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WHAT THIS PAPER ADDS 

The clinical diameter based decision on whether to operate on a patient with 

abdominal aortic aneurysm (AAA) leads to many surgeries that could have been 

postponed. This work aims to identify ruptured and intact AAAs through the 

integration of geometric, clinical, and biomechanical variables by machine learning 

(ML) models. The developed approach greatly improves the specificity of AAA 

classification without compromising its sensitivity. Ranking of risk factors in the ML 

models allowed the discernment of the most critical variables in AAA rupture. 
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Objective: Despite elective repair of a large portion of stable abdominal aortic 

aneurysms (AAAs), the diameter criterion cannot prevent all small AAA ruptures. 

Since rupture depends on many factors, this study explored whether machine 

learning (ML) models (logistic regression [LogR], linear and non-linear support vector 

machine [SVM-Lin and SVM-Nlin], and Gaussian Naïve Bayes [GNB]) might improve 

the diameter based risk assessment by comparing already ruptured (diameter 52.8 – 

174.5 mm) with asymptomatic (diameter 40.4 – 95.5 mm) aortas. 

Methods: A retrospective case–control observational study included ruptured AAAs 

from two centres (2010 – 2012) with computed tomography angiography images for 

finite element analysis. Clinical patient data and geometric and biomechanical AAA 

properties were fed into ML models, whose output was compared with the results 

from intact cases. Classifications were explored for all cases and those having 

diameters below 70 mm. All data trained and validated the ML models, with a five 

fold cross-validation. SHapley Additive exPlanations (SHAP) analysis ranked the 

factors for rupture identification. 

Results: One hundred and seven ruptured (20% female, mean age 77 years, mean 

diameter 86.3 mm) and 200 non-ruptured aneurysmal infrarenal aortas (22% female, 

mean age 74 years, mean diameter 57 mm) were investigated through cross-

validation methods. Given the entire dataset, the diameter threshold of 55 mm in 

men and 50 mm in women provided a 58% accurate rupture classification. It was 

99% sensitive (AAA rupture identified correctly) and 36% specific (intact AAAs 

identified correctly). ML models improved accuracy (LogR 90.2%, SVM-Lin 89.48%, 

SVM-Nlin 88.7%, and GNB 86.4%); accuracy decreased when trained on the 

 70 mm group (55/50 mm diameter threshold 44.2%, LogR 82.5%, SVM-Lin 83.6%, 
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SVM-Nlin 65.9%, and GNB: 84.7%). SHAP ranked biomechanical parameters other 

than the diameter as the most relevant. 

Conclusion: A multiparameter estimate enhanced the purely diameter based 

approach. The proposed predictability method should be further tested in longitudinal 

studies. 

 

Keywords: Abdominal aortic aneurysm, Aortic rupture, Artificial intelligence, 

Machine learning, Prognosis, Surgery 
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INTRODUCTION 

Abdominal aortic aneurysm (AAA) is a localised dilatation of the infrarenal aorta, 

resulting in a diameter greater than 30 mm.1 On the basis of the diameter of the 

aorta, AAA can be classified as small (not considered for repair, < 55/50 mm for 

men/women) or large (≥ 55/50 mm) when surgical repair can be considered.2 The 

formation and progression of an AAA are tightly linked to proteolytic degradation of 

elastin and collagen in the aortic wall.3 At progressive expansion, the risk of aortic 

rupture increases, an event that is fatal in the majority of cases.4 It remains difficult to 

predict when a patient with an AAA will require surgery5 to prevent rupture. Even in 

surveillance programmes, a small proportion of patients suffer from rupture prior to 

reaching the indication for repair, while on the other hand a significant proportion can 

reach large aneurysm diameters without rupturing during their lifetime.6 

 

Large AAA diameter is not the only risk factor, and rupture has also been associated 

with biomechanical factors,7 AAA shape8 and volume, ethnicity, female sex, family 

susceptibility, mean arterial pressure,9 expansion rate,10 fludeoxyglucose uptake,11 

intraluminal thrombus (ILT),12 smoking,13 and many others.3 Regardless of the 

diameter being a strong surrogate measure of AAA rupture risk, it has clear 

limitations in the prediction of the risk for aortic rupture in the individual patient. 

 

Aortic rupture is the result of the interaction of multiple risk factors. The wall ruptures 

at the site where wall stress overcomes wall strength,14 a spatial location that is often 

not at the level of the largest diameter.16 Besides challenging classical statistical 

methods, the strong dependence among the individual risk factors for AAA rupture 

also hinders the study of their isolated contribution to the cumulative rupture risk. 
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Machine learning (ML) techniques (a subclass of artificial intelligence based models) 

have recently garnered attention in biomedical and mechanical fields.16 They can 

process large numbers of data in a reasonable time and potentially establish 

complex relationships between input and output. Therefore, ML based models can 

integrate risk factors proposed by different research disciplines into a 

multidimensional AAA growth17 and rupture risk assessment and allow individual risk 

factors to be ranked according to their importance. 

 

The current observational study combines general patient characteristics with AAA 

geometric and biomechanical parameters into a single holistic factor determining the 

relationship to AAA rupture. This new method of identifying the potential for AAA 

rupture may potentially enhance AAA rupture risk assessment, leading to higher 

accuracy compared with diameter based clinical decision making. 

 

MATERIALS AND METHODS 

Patient and image data acquisition 

Patients from Karolinska University Hospital (Stockholm, Sweden) and University 

Hospital Augsburg (Augsburg, Germany) with ruptured or intact AAA were 

considered for this retrospective observational case–control study. Ruptured AAAs 

were from clinical records from 2010 to 2021. Inclusion required contrast enhanced 

computed tomography angiography (CTA) scan (1 – 5 mm slice thickness), excluding 

approximately 50% owing to biomechanical analysis limitations (e.g., large rupture 

site, highly swirled contrast medium, poor image quality, tortuous anatomy). Patients 
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with non-ruptured AAA within the same CTA scan slice thickness (from AAA 

surveillance at Karolinska University Hospital in 2012 – 2013, or treated at Augsburg 

University Hospital in 2010 – 2021) were considered at a 2:1 intact/rupture ratio, age 

and sex matched, with < 10% excluded for similar reasons. CTA in plane resolution 

ranged from 0.39 mm to 0.8 mm. Blood pressure was recorded before CTA in intact 

cases or at the last admission before rupture. If unavailable (51%), the blood 

pressure was set to 140/80 mmHg. 

 

The use of anonymised data was approved by the local ethics committees of both 

involved clinics. 

 

As the patient group included cases of very large diameters, cases with diameters 

≤ 70 mm were also uniquely analysed, thus resulting in a group where AAA rupture 

risk estimation would be clinically more relevant. Diameter matched groups were 

intentionally not used in order to not a priori exclude or compromise the diameter as 

a risk factor. 

 

The Shapiro Wilk test was used to assess normality. Student’s t test (normal data) or 

Mann–Whitney U test (non-normal data) were used to evaluate statistically 

significant differences of each feature in the rupture and non-ruptured cases 

(p < .050). 

 

Image data post-processing 

Commercial software (A4clinics Research Edition; VASCOPS GmbH, Graz, Austria) 

was used to extract geometric and biomechanical features from CTA images. A 
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semiautomatic segmentation18 identified the lumen, the ILT, and the outer contour of 

the vessel wall. Segmentation and analyses were performed between the lowest 

main renal artery and aortic bifurcation, ignoring accessory renal arteries. Given the 

3D model, geometric features (AAA diameter, maximum luminal diameter, maximum 

ILT thickness, vessel volume, lumen volume, ILT volume) were automatically 

extracted. Diameters were computed perpendicularly to the anatomical centreline 

and thus the centreline of the AAA outer contour. 

 

The finite element method was used to calculate wall stress using the patient specific 

reconstructions, assuming hyperelastic, isotropic, and incompressible19,20 tissue. 

Stress was derived from wall strength estimates based on sex, family history, ILT 

thickness, and the ratio between local aneurysm diameter and the expected normal 

value.18,21 The finite element method model, loaded with the patient specific mean 

arterial pressure and fixed at the lowest renal artery and the aortic bifurcation levels, 

was used to compute biomechanical properties (peak wall stress, mean wall stress, 

peak wall rupture risk index [PWRI], rupture risk equivalent diameter [RRED], mean 

wall rupture risk index [MWRI], peak ILT stress, mean ILT stress, peak ILT rupture 

risk, and mean ILT rupture risk) (Supplementary Table S1). In this study, all stress 

measures refer to the von Mises stress,22 and risk indices are formed by 

stress/strength ratio.18,23 

 

PWRI is the highest stress to strength ratio where wall stress is based on the 

individual finite element computation,14 while wall strength considers age, sex, ILT 

layer thickness, and relative diameter expansion.21 RRED specifies the hypothetical 
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AAA diameter at which PWRI matches the non-ruptured AAA population.23 

Supplementary Table S1 lists a detailed definition of all parameters. 

 

The analysis took approximately 15 minutes for intact and 30 minutes for rupture 

cases, respectively. Figure 1 illustrates a typical AAA after image processing. 

 

Machine learning analyses and prediction models 

The outcome (AAA rupture) was classified by use of several ML models, including 

logistic regression (LogR),25 linear and non-linear support vector machine26 (SVM-

Lin and SVM-Nlin), and Gaussian Naïve Bayes (GNB).27 The models were realised 

and trained in Scikit-learn v.1.4.0.28 

 

Data statistics and cleansing. As the accuracy of any ML algorithm strongly 

depends on the quality and homogeneity of the input, all variables were normalised 

and scaled (mean = 0, variance = 1), a measure known to particularly avoid the 

major artificial influence of variables with extensive variations. A principal component 

analysis, a high dimensional visualisation technique, revealed that ruptured and 

intact cases could not easily be separated (Supplementary Figure S1), and one case 

was regarded as an outlier and therefore removed. 

 

Given that highly correlated variables promote ML overfitting (i.e., an excessively 

complex model accurately predicting the training data but poorly the validation 

data29), the pairwise correlation amongst the 18 features listed in Table 1 was 

explored. Given that the correlation (Spearman’s rank order correlation coefficient ) 

among two features exceeded 0.80, the one with the lower area under the receiver 
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operating characteristic (ROC) curve (AUROC) was disregarded (Supplementary 

Table S2). The specific threshold was set to keep an adequate number of features in 

relation to the number of cases in the group. 

 

As there was a significant disparity in the occurrence of intact compared with 

ruptured AAA cases, misclassification made by the ruptured class was given a 

greater penalty, thus preventing the models from favouring the intact cases. 

 

Group partitioning, model training, and validation. The ML models utilised the 

aforementioned features to classify AAA rupture and were developed either on the 

entire group or the  70 mm group. A five fold cross-validation was applied to train 

and validate the ML models, and within each fold data for training and validation 

represented approximately 80% and 20%, respectively. The analysis was repeated 

three times to eliminate potential biases caused by random dataset shuffling, thus 

producing multiple models. Consequently, the overall ML classification performance 

was based on the average metrics received from all 30 models. 

 

Classification metrics. Given the number of correct (TP) and incorrect (FP) 

classification of AAA rupture, as well as the number of correct (TN) and incorrect 

(FN) classification of intact cases, the following metrics were used to quantify ML 

model performance: accuracy = (TP + TN)/(TP + TN + FP + FN); sensitivity = TP/(TP 

+ FN); specificity = TN/(TN + FP); and AUROC = area under the ROC curve (relation 

between true positive rate [i.e., sensitivity] and false positive rate [i.e., 1 – specificity]) 

computed using the trapezoidal rule. 
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Regardless of the group used to develop the models (i.e., either the entire group or 

the  70 mm group), the aforementioned metrics were only tested in the  70 mm 

group as it holds clinical relevance. Additionally, SVM results were calibrated (via 

another LogR model) to retain probability outputs.30 

 

As the primary AAA rupture assessment goal was to increase specificity while 

maintaining high sensitivity, the thresholds of the ML based rupture probability 

(initially 50%) were varied and the corresponding classifications were explored. 

 

Interpretability. To overcome the drawback of data driven algorithms of hiding 

which and how input variables influence the prediction, the SHapley Additive 

exPlanations (SHAP) method31 was employed to rank the AAA rupture factors. 

SHAP uses the classic Shapley values from game theory to assign a contribution to 

each feature in a prediction, scoring its impact on the model output. In this study, a 

Python based software package (https://shap.readthedocs.io/en/latest/) was used. 

Given a ML model, the average from all realisations (five folds times three samples) 

determined the final SHAP outcome and thus the relative influence of the individual 

features on the rupture classification. The SHAP value was also evaluated using the 

best trained models. 
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RESULTS 

Patient groups 

Data from 107 ruptured and 200 non-ruptured aneurysmatic infrarenal aortas in 242 

men and 65 women were retrospectively considered (Table 2). Diameters ranged 

from 52.8 – 174.5 mm for ruptured cases and from 40.4 – 95.5 mm for intact cases. 

 

The Shapiro–Wilk test showed no normally distributed feature (p < .050) on the entire 

group. The  70 mm group instead was more homogeneous, and the vessel volume, 

maximum luminal diameter, and mean wall stress were normally distributed. 

 

In the entire group and the  70 mm group, many geometric and mechanical 

properties differed between ruptured and intact cases (Tables 2 and 3). 

 

Age differed statistically significantly between ruptured and non-ruptured groups 

(p = .012) in the entire group but not in the  70 mm group. The female:male ratio 

was similar (21% female in ruptured cases vs. 22% in intact cases) in the entire 

group, while it was higher in the ruptured cases  70 mm (32% vs. 22%). No 

difference was seen in systolic or diastolic pressure, and the smoking status was 

similar in both groups, albeit unknown in 76%. 

 

The diameter threshold 

Given the entire group, the diameter threshold of 55 mm in men and 50 mm in 

women provided a 58% accurate rupture classification. It was 99% sensitive (AAA 

rupture identified correctly) and 36% specific (intact AAAs identified correctly). Its 
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classification accuracy decreased in the  70 mm group to 44.2% (sensitivity 96.7%, 

specificity 37.7%). 

 

The classification performance of single features 

Figure 2 illustrates ROC curves for all investigated features in the entire patient 

group as well as the  70 mm group. For all classifiers, the accuracy decreased from 

the entire group to the  70 mm group. 

 

Although the AUROC values decreased significantly from the entire group to the 

 70 mm group, in both the external diameter, MWRI, RRED, and PWRI result in the 

most robust classifiers. As ILT volume and ILT thickness do not provide any 

information (AUROC < 50%) in the  70 mm group, they were excluded from the 

corresponding ML analysis. 

 

Machine earning model classification performance 

Compared with single feature classification, ML models improved the classification 

accuracy remarkably (LogR 90.2%, SVM-Lin 89.48%, SVM-Nlin 88.7%, and GNB 

86.4%). As with single features, ML based classification accuracy also decreased in 

the  70 mm group (LogR 82.5%, SVM-Lin 83.6%, SVM-Nlin 65.9%, and GNB 

84.7%). Table 4 reports ML based validation metrics in the  70 mm group in 

comparison with the diameter threshold, i.e., 55 mm in men and 50 mm in women. 

Data represent the mean from the 15 validation folds, i.e., the cases not used to train 

the models. Although ML models trained on the entire group showed higher 
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accuracy and specificity, model training in the  70 mm group resulted in a major 

improvement in sensitivity. 

 

The LogR and SVM-Lin models emerged as the two best performing ML methods. 

Figure 3 illustrates the corresponding rupture probabilities in the  70 mm group. 

 

Lowering the probability threshold for rupture, the best trained LogR model (trained 

on the  70 mm group) increased its sensitivity at the expense of a moderate 

decrease in specificity (Fig. 4B). At a rupture probability of 35%, the model displayed 

96% sensitivity and 75% specificity in the  70 mm group. In comparison, Figure 4A 

provides a similar analysis for the diameter threshold, where the threshold in females 

was constantly 5 mm lower than in males. The performance of the other ML models 

is illustrated in Supplementary Figure S2. Models trained on the entire group 

displayed similar properties, with the sensitivity, however, not reaching these levels 

(Supplementary Figure S3). 

 

The importance of individual risk factors 

Figure 5 summarises the SHAP analysis and indicates the relative importance of 

individual features (rupture factors). No factor dominated, indicating that the ML 

models used all input information for prediction. The MWRI, the external diameter, 

and the RRED were key in predicting AAA rupture in the best LogR and SVM-Lin 

models. Supplementary Figure S4 shows the SHAP variable importance averaged 

over all models. 
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DISCUSSION 

The risk of AAA rupture depends on multiple factors, making it difficult to predict 

surgery timing. Various ML models, integrating geometric, biomechanical, and basic 

patient characteristics into a single holistic factor, were tested. The approach 

analysed data from patients having either intact or already ruptured AAA. It clearly 

outperformed the diameter threshold in classifying intact and ruptured cases and 

delivered promising results for the assessment of rupture risk. 

 

As the patient group in this study covered an extensive diameter range and ruptured 

AAAs are commonly larger, the diameter is a priori a sensitive classifier. Focusing on 

the clinically more interesting group with diameter  70 mm, the sensitivity of the 

diameter threshold and the ML models diminished considerably (Table 4). 

 

Compared with the 55/50 mm maximum diameter, the LogR model correctly 

identified twice as many intact AAAs while at the same time maintaining the ability of 

the diameter thresholds to identify ruptures. As such, it resulted in 96% sensitivity but 

in a specificity of 75% against 38% of the diameter based method (Fig. 4). 

 

The SHAP algorithm demonstrated that no single feature holds all the information, 

but several parameters are needed for accurate classification (Fig. 5; Supplementary 

Figure S4). Furthermore, ML models other than the GNB consistently ranked the 

most relevant features. 

 

These models could not provide a 100% correct rupture classification, likely because 

of incomplete input information. Albeit probably important, patient data, such as 
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height, body surface area, body mass index, and comorbidities, were not available in 

this study. Unfortunately, the biochemical and histological status of the AAA wall 

were also unavailable, but both might have influenced wall strength and contributed 

to AAA rupture. Future studies should incorporate the aforementioned information, 

although larger patient groups would be needed for training, which is challenging 

given the scarcity of ruptures. Diameter matched subgroups have also not been 

considered, as including them would reduce the sample size too much, disregarding 

63% of intact cases in the  70 mm group. 

 

The current study design focused on larger cases to recruit a sufficiently large 

number of ruptured cases. Even the  70 mm group included large cases, rendering 

it less applicable to the clinically relevant population with diameters up to 55/50 mm. 

 

Small datasets can lead to inaccurate predictions in unseen data. Regardless of this 

risk, all the data were enrolled for training and validation, and further studies are 

necessary to test the models. External validation from different hospitals and 

countries should also be evaluated. Furthermore, supervised learning requires 

manually labelled datasets, reflecting human errors and biases. 

 

This study compared intact with already ruptured cases. As most non-ruptured cases 

underwent AAA repair after CTA examination, information on whether they would 

have ruptured if left untreated is lacking, limiting the inference of the results. 

Additionally, recruiting patients over the same time period led to more non-ruptured 

than ruptured cases, forcing many intact cases to be disregarded. Also, not all intact 

AAAs from 2010 – 2021 were screened, where ruptured cases were recruited, which 
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would have been necessary for a cross-sectional study. Regardless, the patient 

groups had many similarities, but hidden factors may have impacted the analysis. A 

recently reported study32 overcame the aforementioned drawbacks, but screening 

1 219 patients resulted in only 15 pairs of ruptured and non-ruptured cases, data that 

are clearly insufficient to train ML models. 

 

The CTA scan analysis required the reconstruction and estimation of the pre-rupture 

AAA geometry. Excluding cases with large rupture sites, the segmentation algorithm 

reasonably “closed” the rupture, but it might have been influenced by the user’s 

indications. As the pre-rupture anatomy is missing, the associated error remains 

unknown. In addition, large slice thickness (> 2 mm) complicated the segmentation 

and may require more manual interaction, but the results (geometric and 

biomechanical data) remain relatively unaffected by this input inconsistency. Finally, 

the study design neglects time to rupture, a possibly important parameter in the risk 

assessment. A cross-sectional evaluation and an alternative retrospective 

comparison, where all cases are intact at baseline and then followed up,33 could 

have addressed these drawbacks. 

 

Other ML classifiers, e.g., decision trees,34 K-nearest neighbours (KNN),35 random 

forests, and XGBoost,36 demonstrated strong capabilities in disorder identification. 

ML algorithms, including LogR, SVM, KNN, decision trees, and linear discriminant, 

predicted the aortic aneurysm growth rate based on geometric features. Additional 

classifiers could give further insights into AAA rupture.17 In recent years, deep 

learning and neural network (NN) models have become increasingly popular in data 

driven modelling.37 Among these, convolutional NN and recurrent NN approaches 
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have attracted interest in medical applications.38,39 As recurrent NNs aim to predict 

future events based on the patient’s history, they require a plethora of longitudinal 

data, limiting their clinical use. Yet a convolutional NN approach integrating 

multiphysical features enhanced the AAA growth prediction by analysing 54 

patients.40 Since the current study involved already ruptured cases with a wide range 

of biomechanical and geometric characteristics, large datasets41 would be necessary 

for the NN development. The data groups in this study were too small for accurate 

predictions, and NN models were not further considered. 

 

Limitations 

Despite the encouraging results, this study has several limitations. First, the 

retrospective design included already ruptured cases, representing a severe 

drawback. A cross-sectional study evaluating rupture risk in follow ups would have 

provided a more robust basis for assessing predictive performance. Second, the 

relatively small cohort limits the findings, underscoring the need for validation in 

larger datasets. More data would also allow considering additional potential risk 

factors, with genetic and proteomics being interesting inputs. Finally, the developed 

models require further testing on previously unseen data to evaluate their 

robustness. 

 

Conclusion 

This study found that a multiparameter estimate significantly enhanced purely 

diameter based decision making for AAA rupture identification. It therefore suggests 

that risk factors other than the diameter may be equally important. The predictability 
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of the proposed ML approach should be further tested in longitudinal studies to 

scrutinise the presented approach. 
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Figure 1. Reconstructed and biomechanically analysed abdominal aortic aneurysm 

cases. The image shows the colour coded von Mises stress of an intact female case 

of 55.6 mm in diameter (left) and a ruptured male case of 70.5 mm in diameter 

(right). 

 

Figure 2. Performance of geometric and biomechanical features to assess the 

potential of abdominal aortic aneurysm (AAA) rupture. The area under the receiver 

operator characteristics (ROC) curve (AUROC; given in %) quantifies the 

classification accuracy in (A) the entire group and (B) the group of AAAs below 

70 mm in diameter. True and false positive rates express the probability of correct 

and wrong classification of ruptured AAAs, respectively. DE = maximum external 

abdominal aortic aneurysm diameter; DL = maximum luminal diameter; TT = 

intraluminal thrombus thickness; VV = vessel volume; VL = lumen volume; VT = 

intraluminal thrombus volume; RRED = rupture risk equivalent diameter; PWS = 

peak wall stress; MWS = mean wall stress; PWRI = peak wall rupture risk index; 

MWRI = mean wall rupture risk index; PTS = peak intraluminal thrombus stress; 

MTS = mean intraluminal thrombus stress; PTRI = peak intraluminal thrombus 

rupture risk; MTRI = mean intraluminal thrombus rupture risk. 

 

Figure 3. Rupture probability vs. maximum external aortic abdominal aneurysm 

(AAA) diameter in the  70 mm group according to (A) logistic regression (LogR) and 

(B) calibrated linear support vector machine (SVM-Lin) models. 
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Figure 4. Performance of the classification at varying threshold levels in the  70 mm 

diameter abdominal aortic aneurysm (AAA) group: (A) diameter threshold in 

females/males; and (B) logistic regression (LogR) model. 

 

Figure 5. SHapley Additive exPlanations (SHAP) ranking of feature importance in 

the subgroup of the best trained models: (A) logistic regression (LogR) model; and 

(B) support vector machine with linear function (SVM-Lin) model. MWRI = mean wall 

rupture risk index; DE = maximum external abdominal aortic aneurysm diameter; 

RRED = rupture risk equivalent diameter; VV = vessel volume; DL = maximum 

luminal diameter; MTS = mean intraluminal thrombus stress; PWS = peak wall 

stress; MTRI = mean intraluminal thrombus rupture risk; PTRI = peak intraluminal 

thrombus rupture risk. 
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Table 1. Variables considered (“yes”) and neglected (“no”) in the classification of the entire 

group and the  70 mm maximum external abdominal aortic aneurysm diameter group. 

 

Variable Entire group  70 mm group 

Age Yes Yes 

Sex (female/male) Yes Yes 

Abdominal aortic aneurysm diameter Yes Yes 

Smoking status No No 

Maximum luminal diameter No Yes 

Lumen volume No No 

Vessel volume No Yes 

Intraluminal thrombus volume No No 

Intraluminal thrombus thickness Yes No 

Rupture risk equivalent diameter Yes Yes 

Peak wall stress No Yes 

Mean wall stress Yes No 

Peak wall rupture risk index No No 

Mean wall rupture risk index No Yes 

Peak intraluminal thrombus stress No No 

Mean intraluminal thrombus stress Yes Yes 

Peak intraluminal thrombus rupture risk Yes Yes 

Mean intraluminal thrombus rupture risk Yes Yes 
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Table 2. Features representing the analysed ruptured and intact aortic abdominal aneurysms 

(AAAs) in the entire group and the corresponding statistical differences. 

 

Feature Ruptured AAA (n 

= 108) 

Intact AAA (n 

= 200) 

p value * 

Sex, female 20.56 21.50 .90 

Age – y 76.70 ± 9.6 73.99 ± 8.3 .008 

Smoking status   .25 

Smoker 32 1  

Non-smoker 42 95  

Maximum AAA external diameter – mm 86.37 ± 20.8 56.58 ±7.5 <.001 

Maximum luminal diameter – mm 62.44 ± 19.2 40.19 ± 8.7 <.001 

Maximum ILT thickness – mm 25.54 ± 15.6 17.82 ± 9.1 <.001 

Vessel volume – mL 405.57 ± 232 158.50 ± 57.4 <.001 

Lumen volume –mL 201.91 ± 158.5 75.23 ± 33.5 <.001 

ILT volume – mL 167.45 ± 135.7 60.92 ± 41.1 <.001 

Peak wall stress – kPa 312.02 ± 100.1 202.55 ± 46.6 <.001 

Mean wall stress – kPa 147.16 ± 45.4 105.77 ± 20.1 <.001 

Peak wall rupture risk index 1.04 ± 0.6 0.42 ± 0.1 <.001 

Rupture risk equivalent diameter – mm 99.79 ± 45.4 49.43 ± 12.3 <.001 

Mean wall rupture risk index 0.50 ± 0.3 0.22 ± 0.1 <.001 

Peak ILT stress – kPa 41.01 ± 28.6 26.67 ± 15.3 <.001 

Mean ILT stress – kPa 8.75 ± 2.3 7.05 ± 1.2 <.001 

Peak ILT rupture risk 0.70 ± 0.5 0.44 ± 0.2 <.001 

Mean ILT rupture risk 0.17 ± 0.1 0.11 ± 0.0 <.001 

Data are presented as % or mean ± standard deviation. AAA = abdominal aortic aneurysm, ILT = intraluminal 

thrombus. 

* Non-parametric Mann–Whitney U test. 
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Table 3. Features representing the analysed ruptured and intact aortic abdominal aneurysms 

(AAAs) in the group of cases below 70 mm in maximum diameter and corresponding statistical 

analysis. 

 

Feature Ruptured AAA (n = 

25) 

Intact AAA (n = 

192) 

p 

value 

Sex, female 32 22.40 .44* 

Age – y 74.92 ± 8.4 73.77 ± 8.2 .50* 

Smoking status   .26* 

Smoker 32 1  

Non-smoker 40 95  

Maximum AAA external diameter – 

mm 

63.51 ± 4.8 55.75 ± 6.2 <.001* 

Maximum luminal diameter – mm 48.38 ± 10.8 39.67 ± 8.2 <.001† 

Maximum ILT thickness – mm 14.84 ± 9.5 17.23 ± 8.7 .23* 

Vessel volume – mL 178.61 ± 46.7 153.08 ± 47 .015* 

Lumen volume – mL 98.14 ± 46.7 73.65 ± 31.9 .014* 

ILT volume – mL 57.22 ± 42.1 57.58 ± 36.5 .81* 

Peak wall stress –kPa 246.10 ± 63.5 200.32 ± 45.7 <.001* 

Mean wall stress – kPa 120.95 ± 28.1 105.17 ± 20.1 .011† 

Peak wall rupture risk index 0.65 ± 0.2 0.41 ± 0.1 <.001* 

Rupture risk equivalent diameter – mm 69.17 ± 18.5 48.76 ± 11.8 <.001* 

Mean wall risk rupture index 0.33 ± 0.1 0.22 ± 0.1 <.001* 

Peak ILT stress – kPa 37.10 ± 40.9 26.30 ± 15.2 .066* 

Mean ILT stress – kPa 8.80 ± 4.0 7.02 ± 1.2 <.001* 

Peak ILT rupture risk 0.61 ± 0.7 0.43 ± 0.2 .043* 

Mean ILT rupture risk 0.14 ± 0.1 0.11 ± 0.0 .002* 

Data are presented as % or mean ± standard deviation. AAA = abdominal aortic aneurysm; ILT = 

intraluminal thrombus. 

* Non-parametric Mann–Whitney U test (non-normal data). 

† Student’s t test (normal data). 
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Table 4. Performance of machine learning (ML) models and diameter thresholds to classify 

ruptured and intact abdominal aortic aneurysms (AAAs). ML models were trained either using 

the entire group or the group of cases with external diameter  70 mm, while performance data 

were acquired from the  70 mm AAA diameter group that had not been used to train the 

respective model. 

 

Performance Results from validation on the  70 mm group 

LogR SVM-Lin SVM-Nlin GNB 55/50 mm DE 

Accuracy      

Entire group 90.2 89.8 87.7 86.4  

 70 mm group 82.5 83.6 65.9 84.7 44.2 

Specificity      

Entire group 96.1 95.8 94.9 93.4  

 70 mm group 83.9 85.2 68.7 90 37.7 

Sensitivity      

Entire group 38.9 40.3 26.2 28.5  

 70 mm group 70.9 70.3 64.3 41.4 96.7 

AUROC      

Entire group 83.9 84.3 83.1 74.1  

 70 mm group 83.6 84.2 87.3 81.3 67.2 

Data are presented as %. LogR = logistic regression model; SVM-Lin = support vector machine model 

with linear kernel; SVM-Nlin = support vector machine model with non-linear kernel; GBN = Gaussian 

Naïve Bayes model; 55/50 mm DE = maximum external abdominal aortic aneurysm diameter 

threshold criterion of 55 mm in men and 50 mm in women; AUROC = area under the receiver 

operating characteristic curve. 
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