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Global spatio-temporal ERA5
precipitation downscaling to km and sub-
hourly scale using generative AI
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The spatial and temporal distribution of precipitation significantly impacts human lives. While
reanalysis datasets provide consistent long-term global precipitation information that allows
investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture
the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we
introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of
precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km
and 1 h to 2 km and 10min, delivering high-resolution rainfall fields with realistic spatio-temporal
patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables
the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling
challenges and supports practical applicability for generating high-resolution precipitation data for
arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and
validated in the US and Australia, considering diverse climates, including tropical rainfall regimes,
spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills
critical needs for high-resolution precipitation data in hydrological and meteorological research.

Variations in precipitation critically influence society and ecosystems,
affecting water resources, agriculture, and flood risks1–3. Climate change has
already amplified precipitation variability, leading to more frequent and
severe weather events4. Understanding and mitigating the impacts of pre-
cipitation extremes requires accurate historical records in a spatial and
temporal resolution that captures the high variability of rainfall5–7.
Observation-based rainfall products can only partially fulfill this require-
ment. Station networks have long records, but are not dense enough inmost
parts of the world8 and thus lack spatial representativeness. In contrast,
satellite rainfall products provide homogeneous spatial coverage but only
have limited temporal coverage. In addition, they suffer from considerable
errors due to their complex rainfall retrievalmethods and exhibit spatial and
temporal inhomogeneities9–11.

Assimilation of historical meteorological observations in first-
principle-based physical simulations enables modeling of consistent,
comprehensive, and long records of atmospheric conditions12. In the last
decade, such reanalyses have accelerated scientific research in hydro-
logical modeling13,14, flood prediction15, calculation of climate change-
related costs16,17, or training data-driven weather forecasting models18–21.

However, existing global reanalyses still have significant limitations. The
heterogeneous density of assimilated observations and the low spatio-
temporal model resolution lead to uncertainties and biases12,22. In parti-
cular, the complex spatio-temporal structure of rainfall cannot be
represented by the resolution of current reanalysis products, which leads
to a significant underestimation of extreme values, which are crucial for
impact analysis of severe weather events23–27. Running higher-resolution
global reanalyses is currently not feasible due to the immense computa-
tional demand28–30.

Downscaling can be used to increase the spatial and temporal resolu-
tion of coarse-resolution globalmodels, eitherdynamically, that is running a
local-area high-resolution model, or by statistical post-processing. While
dynamical downscaling is again limited by computational resources, sta-
tistical methods are computationally efficient and can be applied globally.
However, traditional statistical approaches are not capable of generating
realistic high-resolution rainfall fields with correct spatio-temporal
patterns31 and extreme values. Recently, advanced downscaling approa-
ches leveraging deep neural networks have proven to be capable of this task.
Successful applications have been shown for spatial and spatio-temporal
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super-resolution32–36, and regional spatial downscaling37–41. Nevertheless, a
skillful global sub-hourly, km-scale downscaling of precipitation data has
remained a challenging problem.

Here, we present spateGAN-ERA5, a conditional generative adver-
sarial network for robust deep learning-based spatio-temporal downscaling
of ERA5 precipitation data. Our model transforms hourly, 24 km (~0.25∘)
resolved ERA5 precipitation estimates into rainfields that resemble weather
radar observations at a resolution of 10min and 2 km. SpateGAN-ERA5 is
trained on high-resolution quantitative precipitation estimates (QPE) from
a gauge-adjusted and climatology-corrected weather radar product in
Germany and is evaluated across three climatically diverse regions on the
globe. The model generalizes well outside the training domain and enables
computationally efficient global rainfall downscaling to a resolution that is
fine enough to capture the spatio-temporal complexity of rainfall, especially
for rainfall events with convective cells. It generates realistic extreme value
distributions, spatial structures, and advection patterns, all in a well-
calibrated ensemble that addresses the underdetermined nature of the
downscaling problem. Thus, spateGAN-ERA5 significantly advances
downscaling methodologies and opens up a wide field of possible scientific
investigations in a variety of domains like hydrology, risk analysis, or
agriculture.

Results
Generative spatio-temporal downscaling of global ERA5
precipitation
For global downscaling of ERA5 precipitation data we use a conditional
generative adversarial network (cGAN) with ERA5 convective (CP) and
large-scale precipitation (LSP) as the coarse condition and gauge-adjusted
weather radar data as the high-resolution reference (see Fig. 1b). The
downscaling of hourly ERA5 precipitation fields with a spatial resolution
of 24 km is performed by a generator model producing a field with a
12-times higher spatial and a 6-times higher temporal resolution. Speci-
fically, the generator processes CP and LSP input patches with a size of
28 by 28 grid cells and 16 time steps. To provide more contextual infor-
mation, the input is four times the domain size of the actual downscaled
area (see Fig. 2a).

A main feature of GANs is the custom learnable loss function (the
discriminator). In our model, this enables the generation of realistic fields
that fulfill a wide range of statistical and structural criteria for precipita-
tion. The applied neural network architecture extends the spateGAN
model established for a weather radar video-super-resolution approach32

and is described in the “Model description” section. The model is trained
using high-quality gauge-adjusted weather radar data provided by the
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Fig. 1 | Model and evaluation area overview for spatio-temporal downscaling of
global ERA5 precipitation estimates. spateGAN-ERA5 can transform coarse-
resolution ERA5 rainfields shown in (a) into high-resolution rainfields (2 km,
10 min.) as they would be observed by a gauge-adjusted radar product regarding
their spatial structures and rain rate distribution. b Schematic of themodel operating
on patchwise downscaling of km gridded convective and large-scale ERA5 pre-
cipitation variables in a probabilistic manner. c Global downscaling predictions

enabled by patch stitching provide continuous rainfields (full resolutionmap shown
in ancillary files Fig. A1). From the area marked by the red box, patches are drawn
and used for model training. Downscaling performance is evaluated using radar
observations as a comparison from the regions marked by the orange boxes.
d Detailed highlight shows the resolved resolution in time and space, and the
comparison with the Australian weather radar observations.
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German Meteorological Service (DWD) from the years 2009–202042.
Details on the adversarial training procedure are given in the “Training
and model selection” section. The model is efficient, fast, and small
enough to run on a single NVIDIA-Tesla-V100GPU by downscaling one
patch in 0.04 s in inferencemode. Data-parallel training on 4 A100 80 GB
GPUs took 3 days Table 1.

Global fields are produced by stitching overlapping high-resolution
patches (see the “Data preparation” section). We evaluate the downscaling
skill by comparison to weather radar data from the year 2021 in three
different countries (Germany, USA, Australia) that cover a wide range of
climatic conditions (see Fig. 1c). Performance is compared to the stochastic
rainfall downscaling method rainFARM, which is based on the extrapola-
tion of the power spectrum to smaller scales43,44, and to trilinear interpola-
tion as a simple baseline method (see the “Reference methods” section).

Case study
We select a variety of meteorologically interesting events (Fig. 2 and Sup-
plementary Figs. 5–9) to showcase the spatio-temporal downscaling per-
formance of spateGAN-ERA5 and how this overcomes the inherent
limitations of ERA5 precipitation data.

Here, we focus on the event in Fig. 2 showing convective cells in the
United States as observed by theMRMS dataset, which are at a scale known
not to be resolvable by ERA545. Even when compared to coarsened
radar observations at ERA5 resolution, ERA5 shows a too-low variance
(see Fig. 2e) with an underestimation of extreme values (see Supplementary
Information Section 1.5). Being able to reconstruct such small-scale rainfall
cells is of particular interest to improve ERA5 precipitation estimates in
regions and seasons with a high amount of convective precipitation, such as
the tropics and extratropics22.

Fig. 2 | Case study of performance on a challenging precipitation event starting
on 03.07.21 in the US with observed convective cells. a Model input patches
consisting of larger ERA5 data, i.e., the convective and large-scale precipitation
contribution to the total precipitation sum. b Location of the radar observation.
c Observations, spateGAN-ERA5 predictions, and rainFARM downscaling for the
target domain in 10-min increments from t to t+ 50 min. and as a coarsened version

approximating ERA5 resolution. d 1-D cutouts showing spateGAN-ERA5 ensemble
members for a specific pixel along the temporal dimension (top panel) and a hor-
izontal cross-section for one time step (bottom panel). eDistribution for temporally
aggregated data with 2 km and 1 h resolution, including maps shown in (c) and the
previous and following 6 h. A severe precipitation warning threshold of the German
Weather Service is set at 25 mm/h.
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SpateGAN-ERA5 is able to reconstruct convective rainfall fields with
small-scale structures and plausible rain rates, including heavy local rainfall.
The rain cells show temporal continuity, hardly allowing for a qualitative
differentiation between observed and predicted rainfields (see video V1 in
ancillary files). Predicted rainfall may occur at a misplaced spatial or tem-
poral position, but with a magnitude similar to the associated radar obser-
vation (see Fig. 2d). This misplacement is not solely due to the
underdetermined nature of the downscaling problem but also reflects dif-
ferences between ERA5 and radar data on a coarser scale. The probabilistic
nature of spateGAN-ERA5 accounts for such uncertainties, but is also
constrained by the contextual information provided by ERA5. For example,
the predicted ensemble shows greater variability in intensity than in spatial
or temporal localization.

RainFARM fails to reconstruct small-scale convective cells, over-
estimates the spatial extent of rainfall, and underestimates extremes. By
design, rainFARM mostly coincides with ERA5 at the coarse resolution,
limiting spatio-temporal disaggregation. This leads to only slightly more
granular rainfall fields than using simple interpolation techniques.

Skillful representation of extreme values
To get amore complete picture of the extreme value statistics of spateGAN-
ERA5, we analyze data from different climatic regions in the US, Germany,
and Australia (see the “Evaluation” section), including severe tropical
rainfall events in Australia, highlighted in Supplementary Information
Section 1.4.

The fractions skill score (FSS) (Fig. 3a) shows that only for the smallest
rain rate threshold and up to a spatial scale of 16 km the interpolated ERA5
and rainFARM rainfields have a higher location accuracy than a single
ensemble member of spateGAN-ERA5. Considering an increased spatial
scale or ensemble of predictions, the generative model consistently out-
performs the other methods across all rain rate thresholds. For intense
rainfall larger than 5mm/h, spateGAN-ERA5 is the only model with
acceptable skill. The relative improvement in terms of ΔmFSS when con-
sidering spateGAN-ERA5 as a downscaling technique instead of an inter-
polated ERA5 is highest for Australia, the dataset where interpolation has
the lowest absolutemFSS. This is followed byGermany, the training region,
evaluated over an out-of-sample time period, and the US (see Supple-
mentary Table 1). For the tropic dataset, ΔmFSS is slightly below the US,
however, the overall skill is highest. This indicates a strong ability of the
model to generalize well outside its training domain.

The distributions shown in Fig. 3b further support spateGAN-
ERA5’s capability in predicting plausible extreme values. Predictions
generally follow the reference’s lognormal distribution for Australia, the
tropics (see Supplementary Fig. 10b), and Germany, which is physically
reasonable46,47. Different characteristics in the US are physically more
implausible and thus likely due to systematic errors in the non-gauge-
adjustedMRMS radar data. Overall, spateGAN-ERA5 underestimates the
frequency of strong precipitation for Australia and the US and over-
estimates it for Germany. Since spateGAN-ERA5 follows the average
precipitation amount of ERA5 (see the “Model description” section), this
is in agreement with the biases of the individual evaluation datasets as
shown in Supplementary Table 1.

In terms of a pixel-wise deterministic skill (MAE and RMSE), ERA5
interpolationand rainFARMshowthebest results (SupplementaryTable 1).
However, this is mainly due to their tendency to produce smoother rain-
fields with dampened extreme values, avoiding a double penalty for mis-
placed small-scale events. Since we aim for sharp probabilistic estimates, we
use these scores with caution. The superior CRPS shows that spateGAN-
ERA5 predictions have the highest ensemble skill. The ensemble quality,
important for a correct representation of extremes, is analyzed by rank
histograms (Supplementary Fig. 1). It shows awell-calibrated ensemblewith
a slight under-dispersive tendency for spateGAN-ERA5 and an unfavorable
heavy under-dispersive tendency for rainFARM.

Spatial plausibility of highly resolved rainfall fields
Spatial and temporal patternsof rainfall are the tangible result of thephysical
processes that drive precipitation formation and evolution in the
atmosphere48,49. Accurately reconstructing these patterns presents a con-
siderable challenge, especially when using data-drivenmodels, which lack a
priori knowledge of the underlying atmospheric physics50,51. These models
must learn to reproduce sharp gradients, coherent advection structures, and
multi-scale variability from limited, coarsely-resolved, and potentially
biased training data.We consider weather radar observations as a sufficient
reference to allow for the statistical analysis of such spatio-temporal pat-
terns. The qualitative assessment of the “Generative spatio-temporal
downscaling of global ERA5precipitation” section suggests that spateGAN-
ERA5 predictions are hardly distinguishable from real radar observations,
while ERA5 interpolation produces blurry rainfields. Visually, rainFARM
only slightly improves over the interpolation. To quantify this observation,
we chose radial averaged power spectral density (RAPSD). As a measure of
anisotropy, a key aspect of specific spatial patterns often caused by hor-
izontal advection49, we define the linear eccentricity in terms of spatial
autocorrelation in the “Evaluation” section.

This analysis uses a subset of each evaluation dataset, described in the
“Data preparation” section, focusing on cases with greater consistency
between ERA5 and radar observations. For the RAPSD (shown in Fig. 4a),
spateGAN-ERA5 largely replicates the power spectrum of the radar
observations in Germany, with slight deviations at the smallest wavelengths
close to the target resolution. In the US, Australia, and the tropics (see
Supplementary Fig. 10c), an underestimation of all wavelengths is apparent.
These discrepancies inRAPSDcan be traced back to themeanfield biases of
ERA5, which are stronger for more extreme events22, and by design, not
corrected by spateGAN-ERA5. When focusing solely on spatial character-
istics and disregarding a multiplicative bias, the normalized RAPSD shows
an almost perfect alignment between predictions and observations for all
datasets.

ERA5 interpolation produces overly smoothed rainfields, resulting in a
considerably lower RAPSD and normalized RAPSD for shorter wave-
lengths. RainFARM slightly improves the power spectrum, increasing the
amplitude for wavelengths between the ERA5 resolution of 24 km up to the
final 2 km resolution. However, the method introduces a physically
unrealistic jump in the power spectrum at 24 km47,52. The temporal power
spectrum density shows a similar behavior of all methods for the temporal
dimension (Supplementary Fig. 2).

Table 1 | Overview of used rainfall observation datasets

RADKLIM-YW MRMS Rainfields 3

Country Germany US Australia Australia - tropics

Training period 2009–2020 – – –

Model selection 01–06.2021 – – –

Evaluation 07–12.2021 07–12.2021 07–12.2021 01–03.2021

Rain gauge adjusted the radar ✓ – ✓ ✓

Source 42,74 75,76 77

We consider the first week of each month for model selection and evaluation.
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Linear eccentricity is analyzed in Fig. 4b and illustrated for a singlefield
in Supplementary Fig. 3. The spateGAN-ERA5 distribution of the score is
close to the observations while rainFARM stays similar to the ERA5
interpolation, providing rainfields that are highly autocorrelated for a large
spatial lag. SpateGAN-ERA5 produces small-scale features that resemble
the radar observations in terms of size, orientation, and eccentricity (see
Supplementary Fig. 4).

Discussion
A critical issue in atmospheric sciences is the extent to which deep learning
models trained for a specific region can generalize to other regions. Addi-
tionally, discrepancies between modeled and observed data distributions
persist, particularly in free-running climate simulations, which can become
entirely decoupled from observations beyond a certain lead time. In the
context of downscaling, a widely adopted approach involves training super-
resolutionmodels that do not rely on perfectly matched input-output pairs.
However, if the synthetically coarsened training data deviate significantly
from the actual climatemodel output distribution, thismismatchcan lead to
a degradation in model performance during inference37.

Our own analysis highlights the significant discrepancy between
coarsened radar observations and ERA5 precipitation, both in terms of
extreme value distributions and spatio-temporal structures. This mismatch
stems, partly, from the limited convective parameterization schemes in

numerical modeling22.We show that a carefully designed training sampling
scheme,which can be described as training on loosely paired images, results
in a high downscaling performance. This involves selecting ERA5 model
input samples that closely match their corresponding observation targets,
and by choosing Germany as the primary training region, showing a rela-
tively high agreement between reanalysis data and targets. While tested on
reanalysis data, this idea of training a model is generic and can, e.g., be
applied to train on loosely paired images from nudged climate simulations
and observation data, thereby facilitating the downscaling of traditional
climate model scenarios, which then can be downscaled in inference.

To evaluate the generalization capabilities of spateGAN-ERA5, we
tested its performance on spatial domains and time periods not included in
the training data. This is particularly relevant given that high-quality
meteorological observations with fine spatial and temporal resolution are
only sparsely available. Training a downscalingmodel to represent the high
variability of precipitation on a global scale is, therefore, inherently chal-
lenging using observations alone. Our findings indicate that spateGAN-
ERA5 exhibits robust performance even outside the training region,
demonstrating its ability to reconstruct precipitation fields in climatologi-
cally distinct environments. In particular, the model also performs well in
tropical regions such as northern Australia, where high-intensity rainfall is
dominated by convective processes that differ fundamentally from the
precipitationdynamicsofmid-latitude regions likeGermany. In some cases,

Fig. 3 | Investigation of the downscaling distribution reconstruction skill for the
evaluation datasets in Germany, the US, and Australia in 2021. a Fractions skill
score (FSS) for thresholds 0.1, 1, 3, and 5 mm/h and a temporal scale of 1 h. We

report the slightly improved probabilistic ensemble FSS for rainFARM.
bDistribution comparison showing multiple spateGAN-ERA5 ensemble members.
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it is even exceeding its performance within the training domain, depending
on the evaluationmetric. This suggests a strong generalization capacity and
can therefore be used on an extended scale, providing a global precipitation
product with improved rainfall distribution characteristics. By leveraging
the full historical record of the ERA5 reanalysis dataset, extending back to
1940, spateGAN-ERA5 is able to provide high-resolution precipitation
reconstructions for an unprecedented time record, which is a significant
advancement over conventional precipitation datasets.

To evaluate the quality of the downscaled precipitation fields, we
consider a variety of spatial structures and pixel-wise scores and conduct an
event-based analysis to reflect the diverse variability and characteristics of
rainfall. Given that precipitation is inherently difficult to model due to its
high variability and intermittency, we could show spateGAN-ERA5’s ability
to disaggregate and reconstruct the statistical properties of rainfields across
temporal and spatial scales, with plausible extreme values that are com-
pletely missing within the initial low-resolution input data. To generate
realistic rain events from this data, amere extrapolation of the spatial power
spectrum of ERA5 as performed by rainFARMproved to be insufficient for
the given problem. SpateGAN-ERA5, as a generative model, shows high
structural similarities between its predictions and the reference datasets, as
can be shown by evaluating the RAPSD, temporal PSD, and linear eccen-
tricity in the “Spatial plausibility of highly resolved rainfall fields” section.
Furthermore, the probabilistic, yet computationally efficient, method
explicitly accounts for downscaling-related uncertainties when refining
precipitation fields in space and time. The model architecture and training
methodology are designed to be adaptable, making it applicable to other
precipitation datasets and resolutions, thereby serving as a versatile tool for
various scientific and operational applications.

As shown in the “Case study” section and Fig. 2e, spateGAN-ERA5
is the only presented method that is able to reconstruct a distribution
similar to the observations, with predictions of larger rainfall intensities
in the severe weather warning range. This demonstrates its potential for
enabling more accurate hydrological modeling, particularly in flood risk
assessments, where detailed precipitation fields are essential for simu-
lating extreme rainfall events and their impacts. The ability to generate
high-resolution precipitation maps several orders of magnitude faster

than traditional dynamical downscalingmethods addresses critical needs
in meteorological and hydrological research. In the context of climate
impact studies, spateGAN-ERA5 facilitates improved assessments of
long-term precipitation trends and variability, helping to refine projec-
tions of extreme events under different climate scenarios. Its ability to
reconstruct convective rainfall events, which are often missing in tradi-
tional climate model outputs, makes it particularly useful for assessing
localized hazards, such as flash floods, and informing disaster risk
management strategies.

Methods
SpateGAN-ERA5 performs spatio-temporal downscaling of ERA5 pre-
cipitation estimates, increasing the resolution from 24 km and 1 h to 2 km
and 10min. The model receives input patches of the ERA5 variables con-
vective and large-scale precipitation of size 16 h × 672 km× 672 km and
performs the downscaling for a centered domain of 8 h × 336 km× 336 km.
We trained themodel inGermany,where a consistentlyhigh-resolutionand
high-quality reference dataset is available through the gauge-adjusted and
climatology-corrected radar product RADKLIM-YW provided by the
German Meteorological Service, and where a high agreement between
ERA5 precipitation and observation data can be shown (see Fig. 3)22. Global
downscaling is achieved by downscaling and stitching overlapping patches.

Model description
We build on the successful precipitation video-super-resolution approach,
spateGAN32, consisting of a generator, trained in an adversarial manner
with a discriminator model. The main ERA5 downscaling generator model
(see Fig. 5) comprises four consecutive components that make use of 3D-
convolutional residual blocks (Res3D) to capture spatio-temporal
dependencies.

First, the ERA5 convective and large-scale precipitation input data are
processed on their initial resolution. Second, it passes a UNET-like down-
sampling and skip connection with an added cropping operation. This
allows themodel to process data atmultiple resolutions, consider global and
local features, and focus on the target domain at an earlymodel stage. Third,
the spatial and temporal resolution of the input data is successively

Fig. 4 | Spatial characteristic scores for a subset of the evaluation datasets in
Germany, the US, and Australia in 2021 (see description in the “Data prepara-
tion” section). aMean radially averaged power spectral density (RAPSD) andmean

normalized radially averaged power spectral density (dashed line). bDistribution of
linear eccentricity of the 2D autocorrelation representation (0.5 Pearson correlation
coefficient ellipse).
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increased, and the structures of the rainfields are refined by 4 upsampling
blocks, including bilinear and linear interpolation and Res3D blocks.
Finally, three subsequent Res3Dblocks adjustfine-scale structures and limit
the prediction range to positive values using a Softplus activation function.

Temporally constant dropout (p = 0.2) at three different generator
depths introduces scale and rain event-dependent perturbation at low, mid,
and high frequencies and enables spatio-temporally continuous probabil-
istic downscaling. The perturbation in combination with the ensemble loss
supports the model in reconstructing the missing tail of the ERA5 pre-
cipitation distribution.

During inference mode, i.e., for evaluation and global prediction, we
apply three additional operations. First, we freeze the dropout seed for each
produced ensemble member, which improves the spatio-temporal con-
sistency of the rainfields compared to a random perturbation in space and
time. Second, we cut the outermost edges (24 km and 1 h) to remove
boundary effects. For global predictions, this routine differs slightly, as
described in the “Data preparation” section. Third, we apply a patchwise
mean field bias correction to the predictions53, by multiplying the average
predicted rainfall by a single value to match the average rainfall amount of
the associated ERA5 input patch. This ensures that the provided ERA5
precipitation amount is preserved and that the model can be applied in
regions where the ERA5 bias strongly deviates from the training
distribution.

The overall design of the generator is memory efficient and can be run
in inference on smaller GPUs (10 GB per sample). This allows the appli-
cation of our model by a broad research community, not only those with
access to the latest-generation GPUs with large memory.

The discriminator (see Fig. 5) is trained simultaneously with the gen-
erator. Its inputs are the temporal sequences ofhigh-resolutionpredictionor
observation, as well as the coarse-resolution context provided to the gen-
erator. Its training objective is to decide if the high-resolution field is real or
artificially generated. The loss function is binary cross-entropy. Within the
model, the high-resolution and low-resolution data are treated separately,
and as a first step, Gaussian noise (mean = 1, std. 0.05) is added to the input
data to prevent the model from learning to distinguish rainfields based on

quantization characteristics. A series of Res3D blocks then processes the
data and extracts spatio-temporal features. The coarse and high-resolution
inputs are concatenated at a late stage to encourage a comparison based on
latent features extracted onmultiple resolutions. The discriminatormodel is
thereby used as a powerful dynamical loss function for the generator, which
learns to discriminate structure- and distribution-related rainfall
characteristics.

Model details
For downsampling operations, the skip connection of the Res3D blocks
includes a 3D-convolutional layer with a kernel size of 1 and instance
normalization to harmonize the dimensions. All remaining convolutional
layers in the networks use a kernel size of 3.

The generator uses 3D reflection padding in all layers with 3D con-
volution, and the discriminator uses zero padding. Except for the first,
second, and last Res3D Block of the generator, the first Res3D block of
the high-resolution discriminator path, and the two Res3D blocks of the
low-resolution discriminator path, we apply instances of normalized con-
volutions. For the generator, we use a feature dimension of 96. For the
discriminator, the high-resolution features are 128, 128, 128, and 64, and the
low-resolution features are 64, 32. After concatenating, the final Res3D
Block decreases the features to 64, which are compressed to 1within the last
3D-convolutional layer.

The specific model architecture stems from an iterative optimization
process that started during our investigations for precipitation video-super-
resolution in ref. 32 and was further developed for the task of ERA5 pre-
cipitation downscaling. Thereby, we also tried, e.g., state-of-the-art vision
transformer network layers as a generator, which did not result in a per-
formance improvement and led us to stick to the well-proven 3D Residual
layers. In general, an extensive hyperparameter optimization is desirable.
Due to the computational complexity, long training runs, and limited
computational resources, we could not test all possible parameter combi-
nations and therefore cannot state that spateGAN-ERA5 provides the best
possible results.Wewould rather invite the research community to build on
our work and further improve the downscaling of precipitation data.
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Objective function
As an objective function, we use a well-known stepwise adversarial training
strategy54,55.

The discriminator D receives the ERA5 context X and target obser-
vations Y or predictions Ŷ of the generator and is trained to minimize the
binary cross-entropy loss

LD ¼ �EX;Y ½logDðX;YÞ� �EX;Ŷ ½logð1� DðX; ŶÞÞ� ð1Þ

The generator loss includes an adversarial loss

LGANðGÞ ¼ �EX ½logDðX;GðXÞÞ� ð2Þ

and an ensemble L1-loss defined as

LL1ðGÞ ¼ Y � 1
3

X3

i¼1

Ŷ i

�����

�����;
ð3Þ

which compares high-resolution targets to the ensemblemean prediction of
3members Ŷ1; Ŷ2; Ŷ3. This ensures that the predictions remain close to the
ground truth while reducing the double penalty of small convective cells or
heavy precipitation misplaced during training.

The total generator loss is

LG ¼ LGANðGÞ þ LL1ðGÞ ð4Þ

Training and model selection
Themodel is trained for 2 × 105 adversarial training steps. The learning rate
is 1 × 10−4 for the generator and 2 × 10−4 for the discriminator and uses
AdamW optimizer56 with β1 = 0.0 and β2 = 0.999 (Discriminator: β1 = 0.0
and β2 = 0.5). We employ data-parallel training on 3 Nvidia A100 GPUs
with 80 GB ofmemory each for 4 days. The batch size is set to 9 per training
step. In inferencemode, downscaling 1 patch takes 0.04 s ononeA100GPU.

We save all model weights after every 250 training steps and identify
the best generator training state by downscaling and evaluating the inde-
pendentmodel selection dataset 4.7.We select thefinalmodel by calculating
the average of the ensemble FSS (meFSS) of the thresholds 0.1, 1, 3, 5, and
8mm/h, spatial scales 1, 4, 8, 16, 32, 64, and 128 km, and temporal scale of
1 h. This considers the ensemble quality and location accuracy for different
categories of rainfall intensities, independent of the heavily skewed dis-
tribution of rainfall.

Evaluation
For evaluation,weverify theperformanceof thedownscalingmethodsusing
a set of quantitative scores since no single metric is capable of capturing the
complexity of highly resolved rainfields. We calculate the root mean square
error (RMSE) is a pixel-wise error computed for a single predicted ensemble
member:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY � Ŷ iÞ

2
q

ð5Þ

The continuous ranked probability score (CRPS)57 measures the pre-
diction accuracy by accounting for the ensemble spread and bias. The
Cumulative Density Function (CDF) of the predicted ensemble at a specific
point and time step (F̂ðxtÞ) is compared to the observed rainfall y.

CRPSðF̂; yÞ ¼
Z �1

1
ðF̂ðxtÞ � 1ðxt ≥ yÞÞ2dxt ð6Þ

1ðxt ≥ yÞ7! 0 : xt < y

1 : xt ≥ y

�
ð7Þ

We report the CRPS as the average CRPS for each dataset. For deterministic
methods (ensemble size of 1), i.e., for interpolated ERA5, this score reduces
to the mean absolute error (MAE).

MAE ¼ ∣ðY � Ŷ iÞ∣ ð8Þ

The fractions skill score (FSS)58,59 is defined as

FSS ¼ 1� ðf Ŷ � f Y Þ2

f Ŷ
2 þ f 2Y

; ð9Þ

where fY (resp. f Ŷ ) is the fraction of pixels within a spatial and temporal (s, t)
neighborhood that exceed a certain observed (resp. predicted) rainfall
intensity threshold (σ). The averaging is performed over the respective
neighborhoods of all locations and time steps of each evaluation dataset. For
the ensemble FSS, the fraction of ensemble members exceeding (σ) is
considered.

We calculate the mean FSS (mFSS) ormean ensemble FSS (meFSS)
of a set of different scales (s = 0, 4, 8, 16, 32, 64, 128, 256 km, t = 1h) and
thresholds (σ = 0.1, 1, 3, 5 mm/h). TheΔmFSS is the relative deviation of
the meFSS of rainFARM and spateGAN-ERA5 to the mFSS of inter-
polated ERA5, expressed as a percentage, and illustrates the perfor-
mance benefits when considering an alternative downscaling method
instead of pure interpolation. For data on ERA5 resolution, the mFSS
considers spatial scales of 0, 24, 96, and 192 km and rain thresholds of
0.1, 1, 3, and 5 mm/h.

The radially averaged power spectral density (RAPSD) and power
spectral density (PSD)60,61 measure how power is distributed across spatial
and temporal frequencies.The temporal PSDacts thereby as an indicator for
plausible advection. The RAPSD is calculated for single images using the
PySTEPS62 implementation and is averaged for each evaluation dataset. The
PSD is calculated along the temporal dimension for each pixel and for each
week of the evaluation datasets and is afterwards averaged for each dataset.
Additionally, we report the normalized RAPSD and PSD, where the power
spectrum of each image or time sequence is normalized so that it
sums to one.

We use rank histograms63,64 to validate the variability and reliability
of an ensemble of probabilistic rainfall predictions. For each pixel and
time step of the evaluation datasets, 100 ensemble predictions are con-
sidered in increasing order, and the normalized rank r of the actual
observation value is determined. Perfectly calibrated ensembles show a
uniformly distributed r, where predictions and observations stem from
the same distribution.

We investigate the spatial anisotropy of rainfields by calculating the
autocorrelation of single images of observations and predictions for spatial
lags from 0 to 60 km in x and y direction65. We estimate an ellipse from the
0.5 Pearson Correlation Coefficient (PCC) counterline for each individual
autocorrelation field and retrieve the variables' length of major axis a and
length of minor axis b to determine the linear eccentricity

eccl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
; ð10Þ

eccentricity

ecc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

a2

s

; ð11Þ

and size

size ¼
ffiffiffiffiffiffiffiffiffiffi
a � b

p
: ð12Þ

Furthermore, we compute the orientation of the ellipse, i.e., of the
major axis, in degrees.
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We define the BIAS as

BIAS ¼ Y � X

Y
ð13Þ

where X is the average predicted precipitation amount of each evaluation
region and Y is the average observed rainfall.

During evaluation, spateGAN-ERA5 downscales patches that overlap
in the temporal dimension to generate a continuous sequence of temporally
consistent rainfields, by keeping the central 2 h of each patch. For the case
study videos, a linear blending approach is applied to 1 h overlapping
periods, with weights decaying from 1 to 0, effectively smoothing outminor
remaining temporal discontinuities in the predictions.

In total, the probabilistic model performance is evaluated using 100
ensemble members for calculating rank histograms and CRPS shown in
Supplementary Fig. 1 andSupplementaryTable 1. For the ensemble FSS and
meFSS, we calculate only 6 members since the score converges at a small
ensemble size. For the presented evaluation, rain rates smaller than 0.01 of
all compared datasets are set to zero.

Datasets
The model input and, therefore, the only dataset required for applying
spateGAN-ERA5 are the convective and large-scale variables from the
ERA5 reanalysis. The model is trained using gauge-adjusted and
climatology-corrected radar data in Germany.We use two additional radar
datasets for evaluation from the United States and Australia to test the
model’s ability for generalization outside of its training distribution. Even if
it seems obvious atfirst to include data from theUS andAustralia formodel
training, we have deliberately refrained from doing so. Pure radar obser-
vations can be highly error-prone and do not match the quality of a
sophisticated, gauge-adjusted, and climatologically corrected product such
as RADKLIM-YW. Due to the lack of high-resolution data availability, we
use radar observations to get an indication of spateGAN-ERA5’s general-
ization capabilities.

ERA5 dataset. The ERA5 reanalysis provides global, hourly model data
spanning the past 70 years12,66. It integrates observational data with
numerical model predictions through advanced data assimilation techni-
ques, resulting in a high-quality benchmark dataset. For precipitation, the
ERA5 4D-var system assimilates hourly NCEP stage IV gauge-adjusted
weather radar precipitation information over the US67,68. In this study, we
used the years 2009–2021, where ERA5 aligns with the available radar data.
We utilize the variables convective and large-scale precipitation of hourly
ERA5 data as input for spatio-temporal downscaling. Including additional
variables as input, such as wind components, temperature, pressure level,
etc., did not enhance overall performance in the presented setup.

We do not use finer resolved ERA5-land precipitation estimates, since
they lack valuable scale-related information29,69,70, exclude oceans and
coastal areas, and have a higher release latency71.

Despite the known limitations of ERA5 precipitation estimates, which
include spatially heterogeneous quality, biases12,22, a tendency to smooth out
local extremes due to the coarse resolution of 0.25° and 1 h72, and limitations
in modeling convective events45,73, the product is most commonly used in
environmental research.

RADKLIM-YW Germany. For training, model selection, and part of the
validation of spateGAN-ERA5, we use the gauge-adjusted and
climatology-corrected weather radar product RADKLIM-YW provided
by the German Meteorological Service (DWD) as target data42,74.

This product is a composite of precipitation information from a net-
work of 16C-bandweather radars. It is adjusted by approximately 1000 rain
gauges that are homogeneously distributed in Germany with a density of
one gauge per 330 km2. In addition to the RADOLAN gauge adjustment,
effects like range-dependent underestimation and beam blockage are cov-
ered by an additional climatological correction.

The grid extent is 900 km× 1100 km in polar stereographic projection,
covering almost the entire Germany and its surrounding border regions,
with a resolution of 1 km× 1 km and a temporal resolution of 5min. Each
grid cell represents a 5min. rainfall sum with a quantization of 0.01mm.
Regions not covered by the 150 km measurement radii of the radars or
missingmeasuredvalues aremarkedwith “NaNs.”For our investigation,we
used data on the provided km grid, coarsened to 2 km and 10min. reso-
lution. We use the years 2009–2020 for model training, the first half of the
year 2021 formodel selection, and the secondhalf for evaluation, preventing
data leakage and testing for generalization abilities. For evaluation, we select
two fixed locations of the size 336 km × 336 km, highlighted in Fig. 1,
covering almost the entire country.

Multi-Radar Multi-Sensor System (MRMS) United States. For vali-
dation purposes, we use the radar composite from theMulti-RadarMulti-
Sensor (MRMS) system comprising 146 WSR-88D radars covering the
US and 30 Canadian radars75,76. Climatic conditions in the United States
have a high variability, ranging from continental, subtropical, and
Mediterranean to tropical.

The MRMS dataset we use covers the time period from July to
December 2021 and is not gauge-adjusted. Alternative gauge-adjustedQPE
products are not available at a sub-hourly resolution and, therefore, are not
suitable for most parts of our analysis.

MRMScovers the region from20° to 55° latitudeNorth and 130° to 60°
longitude West with a resolution of 0.01° in both latitude and longitude
directions. The temporal resolution is 2min.Weselect6 regions exhibiting a
high radar quality and covering different climatic regions of the country (see
Fig. 1, yellowboxes). For evaluation,we regrid the radar observations of each
6 locations to their associated regular kmUTMprojection and downsample
them to 2 km and 10min. resolution. Each location has a domain size of
336 km× 336 km.

Australian Radar Network. We additionally use quantitative pre-
cipitation estimates from the Australian operational radar network77.

We select data from 6 different C-band weather radars, covering
subtropical regions across the country, for the period from July toDecember
2021 (see Fig. 1). The individual locations have a radar coverage of 150 km
and are selected by considering less beam blockage, data availability, and
homogeneous distribution. 3 of these radar sites operate Doppler radars.
The QPE is gauge-adjusted but strongly depends on the availability of the
heterogeneously distributed rain gauge observations78. An increased bias
between ERA5 and the Australian radar was visible, and the radar quality
may be a larger factor than in Germany (see Supplementary Table 1). The
product has a spatial grid resolution of 0.5 km × 0.5 km using an Albers
Conical Equal Area projection and a temporal interval between 5, 6, and
10min. For evaluation, we downsample the observations to 2 km and
10min. resolution. Due to the smaller radar coverage, each location has a
domain size of 280 km× 280 km.

Additionally, we select two of the northernmost radar observation
stations, located in Darwin and Weipa, Australia, and use the time period
from January to March 2021 to cover tropical rainfall regimes in our
separate investigation shown in the Supplementary Information X.

Data preparation
Observationdata andERA5precipitationestimates are adjusted tobeused for
model training, selection, evaluation, and global inference as described below.

Training and model selection dataset. For training, we draw random
target samples from RADKLIM-YW, each with 48 continuous radar
observation time steps and a size of 168 × 168 pixels, i.e., 8 h and
336 km × 336 km. The associated model input is received by first inter-
polating ERA5 data to the target grid and afterwards downsampling the
extracted patches to 24 km and 1 h to approximate the initial resolution.

Since most of the time, little to no rain falls in the training region of
Germany, we apply a subsampling routine, selecting only samples with a
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sufficient amount of wet pixels and total precipitation in both input and
target to avoid learning fromdata that contains little tono rain and fewerwet
pixels. For each randomly drawn sample, the following conditions must be
fulfilled by the ERA5 input X and the RADKLIM-YW observation y:
1. X and y do not contain missing values
2. The 66th quantiles of the pixel values in X and y exceed ε1, where

ε1 ¼ j � 50ε0 þ 500j and where ε0 is drawn from Lognormal (0, 1).
3. ∑h,w,t X > ε2 and∑h,w,ty > ε2, where ε2 = ∣− 450ε+ 4500∣ and where ε

is drawn from Lognormal (0, 1).

The distribution of the thresholds ε1 and ε2 is shown in Fig. 6 and
roughly reflects the inverse probability of drawing samples that match the
given thresholds. The resulting number of observation samples contained in
the training data is about 20,000 (850 GB). During training, we apply
standard data augmention79 in the form of a rotation (90° or 270°) or
reflection (vertical or horizontal) to every alternate sample passed to the
model, increasing sample diversity and reducing directional biases, parti-
cularly for Germany with dominant westerly wind patterns.

For model selection, we randomly draw additional samples and apply
them to the subsampling routine. We select 1000 samples from the tem-
porally independent time period (January–June 2021). We adjust the
average rainfall of the targets of this dataset, using a scalarmultiplication, so
that it matches the average rainfall of the corresponding ERA5 data. This
supports the identification of amodel state that tends tomodify the average
precipitation of the ERA5 input samples less drastically and allows the
model to be applied outside the training region.

Evaluation dataset. SpateGAN-ERA5 is evaluated using a temporally
and spatially independent dataset. The evaluation period contains every
first week of the months of July–December 2021 and every first week of
themonths of January–March 2021 for evaluating tropical rainfall events
in Australia. The data is sampled using fixed patch locations in the US,
Germany, and Australia, highlighted in Fig. 1. For the associated
ERA5 samples, the data are projected to the observation grid and after-
wards interpolated to 24 km resolution. The domain size is 672 km and
includes the previous and following 8 h of the evaluation observation
time period.

To analyze the spatial characteristics of the predicted rainfields, i.e.,
radially averagedpower spectral density and anisotropy,we select a subset of
each evaluation dataset that exhibits greater consistency between ERA5 and
radar observations. This subset includes cases where interpolated ERA5
achieves an mFSS score exceeding 0.2.

In addition to the high-resolution observations and predictions, we
evaluate the performance of the individual downscaling methods and
datasets on a coarser resolution, approximately that of ERA5 (see Supple-
mentary Information Section 1.5). Therefore, we average the observations
and predictions of the evaluation datasets to a spatial resolution of 24 km
using 2D average pooling and aggregate the temporal dimension to 1 h
resolution.

Generation of global fields. We define a processing pipeline for pro-
ducing seamless global high-resolution precipitation maps from a deep
learning model that operates on patchwise downscaling.

First, ERA5 data on its original lat-lon grid is segmented into patches.
Each patch covers a regular spatial extent of 672 km× 672 km.We calculate
the necessary ERA5 lat-lon coordinates to maintain these patches with
the required spatial extent by using the Haversine formula. To simplify the
process, the latitude center coordinate of eachpatch is used to determine the
longitudinal extent. Resulting spatial distortions in the longitude directions
can be neglected due to the small patch sizes. In comparison to the eva-
luation and training datasets, where ERA5 is regridded onto a regular
kilometer grid using the radar observation projection or UTM projection,
this is a more efficient method for global high-resolution mapping. The
patches are designed to overlap, such that the target prediction domain of
336 km× 336 km overlaps by approximately 10% in both latitude and
longitude directions.

The generated patches are then interpolated onto a regular grid with
dimensions of 672 km × 672 km using nearest neighbor interpolation.
This data has an approximate resolution of 24 km and enters the
spateGAN-ERA5 model as input data. Downscaling of patches on a km-
grid ensures that the model receives data that does not exhibit any
latitude-dependent spatial distortion of physical properties. After
downscaling, spateGAN-ERA5 applies ameanfield bias adjustment. Due
to extensive areas of uncertain, low-intensity rainfall in the ERA5 dataset
- particularly over ocean regions - all ERA5 rain rates below 0.1 mm/h are
set to zero for this adjustment. The resulting downscaled high-resolution
patches are seamlessly interpolated onto a global latitude-longitude grid
with a resolution of 0.018°, which corresponds to approximately 2 km at
the equator.

To combine the individual overlapping patches, a linear weighting
(decaying from 1 to 0 while approaching the border of the patch) is applied
in the overlapping regions. This blending process ensures smoother tran-
sitions between patches, aiming for continuous large-scale rainfall field
circulation (see Supplementary Fig. 13).

Fig. 6 | Probability density functions (PDF) of the dynamic thresholds used in the subsampling routine. a PDF of rainfall intensity threshold ε1 and b PDF of total
precipitation amount threshold ε2.
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Reference methods
RainFARM is a statistical downscaling approach implemented in the
PySTEPS package62. It produces small-scale variability by a stochastic pro-
cess that estimates and extends the spectral slope from each coarse input
patch with an estimated scaling factor while preserving key statistical
properties. Most importantly, rainFARM produces an isotropic spatial
distribution andpreserves the rainfall amountwhen aggregated to the initial
resolution.

RainFARM, therefore, serves as a suitable baseline method. Similar to
our deep learning approach, it does not rely on additional input data such as
atmospheric variables or orography. It was specifically developed for
meteorological-scale downscaling, has been successfully applied in various
downscaling studies across different contexts33,37,80 and allows for the gen-
eration of multiple ensemble members.

In our study, we apply spatial downscaling of ERA5 total precipitation
using the advanced spectral rainFARM algorithm44, followed by temporal
interpolation. The probabilistic downscaling is conducted using a different
fixed random seed for the stochastic component of the method.

For this particular problem, the performance was better than applying
the combined spatio-temporal downscaling operation described in ref. 43.
Downscaling and aggregating the individual ERA5variables, convective and
large-scale precipitation separately, lead to negligible differences. Unlike
spateGAN-ERA5, rainFARM downscales patches of the whole ERA5 input
domain of 672 km× 672 km and 16 h, and is afterward cropped to match
the domain of the radar observations from the evaluation datasets.

Trilinear interpolation of ERA5 total precipitation, in both space
dimensions and the time dimension, serves as a simple baseline where the
ERA5 rainfall information can be compared to the high-resolution radar
observation without an artificial generation of small-scale features. We
interpolate the projected ERA5 data on the coarse km grid described in the
“Data preparation” section.

Data availability
The results andmodel of this study are produced bypublicly available datasets
ERA512, RADKLIM-YW42, MRMS75,76, and the Australian operational radar
network77. The ERA5 dataset can be downloaded from https://cds.climate.
copernicus.eu/. The Australian observations can be accessed from https://
thredds.nci.org.au/thredds/catalog/rq0/rainfields3/catalog.html.

Code availability
The study was conducted using several open-source frameworks, including
PyTorch81 (https://pytorch.org/) and pySTEPS (https://github.com/
pySTEPS/pysteps). Maps were produced using cartopy (https://scitools.
org.uk/cartopy). The spateGAN-ERA5model, implemented and optimized
in a Python framework, is available at https://github.com/LGlawion/
spateGAN_ERA5.
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