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Abstract: We investigate the stationary distribution of asymmetric and weakly asym-
metric simple exclusion processes with open boundaries. We project the stationary distri-
bution onto a subinterval, whose size is allowed to grow with the length of the underlying
segment. Depending on the boundary parameters of the exclusion process, we provide
conditions such that the stationary distribution projected onto a subinterval is close in
total variation distance to a product measure.

1. Introduction

The asymmetric simple exclusion process is an interacting particle system, which is
intensively studied from various different perspectives; see [12,14,30,31,59] for a se-
lection of surveys in statistical mechanics, probability theory and combinatorics on this
model. In this article, we focus on the asymmetric simple exclusion process with open
boundaries, also called the open ASEP. We consider a segment of length N such that
each site is either occupied by a particle or left empty. Each site is equipped with rate
1 + q Poisson clocks. Whenever a clock rings and the respective site is occupied, we let
the particle move to the right with probability (1 + q)−1, and to the left with probability
q(1+q)−1, provided the target is a vacant site. In addition, particles enter at the left-hand
side boundary at rate α > 0, and exit at the right-hand side boundary at rate β > 0.
Among the most fundamental tasks for exclusion processes is the characterization of
their invariant measures, and to this end, many elaborate tools, such as the Matrix product
ansatz and tableaux combinatorics are used to understand the equilibrium [15,30].

A classical result by Liggett states that the exclusion process converges on any finite
interval sufficiently far away from the boundary to a homogeneous product measure,
when excluding the special case α = β < (1− q)/2; see [57]. On the other hand, Bryc
et al. characterize the stationary distribution on the macroscopic scale N in a series of
works using Askey–Wilson processes; see [20,21,23] for q ∈ (0, 1), and more recently
[19] when q → 1. Depending on the boundary parameters, they verify convergence in
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finite dimensional distribution of the height function representation of the open ASEP
to sums of Brownian motion, Brownian excursion, and Brownian meander. Both results
motivate the following question: Under which conditions is the stationary distribution of
the open ASEP projected onto a subinterval, whose size grows with N , close to a product
measure? It turns out that an answer to this question depends on the choice of boundary
parameters for the open ASEP. In the fan region of the open ASEP, where informally
speaking the effective density at the left end of the segment is larger than the effective
density at the right end, we express the stationary distribution as certain re-weighted
simple random walks. We then link the approximation of the stationary distribution to
the question whether a certain random polymer model with a hard wall and pinning is
localized. Conversely, in the shock region, where heuristically the effective density on
the right end of the segment is larger than on the left end, we approximate the stationary
distribution by coupling the open ASEP with different boundary parameters, and using a
special representation for certain choices of α, β, q. For the open TASEP, where q = 0,
we approximate the stationary distribution by studying its formulation as a last passage
percolation model on a strip; see [39,67,68].

1.1. Model and results. Formally, we define the ASEP with open boundaries, also
called open ASEP, as a continuous-time Markov chain (ηt )t≥0 on �N = {0, 1}N for
some N ∈ N, and with generator

L f (η) =
N−1∑

x=1

(
η(x)(1− η(x + 1)) + qη(x + 1)(1− η(x))

) [
f (ηx,x+1)− f (η)

]

+ α(1− η(1))
[
f (η1)− f (η)

]
+ βη(N )

[
f (ηN )− f (η)

]

(1.1)

for all functions f : �N → R. Here, we use the standard notation

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(z) for z �= x, y
η(x) for z = y
η(y) for z = x

and ηw(z) =
{

η(z) for z �= w

1− η(z) for z = w

to denote swapping of values in a configuration η ∈ �N at sites x, y ∈ �N� :=
{1, . . . , �N�}, and flipping at w ∈ �N�, respectively. We say that site x is occupied
if η(x) = 1, and vacant otherwise. A visualization of the open ASEP is given in
Fig. 1. It is easy to verify that the open ASEP has for all choices of q ∈ [0, 1] and
α, β > 0 a unique stationary distribution μ = μN ,q,α,β . In the following, we study μ

for different choices of q ∈ [0, 1) and α, β > 0 when projecting to subintervals. For
I = �a, b� := Z∩[a, b], we let ηI ∈ {0, 1}|I | with ηI (x) = η(x +	a
−1) for x ∈ �|I |�,
and set for all configurations ζ ∈ {0, 1}|I |

μI (ζ ) :=
∑

η : ηI=ζ

μN ,q,α,β(η) . (1.2)

In other words, we denote by μI the probability measure where we project μ onto the
coordinates in I , and similarly for a configuration ηI . As a standard measure of distance,



Approximating the Stationary Distribution Page 3 of 64 176

Fig. 1. Simple exclusion process with open boundaries for parameters (q, α, β)

for two probability measure ν, ν′ on �N , let

∥∥ν − ν′
∥∥

TV :=
1

2

∑

x∈�N

|ν(x)− ν′(x)| = max
A⊆�N

(
ν(A)− ν′(A)

)
(1.3)

be the total variation distance between ν and ν′; see Chapters 4 and 5 in [56] for further
equivalent formulations. In the following, let BerI (ρ) denote the Bernoulli-ρ-product
measure on {0, 1}|I | for an interval I . We start with the following result by Liggett on
the local structure of the stationary measure of the open ASEP.

Proposition 1.1 (Liggett [57]). Let q ∈ [0, 1), α > 0 and β > 0. Let C ∈ N and
consider a family of finite intervals I = �aN , bN � with |I | = C and

lim
N→∞min(aN , N − bN ) = ∞. (1.4)

We have the following weak convergence of μI :

μI →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BerI
(

α
1−q
)

if α < min
(
β,

1−q
2

)

BerI
(

1− β
1−q
)

if β < min
(
α,

1−q
2

)

BerI
(

1
2

)
if min(α, β) >

1−q
2 .

(1.5)

Let us point out that [57] strictly speaking only covers the case α = β = 1. However,
for general parameters α, β > 0, the result follows along the lines of Theorem 3.29
in Part III of [59]. For the sake of completeness, we include a proof in the appendix.
Motivated by Proposition 1.1, let q ∈ [0, 1) and α, β > 0, and define

u = u(α, q) := 1− q

α
− 1 ∈ (−1,∞) and

v = v(β, q) := 1− q

β
− 1 ∈ (−1,∞). (1.6)

We say that the open ASEP is in the high density phase if v > max(u, 1), it is in
the low density phase if u > max(1, v), and it is in the maximal current phase if
max(u, v) < 1. Moreover, we distinguish between the fan region of the ASEP with
open boundaries where uv < 1 and the shock region of the ASEP with open boundaries
where uv > 1. The different phases for the open ASEP are visualized at the left-hand
side of Fig. 2. Let us remark that when uv = 1, it is straightforward to verify that the
stationary distribution of the open ASEP has a product form.
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Fig. 2. On the left-hand side, we see the different phases for the open ASEP with respect to the two boundary
parameters α, β > 0. On the right-hand side, we provide an overview on the different regimes covered in our
main theorems on approximating the stationary distribution

1.1.1. The asymmetric simple exclusion process with open boundaries We state now
our first result on the stationary distribution of the open ASEP in the maximal current
phase.

Theorem 1.2. Consider an interval I = �a, b�withmin(a, N−b) � max(|I |, log2(N ))1

for a = a(N ) and b = b(N ), and max(u, v) < 1, i.e. the maximal current phase. Then

lim
N→∞

∥∥∥∥μI − BerI

(
1

2

)∥∥∥∥
TV
= 0. (1.7)

Note that the above result is optimal in the sense that it can not be extended to macro-
scopic intervals with a size of order N , as this is ruled out by the characterization of the
macroscopic densities in [23]. However, the stationary distribution is well-approximated
even on macroscopic intervals in the fan region of the high and the low density phase.

Theorem 1.3. Consider an interval I = �a, b� with min(a, N − b) � 1. Moreover let
uv ≤ 1, and u > max(1, v), i.e. we consider the low density phase of the ASEP with
open boundaries in the fan region. Then we have

lim
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
= 0. (1.8)

By symmetry, a similar statement holds for the high density phase of the open ASEP.

Our arguments are specific to the fan region. In order to obtain similar approximation
results in the shock region, we compare the invariant measure to Bernoulli shock mea-
sures; see Sect. 6 for a precise definition. We use a representation for the open ASEP in
the special case where there exists some k ∈ N0 := {0, 1, . . . } such that

uvqk = 1. (1.9)

1 In the following, for any pair of functions f, g : N → R, we write

f � g ⇔ lim inf
N→∞

f (N )

g(N )
= ∞.
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We have the following result on approximating the stationary measure in the shock
region.

Theorem 1.4. Consider the low density phase in the shock region with α, β > 0. Assume
there exist β ′ and β ′′ with β ∈ [β ′, β ′′], and some constant k ∈ N such that the respective
parameters v′ := v(β ′, q) and v′′ := v(β ′′, q) from (1.6) satisfy

u > max(v′, v′′, 1) and uv′qk = uv′′qk−1 = 1. (1.10)

Then for all I = �a, b� with (N − b) � 1, we get

lim
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
= 0. (1.11)

By symmetry, a similar statement holds for the high density phase of the open ASEP.

The strategies in our theorems for the different regimes of the open ASEP are visu-
alized at the right-hand side of Fig. 2.

1.1.2. The weakly asymmetric simple exclusion process with open boundaries In the
following, we consider the weakly asymmetric simple exclusion process with open
boundaries, also called open WASEP, i.e. we let the bias parameter q = q(N ) be

q = exp(−cq N−ε) = 1− cq N
−ε + O(N−2ε) (1.12)

for some ε > 0 and cq > 0. Moreover, we assume that α = α(N ) and β = β(N ) are
such that

u = u(α, q, N ) = 1− q

α
− 1 ∈ (−1,∞) and

v = v(β, q, N ) = 1− q

β
− 1 ∈ (−1,∞) (1.13)

do not depend on N . Note that this implies that α(N ) and β(N ) are of order N−ε, while
the effective density at the left and right end of the segment remains constant. We have
the following result on approximating the stationary distribution of the open WASEP in
the maximal current phase, similarly to Theorem 1.2.

Theorem 1.5. Consider an interval I = �a, b� and take q from (1.12) with ε > 0.
Assume

min(a, N − b) �
⎧
⎨

⎩
max

(
N 2ε log2(N ), |I |

)
if u + v ≤ 0 and ε < 1

2

max
(
N 3ε log(N ), |I |

)
if u + v > 0 and ε < 1

3

(1.14)

for max(u, v) < 1, i.e. we consider the maximal current phase. Then

lim
N→∞

∥∥∥∥μI − BerI

(
1

2

)∥∥∥∥
TV
= 0. (1.15)

We believe that the exponent 2ε in (1.14) and the restriction ε < 1
2 are optimal; see

[33] for a seminal result by Corwin and Knizel when ε = 1
2 on relating the stationary dis-

tribution of the open WASEP to the open KPZ equation under a slightly different choice
of boundary parameters, but again with a constant effective density at the boundaries.
Next, we consider the open WASEP in the shock regime.
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Theorem 1.6. Consider the shock region of the low density phase, i.e. uv > 1 and
u > max(1, v), and let I = �a, b� with

min(a, N − b) � N ε. (1.16)

For q from (1.12) with ε > 0, and u, v from (1.13), we get

lim
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
= 0. (1.17)

A similar statement holds for the high density phase of the open WASEP in the shock
region.

Let us stress that in contrast to Theorem 1.4, our approximation result covers the entire
shock regime of the open WASEP whenever u �= v. We conjecture that Theorem 1.4
extends to the entire high and low density phase of the open WASEP.

Conjecture 1.7. Consider the low density phase u > max(1, v), and let I = �a, b�
satisfy

min(a, N − b) � N ε. (1.18)

For q from (1.12) with ε > 0, we get

lim
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
= 0. (1.19)

A similar statement holds for the high density phase v > max(1, u) of the open WASEP.

1.1.3. The totally asymmetric simple exclusion process with open boundaries Let us
note that in the above Theorems 1.2 to 1.6, we exclude the boundaries between the
different phases. For the special q = 0, the TASEP with open boundaries, also called
open TASEP, the following theorem covers the entire range of boundary parameters,
apart from the so-called co-existence line where α = β < 1

2 . To achieve this, we
rely on an alternative approach to approximating the stationary distribution using the
representation of the open TASEP as a last passage percolation model on a strip; see
[39,67].

Theorem 1.8. Consider an interval I = �a, b� with a = a(N ) and b = b(N ), and let
q = 0. If min(α, β) ≥ 1

2 and there exists some δ > 0 such that min(a, N − b) ≥ δN �
|I |, then

lim
N→∞

∥∥∥∥μI − BerI

(
1

2

)∥∥∥∥
TV
= 0. (1.20)

If α < min( 1
2 , β) and N − b � N

1
3 log(N ) then

lim
N→∞‖μI − BerI (α)‖TV = 0. (1.21)

Similarly, if β < min( 1
2 , α) and a � N

1
3 log(N ) then

lim
N→∞‖μI − BerI (1− β)‖TV = 0. (1.22)

Note that we impose slightly stronger assumptions on the size and location of the
segment compared to the previous theorems. We expect the above results to hold also for
the open ASEP with any constant q ∈ (0, 1), and that the assumptions on the location
and the size of the segment can be weakened to match the assumptions in Theorems 1.2
to 1.4.
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1.2. Related work. Exclusion processes are among the most studied examples of inter-
acting particle systems, introduced to the mathematical literature by Spitzer in [73] over
50 years ago; see [59] for a more comprehensive discussion. The open ASEP was studied
by Liggett in [57] who provides a remarkable recursive construction of the stationary
measure. In [38], Derrida et al. introduce the Matrix product ansatz as a celebrated tool
to represent the stationary distribution of the open TASEP; see also [15] for an extension
to the open ASEP, and [14] for an introductory survey to this technique. These insights
led to countless articles on the stationary distribution of the open ASEP from various
different perspectives. In a series of papers, Bryc et al. investigate the moment generating
function of the stationary distribution, which allows to characterize the limiting density
fluctuations and to obtain large deviations for the number of particles under the station-
ary distribution, among other applications [20,21,23]. A key tool are Askey–Wilson
processes, related to Askey–Wilson polynomials found in [75] when investigating the
current of the open ASEP, to order to study the Laplace transform of the height function
representation of the open ASEP. In turns out that, depending on the different phases
in the fan region, the height function converges to the sum of a Brownian motion and
a Brownian excursion in the maximal current phase, to a Brownian motion in the high
and the low density phase, and to a sum of Brownian motion and a Brownian meander
on the boundary of the phases. Very recently, the phase diagram in the shock region was
established by Wang et al. using signed Askey–Wilson measures [76], verifying that
the height function converges to a Brownian motion in the entire high and low density
phase.

The Matrix product ansatz serves as a key tool for various combinatorial interpreta-
tions of the stationary distribution of open ASEP using lattice paths and tableaux, allow-
ing also for more general boundary parameters, see [17,30,61,66] for a non-exhaustive
list, and [78] for a survey. We are particularly interested in the representation of the
stationary distribution of the open ASEP given in [17] as weighted bi-colored Motzkin
paths; see also Derrida et al. in [37] for the special case of the open TASEP described
in Sect. 2.3.1. Note that studying the fluctuations of random bi-colored Motzkin paths
is also of independent interest; see [22,24]. Let us further mention that the above com-
binatorial representations of the invariant measure can be extended to multispecies ex-
clusion processes, offering also an alternative descriptions of the invariant measure in
terms of queuing systems, as well as to asymmetric exclusion processes on the circle
[4,26,28,41,62,63].

When the Matrix product ansatz allows for a representation using only finite dimen-
sional matrices, much more can be said about the stationary distribution. Jafarpour and
Masharian note in [48] that the invariant measure can be written as a convex combination
of so-called shock measures; see Sect. 6.1, and [43] for a very recent similar result for the
symmetric simple exclusion process with open boundaries. Recently, Schütz established
a much deeper relation in this case between the open ASEP and an exclusion process
on a closed segment, introducing the concept of reverse duality [71]. Let us mention
that the Matrix product ansatz is used in physics to investigate higher moments of the
current of open ASEP or multispecies systems—see [5,54,74]—and can be rigorously
extended also to other models; see for example recent work by Yang for the six-vertex
model on a strip [80].

For asymmetric simple exclusion processes out of equilibrium, mixing and relaxation
times are a standard way to study the speed of convergence to the stationary distribu-
tion, see [25,51,52] for results on the ASEP and WASEP on a closed segment, and
[35,36,39,44,67,68] for the open ASEP and TASEP. Let us remark at this point that due
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to the representation as a last passage percolation model, many properties such as current
fluctuations or the existence of the TASEP speed process are very well understood for
totally asymmetric simple exclusion processes—see for example [3,6,42]—while cor-
responding results for asymmetric simple exclusion processes are sparse and often only
subject to recent breakthroughs [1,2,7,8,46]. We will see in Sect. 7 that the set of avail-
able techniques significantly increases when approximating the stationary distribution
in the special case of the open TASEP. Finally, let us stress that the open ASEP plays a
crucial role in the KPZ university class as it allows under a suitable weakly scaling to con-
struct a unique stationary solution to the open KPZ equation; see [9,18,19,33,34,50,64]
for a non-exhaustive list of seminal articles on this relation, and [32] for a recent survey
by Corwin.

1.3. Main ideas and concepts. In order to approximate the stationary distribution in
the fan region, we rely on [17] to express the stationary distribution of the open ASEP
on a segment of length N as a weighted lazy simple random conditioned to stay non-
negative, and to return to the origin after N steps. In order to study these weighted
random walks, we borrow ideas from random polymer models. In the maximal current
phase of the open ASEP, we apply a change of measure to the uniform distribution on
the set of bi-colored Motzkin paths. In the maximal current phase of the open WASEP,
we use Holley’s inequality and stochastic domination on the set of bi-colored Motzkin
paths when u + v ≤ 0, and a supermartingale argument when u + v > 0 in order to
control the weight and fluctuations of typical paths. In all three strategies, our goal is
to show that the corresponding random polymer is delocalized, i.e. that a random walk
path sampled according to the polymer measure is likely to spend most of the time away
from the x-axis. Let us note that this agrees with the usual notion of delocalization for
random polymers, i.e. that the (normalized) free energy is zero; see also Sect. 3.1 and
Remark 4.20. In the fan region of the high and low density phase of the open ASEP, we
use renewal techniques in order to couple the weighted random walk trajectories with
a suitable bi-infinite polymer. In particular, a random walk path sampled according to
the polymer measure is likely to remain very close to the x-axis, or again equivalently,
the associated free energy is strictly positive. In the shock regime of the open ASEP
and open WASEP, we rely on the canonical coupling to compare exclusion processes
with different boundary parameters, and an explicit expression of the invariant measure
as a sum of shock measures, using an ASEP on a closed segment with finitely many
particles and particle-depending hopping rates. Finally, for the open TASEP, we exploit
its equivalent formulation as a last passage percolation on the strip, and we use recent
results on the coalescence of geodesics, as well as the random extension and time-change
technique from [68] in the maximal current phase, in order to approximate the stationary
distribution.

1.4. Outline of the paper. This paper is structured as follows. In Sect. 2, we review com-
binatorial representations of the invariant measure of the ASEP with open boundaries.
In Sect. 3, we establish the correspondence between the representation of the invariant
measure as bi-colored Motzkin paths and a random polymer model with a hard wall and
pinning. In Sect. 4, we consider the open ASEP and open WASEP in the maximal current
phase, and show that the corresponding random polymer model is delocalized. This al-
lows us to conclude Theorem 1.2 and Theorem 1.5. In Sect. 5, we study the high and the
low density phase of the open ASEP in the fan region, and show that the corresponding
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random polymer localizes, allowing us to obtain Theorem 1.3. In Sect. 6, we treat the
shock region of the high and low density phase of the open ASEP and open WASEP,
proving Theorem 1.4 and Theorem 1.6. In Sect. 7, we investigate the open TASEP using
last passage percolation, and hereby establish Theorem 1.8. Let us remark that Sects. 6
and 7 can be read independently, while Sects. 2 to 5 build on top of each other.

2. Combinatorial Representation of the Stationary Distribution

We start by recalling combinatorial representations of the stationary distribution of the
open ASEP. This includes the celebrated Matrix product ansatz and a representation of
its weights using bi-colored Motzkin paths.

2.1. Recursive construction of the stationary distribution. The idea to use a recursive
construction in order to express the stationary distribution of the open ASEP is due
to Liggett [57]. In a celebrated result, Derrida et al. introduce the framework of the
Matrix product ansatz, where the weight of each configuration in the stationary dis-
tribution is represented as a product of, in general infinite dimensional, matrices; see
also Appendix B. In the following, we recall the recursive construction of the stationary
distribution from [17].

Let � = {∅}∪⋃n∈N �N be the set of all {0, 1} configurations with arbitrary length,
including the configuration of length zero, and we set �(η) = n when η has length n.
Moreover, with a slight abuse of notation, for all η, ζ ∈ �, we write ξ = [η, ζ ] for the
configuration in �, where we concatenate η and ζ , i.e. ξ ∈ ��(η)+�(ζ ) with

ξ(x) =
{

η(x) if 1 ≤ x ≤ �(η)

ζ(x − �(η)) if �(η) < x ≤ �(η) + �(ζ ).
(2.1)

We say that B : � → R is a basic weight function if the following relations hold:

B(∅) = 1

B(η) = αB([0, η])
B(η) = βB([η, 1])

B([η, 0, ζ ]) + B([η, 1, ζ ]) = B([η, 1, 0, ζ ])− qB([η, 0, 1, ζ ])
(2.2)

for all η, ζ ∈ �. The following statement is Theorem 1 in [17].

Lemma 2.1 (Brak et al. [17]). Let B be a basic weight function on �. Then for all
η ∈ �N ,

μN ,q,α,β(η) = μ(η) = B(η)

ZN
where ZN =

∑

ζ∈�N

B(ζ ). (2.3)

The quantity ZN in (2.3) is called the partition function for the open ASEP. It is
closely related to various statistics of the open ASEP, for example the average current of
particles through a segment of size N is given by ZN−1/ZN ; see [14] for an overview,
and [49] for an alternative combinatorial representation of the partition function.
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2.2. Bi-colored Motzkin paths. In order to construct a basic weight function for given
parameters α, β, q, we again follow the approach in [17]. Recall N0 = {0, 1, 2, . . . } and
define

MPN :=
{
(v0, v1, . . . , vN ) : vi−1 ∈ N0 × N0 for all i ∈ �N + 1�, v0 = (0, 0),

vN = (N , 0), vi − vi−1 ∈ {(1, 1), (1, 0), (1,−1)} for all i ∈ �N�
}

(2.4)

to be the set of Motzkin paths of length N , i.e. the set of all lattice path starting from the
origin, which stay non-negative, perform only horizontal or diagonal steps to the right,
and return to the x-axis after N steps. We require in the following a modified version of
Motzkin paths, where we color all horizontal steps. More precisely, let A be the set

A :=
{
N,

•
E,

◦
E,S

}
, (2.5)

where we refer to N as a north step, to S as a south step, and the remaining elements
as east steps. For each ω ∈ AN , we assign a lattice path vω = (v0, v1, . . . , vN ) by
v0 = (0, 0) and

vi − vi−1 =

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1) if ω(i) = N

(1, 0) if ω(i) ∈
{ •
E,

◦
E
}

(1,−1) if ω(i) = S

(2.6)

for all i ∈ �N�. The set of bi-colored Motzkin paths is now given as

�N :=
{
ω ∈ AN : vω ∈ MPN

}
. (2.7)

For each ω ∈ �N , we define its height at position i ∈ {0, 1, . . . , N } by

hi (ω) :=
i∑

j=1

1{ω( j)=N} − 1{ω( j)=S} (2.8)

i.e. hi (ω) corresponds to the height at position i in the Motzkin path vω associated to ω.
With a slight abuse of notation, we will also write hi (ζ ) for the height of a Motzkin path
ζ ∈ MPN at position i ∈ �N� as the height is independent of the coloring. Moreover,
for fixed α, β > 0 and q ∈ [0, 1), we define for each ω ∈ �N its weight at i ∈ �N� by

Wi (ω) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− q)
(
1− qhi (ω)+1

)
if ω(i) = N

(1− q)
(
1 + uqhi (ω)

)
if ω(i) =

•
E

(1− q)
(
1 + vqhi (ω)

)
if ω(i) =

◦
E

(1− q)
(
1− uvqhi (ω)−1

)
if ω(i) = S,

(2.9)

where we recall u = u(α, q) and v = v(β, q) from (1.6), respectively (1.13) when
q = q(N ). We set

W (ω) :=
N∏

i=1

Wi (ω) (2.10)

as the total weight of ω ∈ �N . The following result is Theorem 13 in [17].
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Fig. 3. Correspondence between bi-colored Motzkin paths and the particle configuration. The horizontal

moves
◦
E are marked as dotted lines

Lemma 2.2 (Brak et al. [17]). The function B given by B(η) =∑ω∈Cη
W (ω) with

Cη =
{
ω ∈ AN : ω(i) ∈ {N,

•
E
}
if and only if η(i) = 1

}
(2.11)

is a basic weight function. In particular, the stationary distribution satisfies for all
ω ∈ �N

μN (η) =
⎛

⎝
∑

ω∈Cη

W (ω)

⎞

⎠

⎛

⎝
∑

ω∈�N

W (ω)

⎞

⎠
−1

. (2.12)

We refer to Fig. 3 for a visualization of the correspondence between bi-colored
Motzkin paths and particle configurations. Let us remark that combinatorial representa-
tions of the stationary distribution of the ASEP with open boundaries are also available
when we allow for particles to enter at the right and exit on the left. In this case, Corteel
and Williams found a remarkable expression of the stationary distribution using stair-
case tableaux [30]. We focus in the following on the open ASEP model with respect
to parameters q, α, β, and leave the general case of five parameters, with entering rates
α, δ > 0 and exiting rates β, γ > 0 of particles at both ends of the segment, for future
work.

2.3. Two special cases. We discuss now two special cases where the above representa-
tion of the stationary distribution in terms of bi-colored Motzkin paths simplifies.

2.3.1. The TASEP with open boundaries Suppose that q = 0, i.e. we consider the
TASEP with open boundaries; see also Section 2.2 in [37]. Then the weights satisfy for
all i ∈ �N�

Wi (ω) = 1 whenever hi (ω) > 0.

In particular, note that the weight of a bi-colored Motzkin path ω ∈ �N only depends on
the number of times its associated lattice path stays, respectively returns, to the x-axis.
This further simplifies when α = β = 1 as all configurations ω ∈ �N receive the same
weight, and so the partition function is given by the (N + 1)th Catalan number, i.e.

∑

ω∈�N

WN = |�N | = 1

N + 2

(
2N + 2

N + 1

)
; (2.13)
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see also [29,77] for a more detailed discussion of combinatorial expressions of the
partition function with other parameters, and [79] for a survey on combinatorial rep-
resentations. Let us mention that we will revisit the TASEP with open boundaries in
Sect. 7, studying its representation as a last passage percolation model on a strip.

2.3.2. A finite Matrix product ansatz representation Observe that in the case where

uvqk = 1 (2.14)

for some finite k ∈ {0, 1, . . . }, we have that W (ω) = 0 whenever hi (ω) > k for some
i ∈ �N�, i.e. we restrict to bi-colored Motzkin paths whose associated lattice paths
have height at most k. In this case, it turns out the matrix product ansatz allows for a
representation using only finite dimensional matrices, and an explicit characterization
of the invariant measures of the ASEP with open boundaries can be given in terms of
Bernoulli-shock measures [48,70,71]. We will elaborate on this idea in more detail in
Sect. 6.1, where we approximate the stationary distribution using coupling arguments
and shock measures.

3. Polymer Characterization of the Stationary Distribution

In this section, we further investigate the representations of the stationary distribution
of the open ASEP discussed in Sect. 2. Our key observation is that in the fan region,
weighted bi-colored Motzkin paths can be studied using ideas from random polymer
models. Speaking in the language of polymers, we are interested in the localization and
delocalization, i.e. whether a random Motzkin path sampled according to its total weight
stays typically away from the x-axis.

3.1. A brief introduction to random polymer models. In the following, we recall some
basic definitions and properties of random polymer models. As the related literature
is way too exhaustive to give a full account at this point, and as we require a slightly
different setup compared to the standard models, we only give a brief overview, and
instead refer the interested reader to the notes by Giacomin [45] for a more exhaustive
introduction.

Let (Sn)n∈N0 be a lazy simple random walk with i.i.d. increments, that is S0 = 0 and
Sn =∑n

i=1 Xi for all n ∈ N, where (Xi )i∈N are i.i.d. and satisfy

P(X1 = 1) = P(X1 = −1) = 1

2
P(X1 = 0) = 1

4
. (3.1)

Let P denote the corresponding law on the space of trajectories of the lazy simple random
walk (n, Sn)n∈N0 . Let V : Z × {−1, 0, 1} → R ∪ {−∞} be a function taking values in
the reals together with −∞. For all N ∈ N, we define the free Polymer measure Pf

N ,V
by

dPf
N ,V

dP
= 4N

Z f
N ,V

exp

(
N∑

i=1

V (Si , Xi )

)
, (3.2)

whereZ f
N ,V is a suitable normalization constant, to which, with a slight abuse of notation,

we refer to as the partition function of the polymer. Here, we use the convention that the
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right-hand side in (3.2) is zero whenever V (Si , Xi ) = −∞ for some i ∈ �N�. Similarly,
we define the constraint polymer measure Pc

N ,V by

dPc
N ,V

dP
= 4N

Zc
N ,V

exp

(
N∑

i=1

V (Si , Xi )

)
1{SN=0} (3.3)

with respect to N ∈ N and V , where Zc
N ,V is a suitable normalization constant. In other

words, we apply the pinning constraint that the random walk returns to the origin after
N steps. We will write Pf and Pc whenever N and V are clear from the context. If V
satisfies V (x, ·) = −∞ for all x < 0, we say that we have a hard wall constraint,
i.e. we restrict the available state space such that the walk according to the respective
polymer measure is require to stay almost surely non-negative. Whenever the limit

F ·(V ) = lim
N→∞

1

N
log
(Z ·

N ,V

)
(3.4)

exists for Z ·
N ,V ∈ {Z f

N ,V ,Zc
N ,V }, we refer to F f(V ), respectively Fc(V ), as the free

energy. In the following, we are interested whether F ·(V ) > log(4), called the local-
ization regime, or F ·(V ) = log(4), called the delocalization regime, for very specific
choices of V .

3.2. Characterizing the equilibrium of the open ASEP. We argue in the following that in
the fan region of the open ASEP, we can identify the weighted set of bi-colored Motzkin
paths with a suitable constraint random polymer model with a hard wall. More precisely,
fix u = u(α, q) and v = v(β, q) from (1.6) such that uv < 1. We consider the function
V : Z× {−1, 0, 1} → R, where

V (h, y) =

⎧
⎪⎨

⎪⎩

log
(√

(1− qh+1)(1− uvqh)
)

if h ≥ 0 and y ∈ {−1, 1}
log
(
2 + (u + v)qh

)
if h ≥ 0 and y = 0

−∞ otherwise.

(3.5)

Recall the total weight function W from (2.10). Let PN denote the law on the space of bi-
colored Motzkin paths �N , where ω ∈ �N is chosen proportional to W (ω). Moreover,
recall that for all ω ∈ �N , we denote by vω its corresponding lattice path in MPN .

Lemma 3.1. Let uv < 1 and N ∈ N, and consider the constraint polymer measure with
respect to V from (3.5). Then for all ζ ∈ MPN ,

Pc
N ,V (ζ ) = PN (vω = ζ ). (3.6)

Moreover, we have that the partition function Zc
N ,V satisfies

Zc
N ,V =

1

(1− q)N

∑

ω∈�N

W (ω). (3.7)
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Proof. Observe that a path chosen according to Pc
N ,V is almost surely in MPN . Hence,

it suffices to show that the weight of a path ζ ∈ MPN , by summing the weights of its
corresponding bi-colored Motzkin paths, is proportional to the weight of ζ according to
Pc
N ,V . Note that in every bi-colored Motzkin path, the number of N moves from height

h to h + 1 equals the number of S moves from height h + 1 to h. Moreover,

∑

ω∈�N : vω=ζ

W (ω) =
⎛

⎝
∏

i : ω(i)∈{N,S}
Wi (ω)

⎞

⎠

⎛

⎝
∏

i : ω(i)/∈{N,S}

(
2 + (u + v)qhi (ω)

)
⎞

⎠ .

With these two observations, the statement (3.6) follows from the choice of V . Equation
(3.7) follows from (3.6) and definition of Zc

N ,V in (3.3), noting the extra factor of

(1− q)−N by our choice of V . ��
Let us mention at this point that different representations for the basic weights are

known, for example by Enaud and Derrida in [40]; see also recent work by Barraquand
and Le Doussal to construct a solution to the open KPZ equation [9] using their repre-
sentation. We stress that the representation in [40] is for the five parameter version of
the open ASEP, where particles also exit at the left (enter at the right) boundary at rate
γ (at rate δ), and assuming Liggett’s condition

α +
γ

q
= 1 and β +

δ

q
= 1. (3.8)

In total, this leaves again three degrees of freedom in the parametrization of the model. In
[40], the basic weight function is again given by weighted random walks, and the weights
take a similar form as in (2.9). However, the random walk trajectories do not need to
return to the x-axis after N steps, and to our best knowledge, do not allow for a simple
Markovian construction of the underlying polymer measure; see also Lemma 4.13. Our
description of the basic weight function using bi-colored Motzkin paths is specific to the
case of the three parameters (q, α, β), but we conjecture that our results extend to the
open ASEP under general boundary parameters. Finally, let us mention that the above
characterization of the stationary distribution extends directly to the open WASEP.

3.3. Strategy for the fan region of open ASEP and openWASEP. In order to approximate
the stationary distribution in the fan region, we rely on its characterization as a constraint
random polymer model. In the maximal current phase, we show that the respective
polymer measure is delocalized. More precisely, we argue in Sects. 4.3 and 4.4 that a
bi-colored Motzkin path chosen according to PN and evaluated at distance x from the
boundary has with high probability a height of order

√
x , provided that x is sufficiently

large compared to N , and depending on the choice of q = q(N ). This is achieved by
a stochastic domination when u + v ≤ 0, and a supermartingale argument, otherwise.
For the last part, when u + v > 0, we first establish a delocalization result under the
free polymer measure in Sect. 4.3 which is then transferred to a delocalization result for
the constraint polymer in Sect. 4.4. For the open ASEP and open WASEP, we present
the proof of the approximation of the stationary distribution in Sect. 4.5. Heuristically,
the probability to see each of the moves in A from (2.5) is roughly equally likely and
independent of the previous moves, allowing us in Sect. 4.5 to conclude the desired
approximation. In the fan regime of the high and low density phase of the open ASEP,
we show that the respective polymer measure is localized. We give in Sect. 5.1 bounds on
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the expected number of steps between two contact points of the associate Motzkin path
with the x-axis by exploiting the renewal structure of random polymers. We then couple
in Sect. 5.2 the constraint polymer to a stationary renewal process, which in return gives
rise to a product measure in the respective particle configuration.

4. Approximation in the Maximal Current Phase

In this section, we investigate that the stationary distribution in the maximal current phase
of the open ASEP and open WASEP. We show that the associated random polymer is
delocalized, establishing Theorems 1.2 and 1.5. We start in Sect. 4.1 with the open ASEP
in the maximal current phase, where we show that the path measure under the weights
V from (3.5) is equivalent to the uniform measure on the space of bi-colored Motzkin
paths.

4.1. Delocalization for the open ASEP in the maximal current phase. For a given path
ω ∈ �N , recall its height function (hx (ω))x∈�0,N� from (2.8). We let (Ai, j

N )N∈N be a
family of events on the space of lazy simple random walk paths (Sn)n∈�0,N�, where

Ai, j
N := {Si ≥ j} .

We have the following result on the open ASEP in the maximal current phase.

Lemma 4.1. Let q ∈ (0, 1), and u, v < 1 be fixed. Recall the function V from (3.5).
Then

lim
N→∞Pc

N ,V

(
Ai, j
N

)
= 1 (4.1)

for all j = jN and i = iN ≤ N/2 such that jN � √
iN . Moreover, for every interval

I = �a, b� with |I | � min(a, N − b), the height function (hx (ζ ))x∈�0,N� satisfies

lim
N→∞Pc

N ,V

(
hx (ζ )2 ≥ √|I |min(a, N − b) for all x ∈ I

)
= 1. (4.2)

Proof. For q ∈ (0, 1), we recall equation (63) in [15], which states that the partition
function ZN from Lemma 2.1 of a basic weight function satisfies

ZN = 4(q; q)3∞√
π(u, v; q)∞

4N

N 3/2(1− q)N
+ o

(
4N

N 3/2(1− q)N

)
(4.3)

in the maximal current phase of the open ASEP. Here, we set (x, y; q)∞ := (x; q)∞
(y; q)∞, and let

(z; q)∞ :=
∞∏

i=0

(1− zqi ) (4.4)

for z ∈ R be the q-Pochhammer symbol. Together with Lemma 2.2 yields that

Z̄N := 1

(1− q)N

∑

ω∈�N

W (ω) = 4(q; q)3∞√
π(u, v; q)∞

4N

N 3/2 + o

(
4N

N 3/2

)
. (4.5)
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Recall the mapping vω for ω ∈ �N from Lemma 3.1. Then by enlarging the underlying
state space, and equation (3.7) to express the partition function Zc

N ,V by the weights W ,
we see that by a change of measure,

lim
N→∞Pc

N ,V (Ai, j
N ) = lim

N→∞
1

EN [W (ω)]EN

[
W (ω)1{vω∈Ai, j

N }
]

= lim
N→∞

|�N |
Z̄N

EN

[
W (ω)1{vω∈Ai, j

N }
]
.

Here, EN [ · ] denotes the expectation with respect to the uniform distribution on �N .
Moreover, recall from (2.13) that the number of bi-colored Motzkin paths |�N | equals
the (N + 1)th Catalan number. It is a well-known fact that

c1
4N

N 3/2 ≤ |�N | ≤ c2
4N

N 3/2 (4.6)

for some c1, c2 > 0 and all N sufficiently large. Hence, using dominated convergence
together with (4.5) and (4.6), it suffices to show (4.1) and (4.2) with respect to the uniform
measure on �N . Observe that we obtain the uniform measure on �N by considering a
lazy simple random walk conditioned on staying non-negative, to return to the origin
after N steps, and flipping independent fair coins to decide for the coloring of each
horizontal move. The first claim (4.1) now follows from the standard fact that the above
lazy simple random path converges to a Brownian excursion. The second claim (4.2) is a
consequence of (4.1) for heights at a and b, and a standard moderate deviation estimate
for the fluctuations of a lazy simple random walk on I . ��

4.2. Delocalization for the open WASEP via stochastic domination. Consider now the
open WASEP in the maximal current phase. Our goal is to compare the measure Pc to
the uniform distribution on �N . We discuss in the following two different approaches to
achieve this goal. In the first approach, presented in this section, assuming that u and v

satisfy uv < 1 and u + v ≤ 0, we establish stochastic domination of the trajectory with
respect to a certain non-lazy simple random walk conditioned to stay non-negative and
to return to the x-axis after N steps. We have the following result on the trajectory.

Proposition 4.2. Recall Pc = Pc
N ,V from (3.3) with V from (3.5). If q satisfies (1.12)

for some ε > 0, and u + v ≤ 0, then

lim
N→∞Pc(Ai, j

N

) = 1 (4.7)

holds for all j = jN and i = iN ≤ N/2 such that jN � √
iN and min(iN , N − iN ) �

N 2ε log2(N ). Moreover, for all I = �a, b� with max(|I |, N 2ε log2(N )) � min(a, N −
b), the height function (hx (ζ ))x∈�0,N� satisfies

lim
N→∞Pc

(
hx (ζ )2 ≥ √|I |min(a, N − b) for all x ∈ I

)
= 1. (4.8)

For M ∈ N and x ∈ Z, we define the space of lattice paths

�
(x)
M :=

{
(v0, v1, . . . , vM ) : vi−1 ∈ �−x,∞�× �−x,∞� for all i ∈ �M + 1�, v0 = (0, 0),

vi − vi−1 ∈ {(1, 1), (1, 0), (1,−1)} for all i ∈ �M�
}
,

(4.9)



Approximating the Stationary Distribution Page 17 of 64 176

and let �̂(x)
M ⊆ �

(x)
M be the space of lattice paths without horizontal moves, i.e.vi−vi−1 �=

(1, 0) for all i . In order to show Proposition 4.2, we first recall some basic notions for
stochastic domination. For M ∈ N fixed, consider the natural ordering� on the space of
lazy simple random walk paths of length M , i.e. we say that (S̃n)n∈�0,M� � (Sn)n∈�0,M�
if

S̃i ≥ Si for all i ∈ �0, M�.

We will be interested in sets B of trajectories which are increasing with respect to the
partial order �, i.e. we have that

Y ∈ B and Ỹ � Y ⇒ Ỹ ∈ B.

Note that when we restrict ourselves to trajectories in �̂
(x)
M for some x and M , the partial

order � gives rise to a distributive lattice. In this case, for any ordered pair of lattice
paths Ỹ � Y of length M , we denote the respective unique minimal and maximal paths
by

min(Ỹ ,Y ) := (min(Ỹx ,Yx ) for x ∈ �0, M�)

max(Ỹ ,Y ) := (max(Ỹx ,Yx ) for x ∈ �0, M�).

Note that the above observations remain valid when conditioning on the height of the
endpoint of the paths. Next, let Na,b = Na,b(Y ) denote the number of horizontal step
in the trajectory Y between positions a and b, and let Ŷa,b ∈ �̂

(0)

N−Na,b
be the path Y

after removing all horizontal moves between a and b. Recall that for all ω ∈ �N , we
denote by vω its respective lattice path in MPN . For M ≤ N , define the measure P̂M,N

�a,b�
on MPM by

P̂M,N
�a,b�(·) ∼

∑

ω∈�N

W (ω)1{
Ŷa,b=· for Y=vω and Na,b(Y )=N−M

}.

In other words, P̂M,N
�a,b�(Y ) is proportional to the total weight of all configurations in �N

which reduce to Y after projecting to MPN and then removing exactly N−M horizontal
steps in �a, b�. Let P̃M,N

a,b be the measure on MPM which we get from P̂M,N
�a,b� by replacing

the path between a and b− N + M by a uniformly sampled non-lazy non-negative path.

Lemma 4.3. Let u, v < 1 and recall V from (3.5). Fix M and let a, b ∈ �N� with
a < b. Then the measure P̂M,N

�a,b� stochastically dominates P̃M,N
a,b on �a, b�, i.e. for every

increasing set B with respect to�, measurable with respect to the path on �a, b−N+M�,
and all y, z

P̂M,N
�a,b�(B | Ya = y,Yb = z) ≥ P̃M,N

a,b (B | Ya = y,Yb = z). (4.10)

Proof. Let N be sufficiently large such that uvq−2 < 1. Then the function

f (h) := (1− qh+1)(1− uvqh−1)

is monotone increasing in h. From this, observe that for any two paths Y and Ỹ with
Ỹ � Y , which agree outside of the interval �a, b − N + M�,

P̂M,N
�a,b�(Ỹ ) ≥ P̂M,N

�a,b�(Y )
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as V (h, 0) is increasing in h by our assumption u + v ≤ 0. Thus, since P̃M,N
�a,b� assigns

the same weight to each lattice path in �a, b − N + M�, we get for all above Y , Ỹ

P̂M,N
�a,b�(max(Ỹ ,Y ))P̃M,N

a,b (min(Y, Ỹ )) ≥ P̂M,N
�a,b�(Ỹ )P̃M,N

a,b (Y ). (4.11)

Since the underlying space of trajectories between a and b−N +M conditioned to agree
in their heights at a and b − N + M , is a distributive lattice, the stochastic domination
follows by (4.11) and Holley’s inequality on the interval �a, b− N + M�; see Corollary
11 in [47]. ��

Let us stress that in the above result, it is crucial that we only allow for north and south
moves and u + v ≤ 0 in order to apply Holley’s inequality. It remains now to control the
number of horizontal moves in a configuration according to Pc. To do so, let Ph

N denote

measure on the space �
(0)
N by weighting each configuration proportionally to 2N0,N .

Intuitively, we obtain Ph
N from a lazy simple random walk (Sx )x∈�0,N� conditioned to

stay non-negative until time N . This process is known to converge to an h-transformed
lazy simple random walk; see also Sect. 5.2.

Lemma 4.4. Consider an interval �a, b� for some a = aN and b = bN with mN :=
bN − aN →∞ for N →∞. Then there exists some δ > 0 such that

lim
N→∞Pc(Na,b ≤ (1− δ)mN

) = 1. (4.12)

Proof. First, we argue that for every δ1 > 0, there exists δ2 > 0, such that for all
x, y ∈ N

Ph
N

(Na,b > (1− δ2)mN
∣∣ Sa = x, Sb = y

) ≤ (2− δ1)
−mN . (4.13)

To see this, notice that under the law Ph
N ( · | Sa = x, Sb = y), the random variable Na,b

is stochastically dominated by the number X̃ of horizontal steps of a lazy simple random
walk conditioned to return to the origin after mN − |y − x | steps. For any choice of x
and y, a local central limit theorem yields that there exists C > 0 such that for all N
large

P(X̃ ≥ (1− δ2)mN ) ≤ Cm3/2
N P(X ′ ≥ (1− δ2)mN )

for a Binomial-(mN − |y − x |, 1
2 )-distributed random variable X ′. This implies (4.13)

by a standard tail estimate for X ′. Let δ1 < (1 − max(u, v))/3, and note that from the
definition of Pc and (4.13), together with a change of measure by (3.3), we get that

Pc(Na,b > (1− δ2)mN
) ≤ (1 + max(|u|, |v|))mN (2− δ1)

−mN ≤
(

2− 2δ1

2− δ1

)mN

,

(4.14)

which gives the desired result. ��
Proof of Proposition 4.2. We will only show (4.7) as (4.8) directly follows (4.7) and
a standard moderate deviation estimate for lazy simple random walks. We will use in
the following two basic observations for the non-negative non-lazy simple random walk
(Ŝn)n∈�0,M� with law P̂h

M . Let M = M(N ) ≤ N and xN , yN � N ε log(N ). Then for
every fN � 1 and gN � min(xN , yN )

lim
N→∞ P̂h

M

(∃z ∈ �M� such that Ŝz ≥
√
M f −1

N

∣∣ Ŝ0 = 0, ŜM = 0
) = 1 (4.15)
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Fig. 4. Visualization of the different delocalization strategies in Propositions 4.2 and 4.5. The black curve
corresponds to the trajectory sampled according to P̃N

�0,N�
. The red path is a sample for Pc when u + v ≤ 0,

and dominates the black curve by Proposition 4.2 after removing all horizontal steps. The blue path illustrates
a sample of Pc when u + v > 0 and ε > 0. For the colored paths, heuristically, the number of south moves is
negligible before reaching a height of order N ε

lim
N→∞ P̂h

M

(
Ŝz ≥

√
gN N ε log(N ) for all z ∈ �M�

∣∣ Ŝ0 = xN , ŜM = yN
) = 1. (4.16)

Both statements follow from a basic computation using the reflection principle and a
local limit theorem for non-negative simple random walks; see also Chapter 2 in [53].
We claim that for any slowly growing function fN � 1

lim
N→∞Pc

(
∃aN ∈

�
1

4
iN ,

3

4
iN

�

and bN ∈
�

5

4
iN ,

7

4
iN

�

: min(haN , hbN ) ≥ f −1
N N ε log(N )

)
= 1.

To see this, choose a lattice path according to Pc and consider its height at positions
( 1

8 (2�− 1)iN )�∈�4�. By Lemma 4.4, there exists some δ > 0 such that

lim
N→∞Pc

(
max

(
N 1

4 iN , 3
4 iN

,N 5
4 iN , 7

4 iN

)
≤ 1

2
(1− δ)iN

)
= 1. (4.17)

Now conditioning in addition on the event in (4.17), Lemma 4.3 ensures that the law of
the process after removing all horizontal moves is stochastically dominated between 0
and iN/2 and between 3iN/2 and 2iN by a non-lazy simple random walk with at least
δ
2 iN steps. The desired result (4.7) on the height at iN now follows from equations (4.15)
and (4.16). ��

4.3. Delocalization of a free randompolymerwith a hardwall. For the second approach,
under stronger assumptions on the location and size of the target segment, we use a
suitable supermartingale in order to compare the occurrence of events Ai, j

N under the
random polymer measure and the law Ph

N of a lazy simple random walk conditioned to
stay non-negative until time N ; see Fig. 4 for the different strategies for delocalization.
We start with a result on the delocalization for a free random polymer measure, which
is then transferred to the constraint random polymer measure in Sect. 4.4.

Recall the measure Pf = Pf
N ,V , and assume in the following that q satisfies (1.12)

for some ε ∈ (0, 1
3 ), as well as that u, v satisfy max(u, v) < 1. The next proposition

states a delocalization result on the corresponding free random polymer measure.

Proposition 4.5. For all constants C > 0, and for any (kN )N∈N with kN � N 3ε log(N )

Pf(Ai, j
N holds for some i ≤ kN and j ≥ CN ε log(N )) ≥ 1− exp(−N ε) (4.18)

for all N sufficiently large.
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In order to show Proposition 4.5, we require some setup. Let

�N :=
{
(v0, v1, . . . , vN ) ∈ (N0 × Z)N : vi − vi−1 ∈ {(1, 1), (1, 0), (1,−1)} ∀ i ∈ �N�

}

(4.19)

be the space of all lattice paths of length N . For fixed x ∈ N0, let (Shn )n∈�0,N� be a
sample on the space �N according to a lazy simple random walk started from x and
conditioned to be non-negative until time N . Note that (Shn )n∈�0,N� can be interpreted

as a time-inhomogeneous Markov chain with Sh0 = x and

P(Shn = y | Shn−1 = x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4 Px+1(τ0 > N − n)Px (τ0 > N − n + 1)−1 if y = x + 1
1
2 Px (τ0 > N − n)Px (τ0 > N − n + 1)−1 if y = x
1
4 Px−1(τ0 > N − n)Px (τ0 > N − n + 1)−1 if y = x − 1 and y ≥ 0

0 otherwise,

where Px (τ0 > n − 1) is the probability of a lazy simple random walk started from x
to not return to 0 within the first n − 1 steps; see also Chapter 12 in [53]. Let (Si )i∈N0

denote a lazy simple random walk. Using the reflection principle, we see that for all
x ∈ N

Px (τ0 > j) = P0

(
max
i∈� j�

Si < x
)
= P0

(
S j ∈ (−x, x)

)
.

This implies that for all δ > 0, there exists some J = J (δ) such that for all j ≥ J

1 = inf
x>0

Px (τ0 > j)

Px (τ0 > j + 1)
≤ sup

x>0

Px (τ0 > j)

Px (τ0 > j + 1)
≤ 1 + δ (4.20)

using a local central limit theorem for (Si )i∈N0 ; see Chapter 2 in [53]. Next, we define
an auxiliary process (Xn)n∈N0 to express the partition function Z f

N ,V ; see [16] for a
related martingale technique for random polymers. Recall V from (3.5) and set for all
n ∈ �0, N�

Xn =
n∏

i=1

exp(V (Shi , Shi − Shi−1)). (4.21)

Let (Fn)n∈�0,N� denote the natural filtration with respect to (Shi )i∈�0,N�, and write Px =
P(N )
x and Ex = E(N )

x for the law and expectation under the lazy simple random walk
started from Sh0 = x and conditioned to be non-negative until time N , respectively.

Lemma 4.6. Let u, v ∈ (−1, 1), and q satisfy (1.12) for some ε > 0 and c > 0. Then
there exist some absolute constant J0 = J0(u, v, ε, c) such that for all N sufficiently
large, (Xn)n∈�0,N−J0� is a supermartingale with respect to (Fn)n∈�0,N�. Moreover, we

have that E0[XN ] ≤ 2J0 and

Z f
N ,V = E0[XN ] ·

∣∣∣
{
ω ∈ AN : hy(ω) ≥ 0 for all y ∈ �N�

}∣∣∣ . (4.22)
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Proof. Observe that there exists some δ > 0 and N0 ∈ N such that for all N ≥ N0

(1 + δ)(u + v) ≤ (1− δ)(1 + uv)q2. (4.23)

Recall the constant J = J (δ) from (4.20) for this choice of δ, and set J0 = max(J, N0).
Using (4.20) and the fact that x �→ Px (τ0 > j) is increasing for the first step, and the
AM-GM inequality for the second step, a computation shows that for all n ∈ �N − J0�

Ex [Xn+1|Fn] ≤
(

1 + δ

4

(
2 + (u + v)qhn

)
+

1− δ

2

√(
1− q(hn+2)

)(
1− uvq(hn+1)

))
Xn

≤
(

1 + δ

4

(
2 + (u + v)qhn

)
+

1− δ

4

(
2− (1 + uv)q(hn+2)

))
Xn

≤
(

1 +
1

4
qhn
(
(1 + δ)(u + v)− (1− δ)(1 + uv)q2

))
Xn

≤ Xn,

(4.24)

which ensures that (Xn)n∈�0,N−J0� is a supermartingale with X0 = 1. Since all weights
W are bounded from above by 1 + max(|u|, |v|) < 2, this gives the desired bound on
E0[XM ]. For (4.22), apply the same arguments as in Lemma 3.1, but with respect to the
free random polymer measure. ��
Remark 4.7. As pointed out in the introduction, Bryc et al. investigate the stationary dis-
tribution of the open ASEP using Askey–Wilson processes [20,21,23]. These processes
exhibit a martingale structure, and it remains an open question whether this fact can be
related to the above described supermartingale (Xn,Fn) for the open WASEP.

Next, for fixed C > 0, we define the exit time τC,N from level CN ε log(N ) as

τC,N = inf
{
n ≥ 0 : Shn ≥ CN ε log(N )

}
.

For fixed M ≤ N , we write (S̃hn )n≥0 for the simple random walk which is non-negative
until time N and conditioned to not hit level CN ε log(N ) until time M . Let phx,y be
given by

phx,y = P(Shn = y | Shn−1 = x)

for all x, y ∈ N0. Similar to (Shn )n≥0, we notice that (S̃hn )n∈�0,N� can be written for all
n ≤ M as a time-inhomogeneous Markov chain with transition probabilities

P
(
S̃hn = y

∣∣ S̃hn−1 = x
) = phx,y

Py(τC,N > M − n)

Px (τC,N > M − n + 1)
(4.25)

with x, y ∈ �CN ε log(N )−1�, where we recall that Px denotes the law of a lazy simple
random walk started from x conditioned to stay non-negative until time N . Further,
recall V from (3.5) and set for all n ∈ �0, M�

X̃n =
n∏

i=1

exp(V (S̃hi , S̃hi − S̃hi−1)).

Similar to Lemma 4.6, the following lemma justifies that (X̃n)n∈�0,N� gives rise to a

supermartingale with respect to the natural filtration (F̃n)n∈�0,N� of (S̃hn )n≥0.
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Lemma 4.8. Let u, v ∈ (−1, 1), and q satisfy (1.12) for some ε > 0 and c > 0. Recall
M = M(N ) in the definition of (S̃hn )n∈�0,N�. Then there exist some J̃0 = J̃0(u, v, ε, c)

such that for all N sufficiently large, (X̃n)n∈�0,M− J̃0�
is a supermartingale with respect

to (F̃n)n≥0. Moreover, we have that E0[X̃M ] ≤ 2 J̃0 .

Proof. A similar computation as for (4.20) using the reflection principle and a local
central limit theorem for the standard lazy simple random walk on Z ensures that for
every δ > 0, there exists some constant J̃0 > 0 such that

1− δ ≤ Px (τC,N > j)

Py(τC,N > j + 1)
≤ 1 + δ (4.26)

uniformly in the choice of j ≥ J̃0 and x, y ∈ �CN ε log(N )� with |x − y| ≤ 1. To-
gether with (4.20) and (4.25), taking δ > 0 sufficiently small, a similar computation
as for (4.24) yields that (X̃n)n∈�0,M− J̃0�

is a supermartingale with X̃0 = 1, and thus

E0[X̃M ] ≤ 2 J̃0 . ��
Proof of Proposition 4.5. By a change of measure, it suffices to show that there exists
some C ′ = C ′(u, v, ε) > 0 such that for M = C ′N 3ε log(N )

Pf(τC,N > M) = 1

E0[XM ]E0[XM1{τC,N>M}] = E0[X̃M ]
E0[XM ]P0(τC,N > M) (4.27)

converges to 0 as N →∞. We claim that there exists some c′ = c′(u, v) > 0 such that

lim
N→∞

Z f
N ,V

4N
exp(−c′N ε log(N )) = ∞. (4.28)

To see this, consider the set of trajectories

G = {ω ∈ AM : hx (ω) ≥ min(x, c̃N ε log(N )) for all x ∈ �M�
}
,

with c̃ > 0. Choosing c̃ sufficiently large, there exists some c′ = c′(c̃) > 0 such that each
path inG has weight at least exp(−c′N ε). At the same time, |G| ≥ 4M exp(−c′N ε log(N ))

for all N sufficiently large. Hence, recalling (4.22) for E0[XM ], Lemma 4.6 ensures that

E0[XM ] ≥ exp(−2c′N ε log(N ))

for all N sufficiently large. Choosing now the constantC ′ = C ′(c′, c̃,C) > 0 sufficiently
large,

P0(τC,N > M) ≤ exp(−3c′N ε log(N )).

Thus, using (4.27), and Lemma 4.8 to bound E0[X̃M ], this finishes the proof. ��
Remark 4.9. The same arguments as for Proposition 4.5 ensure that for some constants
C, c′ > 0, a lazy simple random walk trajectory of length M � N 3ε log(N ), weighted
according to (3.2) withV from (3.5), reaches with probability at least exp(−2c′N ε log(N ))

a height of at least CN ε log(N ) until time M , uniformly in its starting position.
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4.4. Delocalization for the open WASEP in the maximal current phase. In this sec-
tion, we transfer the delocalization result in Proposition 4.5 for the free polymer to a
delocalization result for the constraint polymer. Recall that we assume u, v ∈ (−1, 1).

Proposition 4.10. Consider q from (1.12) with ε < 1
3 , and recall Pc

N ,V from (3.3). Then

lim
N→∞Pc

N ,V

(
Ai, j
N

)
= 1 (4.29)

for all j = jN and i = iN ≤ N/2 such that jN � √
iN and min(iN , N − iN ) �

N 3ε log(N ). Moreover, for every interval I = �a, b� satisfying the assumptions (1.14),

lim
N→∞Pc

(
hx (ζ )2 ≥ √|I |min(a, N − b) for all x ∈ I

)
= 1. (4.30)

4.4.1. Improvedbounds on the delocalization under the free polymermeasure In order to
show Proposition 4.10 in Sect. 4.4.2, we require an improved bound on the delocalization,
stated below as Lemma 4.15. To do so, we start with a basic observation on the simple
random walk (Shn )n≥0 conditioned to stay positive until time N . Recall the law Ph

N and
that we write Px for the law of a lazy simple random walk (Sn)n∈N0 on Z started from x .

Lemma 4.11. For any (aN )N∈N and (bN )N∈N with aN > bN � 1, there exist some
absolute constant C > 0 such that for all N large enough

Ph
N

(
Shn ≥ bN for all n ≥ 0

∣∣ Sh0 = aN
) ≥ 1− C

bN
aN

. (4.31)

Proof. We show (4.31) by a comparison to a lazy simple random walk on Z. Note that

Ph
N

(
Shn ≥ bN for all n ≥ 0

∣∣ Sh0 = aN
) = PaN (Sn ≥ bN for all n ≥ 0)

PaN (Sn ≥ 0 for all n ≥ 0)
.

Using the reflection principle for the simple random walk, we see that for all x ∈ N,

Px (Sn ≥ 0 for all n ∈ �N�) = P0(SN ∈ [−x, x]).
A local central limit theorem for the simple random walk—see for example Chapter 2
in [53]—now gives the desired bound. ��
Remark 4.12. Alternatively, Lemma 4.11 can be shown by interpreting (Shn ) as an h-
transformed lazy simple random walk, i.e. as a random walk on an electrical network
(ce) on N0 with respect to conductances c{x,x+1} = x(x + 1). By a standard argument on
network reduction the effective resistance between aN and bN is of order aN while the
effective resistance between bN and infinity is of order bN , giving the desired result.

It will be convenient to work with a measure Pf,N
x on the space �N from (4.19) when

we shift the weight function V from (3.5) to Vx (h, y) := V (h+x, y), i.e. for all ζ ∈ �N

Pf,N
x (ζ ) := Pf

N ,Vx (ζ ). (4.32)

A key observation is that the measure Pf,N
x satisfies a spatial Markov property.
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Lemma 4.13. For all M ∈ �N�, and all ζ = (ζ1, ζ2) ∈ �N with ζ1 ∈ �M and
ζ2 ∈ �N−M,

Pf(ζ ) = Pf,N
0 (ζ1)P

f,N−M
hM (ζ1)

(ζ2). (4.33)

Proof. This follows from the product form of the weight function V , and the Markov
property of the simple random walk on Z conditioned to stay non-negative until
time N . ��

With a slight abuse of notation, we will write Pf = Pf
N ,V = Pf,N

0 when N and V are
clear from the context. Note that similar to Lemma 3.1, we can represent the probability
of a path ζ under Pf,N

x using a suitable weight function. More precisely, for all ω ∈ AN ,
we define the weight W (x)(ω) :=∏N

i=1 W
(x)
i (ω) by

W (x)
i (ω) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− q)
(
1− qhi (ω)+1−x

)
if ω(i) = N

(1− q)
(
1 + uqhi (ω)−x

)
if ω(i) =

•
E

(1− q)
(
1 + vqhi (ω)−x

)
if ω(i) =

◦
E

(1− q)
(
1− uvqhi (ω)−1−x

)
if ω(i) = S,

(4.34)

whenever hi (ω) ≥ −x for all i ∈ �N�. Furthermore, note that for all ω ∈ AN , we
can associate a lattice path vω ∈ �N via the relation (2.6). The next lemma states a
correspondence between the path weights in (4.34) and the measure Pf,N

x . Since the
arguments are one-to-one to Lemma 3.1, we omit the proof.

Lemma 4.14. Let uv < 1 and N ∈ N, and fix some x ∈ N. Then for all ζ ∈ �N ,

Pf,N
x (ζ ) = 1

Z(x)
N

∑

ω : vω=ζ

Wx (ω), (4.35)

where Z(x)
N is a suitable normalization constant.

Next, recall from (1.12) that q takes the form q = exp(−N εcq) for some constant
cq > 0. To simplify notation, we will set from now on M = M(N , q) = 3c−1

q N ε log(N )

for all N ∈ N. The following lemma extends the delocalization result from Proposi-
tion 4.5.

Lemma 4.15. Consider q from (1.12) with ε < 1
3 . Then for all x � N 3ε/2 log(N ), and

for all N large enough, uniformly in y ∈ N

Pf
y(∃z ∈ �x2� such that hz(ζ ) > x log−1(N )) ≥ 1− N−3. (4.36)

Proof. Set IN ,x = �M, x log−1(N )� and define the time τ ′ as the first exit time from
the interval IN ,x , that is

τ ′ = inf
{
n ≥ 0 : hn(ζ ) /∈ IN ,x

}
.

In the following, our goal is to show that for all N sufficiently large,

Pf
z

(
τ ′ ≤ 1

20
x2 log−1(N ) and hτ ′(ζ ) = �x log−1(N )�

)
≥ 3

4
(4.37)
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uniformly in the starting position z ≥ CM , for some suitable constant C > 0 specified
later on. Provided that (4.37) holds, we have the following strategy to conclude. For all
x ∈ N, we define the family of events

Bx,i
1 :=

{
ζ : hy(ζ ) ≥ CM for some y ∈

�
(i − 1)

20
x2 log−1(N ),

i

20
x2 log−1(N )

�}
.

Since x2 log−1(N ) � N 3ε log(N ) by our assumptions, Proposition 4.5 and Remark 4.9
ensure that there exist constant a constant c = c(C) > 0 such that

Pf
z(B

x,i
1 ) ≥ 1− exp(−2cN ε log(N ))

uniformly in the choice i ∈ N and z ∈ N, provided that N is large enough. Let now

Bx,i
2 :=

{
ζ : hy(ζ ) ≥ x log−1(N ) for some y ∈

�
(i − 1)

20
x2 log−1(N ),

(i + 1)

20
x2 log−1(N )

�}
.

Note that conditioning on the event Bx,i
1 we see by (4.37) and Lemma 4.13 that

Pf
y(B

x,i
2 | Bx,i

1 ) ≥ 1

2
(4.38)

uniformly in the starting position y ∈ N and i ∈ N. Using again the spatial Markov
property from Lemma 4.13, we iterate (4.38) along all odd i to obtain

Pf
y

(∃z ∈ �x2� : hz(ζ ) > x log−1(N )
) ≥ Pf

y

⎛

⎝
⋃

i∈�10 log(N )�

Bx,2i−1
2

⎞

⎠

≥ 1− 1

210 log(N )
≥ 1− N−3

for all N sufficiently large, and all y ∈ N. This gives the desired bound in (4.36). It
remains to show that (4.37) holds. To do so, fix some z ≥ CM and partition the set �N
of lattice paths of length N into two sets B1 and B2 as follows. For every ζ ∈ �N , recall

τM−z = inf
{
n ≥ 1 : hζ (n) = M − z

}
(4.39)

as the first intersection point with the level M − z, and say that ζ ∈ B1 if τ(ζ ) = ∞,
and ζ ∈ B2 otherwise. We claim that there exists some C > 0 such that for all N large
enough

Pf
z(ζ ∈ B1) ≥ 9

10
(4.40)

whenever z ≥ CM . To show this, notice that by Lemma 4.14, it suffices to prove

∑

ω : vω∈B2

Wx (ω) ≤ 1

10
Z(x)

N .

From the definition of the set B1, and assuming z ≥ CM , we see that for all ω ∈ B1

Wz(ω) ∈
[

1− 1

N
, 1 +

1

N

]
(4.41)
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Fig. 5. Visualization of the different stopping times in (4.45) for the trajectories of the free random polymer.
The path ω1 drawn in blue belongs to the event C1, the path ω2 drawn in red to the event C2

when N is sufficiently large, taking a suitably large constant C > 0. In particular,

∑

ω : vω∈B1

Wz(ω) ≥
(

1− 1

N

)
|B1|. (4.42)

Splitting now the paths in B2 according to the value of τM−z , we get that

∑

ω : vω∈B2

Wz(ω) ≤
(

1 +
1

N

) N∑

i=1

Pf
z(τM−z = i)

|B2|∣∣�(M)
N−i
∣∣
∑

ω∈�
(M)
N−i

WM (ω)

≤
(

1 +
1

N

)
|B2|2J (4.43)

where we use the definition of Wz and the spatial Markov property from Lemma 4.13
for the first step, and the supermartingale property in Lemma 4.6 with constant J for the
second step. Combining now (4.42) and (4.43), and bounding |B2|/|B1| by Lemma 4.11,
we obtain (4.40). Since all paths in B1 satisfy (4.41), the bound in (4.40) together with a
standard estimate on the exit time of a simple random walk when restricting to the paths
in B1 yields (4.37). This finishes the proof. ��

4.4.2. Delocalization with pinning via a path decomposition We have now all tools for
the delocalization for general values of u, v ∈ (−1, 1) in Proposition 4.10. Without loss
of generality, we assume in the following that N is even. We start with a bound on the
height at position N/2 in the constraint random polymer. The next result is our key
lemma, which also serves as an outline for the proof of Proposition 4.10.

Lemma 4.16. Assume that q satisfies (1.12) with some ε < 1
3 . Then for any j = jN �√

N,

lim
N→∞Pc

N ,V

(
hN/2(ζ ) ≥ jN

) = 1. (4.44)

In order to show Lemma 4.16, we rely on a path decomposition similar to the proof of
Lemma 4.15. Let �

(0)
N ⊆ AN be the set of all bi-colored lattice paths ω with hi (ω) ≥ 0
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for all i ∈ �N�. For ω ∈ �
(0)
N , we define the times (τ iω)i∈�4� by

τ 1
ω := inf

{
n ≥ 0 : hz(ω) = N

1
2

log2(N )

}

τ 2
ω := inf

{
n ≥ τ 1

ω : hz(ω) = M
}

τ 3
ω := inf

{
n ≥ τ 2

ω : hz(ω) = N
5
4 ε

log2(N )

}

τ 4
ω := inf

{
n ≥ τ 3

ω : hz(ω) = M
}

,

(4.45)

where we recall M = 3cq N ε log(N ) for cq > 0 from (1.12). Further, we partition the

set �
(0)
N into subsets (Ci )i∈�3�, where C3 := �

(0)
N \(C1 ∪ C2) for

C1 :=
{
ω ∈ �

(0)
N : τ 1

ω ≤
N

log(N )
∧ τ 2

ω = ∞
}

C2 :=
{
ω ∈ �

(0)
N : τ 1

ω ≤
N

log(N )
∧ τ 2

ω <
N

2
− 2M

5
2 ∧ τ 3

ω − τ 2
ω < M

5
2 ∧ τ 4

ω = ∞
}

.

(4.46)

We refer to Fig. 5 for a visualization. With a slight abuse of notation, we treat Ci as
a subsets of �

(0)
N , i.e. for i ∈ �3�, we say that ζ ∈ Ci with ζ ∈ �

(0)
N if ζ = vω for some

ω ∈ Ci .
Remark 4.17. The choice of the times (τ iω)i∈[4] in (4.45) and the assumption ε < 1

3
in Lemma 4.16 may seem unnatural at first glance, but have the following intuitive
explanation. Proposition 4.5 guarantees that after order N 3ε log(N ) steps, the path has
reached a height of at least N ε log(N ) with high probability. Thus, in order to give
bounds on the height of the path after N/2 steps, we need to assume that ε < 1

3 . The
times (τ iω)i∈[4] then allow for a fine allocation of the height after N/2 steps, depending
on whether the path has crossed level M .

We argue in the following that a lattice path according to Pc
N ,V , restricted to the first

N/2 positions, will with high probability belong to the set C1, while the probability to
see a path in C3 is of order o(N−1/4). To do so, we first consider the measure Pf

N ,V and
C3.

Lemma 4.18. Recall the partition function Z f
N/2,V and let ε < 1

3 for q in (1.12). Then

Pf
N/2,V (ω ∈ C3) = 1

Z f
N/2,V (1− q)N/2

∑

ω∈C3

W (ω) = o(N−1/4). (4.47)

Proof. Using Lemma 4.15, it suffices to show (4.47) with respect to the configurations
in C3 with τ 1

ω ≤ N
log(N )

. To do so, consider for all i ∈ �N log−1(N )� and j ∈ �N − i�
the sets

Ci, j3 :=
{
ω ∈ �

(0)
N/2 : τ 1

ω = i and τ 2
ω =

N

2
− j

}
. (4.48)
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We start by showing that there exist some constant c > 0 such that for N large enough
∣∣Ci, j3

∣∣
∣∣∣
{
ω ∈ �

(0)
N/2 : τ 1

ω = i
}∣∣∣
≤ c

N
min

(
1,

M√
j

)
log2(N ) (4.49)

uniformly in i ∈ �N log−1(N )� and j ∈ �2M5/2�. To see this, recall that Pz denotes the
law of a lazy simple random walk (Sn)n≥0 on Z started from z, and note that expressing
the cardinality of the sets in (4.49) as probabilities of a simple random walk yields

∣∣Ci, j3

∣∣
∣∣∣
{
ω ∈ �

(0)
N/2 : τ 1

ω = i
}∣∣∣

=
PK
(
Sn ≥ 0 ∀ n ∈ � N

2 − i − j� ∧ S N
2 − j−i = 0

)
PM (Sn ≥ 0 ∀ n ∈ � j�)

PK (Sn ≥ 0 ∀ n ∈ � N
2 − i�)

,

where we set K := N 1/2 log−2(N ). A computation using the reflection principle shows
that

PK

(
Sn ≥ 0 ∀ n ∈

�N

2
− i − j

�
∧ S N

2 − j−i = 0

)

= P0(S N
2 −i− j = K )− P0(S N

2 −i− j = K + 2).

Together with a local central limit theorem, there exists some c1 > 0 such that

PK
(
Sn ≥ 0 ∀ n ∈

�N

2
− i − j

�
∧ S N

2 − j−i = 0
)
≤ c1

N

uniformly in i ∈ �N log−1(N )� and j ∈ �2M5/2�. Furthermore, using again the local
central limit theorem and the reflection principle, there exist constants c2, c3 > 0 such
that for any x, y ∈ N

c2 min

(
1,

x√
y

)
≤ Px (Sn ≥ 0 ∀ n ∈ �y�) ≤ c3 min

(
1,

x√
y

)
.

Combining the above observations, this yields (4.49). Summing over all j ∈ �2M5/2�

and using that ε < 1
3 by our assumptions, we see that there exists some δ = δ(ε) > 0

with

∣∣∣
{
ω ∈ �

(0)
N/2 : τ 1

ω = i
}∣∣∣
−1 2M5/2∑

j=1

∣∣Ci, j3

∣∣ = o(N−1/4−δ). (4.50)

Next, we use (4.49) and (4.50) in order to argue that

Pf
N/2,V

(
∃i ∈

� N

log(N )

�
, j ∈

�
2M

5
2

�
: ω ∈ Ci, j3

)

= 1

Z f
N/2,V

N
log(N )∑

i=1

2M
5
2∑

j=1

∑

ω∈Ci, j
3

W (ω) = o(N−1/4).
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To do so, we will follow a similar reasoning as in Lemma 4.15 using the spatial Markov
property and supermartingale arguments. Recall from Lemma 4.15 that

Pf
N/2,V

(
τ 1
ω ≤

N

log(N )

)
= 1

Z f
N/2,V

N/ log(N )∑

i=1

∑

ω∈�
(0)
N/2

W (ω)1{τ 1
ω=i} ≥ 1− N−3.

(4.51)

Thus, by Lemma 4.13, it suffices to show that uniformly in i ∈ �N log−1(N )�,

Pf,N−i
K

(
τ 2
ω ∈

�N

2
− i − 2M

5
2 ,

N

2
− i

�)
= o(N−1/4), (4.52)

where we recall the measure Pf,N
K from Lemma 4.14. By Lemma 4.11, bounding the

weights W (k)(ω) as in (4.41), we notice that the partition function Z(K )
N−i for Pf,N−i

K
satisfies

Z(K )
N−i ≥ c4

∣∣∣
{
ω ∈ �

(K )
N
2 −i
}∣∣∣ ≥ log−4(N )4N/2−i (4.53)

for some constant c4 > 0 and all N sufficiently large. Using Lemma 4.6 in order to
bound the weight of paths after position τ 2

ω, together with (4.50) and (4.51), we see that

1

4N/2−i
2M5/2∑

j=1

∑

ω∈�
(K )
N/2−i

W (ω)1{τ 2
ω=N/2−i− j} = o(N−1/4−δ′) (4.54)

for some δ′ = δ′(ε) > 0. Combining now (4.53) and (4.54) yields (4.52). Next, we
consider

D :=
{
τ 1
ω ≤ N log−1(N ) and τ 2

ω /∈ �N/2− 2M5/2, N/2� and τ 3
ω − τ 2

ω < M5/2 when τ 2
ω < ∞

}
.

By Lemma 4.15 in order to bound the probability of the event {τ 3
ω − τ 2

ω > M5/2} under
Pf
N/2,V , using the spatial Markov property together with equation (4.52), we get that

Pf
N/2,V (D) = 1− o(N−1/4). (4.55)

Hence, it remains to bound the weight of paths ω ∈ D with τ 4
ω < ∞. Partition the set D

by

Dk :=
{
ω ∈ D : τ 4

ω =
N

2
− k

}

for some k ∈ �N/2�, and set k = −∞ when τ 4
ω = ∞. Using Lemma 4.11, a similar

computation as for (4.49) yields that there exists some constant c5 > 0 such that

∣∣�(0)
N/2

∣∣−1
N∑

k=1

|Dk | ≤ Ph(∃ n ∈ N : Shn = M | Sh0 = K )

Ph(∃ n ∈ N : Shn = M | Sh0 = N 5ε/4 log−2(N ))
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≤ c5
MN ε

K N 5ε/4
= o(N−1/4).

Using now (4.41) in order to bound the path weight between τ 3
ω and τ 4

ω, and Lemma 4.6
for the path weight after τ 4

ω, this gives the remaining bound on the event {τ 4
ω = ∞}. ��

In a similar way, we show that the contribution of paths in C2 is of lower order as
well.

Lemma 4.19. There exists some constant c1 > 0 such that for all N sufficiently large

Pf
N/2,V (ω ∈ C2) = 1

Z f
N/2,V (1− q)N/2

∑

ω∈C2

W (ω) ≤ c1N
ε− 1

2 log2(N ). (4.56)

Further, there exists a constant c2 > 0 such that for all z ∈ �N/2�, and large enough
N,

Pf
N/2,V (ω ∈ C2 ∧ hN/2(ω) = z)

= 1

Z f
N/2,V (1− q)N/2

∑

ω∈C2 : hN/2(ω)=z
W (ω) ≤ c2N

− 1
2− ε

4 log2(N ).

Proof. The first statement follows from the same arguments as (4.52) in Lemma 4.18,
noting that by Lemma 4.11, for all i ∈ �N log−1(N )�

∣∣∣
{
ω ∈ �

(0)
N/2 : τ 1

ω = i
}∣∣∣
−1 N∑

j=i

∣∣Ci, j3

∣∣ = O(N ε−1/2 log2(N )),

where we recall the sets Ci, j3 from (4.48). For the second statement, recall that all paths
ω ∈ C2 satisfy τ 3

ω < N/2−M5/2 and τ 4
ω = ∞. Using the path weight bound (4.41), we

see that for all i ∈ �M5/2, N/2� and z ≥ M , and N sufficiently large

Pf
N/2,V (hN/2(ζ ) = z | τ 3

ω = N/2− i ∧ τ 4
ω = ∞)

Ph(Shi = z − M | Sh0 = M5/2 − M)
∈
[

1− 1

N
, 1 +

1

N

]
. (4.57)

Using a local central limit theorem, we get that for all i ≥ M5/2

c1M
−5/41{z∈�c2M5/4,c3M5/4�} ≤ Ph(ShN−i

= z − M | Sh0 = M5/2 − M) ≤ c4M
−5/4 (4.58)

for some positive constants (ci )i∈�4�, and by (4.56), we conclude. ��
We have now all tools to show Lemma 4.16.

Proof of Lemma 4.16. Recall that we assume without loss of generality that N is even,
as the argument is similar for odd N . For ζ = (ζ1, ζ2, . . . , ζN ) ∈ MPN , we write

ζ L := (ζ1, ζ2, . . . , ζN/2−1) and ζ R := (ζN , ζN−1, . . . , ζN/2) (4.59)
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with ζ L , ζ R ∈ �
(0)
N/2. Our key observation is that we can write for fixed ζ̃ ∈ MPN

Pc
N ,V

(
ζ = ζ̃

)
= (Z f

N/2,V )2

Zc
N ,V

Pf
N/2,V

(
ζ = ζ̃ L

)
Pf
N/2,V

(
ζ = ζ̃ R

)
.

Summing over all paths of height x at position N/2, we see that

Pc
N ,V

(
hN/2(ζ ) = x

)
∼ Pf

N/2,V

(
hN/2(ζ ) = x

)2
. (4.60)

We argue in the following that with probability tending to 1, the two paths ζ L , ζ R for
some ζ chosen according to Pc

N ,V will belong to C1. To do so, we start with the claim
that there exist positive constants (ci )i∈�4� such that for all x ≥ 0, and N sufficiently
large

c1√
N
1x∈�c2

√
N ,c3

√
N� ≤ Pf

N/2,V (hN/2(ζ ) = x and ζ ∈ C1) ≤ c4√
N

. (4.61)

To show (4.61), first note that by Lemma 4.18 and Lemma 4.19, we see that

lim
N→∞Pf

N/2,V (ζ ∈ C1) = 1.

The claim (4.61) follows by the same arguments as (4.57) and (4.58) in the proof of
Lemma 4.19, i.e. we compare the law of a path ζ , chosen according Pf

N ,V (ζ ∈ · | ζ ∈
C1), after time τ 1

ω to a simple random walk conditioned to stay above level M until
time N/2, and apply a local central limit theorem. Next, consider the product measure
Pf,2
N/2,V := Pf

N/2,V × Pf
N/2,V under which we sample a pair of lattice paths (ζ, ζ ′). The

lower bound in (4.61) ensures that

Pf,2
N/2,V

(
hN/2(ζ ) = hN/2(ζ

′)
) ≥ c5√

N

for some constant c5 > 0, provided that N is sufficiently large. Using again Lemma 4.18
and Lemma 4.19, together with (4.61), we notice that for some constant c6 > 0

Pf,2
N/2,V

(
hN/2(ζ ) = hN/2(ζ

′) ∧ (ζ ∈ C2 ∪ C3 ∨ ζ ′ ∈ C2 ∪ C3
))

≤ Pf,2
N/2,V

(
ζ, ζ ′ ∈ C2 ∪ C3

)
+

c6√
N

∑

x≥0

Pf,2
N/2,V

(
ζ ∈ C2 ∪ C3 ∧ hN/2(ζ ) = x

)
,

and so both right-hand side terms are o(N−1/2). Together with (4.60) and (4.61), we get

lim
N→∞Pc

N/2,V

(
ζ L , ζ R ∈ C1

)
= 1. (4.62)

Now (4.44) follows from (4.60) and a central limit theorem for the paths ω ∈ C1 after
τ 1
ω. ��

We apply a similar idea as in Lemma 4.16 to obtain the delocalization in Proposi-
tion 4.10 for general locations (iN ) with N 3ε log(N ) � iN � N/2.
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Proof of Proposition 4.10. From (4.62) in the Lemma 4.16, and a central limit theorem
for the paths in C1, we note that for all δ > 0, there exists some c = c(δ) > 0 such that

lim inf
N→∞ Pc

N ,V (hN/2(ζ ) ≥ c
√
N and ζ L , ζ R ∈ C1) ≥ 1− δ

3
. (4.63)

Let (mN ) be a sequence with
√
iN � mN � jN � M , where we recall that M =

CN ε log(N ) for a suitable constant C > 0. Further, recall for ζ ∈ �
(0)
N/2 the times

τm(ζ ) := inf{n ≥ 0 : hn(ζ ) ≥ m},
and define for all k, z ∈ �N/2� the events

Ck,z1 := {τmN (ζ ) = k} ∩ {hN/2(ζ ) = z} ∩ {hx (ζ ) > M for all x ≥ k}
Ck,z2 := {τmN (ζ ) = k} ∩ {hN/2(ζ ) = z} ∩ {hx (ζ ) = M for some x ≥ k}.

We apply the same arguments as in Lemma 4.15 and for (4.52) in Lemma 4.18 to see that
there exists some c̃ > 0 such that for all z ≥ c′

√
N with some suitable c′ = c′(c) > 0

1

Z f
N/2,V

∑

k∈�iN �

∑

ω∈Ck,z
1

W (ω) ≥ c̃N−1/2

as well as that

1

Z f
N/2,V

∑

k∈�iN �

∑

ω∈Ck,z
2

W (ω) = o(N−1/2).

In particular, with (4.63) and summing over all z ≥ c′
√
N , and using Lemma 3.1, we

get

lim inf
N→∞ Pc

N ,V

(
ζ L ∈ Ck,z1 for some k ≤ iN and z ≥ c′

√
N
)
≥ 1− 2δ

3
. (4.64)

Together with the weight bound (4.41) for paths in Ck,z1 after position k, we see that

Pc
N ,V

(
Ai, j
N

)
≥
(

1− 1

N

)⎛

⎝
∑

z≥c′√N

∑

k∈�iN �

P(N/2)
mN

(
ShiN−k ≥ j | ShN

2 −k
= z
)
Pc
N ,V

(Ck,z
1

)
⎞

⎠ ≥ 1− δ

for all N large enough, where we recall the measure P(N/2)
x of the lazy simple random

started from x conditioned to stay non-negative until time N/2. Here, we use (4.41)
and Lemma 4.13 for the first step, and (4.64) together Lemma 4.11 for the second
inequality. Since δ > 0 was arbitrary, we get (4.29). The second claim (4.30) follows
analogously. ��
Remark 4.20. We showed that when u, v ∈ (−1, 1) and ε < 1

3 , the partition function of
the free and the constraint random polymer is of order 4N (1+o(1)). Indeed, recalling the
definition of the free energy in (3.4), this yields that the polymer measure associated with
the open WASEP in the maximal current phase is delocalized. Let us remark that for q ∈
(0, 1), it was shown in [65] that the partition function of the constraint random polymer
is of order 4N N−3/2, and hence the corresponding random polymer is delocalized. Our
approach yields delocalization for more general values of q depending on N .
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4.5. From delocalization to approximation by a product measure. In this section, we
prove Theorem 1.2 and Theorem 1.5 on approximating the stationary distribution of the
open ASEP and open WASEP in the maximal current phase. In the following, fix for
each N an interval I = I (N ) = �a, b� with a = a(N ) and b = b(N ), and recall that Px
denotes the law of a lazy simple random walk trajectory when starting from position x .

Lemma 4.21. Consider the open ASEP for some q ∈ (0, 1), and parameters u, v ∈
(−1, 1). Let I satisfy min(a, N − b) � max(|I |, log2(N )). Then

lim
N→∞

∥∥∥Pc
N ,V ((hx (ζ )− ha(ζ ))x∈I ∈ · )− P0((Sx )x∈�b−a� ∈ · )

∥∥∥
TV
= 0. (4.65)

Proof. We consider in the following only the case |I | � a ≤ N/3 as the remaining
cases are similar. Let

Dk,z := {ha(ζ ) = k} ∩
{
h N

2
(ζ ) = z

}
.

for all k, z ∈ �N/2�. Recall from the proof of Lemma 4.1 that the law Pc
N ,V is equivalent

to the law of a lazy simple random walk conditioned to stay non-negative and to return
to the origin after N steps. Using Lemma 4.1, recalling the weights W from (2.9), we
get

lim
N→∞

∥∥∥Pc
N ,V

(
(hx (ζ ))x∈I ∈ · |Dk,z

)− P(N−a)
k ((Sx )x∈�b−a� ∈ · | SN/2−a = z)

∥∥∥
TV

= 0,

(4.66)

provided that k, z � log(N ). As |I | � a, a similar argument as for Lemma 4.11 yields

lim
N→∞

∥∥∥P(N−a)
k ((Sx )x∈�b−a� ∈ · | SN/2−a = z)− Pk((Sx )x∈�b−a� ∈ · )

∥∥∥
TV

= 0

(4.67)

whenever k � max(
√|I |, log(N )) and z is of order

√
N . Hence, using (4.66) and

(4.67) with the triangle inequality, and summing over all suitable values of k and z, we
conclude. ��
Lemma 4.22. Consider the open WASEP for some q ∈ (0, 1) with ε > 0, and u, v ∈
(−1, 1). Assume that I satisfies the assumptions in Theorem 1.5. Then we have that

lim
N→∞

∥∥Pc
N ,V ((hx (ζ )− ha(ζ ))x∈I ∈ · )− P0((Sx )x∈I ∈ · )∥∥

TV
= 0. (4.68)

Proof. As for Lemma 4.21, we consider only the case a ≤ N/3 as the remaining cases
are similar. Note that by Proposition 4.5 and Proposition 4.10, we find (kN ) and (mN )

with

min(aN , N − b) � √
kN � √

mN � |I | (4.69)

such that for every δ > 0, the events

D̃�,z := {ha(ζ ) = �} ∩ {hx (ζ ) ≥ mN ∀x ∈ I } ∧ {hN/2(ζ ) = z
}

for z ∈ �c1
√
N , c2

√
N� and constants c1, c2 > 0, and � ≥ kN satisfy for all N large

enough

Pc
N ,V

(
D̃�,z holds for some z ∈ �c1

√
N , c2

√
N� and � ≥ kN

)
≥ 1− δ.
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By Lemma 4.1 and the choice of the weights W in (2.9), we see that for all � ≥ kN , and
uniformly in z ∈ �c1

√
N , c2

√
N�,

lim
N→∞

∥∥∥Pc
N ,V

(
(hx (ζ ))x∈I ∈ · | D̃�,z

)
− P(N/2−a)

� ((Sx )x∈�b−a� ∈ · | SN/2−a = z)
∥∥∥

TV

= 0.

By a similar comparison to the lazy simple random walk as in Lemma 4.21, using the
assumptions (4.69) and a local central limit theorem in order to remove the conditioning
on the event {SN/2−a = z}, we conclude. ��

Recall that PN denotes the uniform measure on the space of bi-colored Motzkin paths
�N , and that (hi (ω))i∈�0,N� is the height function of a path ω = (ω1, ω2, . . . , ωN ) ∈
�N ⊆ AN , with A from (2.5). Recall that μI is the stationary measure of the exclusion
process projected to I . We use the above results to compare μI to the uniform distribution
on {0, 1}|I |.
Proof of Theorem 1.2 and Theorem 1.5. For an interval I = �a, b� for a = aN and
b = bN , consider a lattice path ζ ∈ �N for �N from (4.19), sampled according to
Pc
N ,V , and restricted to the interval I . Given ζ , we obtain a sample ω according to PN by

assigning to each horizontal move a color proportionally to the weights W from (2.9).
We claim that under the assumptions on the interval I in Theorem 1.2 and Theorem 1.5,

lim
N→∞

∥∥∥PN ((ωx )x∈I ∈ · )− Unif(A|I |)
∥∥∥

TV
= 0, (4.70)

where Unif(A|I |) denotes the uniform distribution onA|I |. To see this for the open ASEP,
we use Lemma 4.21 in order to bound the total variation distance between the law PN
projected onto the space MPN of Motzkin paths of length N and a simple random walk
trajectory, and Lemma 4.1 together with the definition of the weights W in order to
estimate the probability of assigning a given pattern of colors to the horizontal steps.
Similarly, the statement (4.70) follows for the open WASEP by combining Lemma 4.22
together with Proposition 4.5 and Proposition 4.10. Next, for all N ∈ N, we fix a subset
A = A(N ) ⊆ {0, 1}|I | of particle configurations. We claim that for every δ > 0, we can
find a constant C = C(δ) > 0, and a family of subsets (Aδ) such that Aδ ⊆ A and

lim sup
N→∞

∣∣∣∣
|A|

2b−a
− |Aδ|

2b−a

∣∣∣∣ ≤ δ,

where for all configurations η ∈ A, and all x ∈ �a, b�, we have that

x∑

i=a

(
η(x)− 1

2

)
≤ C

√
b − a. (4.71)

This follows as (4.71) holds for C > 0 sufficiently large with probability at least 1−δ/2
under the uniform distribution on {0, 1}b−a . Let A′δ ⊆ �N be the set of bi-colored
Motzkin paths which agree with some element of Aδ on the interval I , i.e.

A′δ :=
{
ω ∈ �N : (ωx )x∈I = (ω′x )x∈I for some ω′ ∈ Cη with η ∈ Aδ

}
,
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where we recall the set Cη from (2.11). By our assumptions |I | � min(a, N − b), the
height function for a uniformly sampled paths in �N is at position a with probability
tending to 1 of order

√
a. Thus, we see that for all sets A, and all choices of δ > 0

lim sup
N→∞

∣∣∣∣
|A|
2|I |

− |A′δ|
|�N |

∣∣∣∣ ≤ lim sup
N→∞

∣∣∣∣
|Aδ|
2|I |

− |A′δ|
|�N |

∣∣∣∣ + δ ≤ 2δ. (4.72)

Hence, by Lemma 2.2 for the first step, and (4.70) together with (4.72) for the second
step,

lim sup
N→∞

∣∣∣∣μI (A)− |A|
2|I |

∣∣∣∣ = lim sup
N→∞

∣∣∣∣PN (A′δ)−
|A′δ|
|�N |

∣∣∣∣ + lim sup
N→∞

∣∣∣∣
|A|
2|I |

− |A′δ|
|�N |

∣∣∣∣ ≤ 3δ.

Since the set A and δ > 0 were arbitrary, this finishes the proof. ��

5. Approximation in the Fan Region of the High and Low Density Phase

In this section, we approximate the stationary distribution of the open ASEP in the fan
region of the high and low density phase by product measures. We establish localization in
the associated polymer model and study the structure of the respective regeneration times.
Thereafter, we couple the system to an infinite random polymer model corresponding
to a stationary system; see also [27,63,69] for a similar approach in related models.

5.1. Expected return times for a localized polymer. For N ∈ N, recall the measures
Pf
N ,V and Pc

N ,V from (3.2) and (3.3), respectively, with V from (3.5). Moreover, for all

x ∈ Z, let Pf,N
x be defined as in (4.32), and recall for all m ∈ N from (4.39) the quantities

τm = inf
{
y ∈ N : hy(ζ ) = m

}
. (5.1)

In the following, we argue that for the open ASEP in the fan region of the high and low
density, the associate polymer has for every m ≥ 0 a return time to level m whose finite
moments are bounded uniformly as N →∞. This is in contrast to the maximal current
phase, where we saw in Lemma 4.1 that the random polymer is delocalized.

Proposition 5.1. Let u, v be such that u > max(1, v) and uv < 1. Then for every x ∈ N,
all m ≥ −x and k ∈ N, there exists some C, N0 ∈ N, depending only on x,m, k, such
that

Ef,N
x [min(τm, N )k] ≤ C (5.2)

for all N ≥ N0. The same statement holds under the expectation Ec
N ,V corresponding

to the measure Pc
N ,V , and in the high density phase, where v > max(1, u) and uv < 1.

Proof. We consider only the case of u > max(1, v), and the measure Pf,N
x , as the other

cases are similar. For q ∈ (0, 1), equation (65) in [15] states that the partition function
ZN from Lemma 2.1 satisfies

ZN = (u−2; q)2∞
(uv, u/v; q)∞

(
2 + u + u−1

1− q

)N

(1 + o(1)), (5.3)
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where we recall the Pochhammer symbol from (4.4); see also [75] for a more detailed
derivation of the above formula using Askey–Wilson polynomials. In combination with
Lemma 2.2 and Lemma 3.1, this yields that the partition functionZc

N ,V for the stationary
distribution of the open ASEP in the low density phase satisfies

Zc
N ,V =

(u−2; q)2∞
(uv, u/v; q)∞

(
2 + u + u−1

)N
(1 + o(1)). (5.4)

Let M be such that for all m ≥ M

1 + max(−uv, u, v)qm <
2 + u−1 + u

4
. (5.5)

Recalling W from (2.9), and choosing M according to (5.5), together with the bound
Zc

N ,V ≤ Z f
N ,V , we see that

∑

ω∈�0

WM (ω) ≤ cNZ f
N ,V (5.6)

for some constant c ∈ (0, 1) and all N sufficiently large. As a consequence, we get that
the return time to level M has exponential tails, i.e. there exists c′, t0 > 0 such that

Pf,N
M (τ0 > t) ≤ exp(−c′t) (5.7)

for all t ∈ �t0, N�. Using the spatial Markov property in Lemma 4.13, and a standard
argument of using independent geometric tries, we get that for all t ∈ �N� and n ≥ N

max
x∈�M�

Pf,n
x (min(τ−x , τM−x ) > t) ≤ exp(−c1t) (5.8)

min
x∈�M�

Pf,n
x (τ−x < τM−x < n) ≥ c2 (5.9)

for some constants c1, c2, t ′0 > 0, and all t ∈ �t ′0, n�. Decomposing every trajectory
according to its intersections with level M , and using the spatial Markov property from
Lemma 4.13, we combine (5.7), (5.8) and (5.9) to conclude. ��

5.2. Regeneration structure in the localization phase. Using Proposition 5.1, we con-
struct a regenerative process, as well as a bi-infinite stationary process Pstat related to the
polymer measures Pf

N ,V and Pc
N ,V . To do so, we require the lazy h-transformed simple

random walk (S̄hn )n≥0, i.e. the Markov chain on N0 with transition probabilities

p̄h(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x+2
4(x+1)

if y = x + 1
x

4(x+1)
if y = x − 1

1
2 if y = x
0 otherwise,

(5.10)
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and increments X̄h
i = S̄hi − S̄hi−1. Let P̄N be the corresponding law on the space of

trajectories �
(0)
N of length N , defined in (4.9). For all N ∈ N, we define the polymer

measure P̄f
N ,V by

dP̄f
N ,V

dP̄N
= 1

Z̄ f
N

exp

(
N∑

i=1

V (S̄hi , X̄h
i )

)
, (5.11)

for the function V from (3.5), and a normalization constant Z̄ f
N . It is a classical result

that for all M ∈ N, the law of a (lazy) simple random conditioned to stay non-negative
until time N converges on any fixed finite interval to the law of the (lazy) h-transformed
simple random walk as T → ∞; see [13]. We have the following consequence of this
observation.

Lemma 5.2. Assume that either u > max(1, v) or v > max(1, u) holds. Let A, B ⊆
�

(0)
m for some fixed m ∈ N. Then we have that

lim
N→∞

∣∣∣Pc
N ,V

(
(hx (ω))x∈�0,m� ∈ A ∧ (hN−x (ω))x∈�0,m� ∈ B

)
− P̄f

m,V (A) P̄f
m,V (B)

∣∣∣

= 0.

Proof. Let P̄N be the law on the space �N given by a lazy simple random walk condi-
tioned to stay non-negative, and to return to 0 after N steps. It is a well-known result—see
for example [13]—that for any fixed m ∈ N, and any subset A ⊆ �

(0)
m

lim
N→∞ |P̄N ((Sx )x∈�0,m� ∈ A)− P̄m(A)| = 0.

Together with a local central limit theorem for the lazy simple random walk, we see that
for any pair of sets A, B ⊆ �

(0)
m

lim
N→∞

∣∣∣P̄N ((Shx )x∈�0,m� ∈ A and (ShN−x )x∈�0,m� ∈ B)− P̄m(A)P̄m(B)

∣∣∣ = 0.

(5.12)

Recalling the construction of the measures Pc
N ,V and P̄f

m,V in (3.3) and (5.11), we observe
that both measures are defined with respect to the same Radon–Nikodym derivative. As
A and B only depend on finitely many coordinates, we conclude by (5.12). ��

Using the polymer measures (P̄f
N ,V )N∈N, we construct a bi–infinite and shift invariant

measure Pstat as follows. Recall the return times τ0 from (4.39) and define

�∗ :=
⋃

n∈N

{
ω ∈ �n : hx (ω) > 0 for all x ∈ �n − 1�

}
, (5.13)

where we recall �n from (2.7). Intuitively, �∗ corresponds to set of all lattice paths which
return to 0 after n steps for some n ∈ N, and are positive for all x ∈ �n − 1�. Assume
that either u > max(1, v) or v > max(1, u) holds. Then combining Proposition 5.1 and
Lemma 5.2, there exists a unique measure Q on �∗ such that
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Fig. 6. Coupling of the stationary regeneration process from Pstat with a sample according to the constraint
random polymer measure Pc

N ,V . Note the polymers are coupled so that they agree on the dashed parts of the
lines

Q(ξ) := lim
N→∞Pc

N ,V

(
(hx (ω))x∈�0,τ0∧N� = ξ

)

= lim
N→∞ P̄f

N ,V

(
(hx (ω))x∈�0,τ0∧N� = ξ

)
(5.14)

for all ξ ∈ �∗. In words, the measure Q corresponds to the law of the path under
the measure Pc

N ,V until the first return to the x-axis when taking N going to infinity.
Furthermore, note that by Proposition 5.1 and Lemma 5.2, Q has exponential tails, i.e.

Q(|ξ | > t) ≤ exp(−ct) (5.15)

for some constant c > 0 and all t > 0 sufficiently large, where |ξ | denotes the length of
the path ξ . Note that by Kolmogorov’s extension theorem, we can extend the measure Q to
a bi–infinite measure Q̄ on the space of bi–infinite lazy simple random walk trajectories
going through the origin by sampling a bi-infinite i.i.d. sequence according to Q. To
obtain the stationary process Pstat, we use a standard construction for stationary point
processes with independent increments according to Q: consider a Markov chain (Xt )t≥0
on N0 as follows. When Xt = 0 for some t ≥ 0, let Xt+1 = |ξ |, where ξ ∼ Q.
Otherwise, let Xt+1 = Xt − 1. From (5.15), we get that the Markov chain (Xt )t≥0 is
positive recurrent, and has a unique stationary distribution π . The measure Pstat is now
defined on the space

�̄ :=
⋃

n∈Z

{
(. . . , v−1, v0, v1, . . . ) ∈ (Z× N0)

Z :

v0 = (n, 0) ∧ vi − vi−1 ∈ {(1, 1), (1, 0), (1,−1)} ∀i ∈ Z

}

equipped with the sigma-algebra generated by all cylinder functions, and where

Pstat(ζ ∈ · ) := Q̄(θsζ ∈ · ). (5.16)

Here, s is chosen according to π , and θs denotes the horizontal shift operator on �̄ by
s. In other words, for a sample according to Pstat, we first choose a horizontal starting
point s according to π , and then sample a bi-infinite lazy simple random walk trajectory
starting from (s, 0) with increments according to Q.
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5.3. Coupling of regenerative processes. In this section, we establish a coupling between
Pstat and the random polymer measure Pc

N ,V ; see also Fig. 6 for a visualization. To do so,
we start with the following lemma collecting some basic observations about the measure
Pstat on the space �̄.

Lemma 5.3. Assume that either u > max(1, v) or v > max(1, u) holds. Then the
process Pstat is invariant under spatial shifts, i.e. for all x ∈ Z and all measurable sets
A on �̄,

Pstat(ζ ∈ A) = Pstat(θxζ ∈ A). (5.17)

Moreover, for any pair of positions a < b

Pstat(ha(ζ ) = 0 and hb(ζ ) = 0) > 0, (5.18)

and for any A ⊆ �n with n = b − a,

Pstat
(
(hx (ζ ))x∈�a,b� ∈ A

∣∣ ha(ζ ) = 0 and hb(ζ ) = 0
) = Pc

n,V (A). (5.19)

Proof. For the shift invariance property (5.17), note that applying the shift operator θx
to a configuration ζ according to Pstat corresponds to a shift in the underlying Markov
chain (Xt )t≥0 by x used in the construction of Pstat. The claim follows as the initial shift
is chosen according to the stationary distribution π of (Xt )t≥0. The second statement
(5.18) is immediate from (5.17) and the facts that π(0) > 0 and Q(|ξ | = 1) > 0. For the
last claim, note that the measure (P̄f

N ,V )N∈N satisfy the spatial Markov property; see also

Lemma 4.13. As the underlying h-transformed lazy simple random walk for (P̄f
N ,V )N∈N

is a time-homogeneous Markov chain, we can extend (P̄f
N ,V )N∈N to a measure P̄f∞ on

�(0)∞ :=
{
(v0, v1, . . . ) ∈ (N0 × N0)

N0 :
v0 = (0, 0) ∧ vi − vi−1 ∈ {(1, 1), (1, 0), (1,−1)} ∀i ∈ N

}

such that for all subsets A ⊆ �m for some fixed m ∈ N

Pf
m,V (A) = P̄f∞((ζx )x∈�0,m� ∈ A)

Pc
m,V (A) = P̄f∞((ζx )x∈�0,m� ∈ A | hm(ζ ) = 0).

(5.20)

Moreover, using Proposition 5.1 and Lemma 5.2, we see that for all ξ ∈ �∗

Q(ξ) = lim
N→∞ P̄f

N

(
τ0 ≤ N and (hx (ζ ))x∈�0,τ0� = ξ

)
= P̄f∞

(
(hx (ζ ))x∈�0,τ0� = ξ

)
.

(5.21)

Combining now (5.20) and (5.21), together with the spatial Markov property for the mea-
sure P̄f∞ and the shift invariance property (5.17) for the measure Pstat,
we get (5.19). ��

We have the following relation between the measures Pc
N ,V and Pstat.
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Lemma 5.4. Let δ > 0 and assume that either u > max(1, v) or v > max(1, u) holds.
Then there exist M0, N0 ∈ N and a coupling P∗ of Pc

N ,V and Pstat such that for all
N ≥ N0,

P∗
(
hx (ζ ) = hx (ξ) for all x ∈ �M0, N − M0�

) ≥ 1− δ (5.22)

where we let ζ ∼ Pc
N ,V and ξ ∼ Pstat according to P∗.

Proof. Let (ζ ′, ξ) ∼ Pc
N ,V × Pstat be chosen independently. Since the measure Q has

full support on N, we see that for all δ > 0, we find some M0 = M0(δ) and N0 = N0(δ)

such that

BM0 :=
{∃x ∈ �0, M0� and y ∈ �N − M0, N� : hx (ζ ′) = hx (ξ) = hy(ζ

′) = hy(ξ) = 0
}

satisfies

(Pc
N ,V × Pstat)(BM0) ≥ 1− δ

for all N ≥ N0. Under the event BM0 , let a′ ∈ �0, M0� and b′ ∈ �N − M0, N� denote
the smallest, respectively the largest points such that ha′(ζ ′) = hb′(ζ ′) = ha′(ξ) =
hb′(ξ) = 0 holds. By (5.19) in Lemma 5.3, note that for all A′ ⊆ �b′−a′ , and all choices
of a′ and b′,

Pc
N ,V

(
(hx (ζ

′))x∈�a′,b′� ∈ A′
∣∣ ha′(ζ ′) = 0 and hb′(ζ

′) = 0
) = Pc

b′−a′,V (A).

Now suppose that the event BM0 holds. We condition on the value of a′ and b′, respec-
tively, and choose ζ = (ζx )x∈�N� ∈ �N with

ζx =
{

ξx if x ∈ �a′, b′�
ζ ′x otherwise

for the coupling of (ζ, ξ) ∼ P∗, and ζ = ζ ′ on the complement of BM0 , to conclude. ��

5.4. From regenerative processes to approximation by a product measure. We now
show that the measure Pstat constructed in Sect. 5.2 implies a product structure in the
corresponding stationary distribution of the open ASEP. To do so, we first describe how
a configuration according to Pstat yields a measure on the space of particle configurations
{0, 1}n for some n ∈ N. Let ξ ∼ Pstat. From ξ , we get a random configuration ω(ξ) ∈ An

by

ω(ξ)
x =

{
N if hx (ξ)− hx−1(ξ) = 1
S if hx (ξ)− hx−1(ξ) = −1,

(5.23)

and when hx (ξ) = hx−1(ξ) for some x ∈ �n� by independently assigning

P

(
ω(ξ)
x =

•
E
)
= 1− P

(
ω(ξ)
x =

◦
E
)
= 1 + uqhx (ξ)

2 + (u + v)qhx (ξ)
. (5.24)



Approximating the Stationary Distribution Page 41 of 64 176

We denote the corresponding measure on An by P
(n)
stat. For η ∈ {0, 1}n , recall from (2.11)

the set Cη of all bi-colored Motzkin paths which map to η. Then let μ
(n)
stat be defined on

{0, 1}n by

μ
(n)
stat(η) =

∑

ω∈Cη

P
(n)
stat(ω).

We make the following observation about the measure μ
(n)
stat.

Lemma 5.5. Assume that u > max(1, v) holds and let a, b ∈ N with n = b − a ∈ N.
Then the measureμ

(n)
stat is a Bernoulli-ρ-product measure on {0, 1}n for ρ = α(1−q)−1.

Similarly, for v > max(1, u), μ
(n)
stat is a Bernoulli-ρ-product measure on {0, 1}n for

ρ = 1− β(1− q)−1.

Proof of Lemma 5.5. We will only consider u > max(1, v) as the arguments for v >

max(1, u) are similar. Let δ > 0 and recall the constant M0 = M0(δ) from Lemma 5.4.
By the shift invariance property of Pstat, and assuming without loss of generality that
n is even, we write a = m/2 − n/2 and b = m/2 + n/2 − 1 for some m ∈ N with
m ≥ M0 + n. Set Im,n := �m/2− n/2,m/2 + n/2− 1� and recall that we write μIm,n =
μ
m,q,α,β
Im,n

for the invariant measure of an open ASEP on the segment �m� with parameters
q, α, β, projected to the interval Im,n ; see also (1.2). Recall from Lemma 3.1 and the
relations (5.23) and (5.24) that we can write the invariant measure μIm,n of in terms of the
measure Pc

m,V . From Proposition 1.1 and Lemma 5.4, choosing m = m(δ, n, α, β, q)

now sufficiently large, we get
∥∥∥∥μIm,n − BerIm,n

(
α

1− q

)∥∥∥∥
TV
≤ 2δ, (5.25)

where we recall that BerIm,n (ρ) denotes the Bernoulli-ρ-product measure on {0, 1}n for
ρ ∈ [0, 1]. Moreover, using the coupling in Lemma 5.4 between Pc

m,V and Pstat, we see
that

∥∥∥μIm,n − μ
(n)
stat

∥∥∥
TV
≤ δ. (5.26)

Finally, using the triangle inequality for the total variation distance, and the fact that
δ > 0 was arbitrary, we combine (5.25) and (5.26) to conclude. ��
Proof of Theorem 1.3. Using Lemma 2.1 and Lemma 3.1 to express the stationary dis-
tribution μ of the open ASEP by the measure Pc

N ,V , the approximation of the stationary
distribution in (1.8) follows by combining Lemma 5.4 and Lemma 5.5. ��

6. Approximation in the Shock Region of the High and Low Density Phase

In this section, we establish Theorem 1.4 and Theorem 1.6 on approximating the station-
ary distribution of the open ASEP and open WASEP in the shock region of the high and
low density phase. Since the total path weights defined in (2.10) may be negative in the
shock region, the techniques presented in Sects. 4 and 5 do no longer apply. However, as
remarked in Sect. 2.3.2, for special choices of the boundary parameters, the invariant of
the open ASEP has a simple representation as a convex combination of Bernoulli shock
measures. This was first observed by Jafarpour and Masharian in [48].
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6.1. Bernoulli shock measures as invariant measures of the open ASEP. Recall the
definition of the parameters u and v from (1.6) for the open ASEP, and from (1.13) for
the open WASEP. Let ρ0 = 1

1+u and ρk = v
1+v

denote the effective density at the left end
and right end of the segment. A simple computation shows that whenever the condition
uvqk = 1 from (2.14) holds for some k ∈ N0, and uv > 1, there exist some (ρi )i∈�k−1�
with ρ0 ≤ ρ1 ≤ · · · ≤ ρk such that

ρi

1− ρi
= q−1 ρi−1

1− ρi−1
(6.1)

for all i ∈ �k�. In the following, fix for all i ∈ �k� some ρ∗i ∈ [0, 1]. We refer to ρi as
bulk densities and ρ�

i as shock densities. For n ∈ �k�∪{0} and k ∈ [N ], let �N ,n with

�N ,n :=
{
x = (x1, x2, . . . , xn) ∈ �N�n with x1 < x2 < · · · < xn

}
(6.2)

be the space of locations for n shocks, and note that �N ,n can be identified with the state
space of an n-particle exclusion process, where the particles identify the shock locations.
For a given vector x ∈ �N ,n , and a shift parameter y ∈ �0, k − n�, the corresponding
Bernoulli shock measure μx,y is defined as the product measure on the space {0, 1}N
with

μx,y(η) =
n+1∏

j=0

px,y
η( j) (6.3)

for all η ∈ {0, 1}N and marginals

px,y
η( j) :=

{
(1− ρ�

i+y)(1− η( j)) + ρ�
i+yη( j), if j = xi for some i ∈ �n�

(1− ρi+y)(1− η( j)) + ρi+yη( j), if xi < j < xi+1 for some i ∈ �0, n�.

(6.4)

Here, we use the conventions that x0 = 0 and xk+1 = N + 1. In order to simplify
notation, let ji = (1− q)ρi (1− ρi ) for i ∈ �0, k�, and set di = ji/ji−1. The following
characterization of the invariant measure is similar to Theorem 3.9 in [71]; see also [70]
when k = 1.

Proposition 6.1. Consider the shock region of the high density phase, i.e. uv > 1 and
v > max(1, u), and assume that uvqk = 1 holds for some k ≤ N. Let ρ∗i ≡ 0. Then the
unique stationary measure μ = μN ,q,α,β of the open ASEP can be written as

μ = 1

Zu,v
N ,k

k∑

n=0

1

Zn,u

∑

x∈�N ,n

(
n∏

i=1

dxii+k−n

)
μx,k−n, (6.5)

where we set Zn,u := ∏n
j=0(u(1− qn− j )), and let Zu,v

N ,k be a suitable renormalization
constant. Similarly, consider the shock regime of the low density phase, i.e. where uv >

1 and u > max(1, v), and assume that uvqk = 1 as well as ρ∗i ≡ 1holds. Then
μ = μN ,q,α,β satisfies

μ = 1

Z̃ u,v
N ,k

k∑

n=0

1

Zk,v

∑

x∈�N ,n

(
n∏

i=1

dxii

)
μx,0, (6.6)

with Zn,v :=∏n
j=0(v(1− qn− j )), and a suitable renormalization constant Z̃u,v

N ,k .
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The proof of Proposition 6.1 is deferred to the appendix. Let us remark that Theo-
rem 3.9 in [71] provides a similar characterization of the invariant measure for the five
parameter version of the open ASEP, but for a specific subset of parameter u and v with
uvqk = 1.

6.2. Concentration of shocks in the reverse dual. We will only consider the low density
phase in the shock region of the open ASEP and open WASEP. All statements extend to
the high density phase using the symmetry between particles and holes. Using Proposi-
tion 6.1, we express the invariant measure of the open ASEP as a convex combination
of invariant measures of asymmetric simple exclusion processes on a closed segment
with particle depending hopping rates. We refer to these processes as duals. More pre-
cisely, let n ≤ k, and let (η∗t )t≥0 be the simple exclusion process with n particles, where
the i th particle (counted from the left) jumps to the right at rate ji (ρi − ρi−1)

−1, and
to the left at rate ji−1(ρi − ρi−1)

−1 under the exclusion constraint. Let μ∗N ,n denote
the stationary distribution of the process (η∗t )t≥0, and note that we indeed have for all
x = (x1, . . . , xn) ∈ �N ,n

μ∗N ,n(x) = 1

Z

n∏

i=1

dxii (6.7)

with some normalization constant Z . This can be seen by verifying the detailed balance
equations; see Proposition 3.1 in [71]. In the low density phase, we are interested in the
position of the left-most particle under the stationary distribution μ∗N ,n for all n ≤ k.
The following proposition summarizes our results.

Proposition 6.2. Consider the low density phase of the open ASEPwhere u > max(v, 1)

and uvqk = 1 for some fixed k ∈ N. Then for all δ > 0, there exists some C > 0 such
that

μ∗N ,n(x1 ≥ N − C) ≥ 1− δ (6.8)

for all n ≤ k, and all N sufficiently large. For the open WASEP, suppose that q satisfies
(1.12) for some ε ∈ (0, 1), and that u, v from (1.13) satisfy uvqk = 1 with some
k = k(N ) ∈ N. Then for all δ > 0, there exists some constant C ′ > 0 such that

μ∗N ,n(x1 ≥ N − C ′N ε) ≥ 1− δ. (6.9)

In order to simplify notation, we will only show the case n = k in Proposition 6.2, as
the arguments are analogous for n < k. First, we argue that the extremal shock locations
x1 and xk must be close together. We then argue that in the low density phase, all shocks
concentrate at the right end of the segment.

Lemma 6.3. Suppose that q ∈ (0, 1) and that u > max(1, v) as well as that uvqk = 1
holds for some fixed k ∈ N. Then there exists some M = M(k) and constants c1, c2 > 0
such that

μ∗N ,k(|xk − x1| ≥ yM) ≤ c1 exp(−c2y). (6.10)

for all y > 0, and all N large enough. Similarly, take q from (1.12) with ε ∈ (0, 1) and
c > 0, and assume that u > max(1, v) and uvqk = 1 for some k = k(N ) ∈ �N�, and
u, v from (1.13). Then there exists some M ′ = M ′(ε, c) and c3, c4 > 0 such that

μ∗N ,k(|xk − x1| ≥ yM ′N ε) ≤ c3 exp(−c4y) (6.11)

for all y > 0, and all N large enough.



176 Page 44 of 64 E. Nestoridi, D. Schmid

In order to show Lemma 6.3, it will be convenient to consider as an auxiliary process
a simple exclusion process (ξt )t≥0 on �−∞, N� with k1 many asymmetric, and k2 many
symmetric particles. More precisely, fix some γ ∈ (0, 1/2), k1, k2 ∈ N, and rates
(ri )i∈�k1+k2�. For k, N ∈ N with k = k1 + k2, let (ξt )t≥0 denote a simple exclusion
process on

�−
N ,k :=

{
ξ = (ξ1, ξ2, ξ3, . . . , ξk) ∈ �−∞, N�k : ξ1 < ξ2 < · · · < ξk1+k2−1 < ξk1+k2 ≤ N

}
.

In the exclusion process (ξt )t≥0, the i th particle, counted from left to right, jumps at
rate ri > 0. The rightmost k2 particles perform symmetric random walks, while the
leftmost k1 particles perform asymmetric random walks with bias γ ∈ (0, 1

2 ), i.e. when
the clock rings, they attempt a jump to the right with probability 1

2 + γ , and to the left
with probability 1

2 − γ . Both types of moves are subject to reflection at the boundaries.
We have the following result on the stationary distribution μN of (ξt )t≥0.

Lemma 6.4. Consider the exclusion process (ξt )t≥0 on �−
N ,k with γ ∈ (0, 1/2) and

uniformly bounded jump rates (ri )i∈�k� for k = k1 + k2. Assume there exist constants
c1, c2 > 0 such that for all n ∈ N

k1, k2 ∈ �c1n, c2n� (6.12)

with k1 = k1(n) and k2 = k2(n). Then for N ∈ N fixed, μN is unique, and there exist
c > 0 and c3, c4 > 0, depending only on c1, c2 > 0, such that for all n ∈ N and y > 0

μN(ξ1 ≤ N − ycn) ≤ c3 exp(−c4y). (6.13)

Proof. Note that verifying the detailed balance equations, we see that the stationary
distribution μN is given by

μN(ξ) = 1

Z

k1∏

i=1

(
1
2 − γ

1
2 + γ

)N−ξi

,

where Z is a suitable renormalization constant. For all z ∈ N, let Az be the event that
ξk1+1 = N − z. We claim that there exists a C = C(γ, c1, c2) > 0 such that for all
z ∈ N,

μN(Az) ≤ C

(
z

k2

)( 1
2 − γ

1
2 + γ

)z

.

This follows noting that there are
( z
k2

)
possibilities to place the rightmost k2 particles on

positions �N − z, N�, and summing over all possibilities to distribute the remaining k1
particles on the halfspace �−∞, N − z − 1�. As a consequence,

μN

( ⋃

z≥yc̃n

Az

)
≤ c̃1 exp(−c̃2y)

for some constants c̃, c̃1, c̃2 > 0, and for all y > 0 and n ∈ N. Note that for all z > 0, on
the event Az , the law of the leftmost k1 particles is given by the stationary distribution
μ̃z of an asymmetric simple exclusion process on the halfspace �−∞,−z�. Proposition
4.2 in [25] states that there exist constants c̃3, c̃4 such that for all x > 0

μz(ξ1 < −z − k1 − x) ≤ c̃3 exp(−c̃4x), (6.14)

allowing us to conclude. ��
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Next, we consider the partial order�o between configurations induced by the ordering
of particles, i.e. for x = (x1, x2, . . . , xk) ∈ �N ,k and x′ = (x ′1, x ′2, . . . , x ′k) ∈ �N ,k , we
set

x �o x′ ⇔ xi ≥ x ′i for all i ∈ �k�. (6.15)

Observe that the partial order �o naturally extends to the space �−
N ,k , and allows to

compare configurations on different state spaces with k particles, using the right-hand
side of (6.15). We define a natural coupling Po for exclusion processes with k particles
and the same jump rates (ri )i∈�k�, but a potentially different biases (γ

(1)
i ) and (γ

(2)
i ). For

two exclusion processes (η
(1)
t )t≥0 and (η

(2)
t )t≥0 coupled according to Po, we assign to

the i th particle a rate ri Poisson clock. Whenever the clock of particle i rings, sample a
Uniform-[0, 1]-random variableU . The particle attempts in (η

(1)
t )t≥0 a jump to the right

if U < 1/2 + γ
(1)
i , respectively in (η

(2)
t )t≥0 if U < 1/2 + γ

(2)
i , and to the left otherwise.

The next lemma states that Po preserves the partial order �o, provide that the particle
biases are ordered. Since this follows by a standard argument—see for example Lemma
2.1 in [44] for a similar coupling—we give only a sketch of proof.

Lemma 6.5. Let (η(1)
t )t≥0 and (η

(2)
t )t≥0 be two exclusion processes on �N ,k with com-

mon jump rates (ri ), and assume that γ
(1)
i ≥ γ

(2)
i holds for all i ∈ �k�. Then we have

that

Po

(
η

(1)
t �o η

(2)
t for all t ≥ 0 | η

(1)
0 �o η

(2)
0

)
= 1. (6.16)

The same holds true if (η
(1)
t )t≥0 is defined on the space �N ,k for some N ∈ N, while

(η
(2)
t )t≥0 is an exclusion process on �−

N ,k .

Sketch of proof. The claim follows by induction over the jump times of particles. More
precisely, by the ordering of jump probabilities, whenever the i th particle in (η

(2)
t )t≥0

attempts a jump to the left at time s, so does the i th particle in (η
(2)
t )t≥0. Note that when the

i th particle occupies the same position in both processes at time s−, the partial ordering
at time s− ensures that the move is performed for (η

(2)
t )t≥0 whenever it is performed in

(η
(1)
t )t≥0. Hence, the partial order �o is preserved at time s. A similar argument applies

when the i th particle in (η
(2)
t )t≥0 attempts a jump to the right. ��

Proof of Lemma 6.3. We will in the following only show (6.11) for the open WASEP as
the arguments for the open ASEP are analogues. We distinguish two cases. First, assume
that u > 1 ≥ v. Then the effective density ρk+1 satisfies ρk+1 ≤ 1

2 , and hence ji ≤ ji−1

for all i ∈ �k�. Since uvqk = 1 for some k of order N ε, there exist constants δ1, δ2 > 0
such that

ji−1

ji − ji−1
≤ ji

ji − ji−1
− 2δ1 (6.17)

for all i ≤ δ2N ε. Let (ξt )t≥0 be the exclusion process on �−
N ,k with ri = ( ji−1 + ji )(ρi−

ρi−1)
−1 for all i ∈ �k�, and bias parameters

γi =
{

0 if i > k1

δ1 if i ≤ k1,
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where we set k1 = δ2N ε and k2 = k − k1. Consider now the coupling Po between
the dual process (η∗t )t≥0 and the exclusion process (ξt )t≥0 on �−

N ,k . Using Lemma 6.5
together with the assumption (6.17) on the transition rates, we take t →∞ to see that
for all z ∈ N and N ∈ N

μ∗N ,k(x1 ≤ N − z) ≤ μN(ξ1 ≤ N − z).

Lemma 6.4 for (ξt )t≥0 gives the desired result. Next, suppose that u > v > 1 holds.
Then there exists some index i∗ such ji > ji−1 for all i ≥ i∗ and ji < ji−1 for all i < i∗.
Moreover, observe that there exist some positive constants (δi )i∈�4� such that

ji−1

ji − ji−1
≤ ji

ji − ji−1
− 2δ1 for all i < δ2N

ε

ji−1

ji − ji−1
≥ ji

ji − ji−1
+ 2δ3 for all i > (1− δ4)N

ε.

(6.18)

Conditioning on the value of xi∗ in μ∗N ,k and using (6.18), we apply the same arguments
as in the case u > 1 ≥ v, but for the positions (xi )i<i∗ and (xi )i>i∗ separately, to
conclude. ��

We now argue that in the low density phase, shocks are concentrated at the right end
of the segment.

Proof of Proposition 6.2. As for the proof of Lemma 6.3, we will only consider the open
WASEP as the arguments are similar for the open ASEP. For x = (x1, x2, . . . , xk) ∈
�N ,k and z ∈ N, let Bz be the event

Bz :=
{
x1 < N − 2zN ε

} ∩ {|xk − x1| < zN ε
}
. (6.19)

We claim that there exist constants c1, c2 > 0 such that for all z ∈ N,

μ∗N ,k(Bz) ≤ c1 exp(−c2z). (6.20)

To see this, note that we can map every w = (w1, w2, . . . , wk) ∈ Bz to a configuration
w̄ = (w̄1, w̄2, . . . , w̄k) ∈ �N ,k by w̄i := wi + z for all i ∈ �k�. Observe that for all
z ∈ N

μ∗N (w)

μ∗N (w̄)
=
(

k∏

i=1

dwi
i

)(
k∏

i=1

dw̄i
i

)−1

=
(

k∏

i=1

di

)−z

=
(

ρ0(1− ρ0)

ρk+1(1− ρk+1)

)z

=
(

(1 + v)2u

(1 + u)2v

)z

. (6.21)

Since (1 + u)2v > (1 + v)2u as we assume u > max(1, v), and the map w �→ w̄ is
injective, equation (6.7) now yields (6.20). Using Lemma 6.3 to bound the probability
of the event {|xk − x1| ≤ zN ε} from below uniformly in z ∈ N, we conclude. ��
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Fig. 7. Consider β ′ and β ′′ according to Theorem 1.4 with k = 2 and shock locations x ′1, x ′′1 and x ′2, x ′′2 ,

respectively, for the first and third line. The figure shows a sample according to the measures μ = μN ,q,α,β ,
respectively μ′N for β ′ and μ′′N for β ′′, ordered according to the basic coupling Pb

6.3. From shock measures to approximation by a product measure. Note that from
Proposition 6.2, we immediately get that Theorem 1.4 and Theorem 1.6 hold when
uvqk = 1 for some k ∈ N0. In order to extend this to a more general range of parameters
α, β > 0, we use the canonical coupling, also called the basic coupling, for the open
ASEP in order to compare asymmetric exclusion processes with different boundary
parameters. For α′ > α > 0 and β > β ′ > 0, let (ηt )t≥0 and (η′t )t≥0 be two open
ASEPs with respect to boundary parameters α, β > 0, and α′, β ′ > 0. Then under
the basic coupling Pb, we assign independent rate 1 and rate q Poisson clocks to all
edges. When the rate 1 clock rings at time s for an edge {x, x + 1}, and ηs−(x) =
1 − ηs−(x + 1) = 1, we move the particle in (ηt )t≥0 from x to x + 1, and similarly for
(η′t )t≥0 when η′s−(x) = 1−η′s−(x + 1) = 1. The same construction applies for the rate q
Poisson clocks. In addition, we use rate α and rate β ′ Poisson clocks to determine for both
processes when to attempt to enter and exit a particle at the boundaries. Furthermore, we
attempt to place a particle at site 1 in (η′t )t≥0 at rate α′ −α, and to remove a particle from
(ηt )t≥0 at site N at rate β − β ′. Lemma 2.1 in [44] guarantees that the component-wise
partial ordering �c on the state space {0, 1}N is preserved by Pb, i.e. under the above
assumptions on (ηt )t≥0 and (η′t )t≥0,

Pb(η
′
t �c ηt for all t ≥ 0 | η′0 �c η0) = 1. (6.22)

In particular, the relation (6.22) holds also in stationarity. We have now all tools
to finish the proof of Theorem 1.4 for the open ASEP and Theorem 1.6 for the open
WASEP.

Proof of Theorem 1.4. It suffices to consider the low density phase. For α > 0 and
β ′′ > β > β ′ as in (1.10), let μ′′N , μ, and μ′N denote to the stationary distributions of the
respective open ASEPs. Note that by the choice of β ′ and β ′′, the measures μ′N and μ′′N
can be represented as Bernoulli shock measures, and write x ′1, respectively x ′′1 , for the
position of the left-most shock (Fig. 7). Using (6.22) for t → ∞, and Proposition 6.1,
we see that

lim sup
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
≤ lim sup

N→∞
P(x ′1 ≤ b) + lim sup

N→∞
P(x ′′1 ≤ b)

(6.23)

for all I = �a, b� with N − b � 1. Since by Proposition 6.2, the right-hand side in
(6.23) converges to 0, we obtain the desired result in the shock region of the low density
phase. ��
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Proof of Theorem 1.6. Again, we only consider the low density phase of the open WASEP,
where u > max(1, v). Note that for u and v from (1.13), there exists some finite
N0 = N0(u, v) and sequences (v

(1)
N , v

(2)
N )N≥N0 and (kN )N≥N0 such that v

(1)
N ≤ v ≤ v

(2)
N

and

uv
(1)
N qkN = uv

(2)
N qkN+1 = 1 (6.24)

for kN ∈ N, and all N ≥ N0. Let μ
(1)
N and μ

(2)
N denote the stationary distributions of the

corresponding open WASEPs, and note that μ(1)
N and μ

(2)
N are Bernoulli shock measures.

Let x (1)
1 , respectively x (2)

1 , denote the position of the left-most shock. As in (6.23),

lim sup
N→∞

∥∥∥∥μI − BerI

(
α

1− q

)∥∥∥∥
TV
≤ lim sup

N→∞
P(x (1)

1 ≤ b)

+ lim sup
N→∞

P(x (2)
1 ≤ b). (6.25)

holds for all I = �a, b� with N − b � N ε. Using now Proposition 6.2 for the measures
μ

(1)
N and μ

(2)
N , the right-hand side in (6.25) converges to 0, allowing us to conclude. ��

7. Approximating the Stationary Distribution of the Open TASEP

In this section, we prove Theorem 1.8 on the stationary distribution of the open TASEP.
We start by recalling some basic definitions on last passage percolation on the strip, and
refer the interested reader to [39,67] for a more thorough discussion.

7.1. A brief introduction to last passage percolation. We define in the following directed
last passage percolation on the slab

SN :=
{
(x, y) ∈ Z

2 : y ≤ x ≤ y + N
}

(7.1)

with upper boundary ∂1(SN ) and lower boundary ∂2(SN )

∂1(SN ) := {(x, x) : x ∈ Z
}
, and ∂2(SN ) := {(x + N , x) : x ∈ Z

}
. (7.2)

Fix α, β > 0 and let (ωv)v∈SN be a family of independent Exponential distributed ran-
dom variables. For v ∈ ∂1(SN ), ωv has rate α, and for v ∈ ∂2(SN ), ωv has rate β. For the
remaining v ∈ SN , we assign rate 1. Notice that there is a natural coupling when changing
the boundary parameters α, β > 0 to α′, β ′ > 0, multiplying the Exponential-α-random
variables along ∂1(SN ) by α

α′ , respectively the Exponential-β-random variables along

∂2(SN ) by β
β ′ .

Let � denote the component-wise ordering on Z
2. For w � v, we say that π(v,w)

is a directed up-right lattice path from v to w if

π(v,w) = {z0 = v, z1, . . . , z‖w−v‖1 = w : zi+1 − zi ∈ {e1, e2} for such i}.
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Here, we set e1 := (1, 0) and e2 := (0, 1), and recall that ‖w − v‖1 is the �1-distance
between v and w. For A ⊆ Z

2, let �
v,w
A denote the set of all lattice paths from v to w,

which do not leave the set A. We define

Tα,β(v,w) := max
π(u,v)∈�

v,w
SN

∑

z∈π(v,w)\{w}
ωz (7.3)

as the last passage time from u to v in the slab SN . We drop the subscript whenever
the value of α and β is clear from the context, and write T (γ ) for the passage time
along a fixed path γ . A path �(v,w) maximizing the right-hand side in (7.3) is called a
geodesic.

Next, we relate last passage percolation on a strip to the open TASEP. Let η ∈ {0, 1}N
with N ∈ N. We set G0 = {gi0 ∈ Z

2 : i ∈ Z} to be the initial growth interface, where
g0

0 := (0, 0), and recursively

gi0 :=
{
gi−1

0 + e1 if η(i) = 0
gi−1

0 − e2 if η(i) = 1
(7.4)

for all i ≥ 1. For all t ≥ 0, we define

Gt :=
{
u ∈ Z

2 : max
w∈G0

T (w, u) ≤ t and max
w∈G0

T (w, u + (1, 1)) > t
}
, (7.5)

and we write Gt = {gi−1
t ∈ Z

2 : i ∈ �N + 1�} such that g0
t = (0, 0) for some x ∈ Z,

and

git − gi−1
t ∈ {e1,−e2} (7.6)

for all i ∈ �N�. The process (Gt )t≥0 is called the growth interface for (ωv)v∈SN .
The next statement, relating the open TASEP to the growth interface, is Lemma 3.1 in
[67]. Let us remark that Lemma 3.1 in [67] only considers the case where α, β ≥ 1/2.
However, the proof directly extends to general parameters α, β > 0.

Lemma 7.1. Let N ∈ N, and let (ηt )t≥0 be the open TASEP with respect to α, β > 0.
There exists a coupling between (ηt )t≥0 and (ωv)v∈SN such that the respective growth
interface (Gt )t≥0 and the process (ηt )t≥0 satisfy almost surely for all t ≥ 0 and i ∈ �N�

{ηt (i) = 0} = {git − gi−1
t = e1}. (7.7)

In the following, we collect four preliminary results on last passage percolation. Since
the results follow from well-known arguments, we only give a sketch of proof or provide
a suitable reference. We start with the notion of a line Ln at height n on the strip SN as

Ln := {z ∈ SN : ‖z‖1 = n} . (7.8)

For all n, k ≥ N , let the minimal and maximal last passage time connecting Ln and Ln+k
be

Tmin(n, n + k) = T α,β
min (n, n + k) := min

x∈Ln ,y∈Ln+k
Tα,β(x, y)

Tmax(n, n + k) = T α,β
max(n, n + k) := max

x∈Ln ,y∈Ln+k
Tα,β(x, y).

The following result is given as Proposition 4.5 in [67]. In words, it states that the
minimal and maximal last passage times between two lines in the strip of distance of
order N 3/2 have fluctuations of order N 1/2.
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Lemma 7.2. There exist constants c1, c2, θ̃ > 0, independently of α, β ≥ 1
2 and N ′0 ∈ N

such that for all θ ≥ θ̃ , and all n ≥ N ≥ N ′0, we have that

P
(
Tmax(n, n + θ−1N 3/2)− 2θ−1N

3
2 ≥ θ

√
N
) ≤ exp(−c1θ

3
2 ) (7.9)

P
(
Tmin(n, n + θ−1N 3/2)− 2θ−1N

3
2 ≤ −2θ

√
N
) ≤ exp(−c2θ). (7.10)

Next, consider the last passage times TZ(v,w) and the geodesic �Z(v,w) between
two sites v,w ∈ Z

2. Here, we take the same definition for sites on SN , but replace the
environment on SN by i.i.d. Exponential-1-distributed random variables on Z

2; see [72]
for a survey on this model. The following statement is due to Ledoux and Rider [55].

Lemma 7.3. There exist constants c1, c2, θ0 > 0 such that

P

(∣∣∣TZ((0, 0), v)− (
√

v1 +
√

v2)
2
∣∣∣ ≥ θv

1/2
1 v

−1/6
2

)
≤ c1 exp (−c2θ) (7.11)

and for all θ > θ0 and (v1, v2) ∈ N
2.

Let us stress that by shift invariance of the environment, Lemma 7.3 provides a
moderate deviation estimate for the last passage time between any ordered pair of sites
in Z

2. In particular, note that the last passage time between (x, x) and (y, y) for some
x, y ∈ N has fluctuations of order |x − y|1/3. For a lattice path γ from v to v + (n,mn)

with some m ∈ (0,∞) and n ∈ N, we define its transversal fluctuations for all
� ∈ �n(1 + m)� as

TF(γ, �) := ‖γ (�)− m�‖1 and TF(γ ) := max
�∈�n(1+m)�

TF(γ, �). (7.12)

We have the following moderate deviation bound on the transversal fluctuations.

Lemma 7.4. Let α, β ≥ 1
2 and fix φ > 1 and m0 ∈ [φ−1, φ]. There exist constants

θ0, �0, c > 0 such that for all m ∈ (m0
10 , 10m0

)
, � ≥ �0 and θ > θ0

P(TF(�Z((0, 0), (n,mn)), �) ≥ θ�2/3) ≤ exp(−cθ) (7.13)

as well as that

P(TF(�((0, 0), (n,mn))) ≥ θn2/3) ≤ exp(−cθ). (7.14)

Sketch of proof. For the last passage times with respect to Z
2, the first statement (7.13)

is the content of Theorem 3 in [11]. The second statement (7.14) for geodesics in Z
2

was first shown in [12] using a chaining argument, see Proposition C.9 in [10] for a
detailed proof. The proof of Proposition C.9 in [10] applies one-to-one for geodesics in
SN . However, as an input for the proof of Proposition C.9 in [10], we need to replace
the moderate deviation estimate from Lemma 7.3 for last passage times in Z

2 by the
moderate deviation estimates in Lemma 7.2 for minimal and maximal last passage times,
as well as Lemma 4.14 in [67] for a moderate deviation bound on last passage times in
SN between any pair of boundary points of the strip. ��

Our last preliminary result concerns the coalescence of geodesics in Z
2.
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Lemma 7.5. Let L > 0 be fixed, and k, n ∈ N. Consider the four sites (ai )i∈�4� with

a1 := (0, �Lk2/3�) a2 := (�Lk2/3�, 0) a3 := (n, n − �Ln2/3�)
a4 := (n − �Ln2/3�, n).

For all k = k(n) such that n � k � 1 as n →∞, we have that

lim
n→∞P(�Z(a1, a4) ∩ �Z(a2, a3) �= ∅) = 1. (7.15)

Sketch of proof. For the points (a′i )i∈�4� given as

a′1 := (0, 3�Lk2/3�) a′2 := (0,−3�Lk2/3�, 0)

a′3 := (n, n + 3�Ln2/3�) a4 := (n, n − 3�Ln2/3�)
the claim is Corollary 3.4 in [11]. By Lemma 7.4, as k � 1, we obtain that

lim
n→∞P

(
there exist ã ∈ �Z(a′1, a′4) and b̃ ∈ �Z(a′2, a′3) such that ã � a4 and a2 � b̃

)

= 1,

allowing us to conclude by the ordering of geodesics; see for example Lemma 11.2 in
[12]. ��

7.2. The TASEP in the maximal current phase. Before giving the proof of Theorem 1.8
in the maximal current phase, let us outline our strategy. By Lemma 7.1, the law of the
open TASEP in an interval I and at time t depends only on the last passage times to
a certain rectangle RN ,I,t in SN . Consider now two open TASEPs, one with α, β ≥ 1

2
and one where both parameters equal 1

2 , so that the invariant measure projected to I is a
Bernoulli- 1

2 -product measure. Using the above results on coalescence of geodesics, we
couple the open TASEPs such that their last passage times to RN ,I,t agree up to a time
shift. In order to remove the time shift, and thus to conclude that the invariant measures
of both processes projected to I are close in total variation, we apply a strategy recently
introduced in [68] in the context of mixing times for the TASEP on the circle.

For a segment I = �a, b� ⊆ �N�, and t ≥ 0, consider the finite segment S
I
N and the

rectangle RN ,I,t defined as

S
I
N := LN ∩ {(v1, v2) ∈ Z

2 : v1 − v2 ∈ I }
RN ,I,t := {u ∈ S

I
n for some n ∈ �t/2− N 3/4, t/2 + N 3/4�}. (7.16)

Lemma 7.6. Let Gτ = (giτ )i∈�N+1� be the growth interface at time τ = N 3/2 log2(N )

when starting from the all empty initial configuration. Then for all α, β ≥ 1
2 , and N

sufficiently large,

P

(
(giτ )i∈�a−1,b� ⊆ RN ,I,τ

)
≥ 1− N−3. (7.17)

Proof. This follows by iterating the bound on the last passage times in Lemma 7.2. ��
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Fig. 8. Visualization of the different segments, lines and geodesics on the strip SN , rotated by π/4, which are
used in the proof of Theorem 1.8

As a consequence of Lemma 7.1 and Lemma 7.6, it suffices to study the last passage
times to sites in RN ,I,τ in order to investigate the law of the TASEP with open boundaries
at time τ on the interval I . We fix some notation. For N ∈ N, I = �a, b�, and t ≥ 0, let

S
L
target := S

�a−L(N (b−a))1/2,b+L(N (b−a))1/2�

�t/2−(N (b−a))2/3� and S
L
end := S

�a−L(b−a),b+L(b−a)�

�t/2+N3/4� .

(7.18)

The reason for the choice of the parameters will become clear in the sequel. Let d1 and
d2 for the segment S

L
target as well as d4 and d3 for the segment S

L
end denote its upper

left and down right endpoints, respectively. An illustration of these quantities is given
in Fig. 8.

Lemma 7.7. Let τ = N 3/2 log2(N ) and α, β ≥ 1
2 . Assume that |I | = (b− a) � N 3/4.

Then for all δ > 0,

lim inf
N→∞ P

(
�(u, w) ∩ S

L
target �= ∅ for all u ∈ Lτ/4 and w ∈ S

L
end

)
≥ 1− δ

2
(7.19)

for some L = L(δ) > 0 sufficiently large. Moreover, we have that

lim inf
N→∞ P

(
∃v∗ ∈ Z

2 : v∗ ∈ �(u, w) for all u ∈ Lτ/4 and w ∈ RN ,I,τ

)
≥ 1− δ.

(7.20)

Proof. By symmetry and the ordering of geodesics, it suffices for (7.19) to show that

lim inf
N→∞ P

(
�
(
(τ/8, τ/8), d4

) ∩ S
L
target �= ∅

)
≥ 1− δ

4
(7.21)

for some sufficiently large L > 0. In order to show (7.21), we first argue that there exists
some δ′ = δ′(δ) > 0 sufficiently small such that

lim inf
N→∞ P

(
�
(
(τ/8, τ/8), d4

) ∩ S
�δ′N ,(1−δ′)N�
τ/2−δ′N

)
≥ 1− δ

5
. (7.22)

This follows from bounding the last passage time T ((τ/8, τ/8), d4) by Lemma 7.2 and
Lemma 7.3, when we restrict the space of lattice paths in the definition of the last passage

time to contain only paths which pass through a site in S
�δ′N�
τ/2−δ′N or S

�N ,(1−δ′)N�
τ/2−δ′N . Using

(7.22), we obtain (7.21), and thus (7.19), for sufficiently large L = L(δ, δ′) by applying
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now Lemma 7.4 twice—once to see that the geodesics �Z(u, d4) and �(u, d4) agree with

probability tending to 1 as N → ∞ for all u ∈ S
�δ′N ,(1−δ′)N�
τ/2−δ′N , and once to bound the

transversal fluctuations of �Z(u, d4) when crossing the interval S
L
target. Next, we argue

that (7.20) holds. Note that by Lemma 7.4 and the choice of S
L
target and S

L
end, for all L > 0

fixed,

lim
N→∞P (�Z(d1, d4) = �(d1, d4) and �Z(d2, d3) = �(d2, d3)) = 1.

From Lemma 7.5 with ai = di for all i ∈ �4�, and Lemma 7.4, we get that

lim
N→∞P

(
�(d1, d4) ∩ RN ,I,τ �= ∅ ∨ �(d2, d3) ∩ RN ,I,τ �= ∅

) = 0.

Together with (7.19) and the ordering of geodesics, this yields (7.20). ��
Corollary 7.8. Assume that |I | = (b − a) � N 3/4. Recall the coupling P for last
passage percolation on the strip for α, β ≥ 1

2 , and that Tα,β(·, ·) denotes the respective
last passage times. Then

lim
N→∞P(∃t∗ ∈ R : Tα,β((0, 0), u) = t∗ + T 1

2 , 1
2
((0, 0), u) for all u ∈ RN ,I,N3/2 log2(N )) = 1.

(7.23)

Proof. Let AN ,L be the event defined as

AN ,L :=
{∃v∗ ∈ Z

2 : v∗ ∈ �(u, w) for all u ∈ Lτ/4 and w ∈ RN ,I,τ
}

∩
{
�(d1, d4) ∩ ∂1SN = ∅ and �(d2, d3) ∩ ∂2SN = ∅

}
.

Whenever AN ,L occurs with some site v∗, note that for all α, β ≥ 1
2 and u ∈ RN ,I,τ

Tα,β((0, 0), u) = Tα,β((0, 0), v∗) + Tα,β(v∗, u) = Tα,β((0, 0), v∗) + T1
2 , 1

2
(v∗, u).

(7.24)

By Lemma 7.4 and Lemma 7.7, for all δ > 0, there exists some L = L(δ) > 0 such
that

lim inf
N→∞ P(AN ,L) ≥ 1− δ. (7.25)

Note that we can apply Lemma 7.4 to bound the transversal fluctuation of �(v∗, u)

uniformly in u ∈ RN ,I,τ and the choice of α and β by the transversal fluctuations of
�(v∗, d4). As we can choose δ > 0 in (7.25) arbitrarily close to 0, we conclude. ��

Recall from Lemma 7.1 the one-to-one correspondence between the open TASEP
and last passage percolation on the strip. In the following, we consider the TASEP with
open boundaries (ηt )t≥0 with respect to parameters α and β, and the TASEP with open
boundaries (ζt )t≥0 in the triple point, where both boundary parameters equal 1

2 . Both
processes start from the empty initial configuration at time 0 in a common last passage
percolation environment. Note that by combining Lemma 7.1 and Corollary 7.8, we
ensure that

lim
N→∞P(∃s∗ ∈ R : ηt = ζt+s∗) = 1. (7.26)
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for all t ≥ T 1/2,1/2
max (0, N 3/2 log2(N )); see also Lemma 5.3 in [68]. We will now eliminate

the time change s∗ by applying the random extension and time shift technique introduced
by Sly and the second author in [68] in order to study mixing times for the TASEP on
the circle; see also [39] for a similar argument for the mixing time in the high and the
low density phase. Since we follow the arguments analogously to Section 5 of [68] for
periodic last passage percolation, we will only give a sketch of proof.

Lemma 7.9. Assume that |I | = (b − a) � N 3/4. For all N ∈ N, set τ = τ(N ) =
N

3
2 log2(N ). There exists a coupling P̃ between the open TASEPs (ηt )t≥0 and (ζt )t≥0

such that

lim
N→∞ P̃ (ητ (x) = ζτ (x) for all x ∈ I ) = 1. (7.27)

Sketch of the proof. Let (ω
η
v)v∈SN and (ω

ζ
v )v∈SN denote the environments correspond-

ing to (ηt )t≥0 and (ζt )t≥0, respectively, under the coupling P. For both processes, we
construct families of last passage percolation environments, which we obtain by cutting
the environment along the line L�τ/2�, and adding to both environments an extra number
of rows Yη and Yζ , respectively. More precisely, let (ω̂

η
v)v∈SN have the same law as

(ω
η
v)v∈SN , but chosen independently, and define for all i ∈ N ∪ {0} the environment

(ω
η,i
v )v∈SN , with its law denoted by Pi , by

ωη,i
v :=

⎧
⎪⎨

⎪⎩

ω
η
v if v ∈ Lm for some m < �τ/2�,

ω
η

v−(i,i) if v ∈ Lm for some m ≥ �τ/2� + 2i,

ω̂v otherwise,

for all v ∈ SN . The environments (ω
ζ,i
v )v∈SN for i ∈ N ∪ {0} are defined analogously,

and we denote by T i,η and T i,ζ the corresponding last passage times. Let A be the
event that there exists a site v∗ such that in both environments (ω

η
v)v∈SN and (ω

ζ
v )v∈SN

according to P, we have that v∗ ∈ �(u, w) for all u ∈ L�τ/2� and w ∈ RN ,I,τ , while the
geodesics �(v∗, w) do not touch the boundary of SN . Assuming that A occurs, we fix
such a site v∗, and note that by Lemma 7.2, for all N sufficiently large

P
(|T1

2 , 1
2
((0, 0), v∗)− Tα,β((0, 0), v∗)| ≤ N

11
20
∣∣A) ≥ 1− N−2. (7.28)

Let us remark at this point that the choice of the exponent 11
20 , and of all similar exponents

in the following, is not optimal, but sufficient for our purposes. By Lemma 5.7 of [68],
adjusted for last passage percolation on the strip, there exists a coupling of Yη and Yζ

such that Yη and Yζ are both marginally uniformly distributed on

B :=
{
�i N 1/10� : i ∈ �N 1/2�

}
, (7.29)

and whenever the event A occurs, we have that with probability at least 1− N−1/40

∣∣∣T Yη,η((0, 0), v∗ + (Yη,Yη))− T Yζ ,ζ ((0, 0), v∗ + (Yζ ,Yζ ))

∣∣∣ ≤ N 1/6. (7.30)
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To remove the remaining discrepancy in the last passage times, we again modify the

environments (ω
η,Yη
v )v∈SN and (ω

ζ,Yζ
v )v∈SN , respectively. For all i ∈ B and u ∈ [0, 1],

we define the family of environments (ω̃
η,i,u
v )v∈Z2 by

ω̃η,i,u
v :=

{
(1 + uN−51/40)ω

η,i
v if v ∈ Ln for some n ≤ τ/2

ω
η,i
v otherwise,

and similarly for (ω̃
ζ,i,u
v )v∈Z2 . Let T η,i,u and T ζ,i,u be the corresponding last passage

times. Lemma 5.8 in [68] guarantees that for all choices of u ∈ [0, 1] and N sufficiently
large,

∥∥∥P
(
(ω

η,Yη
v )v∈SN ∈ ·

)
− P

(
(ω̃

η,Yη,u
v )v∈Z2 ∈ ·

)∥∥∥
TV
≤ N−1/50, (7.31)

and similarly for (ω̃
ζ,u
v )v∈Z2 . Furthermore, note that for all i ∈ B, the function

u �→ fi (u) := T η,u,i (0, v∗ + (i, i)) (7.32)

is monotone increasing, convex, and piece-wise linear. Hence, by Lemma 7.2

lim
N→∞Pi

(
fi (u2)− fi (u1)

(u2 − u1)N 51/40
∈
(

1

2
τ, 2τ

)
for all 0 < u1 < u2 < 1

)
= 1. (7.33)

As in Section 5.4 of [68] for periodic last passage percolation—see also the end of
Section 4 in [39] for a similar argument for last passage percolation on the strip under
observation (7.33) – there exists now a coupling between P̃ of U1 and U2 such that U1
and U2 are uniformly distributed on [0, 1], and we have that

lim
N→∞ P̃

(
T η,Yη,U1((0, 0), v∗) = T ζ,Yζ ,U2((0, 0), v∗)

∣∣∣A
)
= 1. (7.34)

Together with Lemma 7.7 and Corollary 7.8 to bound the probability of the event A,

lim
N→∞ P̃

(
T η,Yη,U1 ((0, 0), u + (Yη, Yη)) = T ζ,Yζ ,U2 ((0, 0), u + (Yζ , Yζ )) for all u ∈ RN ,I,τ

)
= 1.

Since by Lemma 7.1 and Lemma 7.6 the law of ητ and ζτ on I only depends on the last
passage times to RN ,I,τ with probability tending to 1 as N →∞, we conclude. ��
Proof of (1.20) in Theorem 1.8. Without loss of generality, let |I | = (b − a) � N 3/4

as this only increasing the total variation distance. For τ = N 3/2 log2(N ), let (ηt )t≥0

and (ζt )t≥0 be two open TASEPs with boundary parameters α, β ≥ 1
2 for (ηt )t≥0,

and both boundary parameters equal to 1
2 for (ζt )t≥0, respectively. Using the coupling

representation of the total variation distancevsee for example Corollary 5.5 in [56]—
Lemma 7.9 ensures that

lim
N→∞

∥∥∥P(ηI
τ ∈ ·)− P(ζ I

τ ∈ ·)
∥∥∥

TV
= 0. (7.35)

By Theorem 1.3 in [67], stating that the total variation mixing time of (ζt )t≥0 is of order
N 3/2, and the fact the invariant measure of (ζt )t≥0 is the uniform distribution on the
state space �N ,

lim
N→∞

∥∥∥P(ηI
τ ∈ ·)− μI

α,β

∥∥∥
TV
= 0 (7.36)
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as well as

lim
N→∞

∥∥∥∥P(ζ I
τ ∈ ·)− BerI

(
1

2

)∥∥∥∥
TV
= 0. (7.37)

Using (7.35) and the triangle inequality for the total variation distance, we conclude the
first part of Theorem 1.8 on approximating the stationary distribution. ��

7.3. TheTASEP in the highand in the lowdensity phase. We will only show (1.21) for the
low density phase in Theorem 1.8 as the proof of (1.22) follows by the same arguments.
Moreover, without loss of generality, we let I = �b� with N − b � N 1/3 log(N ). We
start with the following basic observation, which is the analogue of Lemma 7.6.

Lemma 7.10. Consider the growth interface Gt = (git )i∈�N+1� at time τ = N log(N )

when starting from the all empty initial configuration. Then for all α, β > 0 with
α < min( 1

2 , β),

P

⎛

⎝(giτ )i∈�0,b� ⊆
⋃

n∈�τ,3α−1τ�

S
�0,b�
n

⎞

⎠ ≥ 1− N−3 (7.38)

for all N sufficiently large.

Proof. This follows from Lemma 7.2 and Lemma 7.3, dominating for the upper bound
the environment on the strip SN by an i.i.d. Exponential-α-distributed environment on
Z

2. ��
In the following, our goal is to show that for all u ∈ S

�0,b�
n with some n ≤ 3α−1N ,

the geodesic �((0, 0), u) does with high probability not intersect the boundary ∂2(SN ).
We start with the following uniform bound on last passage times.

Lemma 7.11. Let α < 1
2 and β = 1. There exist constants c, c̃ > 0 such that for all

M ∈ �N 3/2� and u ∈ S
�0,b�
n with some n ∈ �c̃N , N 2 − M�,

P

(
T ((0, 0), u + (M, M))− T ((0, 0), u)− M

α(1− α)
< −c

(
N

1
3 log(N ) + M

1
2 log(M)

))
< N−4.

In order to show Lemma 7.11, we require the following result on moderate devia-
tions for the last passage times and traversing probabilities on the strip. Its content is
Proposition 3.4 and Lemma 4.1 in [39], so we omit the proof.

Lemma 7.12. Let α < min( 1
2 , β). There exists some θ0, c > 0 such that for all m, n ∈

�N 2� with m ≥ n, all θ > θ0, and all N sufficiently large

P

(∣∣∣T ((n, n), (m,m))− m − n

α(1− α)

∣∣∣ ≥ θ(m − n)
1
2

)
≤ exp(−cθ). (7.39)

Moreover, we have that

P(�((n, n), (m,m)) ∩ ∂2(SN ) = ∅ for all m, n ∈ �N 2�) ≥ 1− N−5. (7.40)
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Proof of Lemma 7.11. For the geodesic �((0, 0), u), let v∗ denote the last intersection
point with the boundary ∂1(SN ). By Lemma 7.3 and Lemma 7.12, recalling the partial
order � on Z

2, there exist constants c1, c2 > 0 such that

P
(
(n − c1N , n − c1N ) � v∗ � (n − c2N , n − c2N )

) ≥ 1− N−6 (7.41)

for all N sufficiently large; see also Lemma 4.3 in [39] for a more refined estimate on
the intersection point v∗. Assume that the event in (7.41) holds for some v∗ = v∗(u).
Then we combine an upper bound on the last passage time T (v∗, u) by Lemma 7.3, a
lower bound on the last passage time T (v∗, v∗ + (m,m)) by Lemma 7.12, and a lower
bound on the last passage time T (v∗ + (m,m), u + (m,m)) by Lemma 7.3 in order to
obtain the desired bound on the last passage times in Lemma 7.11. ��
Proof of (1.21) in Theorem 1.8. Recall that we denote by Tα,β(v,w) the last passage
time between v and w in the environment on the strip SN with respect to boundary
parameters α, β > 0. Set τ = N log(N ). Consider the open TASEP (ηt )t≥0 with respect
to boundary parameters α and β, and the open TASEP (ζt )t≥0 with respect to boundary
parameters α and 1 − α, both started from the empty initial configuration and having
their respective last passage percolation environments coupled according to P. We claim
that it suffices to show that for all α < 1

2 and β > α

P

⎛

⎝Tα,β((0, 0), u) = Tα,1−α((0, 0), u) for all u ∈
⋃

n∈�τ,3α−1τ�

S
�0,b�
n

⎞

⎠ ≥ 1− N−1

(7.42)

for all N sufficiently large, i.e. under the coupling P for different boundary parameters,
the geodesics do not intersect the boundary ∂2(SN ). Assuming (7.42), note that by
Lemma 7.10 for τ = N log(N ), and the coupling representation of the total variation
distance,

∥∥∥P(ηI
τ ∈ ·)− P(ζ I

τ ∈ ·)
∥∥∥

TV
≤ N−1 . (7.43)

As a consequence of Theorem 1.1 in [39], stating a bound on the total variation mixing
time of (ζt )t≥0 of order N , we have that

lim
N→∞

∥∥∥P(ζ I
τ ∈ ·)− BerI (α)

∥∥∥
TV
= 0. (7.44)

Using that the invariant measure of (ζt )t≥0 is a Bernoulli-α-product measure, this allows

us to conclude (1.21). It remains to verify that (7.42) holds. Fix u ∈ S
�0,b�
n with N−b �

N 1/3 log(N ) for some n ∈ �τ, 3α−1τ�, and let

n∗ := max
{
n ∈ N ∪ {0} : u − (n, n) ∈ �α,β((0, 0), u) ∨ u − (n, n) ∈ �α,1−α((0, 0), u)

}
.

(7.45)

Note that if Tα,β((0, 0), u) �= Tα,1−α((0, 0), u), we must have n∗ � N 1/3 log(N ) by
our choice of b. Let T̄ (u−(m,m), u) be the last passage time from u−(m,m) to u when
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restricting to available space of lattice paths to not intersect ∂1(SN ). From Lemma 7.3
together with Lemma 7.12, we obtain that for all m sufficiently large

P

(
T̄ (u − (m,m), u) >

m

min(β, 1
2 )(1−min(β, 1

2 ))
+ m1/2 log2(m)

)
≤ m−20.

(7.46)

Using Lemma 7.11 for a lower bound on the last passage time from (0, 0) to u−(n∗, n∗)
and u, respectively, and Lemma 7.12 to rule out that �((0, 0), u) returns to ∂1(SN ) after
intersecting ∂2(SN ), we see from (7.46) that for some c > 0 and all N sufficiently large,

P(n∗ > cN 1/3 log(N )) ≤ N−4.

A union bound over the sites u in (7.46) yields (7.42), and thus finishes the proof. ��
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Appendix A. Approximation on finite intervals

In this section, we give a proof of Proposition 1.1. The argument follows along the same
lines as Theorem 3.29 in Part III of [59], which covers the case q = 0. We will in the
following assume without loss of generality that q, α, β > 0. We start by recalling some
basic results on the current of the open ASEP, that is for some i ∈ �N − 1�

J N := μN ,q,α,β(η(i) = 1 and η(i + 1) = 0)

−q · μN ,q,α,β(η(i) = 0 and η(i + 1) = 1) (A.1)

A simple computation, using the generator L from (1.1) shows that (A.1) is in fact
independent of the choice of i . The following result can be found in Section 4 of [65].

Lemma A.1 (Sasamoto [65]). Let α, β > 0 and q ∈ (0, 1). Then we have that

lim
N→∞J N =

⎧
⎪⎪⎨

⎪⎪⎩

α(1− α)(1− q) if α < min
(
β,

1−q
2

)

β(1− β)(1− q) if β < min
(
α,

1−q
2

)

1
4 (1− q) if min(α, β) >

1−q
2 .

(A.2)

http://creativecommons.org/licenses/by/4.0/
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Next, we require a way to compare the invariant measure for different parameters α, β >

0. Recall that we denote by �c the component-wise partial ordering on the state space
{0, 1}N . For two probability measures ν and ν′, we say that ν stochastically dominates
ν′, and write ν � ν′ if there exists a coupling Pν,ν′ between η ∼ ν and η′ ∼ ν′ such that
Pν,ν′(η �c η′). The following result can be found for example as Lemma 2.10 in [44].

Lemma A.2 (Gantert et al. [44]). For α, β > 0 and q ∈ (0, 1), recall the parameters
u, v defined in (1.6). Then

BerN
(

max
( 1

1 + u
,

v

1 + v

))
� μN ,q,α,β � BerN

(
min

( 1

1 + u
,

v

1 + v

))
. (A.3)

We have now all tools in order to show Proposition 1.1.

Proof of Proposition 1.1. In the following, with a slight abuse of notation, we treat the
measures μN ,q,α,β as measures on {0, 1}Z by extending to the left and right with the
empty sites. For a measure ν on {0, 1}Z, we denote by θxν the measure shifted by x .
Without loss of generality, we assume that the weak limit

μ̄ := lim
N→∞ θaN μN ,q,α,β (A.4)

exists as we can consider a suitable subsequence otherwise. Using (1.4), we see that the
measure μ̄ must be an invariant measure for the asymmetric simple exclusion process
on the integers, that is the Markov process on {0, 1}Z whose generator is given by

L̄ f (η) =
∑

x∈Z

(
η(x)(1− η(x + 1)) + qη(x + 1)(1− η(x))

) [
f (ηx,x+1)− f (η)

]
.

(A.5)

It is a classical result by Liggett that the set of extremal invariant measures of the asym-
metric simple exclusion process on the integers consists only of Bernoulli-ρ-product
measures Ber(ρ) for some ρ ∈ [0, 1], and a family of so-called blocking measures
(νθ )θ∈R, along which the current J , as defined in (A.1) for the open ASEP, is zero [58].
Hence, since we assume α, β > 0 and q ∈ (0, 1), we get that by Lemma A.1 that

μ̄ =
∫ 1

0
Ber(ρ)γ (dρ) (A.6)

for some probability measure γ on [0, 1]. Using Lemma A.2, we claim that

μ̄ =
∫ max

(
1

1+u , v
1+v

)

min
(

1
1+u , v

1+v

) Ber(ρ)γ (dρ) (A.7)

holds. To see this, note that we have for all n ∈ N

μ̄(η(i) = 1 for all i ∈ �n�) ≤ max
( 1

1 + u
,

v

1 + v

)n
. (A.8)

Now let n →∞ to conclude that it suffices to consider ρ ≤ max
( 1

1+u , v
1+v

)
. A similar

argument applies for ρ ≥ min
( 1

1+u , v
1+v

)
, and thus gives (A.7). Moreover, using the

definitions of the current and μ̄, we see that the measure γ must satisfy

∫ max
(

1
1+u , v

1+v

)

min
(

1
1+u , v

1+v

) (1− q)ρ(1− ρ)γ (dρ) = lim
N→∞J N . (A.9)
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Thus, combining the above observations and using Lemma A.1, a computation shows
that

μ̄ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ber
(

α
1−q
)

if α < min
(
β,

1−q
2

)

Ber
(

1− β
1−q
)

if β < min
(
α,

1−q
2

)

Ber
(

1
2

)
if min(α, β) >

1−q
2 .

(A.10)

Since the size of the interval �aN , bN � is uniformly bounded in N by our assumptions,
we conclude. ��
Remark A.3. Note that the same arguments also extend to the five parameter model of
the open ASEP discussed at the end of Section 3.2, using the results of Section 6.1 in
[15] on the current of the open ASEP instead of Lemma A.1.

Appendix B. A finite matrix product ansatz

In the following, we show that the assumption uvqk = 1 implies that the invariant
measure is given as a convex combination of Bernoulli shock measures. We reformulate
our results in terms of the matrix product ansatz. We will only consider the special
case of finite dimensional representations D, E , while for the general parameters, the
matrices D and E are infinite-dimensional; see [59] for a discussion in the special case
where q = 0.

We recall now the matrix product formulation; see [14] for an introduction. We say
that matrices D and E , together with vectors 〈W | and |V 〉 satisfy the matrix product
ansatz if

DE − qED = (D + E)

βD|V 〉 = (1− q)|V 〉
〈W |αE = (1− q)〈W |,

(B.1)

using the standard bra-ket notation. Suppose that uvqk = 1 holds for some finite k ∈ N.
Then Mallick and Sandow construct in [60] a solution to (B.1) by setting

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 + v

1 + vq
1 + vq2

. . .

1 + vqk−1

1 + vqk

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(B.2)

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 1
v

1 1 + 1
vq

1 1 + 1
vq2

1
. . .

. . . 1 + 1
vqk−1

1 1 + 1
vqk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.3)
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with respect to the vectors

V = (1, 0, 0, . . . , 0) and W = (W0,W1,W2, . . . ,Wk),

where we set recursively for all i ∈ [k] ∪ {0}

Wi−1 := Wi

(
u(1− qk+1−i )

)−1
. (B.4)

We recall the following classical result on using the matrices D and E and the vectors
V and W to represent the stationary distribution of the open ASEP.

Theorem B.1 (Derrida et al. [38]). Suppose that uvqk = 1 holds for some finite k ∈ N.
Then for all η ∈ {0, 1}N , the stationary distribution μN of the open ASEP on {0, 1}N
satisfies

μN (η) = 1

ZN

〈
W
∣∣∣

N∏

i=1

(
Dη(i) + E(1− η(i)

)∣∣∣V
〉

(B.5)

for some suitable normalization constant ZN , provided D, E, V,W satisfy (B.1).

In the following, we study the structure of the matrices D and E , and argue that they give
rise to Bernoulli shock measures. We start by observing that the normalization constants
of the diagonal entries of the matrix D + E are given by

Zi := 2 + vqi + (vqi )−1 = 1− q

vqi
+

1− q

1− q − vqi
= 1

ρi (1− ρi )
, (B.6)

where we recall ρi from (6.1). Set Xi = Dη(i)+E(1−η(i)) for i ∈ [N ] and η ∈ {0, 1}N ,
and we define the matrices

X (N ) := X1X2 · · · XN . (B.7)

We have now all tools in order to establish Proposition 6.1, following [48], as well as
the arguments in [70] for the special case k = 1.

Proof of Proposition 6.1. We will only argue that (6.5) holds as the statement (6.6)
follows by the symmetry between particles and empty sites. By Theorem B.1, the quantity
μN ,q,u,v(η) for a configuration η can be written using only the matrix X (N ) together the
vectors V and W . More precisely, observe that the matrices Xi take the form

Xi =

⎛

⎜⎜⎜⎜⎜⎜⎝

ZkBerρk (η(i))
Berρ∗k (η(i)) Zk−1Berρk−1(η(i))

Berρ∗k−1
(η(i))

. . .

. . . Z1Berρ1(η(i))
Berρ∗0 (η(i)) Z0Berρ0(η(i))

⎞

⎟⎟⎟⎟⎟⎟⎠

where we define the Bernoulli measures

Berρ(x) = ρx + (1− ρ)(1− x). (B.8)
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Now we evaluate the matrix product X (N ) to see that the entries

X (N )
i, j := eT

i X
(N )e j . (B.9)

contain the shock measures with exactly i shock locations, using the only the densities
ρ· from location k − i − j to k − j . More precisely, recalling (6.3), we get that

X (N )
i,1 =

∑

x∈�N ,|i− j |

( |i− j |∏

k=0

dxkk

)
μx. (B.10)

Here, we use the recursion that

X (N )
i, j = X (N−1)

i, j Berρk+1− j (η(N )) + 1{ j<k}X (N−1)
i, j+1 Berρ∗k− j

(η(N )). (B.11)

In other words, to construct the shock measures with exactly i− j shocks for the segment
of length N , we can either take the shock measures with |i − j | shocks of length N − 1
and attach one site at the right end with density ρk− j , or we can take the shock measure
with |i − j − 1| shocks (with densities ρk−i to ρk− j+1) and attach one site at the right

end with density ρ∗k− j . Since V = (1, 0, . . . , 0), we consider only the entries X (N )
i,1

which contain the shock measures using only the last i shock densities. Weighting the
respective shock measures according to the coefficients Zi and Wi , we conclude. ��
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