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Abstract. We survey one branch of algebraic logic, namely modal semi-
rings. They provide compact algebraic definitions of actions, with choice
+ and sequential composition · , together with modal operators box and
diamond, parametrised by actions, that allow reasoning about successors
and predecessors of states/worlds. Particular instances are homogeneous
binary relations or sets of finite and infinite non-empty traces under fus-
ing concatenation. As main examples of applications we present obstacle
analysis for geographic wayfinders, Hoare Logic, O’Hearn’s Incorrectness
Logic, General Correctness Logic, as well as the temporal logic CTL∗ and
its sublogics CTL and LTL. We also give glimpses at Epistemic Logics of
belief and knowledge, pointer structures plus Separation Logic and pref-
erence database queries. Finally, we briefly discuss some related algebraic
approaches.

1 Introduction

The aim of algebraic logic is to compact series of small steps of general logical
inference into larger (in)equational steps. Another goal is to replace tedious
model-theoretic argumentation, in particular, element-wise argumentation, by
more abstract and compact reasoning.

We exemplify this using the algebraic structure of modal semirings. The
theme is to algebraically generalise many pertinent computer science concepts
within that one single framework. The approach is also suitable for off-the-shelf
general theorem provers such as Prover9/Mace4 [25], Isabelle (e.g., [35]), etc.

Modal semirings provide compact algebraic definitions of actions, with choice
+ and sequential composition · , together with modal operators box and dia-
mond, parametrised by actions, that allow reasoning about successors and pre-
decessors of states/worlds. Particular instances are homogeneous binary relations
or sets of finite and infinite non-empty traces under fusing concatenation.

The paper is intended as a survey; hence there are not many new results.
The underlying theory and some essential references are found in the report [28];
the monograph [29] presents plenty of further material. Selected parts of that
book have been checked/developed using the system Prover9/Mace4. This is
an automated theorem prover coupled with a counterexample finder. It fully
supports first-order predicate logic, in particular, propositional and equational
logic.
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2 Modal Operators

As a preparation for the abstract algebraic treatment, we introduce the modal
operators in the concrete setting of binary relations.

2.1 Definitions

Assume a set Σ of states or possible worlds, more abstractly called points. We
use the modal forward and backward diamond operators (e.g. [39]) that compute
the inverse image ||R〉〉Q and the image 〈〈R||P of sets Q, P ⊆ Σ under some binary
relation R ⊆ Σ × Σ:

||R〉〉Q =df {x | ∃ y ∈ Q : x R y} , 〈〈R||P =df {y | ∃ x ∈ P : x R y} . (1)

Hence they are existential quantifiers about successor and predecessor points.
Let us explain the notation. In many modal logics one considers only one

direction of transitions and then uses a notation like 〈〈R〉〉 for the diamond of R.
However, we are interested in both directions and hence use the above asymmet-
ric notations. Beware: the notations ||R〉〉 and 〈〈R|| should not be confused with
the analogous ones used in quantum theory.

Using the De Morgan duality (∀ z : P (z)) ⇔ ¬(∃ z : ¬P (z)) between exis-
tential and universal quantifiers, one defines corresponding box operators as

||R]]Q =df ||R〉〉Q , [[R ||P =df 〈〈R|| P ,

where X is the complement of X. Therefore

||R]]Q =df {x | ∀ y : x R y ⇒ y ∈ Q} , [[R ||P =df {y | ∀ x : x R y ⇒ x ∈ P} .

Diamond and box can also mirror the deontic concepts of “may” and “must”.

2.2 Application I: Space-Time Diagrams and Obstacle Analysis

As our first—and somewhat unorthodox—example of the use of modal operators
we present an application from geo-informatics. This section is based on [27].

A wayfinder is an entity that moves through a space-time continuum with
possible obstacles. Therefore one important task is to determine regions of space-
time which the wayfinder may safely traverse without running the risk of getting
stuck in front of an obstacle (obstacles are considered impenetrable). Besides
obstacles, which must be avoided, one is also interested in space-time regions
that must be reached; these are called compulsions.

In describing such phenomena we take up an approach by Hendricks
et al. [15]. Central concepts there are modalities such as “may” and “must” when
describing movement in space-time. Examples are

– “We may use a bus or a train.”
– “We must reach the plane before it leaves.”
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– “We must not pass through road X because of construction work.”

While the treatment in the original paper [15] is only semi-formal, we show
how to model these notions relationally with box and diamond operators. One
advantage of this treatment is that for a large part our results are independent
of the number of spatial (or even temporal) dimensions and of metric consider-
ations.

Points and Reachability. For the formalisation we assume, for simplicity, a
set S of spatial coordinates taken from a vector space with a norm ‖ ‖, such as
R, R2 or R

3. Second, we assume a linearly ordered set T of temporal coordinates,
for simplicity an interval of R. With this, now a point is a pair (s, t) ∈ S × T ,
and a region is a set of points.

We want to describe the possible movements of a wayfinder. Without any
restrictions one could not predict where the wayfinder might be at a given time.
Therefore one uses, for each period of time considered, an upper bound on the
velocity and analyses how far away the wayfinder can get from its starting posi-
tion staying below this speed bound during the whole period.

For a non-negative bound v the reachability relation Rv between points is

(s, t)Rv (s′, t′) ⇔df t ≤ t′ ∧ ‖s′ − s‖ ≤ v · (t′ − t) .

This means that (s′, t′) can be reached from starting point (s, t) by travelling for
time t′ − t with maximal velocity v. Having v as a parameter allows modelling
switches between varying velocities, e.g., shifting to a lower gear in a steeper
region. Using the triangle inequality for the norm, it is straightforward to show
that Rv is a partial order.

Reachability and Modalities. Now we want to characterise regions of spatio-
temporal reachability. The diagrams to follow are similar to the light cones
introduced by Minkowski within the Theory of Relativity [24]. In this section we

Fig. 1. Characteristic space-time diagrams
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restrict ourselves to the case of two spatial dimensions to allow simple depictions.
The illustrations in this section are taken from [15]; time progresses upwards.
The cone in (a) models the case where the wayfinder starts at the space-time
point at the tip of the cone. Since we study the points reachable under a certain
maximal speed v, the further time progresses the farther the wayfinder can move
away (in every spatial direction) from the spatial coordinate of its starting point.
In (b) we find the situation where both a departure point and a destination point
are given. The downward open cone at the top models the region from which
the destination can be reached under maximal speed v; it is also known as a past
cone. Dually, a cone such as the one in (a) is called a future cone. For a fixed
speed limit and given start and end points, the possible region of travel for the
wayfinder is the intersection of the (infinitely extended) future and past cones; it
is called a prism [13,15]. Finally, in (c) there is a sequence of space-time points
that the wayfinder has to meet; they are connected by prisms. Such a structure
is called a necklace.

We now describe some of these constructions in terms of modal operators. To
simplify notation we identify singleton sets with their only element. With this,
the future and past cones for a starting point x, a target point y and maximal
velocity v are given by 〈〈Rv||x and ||Rv〉〉y, resp. Therefore, the modal notation
can serve as a “calculus of diagrams”. As in (1) the notation can also be used for
regions P, Q by forming 〈〈Rv||P and ||Rv〉〉Q:

The prism between x, y (cf. Part (b) in Fig. 1) is simply the interval
[x, y]v =df 〈〈Rv||x ∩ ||Rv〉〉y between x, y w.r.t. the partial order Rv, i.e.,

[x, y]v = {r | x Rv r ∧ r Rv y} .

Note that by reflexivity of Rv we have x, y ∈ [x, y]v (and hence [x, y]v �= ∅)
whenever x Rv y. For regions P, Q we set [P, Q]v =df 〈〈Rv||P ∩ ||Rv〉〉Q:
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Compulsions and Barriers. Diamonds and boxes express possible and guar-
anteed reachability under some speed bound v, resp.:

− x ∈ ||Rv〉〉Q iff under v it is possible to reach from x some point in Q;
− y ∈ 〈〈Rv||P iff under v it is possible to reach y from some point in P ;
− x ∈ ||Rv]]Q iff under v all points reachable from x lie in Q;
− y ∈ [[Rv ||P iff under v all points from which y is reachable lie in P.

⎫
⎪⎪⎬

⎪⎪⎭

(2)

With this we can model compulsions or barriers, i.e., regions that must be
reached or avoided. In Fig. 2, again taken from [15], we restrict ourselves to
one spatial dimension. Region M1 consists of a single space-time point. M2 is a
spatially extended region which exists only for one single instant of time. M3–M5

are singleton regions in space which each exist for a certain interval of time. M6 is
a spatially extended region which exists only for an interval of time. Finally, M7

and M8 are regions that, during a time interval, move from one place in space to
another. While M7 at each time during the interval occupies a singleton region
in space, the spatial extent of M8 shrinks during its time interval.

Fig. 2. Sample regions

By (2), the region from which the wayfinder can avoid a barrier B in the
future direction is ||Rv]]B. An analogous expression models this for the past
direction. The region from which the wayfinder is guaranteed to reach compulsion
C is ||Rv]]C.

Frequently, one will want barriers or compulsions to be “connected”. For this
one can use the notion of convexity: a region P is Rv-convex if for any two
subsets Q, Q′ ⊆ P also all intermediate points belong to P , i.e., [Q, Q′]v ⊆ P .
For transitive relation R and region B the sets ||R〉〉B and 〈〈R||B are convex: with
Q, Q′ ⊆ ||R〉〉B we obtain, by set theory, Q′ ⊆ ||R〉〉B plus isotony of diamond and
transitivity of R,

[Q, Q′] = 〈〈R||Q ∩ ||R〉〉Q′ ⊆ ||R〉〉Q′ ⊆ ||R〉〉||R〉〉B ⊆ ||R〉〉B .
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The reasoning for 〈〈R||B is symmetric. Next, by definition and set theory, convex
sets are closed under intersection, and hence, in particular, intervals are convex.

Further Topics. The paper [27] continues this treatment by proving a number
of properties of obstacles with a bounded avoidance region. The latter has a
more elaborate definition than ||Rv]]B above. Therefore determining the avoid-
ance region for a union of regions is non-trivial; it turns out that in case of a
partial overlap this may be larger than just the union of the avoidance regions.
Finally, that paper presents an abstract algebraic notion of coordinates, with
which further boundedness assertions become possible.

3 Algebraic Abstraction

The relational treatment in the previous section already allows abstracting from
the particular space/time structure in which the movements occur: all that mat-
ters is the reachability relation, which simply can be treated as a parameter of the
whole approach. The only general requirement is that reachability be transitive.

However, we abstract even further by generalising the setting of concrete
relations to the algebraic structure of modal semirings. This is a well established
theory (see [7] for an overview) with many concrete instantiations, in particular
relations. Using it makes our theory apply to a much larger class of models.
Additionally it becomes amenable to (semi-)automatic proofs more easily (see
[18] for a pioneering paper on this and [11] for a more recent survey).

3.1 IL-Semirings

An idempotent left semiring (briefly IL-semiring) is a structure (S,+, ·, 0, 1) with
the following properties.

1. The reduct (S,+, 0) is a commutative monoid with idempotent +, while
(S, ·, 1) is a monoid.

2. The operator · right-distributes over +, i.e., (a + b) · c = a · c + b · c, and is
left-strict, i.e., 0 · a = 0, for all a, b, c ∈ S.

3. With the natural order a ≤ b ⇔df a + b = b, abstracting inclusion/implica-
tion, · is right-isotone, i.e., b ≤ c ⇒ a · b ≤ a · c.

An IL-semiring is left-distributive when it also satisfies a·(b+c) = a·b+a·c. An
I-semiring is a left-distributive IL-semiring with right-strict · , i.e., with a ·0 = 0.
An IL-Semiring is Boolean if its natural order induces a Boolean algebra.

Semiring elements abstractly represent actions, with a+b and a·b representing
choice between and sequential composition of actions a, b. The units 0 and 1
represent the empty and idle actions.

Further, the natural order ≤ abstractly represents inclusion and + is the
supremum operator of an upper semilattice with least element 0. This implies
a, b ≤ a + b.

We present some classical examples.
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Example 3.1. Assume a set Σ of points and let Σ∗ and Σω be the set of all
finite and infinite sequences of points, resp.

1. The structure REL(Σ) =df (P(Σ×Σ), ∪, ;, ∅, ΔΣ), where ; is relation compo-
sition and ΔΣ is the identity relation on Σ, is called the relational semiring.

2. The structure LAN(Σ) =df (P(Σ∗), ∪, ., ∅, {ε}), where . is concatenation and
ε is the empty sequence, is called the language semiring and is familiar from
the algebra of regular languages.

3. The structure PAT(Σ) =df (P(Σ+ ∪Σω), ∪, ·, ∅, Σ), where Σ+ =df Σ∗ −{ε}
and · is fusing concatenation, is called the path semiring. It is instrumental
for the semantics of temporal logics.

Of these, the first two are I-semirings, while the third is only an IL-semiring.
All three are Boolean.

3.2 Tests

A test [8,21,22] in an IL-semiring S is a p ∈ S with a complement ¬p relative
to 1, namely p + ¬p = 1 and p · ¬p = 0 = ¬p · p. Note that the symbol p is not
a propositional variable; rather it stands for a predicate characterising a set of
points. The complement ¬p is unique when it exists. The set test(S) of all tests
in S has least and greatest elements 0 and 1, with ¬0 = 1 and ¬1 = 0. They
represent the everywhere false and the everywhere true predicate, resp. On tests
the natural order abstractly represents implication.

Under suitable extra conditions test(S) forms a Boolean algebra, and p · q
and p + q represent conjunction and disjunction of tests p, q.

Example 3.2. In the relational semiring (cf. Ex. 3.1.1) the tests are the sub-
relations of the identity relation, which are in one-to-one correspondence with
sets of points. In the path semiring (cf. Ex. 3.1.3) the element 1 is the set of all
single-point traces; hence tests are sets of points.

For test p and action a we obtain input and output restrictions of a to p as

p · a and a · p . (3)

Our approach differs from KAT (Kleene algebra with tests [21]) in that the
algebra of tests cannot be freely chosen but always consists of the maximal
complemented set of subidentities.

3.3 Modal Operators

For transition system a and test q, the forward diamond ||a〉〉q is a test charac-
terising the points with at least one immediate a-successor in q. It abstractly
represents the inverse image of q under a as defined in (1) of Sect. 2.1. Forward
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box is the De Morgan dual of forward diamond, while the test �a represents the
domain, i.e., the set of starting points of a. We axiomatise this by

||a〉〉q ≤ p ⇔ a · q ≤ p · a (Prediamond) , ||a · b〉〉q = ||a〉〉(||b〉〉q) (Composition) ,
||a]]q =df ¬||a〉〉¬q , �a =df ||a〉〉1 .

A purely equational axiomatisation is possible, too. The box ||a]]q corresponds to
Dijkstra’s weakest liberal precondition wlp.a.q. Domain and diamond are inter-
definable: we have ||a〉〉q = �(a·q). As noted in (3), a·q restricts a to the transitions
that end in a q-point; the inverse image of q consists of the starting points of
that.

Backward diamond, backward box and codomain can be defined almost sym-
metrically; some extra axioms compensate the lack of left-distributivity and
right-strictness of · . The backward diamond 〈〈a||p yields the image of p under a.

We call an IL-semiring with forward and backward diamond and box pre-
modal when these operators satisfy (the backward analogues of) (Prediamond)
and modal when also (the backward analogues of) (Composition) hold.

The modal operators in a left-distributive IL-semiring are unique if they exist.
They satisfy many useful laws. First, there are the Galois connections

〈〈a||p ≤ q ⇔ p ≤ ||a]]q , ||a〉〉p ≤ q ⇔ p ≤ [[a ||q . (4)

As further samples we mention

||a〉〉(p + q) = ||a〉〉p + ||a〉〉q , ||a]](p · q) = ||a]]p · ||a]]q ,
||a + b〉〉p = ||a〉〉p + ||b〉〉p , ||a + b]]p = ||a]]p · ||b]]p ,

||p〉〉q = p · q , ||p]]q = p → q .

⎫
⎬

⎭
(5)

The latter implies ||1]]q = q = ||1〉〉q as well as ||0]]p = 1 and ||0〉〉p = 0. Moreover,
||a]] and ||a〉〉 are isotone. Further, box is antitone and diamond is isotone in its
action argument, i.e., a ≤ b ⇒ ∀ p : ||b]](p) ≤ ||a]](p) ∧ ||a〉〉(p) ≤ ||b〉〉(p). If · is
right-strict then we additionally get

||a]]1 = 1 , ||a〉〉0 = 0 . (6)

What is the difference to PDL? In PDL [14], actions and propositions are
separate entities. Mostly no axioms for actions are given; these are more or
less viewed syntactically. Their semantics is defined “observationally” via modal
operators.

The connection between actions and propositions is achieved by “transfer”
operators (e.g., p?, which turns proposition p into an action that behaves like a
test).

In modal semirings, actions and propositions live in the same sort, hence no
transfer operators are necessary. Actions have direct semantics and enjoy the
algebraic semiring properties. Finally, since the modalities are internalised as
regular operators, they may be freely nested, which is not possible in PDL.
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4 Application II: Logics for Sequential Imperative
Programs

Our next application specifies three types of semantics of imperative programs;
the points here are program states.

4.1 Algebraic Model

Programs are represented by general elements a, b, c . . . of an IL-semiring, with
choice a+b, sequential composition a ·b and finite iteration in form of the Kleene
star a∗. The latter is specified by the classical axioms [20]

1 + a · a∗ ≤ a∗ , 1 + a∗ · a ≤ a∗ , (Star Unfold)
b + a · c ≤ c ⇒ a∗ · b ≤ c , b + c · a ≤ c ⇒ b · a∗ ≤ c . (Star Induction)

We call a (pre)modal IL-semiring with star a (pre)modal Kleene algebra. Pleas-
antly, the star axioms induce corresponding laws for the modal operators without
the need for stipulating additional axioms: in a premodal Kleene algebra,

p + 〈〈a||q ≤ q ⇒ 〈〈a∗||p ≤ q ; (Diamond Star Induction)

if the Kleene algebra is even modal, then also

p + 〈〈a||〈〈a∗||p ≤ 〈〈a∗||p . (Diamond Star Unfold)

Dual laws hold for the forward diamond and for the backward and forward
boxes.

For a more intuitive notation, we define

abort =df false =df 0 , skip =df true =df 1 .

Moreover, as in [21], we introduce if and while operators:

if p then a else b fi =df p · a + ¬p · b , while p do a od =df (p · a)∗ · ¬p . (7)

The latter is the least solution w of the standard recursion equation

w = if p then a · w else skip = p · a · w + ¬p · skip .

We now illustrate how the algebraic semantics for the while loop copes with
the phenomenon of non-termination. In the case where · is right-strict,

while true do a od = (1 · a)∗ · ¬1 = 0 = abort .

This reflects the expected observable behaviour well, in the following sense: by
observing a running program one cannot distinguish a non-terminating loop from
a blocked program or from a program that terminates without visible output.
Further, the star axioms entail a ≤ 1 ⇒ a∗ = 1. Hence

while p do skip od = (p · 1)∗ · ¬p = p∗ · ¬p = 1 · ¬p = ¬p .

That, too, meets intuition very well: a loop whose body does not modify any
variables will terminate only if it is never entered. Similarly, since p · abort ≤
abort ≤ 1, even without right strictness of · ,

while p do abort od = ¬p .
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4.2 Hoare Logic

We now deal with Hoare logic for such programs, largely following [30,32]. Using
modal operators and the Galois connections (4) we can give two algebraic ver-
sions of Hoare triples:

{p} a {q} ⇔df p ≤ ||a]]q ⇔ 〈〈a||p ≤ q . (8)

Both express that all points a-reachable from p are guaranteed to satisfy q (cf.
also (2)). The proof rules for these triples are shown in Fig. 3.

Fig. 3. Proof Rules for the Hoare Calculus

The conclusion of the (Atom) rule may look a bit strange at first sight, since
by (8) it is a mere tautology. To relate it to standard rules, we transform the
triple in its conclusion as follows: by (8), logic twice and (8) again,

{p} a {〈〈a||p} ⇔ 〈〈a||p ≤ 〈〈a||p ⇔ TRUE ⇔ ||a]]p ≤ ||a]]p ⇔ {||a]]p} a {p} . (9)

In the case of a language with assignments, the standard rule {p[e/x]} x := e {p}
has precisely this latter form. In Fig. 3 we have used the form with the diamond
operator for technical convenience.

As a final remark, to achieve relative completeness (see Th. 4.1) it is crucial
that the underlying assertion language be sufficiently expressive. This means
that, for all programs α and preconditions ϕ considered, there is an assertion ψ
that expresses the strongest liberal postcondition for ϕ under α, i.e., there are
tests p, q representing ϕ, ψ and a program element a representing α such that
q = 〈〈a||p.

Theorem 4.1 (Soundness and Completeness of the Hoare Calculus).
Assume a left-distributive premodal Kleene algebra.
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1. Using (Diamond Star Induction) one shows that the proof rules for the Hoare
calculus are sound.

2. If the algebra is even modal then using (Diamond Star Unfold) one shows
that they also satisfy relative completeness, i.e., every valid triple is provable.

As for most logical calculi, the proof of soundness is straightforward.
For relative completeness we denote by � {p} a {q} that {p} a {q} is deriv-

able using the rules of Fig. 3. First, one shows by induction on the structure of
statement a that

� {p} a {〈〈a||p} . (10)

(Semantically, by (8), as for atomic programs, this triple is just a tautology.)
The induction base is provided by the rules (Divergence), (Skip) and (Atom),
the induction step by (Choice), (Sequencing) and (Iteration). This technique is
presented in a concrete setting, e.g., in [1].

Now assume that {p} a {q} holds. Then 〈〈a||p ≤ q by (8). Using (10) we
obtain � {p} a {〈〈a||p}. Now the conclusion � {p} a {q} follows by the rule
(Consequence).

The recently introduced TopKats [42] (the concept of which was known long
before, cf. the Galois Connection �a ≤ q ⇔ a ≤ q · � in (56) of [8]) allow
mimicking modal operators that satisfy only (Prediamond) and hence cannot
establish relative completeness.

As an example of the use of the calculus we derive the standard while rule

{q} p · a {q}
{q} while p do a od {q · ¬p}

Recall Definition (7), i.e., while p do a od =df (p · a)∗ · ¬p. From the premise of
the while rule we infer {q} (p ·a)∗ {q} by (Iteration). Moreover, by (Assume) we
obtain {q} ¬p {q · ¬p}, so that (Sequencing) yields the conclusion of the while
rule.

4.3 Incorrectness Logic

Dually to Hoare Logic, which is used to show absence of errors, O’Hearn’s Incor-
rectness Logic [37,40] allows reasoning about their occurrence. In its treatment
we again follow [30]. The corresponding triples take the form

[p] a [q] ⇔df q ≤ 〈〈a||p

Hence if q represents erroneous states, all of these are reachable from p states.
The essential proof rules are shown in Fig. 4; for further ones see [30].
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Fig. 4. Proof Rules for Incorrectness Logic

For soundness and relative completeness, here we need an additional assump-
tion about the algebra of tests. IL-semiring S is called countably test-complete
(CTC) if every countable subset S′ ⊆ test(S) has a lub �S′. (This is equivalent
to stipulating that every countable chain of tests has a lub.)

Theorem 4.2 (Soundness and Completeness of Incorrectness Logic).
Assume a left-distributive premodal and CTC Kleene algebra.

1. Using (Diamond Star Induction) one shows that the rules in Fig. 4 satisfy
relative completeness.

2. If the algebra is even modal then using (Diamond Star Unfold) one shows
that they are also sound (preserve validity).

The proofs are analogous to the Hoare case.

4.4 General Correctness Logic

While Sect. 4.2 showed how to model partial correctness in (pre)modal Kleene
algebras, we now turn to total correctness, largely following [33]. For this, the
transition behaviour must be enriched by information about presence/absence of
non-termination. The basic idea in relational/logical approaches (e.g., [34,38]) is
to model a command as a pair (a, p) consisting of an action element a that relates
pre-/post-states and a set p of states from which termination is guaranteed; these
states are called non-diverging. All states in ¬p are considered to lead to the
pseudo-state “looping” next to any proper successor states under a.

To make this idea work, we assume that the actions are modelled by elements
of an I-semiring S (for an explanation see below). The set COM(S) =df S ×
test(S) is then the set of all commands over S.
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Now we can give algebraic definitions of Dijkstra’s operators wlp and wp. For
postcondition q ∈ test(S) and command (a, p) we set

wlp.(a, p).q =df ||a]]q , wp.(a, p).q =df p · wlp.(a, p).q .

Since we assume that S is an I-semiring, we have ||a]]1 = 1 by (6) and can retrieve
the termination set of command (a, p) as p = wp.(a, p).1. Hence all commands
k satisfy Nelson’s pairing condition wp.k.q = wp.k.1 · wlp.k.q.

We now define the basic commands and composition operators.

loop =df (0, 0) , skip =df (1, 1) , fail =df (0, 1) ,
(a, p) �� (b, q) =df (a + b, p · q) ,
(a, p) ; (b, q) =df (a · b, p · ||a]]q) .

The command loop offers no transitions and terminates from no state; it models
total blocking/divergence, similar to abort in Sect. 4.1. Command skip offers
the identity transition, i.e., does not alter the state, and terminates from every
state. Command fail is introduced because of its pleasant properties, like being
a neutral element w.r.t. choice ��. It offers no transitions, but terminates from
every state. Demonic choice �� offers the union of the transitions of both operands
but guarantees termination only for those states for which both operands do so.
Sequential composition ; offers the composition of the transitions of the operands;
termination can only be guaranteed for those states for which the first operand
does so and for which all transitions offered by the first operand lead to states
for which the second operand guarantees termination.

Theorem 4.3. The structure COM(S) =df (COM(S), �� , ;, fail, skip) over an
I-semiring S is a left-distributive IL-semiring, with �� , ;, fail, skip playing the
roles of +, ·, 0, 1 of IL-semirings. However, COM(S) is not an I-semiring. The
associated natural order is (a, p) ≤ (b, q) ⇔ a ≤ b ∧ p ≥ q. Finally,
test(COM(S)) = test(S) × {1}, so that test(COM(S)) and test(S) are isomor-
phic.

To see that COM(S) is not an I-semiring, we need to show that the left zero
fail w.r.t. ; is not also a right zero. For instance,

loop ; fail = (0, 0) ; (0, 1) = (0, 0) = loop �= fail .

There is even more structure.

Theorem 4.4 (wp is wlp). COM(S) admits a modal forward box, namely

||k]](q, 1) = (wp.k.q, 1) .

The theorem means that wp is nothing but wlp in the left-distributive modal
semiring of commands. Therefore the standard properties of wlp and wp come
for free by (5), since both are box operators in left-distributive modal semirings
(for readability we abbreviate (p, 1) to just p, etc.):

w(l)p.fail.r = 1 , w(l)p.skip.r = r ,
w(l)p.(k �� l).r = w(l)p.k.r · w(l)p.l.r , w(l)p.(k ; l).r = w(l)p.k.(w(l)p.l.r) ,

}

(11)
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where w(l)p stands for either wlp or wp. The only command for which wlp and
wp do not behave uniformly is loop, which does not have a counterpart in S:

wlp.loop.r = 1 , wp.loop.r = 0 . (12)

But this is no wonder, since the whole idea of the wp operator is to distinguish
between loop and fail, which wlp does not.

Another pleasant fact concerns a calculus for generalised correctness. Since we
have seen that wp is wlp in a left-distributive modal IL-semiring, we can use the
general soundness and relative completeness result for Hoare logic from Sect. 4.2,
since its proof nowhere uses right-strictness of the underlying IL-semiring. The
essential fact used in that proof was that the Hoare triple {p} a {〈〈a||p} is derivable
for every command a and every test p. To use Th. 4.4 we deploy again the
equivalences (8). From that and (11), (12) we read off the following axioms for
the atomic commands:

{1} fail {q} , {0} loop {q} , {q} skip {q} .

The rules for choice and sequencing become

{p} k {r} {q} l {r}
{p · q} k �� l {r}

,
{p} k {r} {r} l {q}

{p} k ; l {q}
.

We conclude with a brief look at iteration.

Theorem 4.5. The modal left semiring COM(S) of commands over a modal
I-semiring S is a left-distributive modal Kleene algebra with (a, p)∗ = (a∗, ||a∗]]p).

However, mimicking the while definition (7) yields a command that shows
the adequate transition behaviour but is too lax w.r.t. termination information.
This can be remedied, but the details (cf. [29,33]) would take up too much space.

5 Application III: Temporal Logics

The logic CTL∗ allows reasoning about sets of (infinite) traces, also called paths.
To represent these algebraically one may use special IL-semirings called left
quantales (e.g. [41]). There the order ≤ induces a complete lattice and · dis-
tributes over arbitrary lubs in its right argument. The path semiring PAT(Σ)
from Ex. 3.1.3 is a Boolean left quantale.

Notation 5.1. For a path σ we denote by σj (j ∈ N) the point number j of σ
and by σj the remainder of σ after removal of its first j points.

This section is based on [6].
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5.1 Full CTL∗

The CTL∗ formulas are given by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | EΨ | XΨ | ΨUΨ , (13)

where ⊥ denotes falsity, Φ is a set of atomic formulas that characterise points,
→ is logical implication, E is the existential quantifier on paths, and X and U
are the next-time and until operators.

We briefly recall the standard semantics, which tells when a path satisfies a
formula. Path σ satisfies an atomic formula π ∈ Φ iff π holds for the first point
of σ. Path σ satisfies Eϕ iff there is a path τ that satisfies ϕ and has the same
first point as σ. Path σ satisfies Xϕ iff σ1 satisfies ϕ. Path σ satisfies ϕUψ iff
after a finite number (including zero) j of X steps the remaining path σj satisfies
ψ and all path pieces σk with k < j satisfy ϕ.

The logical connectives ¬, �, ∧ , ∨ ,A are defined, as usual, by ¬ϕ =df ϕ →
⊥, � =df ¬⊥, ϕ ∧ ψ =df ¬(ϕ → ¬ψ), ϕ ∨ ψ =df ¬ϕ → ψ and Aϕ =df ¬E¬ϕ.
Moreover, the “finally” operator F and the “globally” operator G are defined by

Fψ =df �Uψ and Gψ =df ¬F¬ψ . (14)

Informally, Fψ holds if after a finite number of steps the remainder of the trace
satisfies ψ, while Gψ holds if after every finite number of steps ψ still holds.

The sublanguages Ξ of state formulas and Π of path formulas denote sets
of points and sets of computation traces, resp. Following [9], p. 1013, they are
given by

Ξ ::= ⊥ | Φ | Ξ → Ξ | EΠ | AΠ,
Π ::= Ξ | Π → Π | XΠ | ΠUΠ .

(15)

To give an algebraic semantics, we assign to each CTL∗ formula ϕ an element
[[ϕ]] of a Boolean quantale, representing the set of paths {σ | σ |= ϕ}. The notation
σ |= ϕ means that path σ satisfies formula ϕ.

Atomic formulas in Φ are represented by tests. A quantale element n (“next”)
stands for the underlying one-step transition system of the logic under consid-
eration. The precise requirements on n are developed in [29], but to get a feel
for what it may be, consider a concrete semantics based on the path semiring
PAT(Σ) from Ex. 3.1.3. Then n may be represented by a set of paths with
exactly two nodes (i.e., edges), thus constituting a transition graph. The alge-
braic semantics n · [[ϕ]] for Xϕ given below is then simply the set of paths x.σ
(where . is standard, non-fusing concatenation as in Ex. 2.2), with σ ∈ [[ϕ]] and
x.σ0 ∈ n. A different instance of n is given in Sect. 5.3.

To ease understanding we present the definition in classical first-order logic
side by side with the algebraic one. In this, π is an arbitrary formula in Φ and
Σπ is the set of all points for which π holds.
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σ �|= ⊥
σ |= π ⇔ σ0 ∈ Σπ

σ |= ϕ → ψ ⇔ σ |= ϕ implies σ |= ψ
σ |= Eϕ ⇔ ∃ τ ∈ Σω : τ0 = σ0 and τ |= ϕ
σ |= Xϕ ⇔ σ1 |= ϕ
σ |= ϕUψ ⇔ ∃ j ≥ 0 : σj |= ψ and

∀ k < j : σk |= ϕ

[[⊥]] = 0
[[p]] = p · �

[[ϕ → ψ]] = [[ϕ]] + [[ψ]]
[[Eϕ]] = �[[ϕ]] · � ,
[[Xϕ]] = n · [[ϕ]] ,

[[ϕUψ]] =
⊔

j≥0

(nj · [[ψ]] �
�

k<j

nk · [[ϕ]])

The expression p · � denotes a test ideal, i.e., the set of all traces that start
with p-points.

The semantics establishes soundness of the usual laws. From it we derive for
the sublanguages CTL and LTL simpler semantics, involving the modal operators.

5.2 From CTL∗ to CTL

For a number of applications the sublogic CTL of CTL∗ suffices. According to [9],
p.1013, syntactically CTL consists of those CTL∗ state formulas that only use
path formulas of the restricted form (compare (15))

Π ::= XΞ | ΞUΞ . (16)

Hence, by (15), the full CTL grammar is

Ξ ::= ⊥ | Φ | Ξ → Ξ | EXΞ | AXΞ | E(ΞUΞ) | A(ΞUΞ) . (17)

It turns out that the semantics of each state formula is a test ideal and hence
directly corresponds to a test, i.e., an abstract representation of a set of points.

Theorem 5.2. Let ϕ be a state formula of CTL∗.

1. [[ϕ]] is a test ideal, namely [[ϕ]] = �[[ϕ]] · �.
2. [[Eϕ]] = [[ϕ]] and [[Aϕ]] = [[ϕ]].

Hence for state formula ϕ we define the simplified semantics (the indexd

standing for “domain”)
[[ϕ]]d =df �[[ϕ]] . (18)

This enables us to calculate solely with tests.
One can derive an inductive representation of [[ ]]d. For this, the modal oper-

ators diamond and box can conveniently be used. Additionally, we use an omega
operator ω (e.g. [2]) for infinite iteration. It is specified by the axioms

aω = a · aω , (Omega Unfold)
c ≤ b + a · c ⇒ c ≤ aω + a∗ · b . (Omega Co-Induction)

In left quantales the omega operator always exists.
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Theorem 5.3.

1. [[⊥]]d = 0, [[p]]d = p, [[¬ϕ]]d = ¬[[ϕ]]d, [[ϕ → ψ]]d = [[ϕ]]d → [[ψ]]d, [[�]]d = 1.
2. [[EXϕ]]d = ||n〉〉[[ϕ]]d, [[AXϕ]]d = ||n]][[ϕ]]d = [[AXAϕ]]d.
3. [[E(ϕUψ)]]d = ||([[ϕ]]d · n)∗〉〉[[ψ]]d.
4. [[A(ϕUψ)]]d = ¬�(¬[[ψ]]d · n)ω · ||(¬[[ψ]]d · n)∗]]([[ϕ]]d + [[ψ]]d).

The properties in No. 1 are self-evident. The ones in No. 2 mean that the
existential and universal quantifiers of CTL are semantically reflected as the
existential and universal modal operators diamond and box.

Property 3 means that the starting points of the traces in [[E(ϕUψ)]]d are
precisely those from which after finitely many X steps through ϕ points a ψ
point can be reached (remember that by (3) [[ϕ]]d ·n is the restriction of n to [[ϕ]]d
points).

Property 4 characterises [[A(ϕUψ)]]d as the set of those points from which it
is not possible to iterate indefinitely on non-ψ points and after any finite number
of iterations on non-ψ points a point that satisfies ϕ or ψ must be reached.

Note that all supremum and infimum operators � /� have disappeared. In
particular, the representation of the until operator in Property 3 is much much
simpler than in the general semantics. This result shows that for CTL we do not
need the full power of quantales; rather an omega algebra suffices.

5.3 From CTL∗ to LTL

According to [9], p.1002, LTL is the fragment of CTL∗ that does not have path
quantifiers. More precisely, LTL has no state formulas and the path formulas are
given by

Π ::= Φ | ⊥ | Π → Π | XΠ | ΠUΠ .

Semantically its formulas ϕ behave like the state formulas Aϕ in CTL∗.
For the precise semantics we want, in particular, an analogue of the simple

CTL representation from Th. 5.3.3, namely

[[E(ϕUψ)]]d = ||([[ϕ]]d · n)∗〉〉[[ψ]]d .

This is not immediate, since LTL has no state formulas and [[ ]]d cannot be used.
Therefore we present another semantics for LTL, based on the concrete IL-

semiring S = P(Σ+ ∪ Σω) for some set Σ of points. The operators are union
for + and pointwise path concatenation for · . Here we use the subalgebra of S
with carrier set INF(S) =df P(Σω) and all operators restricted to INF(S). For
brevity we denote this subalgebra again by INF(S). Its top element is Σω. Now
we embed INF(S) into the algebra REL(Σω) of binary relations over Σω by a
function h : INF(S) → REL(Σω) with h(U) =df {(σ, σ) | σ ∈ U}, the partial
identity relation corresponding to U . With this we define for path formula ϕ
another semantic mapping

[[ϕ]]L =df h([[ϕ]] ∩ INF(S)) .
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In particular, [[�]]L = h(Σω) is the identity relation on Σω.
Next, we represent the semantic element n by a relation N (standing for

“next”), namely N =df {(σ, σ1) | σ ∈ Σω} (remember Notation 5.1). For U ⊆ Σω

we have h(n · U) = ||N〉〉h(U). Now we obtain

[[⊥]]L = ∅ , [[p]]L = h(p · Σω) , [[ϕ → ψ]]L = [[ϕ]]L → [[ψ]]L ,

[[Xϕ]]L = ||N〉〉[[ϕ]]L , [[ϕUψ]]L = ||([[ϕ]]L ; N)∗〉〉[[ψ]]L ,

i.e., the desired analogue of Th. 5.3.3. Consequently, [[Fψ]]L = ||N∗〉〉[[ψ]]L and
[[Gψ]]L = ||N∗]][[ψ]]L.

This shows that for LTL we can weaken the requirements on the underlying
semantic algebra even further, viz. to those of a modal Kleene algebra.

6 Sketches of Further Applications

Besides the above applications we now give glimpses at some other ones to further
demonstrate the wide applicability of the modal semiring approach.

Epistemic Logics. This material bases on and extends [26]. Epistemic logics
are special modal logics, dealing with belief and knowledge (e.g. [19]). They base
on the well-known Kripke structures that each consist of a set of possible worlds
and access relations between them. As in Sect. 3 these are modelled by elements
of a left-distributive modal Kleene algebra, where tests represent sets of possible
worlds.

We deal with multi-agent systems, where each agent may have her own
belief/knowledge. Suppose there are agents i (1 ≤ i ≤ n), each endowed with
an access element ai. Then, for a test p, a world w satisfies the predicate Kip
(i.e., belongs to the test Kip), where Ki is the knowledge operator for agent i,
iff all neighbours of w under access element ai lie in p. According to Sect. 3 this
is faithfully reflected by defining Kip =df ||ai]]p. The everyone-knows operator E
can then be defined as Ep =df

∏n
i=1 Kip. By (5) this is equivalent to Ep = ||a]]p,

where a =
∑n

i=1 ai. The common knowledge operator C (“everyone knows that
everyone knows that everyone knows. . . ”) is simply realised as Cp =df ||a+]]p.

Now epistemic reasoning can be done in equational logic. In [26,29] the app-
roach is illustrated with the Wise Men and Muddy Children Puzzles. Moreover,
there we briefly show how to algebraically model knowledge propagation and
knowledge update.

Pointer Structures and Separation Logic. Based on and substantially
extending [3], in [29], we model linked data structures and their typical associated
phenomena. The semiring elements this time represent meshes, namely collec-
tions of direct edge-like connections, labelled by selector names, corresponding
to pointers between nodes. The tests represent sets of nodes, where a node is an
atomic test. As in general order theory, test p is atomic if for all tests q we have
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q ≤ p ⇒ q = 0 ∨ q = p. A special node � represents nil in Pascal or null in
Java. For mesh a the test �a characterises the nodes from which actually links
emanate. We only consider meshes a with � · �a = 0, meaning that � cannot be
“dereferenced”. Therefore, � can serve as a “terminator” in pointer structures,
e.g., for marking the end of a list or a leaf in a tree.

The set of nodes reachable from some set p of nodes along links from a is
reach(p, a) =df 〈〈a∗||p. Here is a typical localisation property that can be proved
algebraically: If reach(p, a) · �b = 0, then reach(p, a + b) = reach(p, a). In words:
if none of the starting nodes of b is reachable from p via a links then all of b is
unimportant for reachability from p via a + b, the union of a and b.

Among other things, our treatment characterises meshes that are forests or
trees; operators for splitting trees/forests into smaller pieces are provided.

Standard Separation Logic (SL) [36] deals with reasoning about parts of an
overall mesh. Meshes a, b are weakly separate, in symbols a ∗ b1, if �a · �b = 0.

In [29] we use the notion of strong separatedness, namely

a � b ⇔df reach(�a, a + b) · reach(�b, a + b) ≤ � .

This means that a and b span regions within the union a + b that are disjoint
except possibly for the terminator node �. With this notion we can prove frame
rules analogous to the ones in standard SL.

Viability of the approach is shown by the examples of in-situ list reversal,
tree rotation and an implementation of binary trees threaded for quicker and
stack-less infix traversal.

Preference Database Queries. This material bases on and substantially
extends [31]. Preferences (e.g., “I like blue cars better than red ones”) allow
more flexible and personalised queries in relational database systems. Evalua-
tion of such queries means to select the maximal tuples from the database w.r.t.
a preference “better than”, which is a strict partial order. In [29,31] we represent
preference relations by elements of an I-semiring, whereas tests represent sets of
database tuples. The best or maximal tuples w.r.t. preference a and test p are
represented by the test

maxa p =df p − ||a〉〉p ,

where q − r =df q · ¬r represents the (set) difference between q and r. This
can be understood as follows: the tuples in ||a〉〉p each are a-below (dominated
by) some tuple in p. Therefore maxa p consists of those tuples of p that are not
dominated by any other tuple in p and hence are a-maximal within p.

In a practical system, complex preferences can be built out of simpler ones
using, e.g., Pareto composition (closely related to the direct product) or priori-
tisation (closely related to the lexicographic product) of strict partial orders.
In [29] we present an algebraic calculus of such constructions and exemplify its
use in proving laws about preferences that can be used in query optimisation.

1 The notational clash between ∗ and the Kleene star ∗ is unfortunate, but standard.
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7 Outlook

Some Related Algebraic Approaches. While it would be a hopeless task
to survey the whole field of algebraic techniques, we briefly discuss a few other
papers which are close in spirit to our style of treatment.

In [23] the authors introduce pKA, a probabilistic Kleene-style algebra, based
on a widely accepted model of probabilistic/demonic computation. Separation
theorems simplify reasoning about distributed systems, where with purely alge-
braic reasoning one can reduce complicated interleaving behaviour to “separated”
behaviours each of which can be analysed on its own. The paper presents two
case studies. The first treats a simple voting mechanism in the algebraic style.
The second—based on Rabin’s mutual exclusion with bounded waiting—rectifies
some subtle flaws in the original presentation. The approach admits clear expo-
sitions of assumptions relating probability and secrecy and, in some cases, even
simple characterisations of these in spite of their intricacy. Finally it is shown
how the algebraic proofs can be automated using a modification of Aboul-Hosn
and Kozen’s KAT-ML.

The paper [12] studies two generalisations of KAT able to express programs as
weighted transitions and tests with outcomes in non-necessarily bivalent truth
spaces: graded Kleene algebra with tests (GKAT) and a variant where tests
are also idempotent (I-GKAT). Fuzzy structures form special instances of this;
applications include program verification and transformation.

In [17] the authors deal with an algebraic formulation of weighted graphs
to connection paths in wireless networks. It uses matrices over an I-semiring of
weights. These matrices carry not just the weights but even more information,
such as the next “hop” on a path towards a destination. The matrices form again
an I-semiring. They can be used not only for determining path lengths, but also
to reconstruct the paths themselves, hop by hop.

The paper [5] studies how modal operators can be defined for fuzzy relations.
These are mappings from pairs of elements into the interval [0, 1] of real numbers.
The values can be interpreted as transition probabilities or as capacities, and in
various other ways. As a replacement for the complement operation one can use
the mapping that sends x to 1− x. Together with the concepts of t-norm and t-
conorm a weak form of Boolean algebra can be defined. Domain and codomain in
a certain sense “measure” enabledness in transition systems. The paper presents
a new axiomatisation of two variants of these operators in the setting of IL-
semirings; it avoids complementation and hence is applicable to fuzzy relations.
It is also shown how the notions of (pre)domain and modal operators can be lifted
to the matrix level. Some applications to network flow problems, inspired by
Kawahara’s seminal paper on cardinality (see also the next paper), are sketched
as well.

In [10] the authors deal with Stone relation algebras. These model weighted
graphs and generalise relation algebras which capture only unweighted graphs.
Previous work has axiomatised the cardinality operator in relation alge-
bras, which counts the number of edges of an unweighted graph. The authors
generalise the axioms for cardinality to Stone relation algebras where that oper-
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ator forms the sum of the weights. They study the relationships between various
axiom systems for cardinality. This results in simpler cardinality axioms also for
relation algebras. The paper gives sufficient conditions for the representability of
Stone relation algebras and for Stone relation algebras to be relation algebras.

And What About Concurrency? Since concurrency is a quite important
topic, we want to make a few remarks about it.

All our examples in Sects. 4–6 involve some notion of “global state”, and the
modal operators map sets of states to sets of states.

A description of a form of concurrency with something like a global state is
provided by Petri nets. There the place marking is a global entity, which enables
a modal treatment [4].

But in other approaches to true, i.e., non-interleaving, concurrency this kind
of global state does not exist; at best local states occur and can be handled.

This occurs also in the widely discussed framework of Concurrent Kleene
Algebras [16]. These form I-semirings, and hence have, as all IL-semirings, the
tests 0 and 1—but only these! So the test algebra is trivial and the modal
operators are not interesting.

Therefore it remains an open problem whether a viable (pre)modal algebra
for the concurrent case can be found.
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