Commun. Math. Phys. (2024) 405:176 Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-024-05033-3 M ath emat i c al

Physics
®

Check for
updates

Approximating the Stationary Distribution of the ASEP
with Open Boundaries

Evita Nestoridi'-2, Dominik Schmid?

! Princeton University, Princeton, USA. E-mail: evrydiki.nestoridi @stonybrook.edu
2 Stony Brook University, Stony Brook, USA
University of Bonn, Bonn, Germany. E-mail: d.schmid @uni-bonn.de

Received: 30 August 2023 / Accepted: 6 May 2024
Published online: 23 July 2024 — © The Author(s) 2024

Abstract: We investigate the stationary distribution of asymmetric and weakly asym-
metric simple exclusion processes with open boundaries. We project the stationary distri-
bution onto a subinterval, whose size is allowed to grow with the length of the underlying
segment. Depending on the boundary parameters of the exclusion process, we provide
conditions such that the stationary distribution projected onto a subinterval is close in
total variation distance to a product measure.

1. Introduction

The asymmetric simple exclusion process is an interacting particle system, which is
intensively studied from various different perspectives; see [12,14,30,31,59] for a se-
lection of surveys in statistical mechanics, probability theory and combinatorics on this
model. In this article, we focus on the asymmetric simple exclusion process with open
boundaries, also called the open ASEP. We consider a segment of length N such that
each site is either occupied by a particle or left empty. Each site is equipped with rate
1 + g Poisson clocks. Whenever a clock rings and the respective site is occupied, we let
the particle move to the right with probability (1 +¢)~!, and to the left with probability
q(1+¢)~", provided the target is a vacant site. In addition, particles enter at the left-hand
side boundary at rate > 0, and exit at the right-hand side boundary at rate 8 > 0.
Among the most fundamental tasks for exclusion processes is the characterization of
their invariant measures, and to this end, many elaborate tools, such as the Matrix product
ansatz and tableaux combinatorics are used to understand the equilibrium [15,30].

A classical result by Liggett states that the exclusion process converges on any finite
interval sufficiently far away from the boundary to a homogeneous product measure,
when excluding the special case « = 8 < (1 — g)/2; see [57]. On the other hand, Bryc
et al. characterize the stationary distribution on the macroscopic scale N in a series of
works using Askey—Wilson processes; see [20,21,23] for g € (0, 1), and more recently
[19] when ¢ — 1. Depending on the boundary parameters, they verify convergence in
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finite dimensional distribution of the height function representation of the open ASEP
to sums of Brownian motion, Brownian excursion, and Brownian meander. Both results
motivate the following question: Under which conditions is the stationary distribution of
the open ASEP projected onto a subinterval, whose size grows with N, close to a product
measure? It turns out that an answer to this question depends on the choice of boundary
parameters for the open ASEP. In the fan region of the open ASEP, where informally
speaking the effective density at the left end of the segment is larger than the effective
density at the right end, we express the stationary distribution as certain re-weighted
simple random walks. We then link the approximation of the stationary distribution to
the question whether a certain random polymer model with a hard wall and pinning is
localized. Conversely, in the shock region, where heuristically the effective density on
the right end of the segment is larger than on the left end, we approximate the stationary
distribution by coupling the open ASEP with different boundary parameters, and using a
special representation for certain choices of «, 8, g. For the open TASEP, where g = 0,
we approximate the stationary distribution by studying its formulation as a last passage
percolation model on a strip; see [39,67,68].

1.1. Model and results. Formally, we define the ASEP with open boundaries, also
called open ASEP, as a continuous-time Markov chain (1;);>0 on Qy = {0, 1 for
some N € N, and with generator

N—-1
LFm) = Y (100 =0+ 1) +gne+ DA = n@)) [ £0r) = £
x=1

+a(l =) [F0H = fn ]+ [fa™) = ro]
(1.1)

for all functions f: Qy — R. Here, we use the standard notation

n(z) forz#x,y
ﬂx‘y(z) =4{nkx) forz=y and Uw(Z) _ {77(2) forz #w
n(y) forz=x 1—n(z) forz=w

to denote swapping of values in a configuration n € Qu at sites x,y € [N] :=
{1,..., [N]}, and flipping at w € [N], respectively. We say that site x is occupied
if n(x) = 1, and vacant otherwise. A visualization of the open ASEP is given in
Fig. 1. It is easy to verify that the open ASEP has for all choices of ¢ € [0, 1] and
«, B > 0 a unique stationary distribution u = u™N>4%#_In the following, we study p
for different choices of ¢ € [0, 1) and o, B > 0 when projecting to subintervals. For
I = [a,b] :=ZN[a, b],weletn; € {0, 1} with n;(x) = n(x+[a]—1) forx € [|1]],
and set for all configurations ¢ € {0, 1l

pi@) =y uNeela). (12)

n:in=¢

In other words, we denote by . the probability measure where we project 1 onto the
coordinates in /, and similarly for a configuration n;. As a standard measure of distance,
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Fig. 1. Simple exclusion process with open boundaries for parameters (g, o, )

for two probability measure v, v’ on Qy, let

v =]y = % Z wx) —v'(x)| = Jnax (v(4) —v'(4)) (1.3)

xXeQN

be the total variation distance between v and v'; see Chapters 4 and 5 in [56] for further
equivalent formulations. In the following, let Berj(p) denote the Bernoulli-p-product
measure on {0, 1}/’! for an interval I. We start with the following result by Liggett on
the local structure of the stationary measure of the open ASEP.

Proposition 1.1 (Liggett [57]). Let g € [0,1), « > Oand B > 0. Let C € N and
consider a family of finite intervals I = [ay, by] with |I| = C and

lim min(ay, N — by) = o0. (1.4)
N—o00

We have the following weak convergence of ju:
Ber,(ﬁ) if & < min (,8, -
iy — Ber1<1 _ %) if B < min (a, 1 ) (1.5)

Ber,(%) if min(a, B) > 152,

(3]
I
N—"

I\)|
B}

Let us point out that [57] strictly speaking only covers the case « = 8 = 1. However,
for general parameters o, B > 0, the result follows along the lines of Theorem 3.29
in Part III of [59]. For the sake of completeness, we include a proof in the appendix.
Motivated by Proposition 1.1, let g € [0, 1) and ¢, 8 > 0, and define

1_
9 _le(-1,00) and
o

u=u(wq):

1-q ;q e (~1,00). (1.6)

We say that the open ASEP is in the high density phase if v > max(u, 1), it is in
the low density phase if © > max(1, v), and it is in the maximal current phase if
max(u, v) < 1. Moreover, we distinguish between the fan region of the ASEP with
open boundaries where uv < 1 and the shock region of the ASEP with open boundaries
where uv > 1. The different phases for the open ASEP are visualized at the left-hand
side of Fig. 2. Let us remark that when uv = 1, it is straightforward to verify that the
stationary distribution of the open ASEP has a product form.

v=uv(B,q):
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Fig. 2. On the left-hand side, we see the different phases for the open ASEP with respect to the two boundary
parameters «, B > 0. On the right-hand side, we provide an overview on the different regimes covered in our
main theorems on approximating the stationary distribution

1.1.1. The asymmetric simple exclusion process with open boundaries We state now
our first result on the stationary distribution of the open ASEP in the maximal current
phase.

Theorem 1.2. Consideraninterval I = [a, b] withmin(a, N—b) > max(|I|, log?(N))'
fora =a(N) and b = b(N), and max(u, v) < 1, i.e. the maximal current phase. Then

1
li —Ber; ( =
N H“ e 5)

Note that the above result is optimal in the sense that it can not be extended to macro-
scopic intervals with a size of order N, as this is ruled out by the characterization of the
macroscopic densities in [23]. However, the stationary distribution is well-approximated
even on macroscopic intervals in the fan region of the high and the low density phase.

—0. (1.7)
TV

Theorem 1.3. Consider an interval I = [a, b]| with min(a, N — b) > 1. Moreover let
uv < 1, and u > max(l, v), i.e. we consider the low density phase of the ASEP with
open boundaries in the fan region. Then we have

o
nr — Bery (—>
l—g¢q

By symmetry, a similar statement holds for the high density phase of the open ASEP.

=0. (1.8)

lim
N—o0 TV

Our arguments are specific to the fan region. In order to obtain similar approximation
results in the shock region, we compare the invariant measure to Bernoulli shock mea-
sures; see Sect. 6 for a precise definition. We use a representation for the open ASEP in
the special case where there exists some k € Ny := {0, 1, ...} such that

uvg® = 1. (1.9)
! In the following, for any pair of functions f, g : N — R, we write

)
f>g o lminfr0 =
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We have the following result on approximating the stationary measure in the shock
region.

Theorem 1.4. Consider the low density phase in the shock region with o, B > 0. Assume
there exist B’ and B” with B € [B', B”], and some constant k € N such that the respective
parameters v' := v(B’, q) and v" := v(B", q) from (1.6) satisfy

u>max(v',v", 1) and uv'q® =uv"¢" ' =1. (1.10)

Then for all 1 = [a, b] with (N — b) > 1, we get

o
lim — Ber; | ——
N—o00 HM ! (1 —61)

By symmetry, a similar statement holds for the high density phase of the open ASEP.

=0. (1.11)
TV

The strategies in our theorems for the different regimes of the open ASEP are visu-
alized at the right-hand side of Fig. 2.

1.1.2. The weakly asymmetric simple exclusion process with open boundaries In the
following, we consider the weakly asymmetric simple exclusion process with open
boundaries, also called open WASEP, i.e. we let the bias parameter ¢ = g(N) be

g =exp(—c,N %) =1 —c,N* + O(N™%) (1.12)

for some ¢ > 0 and ¢; > 0. Moreover, we assume that « = «(N) and 8 = B(N) are
such that

1—
u:u(a,q,N):—q—le(—l,oo) and
o

v:v(ﬁ,q,zv)zl%—le(—l,oo) (1.13)

do not depend on N. Note that this implies that «(N) and S(N) are of order N ¢, while
the effective density at the left and right end of the segment remains constant. We have
the following result on approximating the stationary distribution of the open WASEP in
the maximal current phase, similarly to Theorem 1.2.

Theorem 1.5. Consider an interval I = [a, b]| and take q from (1.12) with ¢ > 0.
Assume

max (NZE log?(N), |1|) ifu+v<Oande <
min(a, N — b) > (1.14)
max(N3810g(N),|I|> ifu+v>0ande < %
for max(u, v) < 1, i.e. we consider the maximal current phase. Then
1
li - B — =0. 1.15
N1—r>n00 HW o (2) TV ( )

We believe that the exponent 2¢ in (1.14) and the restriction ¢ < % are optimal; see

[33] for a seminal result by Corwin and Knizel when ¢ = % on relating the stationary dis-
tribution of the open WASEP to the open KPZ equation under a slightly different choice
of boundary parameters, but again with a constant effective density at the boundaries.
Next, we consider the open WASEP in the shock regime.
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Theorem 1.6. Consider the shock region of the low density phase, i.e. uv > 1 and
u > max(l, v), and let I = [a, b] with

min(a, N — b) > N°. (1.16)
For q from (1.12) with e > 0, and u, v from (1.13), we get
=0. (1.17)

o
nr — Bery (—)
l—q/llty

A similar statement holds for the high density phase of the open WASEP in the shock
region.

lim
N—o0

Letus stress that in contrast to Theorem 1.4, our approximation result covers the entire
shock regime of the open WASEP whenever u # v. We conjecture that Theorem 1.4
extends to the entire high and low density phase of the open WASEP.

Conjecture 1.7. Consider the low density phase u > max(l, v), and let I = [a, b]
satisfy

min(a, N — b) > N°®. (1.18)
For q from (1.12) with ¢ > 0, we get
=0. (1.19)

o
‘MI - Ber[ <_)
l—q/llty

A similar statement holds for the high density phase v > max(1, u) of the open WASEP.

lim
N—o0

1.1.3. The totally asymmetric simple exclusion process with open boundaries Let us
note that in the above Theorems 1.2 to 1.6, we exclude the boundaries between the
different phases. For the special ¢ = 0, the TASEP with open boundaries, also called
open TASEP, the following theorem covers the entire range of boundary parameters,
apart from the so-called co-existence line where ¢ = B < % To achieve this, we
rely on an alternative approach to approximating the stationary distribution using the
representation of the open TASEP as a last passage percolation model on a strip; see
[39,67].

Theorem 1.8. Consider an interval I = [a, b] witha = a(N) and b = b(N), and let

q = 0. Ifmin(a, B) > % and there exists some § > 0 such that min(a, N —b) > §N >
||, then

1
I —Ber; (= —0. 1.20
Nooo ”M o <2> TV (1:20)
Ifa <min(L, B) and N — b > N3 log(N) then
lim [lit; — Ber; (@)lly =0 (121)
N—o0

Similarly, if B < min(%, o) and a > N.% log(N) then
lim |lju; —Ber; (1= B)llpy =0. (1.22)
N—o0

Note that we impose slightly stronger assumptions on the size and location of the
segment compared to the previous theorems. We expect the above results to hold also for
the open ASEP with any constant g € (0, 1), and that the assumptions on the location
and the size of the segment can be weakened to match the assumptions in Theorems 1.2
to 1.4.
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1.2. Related work. Exclusion processes are among the most studied examples of inter-
acting particle systems, introduced to the mathematical literature by Spitzer in [73] over
50 years ago; see [59] for a more comprehensive discussion. The open ASEP was studied
by Liggett in [57] who provides a remarkable recursive construction of the stationary
measure. In [38], Derrida et al. introduce the Matrix product ansatz as a celebrated tool
to represent the stationary distribution of the open TASEP; see also [15] for an extension
to the open ASEP, and [14] for an introductory survey to this technique. These insights
led to countless articles on the stationary distribution of the open ASEP from various
different perspectives. In a series of papers, Bryc et al. investigate the moment generating
function of the stationary distribution, which allows to characterize the limiting density
fluctuations and to obtain large deviations for the number of particles under the station-
ary distribution, among other applications [20,21,23]. A key tool are Askey—Wilson
processes, related to Askey—Wilson polynomials found in [75] when investigating the
current of the open ASEP, to order to study the Laplace transform of the height function
representation of the open ASEP. In turns out that, depending on the different phases
in the fan region, the height function converges to the sum of a Brownian motion and
a Brownian excursion in the maximal current phase, to a Brownian motion in the high
and the low density phase, and to a sum of Brownian motion and a Brownian meander
on the boundary of the phases. Very recently, the phase diagram in the shock region was
established by Wang et al. using signed Askey—Wilson measures [76], verifying that
the height function converges to a Brownian motion in the entire high and low density
phase.

The Matrix product ansatz serves as a key tool for various combinatorial interpreta-
tions of the stationary distribution of open ASEP using lattice paths and tableaux, allow-
ing also for more general boundary parameters, see [17,30,61,66] for a non-exhaustive
list, and [78] for a survey. We are particularly interested in the representation of the
stationary distribution of the open ASEP given in [17] as weighted bi-colored Motzkin
paths; see also Derrida et al. in [37] for the special case of the open TASEP described
in Sect. 2.3.1. Note that studying the fluctuations of random bi-colored Motzkin paths
is also of independent interest; see [22,24]. Let us further mention that the above com-
binatorial representations of the invariant measure can be extended to multispecies ex-
clusion processes, offering also an alternative descriptions of the invariant measure in
terms of queuing systems, as well as to asymmetric exclusion processes on the circle
[4,26,28,41,62,63].

When the Matrix product ansatz allows for a representation using only finite dimen-
sional matrices, much more can be said about the stationary distribution. Jafarpour and
Masharian note in [48] that the invariant measure can be written as a convex combination
of so-called shock measures; see Sect. 6.1, and [43] for a very recent similar result for the
symmetric simple exclusion process with open boundaries. Recently, Schiitz established
a much deeper relation in this case between the open ASEP and an exclusion process
on a closed segment, introducing the concept of reverse duality [71]. Let us mention
that the Matrix product ansatz is used in physics to investigate higher moments of the
current of open ASEP or multispecies systems—see [5,54,74]—and can be rigorously
extended also to other models; see for example recent work by Yang for the six-vertex
model on a strip [80].

For asymmetric simple exclusion processes out of equilibrium, mixing and relaxation
times are a standard way to study the speed of convergence to the stationary distribu-
tion, see [25,51,52] for results on the ASEP and WASEP on a closed segment, and
[35,36,39,44,67,68] for the open ASEP and TASEP. Let us remark at this point that due
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to the representation as a last passage percolation model, many properties such as current
fluctuations or the existence of the TASEP speed process are very well understood for
totally asymmetric simple exclusion processes—see for example [3,6,42]—while cor-
responding results for asymmetric simple exclusion processes are sparse and often only
subject to recent breakthroughs [1,2,7,8,46]. We will see in Sect. 7 that the set of avail-
able techniques significantly increases when approximating the stationary distribution
in the special case of the open TASEP. Finally, let us stress that the open ASEP plays a
crucial role in the KPZ university class as it allows under a suitable weakly scaling to con-
struct a unique stationary solution to the open KPZ equation; see [9, 18,19,33,34,50,64]
for a non-exhaustive list of seminal articles on this relation, and [32] for a recent survey
by Corwin.

1.3. Main ideas and concepts. In order to approximate the stationary distribution in
the fan region, we rely on [17] to express the stationary distribution of the open ASEP
on a segment of length N as a weighted lazy simple random conditioned to stay non-
negative, and to return to the origin after N steps. In order to study these weighted
random walks, we borrow ideas from random polymer models. In the maximal current
phase of the open ASEP, we apply a change of measure to the uniform distribution on
the set of bi-colored Motzkin paths. In the maximal current phase of the open WASEP,
we use Holley’s inequality and stochastic domination on the set of bi-colored Motzkin
paths when u + v < 0, and a supermartingale argument when u + v > 0 in order to
control the weight and fluctuations of typical paths. In all three strategies, our goal is
to show that the corresponding random polymer is delocalized, i.e. that a random walk
path sampled according to the polymer measure is likely to spend most of the time away
from the x-axis. Let us note that this agrees with the usual notion of delocalization for
random polymers, i.e. that the (normalized) free energy is zero; see also Sect. 3.1 and
Remark 4.20. In the fan region of the high and low density phase of the open ASEP, we
use renewal techniques in order to couple the weighted random walk trajectories with
a suitable bi-infinite polymer. In particular, a random walk path sampled according to
the polymer measure is likely to remain very close to the x-axis, or again equivalently,
the associated free energy is strictly positive. In the shock regime of the open ASEP
and open WASEP, we rely on the canonical coupling to compare exclusion processes
with different boundary parameters, and an explicit expression of the invariant measure
as a sum of shock measures, using an ASEP on a closed segment with finitely many
particles and particle-depending hopping rates. Finally, for the open TASEP, we exploit
its equivalent formulation as a last passage percolation on the strip, and we use recent
results on the coalescence of geodesics, as well as the random extension and time-change
technique from [68] in the maximal current phase, in order to approximate the stationary
distribution.

1.4. Outline of the paper. This paper is structured as follows. In Sect. 2, we review com-
binatorial representations of the invariant measure of the ASEP with open boundaries.
In Sect. 3, we establish the correspondence between the representation of the invariant
measure as bi-colored Motzkin paths and a random polymer model with a hard wall and
pinning. In Sect. 4, we consider the open ASEP and open WASEP in the maximal current
phase, and show that the corresponding random polymer model is delocalized. This al-
lows us to conclude Theorem 1.2 and Theorem 1.5. In Sect. 5, we study the high and the
low density phase of the open ASEP in the fan region, and show that the corresponding



Approximating the Stationary Distribution Page 9 of 64 176

random polymer localizes, allowing us to obtain Theorem 1.3. In Sect. 6, we treat the
shock region of the high and low density phase of the open ASEP and open WASEP,
proving Theorem 1.4 and Theorem 1.6. In Sect. 7, we investigate the open TASEP using
last passage percolation, and hereby establish Theorem 1.8. Let us remark that Sects. 6
and 7 can be read independently, while Sects. 2 to 5 build on top of each other.

2. Combinatorial Representation of the Stationary Distribution

We start by recalling combinatorial representations of the stationary distribution of the
open ASEP. This includes the celebrated Matrix product ansatz and a representation of
its weights using bi-colored Motzkin paths.

2.1. Recursive construction of the stationary distribution. The idea to use a recursive
construction in order to express the stationary distribution of the open ASEP is due
to Liggett [57]. In a celebrated result, Derrida et al. introduce the framework of the
Matrix product ansatz, where the weight of each configuration in the stationary dis-
tribution is represented as a product of, in general infinite dimensional, matrices; see
also Appendix B. In the following, we recall the recursive construction of the stationary
distribution from [17].

LetQ ={o}ulJ, on £2n be the set of all {0, 1} configurations with arbitrary length,
including the configuration of length zero, and we set £(n) = n when 7 has length n.
Moreover, with a slight abuse of notation, for all n, ¢ € 2, we write £ = [n, ¢] for the
configuration in €2, where we concatenate n and ¢, i.e. & € Qy(y)+e(z) With

i <x<
€= 120 ey i e <x £ 60+ 60 @D
We say that B: 2 — R is a basic weight function if the following relations hold:
B(@) =1
B(n) = aB([0,n]) 2.2)

B(n) = BB([n, 11)
B([7,0,¢D) + B([n,1,¢D) = B([n,1,0,¢]) —¢B([n,0,1,])

for all n, ¢ € Q. The following statement is Theorem 1 in [17].

Lemma 2.1 (Brak et al. [17]). Let B be a basic weight function on Q2. Then for all
n € Ly,

B
WA ) = ) = 0 where Zy = Y B(Q). (2.3)

Zn teQn

The quantity Zy in (2.3) is called the partition function for the open ASEP. It is
closely related to various statistics of the open ASEP, for example the average current of
particles through a segment of size N is given by Zy_1/Zy; see [14] for an overview,
and [49] for an alternative combinatorial representation of the partition function.
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2.2. Bi-colored Motzkin paths. In order to construct a basic weight function for given
parameters «, 8, g, we again follow the approach in [17]. Recall Ng = {0, 1,2, ...} and
define

MPy = {(vo, V1, ...,Un): vi—1 € Ng x Ny foralli € [N + 1], vo = (0, 0),
vy =(N,0), v, —v;i_q € {(1,1),(1,0),(1,—D} foralli € [[Nﬂ} (2.4)

to be the set of Motzkin paths of length N, i.e. the set of all lattice path starting from the
origin, which stay non-negative, perform only horizontal or diagonal steps to the right,
and return to the x-axis after N steps. We require in the following a modified version of
Motzkin paths, where we color all horizontal steps. More precisely, let A be the set

A= {N, E,E, S} , (2.5)
where we refer to N as a north step, to S as a south step, and the remaining elements
as east steps. For each w € AN we assign a lattice path v, = (vg, v1,...,vy) by
vo = (0,0) and

(1,1)  ifw@ =N
vi—vi1=1(1,0) ifwl)e {é, } (2.6)
(1,-1) fw@ =39S
for all i € [N]. The set of bi-colored Motzkin paths is now given as
Uy = fo e A¥: v, e MPy|. @.7)

For each w € Wy, we define its height at positioni € {0, 1, ..., N} by

i
hi(@) =Y Lio()=N) — Lw()=s) (2.8)
j=1

i.e. h;(w) corresponds to the height at position i in the Motzkin path v,, associated to w.
With a slight abuse of notation, we will also write 4; (¢) for the height of a Motzkin path
¢ € MPy at position i € [N] as the height is independent of the coloring. Moreover,
for fixed @, B > 0 and g € [0, 1), we define for each w € Wy its weight at i € [N] by

(1—q)(1—g"@*)  ifw@i =N

Wi (o) = (1—g)(1+ uqhi(w)) if w(i) = E 2.9)
(1 =) (1 +vghi@) ifw(i)=E

(1 =) (1 —uvg" @~ ifw@) =S,

where we recall u = u(o, g) and v = v(B, g) from (1.6), respectively (1.13) when
q = q(N). We set

N
W(w) =[] Wi) (2.10)

i=1

as the total weight of w € Wy. The following result is Theorem 13 in [17].
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Fig. 3. Correspondence between bi-colored Motzkin paths and the particle configuration. The horizontal

moves Ic-:) are marked as dotted lines
Lemma 2.2 (Brak et al. [17]). The function B given by B(n) = Zwecn W (w) with

Cy = {a) e Ay : o(i) € {N, l'_—‘} if and only if n(i) = 1} (2.11)

is a basic weight function. In particular, the stationary distribution satisfies for all
[ORS] QN

-1

=Y W || X W | . (2.12)

we(,’,, weWVy

We refer to Fig. 3 for a visualization of the correspondence between bi-colored
Motzkin paths and particle configurations. Let us remark that combinatorial representa-
tions of the stationary distribution of the ASEP with open boundaries are also available
when we allow for particles to enter at the right and exit on the left. In this case, Corteel
and Williams found a remarkable expression of the stationary distribution using stair-
case tableaux [30]. We focus in the following on the open ASEP model with respect
to parameters ¢, «, 8, and leave the general case of five parameters, with entering rates
o, 8 > 0 and exiting rates 8, y > 0 of particles at both ends of the segment, for future
work.

2.3. Two special cases. We discuss now two special cases where the above representa-
tion of the stationary distribution in terms of bi-colored Motzkin paths simplifies.

2.3.1. The TASEP with open boundaries Suppose that ¢ = 0, i.e. we consider the
TASEP with open boundaries; see also Section 2.2 in [37]. Then the weights satisfy for
alli € [N]

W;(w) = 1 whenever h; (w) > 0.

In particular, note that the weight of a bi-colored Motzkin path @ € Wy only depends on
the number of times its associated lattice path stays, respectively returns, to the x-axis.
This further simplifies when « = B = 1 as all configurations w € Wy receive the same

weight, and so the partition function is given by the (N + D™ Catalan number, i.e.
N=UENME= N2\ v+ ) '

weVy
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see also [29,77] for a more detailed discussion of combinatorial expressions of the
partition function with other parameters, and [79] for a survey on combinatorial rep-
resentations. Let us mention that we will revisit the TASEP with open boundaries in
Sect. 7, studying its representation as a last passage percolation model on a strip.

2.3.2. A finite Matrix product ansatz representation Observe that in the case where
uvgk =1 (2.14)

for some finite k € {0, 1, ...}, we have that W(w) = 0 whenever %; (w) > k for some
i € [N], i.e. we restrict to bi-colored Motzkin paths whose associated lattice paths
have height at most k. In this case, it turns out the matrix product ansatz allows for a
representation using only finite dimensional matrices, and an explicit characterization
of the invariant measures of the ASEP with open boundaries can be given in terms of
Bernoulli-shock measures [48,70,71]. We will elaborate on this idea in more detail in
Sect. 6.1, where we approximate the stationary distribution using coupling arguments
and shock measures.

3. Polymer Characterization of the Stationary Distribution

In this section, we further investigate the representations of the stationary distribution
of the open ASEP discussed in Sect. 2. Our key observation is that in the fan region,
weighted bi-colored Motzkin paths can be studied using ideas from random polymer
models. Speaking in the language of polymers, we are interested in the localization and
delocalization, i.e. whether a random Motzkin path sampled according to its total weight
stays typically away from the x-axis.

3.1. A brief introduction to random polymer models. In the following, we recall some
basic definitions and properties of random polymer models. As the related literature
is way too exhaustive to give a full account at this point, and as we require a slightly
different setup compared to the standard models, we only give a brief overview, and
instead refer the interested reader to the notes by Giacomin [45] for a more exhaustive
introduction.

Let (S;)nen, be alazy simple random walk with i.i.d. increments, that is Sp = 0 and
Sy = Z?:l X; for all n € N, where (X;);en are i.i.d. and satisfy

1 1
PO =D =FX; =~ = PX;=0)= . (3.1)

Let P denote the corresponding law on the space of trajectories of the lazy simple random
walk (n, S;)nen,. Let Vi Z x {—1,0, 1} — R U {—o0} be a function taking values in
the reals together with —oo. For all N € N, we define the free Polymer measure P‘;V v
by ’

de 4N N
b= P (Z V<Si,x,~)), (3.2)

N,V i=1

where Z .y isasuitable normalization constant, to which, with a slight abuse of notation,
we refer to as the partition function of the polymer. Here, we use the convention that the
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right-hand side in (3.2) is zero whenever V (S;, X;) = —oo forsome i € [N]. Similarly,
we define the constraint polymer measure PS, |, by

) A al
=z, P2V XD e (33)

with respect to N € N and V, where Z]f,’ v 18 a suitable normalization constant. In other
words, we apply the pinning constraint that the random walk returns to the origin after
N steps. We will write P! and P® whenever N and V are clear from the context. If V
satisfies V(x,-) = —oo for all x < 0, we say that we have a hard wall constraint,
i.e. we restrict the available state space such that the walk according to the respective
polymer measure is require to stay almost surely non-negative. Whenever the limit

) 1 )
F(V) = lim — log (Zv.v) (3.4)

exists for ZN,V € {Z;v,v’ Zﬁ,’v}, we refer to FI(V), respectively FC(V), as the free
energy. In the following, we are interested whether F" (V) > log(4), called the local-
ization regime, or F" (V) = log(4), called the delocalization regime, for very specific
choices of V.

3.2. Characterizing the equilibrium of the open ASEP. We argue in the following that in
the fan region of the open ASEP, we can identify the weighted set of bi-colored Motzkin
paths with a suitable constraint random polymer model with a hard wall. More precisely,
fixu = u(a, g) and v = v(B, ¢g) from (1.6) such that uv < 1. We consider the function
V:7Z x{-1,0,1} - R, where

log (\/(1 “ (1 = uvqh)) ifh>0andye{—1,1)
V(h,Y) = log (2 + (u +v)g") ifh>0andy =0 (3.5)
—00 otherwise.

Recall the total weight function W from (2.10). Let Py denote the law on the space of bi-
colored Motzkin paths Wy, where w € Wy is chosen proportional to W (w). Moreover,
recall that for all w € Wy, we denote by v, its corresponding lattice path in MPy .

Lemma 3.1. Letuv < 1 and N € N, and consider the constraint polymer measure with
respect to 'V from (3.5). Then for all ¢ € MPy,

P () =Py vy = 0). (3.6)

Moreover, we have that the partition function ZI‘\’,’V satisfies

1
25, = T > Ww). (3.7)

weVy
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Proof. Observe that a path chosen according to P?v,v is almost surely in MPy . Hence,
it suffices to show that the weight of a path ¢ € MPy, by summing the weights of its
corresponding bi-colored Motzkin paths, is proportional to the weight of ¢ according to
P?v,v' Note that in every bi-colored Motzkin path, the number of N moves from height
h to h + 1 equals the number of S moves from height /2 + 1 to 4. Moreover,

Z W(w) = l_[ Wi(w) l_[ (2 +(u+ v)qh"(“’))

weWy 1 vy=¢ i: w(@)e{N,S} i: w(@)¢{N,S}

With these two observations, the statement (3.6) follows from the choice of V. Equation
(3.7) follows from (3.6) and definition of Zz?/,v in (3.3), noting the extra factor of

(1 — ¢)~" by our choice of V. |

Let us mention at this point that different representations for the basic weights are
known, for example by Enaud and Derrida in [40]; see also recent work by Barraquand
and Le Doussal to construct a solution to the open KPZ equation [9] using their repre-
sentation. We stress that the representation in [40] is for the five parameter version of
the open ASEP, where particles also exit at the left (enter at the right) boundary at rate
y (at rate §), and assuming Liggett’s condition

y 1)
a+—=1 and B+-=1. (3.8)
q q

In total, this leaves again three degrees of freedom in the parametrization of the model. In
[40], the basic weight function is again given by weighted random walks, and the weights
take a similar form as in (2.9). However, the random walk trajectories do not need to
return to the x-axis after N steps, and to our best knowledge, do not allow for a simple
Markovian construction of the underlying polymer measure; see also Lemma 4.13. Our
description of the basic weight function using bi-colored Motzkin paths is specific to the
case of the three parameters (g, «, ), but we conjecture that our results extend to the
open ASEP under general boundary parameters. Finally, let us mention that the above
characterization of the stationary distribution extends directly to the open WASEP.

3.3. Strategy for the fan region of open ASEP and open WASEP. In order to approximate
the stationary distribution in the fan region, we rely on its characterization as a constraint
random polymer model. In the maximal current phase, we show that the respective
polymer measure is delocalized. More precisely, we argue in Sects. 4.3 and 4.4 that a
bi-colored Motzkin path chosen according to Py and evaluated at distance x from the
boundary has with high probability a height of order /x, provided that x is sufficiently
large compared to N, and depending on the choice of ¢ = g(N). This is achieved by
a stochastic domination when u + v < 0, and a supermartingale argument, otherwise.
For the last part, when u + v > 0, we first establish a delocalization result under the
free polymer measure in Sect. 4.3 which is then transferred to a delocalization result for
the constraint polymer in Sect. 4.4. For the open ASEP and open WASEP, we present
the proof of the approximation of the stationary distribution in Sect. 4.5. Heuristically,
the probability to see each of the moves in .4 from (2.5) is roughly equally likely and
independent of the previous moves, allowing us in Sect. 4.5 to conclude the desired
approximation. In the fan regime of the high and low density phase of the open ASEP,
we show that the respective polymer measure is localized. We give in Sect. 5.1 bounds on
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the expected number of steps between two contact points of the associate Motzkin path
with the x-axis by exploiting the renewal structure of random polymers. We then couple
in Sect. 5.2 the constraint polymer to a stationary renewal process, which in return gives
rise to a product measure in the respective particle configuration.

4. Approximation in the Maximal Current Phase

In this section, we investigate that the stationary distribution in the maximal current phase
of the open ASEP and open WASEP. We show that the associated random polymer is
delocalized, establishing Theorems 1.2 and 1.5. We start in Sect. 4.1 with the open ASEP
in the maximal current phase, where we show that the path measure under the weights
V from (3.5) is equivalent to the uniform measure on the space of bi-colored Motzkin
paths.

4.1. Delocalization for the open ASEP in the maximal current phase. For a given path

w € Wy, recall its height function (&, (a)))xe[[o,Nﬂ from (2.8). We let (A’I'V])NGN be a
family of events on the space of lazy simple random walk paths (S,),c[o, N Where

AY =18 = j}.
We have the following result on the open ASEP in the maximal current phase.

Lemma 4.1. Let g € (0, 1), and u, v < 1 be fixed. Recall the function V from (3.5).
Then

lim P (Ai’j)zl 4.1
N1—r>noo NV N ( )

Jorall j = jy andi =iy < N/2 such that jy < «/in. Moreover, for every interval
I = [a, b] with |I| < min(a, N — b), the height function (hy (£))xefo,N] Satisfies

Jim P, (hx(g)z > /[l min(a, N — b) forall x € 1) —1. 4.2)

Proof. For g € (0, 1), we recall equation (63) in [15], which states that the partition
function Zy from Lemma 2.1 of a basic weight function satisfies

4(q; )3, 4N N ( 4N >
= (4]
VT (W, v; @)oo N3/2(1 — g)N N3/2(1 — g)N

in the maximal current phase of the open ASEP. Here, we set (x, ¥; ¢)xo = (¥; @)oo
(75 ) o> and let

ZN

(4.3)

(@ Qoo =] J(1 = 24D (4.4)

i=0

for z € R be the g-Pochhammer symbol. Together with Lemma 2.2 yields that

-1 L 4N
Zy = (1—q)Nw§NW(w)_ﬁ(u,v;q)ooN3/2+0(N3/2)‘ 4.5)
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Recall the mapping v, for w € Wy from Lemma 3.1. Then by enlarging the underlying
state space, and equation (3.7) to express the partition function Z¥%, |, by the weights W,
we see that by a change of measure,

. 1
v g wianr = [V e

2
im _—IEN[W(a))]l
N—o00 ZN

Jim P43

{vweAy/ }]'

Here, En[ - ] denotes the expectation with respect to the uniform distribution on Wy .
Moreover, recall from (2.13) that the number of bi-colored Motzkin paths |V y| equals
the (N + 1) Catalan number. It is a well-known fact that

N 4N

< |Wn| = CZW (4.6)

C1 W
for some ¢, co > 0 and all N sufficiently large. Hence, using dominated convergence
together with (4.5) and (4.6), it suffices to show (4.1) and (4.2) with respect to the uniform
measure on Wy . Observe that we obtain the uniform measure on Wy by considering a
lazy simple random walk conditioned on staying non-negative, to return to the origin
after N steps, and flipping independent fair coins to decide for the coloring of each
horizontal move. The first claim (4.1) now follows from the standard fact that the above
lazy simple random path converges to a Brownian excursion. The second claim (4.2) is a
consequence of (4.1) for heights at a and b, and a standard moderate deviation estimate
for the fluctuations of a lazy simple random walk on /. O

4.2. Delocalization for the open WASEP via stochastic domination. Consider now the
open WASEP in the maximal current phase. Our goal is to compare the measure P€ to
the uniform distribution on Wy . We discuss in the following two different approaches to
achieve this goal. In the first approach, presented in this section, assuming that # and v
satisfy uv < I and u + v < 0, we establish stochastic domination of the trajectory with
respect to a certain non-lazy simple random walk conditioned to stay non-negative and
to return to the x-axis after N steps. We have the following result on the trajectory.

Proposition 4.2. Recall P° = P, |, from (3.3) with V from (3.5). If q satisfies (1.12)
for some ¢ > 0, and u +v <0, then

lim P¢(A%/) =1 47
Nl—I>noo ( N ) ( )
holds forall j = jy andi =iy < N/2 such that jy < /iy and min(iy, N —iy) >
N?¢10g?(N). Moreover; for all I = [a, b]| with max(]I|, N> log?(N)) < min(a, N —
b), the height function (hx(f))xe[[o,N]] satisfies

lim P° (hx(g)z > /[l min(a, N — b) forall x € 1) —1. 4.8)
N—o0
For M € N and x € Z, we define the space of lattice paths

AE;;) = {(vo, Vly. s Up): Vi1 € [—x,00] X [—x, 00] foralli € [M +1], vy = (0,0),

4.9)
vi —vi_1 € {1, 1), (1,0), (1, =D} foralli € [[M]]},
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and let IA\E",;) C Agf,;) be the space of lattice paths without horizontal moves, i.e. v; —v;_1 #
(1, 0) for all i. In order to show Proposition 4.2, we first recall some basic notions for
stochastic domination. For M € N fixed, consider the natural ordering > on the space of

lazy simple random walk paths of length M, i.e. we say that (S’,,)ne[[()’ m] = (Snefo,m]
if

S; = S; foralli € [0, M].

We will be interested in sets B of trajectories which are increasing with respect to the
partial order >, i.e. we have that

YeBandY =Y = Y € B.

Note that when we restrict ourselves to trajectories in /A\gf,;) for some x and M, the partial
order > gives rise to a distributive lattice. In this case, for any ordered pair of lattice
paths Y > Y of length M, we denote the respective unique minimal and maximal paths
by

min(Y, Y) := (min(Y,, ¥y) for x € [0, M])

max(Y, Y) := (max(Yy, Y,) for x € [0, M]).
Note that the above observations remain valid when conditioning on the height of the
endpoint of the paths. Next, let N, , = N, ,(Y) denote the number of horizontal step
in the trajectory Y between positions a and b, and let )A’a,b € f\ggl Nos be the path Y
after removing all horizontal moves between a and b. Recall that for all w € Wy, we
denote by v, its respective lattice path in MPy. For M < N, define the measure PE[‘Z‘%
on MPj, by

PEZ:% )~ Z W(w)ﬂ{f’a';,=- for Y =v,, and J\/'a';,(Y)zN—M} ’
weVy

In other words, f’f[va[ Z] (Y) is proportional to the total weight of all configurations in Wy
which reduce to Y after projecting to MPy and then removing exactly N — M horizontal
stepsin [a, b]. Let f’g’{l;N be the measure on MP; which we get from IA’E[Z % by replacing
the path between a and b — N + M by a uniformly sampled non-lazy non-negative path.
Lemma 4.3. Let u,v < 1 and recall V from (3.5). Fix M and let a,b € [N] with
a < b. Then the measure lA’f[z;\]l] stochastically dominates P%I;N on [a, b], i.e. for every
increasing set B with respect to >, measurable with respect to the path on [a, b— N+M],
andall y, 7

Py BlYa=y. Yo =20 = PN (B Ya=y. Y = 2). (4.10)

Proof. Let N be sufficiently large such that uvg™
fhy = (1=¢" (1 ~uvg"™")

is monotone increasing in /. From this, observe that for any two paths Y and Y with
Y > Y, which agree outside of the interval [a, b — N + M],

2 < 1. Then the function

Pl (D) 2 Py )
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as V(h, 0) is increasing in 4 by our assumption u + v < 0. Thus, since PE[Z’ % assigns

the same weight to each lattice path in [a, b — N + M|, we get for all above Y, Y

f’ﬁi:%(max(?, Y)PYN (min(y, ¥)) > ﬁﬁ‘g:%(?)ﬁgﬁ;’v(m. 4.11)
Since the underlying space of trajectories between a and b — N + M conditioned to agree
in their heights at a and b — N + M, is a distributive lattice, the stochastic domination
follows by (4.11) and Holley’s inequality on the interval [a, b — N + M]; see Corollary
11 in [47]. |

Let us stress that in the above result, it is crucial that we only allow for north and south
moves and u +v < 0 in order to apply Holley’s inequality. It remains now to control the
number of horizontal moves in a configuration according to P¢. To do so, let PR, denote

measure on the space Ag\?) by weighting each configuration proportionally to 2Now,

Intuitively, we obtain PB‘\, from a lazy simple random walk (Sx),c[o, ] conditioned to

stay non-negative until time N. This process is known to converge to an A-transformed
lazy simple random walk; see also Sect. 5.2.

Lemma 4.4. Consider an interval [a, b] for some a = ay and b = by with my =
by —an — oo for N — oo. Then there exists some § > 0 such that
lim PE(Np < (1—8)my) = 1. (4.12)
N—o0

Proof. First, we argue that for every §; > 0, there exists 6o > 0, such that for all
x,yeN

Pl (N > (1= 8)my | Sa = x, 8 = y) < 2 —8) "V, (4.13)

To see this, notice that under the law PE‘\,( | 84 = x, Sp = y), the random variable N, 5,
is stochastically dominated by the number X of horizontal steps of a lazy simple random
walk conditioned to return to the origin after my — |y — x| steps. For any choice of x
and y, a local central limit theorem yields that there exists C > 0 such that for all N
large

P(X = (1 = 8)my) < Cmy (X" = (1 = $)my)

for a Binomial-(my — |y — x|, %)-distributed random variable X’. This implies (4.13)
by a standard tail estimate for X’. Let §; < (1 — max(u, v))/3, and note that from the
definition of P€ and (4.13), together with a change of measure by (3.3), we get that

2 =28\
2 -4

P(Nap > (1 — 82)my) < (1 +max(ful, [v])™¥ (2 —8) " < <
(4.14)

which gives the desired result. O

Proof of Proposition 4.2. We will only show (4.7) as (4.8) directly follows (4.7) and
a standard moderate deviation estimate for lazy simple random walks. We will use in
the following two basic observations for the non-negative non-lazy simple random walk

(S)nefo.m] With law P, Let M = M(N) < N and xy, yy > N®log(N). Then for
every fy > 1 and gy < min(xy, yn)

Jlim P (3z e [M]suchthat S, > VM ' | So =08y =0) =1 (4.15)
—00
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T Y
N¥log(N) N

Fig. 4. Visualization of the different delocalization strategies in Propositions 4.2 and 4.5. The black curve

corresponds to the trajectory sampled according to PI% NT- The red path is a sample for P€ when u +v < 0,

and dominates the black curve by Proposition 4.2 after removing all horizontal steps. The blue path illustrates
a sample of P€ when u + v > 0 and & > 0. For the colored paths, heuristically, the number of south moves is
negligible before reaching a height of order N¢

Jlim P (S, = VenNelog(N) forall z € [M] | So = xn, Sy = yn) = 1. (4.16)
—00

Both statements follow from a basic computation using the reflection principle and a
local limit theorem for non-negative simple random walks; see also Chapter 2 in [53].
We claim that for any slowly growing function fy > 1

1 3 5 7
Nli—r>nooPC (EIaN € |:|:ZiN, ZiNﬂ and by € |:|:ZiN, ZiNﬂ : min(hgy, hpy) > fﬁll\f‘8 10g(N)> =1.
To see this, choose a lattice path according to P and consider its height at positions
(%(ZE — 1)iN)€e[[4]]~ By Lemma 4.4, there exists some § > 0 such that

lim P° max(/\/'l. 3. W Ns. 7
FIN> FIN 1IN

N—o00 s3IN

) < %(1 —8)iN> =1. (4.17)

Now conditioning in addition on the event in (4.17), Lemma 4.3 ensures that the law of
the process after removing all horizontal moves is stochastically dominated between O
and iy /2 and between 3iy /2 and 2iy by a non-lazy simple random walk with at least
%i ~ steps. The desired result (4.7) on the height at i ;y now follows from equations (4.15)
and (4.16). |

4.3. Delocalization of a free random polymer with a hard wall. For the second approach,
under stronger assumptions on the location and size of the target segment, we use a

suitable supermartingale in order to compare the occurrence of events A',;,] under the

random polymer measure and the law Pr,‘\, of a lazy simple random walk conditioned to
stay non-negative until time N; see Fig. 4 for the different strategies for delocalization.
We start with a result on the delocalization for a free random polymer measure, which
is then transferred to the constraint random polymer measure in Sect. 4.4.

Recall the measure P! = PE\,’V, and assume in the following that ¢ satisfies (1.12)

for some ¢ € (0, %), as well as that u, v satisfy max(u, v) < 1. The next proposition
states a delocalization result on the corresponding free random polymer measure.

Proposition 4.5. For all constants C > 0, and for any (ky) yen withky > N3¢ log(N)
P (A% holds for some i < ky and j > CN?log(N)) > 1 —exp(—=N?) (4.18)
for all N sufficiently large.
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In order to show Proposition 4.5, we require some setup. Let

Ay = {(vo, Vi, uy) € (No x Z)N: v — vy € {(1,1),(1,0), (1, =D} Vi € [[Nﬂ}
(4.19)

be the space of all lattice paths of length N. For fixed x € Ny, let (S,t‘)ne[[o‘ n] be a
sample on the space Ay according to a lazy simple random walk started from x and
conditioned to be non-negative until time N. Note that (S,'L‘),,E[[O, ~] can be interpreted

as a time-inhomogeneous Markov chain with SS = x and

1Pi(to> N —mP(tg>N—n+D71 ify=x+1

1 1 .

sPi(tg >N —n)Py(to >N —n+1) ify=ux
PSh=yISh  =n={2" N o

7Pi—1(to > N =n)Py(to > N —n+1) ify=x—1landy >0

0 otherwise,

where P, (79 > n — 1) is the probability of a lazy simple random walk started from x
to not return to O within the first n — 1 steps; see also Chapter 12 in [53]. Let (S;);en,
denote a lazy simple random walk. Using the reflection principle, we see that for all
xeN

Pi.(tg > j) = P()(max Si < x) = Po(Sj € (—x,x)).
ielj]

This implies that for all § > 0, there exists some J = J(8) such that for all j > J

p . p .
1=inf)f(ro—>'1)§ u M51+5 (4.20)
x>0 Pr(rg > j+1) = ;oo Px(to>j+1)

using a local central limit theorem for (S;);en,; see Chapter 2 in [53]. Next, we define

an auxiliary process (X,),en, to express the partition function Z}CV’V; see [16] for a
related martingale technique for random polymers. Recall V from (3.5) and set for all
n € [0, NJ

n
Xp = [Jexp(v(sP, s — s ))). 4.21)

i=1

Let (Fu)ne[o,n] denote the natural filtration with respect to (S,-h )ic[o,n]» and write P, =

P)(CN) and E, = E,(CN) for the law and expectation under the lazy simple random walk

started from Sg = x and conditioned to be non-negative until time N, respectively.

Lemma 4.6. Let u, v € (—1, 1), and g satisfy (1.12) for some ¢ > 0 and ¢ > 0. Then
there exist some absolute constant Jo = Jo(u, v, &, ¢) such that for all N sufficiently
large, (Xn)nc[o,n—1q] is @ supermartingale with respect 10 (Fn)cfo,n]- Moreover, we

have that Eo[ X y] < 270 and

21, = Eo[Xy]- Ha) e AV hy(w) = Oforall y € [[N}]H . (4.22)
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Proof. Observe that there exists some § > 0 and Ny € N such that for all N > Ny
A+8)w+v) < (1 =381 +uv)g>. (4.23)

Recall the constant J = J(8) from (4.20) for this choice of §, and set Jy = max(J, Ny).
Using (4.20) and the fact that x — Py (79 > j) is increasing for the first step, and the
AM-GM inequality for the second step, a computation shows that for all n € [N — Jy]

(1 _ q(h,,+2)><1 _ uvq(h,,+l)>>xn

I+4 h,
Ex[X1| ] = <T(2+ (u+v)g™) +

5( 2+(u+v)q ) _6(2—(1+uv)q(h"+2)>)Xn
< ( (1 +8)u+v) — (1 = 8)(1 +uv)g ))
<X,

(4.24)

which ensures that (X,,),,c[o,n—,] 1S @ supermartingale with Xo = 1. Since all weights
W are bounded from above by 1 + max(|u|, |v]) < 2, this gives the desired bound on
Eo[Xy/]. For (4.22), apply the same arguments as in Lemma 3.1, but with respect to the
free random polymer measure. O

Remark 4.7. As pointed out in the introduction, Bryc et al. investigate the stationary dis-
tribution of the open ASEP using Askey—Wilson processes [20,21,23]. These processes
exhibit a martingale structure, and it remains an open question whether this fact can be
related to the above described supermartingale (X,,, F,) for the open WASEP.

Next, for fixed C > 0, we define the exit time tc y from level CN? log(N) as
ey = inf {n >0: s">CN® log(N)} .

For fixed M < N, we write (S’;‘) n>0 for the simple random walk which is non-negative

until time N and conditioned to not hit level CN?®log(N) until time M. Let p';’ y be
given by

h h h
y =P, =ylS,_; =x)
for all x, y € No..Similar to (S,r,])nzo, we notif:e thgt (S,rl‘)n.E 0,N] can b.e. Written for all
n < M as a time-inhomogeneous Markov chain with transition probabilities

)= Py(tc,y > M —n)

Sh _ <h _
B8 =y = p”P(rCN>M—n+1)

(4.25)

withx, y € [CN®log(N) — 1], where we recall that P, denotes the law of a lazy simple
random walk started from x conditioned to stay non-negative until time N. Further,
recall V from (3.5) and set for all n € [0, M]]

n
X, = Hexp(V(SP, SP - Slh—l))'
i=1

Similar to Lemma 4.6, the following lemma justifies that (X nnefo,N] gives rise to a

supermartingale with respect to the natural filtration (.?En)ne[[o, n] of (S‘L‘)nzo.
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Lemma 4.8. Letu,v € (—1, 1), andq satisfy (1.12) for some ¢ > 0 and ¢ > 0. Recall
M = M(N) in the definition of (S )ne[[o N]- Then there exist some Jo = Jo(u, v, €, ¢)

such that for all N sufficiently large, (X, ) efo.M—Jo] is a supermartingale with respect

to (ﬁ,,)nzo. Moreover, we have that Eo[}N(M] < 2%,

Proof. A similar computation as for (4.20) using the reflection principle and a local
central limit theorem for the standard lazy simple random walk on Z ensures that for
every § > 0, there exists some constant Jy > 0 such that

P .
| _5< DxGen=0 4 4 (4.26)
Py(zen > j+1)

uniformly in the choice of j > Jy and x,y € [CN?log(N)] with |x — y| < 1. To-
gether with (4.20) and (4.25), taking § > O sufficiently small, a similar computation
as for (4.24) yields that (X,), e[o.M—Jy] is a supermartingale with Xo = 1, and thus

Eo[X ] < 2%. O

Proof of Proposition 4.5. By a change of measure, it suffices to show that there exists
some C' = C'(u, v, €) > 0 such that for M = C'N* log(N)

Pl(zcn > M) = ;EO[XM:H{I Myl = EO[—XM]PO(IC N>M) (4.27)
’ Eo[Xm] on Eo[Xum] ’

converges to 0 as N — 0o. We claim that there exists some ¢’ = ¢’(u, v) > 0 such that

Zf

lim — exp(—c'N* log(N)) = co. (4.28)

N—o0

To see this, consider the set of trajectories
G =|we A" : hy(w) > min(x, EN® log(N)) for all x € [M]},

with ¢ > 0. Choosing ¢ sufficiently large, there exists some ¢’ = ¢’(¢) > 0 such thateach
pathin G has weight at leastexp(—c¢’N?). Atthe same time, |G| > 4™ exp(—c’N¢ log(N))
for all N sufficiently large. Hence, recalling (4.22) for Eg[ X 5], Lemma 4.6 ensures that

Eo[X )] > exp(—2c' N log(N))

forall N sufficiently large. Choosing now the constant C’ = C’(¢/, ¢, C) > Osufficiently
large,

Po(tc.n > M) < exp(—3c'N®log(N)).

Thus, using (4.27), and Lemma 4.8 to bound Eo[f( M, this finishes the proof. O

Remark 4.9. The same arguments as for Proposition 4.5 ensure that for some constants
C, ¢’ > 0, alazy simple random walk trajectory of length M > N3¢ log(N), weighted
according to (3.2) with V from (3.5), reaches with probability atleastexp(—2¢’ N log(N))
a height of at least CN® log(N) until time M, uniformly in its starting position.
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4.4. Delocalization for the open WASEP in the maximal current phase. In this sec-
tion, we transfer the delocalization result in Proposition 4.5 for the free polymer to a
delocalization result for the constraint polymer. Recall that we assume u, v € (—1, 1).

Proposition 4.10. Consider q from (1.12) with e < % and recall P?V’V from (3.3). Then
Jim P, (A’;Vf ) -1 (4.29)

forall j = jyandi = iy < N/2 such that jy < /iy and min(iy, N —iy) >
N3¢ 1og(N). Moreover, for every interval I = [a, b] satisfying the assumptions (1.14),

lim P° (hx(;)2 > /|l min(a, N — b) forall x € 1) —1. (4.30)

4.4.1. Improved bounds on the delocalization under the free polymer measure Inorderto
show Proposition 4.10in Sect. 4.4.2, we require an improved bound on the delocalization,
stated below as Lemma 4.15. To do so, we start with a basic observation on the simple
random walk (S,?)nz() conditioned to stay positive until time N. Recall the law P?v and
that we write Py for the law of a lazy simple random walk (,,),en, on Z started from x.

Lemma 4.11. For any (ay)nenN and (by)nen With ay > by > 1, there exist some
absolute constant C > 0 such that for all N large enough

b
P (S > by foralin = 0| S§ =ay) =1 - C=~. (4.31)
an

Proof. We show (4.31) by a comparison to a lazy simple random walk on Z. Note that

Pyy (S, = by foralln > 0)

P (SP > by foralln > 0| Sh = ay) = '
N (Sy = by foralln > 0| Sy = ay) Py (S, > 0foralln > 0)

Using the reflection principle for the simple random walk, we see that for all x € N,
Pi(S, > 0foralln € [N]) = Py(Sny € [—x, x]).

A local central limit theorem for the simple random walk—see for example Chapter 2
in [53]—now gives the desired bound. O

Remark 4.12. Alternatively, Lemma 4.11 can be shown by interpreting (S,?) as an h-
transformed lazy simple random walk, i.e. as a random walk on an electrical network
(ce) on Ny with respect to conductances ¢y r+1} = X (x + 1). By a standard argument on
network reduction the effective resistance between ay and by is of order ay while the
effective resistance between by and infinity is of order by, giving the desired result.

It will be convenient to work with a measure PL’N on the space Ay from (4.19) when
we shift the weight function V from (3.5) to Vi (h, y) := V(h+x, y),i.e.forall € Ay

PN (o) =Pl (©). (4.32)

A key observation is that the measure PL’N satisfies a spatial Markov property.
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Lemma 4.13. For all M € [N], and all ¢ = (£1,82) € Ay with &1 € Ay and
$ € AN—m,

P'(0) =PV PV M (@), (4.33)

Proof. This follows from the product form of the weight function V, and the Markov
property of the simple random walk on Z conditioned to stay non-negative until
time N. =

With a slight abuse of notation, we will write Pf = PF\, v = PI)’N when N and V are
clear from the context. Note that similar to Lemma 3.1, we can represent the probability

of a path ¢ under PL’N using a suitable weight function. More precisely, for all w € AV,
we define the weight W) (w) := ]_LNZI Wi(x) (w) by

(I—qg)(1 —g"@*=x)  ifw@) =N

W)= (LT rua ) ife®) =E (4.34)
(1 — g)(1 +vghi@=x) ifwi)=E
(1= g)(1 —uvgh@=1=%) ifw(i) =S

whenever h;(w) > —x for all i € [N]. Furthermore, note that for all w € AN we
can associate a lattice path v,, € Ay via the relation (2.6). The next lemma states a

correspondence between the path weights in (4.34) and the measure PEC’N . Since the
arguments are one-to-one to Lemma 3.1, we omit the proof.

Lemma 4.14. Let uv < 1 and N € N, and fix some x € N. Then for all ¢ € Ay,

1
PO = 2 W), (433)

N w: vy=¢

where ZI(\;C) is a suitable normalization constant.

Next, recall from (1.12) that g takes the form g = exp(—N?®c,) for some constant
¢g > 0. To simplify notation, we will set fromnowon M = M(N, q) = 3cq_1 N¥1log(N)
for all N € N. The following lemma extends the delocalization result from Proposi-
tion 4.5.

Lemma 4.15. Consider q from (1.12) with ¢ < % Then for all x > N3/2 log(N), and
for all N large enough, uniformly iny € N

P;(Elz € [x?] such that h.(¢) > xlog”'(N)) > 1 — N 3. (4.36)

Proof. Set Iy . = [M, x1log~'(N)] and define the time 7’ as the first exit time from
the interval Iy ,, that is

=inf{n >0: hy(¢) ¢ In}.

In the following, our goal is to show that for all N sufficiently large,

4.37)

AW

P! (r/ < %leog—luv) and ho/(¢) = |x log—l(Nu) >
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uniformly in the starting position z > C M, for some suitable constant C > 0 specified
later on. Provided that (4.37) holds, we have the following strategy to conclude. For all
x € N, we define the family of events

i—1)
20

Bf‘i = {§ : hy(¢) = CM forsome y € |[( x?log”H(N), %leog_l(N)ﬂ }

Since x%log~'(N) 3> N3¢ log(N) by our assumptions, Proposition 4.5 and Remark 4.9
ensure that there exist constant a constant ¢ = ¢(C) > 0 such that

PL(B"') > 1 — exp(—2¢N° log(N))
uniformly in the choice i € N and z € N, provided that N is large enough. Let now

Bg'i = {C : hy(¢) = xlog™ ! (N) for some y € H%leog’l(N), %xz log’l(N)H } .

Note that conditioning on the event Bf‘i we see by (4.37) and Lemma 4.13 that
. . 1
Pl(By | BY) = 3 (4.38)

uniformly in the starting position y € N and i € N. Using again the spatial Markov
property from Lemma 4.13, we iterate (4.38) along all odd i to obtain

Pfy(EIz € [x*]: h.(¢) > xlog™'(N)) > p; U B2
i€[10log(N)]
1
1

-3
== 7101og(N) z1=N

for all N sufficiently large, and all y € N. This gives the desired bound in (4.36). It
remains to show that (4.37) holds. To do so, fix some z > CM and partition the set Ay
of lattice paths of length N into two sets 31 and B; as follows. For every ¢ € Ay, recall

i =inf{n > 1: he(n) =M -z} (4.39)

as the first intersection point with the level M — z, and say that ¢ € By if 1(¢) = oo,
and ¢ € B; otherwise. We claim that there exists some C > 0 such that for all N large
enough

9
PlceB)> = (4.40)
10
whenever z > C M. To show this, notice that by Lemma 4.14, it suffices to prove
1
(x)
> W) < 1—0215‘ .

w: vueBy

From the definition of the set By, and assuming z > C M, we see that for all w € B

W, (w) € [1 - % 1+ H 4.41)
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N kol
log®(N)
w1
3
_nie | T
log?(N) w2
M- o
T T R T
Nlog™}(N) N/2-2M2 N/2

Fig. 5. Visualization of the different stopping times in (4.45) for the trajectories of the free random polymer.
The path w1 drawn in blue belongs to the event Cy, the path w; drawn in red to the event Cp

when N is sufficiently large, taking a suitably large constant C > 0. In particular,

> Ww) z( ——) |Bil. (4.42)

w: vyeB)

Splitting now the paths in B, according to the value of tj;_, we get that

N v 1B,
> Wz(w>s(1+ﬁ)ZPL(rM_z=' —T 2 Wu@)

w: vu,€B) i=1 N i A(M)
1
<(1+=)1B02/ 4.43
< ( N>| 2] (4.43)

where we use the definition of W, and the spatial Markov property from Lemma 4.13
for the first step, and the supermartingale property in Lemma 4.6 with constant J for the
second step. Combining now (4.42) and (4.43), and bounding |B;|/|B1| by Lemma 4.11,
we obtain (4.40). Since all paths in By satisfy (4.41), the bound in (4.40) together with a
standard estimate on the exit time of a simple random walk when restricting to the paths
in By yields (4.37). This finishes the proof. O

4.4.2. Delocalization with pinning via a path decomposition We have now all tools for
the delocalization for general values of u, v € (—1, 1) in Proposition 4.10. Without loss
of generality, we assume in the following that N is even. We start with a bound on the
height at position N /2 in the constraint random polymer. The next result is our key
lemma, which also serves as an outline for the proof of Proposition 4.10.

Lemma 4.16. Assume that q satisfies (1.12) with some & < % Then forany j = jy <

VN,
dim Py () = jv) = 1. (4.44)

In order to show Lemma 4.16, we rely on a path decomposition similar to the proof of
Lemma 4.15. Let \IJI(\?) C AN be the set of all bi-colored lattice paths w with &; (w) > 0
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foralli € [N]. Forw € \Ifl(\(,)), we define the times (rc’;,),-e[[étﬂ by

—_

1
N2
7, =inf {n >0: h(w) = }

log?(N)

12 := inf {n >l h(w) = M}
s (4.45)
Nz

3 . 2
=infin>1t: h,(w) = ————
¢ =T el logz(N)}
‘L’i = inf{n > tf): h(w) = M},

where we recall M = 3¢, N°®log(N) for ¢, > 0 from (1.12). Further, we partition the
set lIJI(\?) into subsets (Ci)ie[[ﬂ]’ where C3 := \111(\9)\(61 U Cp) for

N
G :{a)e\I/](\?) ful>§1 ™ /\tf)_oo}
og
4.46
(0) 1 N 2 N 3 3 2 3 4 ( )
Cri=jwe W, ta)flog(N)/\ta)<?_2M2/\rw_Tw<M'/\Ta):OO .

We refer to Fig. 5 for a visualization. With a slight abuse of notation, we treat C; as
a subsets of Ag\(,)), i.e. fori € [3], we say that ¢ € C; with ¢ € Ag\(,)) if ¢ = v, for some
w € Ci.

Remark 4.17. The choice of the times (ch))ie[4] in (4.45) and the assumption ¢ < %

in Lemma 4.16 may seem unnatural at first glance, but have the following intuitive
explanation. Proposition 4.5 guarantees that after order N3¢ log(N) steps, the path has
reached a height of at least N°1log(N) with high probability. Thus, in order to give
bounds on the height of the path after N /2 steps, we need to assume that ¢ < % The
times (t/,);<[4) then allow for a fine allocation of the height after N /2 steps, depending
on whether the path has crossed level M.

We argue in the following that a lattice path according to P‘f\,’v, restricted to the first
N /2 positions, will with high probability belong to the set C;, while the probability to
see a path in C3 is of order o(N /%y To do so, we first consider the measure PEV v and
Cs. ’

Lemma 4.18. Recall the partition function Z;V/Z v andlete < %for q in (1.12). Then

1
f
ZN/z’V(l - (*I)N/2

> W) =o(N""H. (4.47)

w€C3

Proof. Using Lemma 4.15, it suffices to show (4.47) with respect to the configurations
in C3 with 7} < log%. To do so, consider for all i € [N log~!(N)] and j € [N — i]
the sets

i N
= {a) € lIJI(\?/)2 s =iand = — — j}. (4.48)

2
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We start by showing that there exist some constant ¢ > 0 such that for N large enough

|:,l,/| < Cc . (1 14 )1 2(N) ( )
— min y = og 449
Hwe‘lfl(v}z: 'L']—l'H N ﬁ

uniformly ini € [N log~!(N)] and j € [2M>/?]. To see this, recall that P, denotes the
law of a lazy simple random walk (S,),>0 on Z started from z, and note that expressing
the cardinality of the sets in (4.49) as probabilities of a simple random walk yields

5]
foewy),: =i

PK(Sn >o0vnel§—i—jlnsy ;= O)PM(S,, >0Vn e [j])

- ’

Pk(Sy, = 0Vne[¥ —i])

where we set K := N'/21og™%(N). A computation using the reflection principle shows
that

N
PK<Sn20Vne[[?—i—j]] ASy l_o)

=P(Sy_;_; =K)—Po(Sy_,_. = K+2).
2 J 71—

Together with a local central limit theorem, there exists some ¢; > 0 such that
c1

PK<Sn >0Vne [[% —i—jﬂ ASy _0)

uniformly in i € [Nlog='(N)] and j € [2M>/?]. Furthermore, using again the local
central limit theorem and the reflection principle, there exist constants ¢, ¢3 > 0 such
that for any x, y € N

X X
comin ( 1, —> < P(S, > 0Vn € [y]) < c3min (1 —> .
( vy ’ VY
Combining the above observations, this yields (4.49). Summing over all j € [2M>/?]
and using that ¢ < % by our assumptions, we see that there exists some § = §(¢) > 0
with
M52
Ha)e W), T = ” Z |Ch | = o(N~1/49), (4.50)

Next, we use (4.49) and (4.50) in order to argue that

N y
f . . L]
Py (3 [[log(N)]] [[ZMZ]] weCl >
log(N) 2M2

Z Z Z W(w) = o(N~'4).

N/2Vz l-lla)EC
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To do so, we will follow a similar reasoning as in Lemma 4.15 using the spatial Markov
property and supermartingale arguments. Recall from Lemma 4.15 that

N 1 N/log(N)
f 1 -3
o () < log(N)) Tz 2. 2, Welgazl-N"
N2V =1 O
NJ2
(4.51)
Thus, by Lemma 4.13, it suffices to show that uniformly ini € [N log~ ' (N )]s
; N N
PR (v2 € HE —i—2M3, 3 - i) =ov174), (4.52)

where we recall the measure PfI’<N from Lemma 4.14. By Lemma 4.11, bounding the

weights W® (@) as in (4.41), we notice that the partition function Z](\,K_)l. for PfI;N i
satisfies

25 > C4‘ [a) e A(NK)I,” > log~4(N)4N/ 2~ (4.53)
y-

—1

for some constant ¢4 > 0 and all N sufficiently large. Using Lemma 4.6 in order to
bound the weight of paths after position 1:3), together with (4.50) and (4.51), we see that

2M5/2
1 4
aNT E E W)l 2oy jy =o(N /40 (4.54)
J=1 Hea®)

N/2—i

for some 8’ = 8’(¢) > 0. Combining now (4.53) and (4.54) yields (4.52). Next, we
consider

D= {ral) < Nlog~ '(N)and z2 ¢ [N/2 —2M>? N/2] and t> — 12 < M>/* when 2 < oo}.

By Lemma 4.15 in order to bound the probability of the event {‘L'; - rf) > M?>/?} under
P;V 2.7 using the spatial Markov property together with equation (4.52), we get that

Pl )y (D) =1—o(N"'/4. (4.55)

Hence, it remains to bound the weight of paths w € D with 7} < oco. Partition the set D
by

N
Dk::{a)eD: r:):?—k}

for some k € [N/2], and set k = —oo when 7} = co. Using Lemma 4.11, a similar
computation as for (4.49) yields that there exists some constant c5 > 0 such that

N
-1
|qz§3)2| Y IDi <P"@neN: S =M|S)=K)
k=1
PPEneN: "= M|Sh) = N¥*log 2(N))
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MN?

1/4
=c KN55/4 (N )

Using now (4.41) in order to bound the path weight between ‘L’ and r ,and Lemma 4.6
for the path weight after r , this gives the remaining bound on the event {1’ =o00}. O

In a similar way, we show that the contribution of paths in C; is of lower order as
well.

Lemma 4.19. There exists some constant ¢; > 0 such that for all N sufficiently large

1
f
ZN/Z,\/(I - Q)N/z

Pl (el = Y W) < cIN*"Zlog?(N). (4.56)

weCy

Further, there exists a constant ¢; > 0 such that for all z € [N/2], and large enough
N)

Pl o y(@eC A hyp(w) =2)

1 .
= Y W) <N g (V).

N/2 V(l o q) wECzZ hN/z(w):Z

Proof. The first statement follows from the same arguments as (4.52) in Lemma 4.18,
noting that by Lemma 4.11, for all i € [N log='(N)]

N
—1 .
foewis: a=if| Yl = ov 121022,

where we recall the sets Cg’j from (4.48). For the second statement, recall that all paths
w € Cy satisty 103) < N/2—M>/?and rf) = 00. Using the path weight bound (4.41), we
see that for all i € [M 32 N/ 2] and z > M, and N sufficiently large

Pl oy (@) =21t = N/2—i A 74 =00) [1
S

1 1
——,1+—|. 457
PN(SM =z - M|S) = M52 — M) N}

N
Using a local central limit theorem, we get that for all i > M 5/2
AM T ey o]y < P"(Sh_;
=z —M|S} =M — M) < caM™* (4.58)
for some positive constants (c;) ic[4]> and by (4.56), we conclude. O

‘We have now all tools to show Lemma 4.16.

Proof of Lemma 4.16. Recall that we assume without loss of generality that N is even,
as the argument is similar for odd N. For ¢ = (¢1, &2, - .., {n) € MPy, we write

L=, otnpo) and R i= (v, tvor, o) (4.59)
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with ¢L, ¢R e A(O N2 Our key observation is that we can write for fixed . € MPy

c N R f ZR
PN,V(§ = 5) = ZC—PN/Z v(C =1 )PN/z,v(f = )
N,V
Summing over all paths of height x at position N /2, we see that

RS,y (2 (@) = %) ~ Pl (@) = x)2. (4.60)

We argue in the following that with probability tending to 1, the two paths ¢ %, ¢ X for
some ¢ chosen according to P, |, will belong to C;. To do so, we start with the claim
that there exist positive constants (c;);c[4] such that for all x > 0, and N sufficiently
large

Cl
N Ly cfer/M.es v < Phvjav(An2 (@) = xand ¢ € C) < ﬁ~ (4.61)
To show (4.61), first note that by Lemma 4.18 and Lemma 4.19, we see that

I}EnooPsv/z,V(g“ eC)=1.

The claim (4.61) follows by the same arguments as (4.57) and (4.58) in the proof of
Lemma 4.19, i.e. we compare the law of a path ¢, chosen according P;\,’V(z € -|¢ €

C1), after time 7. to a simple random walk conditioned to stay above level M until
time N /2, and apply a local central limit theorem. Next, consider the product measure

ngz/z vy = PN/z v X Pl /2, under which we sample a pair of lattice paths (¢, ¢"). The
lower bound in (4.61) ensures that

Cs
PR’Z/Z,V (hN/2(§) = hN/Z(C/)) > _N

for some constant c¢s > 0, provided that N is sufficiently large. Using again Lemma 4.18
and Lemma 4.19, together with (4.61), we notice that for some constant cg > 0

Pk,z/z,v(hzv/z(i) =hnp(E) A (C €eQUG VIetU Ca))

<P,y (60 e UG)+ ZPN/ZV (6 €C2UC AhN(E) = %),

x>0

and so both right-hand side terms are o(N ~ 172y, Together with (4.60) and (4.61), we get
lim P, (¢hcRea) =1 (4.62)

Now (4.44) follows from (4.60) and a central limit theorem for the paths w € C; after
7). O

We apply a similar idea as in Lemma 4.16 to obtain the delocalization in Proposi-
tion 4.10 for general locations (i) with N3 log(N) < iy < N/2.
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Proof of Proposition 4.10. From (4.62) in the Lemma 4.16, and a central limit theorem
for the paths in Cy, we note that for all § > 0, there exists some ¢ = ¢(8) > 0 such that

8
l}vmianf\, v(np@) = eV/Nand ¢l R e > 1 - 3 (4.63)
—00 !
Let (my) be a sequence with /iy > my > jy > M, where We recall that M =
CN¥¢log(N) for a suitable constant C > 0. Further, recall for ¢ € A 2 the times
Tw(¢) :=1inf{n > 0: hy(¢) > m},

and define for all k, z € [N /2] the events

le’z = {tmy () =k} N {hynsp2() =z} N{he(¢) > M for all x > k}

Cy™ 1= (T () =k} N {hnja(8) = 2} N {4 () = M for some x > k}.

We apply the same arguments as in Lemma 4.15 and for (4.52) in Lemma 4.18 to see that
there exists some ¢ > 0 such that for all z > ¢’+/N with some suitable ¢’ = ¢/(¢) > 0

YD W) =eN 2

N2V kelin] wecks

as well as that

Z Z W(w) = o(N~1/?).

f
ENRY kefin] wech

In particular, with (4.63) and summing over all z > ¢’+/N, and using Lemma 3.1, we
get

25
lim inf P§, V(;L e C% for some k < iy and 7 > c/«/N) >1-2 (464
N—o00 ’ 3

Together with the weight bound (4.41) for paths in Cf’z after position k, we see that

Py (4) = (1 - N) ( > X mPEh oz iish, =z)PfV,V(Cf’Z)) =15

z>c//N ke[in]

for all N large enough, where we recall the measure P)(CN/ ? of the lazy simple random
started from x conditioned to stay non-negative until time N /2. Here, we use (4.41)
and Lemma 4.13 for the first step, and (4.64) together Lemma 4.11 for the second
inequality. Since § > 0 was arbitrary, we get (4.29). The second claim (4.30) follows
analogously. O

Remark 4.20. We showed that when u, v € (—1, 1) and ¢ < %, the partition function of

the free and the constraint random polymer is of order 4 (1+°(1)) Indeed, recalling the
definition of the free energy in (3.4), this yields that the polymer measure associated with
the open WASEP in the maximal current phase is delocalized. Let us remark that for g €
(0, 1), it was shown in [65] that the partition function of the constraint random polymer
is of order 4V N=3/2_ and hence the corresponding random polymer is delocalized. Our
approach yields delocalization for more general values of ¢ depending on N.
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4.5. From delocalization to approximation by a product measure. In this section, we
prove Theorem 1.2 and Theorem 1.5 on approximating the stationary distribution of the
open ASEP and open WASEP in the maximal current phase. In the following, fix for
each N aninterval I = I (N) = [a, b] witha = a(N) and b = b(N), and recall that P,
denotes the law of a lazy simple random walk trajectory when starting from position x.

Lemma 4.21. Consider the open ASEP for some q € (0, 1), and parameters u,v €
(=1, 1). Let I satisfy min(a, N — b) > max(|I|, log>(N)). Then
fim [P,y ((2(0) = ha@rer € ) = Po((S)seppma € )|, =0. (4:65)
N—o0 vV

Proof. We consider in the following only the case |I| < a < N/3 as the remaining
cases are similar. Let

D= {ha(@) =k} {hy @) =z}

forall k, z € [N/2]. Recall from the proof of Lemma 4.1 that the law P‘]:\,y v 1s equivalent
to the law of a lazy simple random walk conditioned to stay non-negative and to return
to the origin after N steps. Using Lemma 4.1, recalling the weights W from (2.9), we
get

[Py (x@)ver € 1D0) =B (S repma € 1SN0 = D 1, = 0.
(4.66)

lim
N—o00
provided that k, z > log(N). As || < a, a similar argument as for Lemma 4.11 yields

Jim [P (S o) € 1SN0 =9~ BelSDseppa] € )y =0
4.67)

whenever k£ > max(/|/],log(N)) and z is of order V/'N. Hence, using (4.66) and
(4.67) with the triangle inequality, and summing over all suitable values of k and z, we
conclude. m|

Lemma 4.22. Consider the open WASEP for some q € (0, 1) withe > 0, and u,v €
(=1, 1). Assume that I satisfies the assumptions in Theorem 1.5. Then we have that

Jm PR v (e (&) = ha(©))xer € ) = Po((S)xer € -)|lpy =0.  (4.68)

Proof. As for Lemma 4.21, we consider only the case a < N/3 as the remaining cases
are similar. Note that by Proposition 4.5 and Proposition 4.10, we find (ky) and (my)
with

min(ay, N — b) > Vky > J/my > || (4.69)
such that for every § > 0, the events
Dy; = {ha(§) = £} N {he(§) = my V¥x € I} A {hnpa(0) = 2}

for z € [c1v/N, c2/N] and constants ¢1,c; > 0, and £ > ky satisfy for all N large
enough

P?V)V (754,1 holds for some z € [[cn/ﬁ, cz«/ﬁ}] and £ > kN) >1-—34.
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By Lemma 4.1 and the choice of the weights W in (2.9), we see that for all £ > ky, and
uniformly in z € [c1+/N, c2v/N],

) ~ Nj2—
Jim P8y (0 @rer € 1) =P (Soreppoag € ISwpma =2
=0.

By a similar comparison to the lazy simple random walk as in Lemma 4.21, using the
assumptions (4.69) and a local central limit theorem in order to remove the conditioning
on the event {Sy /24 = z}, we conclude. O

Recall that Py denotes the uniform measure on the space of bi-colored Motzkin paths
Wy, and that (hi(w))ie[[o,zv]] is the height function of a path v = (w1, w2, ..., wN) €
Wy € AN, with A from (2.5). Recall that w1 is the stationary measure of the exclusion

process projected to /. We use the above results to compare 1 to the uniform distribution
on {0, 1}11.

Proof of Theorem 1.2 and Theorem 1.5. For an interval I = [a, b] for a = ay and
b = by, consider a lattice path ¢ € Ay for Ay from (4.19), sampled according to
va’ v» and restricted to the interval /. Given ¢, we obtain a sample w according to Py by
assigning to each horizontal move a color proportionally to the weights W from (2.9).
We claim that under the assumptions on the interval 7 in Theorem 1.2 and Theorem 1.5,

Jim [Py (@er € ) = Unifdh| =0, (4.70)

where Unif(A!'!) denotes the uniform distribution on AM!. To see this for the open ASEP,
we use Lemma 4.21 in order to bound the total variation distance between the law Py
projected onto the space MPy of Motzkin paths of length N and a simple random walk
trajectory, and Lemma 4.1 together with the definition of the weights W in order to
estimate the probability of assigning a given pattern of colors to the horizontal steps.
Similarly, the statement (4.70) follows for the open WASEP by combining Lemma 4.22
together with Proposition 4.5 and Proposition 4.10. Next, for all N € N, we fix a subset
A= AN) c {0, 1}/l of particle configurations. We claim that for every § > 0, we can
find a constant C = C(8) > 0, and a family of subsets (As) such that A; C A and

Al |As]
2b—a o 2b—a

<34,

lim sup
N—o00

where for all configurations n € A, and all x € [a, b], we have that

> <n(x) — %) <CvVb—a. (4.71)

i=a

This follows as (4.71) holds for C > 0 sufficiently large with probability at least 1 —§/2
under the uniform distribution on {0, l}b’“. Let A’a C Wy be the set of bi-colored
Motzkin paths which agree with some element of As on the interval I, i.e.

As :={w € Uy : (wx)rer = (@)xer for some o’ € C; with € As},
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where we recall the set C,, from (2.11). By our assumptions |/| <« min(a, N — b), the
height function for a uniformly sampled paths in Wy is at position a with probability
tending to 1 of order /a. Thus, we see that for all sets A, and all choices of § > 0

i Al |Af] |As|  |A}]
1m sup — m
N

ST oo = lim su
N—oo |2 Y|

< PW

N—o0

+8 < 26. 4.72)

Hence, by Lemma 2.2 for the first step, and (4.70) together with (4.72) for the second
step,

tim sup [1er (4) — Y41 = tim sup [Py (ay) — JA5L| | jin gup 141 143
N—>oo 217 oo NI N (20T W] T
Since the set A and § > 0 were arbitrary, this finishes the proof. O

5. Approximation in the Fan Region of the High and Low Density Phase

In this section, we approximate the stationary distribution of the open ASEP in the fan
region of the high and low density phase by product measures. We establish localization in
the associated polymer model and study the structure of the respective regeneration times.
Thereafter, we couple the system to an infinite random polymer model corresponding
to a stationary system; see also [27,63,69] for a similar approach in related models.

5.1. Expected return times for a localized polymer. For N € N, recall the measures
P;v,v and P?v,v from (3.2) and (3.3), respectively, with V from (3.5). Moreover, for all

X € Z,let P;’N be defined as in (4.32), and recall for all m € N from (4.39) the quantities
Ty =inf{y e N: hy () =m}. (5.1

In the following, we argue that for the open ASEP in the fan region of the high and low
density, the associate polymer has for every m > 0 a return time to level m whose finite
moments are bounded uniformly as N — oo. This is in contrast to the maximal current
phase, where we saw in Lemma 4.1 that the random polymer is delocalized.

Proposition 5.1. Let u, v be such thatu > max(1, v) anduv < 1. Then foreveryx € N,
allm > —x and k € N, there exists some C, Ny € N, depending only on x, m, k, such
that

EfN[min(z,, N)¥] < C (5.2)

forall N = No. The same statement holds under the expectation ES, |, corresponding
to the measure P?V v and in the high density phase, where v > max(1, u) and uv < 1.

Proof. We consider only the case of u > max(1, v), and the measure PL’N , as the other
cases are similar. For g € (0, 1), equation (65) in [15] states that the partition function
Zn from Lemma 2.1 satisfies

Zyn

L wh gk <2+u+u
(uv, u/v; q)oo -

—I\N
> (1+o0(1)), (5.3)
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where we recall the Pochhammer symbol from (4.4); see also [75] for a more detailed
derivation of the above formula using Askey—Wilson polynomials. In combination with
Lemma 2.2 and Lemma 3.1, this yields that the partition function fo,’ v for the stationary
distribution of the open ASEP in the low density phase satisfies

W q)? 1\
28 =—°°(2+ + 1+o0(1)). 5.4
NV = G v ) u+u ) (1+o(D)) (5.4)
Let M be such that for all m > M
m 24ul+u
1 + max(—uv, u, v)g" < — (5.5)

Recalling W from (2.9), and choosing M according to (5.5), together with the bound
Zl(i/,v < ZIV v e see that

Z Wy (w) < V2l (5.6)

welNy

for some constant ¢ € (0, 1) and all N sufficiently large. As a consequence, we get that
the return time to level M has exponential tails, i.e. there exists ¢’, fo > 0 such that

PiN(zp > 1) < exp(—c'r) (5.7)

for all € [to, N]. Using the spatial Markov property in Lemma 4.13, and a standard
argument of using independent geometric tries, we get that for all t € [N] andn > N

max P;’n(min(r_x, Ty—x) > 1) < exp(—cyt) (5.8)
xe[M]
min P;’“(Lx <Ty_x <Nn) >0 (5.9)
xe[M]

for some constants c1, ¢z, %), > 0, and all t € [#), n]. Decomposing every trajectory
according to its intersections with level M, and using the spatial Markov property from
Lemma 4.13, we combine (5.7), (5.8) and (5.9) to conclude. |

5.2. Regeneration structure in the localization phase. Using Proposition 5.1, we con-
struct a regenerative process, as well as a bi-infinite stationary process Pg, related to the

polymer measures P;v, v and PIC\,’ v- To do so, we require the lazy h-transformed simple
random walk (S’D)nzo, i.e. the Markov chain on Ny with transition probabilities

ify=x+1

_ ify=x-—1
pa(x, y) = Y (5.10)
ify=x

1
2
0 otherwise,
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and increments X lh = S‘ih — S‘l.h_ |- Let Py be the corresponding law on the space of

trajectories Ag\(,)) of length N, defined in (4.9). For all N € N, we define the polymer
measure I_’fN’V by

pf
dPy v

o exp (Z v(Sh, XM ) (5.11)

for the function V from (3.5), and a normalization constant Z_;V. It is a classical result
that for all M € N, the law of a (lazy) simple random conditioned to stay non-negative
until time N converges on any fixed finite interval to the law of the (lazy) h-transformed
simple random walk as T — o0; see [13]. We have the following consequence of this
observation.

Lemma 5.2. Assume that either u > max(1, v) or v > max(1, u) holds. Let A, B C
A,(,? ) for some fixed m € N. Then we have that

dim [Py (12 (@) efom) € 4 A (hy—x(@)ecfom] € B) = Blyy (OB}, y (B)

=0.

Proof. Let Py be the law on the space Wy given by a lazy simple random walk condi-
tioned to stay non-negative, and to return to 0 after N steps. Itis a well-known result—see

for example [13]—that for any fixed m € N, and any subset A C A,(,? )
lim | Py ((St)xefom] € A) = Pu(A)] = 0.
N—o00

Together with a local central limit theorem for the lazy simple random walk, we see that
for any pair of sets A, B C A,(,g)

Jlim Py (S cefon] € Aand (Sy_ ) c[om] € B) — Pu (AP, (B)| = 0.
(5.12)

Recalling the construction of the measures P R and Pm v in(3.3)and (5.11), we observe
that both measures are defined with respect to the same Radon—Nikodym derivative. As
A and B only depend on finitely many coordinates, we conclude by (5.12). O

Using the polymer measures (I_’BV v)NeN, We construct a bi-infinite and shift invariant
measure Py, as follows. Recall the return times 7y from (4.39) and define

v, = U{a)e\lln : hy(w) > Oforallx € [n — 1]}, (5.13)
neN

where we recall ¥, from (2.7). Intuitively, W, corresponds to set of all lattice paths which
return to O after n steps for some n € N, and are positive for all x € [n — 1]. Assume
that either u > max(1, v) or v > max(1l, ) holds. Then combining Proposition 5.1 and
Lemma 5.2, there exists a unique measure Q on W, such that
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Fig. 6. Coupling of the stationary regeneration process from Pgta¢ with a sample according to the constraint
random polymer measure P(I:V, v - Note the polymers are coupled so that they agree on the dashed parts of the
lines

Q) = Jim PRy ((ix@)eo.rn) = §)

= tim Py (i @)sefo vy =€) (5.14)

for all £ € W,. In words, the measure Q corresponds to the law of the path under
the measure PS, |, until the first return to the x-axis when taking N going to infinity.
Furthermore, note that by Proposition 5.1 and Lemma 5.2, QQ has exponential tails, i.e.

Q&] > 1) < exp(—ct) (5.15)

for some constant ¢ > 0 and all ¢+ > O sufficiently large, where |£| denotes the length of
the path £. Note that by Kolmogorov’s extension theorem, we can extend the measure Q to
a bi—infinite measure QQ on the space of bi—infinite lazy simple random walk trajectories
going through the origin by sampling a bi-infinite i.i.d. sequence according to Q. To
obtain the stationary process Py, we use a standard construction for stationary point
processes with independent increments according to Q: consider a Markov chain (X,);>0
on Ny as follows. When X; = 0 for some ¢t > 0, let X;4; = |&|, where & ~ Q.
Otherwise, let X;+;1 = X; — 1. From (5.15), we get that the Markov chain (X;);>0 is
positive recurrent, and has a unique stationary distribution 7. The measure Py, is now
defined on the space

A= U{(...,v_l,vo,vl,...)E(ZXNO)Z:
nez
vo = (n,0) A v —vi—1 €{(1,1),(1,0),(1,=1)}Vi € Z}

equipped with the sigma-algebra generated by all cylinder functions, and where

Psac(C € ) := Q65 € ). (5.16)

Here, s is chosen according to 7, and 6; denotes the horizontal shift operator on A by
s. In other words, for a sample according to Py, we first choose a horizontal starting
point s according to 7, and then sample a bi-infinite lazy simple random walk trajectory
starting from (s, 0) with increments according to Q.
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5.3. Coupling of regenerative processes. Inthis section, we establish a coupling between
Py, and the random polymer measure PS N v see also Fig. 6 for a visualization. To do so,
we start with the following lemma collecting some basic observations about the measure
P on the space A.

Lemma 5.3. Assume that either u > max(1l,v) or v > max(l, u) holds. Then the
process Py is invariant under spatial shifts, i.e. for all x € Z and all measurable sets
Aon A,

Psat (¢ € A) = Pyt (0:¢ € A). (5.17)

Moreover; for any pair of positions a < b
Pstat(ha(§) = 0 and hp($) = 0) > 0, (5.18)

and forany A C \V,, withn = b — aq,

Poat (13 () refas] € A|ha(@) = 0and hp(e) = 0) =PC ,(A).  (5.19)
Proof. For the shift invariance property (5.17), note that applying the shift operator 6,
to a configuration ¢ according to Py, corresponds to a shift in the underlying Markov
chain (X;);>0 by x used in the construction of Pg,. The claim follows as the initial shift
is chosen according to the stationary distribution 7 of (X;);>0. The second statement

(5.18) is immediate from (5.17) and the facts that 7 (0) > O and Q(|&| = 1) > 0. For the
last claim, note that the measure (P" v.v)Nen satisfy the spatial Markov property; see also

Lemma 4.13. As the underlying /-transformed lazy simple random walk for (P N v)NeN
is a time-homogeneous Markov chain, we can extend (I_)gv,v)NEN to a measure l_)go on

Aég) = {(vo, vi,...) € (Ng x No)Mo

vo = (0,0) Av; —vi—1 €{(1,1),(1,0),(1,—-1)}Vi e N}
such that for all subsets A C W,,, for some fixed m € N

Pl (A) =Pl (L) sefom] € A

¢ oa) B (5.20)
Pm,V(A) - Poo(({x)xe[[o,m}] € Alhy()=0).

Moreover, using Proposition 5.1 and Lemma 5.2, we see that for all £ € W,

Q) = lim Pl (70 = N and (s (@refo] = §) = Pho (s (@rcfon) = §)
(5.21)

Comblmng now (5.20) and (5.21), together with the spatial Markov property for the mea-
sure P and the shift invariance property (5.17) for the measure Py,
we get (5 19). O

‘We have the following relation between the measures P?V v and Py,
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Lemma 5.4. Let § > 0 and assume that either u > max(1, v) or v > max(1, u) holds.
Then there exist My, No € N and a coupling P* of P?\/‘V and Py such that for all
N > Ny,

P* (hx(g) = hy(&) forall x € [My, N — Moﬂ) >1-94 (5.22)
where we let { ~ P?V,V and & ~ Py, according to P*.

Proof. Let (¢',8) ~ P?v,v X Py be chosen independently. Since the measure Q has
full support on N, we see that for all § > 0, we find some My = M (8) and Ny = No(5)
such that

Buy = {E|x € [0, Mo and y € [N — Mo, N] : he(£') = he(§) = hy(¢') = hy(§) = 0}
satisfies
(P?\/,v X Pstat)(BMo) >1-46

for all N > Ny. Under the event Byy,, let a’ € [0, Mp] and b’ € [N — My, N] denote
the smallest, respectively the largest points such that i, () = hy(¢') = hy(§) =
hy (§) = 0 holds. By (5.19) in Lemma 5.3, note that for all A” C W, _,, and all choices
ofa’ and b/,

P?V,V((hX(C/))xe[[a’,b’]] e Al ’hu/(g/) =0and hb’(é‘/) = O) = P[S/_agv(A)o

Now suppose that the event By, holds. We condition on the value of ¢’ and #’, respec-
tively, and choose ¢ = ({x) e[y] € Un With

e ifxela. ]
~ |z, otherwise

Cx

for the coupling of (¢, &) ~ P*, and ¢ = ¢’ on the complement of B M,y» to conclude. O

5.4. From regenerative processes to approximation by a product measure. We now
show that the measure Py, constructed in Sect. 5.2 implies a product structure in the
corresponding stationary distribution of the open ASEP. To do so, we first describe how
a configuration according to Py, yields a measure on the space of particle configurations
{0, 1}" forsome n € N. Let& ~ Pg,. From &, we get a random configuration w® e A"
by

(5.23)

@© _ N it h@) —hei(§) =1
S ifhe(§) —heo1(®) = —1,

and when £, (§) = hy_1(§) for some x € [n] by independently assigning

° o 1 hy(§)
P(w® =E)=1-P(0® =E)=_——""9" (5.24)
x x 24 (u+v)gh=®



Approximating the Stationary Distribution Page 41 of 64 176

For n € {0, 1}", recall from (2.11)
™ be defined on

stat

We denote the corresponding measure on .A” by lP’gﬁa)t

the set C, of all bi-colored Motzkin paths which map to 7. Then let p
{0, 1}" by

Mgﬁ)t(n) = Z Pgl:a)t(w)-
weCy

‘We make the following observation about the measure ,uéfa)t.

Lemma 5.5. Assume that u > max(l, v) holds and let a,b € Nwithn = b —a € N.
Then the measure /Lsm is a Bernoulli-p-product measure on {0, 1}" for p = a(1—¢)~ .
Similarly, for v > max(1, u), ui?d)t is a Bernoulli-p-product measure on {0, 1}"* for

p=1-pU—q) "

Proof of Lemma 5.5. We will only consider # > max(l, v) as the arguments for v >
max(1, u) are similar. Let § > 0 and recall the constant My = My (§) from Lemma 5.4.
By the shift invariance property of Py, and assuming without loss of generality that
n is even, we write a = m/2 —n/2 and b = m/2 +n/2 — 1 for some m € N with
m > Mo+n.Set I, , :=[m/2—n/2,m/2+n/2 — 1] and recall that we write s, , =

wy, m-4:%F for the invariant measure of an open ASEP on the segment [m] with parameters
q, a ,3, projected to the interval I, ,; see also (1.2). Recall from Lemma 3.1 and the
relations (5.23) and (5.24) that we can write the invariant measure (g, , of in terms of the
measure P . From Proposition 1.1 and Lemma 5.4, choosing m = m(8,n, a, B, q)
now sufﬁcwntly large, we get

o
Hl"le n Ber[m n <_>
s K 1— q

where we recall that Bery,, , (o) denotes the Bernoulli-p-product measure on {0, 1}" for
p € [0, 1]. Moreover, using the coupling in Lemma 5.4 between an v and Py, we see
that '

<26, (5.25)

TV

H /'le n Mé:la)t = 3. (526)

TV

Finally, using the triangle inequality for the total variation distance, and the fact that
8 > 0 was arbitrary, we combine (5.25) and (5.26) to conclude. m|

Proof of Theorem 1.3. Using Lemma 2.1 and Lemma 3.1 to express the stationary dis-
tribution u of the open ASEP by the measure P§ .y the approximation of the stationary
distribution in (1.8) follows by combining Lemma 5.4 and Lemma 5.5. O

6. Approximation in the Shock Region of the High and Low Density Phase

In this section, we establish Theorem 1.4 and Theorem 1.6 on approximating the station-
ary distribution of the open ASEP and open WASEDP in the shock region of the high and
low density phase. Since the total path weights defined in (2.10) may be negative in the
shock region, the techniques presented in Sects. 4 and 5 do no longer apply. However, as
remarked in Sect. 2.3.2, for special choices of the boundary parameters, the invariant of
the open ASEP has a simple representation as a convex combination of Bernoulli shock
measures. This was first observed by Jafarpour and Masharian in [48].
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6.1. Bernoulli shock measures as invariant measures of the open ASEP. Recall the
definition of the parameters u and v from (1.6) for the open ASEP, and from (1.13) for
the open WASEP. Let pg = ﬁ and py = 11 denote the effective density at the left end
and right end of the segment. A simple computation shows that whenever the condition
uvqk = 1 from (2.14) holds for some k € Ny, and uv > 1, there exist some (p,-)ie[[k_l]]
with pg < p; < -+ < pg such that

pi q_l Pi—1
1 —p; 1 —pi1
for all i € [k]. In the following, fix for all i € [k] some p; € [0, 1]. We refer to p; as
bulk densities and p! as shock densities. For n € [k] U {0} and k € [N], let Qy , with

6.1)

QN = {X = (X1,X2,...,%) € [N]" withx] <xp <--- < x,,} (6.2)

be the space of locations for n shocks, and note that €2,y , can be identified with the state
space of an n-particle exclusion process, where the particles identify the shock locations.
For a given vector X € Qy 5, and a shift parameter y € [0, k — n], the corresponding
Bernoulli shock measure ;X7 is defined as the product measure on the space {0, 1}V
with

n+l

W () = H Py (6.3)

for all € {0, 1} and marginals

o {(1 — Pt (L= n() + pfn(j). if j = x; for some i & [n]

p : . . . . .
nG) (1 = pisy) (L = () + pisyn(j), ifxi < j < xj41 for some i € [0, n].
(6.4)
Here, we use the conventions that xo = 0 and x4+; = N + 1. In order to simplify

notation, let j; = (1 — g)p; (1 — p;) fori € [0, k], and set d; = j; /ji—1. The following
characterization of the invariant measure is similar to Theorem 3.9 in [71]; see also [70]
when k = 1.

Proposition 6.1. Consider the shock region of the high density phase, i.e. uv > 1 and
v > max(1, u), and assume that uvqk = 1 holds for some k < N. Let ,ol.* = 0. Then the
unique stationary measure p = u™N-4%P of the open ASEP can be written as

iv Z ) (l_[dii’k ) -, (6.5)
N

knO ’”erNn i=1

where we set Zy ,, = ]_[ o —qg"™ 1Y), and let Z/'f,I;( be a suitable renormalization
constant. Similarly, constder the shock regime of the low density phase i.e. where uv >
1 and u > max(1, v), and assume that uvq = 1 as well as ,ol = lholds. Then

w = uN4%P satisfies

k n
= ZSuyv Z ZZ Z (l—[dl)n> MX’O’ (6.6)
k n=0 v

’ XEQN,,, i=1

with Z,, , 1= ]—['}zo(v(l — q”*j)), and a suitable renormalization constant Z;‘\,l;(
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The proof of Proposition 6.1 is deferred to the appendix. Let us remark that Theo-
rem 3.9 in [71] provides a similar characterization of the invariant measure for the five
parameter version of the open ASEP, but for a specific subset of parameter # and v with

k
uvg” = 1.

6.2. Concentration of shocks in the reverse dual. We will only consider the low density
phase in the shock region of the open ASEP and open WASEP. All statements extend to
the high density phase using the symmetry between particles and holes. Using Proposi-
tion 6.1, we express the invariant measure of the open ASEP as a convex combination
of invariant measures of asymmetric simple exclusion processes on a closed segment
with particle depending hopping rates. We refer to these processes as duals. More pre-
cisely, letn < k, and let (;);>0 be the simple exclusion process with  particles, where
the i particle (counted from the left) jumps to the right at rate j;(o; — pi—1)~", and
to the left at rate ji_1(p; — pi—1)~ " under the exclusion constraint. Let I’L*N,n denote
the stationary distribution of the process (n;);>0, and note that we indeed have for all
X=(xX1,...,%X) € QN

1 = .
Pya®) =~ [ ] (6.7)
i=l1

with some normalization constant Z. This can be seen by verifying the detailed balance
equations; see Proposition 3.1 in [71]. In the low density phase, we are interested in the
position of the left-most particle under the stationary distribution uy, , for all n < k.
The following proposition summarizes our results.

Proposition 6.2. Consider the low density phase of the open ASEP where u > max(v, 1)
and uvg® = 1 for some fixed k € N. Then for all § > 0, there exists some C > 0 such
that

Uy ,(x1 =N —-C)=1-38 (6.8)

foralln <k, and all N sufficiently large. For the open WASEP, suppose that q satisfies
(1.12) for some ¢ € (0, 1), and that u,v from (1.13) satisfy uvg*® = 1 with some
k =k(N) € N. Then for all § > 0, there exists some constant C' > O such that

Wy (x1 = N —C'N¥) > 1—3. (6.9)

In order to simplify notation, we will only show the case n = k in Proposition 6.2, as
the arguments are analogous for n < k. First, we argue that the extremal shock locations
x1 and x; must be close together. We then argue that in the low density phase, all shocks
concentrate at the right end of the segment.

Lemma 6.3. Suppose that g € (0, 1) and that u > max (1, v) as well as that uvg* = 1
holds for some fixed k € N. Then there exists some M = M (k) and constants c1, ¢y > 0
such that

Wy i (X — x1] = yM) < ¢y exp(—c2y). (6.10)

forall y > 0, and all N large enough. Similarly, take q from (1.12) with ¢ € (0, 1) and
¢ > 0, and assume that u > max(1, v) and uvqk = 1 for some k = k(N) € [N], and
u, v from (1.13). Then there exists some M' = M’ (¢, ¢) and c3, c4 > 0 such that

Iy k(X = x11 = yM'N®) < c3exp(—cay) (6.11)
forall y > 0, and all N large enough.
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In order to show Lemma 6.3, it will be convenient to consider as an auxiliary process
a simple exclusion process (&;),>0 on [—oo, N] with k| many asymmetric, and k, many
symmetric particles. More precisely, fix some y € (0, 1/2), k1, k» € N, and rates
(ri)ieﬂk1+k2ﬂ~ For k, N € N with k = kj + kp, let (§);>0 denote a simple exclusion
process on

Q= {5 =¢,8.86,..., ) € [-oo, NT*: &1 <& <+ < Elata—1 < Etyaky < N}.

In the exclusion process (£;);0, the i™ particle, counted from left to right, jumps at
rate r; > 0. The rightmost k, particles perform symmetric random walks, while the
leftmost kq particles perform asymmetric random walks with bias y € (0, %), i.e. when

the clock rings, they attempt a jump to the right with probability % + y, and to the left

with probability % — y. Both types of moves are subject to reflection at the boundaries.
We have the following result on the stationary distribution un of (§;)>0.

Lemma 6.4. Consider the exclusion process (& );=0 on Qp  with y € (0,1/2) and
uniformly bounded jump rates (ri)iei] Jor k = ki + ky. Assume there exist constants
c1, ca > 0 such that for alln € N

kl,kz (S [[cln,czn]] (6.12)

with k1 = k1(n) and ko = ko(n). Then for N € N fixed, N is unique, and there exist
¢ > 0and c3, cq > 0, depending only on c1, ¢y > 0, such that for alln € Nand y > 0

uN(El < N — ycn) < c3exp(—c4y). (6.13)

Proof. Note that verifying the detailed balance equations, we see that the stationary
distribution wy is given by

1k1 l_y N-§
MN(‘&):}H(i ) :

izt \21tY

where Z is a suitable renormalization constant. For all z € N, let A, be the event that
&k,+1 = N — z. We claim that there exists a C = C(y, c1, ¢2) > 0 such that for all

zeN,
l_ Z
uN(Az)sc(kZ) (ﬁ V) .
2 7+)/

This follows noting that there are (kz2 ) possibilities to place the rightmost k, particles on

positions [N — z, N, and summing over all possibilities to distribute the remaining &
particles on the halfspace [—oo, N — z — 1]. As a consequence,

MN( U Az) =< crexp(—cay)

7=ycn

for some constants ¢, ¢1, ¢; > 0,and forall y > 0 and n € N. Note that for all z > 0, on
the event A_, the law of the leftmost k| particles is given by the stationary distribution
i1, of an asymmetric simple exclusion process on the halfspace [—o0, —z]. Proposition
4.2 in [25] states that there exist constants ¢3, ¢4 such that for all x > 0

pz(E1 < —z — ki —x) < c3exp(—cax), (6.14)

allowing us to conclude. O
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Next, we consider the partial order >, between configurations induced by the ordering
of particles, i.e. for X = (x1,x2,...,x) € Qu and X' = (x], x5, ..., x;) € Qy k. We
set

/

X>X <& x;>x foralli e [k]. (6.15)

Observe that the partial order >, naturally extends to the space Q2 Nk and allows to
compare configurations on dlfferent state spaces with k particles, using the right-hand
side of (6.15). We define a natural coupling P, for exclusion processes with k particles

and the same jump rates (7;); <[], but a potentially different biases (yi(l)) and (yl.(z)). For
two exclusion processes (Th(l))tzo and (77,(2));30 coupled according to P,, we assign to
the i™ particle a rate r; Poisson clock. Whenever the clock of particle i rings, sample a
Uniform-[0, 1]-random variable U. The particle attempts in (nt(l)) >0 ajump to the right
ifU <1/2+ yl.(l), respectively in (77,(2))130 ifU <1/2+ yi(z), and to the left otherwise.
The next lemma states that P, preserves the partial order >, provide that the particle

biases are ordered. Since this follows by a standard argument—see for example Lemma
2.1 in [44] for a similar coupling—we give only a sketch of proof.

Lemma 6.5. Let (Th(l))tzo and (nt(z)),zo be two exclusion processes on Q2 i with com-

mon jump rates (r;), and assume that yi(l) > yl-(z) holds for all i € [k]. Then we have
that

PO( D o0 forallt >0 | 3! On@)) —1. (6.16)

The same holds true if (n,l)),>0 is defined on the space Q0 i for some N € N, while
(nt ));>o is an exclusion process on Qy ;.

Sketch of proof. The claim follows by induction over the jump times of particles. More
precisely, by the ordering of jump probabilities, whenever the i™ particle in (nt(z))tzo

attempts a jump to the left at time s, so does the i particle in (nt@) )¢>0. Note that when the
th particle occupies the same position in both processes at time s_, the partial ordering

at time s_ ensures that the move is performed for (17,(2)) >0 whenever it is performed in
(r/t(l)) >0- Hence, the partial order >, is preserved at time s. A similar argument applies
when the i particle in (771(2))1,‘20 attempts a jump to the right. O

Proof of Lemma 6.3. We will in the following only show (6.11) for the open WASEP as
the arguments for the open ASEP are analogues. We distinguish two cases. First, assume
that u > 1 > v. Then the effective density pg+] satisfies pg+1 < l, and hence j; < ji_i
foralli € [k]. Since uvqk = 1 for some k of order N¢, there exist constants 81, 8, > 0
such that
) (6.17)
Ji — Ji—1 Ji — Ji—1

foralli < 8, N®. Let (& ):>0 be the exclusion process on Qo withry = (ji—1+ji)(0i —
pi—1)~! foralli € [k], and bias parameters

0 ifi >k

Yi=s, ifi <k,
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where we set k; = §,N® and kp = k — k. Consider now the coupling P, between
the dual process (1;);>0 and the exclusion process (£;);>0 on QN - Using Lemma 6.5
together with the assumption (6.17) on the transition rates, we take r — 0o to see that
forallze Nand N e N

wyi(x1t <N —2) < un(1 < N —2).

Lemma 6.4 for (§;),>¢ gives the desired result. Next, suppose that # > v > 1 holds.
Then there exists some index i, such j; > j;_j foralli > iy and j; < j;—; foralli < i,.
Moreover, observe that there exist some positive constants (8;);c[4] such that

Ji—1 Ji
Ji — Ji—t  Ji — Ji-1
' ji—'l - ].i'
Ji — Ji—1 Ji — Ji—1

A

—28; foralli < §N°

(6.18)

+283 foralli > (1 — 84)N°®.

Conditioning on the value of x;, in i}, , and using (6.18), we apply the same arguments
as in the case u > 1 > v, but for the positions (x;);<;, and (x;);-;, separately, to
conclude. O

We now argue that in the low density phase, shocks are concentrated at the right end
of the segment.

Proof of Proposition 6.2. As for the proof of Lemma 6.3, we will only consider the open

WASEP as the arguments are similar for the open ASEP. For x = (x1, x2,...,x) €
Quy.x and z € N, let B; be the event

B.:={x; < N =2zN°} n{lxx — x1| < zN°}. (6.19)

We claim that there exist constants ¢y, ¢ > 0 such that for all z € N,

Wy k(B < c1 exp(—ca2). (6.20)
To see this, note that we can map every w = (wi, wa, ..., wr) € B, to a configuration
w = (W1, Wz, ..., wr) € Ly by w; := w; +z for all i € [k]. Observe that for all
zeN
( ) X -1 k -z
MN w w; w;
d;’ d’ = d;
e = () (1) = (1)
1- : 1+v)%u\
_ ( po(1 — po) ) _ <( v)zu) _ 621)
Pr+1 (1 = p+1) (I'+u)*v

Since (1 + u)zv > (1+ v)zu as we assume u > max(l, v), and the map w — w is
injective, equation (6.7) now yields (6.20). Using Lemma 6.3 to bound the probability
of the event {|x; — x| < zN?} from below uniformly in z € N, we conclude. O
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Fig. 7. Consider g’ and B” according to Theorem 1.4 with k = 2 and shock locations xi, xi/ and xé, xé’,

respectively, for the first and third line. The figure shows a sample according to the measures u = uN-g-@.B
respectively )y for g’ and u, for 8", ordered according to the basic coupling Py,

6.3. From shock measures to approximation by a product measure. Note that from
Proposition 6.2, we immediately get that Theorem 1.4 and Theorem 1.6 hold when
uvg® = 1for some k € Ny. In order to extend this to a more general range of parameters
o, B > 0, we use the canonical coupling, also called the basic coupling, for the open
ASEP in order to compare asymmetric exclusion processes with different boundary
parameters. For ' > o > Oand B > B’ > 0, let (n;);>0 and (n));>0 be two open
ASEPs with respect to boundary parameters o, 8 > 0, and «’, B/ > 0. Then under
the basic coupling Py, we assign independent rate 1 and rate g Poisson clocks to all
edges. When the rate 1 clock rings at time s for an edge {x,x + 1}, and n,_(x) =
I —ns_(x+1) = 1, we move the particle in (;);>0 from x to x + 1, and similarly for
(n))i=0 when 1, (x) = 1—n, (x+1) = 1. The same construction applies for the rate ¢
Poisson clocks. In addition, we use rate « and rate 8’ Poisson clocks to determine for both
processes when to attempt to enter and exit a particle at the boundaries. Furthermore, we
attempt to place a particle at site 1 in (n);>¢ at rate ' — «, and to remove a particle from
(n¢)¢>0 at site N atrate § — B'. Lemma 2.1 in [44] guarantees that the component-wise
partial ordering > on the state space {0, 1}V is preserved by Py, i.e. under the above
assumptions on (1;),>0 and (17,);>0,

Py (17 > 1y forall £ > 01 ng =c no) = 1. (6.22)

In particular, the relation (6.22) holds also in stationarity. We have now all tools
to finish the proof of Theorem 1.4 for the open ASEP and Theorem 1.6 for the open
WASEDP.

Proof of Theorem 1.4. 1t suffices to consider the low density phase. For « > 0 and
B" > B > B asin (1.10), let iy, i, and 1y, denote to the stationary distributions of the
respective open ASEPs. Note that by the choice of 8’ and 8", the measures 1y, and u,
can be represented as Bernoulli shock measures, and write x|, respectively x7, for the
position of the left-most shock (Fig. 7). Using (6.22) for t — oo, and Proposition 6.1,

we see that
limsup | 1¢; — Ber; (%) < limsup P(x| < b) +limsup P(x] < b)
N—o0 —4q9)ltv N—o00 N—o0

(6.23)

for all I = [a, b] with N — b > 1. Since by Proposition 6.2, the right-hand side in
(6.23) converges to 0, we obtain the desired result in the shock region of the low density
phase. O
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Proof of Theorem 1.6. Again, we only consider the low density phase of the open WASEP,
where u > max(1, v). Note that for u and v from (1.13), there exists some finite

No = No(u, v) and sequences (vN , UN))N>N0 and (kx) N> N, such that v(l) <v< vf\%)
and
wo\ g = uvy g =1 (6.24)

forky € N,and all N > Njy. Let u(l) and 13) denote the stationary distributions of the

1)

corresponding open WASEPS and note that ;5" and ME\%) are Bernoulli shock measures.

Let x( ) , respectively xl ), denote the position of the left-most shock. As in (6.23),

< lim sup ]P’(x{l) <b)

N—o0

+limsup P(x* < b). (6.25)

N—o00

lim sup H;u — Bery <L>
N—00 l1—gq

holds for all I = [a, b] with N — b > N*. Using now Proposition 6.2 for the measures

(1) and u(z) the right-hand side in (6.25) converges to 0, allowing us to conclude. O

7. Approximating the Stationary Distribution of the Open TASEP

In this section, we prove Theorem 1.8 on the stationary distribution of the open TASEP.
We start by recalling some basic definitions on last passage percolation on the strip, and
refer the interested reader to [39,67] for a more thorough discussion.

7.1. A briefintroduction to last passage percolation. We define in the following directed
last passage percolation on the slab

={(.y)eZ:y<x<y+N| (7.1)
with upper boundary 91 (Sy) and lower boundary 9, (Sy)
N(Sy) ={(x.x):xeZ}, and 0(Sy):={(x+N,x):xe€Z}. (12

Fix a, B > 0 and let (wy)yes, be a family of independent Exponential distributed ran-
dom variables. For v € 31 (Sy), w, has rate «, and for v € 3,(Sy), w, has rate 8. For the
remainingv € Sy, we assignrate 1. Notice that there is a natural coupling when changing
the boundary parameters «, ,8 > 0toa’, B/ > 0, multiplying the Exponential-o-random
variables along 01(Sn) by 7, respectively the Exponential-g-random variables along

8Z(SN) by lg/ .

Let > denote the component-wise ordering on 72 . For w > v, we say that 7 (v, w)
is a directed up-right lattice path from v to w if

1 - i+1
{0 “"Z\Iw vl — g - S

(v, w) ={z" =v,z, 7t — 7 € {ey, ey} for such i}.
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Here, we set ey := (1,0) and e; := (0, 1), and recall that ||w — v||; is the £{-distance
between v and w. For A C ZZ, let HZ’"’ denote the set of all lattice paths from v to w,
which do not leave the set A. We define
Typ(v,w) = max . Z w; (7.3)
TUVESy e @)\ fw)
as the last passage time from u to v in the slab Sy. We drop the subscript whenever
the value of o and g is clear from the context, and write 7 (y) for the passage time
along a fixed path y. A path I' (v, w) maximizing the right-hand side in (7.3) is called a
geodesic.
Next, we relate last passage percolation on a strip to the open TASEP. Let 5 € {0, 1 W
with N € N. We set Gy = {g € 77: i € 7} to be the initial growth interface, where

gg := (0, 0), and recursively

- {gs‘l ter ifn(i)=0
80 =

) 7.4
g —e ifnG) =1 (74

foralli > 1. For all t > 0, we define

G, = {u €Z%: max T(w,u) < rand max 7w, u+(1,1) > z}, (1.5)
web(o

welGy

and we write G; = {gf_1 € 7*:i € [N + 1]} such that g = (0, 0) for some x € Z,
and

g — g7l e fer, —e) (7.6)

for all i € [N]. The process (G;);>o is called the growth interface for (@y)peSy -
The next statement, relating the open TASEP to the growth interface, is Lemma 3.1 in

[67]. Let us remark that Lemma 3.1 in [67] only considers the case where o, 8 > 1/2.
However, the proof directly extends to general parameters «, 8 > 0.

Lemma 7.1. Let N € N, and let (n;);>0 be the open TASEP with respect to o, § > 0.
There exists a coupling between (1,);>0 and (wy)yes, Such that the respective growth
interface (G)>o and the process (n,);>0 satisfy almost surely forallt > 0 andi € [N]

() =0} ={gl —g ' =ey) (1.7)

In the following, we collect four preliminary results on last passage percolation. Since
the results follow from well-known arguments, we only give a sketch of proof or provide
a suitable reference. We start with the notion of a line IL,, at height n on the strip Sy as

Lp:={z€Sn: llzlly =n}. (7.8)

Foralln, k > N, let the minimal and maximal last passage time connecting IL,, and IL,, 4
be

B ._ -
Tin(n,n+k) =T (n,n+k) := xeLgIElLM Top(x,y)
Tmax(m,n+k) = TEE(nyn+ k) :=  max T, p(x, ).

x€lLp, y€lyk

The following result is given as Proposition 4.5 in [67]. In words, it states that the
minimal and maximal last passage times between two lines in the strip of distance of
order N3/? have fluctuations of order N'!/2.
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Lemma 7.2. There exist constants cy, c2, 6 >0, independently of a, B > % and N(/) eN
such that for all 6 > 6, and all n >N > N(’), we have that

P(Tmax (1 + 07 N32) 207N 7 > 0J/N) < exp(—c167) (7.9)
P(Tiin(n, n + 07 ' N3/?) — 207IN3 < ~20V/N) < exp(—c20). (7.10)

Next, consider the last passage times 77 (v, w) and the geodesic I'z(v, w) between
two sites v, w € Z2. Here, we take the same definition for sites on S N, but replace the
environment on Sy by i.i.d. Exponential-1-distributed random variables on 72 see [72]
for a survey on this model. The following statement is due to Ledoux and Rider [55].

Lemma 7.3. There exist constants cy, ¢a, 0y > 0 such that

1

P()TZ((O, 0), v) — (Vo1 + Vi2)?| = 91)1/2112_1/6) <crexp(—c0)  (7.11)

and for all 0 > 6y and (v1, 12) € N2.

Let us stress that by shift invariance of the environment, Lemma 7.3 provides a
moderate deviation estimate for the last passage time between any ordered pair of sites
in Z2. In particular, note that the last passage time between (x, x) and (y, y) for some
x, y € N has fluctuations of order |x — y|!'/3. For a lattice path y from v to v + (1, mn)
with some m € (0,00) and n € N, we define its transversal fluctuations for all
e n(l+m)]as

TF(y,£) .= |ly(®) —mf|; and TF(y):= max TF(y, ). (7.12)
Le[n(1+m)]

We have the following moderate deviation bound on the transversal fluctuations.

Lemma 7.4. Let o, 8 > % and fix ¢ > 1 and mg € [¢p~", ¢]. There exist constants

0o, Lo, ¢ > O such that for all m € (%, 10m0), L > Lyand 0 > 6
P(TE(I'z((0, 0), (n, mn)), £) > 0£*/%) < exp(—c0) (7.13)
as well as that
P(TF(T((0, 0), (n, mn))) > 6n*) < exp(—ct). (7.14)

Sketch of proof. For the last passage times with respect to Z2, the first statement (7.13)
is the content of Theorem 3 in [11]. The second statement (7.14) for geodesics in 7?2
was first shown in [12] using a chaining argument, see Proposition C.9 in [10] for a
detailed proof. The proof of Proposition C.9 in [10] applies one-to-one for geodesics in
Sy. However, as an input for the proof of Proposition C.9 in [10], we need to replace
the moderate deviation estimate from Lemma 7.3 for last passage times in Z? by the
moderate deviation estimates in Lemma 7.2 for minimal and maximal last passage times,
as well as Lemma 4.14 in [67] for a moderate deviation bound on last passage times in
Sy between any pair of boundary points of the strip. O

Our last preliminary result concerns the coalescence of geodesics in Z2.
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Lemma 7.5. Let L > 0 be fixed, and k, n € N. Consider the four sites (a,-),-e[[4]] with

ay = (0, |[LK*?)) ay :== (ILK*?],0) a3 := (n,n — [Ln*3])

as = (n — LLn2/3J,n).
For all k = k(n) such thatn > k > 1 as n — oo, we have that

lim P(T'z(a1, az) N Tp(as, as) # @) = 1. (7.15)
n—oo
Sketch of proof. For the points (a;);c[4] given as

ay = (0,3 Lk*?)) ab:= (0, =3|Lk*?),0)
dy = (n,n+31Ln*3)) ay:= (n,n —3|Ln*3])

the claim is Corollary 3.4 in [11]. By Lemma 7.4, as k >> 1, we obtain that

lim P (there exist @ € I'z(a}, a}) and b € T'z(d), a}) such that @ > a4 and ap > l;)
n—oo -

=1,

allowing us to conclude by the ordering of geodesics; see for example Lemma 11.2 in
[12]. |

7.2. The TASEP in the maximal current phase. Before giving the proof of Theorem 1.8
in the maximal current phase, let us outline our strategy. By Lemma 7.1, the law of the
open TASEP in an interval I and at time ¢ depends only on the last passage times to
a certain rectangle Ry, in Sy. Consider now two open TASEPs, one with «, 8 > %

and one where both parameters equal %, so that the invariant measure projected to / is a

Bernoulli—%—product measure. Using the above results on coalescence of geodesics, we
couple the open TASEPs such that their last passage times to Ry ;, agree up to a time
shift. In order to remove the time shift, and thus to conclude that the invariant measures
of both processes projected to I are close in total variation, we apply a strategy recently
introduced in [68] in the context of mixing times for the TASEP on the circle.

For a segment I = [a, b] € [N], and ¢ > 0, consider the finite segment S{\, and the
rectangle Ry 7, defined as

Sk =Ly N{(v1, 1) € Z*: v —vy € I}

(7.16)
Ry.1s = {u € S! forsomen € [r/2 — N¥/* 1/2+ N¥/4]}.

Lemma 7.6. Let G; = (gi)ie[NH]] be the growth interface at time 1 = N3/2 logz(N)

when starting from the all empty initial configuration. Then for all o, B > %, and N
sufficiently large,

P((¢Dicfa1] € Riae) = 1= N2, (7.17)

Proof. This follows by iterating the bound on the last passage times in Lemma 7.2. O
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SN

oSN

Fig. 8. Visualization of the different segments, lines and geodesics on the strip Sy, rotated by 7 /4, which are
used in the proof of Theorem 1.8

As a consequence of Lemma 7.1 and Lemma 7.6, it suffices to study the last passage
times to sites in Ry 7 r in order to investigate the law of the TASEP with open boundaries
at time 7 on the interval /. We fix some notation. For N € N, I = [a, b], and ¢ > 0, let

sk .= SHQ—L(N(b—a))l/z,b+L(N(b_a))|/2]]

L . S[[a—L(b—a),b+L(b—a)]]
target * |_t/27(N(bfa))2/3J - .

and Send . L1/2+N3/4)

(7.18)

The reason for the choice of the parameters will become clear in the sequel. Let d; and
d; for the segment StLarget as well as dq and d3 for the segment SeLnd denote its upper
left and down right endpoints, respectively. An illustration of these quantities is given
in Fig. 8.

Lemma 7.7. Let t = N3/?10g?(N) and , p > % Assume that |I1| = (b — a) > N34,
Then for all § > 0,

5
limianP(F(u, w) NSE, o # @ forall u € Lyjs and w € S ) >1-2(7.19)
N—o0 2

targe end

for some L = L(8) > 0 sufficiently large. Moreover, we have that

liminf]P(Hv* €72 vy € I'(u, w) forallu € Lyjq and w € RN,I,,) >1-24.

N—o0

(7.20)

Proof. By symmetry and the ordering of geodesics, it suffices for (7.19) to show that
. 1)
lim inf P (r((z/& ©/8), ds) N Shyger # @) >1- (7.21)

for some sufficiently large L > 0. In order to show (7.21), we first argue that there exists
some 8 = §'(8) > O sufficiently small such that

L §'N,(1-8")N §
lim inf P (r((r/& v/8).ds) NSk ﬂ) >1-3. (7.22)
This follows from bounding the last passage time 7 ((7/8, t/8), d4) by Lemma 7.2 and

Lemma 7.3, when we restrict the space of lattice paths in the definition of the last passage

time to contain only paths which pass through a site in Sgiﬁa, N Or SEI/\;’SST; )N]]. Using

(7.22), we obtain (7.21), and thus (7.19), for sufficiently large L = L(8, §") by applying
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now Lemma 7.4 twice—once to see that the geodesics 'z (u, d4) and I" (u, d4) agree with

probability tending to 1 as N — oo for all u € SB/ZALS(,] 1; Sl)N]], and once to bound the

transversal fluctuations of I'z(u, d4) when crossing the interval StLarget. Next, we argue

that (7.20) holds. Note that by Lemma 7.4 and the choice of St’&rget andSL ;. forall L > 0
fixed,

Nlim P (I'z(d1, ds) = T'(d1, ds) and I'z(d2, d3) = I'(d>, d3)) = 1.
—00

From Lemma 7.5 with a; = d; for all i € [4], and Lemma 7.4, we get that

Nlim P(T'(di,ds) NRy, 1, #@ V T'(da,d3) N Ry 1,r # @) =0.
—00

Together with (7.19) and the ordering of geodesics, this yields (7.20). O

Corollary 7.8. Assume that |I| = (b — a) > N>3*. Recall the coupling P for last
passage percolation on the strip for a, B > 1 and that Ty g (-, -) denotes the respective
last passage times. Then

lim P33t e R: Ty ((0,0), u) =1, + T1 1((0,0),u) forallu € Ry ; y32 logz(N)) = 1.
N—oo 212 Ly
(7.23)

Proof. Let Ay .1 be the event defined as

Ay, =1{3v, €Z*: v, e T(u, w) forallu € L4 and w € Ry ;¢

n {F(dl, dy) N 9,Sy = @ and T'(da, d3) N 3>Sy = @}.

Whenever Ay 1 occurs with some site vy, note that for all o, 8 > % andu € Ry 1.«

To,p((0,0),u) = Ta,p((0,0), v:) + To (v, 1) = Ter,p((0, 0), v:) + T1 1 (Vs 00).
(7.24)

By Lemma 7.4 and Lemma 7.7, for all § > 0, there exists some L = L(§) > 0 such
that

liminf P(Ay 1) > 1 —36. (7.25)
N—o00

Note that we can apply Lemma 7.4 to bound the transversal fluctuation of I'(vy, u)
uniformly in u € Ry, and the choice of o and f by the transversal fluctuations of
I"(v4, dg). As we can choose § > 0 in (7.25) arbitrarily close to 0, we conclude. |

Recall from Lemma 7.1 the one-to-one correspondence between the open TASEP
and last passage percolation on the strip. In the following, we consider the TASEP with
open boundaries (1;);>0 with respect to parameters « and 8, and the TASEP with open
boundaries (£;);>0 in the triple point, where both boundary parameters equal % Both
processes start from the empty initial configuration at time 0 in a common last passage
percolation environment. Note that by combining Lemma 7.1 and Corollary 7.8, we
ensure that

lim P(3s, € R: 1y = {ryy,) = 1. (7.26)
N—o0
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forallt > Tnlléi 12 (0, N3/2 log2 (N));seealso Lemma 5.3 in [68]. We will now eliminate

the time change s, by applying the random extension and time shift technique introduced
by Sly and the second author in [68] in order to study mixing times for the TASEP on
the circle; see also [39] for a similar argument for the mixing time in the high and the
low density phase. Since we follow the arguments analogously to Section 5 of [68] for
periodic last passage percolation, we will only give a sketch of proof.

Lemma 7.9. Assume that |I| = (b —a) > N3* Forall N € N, set t = t(N) =

N% logz(N). There exists a coupling P between the open TASEPs (n:)r>0 and ({;)1>0
such that

Nlim P e (x) =¢:(x) forallx € I) = 1. (7.27)

Sketch of the proof. Let (w, Jvesy and (a)g)vegl\, denote the environments correspond-
ing to (1:);>0 and (¢;);>0, respectively, under the coupling P. For both processes, we
construct families of last passage percolation environments, which we obtain by cutting
the environment along the line L ; 2|, and adding to both environments an extra number
of rows Y, and Y, respectively. More precisely, let (@Z)UESN have the same law as
() JveSy» but chosen independently, and define for all i € N U {0} the environment

(09" )yesy with its law denoted by P;, by

wy) if v € L, for some m < |t/2],
a)g’i = a)z_(l.’l.) if v € L, for some m > |t/2] +2i,
Dy otherwise,

for all v € Sy. The environments (a)g’i)vESN for i € NU {0} are defined analogously,
and we denote by T%" and T%¢ the corresponding last passage times. Let A be the

event that there exists a site v, such that in both environments (c, Jvesy and (wg)vegN
according to P, we have that v, € I'(u, w) forallu € LL|;/2) and w € Ry j ., while the
geodesics I'(vy, w) do not touch the boundary of Sy. Assuming that A occurs, we fix
such a site vy, and note that by Lemma 7.2, for all N sufficiently large

P(IT) 1((0,0),v.) = T g (0,00, 00| < N [A) = 1= N2 (7.28)

Let us remark at this point that the choice of the exponent % , and of all similar exponents
in the following, is not optimal, but sufficient for our purposes. By Lemma 5.7 of [68],
adjusted for last passage percolation on the strip, there exists a coupling of Y, and Y;
such that ¥, and Y, are both marginally uniformly distributed on

B .= [UNWOJ: i [[NI/Z]]}, (7.29)
and whenever the event A occurs, we have that with probability at least 1 — N ~1/40

TY7((0,0), vs + (Y, ¥)) — TY4((0, 0), v + (Y, Y;))‘ < N6 (7.30)
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To remove the remaining discrepancy in the last passage times, we again modify the
. Y, Y, . .
environments (w,, "vesy and (a)i C)UESN, respectively. Foralli € B and u € [0, 1],

we define the family of environments (J)Z’l’“)v c72 by

v N .
wl otherwise,

P {(1 +uNS140) 1 ify e L, for some n < 7/2

and similarly for (@5""),cz2. Let T™ and T4 be the corresponding last passage
times. Lemma 5.8 in [68] guarantees that for all choices of u € [0, 1] and N sufficiently
large,

.Y, ~1,Yp, _
HP(@Z "pesy € ) —P((a);’ " € -)HTV < N“1/50, (7.31)

and similarly for (@5’“)v€22. Furthermore, note that for all i € B, the function
ur fi(u):= T”’”’i(O, v+ (i,1)) (7.32)
is monotone increasing, convex, and piece-wise linear. Hence, by Lemma 7.2

<% € <lr 21) forall0 < uy < us < 1) =1.(7.33)
uy —uj

lim P; 5

N—o0
As in Section 5.4 of [68] for periodic last passage percolation—see also the end of
Section 4 in [39] for a similar argument for last passage percolation on the strip under
observation (7.33) — there exists now a coupling between P of /] and U such that U/
and U, are uniformly distributed on [0, 1], and we have that

lim f’(T”’Y"’ul((O, 0), v,) = T5Y12((0, 0), v,)

N—o0

A)=1. (7.34)
Together with Lemma 7.7 and Corollary 7.8 to bound the probability of the event A,

lim P (T"'yﬁ'ul (0,0, u + (¥, ¥p)) = TEYOM2((0,0), u+ (Y, ¥,)) forallu € RN,,,T) -1

N—o0

Since by Lemma 7.1 and Lemma 7.6 the law of 1, and ¢; on [ only depends on the last
passage times to Ry 7 r with probability tending to 1 as N — oo, we conclude. O

Proof of (1.20) in Theorem 1.8. Without loss of generality, let [I| = (b —a) > N 3/4
as this only increasing the total variation distance. For T = N3/2 logz(N), let (7:)r=0
and (¢;);>0 be two open TASEPs with boundary parameters o, § > % for (1:):>0,
and both boundary parameters equal to % for (¢;)>0, respectively. Using the coupling
representation of the total variation distancevsee for example Corollary 5.5 in [56]—
Lemma 7.9 ensures that

I HP’.—P’.H=. .
Jm (ny €)—P; €) v 0 (7.35)
By Theorem 1.3 in [67], stating that the total variation mixing time of (£;);>0 is of order
N3/2, and the fact the invariant measure of (¢&1)s>0 is the uniform distribution on the
state space Q2y,

o0t 0ty =0
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as well as

=0. (7.37)
TV

. 1
ngnoo HP(;,’ € ) — Ber; <§)

Using (7.35) and the triangle inequality for the total variation distance, we conclude the
first part of Theorem 1.8 on approximating the stationary distribution. O

7.3. The TASEP inthe high and in the low density phase. We will only show (1.21) for the
low density phase in Theorem 1.8 as the proof of (1.22) follows by the same arguments.
Moreover, without loss of generality, we let I = [b] with N —b > N 173 1og(N). We
start with the following basic observation, which is the analogue of Lemma 7.6.

Lemma 7.10. Consider the growth interface G, = @Die[{NH]] at time T = N log(N)

when starting from the all empty initial configuration. Then for all o, 8 > 0 with
a < min(3, B),

i 0,b —
Pl @Dicpy s U s} 5 g - N3 (7.38)
nelr,3a=17]
for all N sufficiently large.

Proof. This follows from Lemma 7.2 and Lemma 7.3, dominating for the upper bound
the environment on the strip Sy by an i.i.d. Exponential-a-distributed environment on
z2. O

In the following, our goal is to show that for all u € Sgo’b]] with some n < 30~ !N,
the geodesic I'((0, 0), u) does with high probability not intersect the boundary 9> (Sy).
We start with the following uniform bound on last passage times.

Lemma 7.11. Let o < % and B = 1. There exist constants ¢, ¢ > 0 such that for all
M e [N3?] andu € SE"”’H with some n € [¢N, N> — M|,

) (T((O, 0), u+ (M, M)) — T((0,0), u) — % < —c(N% log(N) + M2 log(M))) <N,

In order to show Lemma 7.11, we require the following result on moderate devia-
tions for the last passage times and traversing probabilities on the strip. Its content is
Proposition 3.4 and Lemma 4.1 in [39], so we omit the proof.

Lemma 7.12. Let ¢ < min(%, B). There exists some 6y, ¢ > 0 such that for all m,n €
[[Nz]] withm > n, all & > 0y, and all N sufficiently large

i (‘T((n, ny, (m, m)) — am -

TS m — n)i) < exp(—cO).  (7.39)
(1—-a)

Moreover, we have that

P(C'((n, n), (m,m)) N 92(Sy) = S forallm,n € [[Nz]]) >1—N7. (740
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Proof of Lemma 7.11. For the geodesic I'((0, 0), u), let v, denote the last intersection
point with the boundary 9;(Sy). By Lemma 7.3 and Lemma 7.12, recalling the partial
order > on 72, there exist constants ¢ 1, ¢2 > 0 such that

IE”((n —ciN,n—ciN) > vy, > (n—c2N,n —czN)) >1 - N6 (7.41)

for all N sufficiently large; see also Lemma 4.3 in [39] for a more refined estimate on
the intersection point v,. Assume that the event in (7.41) holds for some v, = v, (u).
Then we combine an upper bound on the last passage time 7 (v, u) by Lemma 7.3, a
lower bound on the last passage time 7 (vy, vy + (m, m)) by Lemma 7.12, and a lower
bound on the last passage time T (v + (m, m), u + (m, m)) by Lemma 7.3 in order to
obtain the desired bound on the last passage times in Lemma 7.11. O

Proof of (1.21) in Theorem 1.8. Recall that we denote by Ty, g(v, w) the last passage
time between v and w in the environment on the strip Sy with respect to boundary
parameters o, B > 0. Set 7 = N log(N). Consider the open TASEP (1;),>0 with respect
to boundary parameters « and B, and the open TASEP (¢;);>¢ with respect to boundary
parameters « and 1 — «, both started from the empty initial configuration and having
their respective last passage percolation environments coupled according to P. We claim
that it suffices to show that for all @ < % and f > «

P T0p((0,00,1) = T 1o(0,0),w) foralue | J s =1-n
nefr,3a" 7]

(7.42)

for all N sufficiently large, i.e. under the coupling P for different boundary parameters,
the geodesics do not intersect the boundary d>(Sy). Assuming (7.42), note that by
Lemma 7.10 for t = N log(N), and the coupling representation of the total variation
distance,

Hp(ng €)—P@ e ')Hw <N (7.43)

As a consequence of Theorem 1.1 in [39], stating a bound on the total variation mixing
time of (£;);>0 of order N, we have that

ot oo =0

Using that the invariant measure of (¢;);>0 is a Bernoulli-«-product measure, this allows

us to conclude (1.21). It remains to verify that (7.42) holds. Fix u € SEO”’]] with N —b >
N'31og(N) for some n € [r,3a~'7], and let

ne :=max {n € NU{0}: u — (n,n) € Tq,5((0,0),u) V u — (n,n) € e, 1-a((0,0), u)}.
(7.45)

Note that if Ty, 5((0, 0), u) # Ty.1-4((0, 0), u), we must have n,, >> N'/3log(N) by
our choice of b. Let T (u — (m, m), u) be the last passage time from u — (m, m) to u when
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restricting to available space of lattice paths to not intersect d;(Sy). From Lemma 7.3
together with Lemma 7.12, we obtain that for all m sufficiently large

m 20‘
min(g, 3)(1 — min(B, 3))

P(Tw— (m,m),u)> +m1/210g2(m) <m~

(7.46)

Using Lemma 7.11 for a lower bound on the last passage time from (0, 0) to u — (4, nx)
and u, respectively, and Lemma 7.12 to rule out that I"((0, 0), «) returns to 91 (Sy) after
intersecting 92 (Sy ), we see from (7.46) that for some ¢ > 0 and all N sulfficiently large,

P(n, > cN'3log(N)) < N~*.

A union bound over the sites u in (7.46) yields (7.42), and thus finishes the proof. O
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Appendix A. Approximation on finite intervals

In this section, we give a proof of Proposition 1.1. The argument follows along the same
lines as Theorem 3.29 in Part IIT of [59], which covers the case ¢ = 0. We will in the
following assume without loss of generality that ¢, o, B > 0. We start by recalling some
basic results on the current of the open ASEP, that is for some i € [N — 1]

IV = NP i)y =1and n(i + 1) = 0)
—q - pN P (@) = 0and n(i + 1) = 1) (A1)

A simple computation, using the generator £ from (1.1) shows that (A.1) is in fact
independent of the choice of i. The following result can be found in Section 4 of [65].

Lemma A.1 (Sasamoto [65]). Let o, B > 0 and g € (0, 1). Then we have that

a(l —a)(1—-¢q) ifa <min<ﬂ, 3 )
lim 7% =1801-8)1-¢) ifﬂ<min<°" ) (A2
1

N—o0
11— if min(a, ) > 5Z.

—
| L)
N N
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Next, we require a way to compare the invariant measure for different parameters o, § >
0. Recall that we denote by > the component-wise partial ordering on the state space
{0, 1}V For two probability measures v and v’, we say that v stochastically dominates
v', and write v > V' if there exists a coupling P, ,» between n ~ v and " ~ v’ such that
P, (7 =¢ n'). The following result can be found for example as Lemma 2.10 in [44].

Lemma A.2 (Gantert et al. [44]). For o, 8 > 0 and q € (0, 1), recall the parameters
u, v defined in (1.6). Then

1 1
BerN(max< , v )) > MN”I’“"B > BerN(min( , v )) (A.3)
1+u 1+v 14+u 1+v

We have now all tools in order to show Proposition 1.1.

Proof of Proposition 1.1. In the following, with a slight abuse of notation, we treat the
measures V9% # as measures on {0, 1}Z by extending to the left and right with the
empty sites. For a measure v on {0, 1}%, we denote by ;v the measure shifted by x.
Without loss of generality, we assume that the weak limit

fui= lim oy phN-a-ep (A.4)

exists as we can consider a suitable subsequence otherwise. Using (1.4), we see that the
measure 4 must be an invariant measure for the asymmetric simple exclusion process
on the integers, that is the Markov process on {0, 1}Z whose generator is given by

LFop =Y (1000 =G+ 1) +qnix + H(1 = nCo) [ £ = £ ).
X€Z

(A.5)

It is a classical result by Liggett that the set of extremal invariant measures of the asym-
metric simple exclusion process on the integers consists only of Bernoulli-p-product
measures Ber(p) for some p € [0, 1], and a family of so-called blocking measures
(vo)oer, along which the current 7, as defined in (A.1) for the open ASEP, is zero [58].
Hence, since we assume «, § > 0 and g € (0, 1), we get that by Lemma A.1 that

1
n= / Ber(p)y (dp) (A.6)
0
for some probability measure y on [0, 1]. Using Lemma A.2, we claim that
max (ﬁﬁ)
n= f _ Ber(p)y (dp) (A7)
min (m,ﬁ)
holds. To see this, note that we have foralln € N
. . 1 v o
A(n(i) = 1 foralli € [n]) < max( : ) . (A.8)
1+u 1+v
Now let n — oo to conclude that it suffices to consider p < max (ﬁ, %) A similar

argument applies for p > min (ﬁ, 7=), and thus gives (A.7). Moreover, using the

definitions of the current and [, we see that the measure y must satisfy

max(ﬁ,%) ) N
(I —=q@)p(1 —p)y(dp) = lim J". (A9)
min(ﬁ,ﬁ) N—o0
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Thus, combining the above observations and using Lemma A.1, a computation shows
that

Ber(%) if @ < min (,3, l%")
i = Ber(l - %) if B < min (a, %) (A.10)
Ber(%) if min(e, B) > 154,

Since the size of the interval [ay, by] is uniformly bounded in N by our assumptions,
we conclude. m]

Remark A.3. Note that the same arguments also extend to the five parameter model of
the open ASEP discussed at the end of Section 3.2, using the results of Section 6.1 in
[15] on the current of the open ASEP instead of Lemma A.1.

Appendix B. A finite matrix product ansatz

In the following, we show that the assumption uvgX = 1 implies that the invariant
measure is given as a convex combination of Bernoulli shock measures. We reformulate
our results in terms of the matrix product ansatz. We will only consider the special
case of finite dimensional representations D, E, while for the general parameters, the
matrices D and E are infinite-dimensional; see [59] for a discussion in the special case
where ¢ = 0.

We recall now the matrix product formulation; see [14] for an introduction. We say
that matrices D and E, together with vectors (W] and |V) satisfy the matrix product
ansatz if

DE —gED = (D +E)
BDIV) =1 —g)|V) (B.1)
(WleE = (1 — g)(W|,

using the standard bra-ket notation. Suppose that uvg* = 1 holds for some finite k € N.
Then Mallick and Sandow construct in [60] a solution to (B.1) by setting

I1+v
1+ vg
1 +vg?
D= . (B.2)
1 +vgk!
1 +vg*
1+1
v
1 1+vl
e 1
1 1+W
E = . (B.3)
L+ o
1 1+
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with respect to the vectors
V=(01,0,0,...,00 and W = Wy, Wi, Wa, ..., Wp),

where we set recursively for all i € [k] U {0}

Wiz :=W; <u(l — qk+1_i))_l. (B.4)

We recall the following classical result on using the matrices D and E and the vectors
V and W to represent the stationary distribution of the open ASEP.

Theorem B.1 (Derrida et al. [38]). Suppose that uvg* = 1 holds for some finite k € N.
Then for all n € {0, 1}V, the stationary distribution wy of the open ASEP on {0, 1}
satisfies

v = (W] T(onr+ 0 —n)|V) (B.5)
i=1

for some suitable normalization constant Zy, provided D, E, V, W satisfy (B.1).

In the following, we study the structure of the matrices D and E, and argue that they give
rise to Bernoulli shock measures. We start by observing that the normalization constants
of the diagonal entries of the matrix D + E are given by

. . 1- 1 - 1
Zi=2+vq + (g ' = g, 7 _
vg' 1 —=q—vqg"  pi(l—=pi)

; (B.6)

where we recall p; from (6.1). Set X; = Dn(i)+E(1—n(i))fori € [N]andn € {0, 1}V,
and we define the matrices

XM= XXy Xy. (B.7)

We have now all tools in order to establish Proposition 6.1, following [48], as well as
the arguments in [70] for the special case k = 1.

Proof of Proposition 6.1. We will only argue that (6.5) holds as the statement (6.6)
follows by the symmetry between particles and empty sites. By Theorem B. 1, the quantity
uN-4-1? () for a configuration 7 can be written using only the matrix X V) together the
vectors V and W. More precisely, observe that the matrices X; take the form

ZiBery, (n(i))
Bery: (n()))  Zk—1Bery,_, (n(i))

X; = Ber,: (1(i))

. Z1Ber,, (n(i))
Ber,: (n(i))  ZoBerp, (n(i))

where we define the Bernoulli measures

Ber,(x) = px + (1 — p)(1 —x). (B.8)
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Now we evaluate the matrix product XV) to see that the entries
N T
Xi(,j) =¢; X(N)ej. (B.9)

contain the shock measures with exactly i shock locations, using the only the densities
p. from location k — i — j to k — j. More precisely, recalling (6.3), we get that

li=Jl

xN= ¥ (]_[d;;k)m. (B.10)
k=0

XEQN i j|
Here, we use the recursion that
N N—1 N—1
le’j> = X,-(,,- 'Bery,.,_, (n(N)) + 11{,-<k}xl.(,j+1 )Berp;ﬂ_ m(N)).  (B.11)

In other words, to construct the shock measures with exactly i — j shocks for the segment
of length N, we can either take the shock measures with |i — j| shocks of length N — 1
and attach one site at the right end with density o ;, or we can take the shock measure
with |i — j — 1] shocks (with densities p;—; to px—j+1) and attach one site at the right

end with density p,j‘_ i Since V = (1,0,...,0), we consider only the entries X 1(1\1])
which contain the shock measures using only the last i shock densities. Weighting the
respective shock measures according to the coefficients Z; and W;, we conclude. O
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