in Sec. 2.1 and derive the off–diagonal conductivity
via Eq. 1.50, so these tensor elements are presented next.

3.2 Optical Conductivity and its Anisotropy

Fig. 3.3 shows the independent components of the conductivity tensor. The main
panels focus on the spectra below 0.2 eV where the static conductivity values are
presented for comparison as coloured squares at zero frequency, while the insets
show the spectra on a broad energy range.

Due to the itinerant character, Re σxx in panel (a) shows a Drude component
for ω → 0 which becomes sharper at low temperatures and extrapolates the
spectra to the static values. For temperatures below 80K, a peak is forming at
30meV clearly separated from the free carrier response. At higher energies, a
temperature dependent hump appears at 250meV followed by a step edge at
0.6 eV before the spectra become flat without distinct temperature dependence.
The observed spectral shape agrees with earlier publications [66, 69, 71].

A novel finding of this thesis work are the spectra for σzz, their real part shown
in panel (b). Most interestingly, they differ strongly from σxx as we do not find a
Drude component down to the spectral cutoff, although a narrow peak in the
unresolved region might again extrapolate to the dc values. This observation points
to different conduction mechanisms. While within the kagome plane, the orbital
overlap results in coherent conduction, interlayer electron motion is hindered only
producing incoherent hopping, similar to the situation along and perpendicular
to the Vanadium chains in BaVS3 [72]. Optical AnisotropyAt higher energies, we observe a peak at
40meV at 200K which broadens and shifts to smaller energies upon lowering the
temperature. Eventually, it splits in two below 80K. Around 0.4 eV, a minimum
forms. On its low energy slope, a similar temperature dependent hump is visible
as in Re σxx and its high energy side resembles the step edge. For even higher
energies, Re σzz is monotonously increasing without temperature dependence,
again similar to σxx.

Finally, the imaginary and real parts of the Hall conductivity spectra, Im σxy
and Re σxy, are shown in panels (c) & (d), respectively. Similar to the Kerr
parameters, both are rather small and featureless at high energies, but show
dramatic resonances below 0.1 eV. Importantly, its worth to emphasise that this
far–infrared range was not covered by a former magneto–optical study [66], but
was directly observed here due to the development of the FIR MOKE setup to
reveal this striking low–energy optical Hall response. In Im σxy, a peak forms
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Figure 3.3
Conductivity tensor elements for
Co3Sn2S2. Comparison of the
spectra measured between 10 and
200K (coloured lines) and the
theoretical DFT spectra (black
lines). (a,b,c) and (d) respectively
show the real parts of the diago-
nal, Re σxx and Re σzz, as well
as the imaginary and real part
of the off–diagonal conductivity
spectra, Im σxy and Re σxy. The
static conductivity values are plot-
ted for comparison as coloured
squares at zero energy. The insets
show the respective spectrum on
a broad energy range (adapted
from [62]).
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at 40meV which becomes larger for low temperatures, with the spectra turning
to 0 towards the cutoff (25meV). The related lineshape in Re σxy is an upturn
which at temperatures below 60K becomes a peak with a magnitude as high as
2000Ω−1cm−1, overshooting the dc AHE. Giant FIR Hall

conductivity
Since the low–energy tail of the spectra

agrees well with the dc values and formerly published terahertz spectroscopy data
is featureless [66], no additional excitations are expected in the small uncovered
energy window. In addition, a Drude fit suggests a width smaller than 10meV at
low temperatures, hence we do not expect that impurity scattering contributes to
the AHE above this frequency. Since this width is smaller than the experimental
cutoff for σxy, the optical weight produced by the resonance has purely intrinsic
origin, and its magnitude at the cutoff consequently suggests that it yields the
dominant contribution to the AHE.

In order to elucidate the interband transition generating the resonance, Ming–
Chun Jiang at the group of Ryotaro Arita performed ab initio calculations
yielding all tensor elements (details for the calculations may be found in Ref. 62).
The respective theoretical spectra are shown by black lines together with the
experiments in Fig. 3.3. Despite the Drude contribution which is not included
in the theory, all components are qualitatively well reproduced over the broad
energy scale. Differences include a slight shift of the features to higher energies
which may be caused by correlation effects [71] and an overestimated optical
weight for the diagonal elements. In both Re σxx and Re σzz, the hump around
0.25 eV and the step edge are captured, as well as the peak at 40meV. In the Hall
effect spectra, Im σxy shows a sudden increase at 40meV although the resonance
is not as pronounced as in the experiment. Importantly, the peak at 34.3meV
is very well captured in Re σxy though the experiment is a bit sharper, likely
again due to correlations [71]. The dc extrapolation yields a similar AHE as for
the low–temperature magneto–transport experiments. Based on this agreement,
we are now able to identify which bands in which part of the BZ generate the
low–energy resonance.

3.3 Decomposition of the Optical Hall Effect

In order to identify the locations in the BZ where the optical Hall effect is
generated, we can revisit Eq. 1.52. If we split the matrix elements of p± into the
px and py components, we can rewrite them with the Berry connection using

⟨n,k|p|n′,k⟩ = −im/ℏ · (εn′(k)− εn(k))Ann′(k). (3.2)

Summarising the prefactors, this yields

σαβ(ω) =
ie2

ℏV
∑
k,n,n′

(fn′(k)− fn(k)) ·
(

εn′(k)− εn(k)

εn′(k)− εn(k)− ℏω

)
Aα

nn′(k)Aβ
nn′(k) =

=
ie2

ℏV
∑
k

Hαβ(ω,k). (3.3)

α, β are indices for the Cartesian coordinates, V is the cell volume, fn(k) =
f(ϵn(k)) is the Fermi–Dirac distribution function and ω is the light frequency.
With the last equality, we sum over the band indices taking into account transitions
from filled to empty states and introduce the resulting quantity as the Hall spectral
weight Hxy(ω,k) which contains the momentum distribution of the off–diagonal
conductivity. This relation resembles Eq. 1.33 after the summation over all bands
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Figure 3.4
Momentum decomposition of the
34.3meV resonance peak. (a)
The Hall spectral weight of the
calculated 34.3meV peak on the
mirror plane containing the nodal
line and Weyl points. The colour
scale of the nodal line is repeated
for clarity. (b) Band structure
along the triangle in (a). The
grey shading highlights the en-
ergy range below 50meV, same
as in Fig. 3.3. The non–high–
symmetry points A and B are
(0.0, 0.4002, 0.301) and (0.0,
0.7373, 0.0) in units of the re-
ciprocal lattice vectors (adapted
from [62]).
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was performed, giving the Hall spectral weight the same unit as the Berry
curvature Å2. Fig. 3.4(a) shows the Hall spectral weight of the 34.3meV peak on
one of the high–symmetry planes of the BZ which includes the nodal loops and
Weyl points. These are exemplarily indicated on the bottom left by the rainbow
line and green dots, respectively. The solid black line marks the boundary of
the BZ, the green lines display the Fermi surface and the colour code shows the
spectral weight. A numerical calculation of the Fermi surface verifies that all band
crossings are found on the mirror plane, hence all low–energy features originate
from the presented slice of the BZ.

There are several hotspots of Hall conductivity on the mirror plane. Close to A
and in the vicinity of Γ, we find positive and negative patches next to each other.
After integration over the BZ, the contribution from these hotspots will therefore
cancel to a large extent. By contrast, the large positive patch along the Γ−A line
does not have a negative partner and yields the dominant contribution to the
peak. Interestingly, aside from the patches around Γ, we always find a hotspot
when the nodal line comes close to or crosses the Fermi energy. These segments
of the loop are indicated by light green of the rainbow in the lower left corner
of Fig. 3.4(a).Hotspots of the nodal

line at the Fermi energy
Therefore the hotspots always connect to dark green lines of the

Fermi surface. Remarkably, we do not see any contribution at the location of the
Weyl points. Comparing with the colour scale of the nodal line, they are located
about 60meV above the Fermi energy, hence cannot contribute to the optical
weight of the peak and may only yield a sharp contribution in a small k–volume.

In order to see the underlying band structure for the hotspots, Fig. 3.4(b) plots
the bands along the A−B−Γ triangle in panel (a). The grey shading indicates the
low–energy range, same as in Fig. 3.3. The A−B line cuts through a sequence of a
negative and positive hotspot. In the band structure, the two red spin up bands
of the nodal loop are close to the Fermi energy, so with SOC, one of the bands is
filled and the other is empty between the crossings, allowing the optical transition.
The two crossings have opposite tilt which is the reason for the different sign in
the optical weight, as discussed in Sec. 1.3.1. A similar situation produces the
hotspots at Γ where we again observe two inverted spin–up bands with opposite
tilt, gapped by SOC.

By contrast, we find only a single strongly tilted crossing point for the large
positive patch on the Γ−A line. The SOC gap again provides the conditions for the
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Figure 3.5
(a) Hall angle spectrum ΘH =
arctanRe(σxy/σxx) with a max-
imum of 42.7◦ at 40meV. The
underlying interband transition is
almost fully circularly polarised,
yielding the nodal line resonance.
(b) Optical anisotropy spectrum
Re σzz/Re σxx of Co3Sn2S2. In
the energy range of the nodal line
resonance, the out–of–plane con-
ductivity is significantly enhanced
(adapted from [62]).

optical transitions, specifically, the strong tilt produces two almost parallel bands
around the Fermi energy. Therefore, the energy gap stays almost constant in a
relatively large k–interval which sums up the Berry curvature of the two bands in
a small energy window which results in the large patch of optical weight. A total
of 6 such hotspots are expected in the BZ due to inversion and 3–fold rotational
symmetry, which combined yield the dominant contribution to the peak in the
optical Hall conductivity and therefore the AHE. Here, SOC plays a crucial role
as without the gap, the hotspots would not appear. Hence, the magneto–optical
response is amplified by SOC although the linear band degeneracy disappears.

With this knowledge, we can now come back to the conductivity tensor and
evaluate the influence of this feature for the optical properties.

3.4 Fingerprints of the Nodal Line in the Conductivity Tensor

We can start by comparing the diagonal and off–diagonal conductivity by calcu-
lating the Hall angle spectra ΘH = arctanRe(σxy/σxx) as shown in Fig. 3.5(a).
At 40meV, we observe a very large Hall angle of 42.7◦, indicating that the two
conductivity elements have almost equal magnitude. If we employ the Kubo
formula in the form of Eqs. 1.51 and 1.52, σxy depends on the difference of the
two circular matrix elements, whereas σxx is given by their sum. Although the
Hall angle as defined above is not limited, the ratio Imσxy/Reσxx cannot exceed
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1, corresponding to a completely circularly polarised transition. This limiting
case is almost realised in the nodal line resonance of Co3Sn2S2.
This resonance has another profound implication. If we compare the in– and

out–of–plane conductivities by calculating linear optical anisotropy spectra
Re σzz/Re σxx as shown in Fig. 3.5(b), σzz is significantly enhanced in the
energy range of the resonance, becoming almost three times larger than σxx.
This behaviour is also captured by the first–principles calculation, where the
overestimated optical weight for the individual components is cancelled by tak-
ing the ratio, yielding very nice agreement with the experimental data at high
temperatures. For low temperatures, some of the optical weight splits off and
moves to lower energies, nevertheless σzz still stays larger at the resonance. Since
topological features usually require a band inversion, transitions between the two
bands have very specific selection rules and the topological character prevents
the orbitals to hybridise. Together, these prerequisites may only be fulfilled by
the experimental conditions for a specific orientation of the polarisation. This
observation may introduce the optical anisotropy as a new signature of topological
states.
These results lead us to the first thesis point.

Thesis Point 1
On the itinerant kagome ferromagnet Co3Sn2S2, I have measured the reflectivity
spectra with in– and out–of–plane polarisation, and the magneto–optical Kerr
effect (MOKE) spectra over a broad energy range from 25meV to 3 eV. This
required the development of a MOKE setup for the far–infrared spectral range,
which I successfully realised by fixed polarisers for rotation measurements
and a Kramers–Kronig constrained extrapolation of the ellipticity. Due to
this extension, I could determine all elements of the conductivity tensor in
this material for the specified energy range and capture the peaks caused
by interband transitions of the gapped nodal line below 40meV also in the
off–diagonal component. Extrapolating to the dc values confirmed that the
AHE in Co3Sn2S2 has dominantly intrinsic nature caused by the nodal line
and that Weyl points only give vanishing contributions. By calculating the
frequency dependent Hall angle, I could show that these features are caused by
an almost fully circularly polarised nodal line resonance, which additionally
enhances the optical anisotropy favouring the out–of–plane conductivity [62].

In this study, we used magneto–optical spectroscopy to probe the topological
properties of the ground state electronic structure. Since the time–reversal symme-
try breaking plays a crucial role for the emergence of topological band structures,
naturally the question arises whether we can also control these features if we tune
the ground state with external forces, so next we investigate the evolution of the
nodal line resonance if we manipulate the magnetic state with external fields.
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Field–Induced Reconstruction of the Nodal Loop in
Co3Sn2S2

We have seen in the introductory chapter that the presence of topological states
requires them to be protected by properties of the system, e. g. the band gap
of a topological insulator or a certain symmetry as in the case of a nodal line
semimetal. Since applications in spintronics and quantum information technology
call for the on demand manipulation of the topological band structure, we require
a handle on the protecting property through external stimuli. As was shown in
the review by Ilan et al. [10], those can influence the topological band structure
if they modify certain symmetries of the system, e. g. through uniaxial strain
leading to an emergent effective electromagnetic field in the band Hamiltonian.
In topological magnets, conveniently, external magnetic fields provide an efficient
way to vary the electronic structure, if they can modify the magnetic ground
state order.

A number of studies indeed predict that the number and position of Weyl nodes
can depend on the magnitude and direction of the magnetic moments [12, 73–75].
Higher dimensional degenerate manifolds, e. g. nodal lines and planes may be
gapped completely by magnetism together with SOC if non–symmorphic symme-
tries are altered by the field [26, 28, 65]. While these effects are well established
on a theoretical basis, their experimental verification proves to be challenging.
For example, STM on the kagome metal Fe3Sn2 suggests a reconstruction of
massive Dirac bands for out–of–plane vs. in–plane moments [76]. Similarly, in
EuP3 magneto–transport experiments hint to the presence of a nodal ring or
Weyl–semimetal phase for in– and out–of–plane fields, respectively [77]. Quan-
tum oscillations, e. g. observed in transport, can also give insights into the field
induced reconstruction of the Fermi surface, as was recently shown for Co3Sn2S2
[78]. In addition, it was shown for the nodal planes in MnSi that only bands
on k planes parallel to an externally applied magnetic field remain gapless [28].
While these examples indicate that the band structure in topological magnets
can be highly sensitive to the magnetic state, they also highlight the difficulty to
obtain the desired direct information about specific bands. Since ARPES cannot
be performed in high external magnetic fields, we will employ magneto–optical
spectroscopy to investigate the magnetic field control of electronic band topology.

Again, Co3Sn2S2 is a suitable material for this type of study due to the simple
band structure at the Fermi level. With the dispersive nodal loop emerging
across the ferromagnetic transition and its responsibility for large anomalous
Hall, Nernst and magneto–optical effects [60–63, 66, 75], the topological band
structure appears strongly coupled to the magnetic order in this kagome metal.
Therefore, we will now investigate the evolution of the nodal line for magnetic
field applied in the kagome plane by performing magneto–reflectance experiments
up to 34T.
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Figure 4.1
Symmetries and topology for out–
of– and in–plane magnetic field
in Co3Sn2S2. The first row (a,d,g)
shows a real–space representation
of the magnetisation for M ⊥ a,
M ∥ c and M ∥ a. The sec-
ond and third rows show a top
and 3D view of the correspond-
ing BZ for the respective con-
figuration. (a–c) Emerging Weyl
points (WP) for M ⊥ a. The in–
plane magnetisation makes the
gapped nodal loops inequivalent
(NL1/2) and produces additional
Weyl points. Those have the
same colour as their correspond-
ing loop or are dark blue if lo-
cated at other k points. (d–f)
Three equivalent nodal loops re-
lated by the C3 rotational sym-
metry for out–of–plane magneti-
sation. (g–i) Inequivalent nodal
loops for M ∥ a. For this config-
uration, the mirror plane σa is a
symmetry and protects the nodal
loop NL1 (thick yellow) from be-
ing gapped (adapted from [80]).
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First, we consider the modification of symmetries by the in–plane field. For
the ground state magnetisation M ∥ c, all nodal loops are equivalent due to the
C3 rotational symmetry, as shown in Fig. 4.1(d–f). We can therefore focus on
one representative loop. However, for magnetisation in the kagome plane, the
3–fold rotational symmetry is broken. For M ∥ a, this results in the magnetic
point–group C2/m, which hosts a mirror plane σa. As shown in Fig. 4.1(g–i), this
plane contains a nodal loop NL1 which will therefore be protected from being
gapped by SOC (thick yellow).Protected nodal loop The remaining loops NL2 (light blue) are related
by the mirror operation, but are not protected, hence they are gapped resulting
in 6 Weyl points for each loop. Additionally, we find 6 Weyl points away from
the nodal lines (dark blue). So in total we obtain 18 Weyl points and a protected
nodal loop in the BZ. For the perpendicular in–plane direction M ⊥ a, shown in
panels (a–c), we obtain a similar situation, but here the magnetic point–group is
C2′/m′. We therefore need to combine the mirror operation with time–reversal
to obtain a symmetry. As this does not protect the loops NL1, they are gapped
to 6 Weyl points by SOC. The remaining loops are similarly related by this
operation and are again gapped to 6 Weyl points. Here we find 8 additional Weyl
points away from the loops, so we obtain a total of 26 Weyl points distributed
in the BZ. Some of these features were predicted earlier [75, 79], but a direct
experimental investigation has been lacking, along with measurements of the
physical consequences of their emergence. Therefore, the two following questions
arise: Do the symmetry induced changes of the nodal lines show up in the optical
response and do the additional Weyl nodes leave any fingerprints?
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Figure 4.2
Magneto–reflectance in
Co3Sn2S2 up to 0.2 eV (a,d)
Relative change of the reflectivity
for in–plane magnetic fields
perpendicular and along a,
respectively. (b,e) Magneto–
reflectance spectra calculated
from the upper panels and
the 10K reflectivity data from
Chapter 3. (c,f) Evolution of the
magnitude of the low–energy
peaks at 29meV and 25meV,
respectively, for the SC and HF
data sets (adapted from [80]).

4.1 High–Field Magneto–Reflection Measurements

For the magneto–reflectance experiments, the same large ab cut crystal as in the
previous chapter was used. Relative magneto–reflectance data [R(B)−R(0)]/R(0)
was collected in Voigt configuration and an external bolometer with the field
aligned along and perpendicular to the in–plane a crystal axis in the setups
described in Sec. 2.2. For this study, both the superconducting (SC) setup and
the high–field resistive magnet (HF) were used for data collection. Due to the
different optical path lengths in the SC and HF experiments, the raw signal is
smaller in the HF data. Therefore, the HF data was scaled for comparison with
the corresponding SC data sets at 5 and 10T, while for 15T and larger fields the
15T SC data was used for scaling. The presented data for high fields therefore
shows a lower limit for the actual magnitude of the effect.
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The collected magneto–reflectance data up to 0.2 eV and fields up to 34T is
shown in Fig. 4.2. Since for low fields the magnetisation does not saturate in
the plane, the datasets are labelled by the field direction H ⊥ a and H ∥ a for
(a) and (d), respectively. Due to the limited measurement time at the high–field
facility, the spectra for the latter configuration could only be collected in the
SC setup up to 16T. For both configurations, we obtain similar spectra, but
the detailed line shapes are slightly different. With increasing magnetic field, a
peak develops at low energies, followed by a broad minimum. For H ⊥ a, these
two features are located around 29meV and 85meV, while the peak is shifted
to lower energies of 25meV and the minimum broadens for the perpendicular
direction. For both configurations, the changes approach 0 at the high–energy
cutoff. This allows to multiply the data onto the low–temperature, zero–field in–
plane reflectivity spectrum from the previous chapter to obtain the reflectivity in
field which is shown in panels (b) and (e) for the two configurations, respectively.
For H ⊥ a, the additional spectral weight due to the peak at low energies pushes
the reflectivity very close to 1 for high fields. The observed changes with a peak
magnitude of 3.7% at 34T can therefore be considered significantly large for
such a metallic system. The detailed field dependence of the peak is shown in
panel (c) for the SC and HF datasets, where error bars are determined from the
noise level of the spectra. The magnitude increases up to 22T and then saturates,
following the same behaviour as the magnetisation for in–plane fields [81].Magneto–reflection

follows magnetisation
The

field dependence of the peak for H ∥ a is shown in panel (f), resulting in the
same trend and similar magnitude up to 16T.

Based on these reflectivity spectra, we can now analyse the underlying changes
in the electronic structure by evaluating the optical conductivity.

4.2 Optical Conductivity in Magnetic Field

We perform the Kramers–Kronig analysis on the magneto–reflectivity spectra
with the same dc extrapolation as the zero–field spectrum, since only a small
negative magneto–resistance of 2% was observed up to 15T [65]. The resulting
optical conductivity at the various fields is shown in Fig. 4.3(a) and (c) for H ⊥ a
and H ∥ a, respectively. The most prominent features are the metallic Drude
contribution at energies below 15meV and a peak around 29meV which shifts
to smaller energies at higher fields for both configurations. The detailed field
evolutions of this feature for the two field directions are shown in the respective
insets.Nodal line resonance

reacts to magnetic field
Again, the peak shift follows the same trend as the magnetisation with

saturation above 22T observed for H ⊥ a. As was shown in Chapter 3, this peak
is caused by transitions between bands of the nodal line, excited with almost
full circular polarisation. In panels (b) and (d), the spectra at 0T and 16T with
subtracted Drude contribution are compared directly, together with ab initio
calculated spectra for the ground state and the two magnetic configurations.
The theory spectra reproduce the experimental features on a broad energy scale
(compare Fig. 3.3(a)). The shift of the nodal line resonance is captured well as
the onset of optical weight appears at lower energies for both directions of the
in–plane fields, though the peak in the theory spectra is not as pronounced as in
the experiment. The difference may be caused by electronic correlations [71], or
the magnitude of the matrix elements for these transitions may be underestimated
by the theory. Comparing the calculated optical conductivity for different in–plane
orientations of the magnetic field, they appear very similar at high energies but
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Figure 4.3
Magnetic field dependence of the
conductivity spectra in Co3Sn2S2

up to 0.2 eV. (a,c) Optical con-
ductivity in magnetic field for for
H ⊥ a and H ∥ a, respectively.
The insets show the respective
evolution of the peak, located
around 29meV at 0T. (b,d) Com-
parison with calculated conductiv-
ity spectra (adapted from [80]).

show small differences around the resonance at 30 meV. While for M ∥ a the
slope of the peak is shifted parallel compared to the M ∥ c spectrum, the peak
for M ⊥ a is broadened and the slope reduced. In addition the redshift is larger
for M ∥ a. Both observations are consistent with the experimental data for the
two directions.

4.3 Evolution of the Nodal Line

In order to evaluate the origin of the peak shift, we directly investigate the band
structures for the different magnetic configurations. Here, I only show the M ∥ a
case with the protected nodal line, while the analysis for M ⊥ a may be found in
AppendixA.2 which yields very similar conclusions. Details about the calculations
performed by Ming–Chun Jiang at the group of Ryotaro Arita may be found in
Ref. 80.

We start by comparing the differences between the nodal lines. Fig. 4.4(a–c)
plots the gap size of the loops for M ∥ c and of NL1 and NL2 for M ∥ a,
respectively. The position of Weyl points is shown in red and the Fermi surface
with dark green lines. For both in–plane loops in panels (b) and (c), the average
gap size is smaller than for out–of–plane magnetisation in panel (a), not only for
the gapless NL1. This is clearly reflected in the band structure plot in panel (g),
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Figure 4.4
Evolution of the nodal loop upon
reorienting the magnetisation to
M ∥ a. (a–c) Gap of the nodal
lines for out–of–plane and NL1
and NL2 in–plane loops, respec-
tively. For (a), the average gap is
larger than for (b) and (c). Points
C and D are equivalent to A and
B but lie on the BZ planes that
contain NL2 instead of NL1. (d–
f) Optical weightHxx at the peak
energies (42.0 – 45.6 meV in (d),
24.4 – 30.8 meV in (e) and (f))
distributed on the high–symmetry
planes of the BZ containing the
nodal loops from (a–c). We ob-
tain qualitatively similar distribu-
tions despite the different energy
ranges. (g) Band structure along
the triangles in the right column.
The high–symmetry points are
shown above and in Fig. 4.1(c).
The gapless nature of NL1 is
evident, while also for NL2 the
SOC gap along the nodal line
is clearly smaller than for out–
of–plane magnetisation (adapted
from [80]).
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where we show the bands for M ∥ c and M ∥ a in green and red, respectively.
Along A−B and C−D, the gapless nature of NL1 is evident, while also the gap
for NL2 is smaller than for out–of–plane magnetisation.

In order to compare the generation of optical weight by these features, we
again calculate the distribution of spectral weight in the BZ, similar to Chapter
3. For this, we reuse Eq. 3.3, but now for the diagonal conductivity distribution
ReHxx(ω,k), which is shown for the different nodal lines in Fig. 4.4(d–f). Due to
the smaller gap, the nodal lines contribute in a different energy range to the optical
conductivity. Therefore, in panel (d), we plot the spectral weight distribution for
out–of–plane magnetisation at photon energies between 42.0 – 45.6 meV, whereas
for in–plane field in (e) and (f) we show the optical weight at 24.4 – 30.8 meV.
Qualitatively, all plots show similar features with a small hotspot along Γ−L and
several hotspots where the nodal line lies around the Fermi energy, e.g. on the
A−B and C−D lines. This comparison shows that the onset of optical weight
of the optical conductivity for in– and out–of–plane magnetisation is generated
by the same band structure regions, but at different photon energies, explaining
the shift of the peak as the moments cant into the ab plane.Shrink of SOC gap Interestingly, if we
infer the position of the Weyl nodes from panels (a–c), we do not find any optical
weight associated with transitions around these points. As was shown previously
for M ∥ c, the Weyl nodes are located around 60meV above the Fermi level
and therefore cannot contribute to the optical response at such low energies [62].
For in–plane field, while the gap changes significantly, the energy of the crossing
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point with respect to EF does not change upon reorientation of the magnetisation.
Therefore, by comparing the momentum position of the Weyl nodes with the
colour scale in Fig. 3.1(c), the same argument also accounts for the absence of
optical weight from the Weyl points for M ∥ a. Similarly, the Weyl points away
from high–symmetry directions do not contribute to this low–energy response.
Let us now discuss the possible origin of the nodal line reconstruction. Since

the gap is initially produced by SOC, a shrinking gap indicates a reduction
of the SOC strength. Among other quantities that have the same nature are
the orbital magnetic moment [82] or the magneto–crystalline anisotropy [83,
84]. We can explain the origin of such anisotropy if we directly compare the
relative SOC strength for the different SOC matrix elements in the p– or the
d–orbital basis [84, 85]. In the same spin channel, the SOC matrix elements
⟨dyz|HSOC|dxy,x2−y2⟩ and ⟨dyz|HSOC|dz2⟩ prefer the in–plane anisotropy, while
⟨dxy|HSOC|dx2−y2⟩ and ⟨dyz|HSOC|dxz⟩ favour the out–of–plane direction. In-
terestingly, their magnitude ratio is ⟨dyz|HSOC|dxy,x2−y2⟩2 : ⟨dyz|HSOC|dz2⟩2 :
⟨dxy|HSOC|dx2−y2⟩2 : ⟨dyz|HSOC|dxz⟩2 = 1 : 3 : 4 : 1 [85]. As the nodal lines
consist mainly of Co dxy,x2−y2 orbitals with small contributions from the Co
dxz,yz orbitals [80], we note that in the above relation, the SOC matrix element
of ⟨dxy|HSOC|dx2−y2⟩ dominates. This indicates that out–of–plane magnetism is
energetically preferred, as the magnetic ground state of Co3Sn2S2 verifies, and
that the SOC strength is reduced when in–plane field is applied. This is directly
confirmed as we observe a gap shrink for in–plane magnetisation in Co3Sn2S2.
These results are summarised in the next thesis point.

Thesis Point 2
On Co3Sn2S2, I have measured magneto–reflectance in Voigt configuration for
two perpendicular field directions in the kagome plane, which result in the
generation of a large number of Weyl points and a protected nodal loop. The
resulting spectra show a spectral weight redistribution at low energies that
follows the same trend as the in–plane magnetisation. I calculated the optical
conductivity in field, which associates this redistribution to a peak caused by
the nodal line resonance. Comparison to ab initio calculated spectra shows
that the peak shift is associated with a narrowing of the SOC induced gap
of the nodal line, while the large number of emergent Weyl nodes does not
contribute significantly to the low–energy response [80].

Due to the simple band structure of Co3Sn2S2 around the Fermi level, the
assignment of spectroscopic features to the nodal lines could be performed
relatively straightforward. In order to see whether magneto–optical spectroscopy
can also pinpoint signatures of topological bands in more complicated systems,
we will investigate another kagome magnet next.
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Signatures of a Helical Nodal Line in the Anomalous Hall
Effect of Fe3Sn2

The second example of kagome magnets studied in this thesis is Fe3Sn2, where
Fe kagome bilayers are stacked in an ABC–fashion, with Sn honeycomb spacer
sheets. The crystal structure, again with space–group R3̄m, is shown in Fig. 5.1(a)
[86]. With TC = 657K, this compound becomes a soft ferromagnet with the
moments aligned along the c axis at high temperatures, but they gradually rotate
into the ab plane when the temperature is lowered [86–88]. Whether the bulk
magnetic order is completely collinear is still debated, while in thin ab plane
lamellae branched domains and skyrmionic bubbles were observed as a result
of competing easy–axis and shape anisotropy due to magnetic dipole–dipole
interaction. [87–90]. Fig. 5.1(e) shows the dendrite domains on the surface of a
bulk crystal, emerging from the same competition [90]. Due to the bulk nature
of the investigated crystals, we nevertheless again consider no topological Hall
effect.

In Fe3Sn2, very diverse electronic topology emerges. ARPES and optical studies
observe massive (gapped) Dirac Fermions close to the Fermi energy, as shown
in Fig. 5.1(f) [20, 91, 92]. Additionally, STM results indicate the presence of flat
bands, emerging from localised states on the kagome hexagon which may also
leave fingerprints in the optical conductivity [92, 93]. Further studies suggest
the presence of a large number of Weyl points in the bulk of the BZ, whose
distribution depends on the orientation of the magnetisation [94]. Variety of topological

features including helical
nodal lines

Lastly, following
the construction from Sec. 1.2.4, a DFT investigation finds a pair of helical nodal
lines around each K point due to the bilayer ABC–stack [26]. This feature is
illustrated in Fig. 5.1(c) while the bands forming these nodal lines are highlighted
in panel (d). When SOC and magnetic order are both taken into account, one
of the nodal lines gaps completely, while the other leaves a pair of Weyl nodes
behind, whose position is sensitive to the direction of the magnetic moment [26].

Due to this variety of topological features, the origin of the large AHE detected
in this material stayed unclear [20, 95]. The corresponding magneto–transport
data is shown in Fig. 5.1(b) with an AHE of similar magnitude as in Co3Sn2S2 at
low temperatures [96]. Interestingly, scaling relations suggest that a big portion of
the AHE has extrinsic origin due impurity scattering [20, 95]. One reason may be
that, compared to Co3Sn2S2, the band structure of Fe3Sn2 is more complicated
and a large number of bands cross the Fermi energy, as Fig. 5.1(d) indicates,
each potentially influencing the AHE. Therefore, separating the individual contri-
butions of the different bands is a remarkable experimental challenge. So next,
we will see whether magneto–optical spectroscopy, again supported by ab initio
calculations, is able to quantify the ratios of extrinsic and intrinsic contributions
and identify the origin of the intrinsic AHE also for such a complicated band
structure.

57
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Figure 5.1
Topological properties of Fe3Sn2.
(a) Crystal structure highlighting
the stacked Fe kagome bilayer se-
quence. (b) Giant AHE with val-
ues up to 1100Ω−1cm−1 at low
temperatures. (c) Helical nodal
lines around the K points of the
hexagonal BZ. (d) Band structure
along selected high–symmetry di-
rections with SOC, magnetic mo-
ment along the c axis and U =
1.3 eV. The band crossings of the
helical nodal lines are highlighted
with the dashed circle (adapted
from [26, 96]). (e) Dendrite do-
mains in bulk Fe3Sn2 observed by
MFM (Reproduced Fig. 1(a) from
M. Altthaler et al., Physical Re-
view Research 3, 043191 (2021)
under Creative Commons license).
(f) ARPES dispersion around the
K point showing massive Dirac
Fermions (Reproduced Fig. 3(c)
with permission from Springer Na-
ture, L. Ye et al., Nature 555,
638–642 (2018).
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5.1 Reflectivity and MOKE Spectra

In Fe3Sn2, the conductivity tensor has the same form as in Co3Sn2S2 due to the
same space–group when the magnetisation points along the c axis. Unfortunately,
the available sample platelets did not provide large enough ac surfaces, hence only
σxx and σxy could be determined (z ∥ c). The reflectivity spectra were obtained
by collaborators (Jihaan Ebad–Allah at the group of Christine Kuntscher) using
a Hyperion IR–microscope with a 15x Cassegrian objective, attached to a Bruker
Vertex 80v. The spectra were measured in the MIR–FIR range from room
temperature down to 10K. A silver film, evaporated on half of the single crystal
was used as a reference. Each low frequency spectrum was merged to the NIR–VIS
spectrum measured at room temperature, resulting in spectra ranging from 0.01 –
2.5 eV. The optical conductivity was calculated by using Kramers–Kronig analysis,
where the low–energy side was extrapolated by using a Drude–Lorentz fitting,
while above 2.5 eV the reflectivity spectra were extrapolated using x–ray atomic
scattering functions [97]. The single crystal used to obtain the MOKE spectra has
an as grown ab surface with a diameter of ≈ 3mm and was measured in ±0.3T
applied along the c axis in the previously described spectrometers.

The resulting spectra for temperatures between 10−300K are shown in Fig. 5.2.
Again, we observe metallic reflectivity approaching unity towards zero energy as
demonstrated in panel (a). Around 0.2 eV, a local minimum forms upon lowering
the temperature. Above 1 eV, there is no significant temperature dependence and
the reflectivity decreases towards higher energies overall agreeing with a former
publication [92]. The Kerr rotation and ellipticity are shown in panels (b) and (c),
respectively. Because of the high TC, we detect finite Kerr angles already at room
temperature with a magnitude in the order of 0.1◦. Both angles are positive and
approach 0 for ω → 0. At 0.125 eV, the rotation shows a steep decrease where
the ellipticity even peaks for low temperatures. This is the energy where the
plasma edge in the reflectivity is observed and correspondingly the permittivity
vanishes. Plasma edge enhanced

MOKE
Since εxx appears in the denominator of Eq. 1.49, these features can

be assigned to the plasma edge enhancement of MOKE [98]. For higher energies,
the rotation is negative with a minimum at 0.5 eV. At this energy, the ellipticity
shows a sign change. For higher energies, both angles are rather featureless.
The two components can be nicely mapped onto each other by Kramers–Kronig
transformation confirming the properness of the measurement.

Interestingly, the magnitude of the Kerr angles decreases for lower temperatures
in the featureless high–energy regime. Judging from the band structure shown in
Fig. 5.1(d), we expect that many interband transitions contribute to the response,
averaging out the temperature dependence of individual excitations. Therefore,
the temperature dependence in this range may be related to the out–of–plane
magnetisation, which decreases for lower temperatures as the magnetic moments
cant into the plane, although the magnetic moment per Fe site is slightly increasing
[87, 95].
Based on these reflectivity and MOKE spectra, next we can calculate the

conductivity tensor for the kagome plane.

5.2 Optical Conductivity Spectra

The derived conductivity tensor elements for each temperature are presented in
colour in Fig. 5.3. The real part of σxx in panel (a) shows a Drude peak at zero
energy which becomes sharper at low temperatures. Around 0.25 eV, we observe
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Figure 5.2
Reflectivities and Kerr parame-
ters for Fe3Sn2 from room tem-
perature down to 10K. (a) Reflec-
tivity in the ab plane. Kerr rota-
tion (b) and ellipticity (c) spectra
(adapted from [96]).
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a step edge followed by a broad maximum centred around 0.9 eV. Both features
are clearly separated from the free carrier response. These spectra agree with
those published in Ref. 92, despite of a small peak around 40meV which appears
to be masked by the Drude term in the present spectra.

In the imaginary part of the Hall conductivity in Fig. 5.3(b), we observe three
main features: A small peak around 0.125 eV, a minimum at 0.35 eV followed by a
broad maximum again around 0.9 eV, similar to σxx. Due to the Kramers–Kronig
relationship, the derivative shape of these features appears in Re σxy. The broad
hump leads to an increase of the Hall conductivity for lower energies, leading to a
maximum of 450Ω−1cm−1 at 0.45 eV. Below this energy, the minimum depletes
the Hall conductivity while the transitions from the small peak lead to an upturn
towards the cutoff. This upturn matches the spectra well to the dc values shown
as coloured squares, especially for high temperatures. With a Drude width of
31meV, we expect that extrinsic scattering starts to contribute just below the
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Figure 5.3
Conductivity tensor elements for
Fe3Sn2. Comparison of the spec-
tra measured between 10 and
300K (coloured lines) and the
theoretical DFT spectra (black
lines). (a,b) and (c) respectively
show the real part of the diagonal,
Re σxx, as well as, the imaginary
and real part of the off–diagonal
conductivity spectra, Im σxy and
Re σxy. The static AHE values
are plotted for comparison as
coloured squares at zero energy
(adapted from [96]).

spectral cutoff of the optical study. Dominantly intrinsic
AHE above 100K

This shows, that the Berry curvature accounts
for a Hall conductivity of about 250Ω−1cm−1 and extrinsic contributions do not
play a major role for the AHE at high temperatures. By contrast, for temperatures
below 100K, the spectra have to turn up significantly to extrapolate to the static
values, implying a large extrinsic contribution, making up more than 75% of the
total AHE at 10K.

To clarify which of the topological features lead to the intrinsic AHE, Nico
Unglert in the group of Liviu Chioncel performed DFT calculations to reproduce
the measured spectra (details for the calculations may be found in Ref. 96). They
find that introducing a Hubbard correction U = 1.3 eV to the Fe (3d) orbitals to
simulate local Coulomb interactions significantly improves the agreement with
the experiment, while another publication uses the same value to explain ARPES
results [99]. The resulting band structure for selected high–symmetry points is
shown in Fig. 5.1(d), while the spectra are coplotted with the experiment in
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Fig. 5.3. Beside the free carrier response, the theory reproduces the low–energy
features of Re σxx in panel (a). The small peak at 0.1 eV is masked by the Drude
peak in the experiment, but the step edge at 0.25 eV is captured as well as the
broad maximum, although slightly shifted in energy. In Im σxy, the sequence of
the peak, minimum and step edge is resolved by the theory, although it is shifted
to lower energies with respect to the experiment. At higher energies, the theory
spectrum shows two peaks instead of one broad feature with a shoulder in the
experiment. Since ab initio calculations do not include the lifetime of excited
states, features can appear sharper than in the experiment, possibly explaining
the observed behaviour. Similarly, the low–energy side of Re σxy is well captured
in the theory, whereas features at higher energies are again sharper. If the lifetime
is assumed to be independent of the photon energy, further smoothing of the
theoretical spectrum could improve the agreement, but would certainly mask the
low–energy behaviour this study is focused on. Importantly, the dc extrapolation
of the theory predicts a similar AHE as the experiment. Under the assumption
that low–energy side is reproduced by the theory, we can now investigate which
band structure features are responsible for the spectral shape.

5.3 Band and Momentum Decomposition

Fig. 5.4 focuses on the energy range below 0.25 eV for the dissipative components
of the diagonal and off–diagonal conductivity spectra, Re σxx and Im σxy, re-
spectively. For this energy window, we find that three transitions between bands
2 → 3, 3 → 4 and 4 → 6 yield the dominant spectral weight (compare Fig. 5.1(d)
for band labels). The individual contributions are shown by the blue spectra in
panels (a) and (f), their sum as a dashed grey line and the total spectrum from
Fig. 5.3 is shown in black.

To check in which part of the BZ the responsible transitions occur, we take
a similar approach as in the previous chapter and calculate the optical weight
distribution. Due to the extensive number of bands at the Fermi level, this time
we do not perform the summation over the band indices in order to resolve
the interband transitions. Starting from Eq. 3.3, we combine the terms in the
summation and the prefactors to define the spectral density ρn→n′

αβ (ω,k) as

σαβ(ω) =
ie2

ℏV
∑
k,n,n′

(fn′(k)− fn(k)) ·
(

ϵn′(k)− ϵn(k)

ϵn′(k)− ϵn(k)− ℏω

)
Aα

nn′(k)Aβ
nn′(k) =

=
∑
k,n,n′

ρn→n′
αβ (ω,k). (5.1)

The corresponding weight to Re σxx for each of the three transitions and their
sum is shown in Fig. 5.4(b–e) and for Im σxy in (g–j), respectively. Red/blue
spectral density denotes positive/negative optical weight. The colour labels refer
to the band structure as shown in Fig. 5.1(d), whereas the blue arrows denote
the respective spectrum in (a) and (f).

For the transition from bands 2 → 3, the optical weight in the BZ of both σxx
and σxy traces out a double helix along the H′−K−H′′ line (panels b& g), strongly
resembling the helical nodal lines introduced in in Fig. 5.1(c).Hotspots form helical

volumes
The hotspots from

bands 3 → 4 and 4 → 6 appear less localised but distributed at various positions
around the BZ as shown in panels (c,d)& (h,i) for σxx and σxy, respectively. Their
location may be estimated in the top view of the BZ in panels (e) and (j). These
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Figure 5.4
Low–energy band and momen-
tum decomposition for conduc-
tivity spectra in Fe3Sn2. Three
transitions (2 → 3, 3 → 4 and
4 → 6) yield most of the spec-
tral weight for the energy window
of 0 – 0.25 eV (shaded in grey).
(a,f) The total spectra calculated
for Re σxx & Im σxy are shown
in black, while the individual tran-
sitions are plotted in blue shades
and their sum in dashed grey. (b–
d) k–resolved spectral weight dis-

tributions ρn→n′
αβ (0 eV < ℏω <

0.25 eV,k) of the three tran-
sitions and their sum (e) for
Re σxx. The numerical labels re-
fer to the bands as in Fig. 5.1(d)
while the arrows have the same
colour as the corresponding spec-
tra in panel (a). Panels (g–j)
depict the same information for
Im σxy, where k–regions with
red/blue colour represent posi-
tive/negative weights. As seen
in panels (b) and (g), the low-
est energy transitions are located
around the H′−K−H′′ line as
“helical volumes” and dominate
the off–diagonal response around
0.1 eV (adapted from [96]).
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Figure 5.5
Spectral decomposition of the
step edge between 0.25 – 0.5 eV
for Re σxx (a) and Im σxy (b).
The individual transitions are
shown in colour, with the corre-
sponding band indices shown in
the respective legend. Bands 0
and 7 not indicated in Fig. 5.1(d)
lie just below band 1 and above
band 6, respectively. The sum
is plotted in dashed grey and
the total spectrum in black. For
both conductivity components,
many interband transitions con-
tribute to the total optical weight
(adapted from [96]).
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hotspots may be related to Weyl nodes or weakly gapped crossings arising in
the bulk of the BZ, although pinpointing the structures is difficult due to the
plethora of points and their locations away from high–symmetry directions [26,
94]. Note that some transitions also contribute with negative optical weight to
Im σxy, producing the minimum at 0.2 eV. In both tensor elements, the summed
optical weight along the double helices produces large hotspots at the K and
K′ points, but in total they contribute only partially to the 0.1 eV peak in the
diagonal conductivity. By contrast they dominate the lowest peak of the Hall
conductivity highlighting the strength of MOKE spectroscopy in investigating
quantities derived from the Berry curvature.

As a significant contribution to the AHE is also produced at higher energies, we
also check the energy interval from 0.25− 0.5 eV related to the step edge, where
the resulting band decomposition is shown in Fig. 5.5. In a former publication of
σxx, this feature was associated to transitions between the bands of two Dirac
points, with the step edge emerging once Pauli blocking is overcome [92]. Our
decomposition contradicts this picture as shown in panel (a). As many bands lie
in the vicinity of the Fermi energy, a variety of transitions is possible with no
band pair yielding a dominant contribution. A similar situation is encountered for
Im σxy in panel (b), where many transitions with positive and negative weights
combined are necessary to produce the total response. If any, the contributions
from bands 1 → 3 and 2 → 5 may be the largest here, but due to the number of
transitions we did not perform a momentum decomposition.

At even higher energies, we expect more and more transitions to contribute,
therefore, we conclude that not a single topological feature produces the intrinsic
AHE in Fe3Sn2, but a whole variety of transitions need to be taken into account,
yielding the next thesis point.
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Thesis Point 3
In the kagome bilayer ferromagnet Fe3Sn2, I measured the broadband magneto–
optical Kerr effect spectra between 50meV–3 eV, which together with reflectivity
data allowed me to calculate the conductivity tensor elements for the kagome
plane. Again the far–infrared MOKE spectra enabled me to match the dc Hall
effect to the optical spectra, revealing that the AHE in Fe3Sn2 is dominantly
intrinsic above 100K with a magnitude of 250Ω−1cm−1. At lower temperatures,
extrinsic scattering plays a major role. Due to the large number of bands close to
the Fermi energy, the intrinsic AHE is produced by a large variety of transitions,
but we could identify a distinct contribution from the helical nodal lines at
energies below 0.2 eV [96].

This is a clearly distinct outcome compared to the conclusion of Chapter 3, so it
is worth to shortly note the differences.

5.4 Comparison and Outlook

The studies resulting in the preceding chapters followed the same methodology to
investigate the origin of the AHE in two, at first sight, similar kagome magnets. In
Co3Sn2S2, the band structure is relatively simple close to the Fermi energy, with
topological features solely lying on a high–symmetry plane. This results in clear
spectroscopic signatures of the nodal line in the MOKE and Hall conductivity
spectra and a dominantly intrinsic AHE. By contrast, the band structure of
Fe3Sn2 is much more complicated with many bands crossing the Fermi energy
and a huge variety of topological features away from high–symmetry directions
potentially relevant for the generation of the AHE. Despite these difficulties, the
study could quantify the intrinsic contribution and record the fingerprints of the
helical nodal line unambiguously in the optical Hall conductivity.

Although these big differences between the two materials, the topological
features responsible for the AHE could be identified in both cases, proving
magneto–optical spectroscopy a highly efficient tool to investigate the low–energy
electronic structure of topological magnets. The key to the success of these studies
was the development and implementation of the FIR MOKE setup, which allowed
the extension of the MOKE spectra to the FIR range, together with the good
agreement with the ab initio calculations, allowing the band and momentum
decompositions.

In terms of material engineering, the Co3Sn2S2 study suggests a way how to
increase the Hall response. The Hall spectral weight hotspots may be enlarged
by bringing the crossing points of the nodal line closer to the Fermi energy
until eventually the system becomes gapped where the diagonal dc conductivity
vanishes. In this respect, monitoring the effects of doping, e. g. by different com-
positions of Co3Sn2−xInxS2 or of external stimuli like magnetic fields or pressure
by magneto–optical spectroscopy may give hints towards the realisation of such
a peculiar phase. As shown in Chapter 4, in–plane fields can actually strongly
modify the topology and band structure in this itinerant magnet. Experiments
to analyse the effect of Indium doping were initiated together with a master
student, while the group of Christine Kuntscher started to investigate the effects
of hydrostatic pressure on the optical spectra.

Similarly, due to the spin reorientation, the evolution of topological features
depending on the magnitude and direction of an external magnetic field in Fe3Sn2
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may reveal information about the interplay of its complex electronic topology with
the magnetic order. In addition, there exists a whole family of compounds with
slightly different stoichiometry, e. g. Fe3Sn or FeSn, which differ in the stacking
sequence of the kagome layers and the magnetic properties. Investigating the
other family members may therefore give insights how topological features can
be tuned by different layer stacking. An initial project along this direction was
already completed together with the group of Christine Kuntscher [100].

Another interesting direction is to leave the realm of collinear ferromagnets, to
which both compounds investigated so far belong. In materials with non–collinear
magnetic order, e. g. a skyrmion lattice state, additional contributions to the Hall
effect can arise to due scalar spin chirality. These contributions are ascribed to
real–space Berry curvature and therefore termed topological Hall effect, which was
already observed in itinerant kagome magnets [101]. Performing magneto–optical
spectroscopy on such systems can reveal how the electronic structure is influenced
by such topological states.
One interesting material which combines itinerant carriers and non–collinear

order is the kagome spin–ice candidate HoAgGe. In this system, a peculiar
evolution of transport properties across metamagnetic transitions was observed.
In the following, we will investigate how its electronic structure behaves under
these transitions.



6

Tracing Band Reconstructions across Metamagnetic
Transitions in HoAgGe

In Chapter 4, we have already seen that the band structure in kagome magnets can
be sensitive to the magnetic order. In that example, we tuned the ferromagnetic
order in Co3Sn2S2 from out–of–plane to in–plane, with the emergent optical
response closely following the magnetisation due to the collinear nature of the
ground state order. Therefore, the interesting question arises whether for non–
collinear magnets, additional field induced metamagnetic orders couple differently
to the electronic structure, especially in itinerant systems. Again, the kagome
lattice provides a good platform for this kind of study due to its triangular nature,
hosting the potential for non–collinearity through frustrated interactions.

Our target material for here is HoAgGe, which crystallises in the hexagonal
space–group P 6̄2m, with the Ho atoms forming a distorted kagome lattice in
the ab plane with up–/downward facing triangles rotated by 15.6◦ in opposite
directions as shown in Fig. 6.1(a) [102, 103]. The a axis is defined as one of
the hexagonal axes, with b denoting the perpendicular in–plane direction and
c the stacking axis. Neutron diffraction results indicate that HoAgGe shows
non–collinear antiferromagnetic in–plane ordering at low temperatures. Below
T2 = 11.6K, a partial magnetic order develops where the magnetic moments for
2/3 of the Ho atoms form vortices on 1/3 of the kagome hexagons [103]. For
even lower temperatures, the remaining Ho moments enter the magnetic order
at T1 = 7K, realising the kagome spin–ice state with 2–in–1–out or 1–in–2–out
configuration of moments on each kagome triangle, as shown in Fig. 6.2(b) [103,
104].

Similar to other members of the RAgGe (R = rare earth) family, HoAgGe
undergoes a series of metamagnetic transitions for external magnetic fields applied
along the a or b axis of the crystal, while it might show a spin–flop transition
for field along c [102, 103]. These metamagnetic states appear as plateaus in the
magnetisation curve for field along b as shown in Fig. 6.2(a). The evolution of the
magnetic order is schematically drawn in Fig. 6.2(b–e) with the ground state, the
1/3 and 2/3 magnetisation plateaus and the saturated state, respectively. Metamagnetic transitionsDue
to the strong Ising character of the rare earth moments, for each transition, 1/3
of the total moment flips into the direction of the field, as highlighted by the
coloured spins for each transition. This process increases the magnetisation while
every state still obeys the kagome ice rule.

Coupled to the diverse magnetic structure, HoAgGe shows rather peculiar elec-
tronic transport properties. Fig. 6.1(b) shows the transverse magneto–resistance
for H ∥ b at 1.8K. With x ∥ a, y ∥ b and z ∥ c, both ρxx and ρzz show strongly
non–monotonous evolution between the magnetisation plateaus and unusual
hysteretic behaviour [105, 106]. The same is true for the Hall resistivity ρxz which
doubles in the range of the plateau phases after ramping the field down from
saturation [105]. The latter effect was suggested to emerge from the existence

67
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Figure 6.1
The peculiar transport proper-
ties of HoAgGe. (a) Crystal
structure highlighting the tilted
kagome triangles. (b) Unusual
shape and hysteretic behaviour
of the magneto–resistance and
AHE correlating with the mag-
netic phases from Fig. 6.2. (c)
The quasi–symmetry Rπ

bD relat-
ing the two plateau states S1/3

and S′
1/3. The black spins main-

tain their orientation while the
vortices are reversed (adapted
from [103, 105]).
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of two degenerate magnetic configurations for both of the plateau phases, which
supposedly have the same magnetisation, the same band structure, but different
Berry curvature due to an unconventional operation linking the two configurations
[105]. This is exemplarily shown for the 1/3 plateau state S1/3 in Fig. 6.1(c) whose
degenerate partner state S′

1/3 is related by a π rotation around the b axis Rπ
b and

the operation D which involves a distortion reversal of the kagome triangles from
+15.6◦ to –15.6◦ or vice–versa. The combined operation reverses the orientation
of the vortex, while it keeps the other moments (coloured black) fixed. Model
calculations show that the band structure for the two states linked by this quasi–
symmetry is indeed the same while the Berry curvature differs, which may explain
the hysteretic behaviour of the Hall resistivity. But it remains unclear why one of
the states should be favoured by the field sweep direction if the magnetisation is
the same and why the hysteresis is also present in the diagonal resistivity, for
which the identical band structure should not differentiate the response between
the two states. In order to answer these questions, magneto–optical spectroscopy
is again a suitable tool, as it is able to track the band structure changes between
the metamagnetic states for both the diagonal and off–diagonal tensor elements.

Due to the strong field dependence and the hysteretic behaviour of the static
Hall conductivity (Fig. 6.1(b)), studying MOKE on this compound can again
give profound insight into the topological nature of the Hall effect of HoAgGe.
Unfortunately, the magnetic field for the MOKE spectroscopy is limited to 300mT
in the setups described in Sec. 2.3.3, so we can only probe the Kerr response for
the magnetic ground state at this stage, although this limitation triggered the
development of a high–field MOKE setup at BME. The preliminary low–field
data together with an analysis of the anisotropic nature of the MOKE parameters
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Figure 6.2
Metamagnetic phases of HoAgGe.
(a) Magnetisation at 1.8K show-
ing distinct plateaus at several
fractions of the saturation mo-
ment (b–e) Magnetic structures
of the ground state, the 1/3, 2/3
plateaus and saturated state, re-
spectively. For each of the phases,
the coloured spins flip to increase
the magnetic moment parallel
to the external field while keep-
ing the kagome ice rule satisfied.
Due to the strong Ising nature
of the rare earth spins, the satu-
rated state is not fully polarised.
(adapted from [103]).

for the symmetry of the non–collinear order in HoAgGe is detailed in Appendix
A.3.

Nevertheless, as shown in Fig. 6.1(b), also the diagonal magneto–resistance
shows strong changes in magnetic field which correlate with the plateau phases.
Since the static resistivity will also influence the Drude component of the low–
energy optical response, measuring polarised reflectivity can also reveal the
responsible changes in the electronic structure, with the possibility to extend
to interband transitions as well. For this type of study, the setups described in
Sec. 2.2 provide the required field range. As starting point, we first investigate
the polarised zero–field reflectivity.
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Figure 6.3
Reflectivity data for HoAgGe. (a)
Reflectivity in and (b) perpendic-
ular to the kagome plane. The
insets highlight the measurement
geometry. The optical anisotropy
for in– vs. out–of–plane direc-
tions is pronounced (adapted
from [107]).
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6.1 Zero–Field Reflectivity

The reflectivity spectra were obtained by polarised measurements on an ac cut
crystal with an aperture of 1.4mm in an energy range from 10meV to 2.2 eV for
temperatures between 4 and 300K. The sample was mounted on the coldfinger of
a Cryovac Helium–flow cryostat and placed in the Bruker Vertex 80v spectrometer
for the whole energy range. On the low–energy side, the reflectivity spectra were
extrapolated by using the dc conductivity values. For the UV, the spectra were
extrapolated with free electron behaviour setting in at 106 cm−1 and an exponent
for the high–frequency regime of 1.5. The resulting in– and out–of–plane spectra
are shown in Fig. 6.3(a) and (b), respectively. For both polarisations, the metallic
character is evident as they approach unity towards low frequencies. For the
ab plane spectra, we obtain the plasma edge around 120meV, above which the
reflectivity is flat at around 40% with only small temperature dependence. For
polarisation along c, the spectra above the plasma edge host more features. A
distinguished minimum is visible at 0.75 eV which gets more pronounced at lower
temperatures. At higher energies, an additional local minimum develops around
1.4 eV above which there is no temperature dependence. Again, these spectra
reveal a clear optical anisotropy of the layered crystal structure.

As in the preceding chapters, we now evaluate the optical conductivity based
on these reflectivities to discuss the origin of the spectral features.
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Figure 6.4
Optical conductivity data for
HoAgGe. Panels (a,b) show the
in–and out–of–plane conductivity,
Re σxx & Re σzz respectively,
while panel (c) plots the optical
anisotropy Re σzz/Re σxx. The
dc values are shown as squares
at zero energy for the anisotropy
only as the dc conductivity val-
ues lie above the shown range
(adapted from [107]).

6.2 Optical Conductivity and Conductivity Anisotropy

The obtained temperature dependent real parts of the optical conductivity spectra
are shown in Fig. 6.4. At energies above 0.2 eV, Re σxx increases monotonously
up to a broad maximum around 1.5 eV almost independent of temperature. By
contrast, Re σzz shows a series of three peaks in the same energy range, centred
around 0.4, 1 and 1.5 eV, respectively, with the first two being strongly influenced
by temperature.

For both σxx and σzz, we observe a narrow Drude component in the ω → 0 limit.
While these should extrapolate to the static conductivity values, those are not
shown in the plots as already at 300K, they lie above 4100 and 12600Ω−1cm−1

for the in– and out–of–plane directions, respectively. Therefore, the conductivity
across the kagome layers is larger than within the layers, which suggest a strong
coupling between the individual kagome planes and a three–dimensional electronic
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structure.Enhanced out–of–plane
conductivity

While this is contrasted by the behaviour we obtained for Co3Sn2S2 in
Chapter 3, a higher interlayer conductivity is not uncommon for kagome metals
as it was reported also e. g. in YCr6Ge6 [108] and in the FexSny family [100, 109,
110]. For HoAgGe, this conductivity anisotropy persists also at finite frequencies
as shown in Fig. 6.4(c), where the conductivity ratio is larger than 1 for most of
the covered energy range and approaches the static values towards zero frequency.
The sharp peak around 80meV is caused by a different onset of the Drude peak
for the two directions. It appears at slightly higher energies for σzz which due
to the steep increase drastically enhances the anisotropy until σxx follows. This
behaviour may be caused by different scattering rates or effective masses for the
in– and out–of–plane directions.

At the time of submission of the thesis, theory collaborators (Luke DeFreitas in
the group of Hua Chen) succeeded in calculating the optical conductivity from ab
initio only for the saturated state. Therefore, we will discuss the possible origin
of these features after evaluating the optical conductivity in magnetic field in the
following.

6.3 Probing Metamagnetic States by Magneto–Reflection

Based on the zero–field reflectivity, we can now investigate the changes in the
electronic structure by performing magneto–reflectance experiments. These mea-
surements were performed on ab and bc cut samples in Voigt configuration in the
setup introduced in Sec. 2.2 with field along the b axis. The experiments cover
the energy range from 20meV to 0.6 eV and fields up to 5T, to reach the satu-
rated state of the compound. The obtained polarised magneto–reflectance spectra
R(B)−R(0)/R(0) for Eω ∥ a, b and c, are shown in Fig. 6.5(a–c), respectively.

For the two in–plane directions in panels (a) and (b), we find that the response
is very similar despite a higher noise level for Eω ∥ b due to the beamsplitter in
the optical path. At the high– and low–frequency cutoffs, the response approaches
0, meaning no resulting changes in the reflectivity. In between, two spectral
features dominate the magneto–reflectance. Around 125meV a peak develops
with increasing magnetic field, which is immediately followed by a minimum
around 200meV. The detailed field dependence of these two features with 125mT
resolution is shown in panels (d) and (e) for the two polarisations, respectively.
While the noise level spoils some of the features for Eω ∥ b in panel (e), the
magneto–reflectance for Eω ∥ a (panel d) shows clear signatures of the metamag-
netic phases. Their field ranges are indicated by the background shade (compare
Fig. 6.2). While approaching the 1/3 plateau, the magneto–reflectance of both
the peak and the dip shows a jump just above 1T, then stays linear over the
field range of the magnetisation plateau. Further jumps occur upon reaching
the critical fields for the 2/3 plateau and the saturated state. Upon reaching
the latter, the reflectance change saturates around ±5% for the two features.
The magneto–reflectance at these frequencies therefore follows closely the field
dependence of the magnetisation and differs strongly from the behaviour of the
magneto–resistance.Magneto–reflectance

follows magnetisation
Since the measurement temperature is 4K, the magnetic

transitions are slightly smeared and the 1/6 and 5/6 states do not show any
distinct changes. This is in line with the magnetisation data at this temperature
[105]. In order to check for hysteretic behaviour, measurements were also taken
on sweeping the field down from 5 to 0T. This is shown by the blue data points
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Magneto–reflectance data for
HoAgGe with H ∥ b. (a–c)
Magneto–reflectance spectra for
the light electric field aligned
along each crystallographic axis,
respectively. Spectra were taken
from 0 – 5T with 0.125T steps.
Subsequent spectra are offset for
clarity. (d–f) Cross–sections at
fixed photon energies indicated
by the coloured dashed lines in
light and dark red in panels (a–c).
For in–plane electric field, the re-
flectance shows distinct plateaus
at the metamagnetic phases, fol-
lowing the behaviour of the mag-
netisation. Due to the spectra be-
ing taken at 4K, no hysteresis
was observed for up- and down-
sweep measurements (adapted
from [107]).

in panel (d), which within the error of the experiments align with the upsweep
data, we therefore detect no hysteresis.

One likely explanation is that the hysteresis is already closed at 4K, as also
indicated by magnetisation and transport data [105]. On the other hand, the
field dependence of the magnetisation only shows minor hysteresis around the
1/6 and 5/6 states at low temperatures to begin with, as the magnetisation for
the degenerate states S1/3 and S′

1/3 is the same. The stronger hysteresis of the
dc transport data is not observed by the magneto–reflection experiment. This
suggests that at these frequencies, we do not probe the response of the free
carriers to the magnetic field, but instead observe a change in the interband
excitations that is coupled to the magnetisation. This is corroborated by the
optical conductivity, from which we can estimate a width of the Drude peak
below 10meV at low temperatures, below the frequencies of the observed features
in the magneto–reflectance.

Before we turn to the consequences of this observation, let us first discuss the
remaining polarisation Eω ∥ c, shown in Fig. 6.5(c). Again, a peak and dip emerge
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for increasing field, but the position and shape of these features strongly differ
from the other polarisations. The peak now appears at 150meV while the dip is
shifted to 420meV. In the field evolution shown in panel (f), we can see traces of
the metamagnetic states, especially saturation of the magneto–reflectance above
3.5T in the saturated state, but the overall magnitude is smaller and the clear
steps seen in the other polarisations are absent. Again the temperature of 4K may
result in smearing of the steps. Nevertheless, the field dependence still follows
the magnetisation better than the magneto–resistance also for this polarisation.
This observation encourages to try measurements at even lower photon energies
to reach the regime where the magneto–transport data influences the optical
response to see the crossover between the two ranges. This may be achieved by
polarised terahertz reflection experiments.

Since the current frequency range of the observed features for all polarisations
implies that the band structure responds to the magnetic field, we now investigate
the optical conductivity in field for the different polarisations.

6.4 Optical Conductivity between the Plateau Phases

Similar to the study from Chapter 4, we now multiply the magneto–reflectance
spectra with the zero–field reflectivity at 4K and perform a Kramers–Kronig
analysis to determine the optical conductivity in a magnetic field. The resulting
conductivity spectra for a selection of fields are shown in Fig. 6.6(a,b) for the
in– and out–of–plane response, respectively. For both polarisations, the tail of
the Drude peak is modified compared to the zero–field response. Although σxx
in high fields increases in agreement with the negative dc magneto–resistance
(compare Fig. 6.1(b)), in general, the tail of the Drude peak does not follow the
non–monotonous field dependence of the resistivity. At higher energies, the broad
minimum in the in–plane conductivity around 0.2 eV is lowered, which also shifts
the onset of optical weight of the rising absorption edge to higher energies. For
Eω ∥ c, the peak around 0.4 eV is reduced and shifted to higher energies. These
changes are also reflected in the optical anisotropy shown in panel (c), where the
broad hump centred around 0.25meV is modified, which also influences the sharp
peak caused by the onset of Drude response.

In all panels, the experimental spectra are compared with the theoretical data
for the saturated state shown in green. Beside the Drude component which is
not included in the ab initio calculation, the spectral features are qualitatively
well reproduced in all quantities. For σxx in panel (a), the theory shows the same
monotonous increase as the experiment, although the magnitude is larger towards
the high–frequency cutoff. For comparison, the joint density of states is coplotted
in grey. This quantity measures the number of transition possibilities from filled
to empty states of the band structure for a given (photon) energy, which follows
the same monotonous behaviour. This suggests only a small energy dependence
of the matrix elements for this polarisation.

We observe a different behaviour for σzz in panel (b), where the peak at
0.4 eV in both theory and experiment is not reflected in the joint density of
states. The preliminary theory hypothesis is that unoccupied 4f states of the Ho
atoms hybridise with other states in the same energy range to which the optical
transitions occur. If the orbital anisotropy of the 4f states is large enough due
to the crystal field splitting, the anisotropy can be transferred to the hybridised
states determining the selection rules which lead to the polarisation dependence.
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Figure 6.6
Magnetic field dependence of the
conductivity spectra for HoAgGe
up to 1 eV for field applied along
the b axis. (a,b) Optical conduc-
tivity in magnetic field for light
polarisation Eω ∥ a and Eω ∥ c,
respectively. The green spectra
show the theory for the saturated
state, while the grey line corre-
sponds to the joint density of
states shown on the second axis
(c) Optical anisotropy in mag-
netic field. (adapted from [107]).

As shown in Fig. 6.6(c), this peak causes the onset of the broad hump in
the optical anisotropy. Therefore, in the range above 0.25 eV, the theoretical
anisotropy spectra agree very well with the experiment. Below this energy, the
dc anisotropy in the Drude response not considered in the theory starts to play a
role. Interestingly, also the theoretical spectra show a peak at around 80meV, so
the sharp feature in the experiment at that energy may not be solely related to
the Drude anisotropy.

These initial theory results are promising and give the prospect to explain the
band origin of the observed spectral features. This requires additional efforts
to obtain a band or momentum decomposition of the optical conductivity, as
well as the calculation of the optical response for the ground state and the
metamagnetic phases. While the first will elucidate the detailed role of the Ho
4f states and possibly contributions of topological bands, the latter will reveal
the band reconstructions which cause the steps in the magneto–reflectance. Once
these tasks are solved, the combination of theory and experiment will yield a
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clear picture of the coupling between the electronic and magnetic properties in
this itinerant system.

For now, we summarise the experimental results in the last thesis point.

Thesis Point 4
On the distorted kagome lattice compound HoAgGe, I have measured the
anisotropic MOKE parameters as well as polarised reflectivity and magneto–
reflectance for all crystallographic directions with magnetic field applied along
the b axis. Due to the non–collinear magnetic order, we derived a formula
for the Kerr parameters with anisotropic diagonal conductivity tensor ele-
ments, providing the basis for the analysis of high–field MOKE measurements.
The broadband reflectivity measured between 10meV to 2.2 eV shows strong
anisotropy which translates to the optical conductivity along the stacking di-
rection being larger than within the kagome planes. In the magneto–reflectance
spectra obtained from 25meV to 0.5 eV, the relative change of the reflectivity
across the metamagnetic phases follows the magnetisation rather than the
magneto–resistance for the in–plane response, suggesting a band reconstruc-
tion upon the magnetic transitions. The underlying changes of the electronic
structure were analysed by evaluating the optical conductivity in magnetic
field, which agree with preliminary ab initio calculations [107].
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Summary

In this thesis, we investigated the fascinating electronic and optical properties of
a variety of kagome lattice based magnets with magneto–optical spectroscopy.
While the key achievements of this work are collected by the thesis points in the
following Sec. 7.1, I would nevertheless like to give a short summary and put the
obtained results into a broader perspective.

During the MOKE studies on Co3Sn2S2 and Fe3Sn2, we were able to disentangle
the intrinsic and extrinsic contributions to the AHE by using the spectroscopic in-
formation of the optical Hall effect provided by broadband MOKE measurements.
The different energy ranges of the contributions enabled the clear distinction in
the spectra beyond the phenomenological assignment commonly obtained from
applying scaling relations on magneto–transport data. Beyond this straightfor-
ward separation of contributions, the spectroscopic fingerprints of topological
band features especially in the Hall effect spectrum in combination with ab initio
calculations additionally allowed to pinpoint the specific bands that generate the
anomalous response. While in principle also ARPES can reveal the linear band de-
generacies, the major advantages of the magneto–optical approach demonstrated
here are the high energy resolution and the direct information obtained about
the Berry curvature in the optical Hall effect spectrum.

Once we had assigned optical features to specific interband transitions, we could
use this information to monitor the manipulation of the topological states by
external fields, as demonstrated for Co3Sn2S2. While a number of theoretical works
predicted that in these kinds of systems, the topological properties can be tuned
by magnetic field or altering the magnetisation [12, 73–75], actual experimental
observations of such effects are rare. Although STM and magneto–transport
studies indeed suggest a high sensitivity of the topological band structure to the
magnetic state [28, 76–78], they also highlight the difficulty to obtain the desired
information about specific bands. One central reason is the incompatibility of
ARPES with external magnetic fields, which makes magneto–optical spectroscopy
a valuable tool for this type of study. For the presented results on Co3Sn2S2, this
revealed the key role of SOC in the generation of topological phenomena, as we
could directly observe its reduction upon the magnetisation reorientation.
These findings demonstrate that while topological band structures are gen-

erally considered robust, breaking underlying crystal symmetries with external
magnetic fields provides an efficient way to manipulate them even in collinear
systems. This handle on the electronic properties of these magnets presents a
central prerequisite for applications in spintronics or quantum information tech-
nology. This approach opens exciting avenues for investigating materials with
more complex magnetic structures and even to study the interplay of real– and
momentum–space topological states.

An initial step along this direction was taken with the investigation of the highly
frustrated metamagnetic states in HoAgGe. While the dc transport properties
show a strongly non–monotonous magnetic field dependence, the observed optical

77
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response follows the magnetisation instead. This suggests a reconstruction of the
bands and a strong coupling between electronic and magnetic degrees of freedom
in this spin–ice candidate.

Overall, despite various experimental challenges, such as small sample sizes, the
need to extend spectral ranges, the multiband nature and complex electronic and
magnetic structures of the investigated compounds, we were able to successfully
perform magneto–optical spectroscopy and gain valuable insights into the topo-
logical and magnetic properties in all investigated kagome metals. These studies
prove magneto–optics as a versatile and reliable tool to investigate topological
bands and hints to the potential for future works to study and control these
features beyond the capabilities of other experimental techniques.
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7.1 Thesis Points and Related Publications

Below, the major achievements of this thesis work are summarised in the form of
the thesis points and the corresponding publications.

Thesis Point 1
On the itinerant kagome ferromagnet Co3Sn2S2, I have measured the reflectivity
spectra with in– and out–of–plane polarisation, and the magneto–optical Kerr
effect (MOKE) spectra over a broad energy range from 25meV to 3 eV. This
required the development of a MOKE setup for the far–infrared spectral range,
which I successfully realised by fixed polarisers for rotation measurements
and a Kramers–Kronig constrained extrapolation of the ellipticity. Due to
this extension, I could determine all elements of the conductivity tensor in
this material for the specified energy range and capture the peaks caused
by interband transitions of the gapped nodal line below 40meV also in the
off–diagonal component. Extrapolating to the dc values confirmed that the
AHE in Co3Sn2S2 has dominantly intrinsic nature caused by the nodal line
and that Weyl points only give vanishing contributions. By calculating the
frequency dependent Hall angle, I could show that these features are caused by
an almost fully circularly polarised nodal line resonance, which additionally
enhances the optical anisotropy favouring the out–of–plane conductivity.

F. Schilberth et al., “Nodal line resonance generating the large anomalous Hall
effect in Co3Sn2S2”, Physical Review B 107, 214441 (2023)

Thesis Point 2
On Co3Sn2S2, I have measured magneto–reflectance in Voigt configuration for
two perpendicular field directions in the kagome plane, which result in the
generation of a large number of Weyl points and a protected nodal loop. The
resulting spectra show a spectral weight redistribution at low energies that
follows the same trend as the in–plane magnetisation. I calculated the optical
conductivity in field, which associates this redistribution to a peak caused by
the nodal line resonance. Comparison to ab initio calculated spectra shows
that the peak shift is associated with a narrowing of the SOC induced gap
of the nodal line, while the large number of emergent Weyl nodes does not
contribute significantly to the low–energy response.

F. Schilberth et al., “Generation of Weyl points and a nodal line by magnetiza-
tion reorientation in Co3Sn2S2”, arXiv.2408.03575 (2024) submitted

Thesis Point 3
In the kagome bilayer ferromagnet Fe3Sn2, I measured the broadband magneto–
optical Kerr effect spectra between 50meV–3 eV, which together with reflectivity
data allowed me to calculate the conductivity tensor elements for the kagome
plane. Again the far–infrared MOKE spectra enabled me to match the dc Hall
effect to the optical spectra, revealing that the AHE in Fe3Sn2 is dominantly
intrinsic above 100K with a magnitude of 250Ω−1cm−1. At lower temperatures,
extrinsic scattering plays a major role. Due to the large number of bands close to
the Fermi energy, the intrinsic AHE is produced by a large variety of transitions,

https://doi.org/10.1103/physrevb.107.214441
https://doi.org/10.48550/ARXIV.2408.03575
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but we could identify a distinct contribution from the helical nodal lines at
energies below 0.2 eV.

F. Schilberth et al., “Magneto–optical detection of topological contributions to
the anomalous Hall effect in a kagome ferromagnet”, Physical Review B, 106,
144404 (2022)

Thesis Point 4
On the distorted kagome lattice compound HoAgGe, I have measured the
anisotropic MOKE parameters as well as polarised reflectivity and magneto–
reflectance for all crystallographic directions with magnetic field applied along
the b axis. Due to the non–collinear magnetic order, we derived a formula
for the Kerr parameters with anisotropic diagonal conductivity tensor ele-
ments, providing the basis for the analysis of high–field MOKE measurements.
The broadband reflectivity measured between 10meV to 2.2 eV shows strong
anisotropy which translates to the optical conductivity along the stacking di-
rection being larger than within the kagome planes. In the magneto–reflectance
spectra obtained from 25meV to 0.5 eV, the relative change of the reflectivity
across the metamagnetic phases follows the magnetisation rather than the
magneto–resistance for the in–plane response, suggesting a band reconstruc-
tion upon the magnetic transitions. The underlying changes of the electronic
structure were analysed by evaluating the optical conductivity in magnetic
field, which agree with preliminary ab initio calculations

F. Schilberth et al., “Tracing Band Reconstructions across Metamagnetic
Transitions in HoAgGe”, in preparation (2024)

7.2 Full List of Publications

▷ F. Schilberth et al., “Magneto–optical detection of topological contributions
to the anomalous Hall effect in a kagome ferromagnet”, Physical Review B,
106, 144404 (2022)

▷ F. Schilberth et al., “Nodal line resonance generating the giant anomalous
Hall effect in Co3Sn2S2”, Physical Review B 107, 214441 (2023)

▷ J. Ebad Allah et al., “Optical anisotropy of the kagome magnet FeSn:
Dominant role of excitations between kagome and Sn layers”, Physical
Review B, 109, L201106 (2024)

▷ K. Vasin et al., “Optical magnetoelectric effect in the polar honeycomb
antiferromagnet Fe2Mo3O8”, Physical Review B 110, 054401 (2024)

F. Schilberth et al., “Generation of Weyl points and a nodal line by magne-
tization reorientation in Co3Sn2S2”, arXiv.2408.03575 (2024) submitted

▷ F. Schilberth et al., “Tracing Band Reconstructions across Metamagnetic
Transitions in HoAgGe”, in preparation (2024)

▷ V. Bader et al., “Rotational disorder and its impact on the spin–1/2 trian-
gular antiferromagnet Na2BaCo(PO4)2”, in preparation (2024)

https://doi.org/10.1103/physrevb.106.144404
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Appendix

A.1 Recommissioned and Developed Setups

Summary of the newly commissioned, rebuilt and newly developed setups during
the PhD.

Commissioned

▷ Macro–reflectivity setup for Vertex 80v (UA)

▷ Macro–transmission setup for Vertex 80v (UA)

▷ Pan–cryo option for Hyperion FTIR–microscope in transmission and reflec-
tion (UA)

▷ FTIR–microscope based reflectivity setup for magnetic fields up to 5T for
Hyperion (UA)

Recommissioned

▷ grating–based tabletop PEM NIR/VIS MOKE spectrometer (BME)

▷ FTIR–based tabletop PEM MIR MOKE spectrometer (BME)

▷ Oxford cryostat refurbishment (BME)

Developed

▷ FTIR–based tabletop fixed polariser FIR MOKE spectrometer (BME)

▷ Rotatable polariser mount for high speeds and accurate positioning (BME)

▷ NIR Femtosecond laser pump–laser probe MOKE setup (BME)

▷ FTIR–based in–system fixed polariser FIR MOKE spectrometer for Vertex
80v (UA)

▷ Laser–MOKE setup in magnetic field up to 5T (UA)

▷ Laser–MOKE lab course experiment for bachelor students (UA)

▷ Laser or broadband birefringence microscope for detection of antiferromag-
netic domains including manipulation with magnetic and electric fields
(UA)
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Figure A.1
Evolution of the nodal loop
upon reorienting the magnetisa-
tion M ⊥ a. (a–c) Gap of the
nodal lines for out–of–plane and
NL1 and NL2 in–plane loops, re-
spectively. For (a), the average
gap is larger than for (b) and
(c). Points C and D are equiv-
alent to A and B but lie on
the BZ planes that contain NL2
instead of NL1. (d–f) Optical
weight Hxx at the peak energies
(42.0 – 45.6 meV in (d), 28.8
– 33.6 meV in (e) and (f)) dis-
tributed on the high–symmetry
planes of the BZ containing the
nodal loops from (a–c). We ob-
tain qualitatively similar distribu-
tions despite the different energy
ranges. (g) Band structure along
the triangles in the right column.
The high–symmetry points are
shown above and in Fig. 4.1(c).
For in–plane magnetisation, the
SOC gap along the nodal line is
clearly smaller than for out–of–
plane (adapted from [80]).
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A.2 Analysis of the SOC Gap in Co3Sn2S2 for M ⊥ a

Fig.A.1(a–c) plots the gap size of the loops for M ∥ c and of NL1 and NL2 for
M ⊥ a, respectively. The position of Weyl points is shown in red and the Fermi
surface with dark green lines. For both in–plane loops in panels (b) and (c), the
average gap size is smaller than for out–of–plane magnetisation in panel (a). This
is clearly reflected in the band structure plot in panel (g), where we show the
bands for M ∥ c and M ⊥ a in green and red, respectively. Along A−B and
C−D, the main difference between NL1 and NL2 is highlighted, namely a slightly
smaller gap for NL2. In order to compare the generation of optical weight by
these features, we again calculate the distribution of spectral weight in the BZ by
Eq. 3.3 for the diagonal conductivity distribution ReHxx(ω,k), which is shown for
the different nodal lines in Fig. A.1(d–f). Due to the smaller gap, the nodal lines
contribute in a different energy range to the optical conductivity. Therefore, in
panel (d), we plot the spectral weight distribution for out–of–plane magnetisation
at photon energies between 42.0 – 45.6 meV, whereas for in–plane field in (e) and
(f) we show the optical weight at 28.8 – 33.6 meV. Qualitatively, all plots show
similar features with a small hotspot along Γ−L and several hotspots where the
nodal line lies around the Fermi energy, e.g. on the A−B and C−D lines. This
comparison shows that the onset of optical weight of the optical conductivity
for in– and out–of–plane magnetisation is generated by the same band structure
regions, but at different photon energies, explaining the shift of the peak as the
moments cant into the ab plane.
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A.3 Low–Field MOKE Measurements on HoAgGe

Due to the strong field dependence and the hysteretic behaviour of the static Hall
conductivity (Fig. 6.1(b)), studying MOKE on this compound can give profound
insight into the topological nature of the Hall effect of HoAgGe. Because of
the exotic nature of the magnetic order in HoAgGe, we need to check which
elements of the dielectric tensor are allowed under the experimental conditions
for the MOKE spectroscopy. Unfortunately, the magnetic field for the MOKE
spectroscopy is limited to 300mT in the setups described in Sec. 2.3.3, so we can
only probe the Kerr response for the magnetic ground state.

A.3.1 ab cut with H ∥ c

The magnetic space–group of HoAgGe below the first metamagnetic transition
at 11.6K is −6′zmxz2

′
x, with

′ indicating time–reversal operations [103]. If we
additionally include a magnetic field along the c axis, some of these symmetries
are broken, resulting in the space–group 3z2

′
x. Due to Neumann’s principle, the

dielectric tensor must fulfil ε̂ = Rε̂R−1 for any symmetry element R, consequently

ε̂ =

 εSxx εAxy 0

−εAxy εSxx 0

0 0 εSzz

 , (A.1)

where the diagonal elements have to be symmetric under time–reversal (S) while
the off–diagonal elements are antisymmetric (A) [41]. The derivation is detailed
in AppendixA.3.4. Therefore, for light propagation along the c axis, we obtain
the same expression for the MOKE parameters as in Sec. 1.3.2.

The MOKE spectra for this configuration were obtained on a polished ab cut
crystal with a diameter of 1.4mm. The resulting spectra are shown in Fig. A.2(a,b)
for low temperatures. Compared to the studies shown in the previous chapter,
the angles are almost two orders of magnitude smaller and we cannot identify
distinct spectral features. Therefore, the shown data represents the noise level of
the spectrometer and we cannot resolve the actual response of HoAgGe. Hence
only the MIR spectra were recorded. Although MOKE is in principle allowed for
this geometry as shown above, the out–of–plane magnetisation is very small in
300mT showing the limits of the angular resolution.

A.3.2 ac cut with H ∥ b

Here, we apply a magnetic field along the b axis of the crystal. For this configu-
ration, all kinds of magnetic order present in HoAgGe have the same magnetic
space–group of m′

xymxz2
′
x [103]. Applying a magnetic field along the b axis of the

crystal thus does not lead to any new constraints. This yields a dielectric tensor
of the form

ε̂ =

 εSxx 0 εAxz
0 εSyy 0

−εAxz 0 εSzz

 . (A.2)

Therefore, when light is propagating along the b axis of the crystal, the effective
dielectric tensor has anisotropic diagonal elements (details in AppendixA.3.5).
Hence we cannot use Eq. 1.50 to calculate the optical Hall conductivity and need
to derive a different formula which will be detailed in the following.
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Figure A.2
Ground state MOKE spectra of
HoAgGe obtained at 300mT.
(a,b) MIR ab plane Rotation and
Ellipticity spectra of HoAgGe, re-
spectively. (c,d) Broadband ac
plane Rotation and Ellipticity
spectra of HoAgGe, respectively.
The spectra were measured with
the incoming polarisation along
the c axis of the crystal. Since
for this plane, the Kerr parame-
ters can depend on the polarisa-
tion of the incoming electric field
as shown in Sec. A.3.3, the MIR
spectra at 5K for light polarised
along the a axis is shown in black
for comparison.
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A.3.3 MOKE with Anisotropic Diagonal Conductivity Tensor Elements

Interestingly, a literature review produced no results in finding an already pub-
lished derivation for this issue. Therefore, we need to find the equivalent expression
for Eq. 1.50 for this case. Much credit for the following derivation goes to Sándor
Bordács.

We follow the same scheme as in Sec. 1.3.2, starting with the Maxwell equations
to derive the refractive index

k×E = ωµ0H
k×H = −ωε0ε̂E

}
→ k× (k×E) =

ω2

c2
ε̂E

k ·E = 0 → k2E =
ω2

c2
ε̂E

→ N2E = ε̂E (A.3)

Using the general form of the dielectric tensor with different diagonal elements

ε̂ =

(
εxx εxy
−εxy εyy

)
, (A.4)

we obtain the eigenvalues

N2
± =

εxx + εyy
2

±

√(
εxx − εyy

2

)2

− ε2xy (A.5)
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and eigenvectors

s± =

−
εxx−εyy∓

√
(εxx−εyy)

2−4ε2xy
2εxy

1

→ ŝ± =
s±
|s±|

. (A.6)

From this, we can again derive the transformation matrix into the basis of the
eigenstates

Û = (ŝ+|ŝ−) . (A.7)

If the sample is characterised by the reflectivities r± for the two eigenstates, we
find that the reflected field is given by

Eref = Û

(
r+ 0
0 r−

)
Û−1Ein.

For an incoming electric field of the form Ein =

(
1
0

)
it holds

Eref =

(
r−(εxx−εyy+σ)+r+(−(εxx−εyy)+σ)

2σ

− εxy(r−−r+)
σ

)
(A.8)

with σ =

√(
εxx−εyy

2

)2
− ε2xy. This yields

ϕx =
ry
rx

=
2εxy (r+ − r−)

σ (r+ + r−)− (εxx − εyy) (r+ − r−)
(A.9)

if ϕx is small. In an analogous fashion, for Ein =

(
0
1

)
we obtain

Eref =

(
εxy(r−−r+)

σ
r−(−(εxx−εyy)+σ)+r+(εxx−εyy+σ)

2σ

)
(A.10)

which results in

ϕy = − −2εxy (r+ − r−)

σ (r+ + r−) + (εxx − εyy) (r+ − r−)
, (A.11)

where the additional minus sign is used to preserve the sense of rotation. Under
the assumptions that the conduction anisotropy is small and that the Hall effect
is small compared to the diagonal conductivity, meaning∣∣∣∣εxx − εyy

2

∣∣∣∣≪ ∣∣∣∣εxx + εyy
2

∣∣∣∣ & εxy ≪
∣∣∣∣εxx + εyy

2

∣∣∣∣
this expression can be simplified. The refractive indices become

N± =

√
εxx + εyy

2
± 1

2
σ =

√
ε± 1

2
σ ≈

√
ε± σ

4
√
ε
= N ± ∆N

2
(A.12)



86 A Appendix

With this, we can calculate the reflectivities accordingly

r± =
N± − 1

N± + 1
=

N ± ∆N
2 − 1

N ± ∆N
2 + 1

=
N − 1± ∆N

2

(N + 1) ·
(

∆N
2(N+1)

)
≈ N − 1

N + 1
± ∆N

2

1

N + 1
∓ ∆N

2

1

N + 1

N − 1

N + 1
. . .

=
N − 1

N + 1
± ∆N

2(N + 1)

(
1− N − 1

N + 1

)
=

N − 1

N + 1
± ∆N

(N + 1)2

=

√
ε− 1√
ε+ 1

± σ

2
√
ε (

√
ε+ 1)

2 . (A.13)

Finally, we obtain expressions for ϕx,y

ϕx,y =
2εxy (r+ − r−)

σ (r+ + r−)∓ (εxx − εyy) (r+ − r−)

≈
2εxy · 2 σ

2
√
ε(

√
ε+1)

2

σ · 2
√
ε−1√
ε+1

∓ (εxx − εyy) · 2 σ

2
√
ε(

√
ε+1)

2

=

εxy√
ε(

√
ε+1)

√
ε− 1∓

(
εxx−εyy

2

)
1√

ε(
√
ε+1)

=
εxy

√
ε(ε− 1)∓

(
εxx−εyy

2

)
=

εxy√
εxx+εyy

2

(
εxx+εyy

2 − 1
)
∓
(
εxx−εyy

2

) (A.14)

Comparing with Eq. 1.49, the Kerr parameters now depend on the average and the
difference of the diagonal elements. Hence, if we set εxx = εyy, we always recover
the case for identical diagonal tensor elements during the above considerations,
which validates the made assumptions.

When replacing the dielectric function with the conductivity by εαβ = δαβ +
i

ε0ω
σαβ, this yields

ϕx,y = − σxy
σxx+σyy

2

√
1 + i

ε0ω
σxx+σyy

2 ± σxx−σyy

2

,Anisotropic Kerr effect (A.15)

enabling the calculation of the off–diagonal conductivity from the Kerr–parameters
and the diagonal conductivity. Importantly, we directly obtain Eq. 1.50 if we set
the diagonal elements equal.
As a result, in the anisotropic case, the Kerr parameters will be different

depending on the alignment of the incoming electric field within the ac plane.
Therefore, Fig.A.2(c,d) shows the Kerr parameters with the incoming light
polarised along the c axis of the crystal. Since a PEM is used for the measurement,
this refers to the 45◦ polarisation aligned with the crystallographic axis. For
comparison, the 5K MIR spectrum for light polarised along the a axis is shown
additionally. The spectra were obtained on a polished ac cut crystal with useful
aperture of 1.4mm. The most prominent features observed in the spectra are
two peaks in the ellipticity at 0.25 and 0.6 eV with peak magnitude of −0.03◦,
respectively. While their magnitude increases upon lowering the temperature, the
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onset of theses features is already visible at 40K, which is far above the magnetic
ordering temperature. Due to the antiferromagnetic nature of the ground state
order and the small magnetic fields, these signals are obtained due to a small
polarisation of the magnetic moments by the external field, which appears not to
be significantly influenced by the magnetic ordering. It would be interesting to
observe the evolution of these features when the metamagnetic transitions occur
at higher fields, which triggered the development of a high–field MOKE setup
at BME, which at present is not completed. We therefore cannot evaluate the
evolution of the optical Hall conductivity across the metamagnetic states at this
stage.

A.3.4 ab cut with H ∥ c

The magnetic space–group of HoAgGe below the first metamagnetic transition
at 11.6K is −6′zmxz2

′
x [103]. Considering x ∥ a, y ∥ b and z ∥ c, if we additionally

include a magnetic field along the c axis, some of these symmetries are broken,
resulting in the space–group 3z2

′
x. The threefold–rotation can be represented by

Cz
3 =

−1
2 −

√
3
2 0√

3
2 −1

2 0
0 0 1


Due to Neumann’s principle [41], the dielectric tensor must fulfil ε̂ = Cz

3 ε̂(C
z
3 )

−1,
consequentlyεxx εxy εxz

εyx εyy εyz
εzx εzy εzz

 =

1

4

εxx +
√
3(εyx + εxy) + 3εyy εxy +

√
3(εxx − εyy)− 3εyx −εxz −

√
3εyz

εyx +
√
3(εyy − εxx)− 3εxy εyy −

√
3(εxy + εyx) + 3εxx −εyz −

√
3εxz

−εzx −
√
3εzy −εzy −

√
3εzx 4εzz

 .

This equation can be fulfilled if

εxx = εyy

εxy = −εyx

εzx = εzy = 0

εxz = εyz = 0,

leading to

ε̂ =

 εxx εxy 0
−εxy εxx 0
0 0 εzz

 . (A.16)

The twofold rotation represented by

Cx
2 =

1 0 0
0 −1 0
0 0 −1


including time–reversal (′) leads to εxx εxy 0

−εxy εxx 0
0 0 εzz

 =

ε′xx −ε′xy 0

ε′xy ε′xx 0

0 0 ε′zz

 . (A.17)



88 A Appendix

The last equivalence is obtained through the Onsager relations for reversibility in
linear response theory [53]. In order to fulfil this equation, the diagonal elements
have to be symmetric under time–reversal (S) while the off–diagonal elements
are antisymmetric (A), so finally

ε̂ =

 εSxx εAxy 0

−εAxy εSxx 0

0 0 εSzz

 . (A.18)

Therefore, for light propagation along the c axis, we obtain the same expression
for the MOKE parameters as in Sec. 1.3.2.

A.3.5 ac cut with H ∥ b

Here we apply a magnetic field along the b axis of the crystal. For this configuration,
all kinds of magnetic order present in HoAgGe have the same magnetic space–
group of m′

xymxz2
′
x [103]. Applying a magnetic field along the b axis of the crystal

thus does not lead to any new constraints. Representing mxz by

mxz =

1 0 0
0 −1 0
0 0 1


Neumann’s principle leads toεxx εxy εxz

εyx εyy εyz
εzx εzy εzz

 =

 εxx −εxy εxz
−εyx εyy −εyz
εzx −εzy εzz


resulting in

εxy = εyx = εzy = εyz = 0,

which produces

ε̂ =

εxx 0 εxz
0 εyy 0
εzx 0 εzz

 . (A.19)

Similarly, with

mxy =

1 0 0
0 1 0
0 0 −1


we obtain for m′

xy εxx 0 εxz
0 εyy 0
εzx 0 εzz

 =

 ε′xx 0 −ε′xz
0 ε′yy 0

−ε′zx 0 ε′zz


yielding,

ε̂ =

εSxx 0 εAxz
0 εSyy 0

εAzx 0 εSzz

 . (A.20)

The twofold axis does not add any new constraints, so with time–reversal requiring
that εzx = −εxz [53], we finally obtain:

ε̂ =

 εSxx 0 εAxz
0 εSyy 0

−εAxz 0 εSzz

 . (A.21)
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Therefore, when light is propagating along the b axis of the crystal, the effective
dielectric tensor has anisotropic diagonal elements for the Faraday and Kerr
effect.
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