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Highlights

• Propose LLM-VaR and LLM-ES: the first zero-shot, prompt-based esti-
mators for financial Value at Risk and Expected Shortfall using general-
purpose LLMs.

• Deliver the first empirical benchmark of GPT-3.5, GPT-4, and GPT-4o
for direct tail risk estimation from raw financial time series.

• Pioneer quantile-based financial risk forecasting using general-purpose
language models, without retraining or fine-tuning.

• Discover that GPT-3.5 can surpass newer LLMs in tail risk prediction
for cryptocurrencies markets.

• Show that LLM-based risk estimators are effective for short-term fore-
casting, while traditional econometric models remain superior for long
horizons.
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Abstract
This study introduces LLM-VaR and LLM-ES, novel risk estimation

metrics that utilize general-purpose large language models (LLMs) for the
forecasting tasks of Value at Risk (VaR) and Expected Shortfall (ES) in a
zero-shot setting. Building on the input encoding mechanism of the LLM-
Time framework, we extend its application by defining new financial risk
measures and performing an empirical evaluation of three generations of GPT
models, GPT-3.5, GPT-4 and GPT-4o, versus advanced benchmark models
such as GARCH with Student innovations and EWMA with Dynamic Con-
ditional Score (DCS).

Financial time series are encoded as numerical strings, allowing for model-
free inference without requiring retraining. Results show that LLMs perform
well when short rolling windows are used, particularly in volatile markets
like cryptocurrencies. GPT-3.5 frequently outperforms or matches the per-
formance of newer models, raising questions about model complexity, align-
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ment, and biases. In contrast, performance deteriorates with longer windows,
where the econometric models prove more reliable. Our findings demonstrate
the potential of general-purpose LLMs as adaptive tools for short-horizon fi-
nancial risk assessment and contribute a first-of-its-kind benchmark for LLM-
based VaR/ES estimation.

Keywords: Value at Risk, Expected Shortfall, GPT, LLM-VaR, LLM-ES,
Large Language Models

1. Introduction

Value at Risk (VaR) and Expected Shortfall (ES) are cornerstone met-
rics in financial risk management, offering quantitative estimates of potential
portfolio losses under adverse market conditions. Although VaR provides a
threshold-based loss estimate at a given confidence level, ES captures the
average loss beyond that threshold, delivering a more comprehensive view
of tail risk. Traditional methods for estimating VaR and ES—such as para-
metric models, GARCH frameworks, historical simulations, or Monte Carlo
simulations—often suffer from rigid assumptions, limited adaptability, and
high computational demands, particularly in dynamic market environments.

Recent advances in artificial intelligence, particularly in large language
models (LLMs) based on Transformer architectures, have significantly ex-
panded our ability to model sequential data. General-purpose LLMs, such
as GPT-3.5 and GPT-4, have demonstrated strong performance across do-
mains, from forecasting and anomaly detection to decision support. Their
zero-shot and few-shot capabilities allow them to generalize to new tasks
with minimal supervision, making them attractive for real-time financial ap-
plications where adaptability is crucial (OpenAI, 2023).

Despite their growing adoption, the use of general-purpose LLMs for
structured, numerically grounded tasks, such as financial risk estimation,
remains underexplored. Most existing studies focus on sentiment analysis,
language understanding, or feature extraction from unstructured data. In
contrast, traditional models still dominate VaR and ES estimation, even
though they struggle with nonstationarity and nonlinearities without exten-
sive recalibration.

This raises a timely question: Can general-purpose LLMs be reliably
adapted for real-time estimation of financial tail risk, and under what condi-
tions could they outperform or complement traditional models?
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Addressing this question is important for both researchers and practition-
ers. If LLMs can generate robust VaR and ES estimates directly from price
data, they could serve as scalable, model-free tools that require little calibra-
tion. This would improve response to regime changes and reduce dependence
on market-specific tuning. Additionally, understanding their strengths and
limitations can inform the design of hybrid architectures that integrate the
statistical reliability of traditional models with the flexibility of neural ap-
proaches.

This study investigates the feasibility of using general-purpose LLMs for
real-time financial risk estimation, introducing two novel risk metrics: LLM-
VaR and LLM-ES. These are derived from LLM outputs applied to encoded
financial time series and are tested across three generations of OpenAI’s GPT
models (3.5, 4, and 4o). We build on the LLMTime framework (Gruver et al.,
2024) for time-series encoding and model interaction and extend this frame-
work for financial risk assessment through tailored prompting, parameter
sensitivity analysis (for the temperature parameter), and robust benchmark-
ing against both standard and extended GARCH(1,1) and EWMA models.

Our empirical evaluation focuses on short-horizon, high-volatility set-
tings—such as cryptocurrencies—and assesses trade-offs in cost, scalability,
and data governance.

As financial supervisory authorities explore AI-driven solutions (see, for
example, European Central Bank, McCaul (2024)), an LLM-based VaR/ES
tool that operates without retraining could greatly improve the flexibility
and timeliness of risk reporting and early-warning mechanisms.

The structure of the paper is as follows: Section 2 reviews related work
on financial risk estimation, time-series forecasting, and LLM applications
in finance; Section 3 details our methodology, including the LLM-VaR and
LLM-ES concepts and testing framework; Section 4 presents the datasets
and empirical results; Section 5 discusses limitations and practical consider-
ations; Section 6 provides a detailed discussion of model behavior and broader
implications; and Section 7 concludes.

Data and replication code are accessible via Quantlet.com . A courselet
on this topic is available at Quantinar.com .

2. Related work

The emergence of Large Language Models (LLMs) has the potential to
significantly reshape how financial institutions assess risk, particularly with
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respect to Value at Risk (VaR) and Expected Shortfall (ES). The ability of
LLMs to process and analyze large volumes of structured and unstructured
data enables more tailored and dynamic models for financial risk manage-
ment.

Previous research has provided a diverse range of models for estimating
VaR and ES, both of which are central to modern financial risk management.
Traditional methods include historical simulation, parametric models, Monte
Carlo simulation, and the GARCH family of models. These approaches are
grounded in strong theoretical underpinnings but often rely on assumptions,
such as normality, stationarity, or specific volatility structures, that may not
hold in volatile or rapidly shifting market regimes. Moreover, they typically
require substantial computational effort for calibration and do not generalize
well to new asset classes or structural breaks.

In response to these limitations, a growing body of work has explored the
use of machine learning to improve tail-risk estimation. For example, Qiu
et al. (2024) proposed stateful recurrent neural networks that outperform
conventional models in one-day VaR and ES prediction, while Wang et al.
(2024a) introduced a hybrid deep learning framework combining quantile
regression with Mogrifier RNNs and GANs to better simulate and forecast
extreme losses. Further, Fatouros et al. (2023) introduced the DeepVaR
architecture, a probabilistic deep neural network that improves estimation
accuracy for high quantiles of return distributions.

Transformer-based models have further advanced the field of time series
modeling. Architectures such as Informer, Autoformer, and Fedformer use
attention mechanisms to effectively capture long-term dependencies (Zhou
et al., 2022). These serve as the foundation for models like TimesFM and
Salesforce’s Moirai, which are pretrained on billions of time steps and ap-
plied to financial forecasting in a zero-shot or fine-tuned manner (Nie et al.,
2024). Foundation models have recently been applied to financial time se-
ries forecasting tasks, demonstrating strong performance in volatility and
tail risk estimation. For example, Goel et al. (2025a) introduced a time-
series foundation model for VaR forecasting, comparing Google’s TimesFM
model—both in zero-shot and fine-tuned variants—to traditional methods
such as GARCH and Generalized Autoregressive Score (GAS). Using 19
years of S&P 100 returns and over 8.5 years of out-of-sample backtesting,
they found that fine-tuning significantly improved performance across mul-
tiple quantiles (0.01 to 0.1), often outperforming conventional econometric
models in actual-over-expected ratios and quantile score loss. In a related
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study, Goel et al. (2025b) demonstrated that the same model architecture,
when fine-tuned for realized volatility, also exceeded the forecasting accuracy
of classical volatility models. These findings underscore the adaptability of
foundation models for both central and tail-risk forecasting, though they still
require task-specific tuning to perform optimally.

The recent literature further suggests that LLMs can enhance the statis-
tical approaches traditionally employed in financial analysis. For instance,
Trachova and Lysak (2025) emphasize the role of LLMs in combining nar-
rative and quantitative data, allowing for improved risk and fraud detection
in financial reporting. This integration is crucial for deriving accurate esti-
mates of VaR, as traditional methods often rely heavily on historical data
alone, which can lead to underestimations during volatile market conditions.
Similarly, Li et al. (2025) highlight that LLMs can navigate financial doc-
uments to uncover insights that directly impact risk assessments, helping
firms to calculate VaR more effectively while understanding the driving fac-
tors behind these risks. LLMs can also analyze sentiment and contextual
information from financial news and reports, further informing risk evalu-
ations and enabling deeper integration with existing financial systems (Li
et al., 2025).

Advancements in LLM technology have extended their application to
market forecasting and risk assessment. Liu (2025) identifies how Finan-
cial Language Models (FinLLMs) are applied to sentiment analysis and risk
assessments, underscoring their utility in recognizing market patterns that in-
form VaR and ES calculations. By leveraging deep learning techniques and
domain-specific fine-tuning, practitioners can create models that adapt to
evolving market conditions and derive more accurate risk measures. In prac-
tical applications, LLMs have been shown to outperform traditional models
in market analysis tasks, enabling financial analysts to develop more resilient
risk mitigation strategies and explore dynamic risk limits beyond the static
models typically used for VaR and ES (Lee, 2025; Lagasio et al., 2025).

Recent work has also introduced hybrid and multimodal risk modeling
pipelines that combine structured financial data with unstructured sources
such as audio and text. For example, RiskLabs (Cao et al., 2025) proposes
a comprehensive framework that leverages large language models to predict
financial risk by fusing data from earnings conference calls, time series, and
contextual news. In a parallel development, FinTral (Bhatia et al., 2024)
introduces a suite of multimodal LLMs built on the Mistral-7B backbone,
supporting reasoning over textual, tabular, numerical, and image data si-
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multaneously.
Frameworks such as LLMTime (Gruver et al., 2024) have demonstrated

how general-purpose LLMs can be prompted with tokenized time series data
for forecasting tasks, although most applications so far rely on either (i)
fine-tuning on financial data, or (ii) augmenting models with domain-specific
inputs.

Despite the rapid progress, little is known about the capability of general-
purpose LLMs to forecast financial risk metrics such as VaR and ES in a
zero-shot setting, using only structured historical data encoded as language.
To our knowledge, no prior work evaluates LLMs’ raw ability to forecast risk
measures without retraining or additional financial supervision. Our study
fills this gap by benchmarking LLM-generated VaR and ES forecasts - pro-
duced via prompt interaction only - against standard and extended GARCH
and EWMA baselines, across multiple model generations and market condi-
tions.

3. Methodology

In this study, we employ three generations of general-purpose GPT mod-
els (3.5, 4, and 4o) 1 within the LLMTime framework to estimate VaR and
ES through a zero-shot forecasting approach, which requires no task-specific
retraining. This approach builds on the broad pre-training of GPT models
to facilitate adaptability and responsiveness to real-time market conditions,
making it well-suited for dynamic financial environments.

Our methodology encodes financial asset log-returns as sequential inputs
for the LLMs, leveraging the models’ extensive cross-domain knowledge.
Here, we adapt LLMs for financial risk assessment by encoding numerical
returns as string tokens, enabling the model to process financial data in a
manner similar to natural language. Each LLM generates a probability distri-
bution for future returns informed by historical data. From this distribution,
we derive VaR as the α-quantile and ES as the conditional expectation of
log-returns, given an exceedance beyond the VaR threshold. This process
supports the models’ flexibility in risk prediction, providing scalability and
eliminating the need for recalibration, thereby enabling real-time updates in
risk estimation.

1In OpenAI terminology: gpt-3.5-turbo-instruct, gpt-4-turbo, gpt-4o, see
https://platform.openai.com/docs/models.
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Figure 1: LLM VaR and ES prediction and evaluation system

To evaluate the effectiveness of these LLM-based risk measures, we ap-
ply established backtesting procedures, including the Kupiec Proportion of
Failures (POF) test, the Traffic Light test, and Christoffersen’s Conditional
Coverage test for VaR. For ES backtesting, we used the Z2 and Z3 tests
from Acerbi and Székely (2014). These allow comprehensive validation of
both exceedance frequency and independence. Traditional models, such as
GARCH and historical simulation, serve as benchmarks, allowing us to assess
whether general-purpose LLMs within the LLMTime framework can produce
comparable or superior risk estimates in terms of accuracy, reliability, and
computational efficiency.

Figure 1 illustrates the system architecture for LLM-based VaR and ES
prediction and evaluation.

3.1. LLM Architecture
Given a sequence of financial returns {r1, r2, . . . , rn}, each return is trans-

formed into a string and preprocessed according to LLMTime (e.g., “0.598”
→ "59", “-0.209” → "-21") to be compatible with natural language processing
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architectures. Each stringified return is then decomposed into tokens2—the
smallest unit of data that the language model processes—and mapped to a
continuous vector space via an embedding matrix E, producing embeddings
ei for each token at time i. The LLM processes these embeddings while
maintaining temporal structure using positional encodings, leading to initial
token representations z0

i = ei + pi
3 (Ahmed et al., 2023).

Dependencies across time points are captured using attention mechanisms
within Transformer blocks, each consisting of a multi-head self-attention layer
and a feed-forward neural network. In each Transformer block, the self-
attention mechanism enables the model to assign weights to different tokens
by calculating attention scores for each pair of tokens. Specifically, each
token in the sequence is associated with query, key, and value vectors. The
attention weights for tokens i and j are calculated as:

αij = exp
(

q⊤
i kj√
dk

)/
n∑

j′=1
exp

(
q⊤

i kj′√
dk

)
, (1)

where dk is the dimension of the key vector. The output at each position i
is derived by weighting the value vectors from all positions in the sequence:
hi = ∑n

j=1 αijvj. After passing through multiple Transformer blocks, the
model generates final hidden representations, which are then used to predict
the next token.

The LLM models the conditional distribution of the next token given
past observations as P(rt | rt−n, . . . , rt−1), enabling the estimation of risk
measures.

This approach supports flexible, adaptive financial risk modeling, where
the LLM predicts the expected return r̂t based on the conditional expectation
given past tokens (representing past returns): r̂t = E[rt | rt−n, . . . , rt−1].

For chat models (GPT-4 and GPT-4o), we have adopted the prompt
suggested by Gruver et al. (2024). We have chosen the Instruct version
of GPT-3.5, also employed by the LLMTime authors on their Github page
(Gruver, 2025).

2Usually one token per number, as GPT-3.5 and onwards include separate tokens for
all numbers from 0 to 999.

3GPT-4 and GPT-4o do not disclose their architectural choices, therefore, the imple-
mentation of positional embeddings may differ.
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3.2. LLM-Based Risk Measures
Consider a financial asset or portfolio with log-returns denoted by rt =

log Pt − log Pt−1 at time t, where Pt represents the closing price of the asset.
The VaR (VaRα

t ) at confidence level α, for a one-period horizon, conditional
on information available at t − 1, is defined as the maximum expected loss
not exceeded with probability α. Formally:

P(rt ≤ VaRα
t ) = α ⇔ VaRα

t = −F−1
t−1(α), (2)

where Ft−1 represents the cumulative distribution function of log-returns,
conditional on information at t − 1.

ES (ESα
t ), or Conditional Value at Risk (CVaR), quantifies the average

loss conditional on returns falling below the VaRα
t threshold, thereby captur-

ing tail risk beyond the VaR limit. It is expressed as:

ESα
t = −E[rt | rt ≤ VaRα

t ] = 1
α

∫ α

0
VaRγ

t dγ. (3)

3.2.1. LLM-VaR and LLM-ES
Within the context of LLM forecasting, we define LLM-VaR and LLM-ES

for a given model M as follows: VaRα;M
t and ESα;M

t represent the model’s
estimate of VaR and ES, respectively:

VaRα;M
t = −F̂M ;−1

t (α), ESα;M
t = 1

α

∫ α

0
VaRγ;M

t dγ, (4)

where YM
t = {r̂i;M

t }n
i=1 represents the set of forecast returns generated by

LLM M , and F̂M
t denotes the empirical cumulative distribution function

derived from these forecast returns, YM
t .

Forecast returns are generated as YM
t = fM(Xt−1; ΘM), where Xt−1 in-

cludes relevant input features (e.g., historical returns) up to time t − 1, ΘM

signifies the model parameters, and fM is the predictive function of the LLM.
As noted in Gruver et al. (2024), LLMs adapt to time series applications by
encoding numerical data as sequences of strings, thus leveraging the model’s
linguistic architecture for structured, predictive outputs.

This approach offers a novel methodology for risk estimation, as the flexi-
bility inherent in LLMs enables adaptation to various financial contexts with-
out requiring task-specific retraining, thereby providing a scalable solution
for dynamic risk management applications.
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3.2.2. Estimation Algorithm
We utilize GPT-3.5 Turbo, GPT-4, and GPT-4o to estimate VaR and ES.

This is accomplished through a rolling window approach with window length
w, using historical log-returns as inputs. At each time step t, we apply a
rolling window of past returns Xt−1 = {rt−1, rt−2, . . . , rt−w} as input for the
LLM M . The model generates a series of samples representing potential real-
izations of the next log-return r̂M

t , which are used to construct the empirical
cumulative distribution function F̂M

t . VaR and ES estimates for time t are
derived from this empirical distribution.

Each model is configured with hyperparameters ΘM = {τ = 0.7, αLLM =
0.95, βLLM = 0.35, π = 2}, as outlined by Gruver et al. (2024). These hyper-
parameters are critical in fine-tuning the models for optimal performance:

• τ (temperature) controls the randomness in model outputs; higher val-
ues increase variability in predictions, which can enhance exploration.
We run an extensive analysis to assess its impact in Section 4.3.

• αLLM and βLLM calibrate the model’s sensitivity to numerical inputs,
ensuring it effectively manages both large and small values.

• π determines the granularity of tokenizing numerical data, refining the
precision with which log-returns are encoded. Somewhat counterin-
tuitively, a small value (2 or 3) is preferred because of the trade-off
between numerical precision (which can induce noise) and general sig-
nal characteristics; see Bianchi et al. (2025) for a possible explanation.
This trend is further reflected in recent advances in large language
model training, where reduced numerical precision—such as 4-bit or 8-
bit quantization—has been successfully employed to balance efficiency
and signal integrity (see, e.g., (DeepSeek-AI et al., 2025)).

Gruver et al. (2024) recommends adding a space between the return digits
for GPT-3, which uses a different tokenizer than GPT-3.5, 4, and 4o (Ope-
nAI, 2025c). We noticed in our experiments that "gluing" the digits of each
return, that is, setting bit_sep = ”, is a suitable approach.

This set of hyperparameters is selected to balance predictive accuracy
and computational efficiency, thus optimizing the estimation of VaR and ES
within the LLM framework.
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INPUT:
Time series of log-returns {rt}T

t=1;
Window length=w;

LLM M with parameters ΘM .

At each time step t:
Use past log-returns

Xt−1 = {rt−1, . . . , rt−w}
as input, encoded as numerical strings.

LLM M generates n samples
of the next log-return r̂M

t :
YM

t = {r̂i;M
t }n

i=1 = fM(Xt−1, ΘM).

Estimate F̂M
t from YM

t .

OUTPUT:
VaR and ES for time t:

VaRα;M
t and ESα;M

t .

Figure 2: Rolling window approach for LLM-based risk measures.

3.3. Benchmark Models for Risk Estimation
To rigorously evaluate the effectiveness of our proposed LLM-based meth-

ods for VaR and Expected ES, we benchmark them against two advanced
versions of widely used models in financial risk estimation: the GARCH(1,1)
model and the Exponentially Weighted Moving Average (EWMA) model.
Our aim is to make the benchmarks as robust as possible, thereby subject-
ing the LLM-based methods to a stringent test. To this end, we extend
beyond standard, or "vanilla" implementations of GARCH and EWMA, in-
corporating enhancements that adapt these models to handle complex market

12

                  



dynamics more effectively. The GARCH(1,1) model (Bollerslev, 1986) effec-
tively captures volatility clustering in financial returns, with high-volatility
periods tending to follow one another. The model updates volatility dynam-
ically based on past returns and volatility. We further enhance GARCH by
using a Local Parametric Approach (LPA) (Spokoiny, 1998) for detecting
and adjusting to structural market shifts (Spilak and Härdle, 2022).

For the EWMA model, we incorporate the Dynamic Conditional Score
(DCS) framework (Creal et al., 2013), also called the Generalized Autore-
gressive Score (GAS) framework. This enhanced EWMA model dynamically
adjusts volatility based on market conditions and accounts for heavy tails
under a Student’s t-distribution. The DCS framework is similarly applied to
GARCH, allowing it to better capture sudden changes in market dynamics.
Additional details on these benchmarks are provided in Appendix A.

These robust benchmark models are designed to offer a high-performance
baseline against which we compare the LLM-based approaches. By fortify-
ing these traditional models, we aim to create the most challenging possi-
ble conditions, testing whether LLMs can provide additional flexibility and
adaptability in capturing dynamic risk factors in financial markets.

For the benchmark models, we compute VaR and ES based on the condi-
tional distribution of returns as follows (we used the formulation in McNeil
et al. (2005) for ES):

VaRα
t = −σ̂tqα, (5)

and

ESα
t =





σ̂t

α
ϕ(Φ−1(1 − α)), Zt ∼ N

σ̂t

α
(gν(t−1

ν (1 − α))) ν+(t−1
ν (1−α))2

ν−1 , Zt ∼ tν

, (6)

where Zt is defined in Appendix A, ϕ, Φ−1 are the probability density func-
tion (PDF) and inverse cumulative distribution function (CDF) of the stan-
dard Normal distribution, tν , gν the PDF and inverse CDF of a standard
Student distribution with ν degrees of freedom, and σ̂t the predicted volatil-
ity.

3.4. Backtesting VaR
Backtesting is a crucial tool for assessing the accuracy and robustness

of VaR models in risk management. This section outlines three widely rec-
ognized backtesting methods: the Kupiec Test, the Traffic Light Approach,
and Christoffersen’s Conditional Coverage (CC) test, each providing distinct
insights into model performance and reliability.
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The Kupiec Test (Kupiec, 1995), also known as the Proportion of
Failures (POF) test, examines whether the observed frequency of VaR
breaches (exceedances) is consistent with the expected probability of ex-
ceedance, α, specified by the model’s confidence level. Let p denote the true
probability of a VaR exceedance in the population. The null hypothesis,
H0 : p = α, is tested using the POF likelihood ratio statistic:

LRPOF = −2 log





(1 − α)N−xαx

(
1 − x

N

)N−x (
x
N

)x





, (7)

where x represents the number of observed exceedances, N is the total sample
size, and α is the model’s confidence level. If LRPOF exceeds the critical value,
the VaR model may be deemed inadequately calibrated. For scenarios with
zero exceedances (x = 0), the POF test simplifies to:

LRPOF = −2 log
{
(1 − α)N

}
, (8)

enabling an assessment of whether a lack of failures aligns with the expected
exceedance rate, α ·N . A well-calibrated model should exhibit an exceedance
rate close to the targeted confidence level.

The Traffic Light Approach (Basel Committee on Banking Supervi-
sion, 1996) classifies VaR performance into three distinct zones: Green (ac-
ceptable performance), Yellow (potential issues), and Red (unacceptable).
The exceedance indicator XVaR

t (α) for a one-period-ahead VaR estimate is
defined as:

XVaR
t (α) = 1{rt≤− VaRα

t }, (9)
where 1 denotes the indicator function. For a sufficiently large sample size
N , the cumulative exceedance count XVaR

N (α) approximates a normal distri-
bution:

XVaR
N (α) ∼ N (Nα, Nα(1 − α)). (10)

The standard normal transform z is used to determine the traffic light zone:
Green if Φ(z) < 0.95, Yellow if 0.95 ≤ Φ(z) < 0.9999, and Red if Φ(z) ≥
0.9999, where Φ is the cumulative distribution function (CDF) of the stan-
dard Normal distribution(Alexander and Dakos, 2023).

Christoffersen’s Conditional Coverage (CC) Test (Christoffersen,
1998) extends the POF test by examining both the frequency and indepen-
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dence of VaR exceedances. The test evaluates whether exceedances are in-
dependently distributed over time, thus capturing any clustering of failures.
The likelihood ratio for the independence test is given by:

LRCCI = −2 log
(

(1 − π)n00+n10πn01+n11

(1 − π0)n00πn01
0 (1 − π1)n10πn11

1

)
, (11)

where nij represents the count of transitions between periods of failure and
non-failure (e.g. i = 1, j = 0 represents the transition from a failure to a
non-failure state), with π0, π1, and π denoting the transition probabilities.
The combined Conditional Coverage test statistic is defined as:

LRCC = LRPOF + LRCCI, LRCC ∼ χ2(2). (12)

For cases where zero exceedances are observed (x = 0), the CC test reduces
to the POF test, setting LRCCI = 0.

3.5. Backtesting ES
We apply two robust ES backtesting methods from Acerbi and Székely

(2014)4.
Z2 Test for ES, widely applied in the studies such as Lazar and Zhang

(2019) and Clift et al. (2016), evaluates both the frequency and severity of
ES breaches. This dual evaluation helps capture scenarios where VaR may
not sufficiently reflect the extreme losses in the distribution tail. The Z2
statistic, formulated based on the unconditional ES definition, is calculated
as:

Z2 =
T∑

t=1

Itrt

Tα ESα
t

+ 1, (13)

where It = 1{rt≤− VaRβ
t }, with α = 0.025 and β = 0.01 for testing 2.5% ES.

Under the null hypothesis H0, which assumes unbiased ES estimates, Z2 has

4We explored tests requiring correctly specified VaR for the null hypothesis, including
the generalized traffic light approach by Costanzino and Curran (2018) and the comprehen-
sive coverage test by Costanzino and Curran (2015). However, uncalibrated VaR (as ob-
served in certain GPT-4 experiments) yielded misleadingly favorable p-values. Therefore,
our selection emphasizes tests that enhance result robustness without this assumption.

15

                  



an expected value of zero, formally:

H0 : P
[α]
t = F

[α]
t , ∀t,

H1 : ESα,F
t ≥ ESα

t for all t and strictly greater for some t,

VaRβ,F
t ≥ VaRβ

t for all t.

(14)

In (14), Pt represents the estimated conditional distribution, while Ft is the
true conditional distribution. The function P

[α]
t = min(1, Pt(x)/α) denotes

the tail of Pt, populated only by exceedances. Suffix F denotes the true
values derived from Ft.

Deviations of Z2 below zero, particularly with Z2 < Z∗
2 = −0.7 (the 5%

critical threshold, stable across tests), indicate consistent overestimation of
tail risk, prompting rejection of H0. Following Clift et al. (2016), we use a
simulation of size M = 20, 000 to obtain p-values.

Z3 Test for ES complements the analysis, focusing on the ranks Ut =
Ft(rt), which ideally follow an i.i.d. U(0, 1) distribution. The vector U =
{Ut} is used to re-estimate ES across previous days, and the average is com-
pared with an i.i.d. uniform average:

Z3 = − 1
T

T∑

t=1

ÊS(T )
α (P −1

t (U))

EV

[
ÊS(T )

α (P −1
t (V ))

] + 1, (15)

where V is a vector of T i.i.d. U(0, 1), and ÊS(T )
α denotes the empirical5 ES,

based on a vector of N i.i.d draws Y⃗ = {Yi}:

ÊS(T )
α (Y ) = − 1

⌊Tα⌋
⌊T α⌋∑

i=1
Yi:T . (16)

The denominator is approximated as:

− T

⌊Tα⌋
∫ 1

0
I1−p(T − ⌊Tα⌋, ⌊Tα⌋)P −1

t (p) dp, (17)

where I1−x(a, b) is the regularized incomplete Beta function. We employ

5⌊x⌋ is the integer part of x and Yi:N denotes order statistics.
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Simpson’s rule with 1,000 intervals to approximate this integral.
Each day’s contribution ideally equals 1; thus, for Z3, we expect EH0 [Z3] =

0 and EH1 [Z3] < 0.
Because this test does not rely on estimated VaR and ES, its assumptions

pertain to the full distribution:

H0 : Pt = Ft, ∀t,

H1 : Pt ⪰ Ft, for all t and strictly Pt ≻ Ft for some t.
(18)

As the Z3 test is computationally intensive, we conducted fewer simulations,
yielding consistent results. This study utilizes 1,000 simulations. For LLMs,
we apply Kernel Density Estimation with a Gaussian kernel and automatic
bandwidth selection on each day’s predicted log-return distribution.

4. Data and Empirical Results

4.1. Data
This study analyzes data spanning from October 1, 2021, to March 13,

2024, a period specifically chosen to ensure the data falls outside the GPT-3.5
Turbo model’s training cutoff (September 2021, OpenAI (2024)). By starting
the dataset on October 1, 2021, we ensure that the analysis incorporates
unseen data not part of the LLM’s pre-trained knowledge.

Our dataset includes daily log-returns for nine different indices, cover-
ing diverse fields such as cryptocurrencies, stocks, clean energy, bonds, and
commodities (see Table 1). The CRIX index, representing cryptocurrencies,
exhibits a significantly higher number of daily log-returns compared to other
assets, due to the continuous 24/7 nature of cryptocurrency trading, unlike
traditional markets that observe fixed trading hours and holidays.
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Table 1: Assets used for analysis.

Nr. Symbol Name Source # daily
log-returns

1 CRIX Cryptocurrency Index Royalton 895
2 S&P 500 Standard and Poor’s 500 Refinitiv 614
3 SPGTCLTR S&P Global Clean Energy Index Refinitiv 638
4 STOXX STOXX Europe 600 Index Refinitiv 630
5 CACT CAC All-Tradable Refinitiv 629
6 GDAXI Deutsche Boerse DAX Index Refinitiv 627
7 CBU0.L iShares $ Treasury Bd 7-10y ETF

USD
Refinitiv 616

8 FTSE100 Financial Times Stock Exchange
100 Index

Refinitiv 616

9 DJCI Dow Jones Commodity Index Refinitiv 614

For each asset, the LLM-based forecasting approach described in Section
3.2.2 was implemented using a rolling-window methodology. The window
length w varied from 30 to 150 days, specifically w ∈ {30, 45, 60, 90, 120, 150}.
At each time point t, we simulated n = 210 = 1024 values for the next day’s
log-return, represented as YM

t = {r̂i;M
t }n

i=1 = fM(Xt−1, ΘM), based on past
log-returns Xt−1 = {rt−1, rt−2, . . . , rt−w} encoded as numerical strings.

The choice of n = 1024 simulations is based on two key factors: the API
limit on completions (128 per request, as set by OpenAI) and the need for
a substantial sample size to estimate the empirical cumulative distribution
function (ECDF) of forecast log-returns. To achieve this, we generated 128×8
values per time step, providing sufficient data for robust statistical analysis

.
For benchmarks, we evaluate GARCH models under both normal and

Student’s t-distributions across 120- and 250-day horizons, specifically in-
cluding GARCH Normal, GARCH DCS Normal, and GARCH DCS Student
variants, as well as GARCH LPA without a fixed time horizon. EWMA
benchmarks are conducted using normal and Student’s t-distributions across
80- and 120-day horizons, specifically EWMA Normal, EWMA DCS Normal,
and EWMA DCS Student .

All experiments have been performed on a server with 2 Intel(R) Xeon(R)
Gold 6342 2.80GHz CPUs and 256 GM RAM.
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4.2. Backtesting Results
In this section, we present the backtesting results for the 1% VaR and the

2.5% ES, as recommended by the Basel Committee on Banking Supervision
(BCBS) (Basel Committee on Banking Supervision, 1996). The main results
are presented here, while the remaining tables and charts can be found in
Appendix B and Appendix C.

4.2.1. VaR Backtesting Results
This section evaluates the performance of LLM models compared to clas-

sical approaches such as GARCH and EWMA in predicting 1% VaR across
multiple assets. The aim is to assess whether LLM models offer competitive
performance in capturing risk across diverse markets.

Table 2: Percentage of failures (POF) for 1% VaR (%).

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 1.015 1.042 1.536 0.935 1.024 0.871 1.014 0.500 1.019
GPT-3.5.45 0.521 0.357 0.525 0.713 0.175 0.000 0.520 0.342 0.523
GPT-3.5.60 0.178 0.183 0.540 0.363 0.180 0.000 0.000 0.351 0.000
GPT-3.5.90 0.000 0.000 0.380 0.126 0.000 0.000 0.000 0.000 0.000
GPT-3.5.120 0.000 0.000 0.202 0.131 0.000 0.000 0.000 0.000 0.000
GPT-3.5.150 0.000 0.000 0.215 0.000 0.000 0.000 0.000 0.000 0.000

GPT-4.30 8.968 6.771 10.381 9.229 7.785 8.362 8.953 9.167 8.319
GPT-4.45 7.812 8.734 9.059 6.778 8.171 7.692 7.106 7.350 6.969
GPT-4.60 6.952 7.509 7.664 7.748 7.664 8.456 8.007 8.070 7.692
GPT-4.90 7.533 10.078 8.687 8.920 8.494 6.809 8.083 6.852 7.940
GPT-4.120 8.982 10.288 10.656 10.183 7.787 5.992 8.367 8.039 7.615
GPT-4.150 8.917 10.088 10.917 9.239 7.642 6.388 8.051 7.083 7.249

GPT-4o.30 6.768 6.424 8.478 6.893 5.709 5.401 7.095 6.500 6.282
GPT-4o.45 8.333 8.021 10.835 7.015 7.282 7.692 9.012 7.521 8.014
GPT-4o.60 8.734 8.608 10.766 7.869 7.299 8.272 9.431 7.719 8.766
GPT-4o.90 8.286 10.271 9.459 8.291 8.687 7.393 9.586 7.963 8.696
GPT-4o.120 7.784 8.848 10.861 9.008 6.557 7.231 8.964 7.843 7.415
GPT-4o.150 8.280 8.333 10.480 9.783 7.205 5.507 8.263 7.292 7.463

GARCH.LPA 1.289 1.705 2.075 1.453 0.566 0.947 1.287 1.268 1.664
EWMA.N.80 1.636 2.056 2.048 2.570 1.304 1.121 1.815 1.610 1.825
EWMA.N.120 0.980 1.818 1.811 2.570 1.610 1.616 1.370 1.541 1.575
EWMA.DCS.N.80 0.909 0.374 0.559 0.670 0.559 0.187 0.907 0.894 0.547
EWMA.DCS.N.120 0.784 0.606 0.402 0.670 0.604 0.202 0.783 0.963 0.591
EWMA.DCS.T.80 0.182 0.187 0.559 0.670 0.000 0.000 0.181 0.000 0.000
EWMA.DCS.T.120 0.000 0.000 0.402 0.670 0.000 0.000 0.000 0.000 0.000
GARCH.N.120 0.784 1.414 1.610 2.346 1.408 1.818 0.978 1.734 0.787
GARCH.N.250 1.053 0.000 1.090 1.899 0.272 0.000 1.050 0.771 1.058
GARCH.DCS.N.120 0.784 1.616 1.006 2.346 1.207 1.212 0.978 1.734 0.787
GARCH.DCS.N.250 1.053 0.000 1.090 1.788 0.272 0.000 1.050 0.771 1.058
GARCH.DCS.T.120 0.588 0.000 0.604 1.229 0.402 0.000 0.196 0.385 0.394
GARCH.DCS.T.250 0.526 0.000 0.272 1.229 0.000 0.000 0.000 0.000 0.000

Note: 1. Green: POF below 1%, 2. Red: POF above 1%.

Table 2 presents the failure rates, showing occurrences where losses ex-
ceeded the 1% VaR threshold, and Table B1 from Appendix B provides
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Kupiec’s POF test p-values, with green indicating well-calibrated models
and red highlighting underperforming ones.

Among LLMs, GPT-3.5 shows the best calibration, particularly in the 30-
day window, with failure rates close to 1% for indices like CRIX and SPGT-
CLTR. As the window extends from 45 to 150 days, GPT-3.5 approaches
0% exceedance rate for all indices, suggesting potentially conservative risk
estimation.

In contrast, GPT-4 and GPT-4o consistently fail to capture risk accu-
rately, displaying failure rates well above 1%, with the 30-day window for
GPT-4 reaching as high as 10.38% for FTSE.

Classical models, such as GARCH-LPA and EWMA-DCS, demonstrate
greater reliability, particularly in the Kupiec test. GARCH-LPA has mod-
erate failure rates, such as 1.29% for CACT, while EWMA-DCS—especially
the normal innovation variant—provides the most consistent performance,
with EWMA-DCS.N.120 achieving failure rates near the 1% target (0.91%
for CACT and 0.67% for CRIX) and Kupiect test p-values close to 1, under-
scoring robust risk estimation.

The Kupiec test confirms GPT-3.5’s superior calibration among LLMs in
the 30-day window, with p-values near 1 across most indices. However, GPT-
3.5’s calibration deteriorates as the rolling window increases, while GPT-4
and GPT-4o continue to show significant deviations across all indices.
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Table 3: Traffic light test for 1% VaR: Φ(z).

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 0.515 0.540 0.904 0.424 0.523 0.378 0.513 0.109 0.518
GPT-3.5.45 0.124 0.063 0.127 0.202 0.024 0.009 0.123 0.055 0.125
GPT-3.5.60 0.025 0.028 0.138 0.033 0.026 0.010 0.009 0.060 0.009
GPT-3.5.90 0.010 0.011 0.077 0.007 0.011 0.011 0.010 0.010 0.010
GPT-3.5.120 0.012 0.013 0.037 0.008 0.013 0.014 0.012 0.012 0.012
GPT-3.5.150 0.015 0.016 0.044 0.003 0.016 0.016 0.014 0.014 0.015

GPT-4.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4.120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GPT-4o.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4o.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4o.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4o.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4o.120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GPT-4o.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GARCH.LPA 0.751 0.948 0.994 0.913 0.158 0.451 0.749 0.737 0.940
EWMA.N.80 0.933 0.993 0.993 1.000 0.760 0.611 0.973 0.926 0.974
EWMA.N.120 0.482 0.966 0.965 1.000 0.914 0.916 0.800 0.892 0.904
EWMA.DCS.N.80 0.415 0.073 0.152 0.161 0.152 0.029 0.414 0.401 0.143
EWMA.DCS.N.120 0.312 0.189 0.090 0.161 0.187 0.037 0.311 0.467 0.177
EWMA.DCS.T.80 0.027 0.029 0.152 0.161 0.010 0.010 0.027 0.009 0.009
EWMA.DCS.T.120 0.012 0.013 0.090 0.161 0.013 0.013 0.012 0.011 0.012
GARCH.N.120 0.312 0.823 0.914 1.000 0.820 0.966 0.480 0.954 0.315
GARCH.N.250 0.541 0.027 0.569 0.997 0.081 0.027 0.539 0.325 0.545
GARCH.DCS.N.120 0.312 0.916 0.505 1.000 0.679 0.682 0.480 0.954 0.315
GARCH.DCS.N.250 0.541 0.027 0.569 0.991 0.081 0.028 0.539 0.325 0.545
GARCH.DCS.T.120 0.175 0.013 0.187 0.754 0.090 0.013 0.034 0.080 0.085
GARCH.DCS.T.250 0.177 0.027 0.081 0.754 0.027 0.027 0.025 0.024 0.025

Note: 1. Green: accurate risk estimation, 2. Yellow: some uncertainty, 3. Red: potential inaccuracies.

Table 3 presents the Traffic Light Test results for the 1% VaR across
different indices. The color scheme highlights model performance: green
indicates accurate risk estimation, yellow suggests some uncertainty, and
red denotes potential inaccuracies. The GPT-3.5 model demonstrates out-
standing accuracy across all windows and assets, suggesting accurate tail
risk estimation. In contrast, the GPT-4 and GPT-4o models perform poorly
across all windows, with Φ(z) values at 1 across all indices, indicating severe
risk misestimation. Among the classical models, GARCH and EWMA-DCS
models excel, with green cells for all assets.
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Table 4: Christoffersen Conditional Coverage test: p-values.

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 0.939 0.934 0.010 0.166 0.938 0.825 0.940 0.391 0.939
GPT-3.5.45 0.440 0.210 0.451 0.065 0.051 0.001 0.438 0.180 0.444
GPT-3.5.60 0.055 0.062 0.484 0.106 0.057 0.001 0.001 0.198 0.001
GPT-3.5.90 0.001 0.001 0.262 0.007 0.001 0.001 0.001 0.001 0.001
GPT-3.5.120 0.002 0.002 0.094 0.010 0.002 0.002 0.001 0.001 0.002
GPT-3.5.150 0.002 0.002 0.119 0.000 0.002 0.003 0.002 0.002 0.002

GPT-4.30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GPT-4o.30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GARCH.LPA 0.737 0.285 0.043 0.178 0.543 0.946 0.740 0.758 0.313
EWMA.N.80 0.333 0.078 0.046 0.000 0.723 0.898 0.186 0.339 0.181
EWMA.N.120 0.951 0.218 0.091 0.000 0.397 0.391 0.659 0.454 0.425
EWMA.DCS.N.80 0.934 0.248 0.527 0.553 0.527 0.068 0.933 0.839 0.501
EWMA.DCS.N.120 0.853 0.628 0.313 0.553 0.623 0.094 0.851 0.949 0.596
EWMA.DCS.T.80 0.060 0.068 0.527 0.051 0.001 0.001 0.060 0.001 0.001
EWMA.DCS.T.120 0.001 0.002 0.313 0.051 0.002 0.002 0.001 0.001 0.001
GARCH.N.120 0.853 0.616 0.126 0.002 0.621 0.218 0.951 0.104 0.857
GARCH.N.250 0.953 0.007 0.942 0.034 0.253 0.007 0.953 0.876 0.951
GARCH.DCS.N.120 0.853 0.391 0.950 0.002 0.838 0.834 0.951 0.266 0.857
GARCH.DCS.N.250 0.953 0.007 0.942 0.058 0.253 0.007 0.953 0.876 0.951
GARCH.DCS.T.120 0.591 0.002 0.623 0.239 0.313 0.002 0.083 0.274 0.293
GARCH.DCS.T.250 0.591 0.007 0.253 0.239 0.007 0.007 0.006 0.005 0.006

Note: 1. Green: p-values above 0.05. 2. Red: p-values below 0.05.

Table 4 presents p-values from Christoffersen’s Conditional Coverage test,
assessing the independence of exceedances. GPT-3.5 models with 30- and 45-
day windows perform well, with high p-values across most assets, indicating
effective capture of both the frequency and independence of risk events. How-
ever, for longer backtesting windows (60 up to 150 days), GPT-3.5 tends to
overestimate risk, leading to low p-values that suggest a lack of independence
in exceedances.

GPT-4 and GPT-4o models fail to capture risk effectively, displaying
consistently low p-values across all windows and assets, indicating issues
with both the frequency and independence of risk events, as highlighted in
Appendix B, Figures B5 and B6.
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Figure 3: VaR Exceedances for LLM-VaR GPT-3.5 (30-day rolling window).

Note: Red dots indicate exceedances. Green dots show gains, and Orange dots show losses within the expected range.

GARCH models perform well in stable markets but struggle in more
volatile settings, particularly GARCH-N.120 and GARCH-N.250. In con-
trast, EWMA models, especially EWMA-DCS with normal innovations, ex-
hibit robust performance across various market conditions, reliably capturing
risk independence.

GPT-3.5 with a 30-day and 45-day window, along with EWMA models
and GARCH-LPA, emerge as strong performers in predicting 1% VaR, as
illustrated in Figure 3 and Figures B3 and B4, from Appendix B.

4.2.2. ES Backtesting Results
To address the limitations of VaR in capturing tail risk beyond a specific

quantile, we apply Z2 and Z3 tests for ES (Acerbi and Székely, 2014). The
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former tests for the frequency and magnitude of ES violations, while the
latter tests for the independence of exceedances. We choose to present test
statistics here (partially because of the well-known Z∗

2 threshold), but colors
are still assigned based on simulated p-values.

Table 5: Z2 test statistic.

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 0.406 0.471 -0.140 0.348 0.510 0.552 0.406 0.788 0.489
GPT-3.5.45 0.763 0.812 0.659 0.621 0.924 1.000 0.763 0.853 0.772
GPT-3.5.60 0.920 0.889 0.691 0.828 0.922 1.000 1.000 0.853 1.000
GPT-3.5.90 1.000 1.000 0.773 0.943 1.000 1.000 1.000 1.000 1.000
GPT-3.5.120 1.000 1.000 0.897 0.943 1.000 1.000 1.000 1.000 1.000
GPT-3.5.150 1.000 1.000 0.899 1.000 1.000 1.000 1.000 1.000 1.000

GPT-4.30 -9.838 -3.555 -7.907 -5.997 -4.084 -4.625 16.495 -4.190 1.564
GPT-4.45 -3.832 -4.002 -4.791 -3.893 -3.311 -3.135 -3.418 -3.328 -3.540
GPT-4.60 -3.353 -3.141 -4.633 -4.602 -3.392 -3.337 -3.916 -4.234 -4.191
GPT-4.90 -3.626 -5.036 -4.913 -5.085 -3.502 -2.618 -4.131 -3.175 -3.991
GPT-4.120 -4.596 -5.021 -5.863 -6.645 10.288 -2.623 -4.191 -3.534 -4.143
GPT-4.150 -4.351 5.312 -6.932 -6.744 -3.352 -2.498 -5.139 -3.055 -3.482

GPT-4o.30 17.059 -2.881 -5.050 -4.361 -2.188 -2.261 -8.009 -2.464 -4.348
GPT-4o.45 -4.023 -3.485 -6.117 -4.599 -2.964 -3.069 -4.539 -3.204 -4.135
GPT-4o.60 -4.700 -4.325 -6.102 -4.832 -2.978 -3.389 -4.962 -3.462 -4.604
GPT-4o.90 -4.251 -5.257 -5.687 -5.398 -3.629 -2.823 -4.655 -3.451 -4.452
GPT-4o.120 -3.782 -3.989 -6.152 -5.898 -2.556 -2.812 -4.106 -3.431 -3.354
GPT-4o.150 -3.959 -3.800 -5.796 -5.957 -2.776 -1.925 -3.759 -3.132 -3.526

GARCH.LPA 0.340 0.228 0.023 0.222 0.728 0.554 0.384 0.296 0.162
EWMA.N.80 0.054 0.037 -0.169 -0.440 0.369 0.485 0.013 0.152 0.076
EWMA.N.120 0.405 0.151 -0.019 -0.440 0.227 0.267 0.247 0.143 0.188
EWMA.DCS.N.80 0.527 0.844 0.684 0.616 0.763 0.923 0.566 0.577 0.738
EWMA.DCS.N.120 0.609 0.748 0.799 0.616 0.744 0.917 0.637 0.514 0.718
EWMA.DCS.T.80 0.923 0.927 0.723 0.660 1.000 1.000 0.920 1.000 1.000
EWMA.DCS.T.120 1.000 1.000 0.800 0.660 1.000 1.000 1.000 1.000 1.000
GARCH.N.120 0.569 0.353 0.165 -0.282 0.346 0.179 0.513 0.165 0.589
GARCH.N.250 0.504 1.000 0.468 -0.019 0.874 1.000 0.530 0.634 0.539
GARCH.DCS.N.120 0.585 0.282 0.508 -0.278 0.451 0.461 0.515 0.160 0.591
GARCH.DCS.N.250 0.498 1.000 0.473 0.030 0.878 1.000 0.530 0.634 0.538
GARCH.DCS.T.120 0.715 1.000 0.688 0.365 0.833 1.000 0.922 0.798 0.811
GARCH.DCS.T.250 0.789 1.000 0.872 0.394 1.000 1.000 1.000 1.000 1.000

Note: 1. Green: p-values above 0.05. 2. Red: p-values below 0.05.

Table 5 presents the Z2 test results, indicating that GPT-4 and GPT-
4o yield markedly negative statistics, falling well below the critical threshold
Z∗

2 . This is expected, given the poor VaR calibration presented earlier, which
extends to the predicted distribution as a whole. The small percentage of
index-window size configurations where we see large statistics are outliers
due to a few miss-specified ES samples (very close to 0), which produce
large positive statistic terms and outweigh all other VaR breaches with neg-
ative contributions. On the other hand, GPT-3.5 can obtain solid scores for
all windows. We suppose that its tendency to predict the left side of the
return distribution secures reasonable VaR and ES calibration. Regarding
benchmark models, it is clear that most pass the test. EWMA with normal
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residuals struggles more than other methods, and CRIX appears to be more
challenging to fit for GARCH with normal residuals (also when including
DCS).

Table 6: Z3 test statistic.

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 0.068 0.094 0.020 0.064 0.080 0.100 0.066 0.108 0.050
GPT-3.5.45 0.104 0.123 0.096 0.088 0.137 0.174 0.112 0.127 0.116
GPT-3.5.60 0.144 0.144 0.106 0.118 0.125 0.170 0.148 0.137 0.140
GPT-3.5.90 0.155 0.142 0.115 0.125 0.163 0.166 0.157 0.152 0.157
GPT-3.5.120 0.162 0.160 0.144 0.148 0.152 0.170 0.161 0.171 0.150
GPT-3.5.150 0.156 0.161 0.139 0.174 0.150 0.172 0.166 0.150 0.168

GPT-4.30 -0.572 -0.312 -0.477 -0.613 -0.326 -0.384 -0.476 -0.307 -0.421
GPT-4.45 -0.528 -0.526 -0.567 -0.738 -1.444 -0.343 -0.498 -0.452 -0.528
GPT-4.60 -0.572 -0.473 -0.648 -0.836 -0.442 -0.363 -0.551 -0.592 -0.573
GPT-4.90 -0.589 1.432 -0.623 -0.928 -0.425 -0.409 -0.564 -0.500 -0.601
GPT-4.120 -0.596 -0.498 -0.745 -0.998 -0.353 -0.606 -0.578 -0.455 -0.631
GPT-4.150 -0.591 -0.345 -0.672 -0.955 -0.441 -0.443 -0.588 -0.484 -0.661

GPT-4o.30 -0.439 -0.463 -0.502 -0.534 -0.352 -0.368 -0.389 -0.404 -0.483
GPT-4o.45 -0.537 -0.505 -0.639 -0.691 -0.423 -0.381 -0.524 -0.461 -0.549
GPT-4o.60 -0.590 -0.590 -0.663 -0.835 -0.445 -0.462 -0.566 -0.539 -0.644
GPT-4o.90 -0.591 -0.568 -0.682 -0.866 -0.438 -0.447 -0.607 -0.531 -0.616
GPT-4o.120 -0.626 -0.551 -0.742 -0.870 -0.433 -0.480 -0.598 -0.499 -0.521
GPT-4o.150 -0.607 -0.522 -0.691 -0.862 -0.421 -0.418 -0.554 -0.497 -0.564

GARCH.LPA 0.989 0.989 0.991 0.959 0.995 0.988 0.991 0.982 0.988
EWMA.N.80 -0.364 -0.214 -0.445 -0.509 -0.141 -0.120 -0.341 -0.262 -0.266
EWMA.N.120 -0.247 -0.190 -0.384 -0.509 -0.173 -0.146 -0.255 -0.303 -0.236
EWMA.DCS.N.80 -0.032 0.062 -0.048 -0.056 0.101 0.120 -0.032 0.005 0.063
EWMA.DCS.N.120 0.023 0.067 0.011 -0.056 0.101 0.110 0.015 -0.024 0.049
EWMA.DCS.T.80 0.174 0.270 0.092 0.036 0.316 0.340 0.201 0.252 0.228
EWMA.DCS.T.120 0.285 0.289 0.148 0.036 0.296 0.314 0.278 0.235 0.278
GARCH.N.120 -0.068 -0.131 -0.234 -0.434 -0.119 -0.151 -0.071 -0.190 -0.076
GARCH.N.250 -0.021 0.128 -0.113 -0.333 0.034 0.200 0.022 -0.073 0.035
GARCH.DCS.N.120 -0.043 -0.119 -0.100 -0.431 -0.088 -0.098 -0.061 -0.187 -0.082
GARCH.DCS.N.250 -0.026 0.127 -0.108 -0.325 0.073 0.201 0.024 -0.076 0.037
GARCH.DCS.T.120 0.115 0.228 0.021 -0.168 0.129 0.236 0.199 0.044 0.163
GARCH.DCS.T.250 0.269 0.394 0.166 -0.109 0.288 0.434 0.283 0.212 0.320

Note: 1. Green: p-values above 0.05. 2. Red: p-values below 0.05.

The results of Z3 test are reported in Table 6. This time, we test for
exceedance ranks and estimate ES empirically. Therefore, this test does
not involve VaR or ES estimations. A similar story emerges: we find that
EWMA.N does not provide independent exceedances, with more failing in-
dices than Z2. In a similar vein, the GARCH.N models do not produce
independent exceedances for CRIX.

For a clearer picture of how LLMs’ predictions compare to actual log
returns, Appendix C presents distribution plots (Figures C1, C2, C3).

4.3. Sensitivity Analysis
All inference parameters have good defaults according to the experiments

in Gruver et al. (2024), which other works have silently adopted (Cao and
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Wang, 2024; Tang et al., 2025).
Due to its impact on model creativity, the temperature parameter τ

prompted a separate ablation study. We expect it to be the most sensitive
to changes.

Table 7: Temperature sensitivity analysis parameter space.

Parameter Values
LLM {GPT-3.5, GPT-4, GPT-4o}
Asset CRIX

τ {0.0, 0.1, 0.2, . . . , 0.9, 1.0}
ω 45

αLLM 0.95
βLLM 0.35

π 2

To test the influence of the temperature parameter, we performed a series
of experiments using the setup described in Table 7. The other parameters
were chosen to align as closely as possible with those used in the referenced
paper. CRIX, as a representative risky index, provides a reasonable testbed
for this analysis.

Table 8: Temperature sensitivity analysis backtesting results. VaR, ES presents the num-
ber of passing VaR and ES backtests, POF the failure rate.

GPT-3.5 GPT-4 GPT-4o
Temperature VaR ES POF VaR ES POF VaR ES POF

0.0 3 1 0.71% 0 1 16.41% 0 0 16.88%
0.1 3 1 0.71% 0 0 13.08% 0 0 9.75%
0.2 3 1 0.71% 0 0 11.30% 0 0 8.68%
0.3 3 2 0.71% 0 0 9.16% 0 0 8.56%
0.4 3 2 0.71% 0 0 8.68% 0 0 7.73%
0.5 3 2 0.71% 0 0 7.85% 0 0 7.37%
0.6 3 2 0.71% 0 0 7.73% 0 0 7.49%
0.7 3 2 0.71% 0 0 6.30% 0 0 7.25%
0.8 3 2 0.71% 0 0 5.95% 0 0 6.90%
0.9 3 2 0.71% 0 0 5.35% 0 0 6.54%
1.0 3 2 0.71% 0 0 4.64% 0 0 6.06%

Note: 1. Green: Maximum number of tests pass. 2. Red: No test passes.
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We summarize our main findings in Table 8. Passing VaR and ES back-
tests are counted separately for each combination of parameters. We define
"passing" for VaR as: p-value > 0.05 for the Kupiec POF and Christoffersen
tests, value < 0.95 for the traffic light test. Consequently, the ES Z2 and Z3
tests must yield p-values > 0.05 to be considered successful. The failure rate
is also shown for comparison purposes.

We note that GPT-3.5 is stable across different temperatures, with sim-
ilar failure rates and VaR prediction performance. The Z3 test for ES is
"passed" only starting from higher temperatures, with increasing confidence
(not shown here), which could indicate dependencies for values under the
tail, a phenomenon exacerbated by the almost uniform predictions offered
for small τ . On the other hand, GPT-4 and 4o steadily improve their failure
rates for higher temperatures, which is an interesting finding. We suspect
that affording more creative liberty tends to output returns closer to the
tails, although this is an avenue for further studies. However, VaR and ES
are not calibrated well enough to produce satisfactory backtesting perfor-
mance. Even more, it is not recommended to go above τ = 1.0 (OpenAI,
2025b).

We conclude that the temperature parameter does not significantly influ-
ence our results. Therefore, we retain τ = 0.7, as recommended by Gruver
et al. (2024).

5. Limitations

5.1. Inference Costs
In our setup, a notable limitation of using LLM-based models for risk

estimation is the cost associated with each forecasting day. Since we rely
on paid models, their expenses can accumulate, particularly in applications
requiring frequent or high-volume predictions. Table 9 presents the LLM
costs per forecasting day per asset 6 for different LLMs in our configuration,
illustrating that more advanced models like GPT-4 incur higher costs. We
consider the benchmarks cost-free.

6Costs valid for June 2025.
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Table 9: LLM costs per forecasting day/asset

Model Cost (USD)
GPT-3.5 0.010
GPT-4 0.071
GPT-4o 0.037

Runtime is an important factor that contributes to timely management
decisions. Mean daily runtimes and their standard deviation are presented
in Table 10. GPT-3.5 performs closer to the benchmarks, which deliver in-
stantaneous results, except for GARCH-LPA. Larger LLMs exhibit increased
runtimes, with as much as 10 - 15 seconds of variability. Waiting times thus
increase at a higher rate for historical forecasts.

Table 10: Mean and standard deviations of daily runtimes for methods.

Model Mean Standard deviation

GPT-3.5.30 1.56 1.66
GPT-3.5.45 1.46 0.55
GPT-3.5.60 2.42 0.46
GPT-3.5.90 2.47 0.67
GPT-3.5.120 2.56 0.84
GPT-3.5.150 2.57 1.17

GPT-4.30 21.77 10.79
GPT-4.45 28.04 11.35
GPT-4.60 26.46 9.87
GPT-4.90 28.52 14.19
GPT-4.120 27.50 10.93
GPT-4.150 24.70 13.41

GPT-4o.30 21.17 7.94
GPT-4o.45 24.69 8.51
GPT-4o.60 27.73 9.48
GPT-4o.90 25.75 12.40
GPT-4o.120 28.30 10.57
GPT-4o.150 26.50 11.46

GARCH.LPA 2.72 0.52
EWMA.DCS.N.120 0.00 0.00
EWMA.DCS.N.80 0.00 0.00
EWMA.N.120 0.00 0.00
EWMA.N.80 0.00 0.00
EWMA.DCS.T.120 0.00 0.00
EWMA.DCS.T.80 0.00 0.00
GARCH.GAS.N.120 0.20 0.07
GARCH.GAS.N.250 0.39 0.11
GARCH.GAS.T.120 0.22 0.07
GARCH.GAS.T.250 0.41 0.12
GARCH.N.120 0.13 0.05
GARCH.N.250 0.28 0.09

Note: LLMs are benchmarked on the last 30 days for CRIX. Traditional methods are computed on the full out-of-sample
dataset and averaged for all assets. All times are in seconds.

This introduces a trade-off between cost and flexibility: LLMs require no
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parameter tuning and support zero-shot adaptability across assets and tasks,
while traditional models offer cost-efficiency, fast runtimes, transparency, and
established regulatory acceptance. The viability of LLM-based forecasting
thus depends on institutional priorities such as scalability, explainability,
and responsiveness to market changes versus infrastructure and budget con-
straints, similar to the arguments of Li et al. (2023).

5.2. Performance, Data Privacy and Model Availability
LLM-VaR and LLM-ES, estimated using GPT-3.5 through the LLMTime

framework, exhibit strong performance for shorter rolling windows (30 and 45
days). However, for longer windows, GPT-3.5 tends to generate conservative
estimates, resulting in overly cautious risk forecasts (see Figures B1 and B2,
from Appendix B). In such cases, traditional models like GARCH—designed
to capture persistent volatility patterns—often provide more reliable long-
term forecasts.

Beyond the length of the rolling window, the effectiveness of LLM-VaR
and LLM-ES also depends on the quality of historical data. In markets
with sparse or noisy signals, LLM performance may degrade. While general-
purpose models offer adaptability, their broad training objectives may limit
precision in domain-specific tasks without fine-tuning.

Irrespective of model performance, a principal limitation of LLMs con-
cerns their black-box nature, impeding interpretability and posing signifi-
cant challenges in regulatory environments that require transparency and
model validation, particularly during periods of market stress (Li et al.,
2023). While a growing body of work on explainable AI (XAI) for time
series models (e.g., Bento et al., 2021) provides tools to shed some light
on the LLM-induced mapping of input data to forecasts, the characteris-
tic approach of passing model inputs via a prompt and associated degrees
of freedom can easily jeopardize standard XAI time series approaches and
demands LLM-specific solutions.

Relatedly, interfacing LLMs via commercial APIs raises concerns about
data privacy and sustainability, as model providers could decide to discon-
tinue access to a model (version). In financial contexts, regulatory constraints
often prohibit external processing of sensitive or proprietary time series. Al-
though our study only uses publicly available data, real-world applications
would require secure, on-premises deployment or privacy-preserving inference
mechanisms. One one hand, OpenAI’s data privacy policy ensures that no
information fed to their paid APIs will be used for model training (OpenAI,
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2025a), and other vendors offer similar contracts. On the other hand, the
advent of powerful open-weight LLMs, such as Meta’s LLaMA 3.1(Touvron
et al., 2024), Google’s Gemma 2 (Google DeepMind, 2024), Mistral Large 2
(Mistral AI, 2024), or more recently Qwen3 (Yang et al., 2025) and DeepSeek
(DeepSeek-AI et al., 2025), facilitates mitigating privacy and sustainability
risks through the deployment of on-premise LLM-based forecasting solutions.

A specific limitation of this study’s setup may be seen in the exclusive re-
liance on OpenAI’s GPT models. Being the first study of its kind, we favored
this setup because it facilitated controlled comparisons across model genera-
tions (3.5, 4, and 4o). However, we acknowledge that our focus on GPT-type
LLMs restricts generalizability, calling for future work to evaluate alternative
LLM ecosystems—such as Anthropic’s Claude, Google’s Gemini, to name a
few, which may exhibit different alignment behaviors, numerical stability,
and domain generalization capacities. Specifically, we observe GPT-4 and
GPT-4o to perform inferior to GPT-3.5 in risk estimation tasks, suggesting
that improvements in general language modeling do not necessarily translate
into better quantitative forecasting. We deem this phenomenon worthy of
further investigation and attempt to provide some answers in the next sec-
tion. In general, studying different LLM variants can potentially uncover the
architectural patterns that govern a model’s adequacy for forecasting and/or
risk management.

6. Discussion

6.1. Poor Performance of Newer Models
A notable finding from our results is that GPT-3.5 outperforms GPT-4

and GPT-4o in forecasting VaR and ES. This is somewhat counterintuitive,
given that the latter models are newer and trained on broader, more diverse
datasets. Several plausible explanations may account for this outcome.

First, the reduced performance in the case of GPT-4 and GPT-4o can be
to some extent attributed to Reinforcement Learning from Human Feedback
(RLHF), a key element in their fine-tuning, which introduces a further layer
of alignment, as noticed by Gruver et al. (2024). Although RLHF improves
safety and helps generate responses more in line with human preferences, it
additionally biases the model toward overconfidence. This can be seen by
comparing the alignment of responses and the expected answer probabilities
for the MMLU dataset in the case of GPT-4 (OpenAI, 2023). In contrast,
GPT-3.5, which lacks RLHF fine-tuning, does not exhibit the same behavior.
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Second, we can explain the good tail predictions of GPT-3.5 by its strong
bias for the left tail, as opposed to its newer variants. Essentially, while
forecasting the whole return distribution with LLMTime, GPT-3.5 is more
concerned with the left tail. We can see this visually in Appendix C. Further
confirmation is achieved by evaluating the return forecast performance, not
VaR or ES. Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) are computed and averaged for all assets in Table 11. One notices
that GPT-4 and 4o exhibit better performance, a further indication that they
focus on the entire distribution, not only the left tail. Additionally, when
tested on standard benchmark datasets, some with more obvious seasonality
and trend patterns, ARIMA has been reported to outperform GPT-3.5 (Cao
and Wang, 2024), although opinions are mixed (Tang et al., 2025).

Table 11: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) averaged
over all assets, for each LLM and window size

GPT-3.5 GPT-4 GPT-4o

Window size MAE RMSE MAE RMSE MAE RMSE

30 0.0435 0.0489 0.0106 0.0146 0.0099 0.0139
45 0.0500 0.0550 0.0101 0.0141 0.0097 0.0134
60 0.0541 0.0589 0.0100 0.0139 0.0096 0.0133
90 0.0595 0.0641 0.0099 0.0138 0.0094 0.0131
120 0.0634 0.0676 0.0096 0.0133 0.0090 0.0124
150 0.0666 0.0705 0.0094 0.0130 0.0088 0.0121

Note: Best values are marked as bold italic.

6.2. Long-Term Performance Decay
Despite the promising performance of large language models in short-

horizon forecasting tasks, their effectiveness deteriorates when modeling long-
term dependencies. This limitation arises from a combination of factors re-
lated to data representation and architectural constraints. Given that these
models are designed for NLP tasks, their training datasets likely have few
long-distance dependencies and relationships (An et al., 2024). Prompt-
based approaches require transforming the time series into tokenized textual
sequences, often leading to structural distortions and a loss of fine-grained
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temporal coherence as the sequence length increases (Liu et al., 2024c). Re-
search has found that in the presence of noise, LLMs struggle to find general
signal characteristics (Bianchi et al., 2025), which is clearly our setup when
considering larger and larger window sizes for financial data.

Architecturally, transformer-based LLMs suffer from fixed context win-
dows and quadratic attention complexity, which impose practical limits on
input length and introduce attention decay over distant tokens (Liu et al.,
2024a; Delétang et al., 2024). These factors limit the models’ ability to
capture long-term dependencies, particularly in the presence of slow-moving
trends, regime changes, or persistent volatility —features that are crucial in
financial risk modeling. In contrast, specialized time series models leverage
recursive structure, latent state variables, or hierarchical memory to main-
tain performance over extended horizons. Our findings thus support prior ev-
idence that LLMs, while powerful for short-term sequence modeling, remain
constrained in their ability to reason effectively over long historical windows
without architectural or representational adaptations (Gruver et al., 2024;
Sun et al., 2024).

Looking ahead, enhancing the robustness of LLM-based financial risk
forecasting may require incorporating adaptive learning paradigms. For ex-
ample, online learning frameworks — such as those proposed by Zhang et al.
(2025) in dynamic localization environments or time series decomposition
with LLM-Mixer (Kowsher et al., 2025) — could allow LLMs to adjust con-
tinuously to evolving market regimes.

Additionally, hybrid modeling strategies that integrate variance-constrained
local–global mechanisms may help address uncertainty and heterogeneity in
financial time series. Zhang et al. (2024) demonstrate the benefits of such
approaches in non-stationary settings using multi-resolution modeling. Fu-
ture work could explore combining the representational power of LLMs with
such adaptive techniques to improve performance under volatile conditions.

7. Conclusions

In this paper, we introduced LLM-VaR and LLM-ES, two novel ap-
proaches for financial risk estimation using general-purpose large language
models (LLMs) within the LLMTime framework. These zero-shot methods
for forecasting Value at Risk (VaR) and Expected Shortfall (ES) offer a flex-
ible and model-free alternative to traditional approaches, such as GARCH
and EWMA, particularly in short-horizon, high-volatility environments.
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Our empirical analysis shows that GPT-3.5 performs competitively, of-
ten outperforming both traditional econometric models and more advanced
LLMs such as GPT-4 and GPT-4o in short-term VaR and ES estimation
tasks. This result underscores the complex interplay between model complex-
ity, numerical precision, and alignment with task-specific patterns. However,
the performance of GPT-3.5 declines as forecast horizons increase, reflecting
known limitations of Transformer-based architectures in modeling long-term
dependencies (Wang et al., 2024b). In contrast, traditional models — while
requiring more effort in calibration — continue to provide reliable perfor-
mance for extended horizons.

Looking ahead, future work should explore the development and fine-
tuning of time-series-specific LLMs that can better capture structural pat-
terns in financial data. Promising directions include specialized models such
as Chronos (Ansari et al., 2024), TimesFM (Das et al., 2024), and TimeGPT
(Garza et al., 2024; Liao et al., 2024). Integrating these with established
econometric frameworks like GARCH may yield more robust hybrid risk es-
timation systems.

In addition, recent advances in LLM alignment for time series — such
as CALF (Liu et al., 2024b) —highlight promising techniques to further
refine performance on numerically grounded tasks. Future work should also
investigate online learning paradigms, adaptive prompt tuning time series
decomposition, and the interpretability of LLM-based forecasts in regulatory
settings.

Moreover, hybrid architectures that combine general-purpose LLMs with
domain-specific statistical constraints, along with privacy-preserving deploy-
ment options leveraging open-weight models, represent important directions
for practical adoption in regulated financial environments.

In conclusion, our findings suggest that general-purpose LLMs, partic-
ularly GPT-3.5, offer viable tools for estimating VaR and ES in contexts
where agility and numerical precision are critical. While challenges remain
for longer-term forecasts and interpretability, the results affirm the potential
of LLMs as building blocks for next-generation financial risk analytics.
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Appendix A. Benchmark Models Specifications
The GARCH(1,1) model (Bollerslev, 1986) is renowned for its capacity to capture

volatility clustering, a prevalent pattern in financial returns where high-volatility periods
follow each other. The model is specified as follows:

rt = Ztσt,

Zt ∼ N (0, 1),
σ2

t = ω + β1r2
t−1 + α1σ2

t−1,

(A.1)

where ω > 0, α1 ≥ 0, β1 ≥ 0, and α1 + β1 < 1. Here, Zt represents the innovation term,
and σt denotes the time-varying volatility, allowing the model to dynamically adjust to
shifts in market volatility. For Studentized innovations, we assumed ν = 5 for all models.

To further strengthen the GARCH model and improve its adaptability to sudden
structural shifts, we incorporate the Local Parametric Approach (LPA), which uses
Local Change Point detection (Spokoiny, 1998). This approach allows the model to detect
and adapt to structural breaks, enhancing its sensitivity to evolving market conditions
(Spilak and Härdle, 2022).

Similarly, for the Exponentially Weighted Moving Average model, we go be-
yond the standard approach by leveraging the Dynamic Conditional Score (DCS)
framework 7 (Creal et al., 2013; Harvey and Luati, 2014). This extended EWMA model
is defined as:

σ2
t = (1 − λ)ut−1r2

t−1 + λσ2
t−1, (A.2)

where ut−1 is the score term derived from the log-likelihood function, calculated as:

ut−1 = 1 +
r2

t−1 − σ2
t−1

σ2
t−1

.

Under a Student’s t-distribution assumption, the score term is adapted for heavy tails:

ut−1 =
(ν + 1)r2

t−1
(ν − 2)σ2

t−1 + r2
t−1

− 1,

where ν denotes the degrees of freedom, which accounts for the heavy-tailed nature often
observed in financial returns.

This advanced DCS framework is also applied to the GARCH model, allowing volatility
updates to respond dynamically to shifts in the data:

σ2
t = ω + ϕσ2

t−1 + ασ2
t−1u′

t−1,

where u′
t−1 serves as a gradient term for conditional variance adjustments.

7Also known as the Generalized Autoregressive Score (GAS) framework.
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Appendix B. 1% VaR Backtesting Results

Table B1: Kupiec’s POF Test for 1%VaR: p-values.

Model CACT DJCI FTSE CRIX CBU SP500 STOXX SPGTCLTR GDAXI

GPT-3.5.30 0.970 0.920 0.227 0.846 0.954 0.751 0.974 0.173 0.964
GPT-3.5.45 0.203 0.077 0.210 0.379 0.015 0.001 0.202 0.064 0.206
GPT-3.5.60 0.016 0.018 0.232 0.034 0.017 0.001 0.001 0.072 0.001
GPT-3.5.90 0.001 0.001 0.102 0.002 0.001 0.001 0.001 0.001 0.001
GPT-3.5.120 0.002 0.002 0.029 0.002 0.002 0.002 0.001 0.001 0.002
GPT-3.5.150 0.002 0.002 0.039 0.000 0.002 0.003 0.002 0.002 0.002

GPT-4.30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GPT-4o.30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-4o.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GARCH.LPA 0.517 0.139 0.030 0.203 0.274 0.902 0.520 0.543 0.157
EWMA.N.80 0.170 0.032 0.032 0.000 0.499 0.782 0.084 0.183 0.082
EWMA.N.120 0.964 0.101 0.103 0.000 0.209 0.206 0.426 0.251 0.230
EWMA.DCS.N.80 0.828 0.095 0.262 0.292 0.262 0.020 0.824 0.798 0.244
EWMA.DCS.N.120 0.611 0.342 0.128 0.292 0.338 0.030 0.608 0.933 0.315
EWMA.DCS.T.80 0.018 0.020 0.262 0.292 0.001 0.001 0.018 0.001 0.001
EWMA.DCS.T.120 0.001 0.002 0.128 0.292 0.002 0.002 0.001 0.001 0.001
GARCH.N.120 0.611 0.383 0.209 0.001 0.389 0.101 0.961 0.128 0.617
GARCH.N.250 0.919 0.007 0.864 0.016 0.097 0.007 0.923 0.637 0.910
GARCH.DCS.N.120 0.611 0.206 0.989 0.001 0.653 0.383 0.961 0.060 0.617
GARCH.DCS.N.250 0.919 0.007 0.864 0.033 0.097 0.007 0.923 0.637 0.910
GARCH.DCS.T.120 0.311 0.002 0.338 0.506 0.128 0.002 0.001 0.108 0.118
GARCH.DCS.T.250 0.308 0.007 0.097 0.506 0.007 0.007 0.006 0.005 0.006

Note: 1. Green: p-values higher than 0.05. 2. Red: p-values lower than 0.05.
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Figure B1: VaR Exceedances for LLM-VaR GPT-3.5 120-day rolling window.
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Figure B2: VaR Exceedances for LLM-VaR GPT-3.5 150-day rolling window.
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Figure B3: VaR Exceedances for EWMA-DCS (120-day normal innovations).
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Figure B4: VaR Exceedances for GARCH-LPA.
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Figure B5: VaR Exceedances for LLM-VaR GPT-4 30-day rolling window.
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Figure B6: VaR Exceedances for LLM-VaR GPT-4o 30-day rolling window.
Note: Color codes: Red dots indicate model failures, green dots show gains, and orange dots show losses within the

expected range.
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Appendix C. LLM Distribution plots
We present Kernel Density Estimation plots for the empirical log return distributions

and LLM predictions for each index. We chose the 30-day window for illustration purposes.
For higher windows, we observe that distributions become tighter (values close to 0 are
predicted more frequently). This explains general poor results for larger windows from an
empirical angle.

GPT-4 and GPT-4o show a better fit of the distribution overall, but, as we saw when
backtesting, VaR and ES predictions are better calibrated for GPT-3.5.

]

Figure C1: KDE Estimation for GPT-3.5 30-day rolling window predictions and actual
log returns.

Note: Color codes: Red indicates log return distribution, blue show LLM predictions
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Figure C2: KDE Estimation for GPT-4 30-day rolling window predictions are actual log
returns.

Note: Color codes: Blue indicates log return distribution, red show LLM predictions
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Figure C3: KDE Estimation for GPT-4o 30-day rolling window predictions are actual log
returns.

Note: Color codes: Blue indicates log return distribution, red show LLM predictions
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