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A B S T R A C T

Importance: Numerous studies indicate that the traditional categorical classification of severe mental disorders 
(SMD), such as schizophrenia, bipolar disorders, and major depressive disorders, does not align with the un-
derlying biology of those disorders as they frequently overlap in terms of symptoms and risk factors.
Objective: This study aimed to identify transdiagnostic patient clusters based on disease severity and explore the 
underlying biological mechanisms independently of the traditional categorical classification.
Design: We utilized data from 443 participants diagnosed with SMD of the PsyCourse Study, a longitudinal study 
with deep phenotyping across up to four visits. We performed longitudinal clustering to group patients based on 
symptom trajectories and cognitive performance. The resulting clusters were compared on cross-sectional var-
iables, including independent measures of severity as well as polygenic risk scores, serum protein quantification, 
miRNA expression, and DNA methylation.
Results: We identified two distinct clusters of patients that exhibited marked differences in illness severity but did 
not differ significantly in age, sex, or diagnostic proportions. We found 19 serum proteins significantly dysre-
gulated between the two clusters. Functional enrichment pointed to a convergence of immune system dysre-
gulation and neurodevelopmental processes.
Conclusion: The observed differences in serum protein expression suggest that disease severity is associated with 
the convergence of immune system dysregulation and neurodevelopmental alterations, particularly involving 
pathways related to inflammation and brain plasticity. The identification of pro-inflammatory proteins among 
the differentially expressed markers underscores the potential role of systemic inflammation in the pathophys-
iology of SMD. These results highlight the importance of considering illness severity as a core dimension in 
psychiatric research and clinical practice and suggest that targeting immune-related mechanisms may offer 
promising new therapeutic avenues for patients with SMD.

Key points
Question: Can analyzing symptom trajectories and cognitive profiles 

across diagnostic categories reveal clinically relevant subgroups in se-
vere mental disorders?

Findings: In this longitudinal study of 443 individuals with severe 
mental disorders, two distinct clusters emerged, differing significantly in 
illness severity, with the more severe group displaying elevated pro- 
inflammatory serum proteins, suggesting an association between dis-
ease severity and inflammation.

Meaning: These findings suggest that transdiagnostic clustering 
clarifies shared mechanisms, underscores the importance of inflamma-
tion in severe mental disorders, and highlights a promising avenue for 
novel therapeutic approaches.

1. Introduction

Severe mental disorders (SMD) such as schizophrenia (SCZ), schiz-
oaffective disorder (SCZA), bipolar disorder (BD), and major depressive 
disorder (MDD), are complex and multifaceted syndromes that have 
common symptoms and risk factors (Guloksuz and Van Os, 2018). Many 
characteristics such as cognitive dysfunction, functional impairment, 
and psychiatric symptoms are shared among SMD. There is evidence 
from behavioral genetic and genome-wide association studies (GWAS) 
that SMD are heritable, with a common phenomic (Murray et al., 2004; 
Kaymaz, et al., 2004) and genomic basis (Cardno and Owen, 2014). 
Different nosological frameworks have been proposed based on account 
for these commonalities, with RDoC and HiTOP (Jonas et al., 2024) 
emphasizing dimensionality rather than categorical classification. Also, 
the DSM-5 is now emphasizing dimensionality in addition to diagnostic 
categories. Moreover, multiple studies have associated SMD with a 
dysregulation of the immune system. For example, SMD are marked by 
an augmentation of pro-inflammatory proteins in the blood (Osimo 

et al., 2018; Goldstein et al., 2015). Treatments of pro-inflammatory 
cytokines can induce SMD symptoms (Capuron, 2002). The link be-
tween the immune system and SMD is so important that those disorders 
are recognized as neuroimmune disorders (Chaves-Filho et al., 2024; 
Hodes et al., 2015; Smyth and Lawrie, 2013). However, a challenge that 
remains for clinicians, regardless of the diagnostic system used is how to 
differentiate individuals who will experience a severe form of psycho-
pathology from milder cases. The gold standard are population-based 
longitudinal studies with a duration of several years or decades, 
ideally prior to disease onset. However, such studies are both extremely 
challenging and costly to conduct, and, in the end, most longitudinal 
studies have emphasized highly heterogeneous illness trajectories over 
time (Heilbronner et al., 2016). Here, we take a different approach and 
instead focus on the short-term course of the five core aspects of SMD: 
we focus on these five core aspects, cognitive dysfunction, functional 
impairment, and psychotic, manic, and depressive symptoms, because 
they collectively represent the fundamental dimensions of impairment 
across diagnostic categories, allowing for a more nuanced and trans-
diagnostic perspective on the severity and course of SMD. We take 
advantage of The PsyCourse Study (Budde et al., 2019), a deeply phe-
notyped longitudinal sample of the psychotic-to-affective spectrum, 
collected specifically for this purpose. To identify clusters of patients 
that differ in their longitudinal course, we used longmixr, an R package 
that enables longitudinal clustering of mixed data types (Hagenberg 
et al., 2024; Schulte et al., 2022), specifically created for data collected 
in The PsyCourse Study. We identified two patient clusters that are 
similar in age, sex, and diagnostic proportions but exhibited distinct 
levels of severity. We then conducted comprehensive multi-omics ana-
lyses and found that proinflammatory cytokines are strongly associated 
with disease severity.

2. Methods

2.1. The PsyCourse Study

PsyCourse is a longitudinal, multisite, observational transdiagnostic 
1 These authors contributed equally.
2 These authors contributed equally.

P. Solomon et al.                                                                                                                                                                                                                                Brain Behavior and Immunity 129 (2025) 359–372 

360 



study that was conducted in Germany and Austria (Budde et al., 2019). 
Participants provided written consent. Participants attended up to four 
visits evenly distributed over 18 months. With the aim to stratify par-
ticipants independent of their diagnoses, we selected all participants 
diagnosed with SCZ, SCZA, BD, or MDD, according to DSM-IV, who 
participated in all four regular visits (443 participants).

2.2. Longitudinal clustering

Longitudinal clustering was performed using the longmixr R package 
(Fig. 1A) (Hagenberg et al., 2024). First, longitudinally measured 
phenotypic data were meaningfully divided into five groups, based on 
prior knowledge, representing different domains of SMD, namely 
depressive, SCZ, manic, and cognitive symptoms, and global 
functioning. 

a) Depressive symptoms (25 items): Rated on the Inventory of 
Depressive Symptomatology (IDS-C30) (Rush et al., 2000). We 
excluded the items 11 to 14 as their values were missing for most 
participants.

b) Manic symptoms (11 items): Rated on the Young Mania Rating Scale 
(YMRS) (Young et al., 1978).

c) SCZ symptoms (30 items): Rated on the Positive and Negative Syn-
drome Scale (PANSS), subscales positive symptoms, negative symp-
toms and general psychopathology (Kay et al., 1987).

d) Cognitive performance (5 items): Trail Making Test A and B (time), 
Verbal digit span forward, Verbal digit span backward, Digit-Sym-
bol-Test.

e) Functioning (6 items): Global Assessment of Functioning (GAF), 
along with the number of treatments prescribed and whether the 
participant was in a relationship.

Treatment-related variables (number of prescribed psychiatric 
treatments) were included within the functioning domain used for lon-
gitudinal clustering to partially account for treatment exposure.

Missing values were imputed when needed using multiple imputa-
tions (n = 5 imputations; R package Amelia). To reduce dimensionality 
within each group of variables, longmixr applies factorial analysis of 
mixed data (FAMD). The first component from each FAMD was cor-
rected for the effects of age and sex, if necessary, and then used for 
longitudinal consensus clustering (Fig. 1A). The longmixr clustering was 
performed with 1000 repetitions, and a seed value of 5114 algorithm for 
the final linkage. For the other settings, default values were used. The 
best solution was a two-cluster solution.

2.3. PRS computation

Individuals were genotyped using the Illumina Infinium Global 
Screening Array-24 Kit (GSA Array). For details on QC see Solomon 
et al.). The PRS were computed using PRS-cs with default values (phi =
auto settings) using the genotypes of the PsyCourse participants and 
GWAS summary of the trait studied that includes BD, MDD, SCZ, SCZ 
treatment resistance, and the P-Factor, a dimension of general psycho-
pathology (Ge et al., 2019; Pardiñas et al., 2022; Caspi and Moffitt, 
2018).

To assess whether genetics contributed to the differences in clusters, 
we compared PRS for MDD, BD, SCZ and for antipsychotic treatment 
resistance and the P-factor (Ge et al., 2019; Caspi and Moffitt, 2018; 
Solomon et al., 2025). Genotyping was described previously (Pardiñas 
et al., 2022).

2.4. Phenotypic characterization of the clusters

To validate the clustering, we compared the clusters for the sums of 
the scales and the scores of neuropsychological tests used for clustering 
at each visit. To ensure that there were no biases, we checked for 

differences in age, sex, and diagnosis.
Opcrit score: Operational Criteria Checklist for Psychotic and Af-

fective Illness (OPCRIT) is a standardized diagnostic that provides 
detailed symptom ratings and operationally defined diagnoses based on 
established criteria (McGuffin, 1991). At the fourth visit OPCRIT item 90 
was rated, assessing the disease course on an ordinal scale from “single 
episode with good remission” to “ongoing chronic disease with deteri-
oration” of the psychiatric disorder diagnosed at the first visit of the 
PsyCourse Study. As this score was measured at a single visit, we didn’t 
use it to realize the clustering of the participants.

We compared the OPCRIT score and 2 other severity indicators that 
were not used for clustering, the body mass index (BMI), and childhood 
trauma using Childhood Trauma Screener (Grabe et al., 2012), as well as 
24 items, measured at the first visit, indicating the presence of somatic 
diseases. Statistics included X2 tests for categorical variables, T-tests for 
single measurements, and ANOVA for multiple time-points. Analysis and 
figures were realized with R version 4.4.1.

2.5. Somatic disease comparison across the two clusters

We compared the presence of somatic disease (evaluated at the first 
visit of the PsyCourse Study) such as infectious diseases, Parkinson 
syndrome, allergies, and others (See the Supplementary Table II) using 
X2 test. The p-value of the tests were adjusted using the Benjamini- 
Hochberg method.

2.6. Multi-omics analysis

Propensity score matching was used to control for age, sex, and 
diagnosis when selecting participants across both clusters for the pro-
teomic and methylome analysis. Serum from the first visit was used to 
quantify 384 proteins in 176 participants using Olink Explore Inflam-
mation I panel. The selection of 176 participants was determined by the 
available capacity of two Olink Explore plates, each accommodating 88 
samples plus 8 internal controls within a standard 96-well format, for a 
total of 176 samples across two plates. The OlinkAnalyze package was 
used for QC. For DNA methylation analysis 192 participants were 
analyzed (Illumina EPIC V2). The number of 192 participants was 
selected to match the proteomics sample size as closely as possible while 
fitting the array design of the EPIC V2 chip (8 samples per array). For the 
miRNAome analysis we used was sequenced using whole blood sample 
obtained on the first visit of the PsyCourse Study and sequenced in a 
previous study (Kaurani et al., 2024).

2.7. Proteomic data analysis

To identify differentially expressed proteins between the high- 
severity and low-severity clusters, we performed linear modeling using 
the limma package in R, including age as a covariate in the design matrix 
to adjust for its potential confounding effects on protein expression. 
Following model fitting, we applied the ashr package (adaptive 
shrinkage) to compute q-values and posterior effect sizes. This empirical 
Bayes approach stabilizes variance estimates and improves the estima-
tion of significance and directionality in datasets with moderate sample 
sizes. As a quality control step, we excluded proteins with a posterior 
standard deviation (PosteriorSD) ≥ 0.02, to reduce the risk of over-
confident shrinkage artifacts (Stephens, 2017). Gene Ontology (GO) 
analysis was realized with the clusterProfiler R package on the 19 sig-
nificant proteins to identify biological pathways.

Spearman correlations were computed between the normalized 
expression values of proteins (NPX) and variables from neuropsycho-
logical tests (Trail Making Test A (TMT-A) and B (TMT-B) (time), Verbal 
digit span forward (DGT_SP_FRW), Verbal digit span backward 
(DGT_SP_BW), Digit-Symbol-Test (DST)) and age of the participants. To 
account for age, we computed partial correlations using age as covari-
able. We adjusted the correlation p-values using the Benjamini- 
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Fig. 1. (A) Graph representing the strategy to classify the longmixr participants based on clinical evaluations. The consensus matrix displayed is the one computed by 
longmixr for the 2 clusters solution, while the consensus CDF was used to identify the optimal number of clusters. (B) Consensus CDF (upper) and consensus matrix 
(bottom) plots of our longmixr clustering. Spaghetti plots comparing the sum of the PANSS (negative, positive, and general) scales (C, ANOVA p-value < 0.001), the 
sum of the YMRS scale across the two clusters (D, ANOVA p-value < 0.001), the sum of the IDS-C30 scale across the two clusters (E, ANOVA p-value < 0.001), the sum 
of the GAF scale across the two clusters (F, ANOVA p-value < 0.001), the time needed to finish Part B of the TMT tests across the two clusters (G, ANOVA, p-value <
0.001), and the number of errors made during the Part B of the TMT test (H, ANOVA p-value = 0.005). Boxplot comparing the age at the first visit of the two clusters 
(I, T Test p-value = 0.36), and barplots representing the sex (J, X2 p-value = 0.458) and the diagnosis proportions in each cluster (K, X2 p-value = 0.18).
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Hochberg method.

2.8. Methylome data analysis

The ages were imputed using the methylclock package and probes 
were filtered out if variance <0.05 resulting in 693 probes. Differential 
analysis was performed with minfi and limma packages while adjusting 
for age and sex.

2.9. miRNAome analysis

The miRNAome was obtained from the first visit and processed as 
previously described (Solomon et al., 2025; Kaurani et al., 2024). 
DESeq2 was used to compare the two clusters while adjusting for age, 
sex, and sequencing batches. Multiple hypothesis correction (Benjamini- 
Hochberg) was used.

2.10. Bioinformatics tools

Linkage Disequilibrium (LD) were computed using plink version 1.9. 
All analysis were performed with R (4.4.1). Packages used include: 

• longmixr version 1.0.0
• DESeq2 version 1.44.0
• ggplot2 version 3.5.1
• OlinkAnalyze version 4.0.1
• FlowSorted.BloodExtended.EPIC version 1.1.2
• methylClock 1.10.0
• methylClockData 1.12.0
• minfi version 1.50.0
• limma version 3.60.6
• ashr version 2.2–63
• clusterProfiler version 4.12.6

3. Results

3.1. Longitudinal clustering of participants

Our aim was to find clusters of individuals independently of their 
ascertained DSM-IV diagnoses (Fig. 1A, Methods, Table 1). We explored 
different clustering solutions and used the cumulative distribution 
function (CDF) to determine the optimal number of clusters (Fig. 1B). 
The CDF indicated that the two-cluster solution was optimal, as it 
demonstrated better binary separation characterized by a flatter curve 
with steep ascents at 0 and 1 (Hagenberg et al., 2024).

Both clusters showed significant differences across various symptom 
scales and neuropsychological assessments. Cluster B exhibited signifi-
cantly higher SCZ symptom scores (PANSS, ANOVA F(1, 1768) =
359.59, p-value = 3.84e− 73), manic symptoms (YMRS, ANOVA F(1, 
1768) = 344,54, p-value = 2.08e− 70), and depressive symptoms (IDS- 
C30, ANOVA F(1, 1768) = 97,38, p-value = 2.15e− 22) compared to 
Cluster A (Fig. 1C–E). Compared to cluster A, cluster B also showed 
poorer functioning scores (GAF, ANOVA F(1, 1768) = 238, 05, p-value 
= 1.75e− 50; Fig. 1F).

In addition, patients in Cluster B performed worse for cognition, 
showing longer completion times on the Trail Making Test Part B (TMT- 
B, ANOVA F(1, 1768) = 57,19, p-value = 6.31e− 14) and higher error 
rates (ANOVA F(1, 1615) = 7.898, p-value = 0.005), and had lower 
scores for Verbal Digit Span forward (ANOVA F(1, 1762) = 93,77, p =
4.85e− 07) and backward (ANOVA F(1, 1768.22e− 21) = 52.67, p =
5.87e− 13), and Digit-Symbol Test (ANOVA F(1, 1762) = 93.77,p-value 
= 0.001; Fig. 1G–H; Supplementary Fig. 1A–E). In summary, Cluster B 
consists of participants with higher illness severity compared to cluster 
A.

Our clustering algorithm used longitudinal data from these symptom 
scales and neuropsychological tests to group patients based on their 

symptom trajectories and cognitive performance over time. Since the 
clusters were derived by analyzing patterns in these specific measures, 
we expected that the resulting clusters would differ significantly on 
these variables. However, it is noteworthy that the differences across 
these diverse scales and tests converge in the same direction, consis-
tently indicating greater severity in Cluster B. The convergence of these 
independent measures across symptoms and cognition supports the 
conclusion that clustering differentiates patients primarily by severity.

3.2. Comparison of cross-sectional phenotypic variables

Although age and sex were regressed out for clustering, this pro-
cedure does not constrain the resulting clusters to be balanced on these 
variables. We therefore examined age and sex distributions across 
clusters and found no significant differences in age (Fig. 1I; mean age 
Cluster A: 44 years, Cluster B: 45 years; t-test p-value = 0.36) or sex 
(Fig. 1J; Cluster A: 55.3 % male, Cluster B: 40.8 % male; χ2 p-value =
0.46). Importantly, the clusters did not differ significantly in the pro-
portions of diagnoses among SCZ, SCZA, BD, and MDD (Fig. 1K; χ2 p- 
value = 0.18). Additionally, the proportions of male and female subjects 

Table 1 
Variables measured by the PsyCourse Study.

Variable measured at each visit

Visit 1 Visit 2 Visit 3 Visit 4

PANSS sum score* 49.58 
(16.17)

46.34 
(13.95)

46.03 
(14.02)

45.89 
(15.5)

IDS-C30sum score* 13.16 
(10.83)

12.72 
(9.92)

11.96 
(10.37)

12.29 
(10.77)

YMRS sum score* 3.14 
(4.98)

2.28 
(3.89)

2.46 
(4.09)

2.17 
(3.63)

GAF score* 56.87 
(13.11)

61.17 
(13.6)

61.31 
(13.86)

61.26 
(14.56)

Variable measured at a single visit

Sex (visit 1)
F 190 (42.9 %)
M 253 (57.1 %)
Age (mean; SD) 19–79 (45.93; 12.49)
Diagnosis (visit 1)
Bipolar-I Disorder 143 (32.1 %)
Bipolar-II Disorder 35 (7.8 %)
Depression 21 (4.7 %)
Schizoaffective Disorder 43 (9.6 %)
Schizophrenia 204 (45.7 %)
OPCRIT (visit 4)
Not estimable 2
Single episode with good 

remission
17

multiple episodes with good 
remission between episodes

151

multiple episodes with partial 
remission between episodes

152

ongoing chronic disease 96
ongoing chronic disease with 

deterioration
9

− 999 (not measurable) 16
Presence of childhood trauma (visit 3)
No 218
Yes 201
− 999 (not measurable) 24
Current psychiatric treatment (visit 1)
No 9
Yes. outpatient 295
Yes. day patient 22
Yes. inpatient 114
NA 3
First-episode patient (visit 1)
No 410
Yes 16
NA 17
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in the clusters were also similar for each individual diagnosis 
(Supplementary Fig. 1F and Supplementary Table I, X2 adjusted p-value 
= 1 for each comparison). Age was also similar when stratified by sex 
and diagnosis individually, indicating that age and sex are distributed 
similarly in both clusters (Supplementary Fig. 1G).

We next assessed whether somatic comorbidities differed between 
severity clusters using data collected at the first visit of the PsyCourse 
Study. Statistically significant differences were observed for diabetes, 
hypertension, and elevated cholesterol or triglyceride levels, but not for 
infectious diseases (Supplementary Fig. 1F, Supplementary Table II, X2 

adjusted p-value < 0.05). These metabolic conditions are well- 
established comorbidities of SMD and are often linked to obesity and 
metabolic syndrome, both of which are exacerbated by antipsychotic 
treatment. Importantly, while the number of prescribed psychotropic 
medications was included as part of the clustering features, these so-
matic comorbidities emerged as independent markers of severity, 
consistent with previous reports linking cardiometabolic risk to worse 
clinical outcomes in psychiatric populations (Sudarshan and Cheung, 
2023; Pillinger et al., 2017; Suvisaari et al., 2016; McGowan et al., 2021; 
Charles et al., 2016). Overall, cross-sectional variables such as age, sex, 
diagnosis, and treatment exposure were well balanced between clusters, 
supporting the robustness of the severity-based clustering approach.

3.3. Comparison of polygenic profiles

To assess whether genetic factors contribute to the differences be-
tween our clusters, we used several PRS (see methods). We did not find 
significant differences between the clusters regarding PRS for MDD 
(Fig. 2A; t-test adjusted p-value = 0.15), BD (Fig. 2B; t-test adjusted p- 
value = 0.674), or SCZ (Fig. 2C; t-test adjusted p-value = 0.894). Simi-
larly, the sum of the PRS for these three disorders did not differ signif-
icantly between the clusters (Fig. 2D; t-test adjusted p-value = 0.674). 
Furthermore, no significant differences were observed for SCZ treatment 
resistance PRS (Fig. 2E; adjusted p-value = 0.674) or for the P factor PRS 
(Fig. 2F; t-test adjusted p-value = 0.971). These results suggest that the 
observed differences between the clusters are not driven by common 
genetic risk factors captured by current PRS models.

3.4. Independent measures of severity

To further characterize the differences in severity between the 
clusters, we analyzed independent measures not used in the clustering 
process. We found a highly significant difference in the distribution of 
OPCRIT categories (χ2 p-value = 1.22e− 07; Fig. 2G), with Cluster B 
showing a higher proportion of patients experiencing partial remission 
or ongoing chronic illness compared to Cluster A. This is an independent 
confirmation of a more severe illness trajectory in Cluster B.

BMI was also significantly higher in Cluster B compared to Cluster A 
(first visit mean BMI Cluster A: 28.22, first visit mean BMI Cluster_B: 
29.6; ANOVA F(1, 1729) = 27.88, p-value = 1e− 07; Fig. 2H), sup-
porting an association between severity and metabolic dysfunction. 
However, there was no significant difference in the rate of BMI change 
over time between the clusters (t-test estimate = 0.07; p-value = 0.33). 
Additionally, there was a trend toward a higher proportion of partici-
pants with a history of childhood trauma (CHT) in Cluster B (χ2 p-value 
= 0.07; Fig. 2I), suggesting a possible link between early adversity and 
greater illness severity, although this did not reach statistical signifi-
cance. Together, these independent measures, especially the OPCRIT 
category distribution and BMI differences, consistently reinforce that 
Cluster B represents patients with a more severe and persistent illness 
course compared to Cluster A.

3.5. Multi-omics analysis

To identify associated molecular alterations between the clusters we 
carried out 3 distinct molecular profiling approaches during the first 

visit for each patient group (Fig. 3A).

3.6. miRNA expression and methylome comparisons

We compared the miRNA profiles from the first visit of the PsyCourse 
Study of 125 participants (64 low-severity patients and 61 high-severity 
patients). PCA analysis did not reveal any major differences or batch 
effects (Supplemental Fig. 2A). Furthermore, none of the 465 miRNAs 
analyzed were differentially expressed between the two groups 
(adjusted p-values > 0.05 for all; Fig. 3B), suggesting that miRNA 
expression profiles are unlikely to underlie the observed differences 
between the clusters. Similarly, we explored the methylomes of 192 
patients using DNA samples (see Supplemental Fig. 2B). We performed 
differential methylation analyses on the top variable methylation sites 
(see method). No CpG sites were significantly differentially methylated 
between the two clusters (adjusted p-value > 0.05 for all; Fig. 3C). To 
further investigate a possible relationship between DNA methylation 
and severity we explored whether epigenetic age acceleration was 
distinct between the clusters. The imputed epigenetic age correlated 
strongly with the actual chronological age (Supplementary Fig. 2C, 
Pearson’s R2 = 0.83, p-value = 2.07e− 75), but no significant difference 
was found between the clusters in epigenetic age acceleration (Wilcoxon 
test p-value = 0.44; Fig. 3D).

3.7. Proteomic differences in a targeted inflammatory protein panel

We profiled 363 circulating serum proteins using the Olink Explore 
Inflammation panel to investigate molecular differences between 
severity clusters (Supplementary Fig. 3A). Differential expression anal-
ysis was performed using the limma package, adjusting for age as a 
covariate (see methods). This analysis identified 19 differential proteins 
(adjusted p-value ≤ 0.05; Fig. 4A, Supplementary Table III), indicating 
robust associations between protein expression and cluster membership. 
Although statistically significant, the differences in expression levels 
between clusters were modest in magnitude, as illustrated in the box-
plots of the top four differentially expressed proteins (Fig. 4B). This vi-
sual subtlety is expected given that the model accounts for inter- 
individual variation due to age, which reduces apparent differences 
while increasing statistical power.

To ensure that pharmacological treatments did not confound the 
observed differences in protein expression, we assessed the relationship 
between protein levels and treatment exposure at baseline. Specifically, 
we computed Spearman correlations between the NPX values of the 
Olink panel proteins, and the number of psychotropic medications 
prescribed at the first visit (including antipsychotics, antidepressants, 
mood stabilizers, and tranquilizers). After adjusting p-values for multi-
ple comparisons using the Benjamini-Hochberg method, no significant 
correlations were identified (Supplementary Table IV, Supplementary 
Fig. 4), suggesting that treatment burden did not account for the pro-
teomic differences observed between severity clusters.

A literature review revealed that 9 of the 19 differentially expressed 
proteins (47.3 %) have been previously associated with psychiatric 
disorders or related neurological processes such as neuroplasticity, 
compared to 82 of the remaining 344 proteins (23.8 %) (Supplementary 
Table V). This represents a significant enrichment of psychiatric-related 
proteins among the dysregulated set (Fisher’s exact test, p-value =
0.0293).

Gene Ontology (GO) enrichment analysis of differentially expressed 
proteins revealed that the high-severity cluster exhibited significant 
enrichment in immune-related pathways (adjusted p-value ≤ 0.05; 
Fig. 4C and D, Supplementary Table VI). The top enriched processes 
included “adaptive immune response,” “lymphocyte mediated immu-
nity,” “B cell mediated immunity,” and “positive regulation of cytokine 
production,” all of which suggest an overactive immune signaling 
landscape. These pathways were connected in a highly coherent 
network structure, indicating shared upstream regulation and 
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Fig. 2. Boxplot comparing PRS between the two clusters, namely PRS for MD (A, T test adjusted p-value = 0.150), BD (B, T test adjusted p-value = 0.674), SCZ (C, T 
test adjusted p-value = 0.894), all 3 disorders (D, T test adjusted p-value = 0.674, sum of the individual PRS), SCZ treatment resistance (E, T test adjusted p-value =
0.674) and for the P factor (F, T test adjusted p-value = 0.971). Barplot representing the proportion of OPCRIT categories measured at the fourth visit of the 
PsyCourse study in each cluster (G, X2 p-value < 0.001). Spaghetti plot comparing the BMI of the two clusters (H, ANOVA p-value < 0.001), and barplot representing 
the proportion of childhood trauma presence in each cluster (I, X2, p-value = 0.07).
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overlapping molecular effectors. Key hub proteins associated with this 
immune activation included IL2RB, CD40, C1QA, and TNFRSF13, each 
of which has been previously implicated in immune cell signaling and 
neuroimmune interactions. Beyond the immune component, GO terms 
related to neural development and organization were also enriched in 
the high-severity group. These included “axon guidance” and “neuron 
projection guidance,” suggesting that proteins involved in CNS struc-
tural plasticity and connectivity are also dysregulated. The gene prod-
ucts implicated in this module (e.g., NFASC, PTPRM, MATN2) play key 

roles in axon pathfinding and myelination, processes that are critical for 
maintaining functional brain circuits. These findings point toward a dual 
signature of severity: an elevated inflammatory profile involving adap-
tive immunity, and alterations in neurodevelopmental pathways that 
may affect cognitive and emotional regulation. Importantly, these 
changes appear in serum, underscoring the relevance of peripheral 
biomarkers for capturing central pathophysiology. Interestingly, these 
two functional categories were driven by distinct subsets of proteins, 
suggesting that both immune and neurodevelopmental pathways may 

Fig. 3. Flowchart that describes the multiomics analyses that were performed in this study (A) and volcano plot of the analysis comparing the miRNAome (B) and the 
methylome (C) of the two clusters. Boxplot comparing the age acceleration (imputed age – real age) of the two clusters (D).
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Fig. 4. Volcano plot of the proteomicanalysis (A), and expression boxplot of the top 4 dysregulated proteins across the two clusters (B). Barplot of the p-values of the 
12 significant GO terms (C) Network graph of the GO process enriched in the dysregulated proteins (D) in the high severity clusters. The color and size of the nodes 
correspond respectively to the p-value and the number of genes associated to the GO terms. The size of the edges represents the number of proteins in common 
between the GO terms. Heatmap representing the expression levels of the dysregulated proteins in brain and immune cell-types according to the Human Protein Atlas 
(E). Correlation heatmap of the partial correlation of spearman between the protein’s expression and the neuropsychological assessment variables (* p < 0.05, ** p <
0.005). Boxplot representing the expression of the PLAUR gene according to the different OPCRIT categories (G.
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independently contribute to the biological differences between severity 
clusters.

To better understand the tissue origin of these differentially 
expressed proteins, we examined their expression patterns using the 
HumanProtein Atlas database (Thul and Lindskog, 2018) (Fig. 4E). This 
analysis confirmed the neuro-immune dichotomy: many of the proteins 
upregulated in high-severity patients were either of hematopoietic 
origin, with high expression in lymphoid tissues such as the spleen, 
tonsils, and bone marrow, or of neuronal origin, with specific expression 
in the cerebellum, cerebral cortex, and hippocampus. For instance, 
proteins such as TNFRSF13, IL2RB, and CD40 were enriched in immune 
tissues, while NFASC, PTPRM, and MATN2 were predominantly 
expressed in neural compartments. This spatial expression pattern sup-
ports a neuroimmune interface model in which disease severity is linked 
to cross-talk between the immune system and the brain. The simulta-
neous enrichment suggests that systemic inflammation may be the cause 
or consequence of neuronal integrity in high-severity psychiatric 
patients.

To extend on this and explore the potential link between protein 
expression and cognitive function, we performed Spearman and partial 
Spearman correlation analyses between the expression levels of all 
expressed proteins and neurocognitive assessment scores from the first 
visit of the PsyCourse study (Supplementary Fig. 3B; Fig. 4F). The partial 
correlations were adjusted for age to identify associations independent 
of this confounder. This analysis identified five proteins (CCL22, CD4, 
ENPP5, NBN, and PLAUR) that showed significant age-independent 
correlations with at least one cognitive variable (adjusted p < 0.05). 
All five proteins were associated with performance on the Trail Making 
Test Part B (TMT-B, nrpsy_tmt_B_rt): ENPP5 was negatively correlated 
(indicating better performance with higher expression), while CCL22, 
CD4, NBN, and PLAUR were positively correlated (indicating worse 
performance with higher expression).

In addition, NBN was negatively correlated with Digit-Symbol Test 
scores (nrpsy_dg_sym), and PLAUR showed a negative correlation with 
Verbal Digit Span forward (nrpsy_dgt_sp_frw) and a positive correlation 
with Trail Making Test Part A time (nrpsy_tmt_A_rt). These findings 
suggest that ENPP5 expression is positively associated with cognitive 
performance, whereas higher expression of CCL22, CD4, NBN, and 
PLAUR is associated with poorer performance across several cognitive 
domains. PLAUR showed the strongest and most consistent correlations 
and has previously been linked to cognitive outcomes in independent 
studies, supporting its relevance as a candidate marker of cognitive 
dysfunction. Interestingly, PLAUR expression levels varied significantly 
across clinical disease course categories as defined by OPCRIT (ANOVA 
F(4,165) = 4.067, p = 0.004), with expression progressively increasing 
from single-episode remission to ongoing chronic disease with deterio-
ration (Fig. 4F). This pattern suggests that higher PLAUR expression is 
associated with more severe and persistent forms of psychiatric illness.

4. Discussion

Our study leverages comprehensive longitudinal phenotyping over 
four visits to demonstrate that disease severity in SMD can be charac-
terized independently of traditional diagnostic categories. By employing 
a transdiagnostic clustering approach, we identified transdiagnostic 
patient groups that differ primarily in illness severity. This approach 
allowed us to study the symptoms across disorders without relying on 
traditional categorical diagnoses. While there were no significant dif-
ferences in diagnosis, age and sex overall, we did observe a significant 
difference in the proportion of female patients with SCZA disorder be-
tween the clusters. This specific variance may be due to unique clinical 
features within this subgroup, but overall, the similar diagnostic pro-
portions highlight that the clusters represent groups differentiated by 
severity across diagnostic categories.

This finding underscores the significant overlap in symptoms across 
disorders such as SCZ, SCZA, BD, and MDD, highlighting the limitations 

of categorical diagnoses in capturing the complexity of psychiatric 
conditions. The overlapping symptoms between different psychiatric 
disorders have been well-documented and suggest that common un-
derlying mechanisms may contribute to disease manifestation (Kaymaz, 
et al., 2004; Cardno and Owen, 2014). Cognitive dysfunction, functional 
impairment, and mood disturbances are a hallmark multiple diagnoses. 
Our results demonstrate that these shared symptoms coalesce to define 
severity levels that transcend diagnostic boundaries. This supports 
dimensional models of psychopathology, such as RDoC and HiTOP, 
which advocate for assessing mental disorders along continuous di-
mensions rather than discrete categories (Kotov et al., 2017; Cuthbert 
and Insel, 2013).

Importantly, we found that independent measures not used in the 
clustering process, especially the OPCRIT item and BMI also differed 
between the clusters, further confirming the robustness of our severity 
classification. The high-severity cluster had a higher proportion of pa-
tients experiencing partial remission or ongoing psychiatric chronic 
illness according to the OPCRIT item, indicating a more severe overall 
illness trajectory. Additionally, patients in the high-severity cluster 
exhibited higher BMI, which has been associated with increased psy-
chiatric symptom severity, poorer cognitive performance and poorer 
clinical outcomes in patients with affective disorders (Maksyutynska 
et al., 2024; Kadriu et al., 2024). Weight gain is also a common side 
effect of antipsychotic treatment and is associated with poorer medi-
cation adherence in patients with SCZ, which increases the risk for 
recurrent illness episodes and poorer outcome long term (De et al., 
2024). Although the difference in CHT was not statistically significant, 
there was a trend toward a higher proportion in the high-severity clus-
ter, aligning with literature that associates CHT with more severe psy-
chiatric outcomes (Álvarez et al., 2011; Bailey et al., 2018). These 
independent measures, which were not part of the clustering variables, 
reinforce our finding that the clusters are differentiated primarily by 
severity.

The genetic analysis revealed no significant differences in PRS for 
SCZ, BP, or MDD between the high-severity and low-severity clusters. 
This suggests that genetic variants identified in GWAS may be more 
closely associated with disease susceptibility rather than the severity of 
illness. In psychiatry, the largest GWAS focus on the risk of developing a 
disorder by comparing cases to controls, which may not capture genetic 
factors influencing the course or severity of the disease once it manifests. 
It is also possible that rare variants, structural variations, or gene-
–environment interactions play a more significant role in determining 
illness severity.

Our proteomic analysis revealed that disease severity is associated 
with robust but modest proteomic changes spanning immune activation 
and neural development processes. Specifically, we identified two 
distinct GO modules, one related to the immune activation and another 
linked to axon guidance, a process essential for brain plasticity and 
synaptic connectivity and previously associated with psychiatric disease 
risk (Bame et al., 2020; Wang et al., 2018). This dual enrichment sug-
gests that dysregulation of immunity and disrupted neurodevelopmental 
signaling may contribute to increased illness severity and altered brain 
function in SMD. Moreover, several proteins within the immune-related 
GO terms have been previously implicated in psychiatric pathogenesis, 
including IL2RB, CD40, C1QA, and members of the TNF superfamily 
(Huang et al., 2022; Sager et al., 2025; Stankovic et al., 2024; Fillman 
et al., 2014; Cao et al., 2024). In parallel, neurodevelopmental proteins 
such as NFASC and PTPRM, enriched in the axon guidance GO term, are 
both associated with the genetic risk of SCZ and BD (Fromer et al., 2014; 
Ayalew et al., 2012; Li et al., 2025), reinforcing the neurobiological 
relevance of this signature.

Given that cognitive dysfunction is a critical aspect of disease 
severity, we investigated whether the expression levels in our panel 
were associated with cognitive performances. Using partial Spearman 
correlations adjusted for age, we identified five proteins (CCL22, CD4, 
ENPP5, NBN, and PLAUR) that showed significant associations with at 
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least one cognitive variable (adjusted p < 0.05). It is noteworthy that 
some of these proteins have been previously associated with psychosis or 
nervous system development. For example, among these, ENPP5 was 
positively associated with cognitive performance, particularly on the 
Trail Making Test Part B (TMT-B), suggesting a potential protective role, 
in line with prior Mendelian randomization studies linking ENPP5 
expression to intelligence (Zhao et al., 2024). Conversely, higher 
expression of CCL22, CD4, NBN, and PLAUR was associated with poorer 
performance across several cognitive domains, including attention, ex-
ecutive function, and working memory (Bissonette et al., 2015; Serre- 
Miranda et al., 2015). Among these, PLAUR emerged as the most 
consistently associated protein, showing multiple significant correla-
tions with cognitive performance even after adjusting for age. PLAUR is 
expressed in microglia within the CNS and plays a role in synaptic 
remodeling and GABA-A receptor regulation (Eagleson et al., 2010). 
Moreover, the soluble form of PLAUR has been implicated in several 
neurological disorders, potentially serving as a marker of neuro-
inflammation and blood–brain barrier dysfunction (Garcia-Monco et al., 
2002; Winkler et al., 2002). Importantly, PLAUR expression also tracked 
closely with clinical disease trajectory. When stratified by OPCRIT dis-
ease course categories, PLAUR levels showed a significant increase from 
individuals with single-episode remission to those with chronic and 
deteriorating disease. This progressive pattern links PLAUR not only to 
cognitive deficits but also to long-term illness severity, making it a 
promising transdiagnostic biomarker candidate. Collectively, these 
findings suggest that disease severity in SMD is not solely driven by 
brain-specific pathology but is instead shaped by the interplay between 
immune dysregulation and CNS connectivity. This neuroimmune inter-
face may represent a tractable target for novel therapeutic interventions 
and severity biomarkers in psychiatry.

In contrast to the proteomic findings, our analysis revealed no sig-
nificant differences in miRNA expression or DNA methylation profiles 
between the high-severity and low-severity clusters. miRNA expression 
and DNA methylation are regulatory mechanisms that may require 
longer timescales to manifest significant changes. These epigenetic 
modifications are often more stable and may not fluctuate significantly 
over the short-term course captured in our study (Comes et al., 2020). 
An important consideration is that our analysis of miRNA and DNA 
methylation were conducted using blood which may not capture alter-
ations occurring in the brain. The brain and blood can have distinct 
epigenetic landscapes, and peripheral markers may not fully represent 
central nervous system processes.

4.1. Limitations

Despite the strengths of our comprehensive multi-omics approach 
and longitudinal design, our study has several limitations. First, the use 
of peripheral blood samples for miRNA and DNA methylation analyses 
may not accurately reflect brain-specific epigenetic changes associated 
with psychiatric disorders or be a consequence of lack of statistical 
power due to the sample size. Second, due to a reasonable but limited 
sample size in a homogenous population it is relevant to replicate our 
findings in larger and heterogenous populations in future studies. Third, 
our study is based on the PsyCourse Study with a predominantly Euro-
pean ancestry. A future study that repeats our workflow should use 
cohort with a more diverse larger genetic ancestry. Fourth, our sample 
size may have been too limited in both of those analysis considering the 
substantial statistical power required to detect small effect sizes due to 
the high dimensionality of the data and the need for stringent multiple 
testing correction. Larger studies will be necessary to confirm that dis-
ease severity is not associated with changes in miRNA expression or 
DNA methylation. Fifth, although treatment-related variables were 
partially considered during clustering (e.g., number of prescribed 
treatments) and a PRS for treatment resistance was included in the 
analysis, specific treatment types, dosages, and durations were not sys-
tematically adjusted for the multi-omics comparisons. However, we 

conducted correlation analyses between the number of prescribed psy-
chotropic medications at baseline and protein expression levels and 
found no significant associations after multiple testing correction. This 
suggests that treatment burden at the time of sampling is unlikely to 
explain the observed proteomic differences between severity clusters. 
Nevertheless, residual confounding due to unmeasured treatment vari-
ables, such as medication class effects, cumulative exposure, or treat-
ment response, cannot be fully excluded. Future analyses incorporating 
detailed longitudinal treatment histories will be necessary to further 
address this limitation.

Sixth, a further limitation is the imbalance in diagnostic represen-
tation within the study cohort, with SCZ being the most frequent diag-
nosis. While our clustering approach did not incorporate diagnostic 
labels and clusters did not differ in diagnostic composition, we 
acknowledge that the sample composition may still introduce subtle 
biases in transdiagnostic interpretations and generalizability.

Seventh, given the exploratory multiomics design, we opted to pro-
file several molecular layers in parallel (genotypes, DNA methylation, 
miRNAome, and proteome), which necessarily limited the number of 
participants per assay. Future studies building on these findings may 
consider focusing on a single modality, such as proteomics, which 
showed the most robust associations in our study, to enable larger 
sample sizes and greater statistical power for detecting biologically 
meaningful effects.

4.2. Clinical relevance

Our findings have direct implications for how SMD might be better 
stratified and treated in clinical practice. By identifying transdiagnostic 
clusters based on symptom trajectories and cognitive perform-
ance—rather than diagnostic labels—we highlight the potential of 
severity-based classification for guiding personalized treatment ap-
proaches, in line with dimensional models of psychiatry such as RDoC 
and HiTOP frameworks (Kotov et al., 2017; Cuthbert and Insel, 2013).

The high-severity cluster exhibited a distinct pro-inflammatory 
proteomic profile, consistent with evidence linking systemic inflamma-
tion to worse psychiatric outcomes. Elevated inflammatory markers 
have been associated with treatment resistance, greater symptom 
severity, and cognitive impairment in patients with SCZ, BD, and MDD 
(Osimo et al., 2020; Goldsmith et al., 2016; Müller, 2018).

These findings support a growing body of research indicating that 
anti-inflammatory or immune-modulating treatments may offer clinical 
benefits, particularly as adjunctive therapies in patients with elevated 
inflammation. Meta-analyses and clinical trials have shown that 
nonsteroidal anti-inflammatory drugs (e.g., celecoxib) and cytokine in-
hibitors may reduce depressive and psychotic symptoms in selected 
subgroups (Köhler et al., 2014; Fond et al., 2014; Nettis and Pariante, 
2020). In this context, evaluating inflammatory markers in routine 
psychiatric care could help stratify patients based on underlying bio-
logical risk and guide treatment intensity or augmentation strategies. 
Such approaches are increasingly being advocated as part of precision 
psychiatry models (Fernandes et al., 2017).

In conclusion, our study emphasizes the importance of comprehen-
sive, longitudinal phenotyping in capturing the complexity of SMD 
beyond categorical diagnoses. Our multi-omics analysis further reveals 
that increased disease severity is associated with a pro-inflammatory 
proteomic profile independently of the clinical diagnoses, and poten-
tially contributing to cognitive dysfunction and the severity of the psy-
chiatric symptoms. Thus, our study highlights the potential of the 
immune proteome as candidate biomarkers of psychosis severity.

Our work underscores the importance of considering illness severity 
as a key dimension in psychiatric research and clinical practice. 
Tailoring interventions based on severity rather than diagnosis alone 
may improve patient outcomes, and targeting inflammatory pathways 
could offer new therapeutic avenues for patients with SMD.
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Köhler, O., Benros, M.E., Nordentoft, M., Farkouh, M.E., Iyengar, R.L., Mors, O., et al., 
2014. Effect of anti-inflammatory treatment on depression, depressive symptoms, 
and adverse effects: a systematic review and meta-analysis of randomized clinical 
trials. JAMA Psychiat. 71 (12), 1381–1391.

Kotov, R., Krueger, R.F., Watson, D., Achenbach, T.M., Althoff, R.R., Bagby, R.M., et al., 
2017. The Hierarchical Taxonomy of Psychopathology (HiTOP): a dimensional 
alternative to traditional nosologies. J. Abnorm. Psychol. 126 (4), 454–477.

Li, Y., Gui, Q., Ren, S., Liu, Z., Zhang, A., Liu, P., et al., 2025. Mendelian randomization 
analysis of the possible causal relationships between neurodevelopment-related 
proteins and bipolar disorder. Brain Behav. 15 (3), e70442.

Maksyutynska, K., Stogios, N., Prasad, F., Gill, J., Hamza, Z., De, R., et al., 2024. 
Neurocognitive correlates of metabolic dysregulation in individuals with mood 
disorders: a systematic review and meta-analysis. Psychol. Med. 54 (7), 1245–1271.

McGowan, N.M., Nichols, M., Bilderbeck, A.C., Goodwin, G.M., Saunders, K.E.A., 2021. 
Blood pressure in bipolar disorder: evidence of elevated pulse pressure and 
associations between mean pressure and mood instability. Int. J. Bipolar Disord. 9 
(1), 5.

McGuffin, P., 1991. A polydiagnostic application of operational criteria in studies of 
psychotic illness: development and reliability of the OPCRIT system. Arch. Gen. 
Psychiatry 48 (8), 764.

Müller, N., 2018. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic 
Considerations. Schizophr. Bull. 44 (5), 973–982.

Murray, R.M., Sham, P., Van Os, J., Zanelli, J., Cannon, M., McDonald, C., 2004. 
A developmental model for similarities and dissimilarities between schizophrenia 
and bipolar disorder. Schizophr. Res. 71 (2–3), 405–416.

Nettis, M.A., Pariante, C.M., 2020. Is there neuroinflammation in depression? 
Understanding the link between the brain and the peripheral immune system in 
depression. Int. Rev. Neurobiol. 152, 23–40.

Osimo, E.F., Cardinal, R.N., Jones, P.B., Khandaker, G.M., 2018. Prevalence and 
correlates of low-grade systemic inflammation in adult psychiatric inpatients: an 
electronic health record-based study. Psychoneuroendocrinology 91, 226–234.

Osimo, E.F., Pillinger, T., Rodriguez, I.M., Khandaker, G.M., Pariante, C.M., Howes, O.D., 
2020. Inflammatory markers in depression: a meta-analysis of mean differences and 
variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 87, 901–909.
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