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Abstract
Speech conveys rich information beyond the spoken content including inferential cues about the speaker’s intentions,
personality, conversational goals, and emotions. This information is conveyed through prosody, characterized by
variations in pitch, loudness, timing, and voice quality. Emotional prosody, in particular, is about how people speak
when they are expressing emotions. The communication of emotions is crucial for successful communication in
human-computer and human-robot interaction, which requires large datasets of emotional speech. In this thesis,
we identify three core methodological problems in creating such corpora and propose solutions to them: obtaining
a representative sample of all emotional prosodies (stimulus selection problem), identifying appropriate emotion
annotation (taxonomy curation problem), and aligning emotional concepts across languages (lost-in-translation
problem).

This thesis consists of three parts. In the first part, we develop Human-In-The-Loop (HITL) algorithms that provide
solutions to the identified problems in emotional prosody. While corpora only indirectly capture the association
between prosody (stimulus space) and emotions (semantic space), the actual association is stored in the minds of
humans. HITL algorithms can sample this information directly from humans, by incorporating human decisions into
computer algorithms. In particular, sampling algorithms from machine learning are used to iteratively characterize
high-dimensional probability distributions. Here, we incorporate humans as part of the iterative procedure to obtain
representative and diverse samples of stimuli over a distribution of latent concepts in human minds, such as the joint
distribution of prosodic features and emotions.

Concretely, we propose three HITL algorithms: (i) Gibbs Sampling with People (GSP) to efficiently find instances
of prosody that sound like a particular emotion using a voice model, (ii) Genetic Algorithm with People (GAP)
to obtain a diverse set of emotional recordings through the process of mutation and selection, and (iii) Sequential
Transmission Evaluation Pipeline (STEP) to distill a taxonomy of emotions from prosody. While the first two
algorithms provide solutions to the stimulus selection problem, the last algorithm provides a solution to the taxonomy
curation problem.

In the second part of the thesis, I establish an infrastructure to run massive online experiments across the globe.
This infrastructure allows deploying the algorithms across languages, providing a solution to the lost-in-translation
problem. We benchmark the created infrastructure by running a large-scale, cross-lingual experiment in a low-
dimensional and well-studied domain.

We recognize that these three problems identified for emotional prosody are pervasive and exist for most machine
learning datasets. For example, when constructing a corpus for object recognition, one has to select a representative
sample of objects, decide on a taxonomy to label the objects, and for multilingual datasets decide how to align those
taxonomies.

In the last part of the thesis, we demonstrate that these HITL algorithms, which have been developed to solve core
scientific problems in emotional prosody, can be applied in adjacent domains. In particular, we show how GSP can be
used for voice personalization for digital agents and avatars, and we demonstrate how the combination of GSP and
STEP can be used to align impressions of robots across the auditory and visual modality.

The HITL algorithms developed in this thesis enable the creation of large-scale, high-quality datasets, by leveraging
human decisions to more directly sample from the associations between the stimulus and the semantic space. In a
broader context, these algorithms allow the creation of more representative corpora that can be used to train machine
learning models that are more balanced and diverse and can be used to benchmark the performance of state-of-the-art
models.





Zusammenfassung
Sprache vermittelt weit mehr als nur den gesprochenen Inhalt – sie enthält auch Informationen über die Absichten,
die Persönlichkeit, die Ziele und die Emotionen eines Sprechers. Diese zusätzlichen Informationen werden über die
Prosodie übermittelt, die sich durch Variationen in Tonhöhe, Lautstärke, Timing und Stimmqualität auszeichnet.

Emotionale Prosodie beschreibt insbesondere die Art und Weise, wie Emotionen in der Sprache ausgedrückt werden.
Die erfolgreiche Kommunikation von Emotionen ist ein zentraler Bestandteil der Mensch-Computer- und Mensch-
Roboter-Interaktion, setzt jedoch die Verfügbarkeit großer, qualitativ hochwertiger Datensätze mit emotionalen
Sprachaufnahmen voraus.

Diese Arbeit identifiziert drei methodische Kernherausforderungen bei der Erstellung solcher Korpora und schlägt
entsprechende Lösungen vor: (i) die Gewinnung einer repräsentativen Stichprobe aller emotionalen Prosodien
(Stimulus-Selektion), die Identifikation geeigneter Emotionsannotationen (Taxonomie-Kuration) und (iii) die Identi-
fikation und Abstimmung emotionaler Konzepte in verschiedenen Sprachen („Lost-in-Translation“-Problem).

Diese Dissertation gliedert sich in drei Teile. Im ersten Teil entwickle ich Human-In-The-Loop (HITL) Algorith-
men, die Lösungen für die identifizierten Probleme bieten. Sprachkorpora erfassen nur indirekt die Assoziation
zwischen Prosodie (Stimulusraum) und Emotionen (semantischer Raum), während diese Assoziation eigentlich im
menschlichen Gehirn gespeichert ist. HITL-Algorithmen ermöglichen es, diese latenten Assoziationen zu extrahieren,
indem menschliche Entscheidungen in den Algorithmus integriert werden. Hierzu nutze ich Sampling-Algorithmen
aus dem Bereich des maschinellen Lernens, um iterativ hochdimensionale Wahrscheinlichkeitsverteilungen zu
beschreiben. In solchen Verfahren, werden Menschen aktiv eingebunden, um repräsentative und vielfältige Stich-
proben von Stimuli über die gemeinsame Verteilung prosodischer Merkmale und Emotionen zu generieren. Konkret
schlage ich drei HITL-Algorithmen vor: (i) Gibbs Sampling with People (GSP) – ein effizientes Verfahren zur
Identifikation von Prosodien für bestimmte Emotionen mithilfe eines Sprachmodells. (ii) Genetic Algorithm with
People (GAP) – ein evolutionärer Algorithmus zur Gewinnung vielfältiger emotionaler Sprachaufnahmen. Und (iii)
Sequential Transmission Evaluation Pipeline (STEP) – ein Verfahren zur Ableitung einer Emotions-Taxonomie aus
Sprachkorpora. Während GSP und GAP das Problem der Stimulus-Selektion adressieren, dient STEP der Lösung der
Taxonomie-Kuration.

Im zweiten Teil der Arbeit entwickle ich eine Infrastruktur für groß angelegte Online-Studien. Diese Infrastruktur
ermöglicht es, die entwickelten Algorithmen weltweit anzuwenden. Insbesondere ermöglicht die sprachübergreifende
Anwendung von STEP die Untersuchung emotionaler Konzepte in verschiedenen Sprachen, womit das „Lost-
in-Translation“-Problem adressiert wird. Die Infrastruktur wird in einem groß angelegten, sprachübergreifenden
Experiment evaluiert.

Im letzten Teil der Arbeit wende ich die entwickelte Algorithmen auf angrenzende Forschungsgebiete an. So zeige
ich, wie GSP zur Personalisierung von Stimmen von digitalen Agenten und Avataren genutzt werden kann. Zudem
demonstriere ich, wie die Kombination aus GSP und STEP dazu beitragen kann, Eindrücke von Robotern aus
verschiedenen Modalitäten (auditiv und visuell) aufeinander abzustimmen.

Die in dieser Arbeit entwickelten HITL-Algorithmen ermöglichen die Erstellung groß angelegter, qualitativ hochw-
ertiger Datensätze, indem sie menschliche Entscheidungen gezielt zur effizienteren Erfassung der Assoziationen
zwischen Stimulus- und semantischem Raum nutzen.

In einem breiteren Kontext tragen diese Methoden zur Entwicklung repräsentativerer Korpora bei, die für das
Training ausgewogener und diverserer maschineller Lernmodelle verwendet werden können. Dadurch verbessern sie
nicht nur die Benchmarking-Leistung moderner Modelle, sondern leisten auch einen wichtigen Beitrag zur besseren
Erfassung und Nutzung emotionaler Prosodie in technischen Systemen.
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Chapter 1

Introduction

Imagine a scenario where a virtual assistant is helping a user who sounds
distressed. If the assistant only processes the words being spoken but misses
the emotional tone, it might respond inappropriately, offering routine solutions
instead of empathizing or prioritizing urgent assistance. This mismatch can
lead to frustration and uncanny or repulsive responses [21–26]. Understanding
emotional prosody—the nuances of pitch, loudness, timing, and voice quality
that convey emotions—enables machines to interpret not just what is said, but
how it is said. This ability is essential for creating intuitive, responsive, and
empathetic human-computer interactions, especially in contexts like health
care [27], education [28–30], or preparing job interviews [31–36].

Tomake this communication successful, it requires at least two components: re-
liable detection of emotions and expressive synthesis of speech [37, 38]. In this
thesis, I will mainly focus on the latter. Both methods rely on corpora, which
are large collections of audio recordings. To learn the associations between
emotions and prosody—for example, angry speech tends to be loud [39], and
sad speech tends to be slow [40]—the corpus recordings need to be annotated
with the intended emotion or the recognized emotion.

However, creating such corpora is challenging, because it has to overcome the
following three problems (see Figure 1.1):

▶ Stimulus selection problem: Imagine a corpus of emotional speech
that does not contain any loud recordings, such as shouting, screaming,
or yelling. This is unlikely to be a complete collection of all emotional
stimuli (i.e., recordings), because loudness is a common feature of vari-
ous intense emotions, such as “surprise”, “fear”, or “anger” [39]. Such a
corpus will underrepresent all prosodies conveying emotions and thus
models trained on it will have an impoverished representation.

▶ Taxonomy curation problem: The creation of emotional speech corpora
often relies on a particular emotion taxonomy. For example, in acted
emotional speech corpora, actors are prompted to say a sentence for a
particular emotion [41–46], in spontaneous emotional speech corpora
human annotators are asked to select a particular emotion label that
is most adequate for a given segment or provide continuous ratings
along selected dimensions [47–50], and in naturalistic data, human
participants are asked to find sequences for a particular emotion [51–
53]. This is problematic because the creation of the corpora is mediated
through a particular, potentially incomplete taxonomy, leading again
to a biased sample of the stimulus space (see above). Superimposing
existing taxonomies on new data can be problematic, because (i) it
is often unclear if the taxonomy fits the data (e.g., too broad or too
narrow), (ii) it does not allow for the discovery of new concepts and (iii)
taxonomies tend to be culture- and language-specific.

▶ Lost-in-translation problem: Quite often, emotion recognition models
are not only applied on a corpus from a single language, but involve
multiple languages, potentially from multiple corpora [54, 55]. Here,
the question naturally arises, how to align emotional concepts across
languages. Existing work relies on dictionary translations [56] or on
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translations by multilingual authors [52, 57, 58], however it is unclear if
the emotional concepts in one language are equivalent [59] or even exist
in another language [60–63]. For example, the German word “Schaden-
freude” does not have a direct translation in English, but describes the
feeling of joy when someone else is damaged.

These problems illustrate how difficult it is to obtain a representative sample
of emotional prosody. While the association between emotions and prosody is
only implicitly captured in the corpus, the actual association is stored in the
minds of humans. Human-In-The-Loop (HITL) algorithms can sample this
information directly from humans, by incorporating human decisions into
computer algorithms, such as Markov Chain Monte Carlo [64], Coordinate
Descent Optimizer [1], and Diffusion [65]. A large body of literature has
shown that such HITL algorithms efficiently and reliably sample from human
representations and biases [64, 66–80].

However, these HITL algorithms involve decisions of a large number of partici-
pants. Here, we extend upon a line of work that has shown that crowdsourcing
can be used to create large-scale datasets for affective computing [46, 56, 81–
83] and develop three HITL algorithms to contribute to these three problems
in the domain of emotional prosody.

1.1 Contributions

1.1.1 Human-In-The-Loop Algorithms

In the first HITL algorithm – Gibbs Sampling with People (GSP) – we work on
the stimulus selection problem for emotional prosody. Concretely, we ask how
can one identify emotions in the high-dimensional space of prosody? To do
so, participants are provided with a tool to iteratively change the prosody of a
voice model to make it sound like a particular emotion (see Figure 1.2). The
voice model is trained on a large sample of varied prosodies and GSP allows us
to efficiently identify which prosodic features are associated with a particular
emotion thus providing a solution to the stimulus selection problem.

In the second HITL algorithm – Genetic Algorithm with People (GAP) – we
alsowork on the stimulus selection problem.We have argued thatmost corpora
of emotional prosody rely on a particular emotion taxonomy. To overcome this
problem, we developed GAP, a HITL pipeline to obtain emotional recordings
without pre-assuming particular emotions. GAP is a genetic algorithm involv-
ing either creators who provide emotional recordings by imitating recordings
of previous creators or raters who must select the most emotional recording
from a selection of recordings (see Figure 1.3). Crucial about the paradigm
is that the creators are unaware that the experiment is about emotions and
only imitate the previous recording. Over iterations, this alternating process
between creation and selection leads to a set of emotional recordings without
pre-assuming a particular emotion taxonomy.

In the third HITL algorithm – Sequential Transmission Evaluation Pipeline
(STEP) – we work on the taxonomy curation problem. To solve this, we devel-
oped a HITL paradigm, which involves participants providing an open-ended
set of labels by describing the emotional content of speech recordings and by
rating the labels of others (see Figure 1.4). This pipeline allows us to obtain
a taxonomy of emotions perceived from a speech prosody and thus allows
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us to compile a more complete list of emotions. Furthermore, STEP allows
for describing the relationship of emotional terms within the same language.
For example, what is the relation between related concepts such as “afraid”,
“anxiety”, “fear”, “frightened”, “scared”, “panic”, “terror”, and “worry”? Are they
synonyms, or do they describe different aspects of the same emotion? STEP
can provide answers to these questions by providing a weighted bag-of-words
representation of the emotional content of the recordings.

All three paradigms are language-agnostic, meaning that they can be deployed
in any language. If STEP is deployed in multiple languages, it can provide a
solution to the lost-in-translation problem, because if the same stimuli are
annotated in multiple languages, one can align the emotional concepts across
languages.

1.1.2 Towards studying Cross-Lingual Differences

I have developed the infrastructure to run the HITL experiments across many
languages. Concretely, we have co-developed a Python package called PsyNet
that allows running large-scale online experiments across many languages on
various recruitment platforms (e.g., Prolific, MTurk, Lucid). I have developed
a language test to assess if the participants are fluent in the language they
are participating in. Finally, we test the infrastructure by studying the low-
dimensional, but well-studied domain of color naming [84–98], which has
been shown to vary across languages [99].

1.1.3 Applications beyond Emotional Prosody

While these HITL algorithms have been developed to solve core methodologi-
cal problems in emotional prosody, they can also be used to study a broader
set of affective behaviors, such as personality traits or impressions. We show
that GSP can also be used for personalization, by customizing voices for voice
assistants and digital avatars. Concretely, participants optimize the voice to
the appearance of a face, thus aligning the voice with their impression of the
face.

In another project, we show that combining paradigms can be used to align
impressions across modalities. Here, participants create a voice for an image of
a robot using GSP. Both the impression of voice and the image of the robot are
then annotated using STEP, which reveals the aligned perceptual space of both
modalities. We show that the aligned space can then be used to predict fitting
voices for new robots (e.g., find a voice for a fluffy, cute-looking robot).

1.2 Thesis Outline

The thesis is divided into three parts: HITL algorithms for emotional prosody,
the development of the international deployment infrastructure, and the appli-
cation of the HITL algorithms to other domains.

In Chapter 2, we provide general background information relevant to multiple
chapters. Each chapter contains a background section, with information only
relevant to that chapter.
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In the first part of the thesis, we focus on emotional prosody. In Chapter 3,
we conduct a large-scale meta-study, investigating the mapping between basic
emotion labels and acoustic features [100] in emotional sentence recordings
across the globe.1 The work revealed fundamental weaknesses in studies on
emotional prosody, which are summarized in the three problems mentioned
above. In Chapter 4, we use GSP2 to let people modify the prosody of a voice
model3 to make it sound like a particular emotion;4 In Chapter 5, we de-
velop GAP5 to obtain emotional recordings without pre-assuming particular
emotions; And in Chapter 6, we developed a HITL paradigm to annotate the
semantic space of emotional prosody.6,7,8

In the second part of the thesis, I describe the infrastructure I have devel-
oped to make massive, cross-lingual, online experiments possible and use this
infrastructure to study grounded semantics globally at scale. In Chapter 7, I de-
scribe my contributions as a core developer to Psynet, an open-source Python
package, for implementing massive online experiments, automating the entire
process from server provisioning to participant payment; In Chapter 8, I will
present a language test, I developed9 to quickly assess the vocabulary of a
participant; And in Chapter 9, we benchmark this infrastructure to study the
seminal problem of color naming across the globe.10

In the third and last part of this thesis,we will show that the HITL paradigms,
developed to solve core methodological problems in emotional prosody, can
also be used to solve more applied problems also in the voice domain. In
Chapter 10, we show how GSP can be used for voice personalization11 and
in Chapter 11, how the combination of GSP and STEP can be used to align
impressions across the auditory and visual modality.12

In the general discussion in Chapter 12, we will summarize the results, discuss
limitations and sketch future directions.



Chapter 2

Background
The study of emotional prosody draws on insights from various fields, includ-
ing computer science (particularly affective computing and human-computer
interaction), cognitive science (with a focus on language and culture), psy-
chology (particularly speech perception), and linguistics (particularly phonol-
ogy).

In my dissertation, I rely on insights from three key research areas: (i) Psy-
chological perspectives on emotional prosody, examining emotion theories
and prosody more broadly; (ii) Human-computer interaction research, specifi-
cally on Human-In-The-Loop (HITL) computation, which integrates human
decision-making into algorithms to study mental representations such as emo-
tions; (iii) Cognitive science research, investigating how language and culture
influence perception.

2.1 Emotional prosody

2.1.1 Prosody

Prosody is an aspect of speech that conveys information beyond the literal
meaning of the words [101, 102]. Before we formally define prosody and
characterize its features, we start with a brief survey of speech production. A
basic understanding of speech production is necessary to understand how
prosody is produced, how it can be measured using acoustic features, how it
can be manipulated to sound emotional [103], and how the emotional state of
the speaker can influence speech production [39, 104].

2.1.1.1 Physionomy of Speaking

Human speech production can be divided into four subsystems: respiration,
phonation, resonation, and articulation [105]. All subsystems are illustrated in
Figure 2.1.

The first subsystem, the respiratory system, is responsible for in- and exhalation
of air, which is needed to produce the necessary air pressure to speak [106].
During phonation, the second subsystem, the vocal folds rapidly open and
close, creating vibrations many times per second [107]. The vocal folds are
part of the larynx, which sits above the windpipe (trachea) and in front of the
food pipe (esophagus) [108]. The number of the vocal fold vibrations is called
fundamental frequency (f0) and is usually measured in cycles per second
(hertz, Hz) [109]. While pitch is the perceptual correlate of the periodicity of
the acoustic signal [110], fundamental frequency is the main acoustic correlate
of pitch. f0 is primarily determined by the tension and length of the vocal folds
and to a lesser extent by the subglottal air pressure below the folds [111]. So
since children and females – on average – have shorter vocal folds, they have
higher-pitched voices than men. Like string instruments, the rate of vibration
increases when the folds are tight. The voice range of a speaker, which is
the minimum and maximum f0 a speaker can produce, is bounded by the



6 Chapter 2 Background

Figure 2.1: Four subsystems in speech
production Respiration, phonation, res-
onation, and articulation. The distribution
of formants is taken from [113] and the
position of speech organs from [107].
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physiology of the individual [106]. Still, within this range, the speaker has a fair
amount of control over their f0 [112] However, it is also implicitly influenced
by the mental state of the speaker (e.g., psychological stress), hence making f0
a particularly interesting feature for emotional prosody [39, 104].

During resonation, the fundamental frequency created by the vocal folds res-
onates in the trachea (see inset under “Resonation” in Figure 2.1), creating
harmonic partials, which occur at integer multiples of the fundamental fre-
quency. Since the windpipe is not a perfect tube, certain partials resonate more
than others. These partials are called “formants” [114], leading to the unique
sound of someone’s voice (often referred to as “timbre”).

During the articulation, the distribution of the formants is modified by the
speech organs, like lips or parts of the tongue [107]. In Figure 2.1 (below
“Articulation”), it is depicted how different positions of speech organs lead to
the production of different vowels and hence to a different distribution of
formants.

The result of this process can be conceptualized as a complex tone, which is a
sum of all partials. However, unlike a real complex tone, which is fully periodic,
human tones are semi-periodic due to slight irregularities in the vibrations of
the vocal folds. Irregularities in the length of a single period are called “jitter”
and variations in amplitude across periods are referred to as “shimmer”. These
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1: Emphasizing a different word can lead
to a different focus. For example, “I talked
to the guy with the ORANGE pants” and
“I talked to the GUY with the orange pants”
changes the focus from the color to the per-
son.
2: “Let’s EAT GRANDPA” means some-
thing different than “Let’s eat, GRANDPA”
(literally eating your grandpa vs. calling
your grandpa for dinner).

irregularities are perceivable by humans and are common indicators for voice
quality [115, 116].

Next to tones, the four subsystems can also produce non-periodic sound
(noise). This means when one hears noise, one cannot hear pitch or measure a
fundamental frequency [117]. We, therefore, call noise “voiceless” since the
vocal folds do not vibrate. Noise is produced by the articulators, like by the
lips in the consonant /p/. Noise can again be divided into two groups: fricative
noise, spread out over a certain amount of time (i.e., continuant) like in /s/ or
/f/, and burst noises that occur in a single burst as in /p/ or /t/ [118]. Tones
and noises can also be mixed, which is the case for voiced consonants, like /v/
or /d/.

With this brief description of speech production, we now move forward to
define prosody.

2.1.1.2 Definition of prosody

While there is no doubt that prosody plays essential contribution in the ex-
pression of emotion in speech [39, 40, 112, 119, 120] there is no consensus
on the exact definition of prosody [121–123]. However, it is generally agreed
upon that prosody:

▶ Refers to suprasegmental aspects of speech, which are overarching
features that span multiple segments (e.g., words or syllables),

▶ consists of pitch, duration, amplitude, and voice quality to mark con-
trasts1 or change meaning2, and

▶ conveys paralinguistic meanings (e.g., communicate emotions or atti-
tudes).

Prosody has been studied for centuries [124], initially for the recitation of
religious texts and poetry [125], since the 20th century in phonology [126–
128], and since the last twenty years in affective computing [129, 130]. Darwin
was one of the first scholars to identify the importance of prosody in the
expression of emotions [131]. While early studies relied on human hearing
and manual annotation of prosodic features [132], the advent of computers
and the development of automatic speech processing tools allowed for the
automatic extraction of prosodic features from speech signals [133–135].

2.1.1.3 Acoustic features

Aspects of prosody can be measured using acoustic features, which are con-
tinuous signals extracted from the speech waveform. For example, one can
estimate fundamental frequency (f0) by correlating sliding windows of the
signal with preceding windows (autocorrelation). This gives autocorrelation
values for each lag, where the lag with the highest value corresponds to the
period of the signal, which is the inverse of the fundamental frequency.

Since the signals are continuous, they can be summarized into summary statis-
tics, like the mean or standard deviation, usually over the whole utterance.
However, some features can not always be measured. For example, f0, jitter
(irregularities in the length of a single period), and shimmer (variations in
amplitude across periods) can only be measured in voiced sounds. Such values
are treated as missing values and are taken out when computing summary
statistics.
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The features can be divided into four categories: time, frequency, amplitude,
and spectral domain features [100] (see Table 2.1). Each of these features
captures a different aspect of the speech signal and can be relevant for paralin-
guistic meanings like emotions.

Time domain features are mainly related to speech rate and rhythm, such as
the number of loudness peaks per second, the number of voiced regions per
second, and the duration of voiced or unvoiced regions. Speech rate can be an
indicator of arousal or stress [136] and is thus emotionally meaningful.

Frequency domain features include f0, jitter, and formant frequencies that can
be obtained via a Fourier Transform of the signal. Fundamental frequency is
relevant for the communication of emotion since higher arousal levels lead to
higher muscle tension, which in turn leads to higher f0 [104]. Also, jitter and
shimmer are relevant for the communication of emotion, as they are perceptual
correlates of voice roughness [115, 116], which can be an indicator of stress or
anxiety [137].

Amplitude domain features include loudness, which is the perceived intensity
of the sound, and the Harmonic-to-Noise Ratio (HNR), which is the ratio of
the energy in the harmonics to the energy in the noise. Both loudness and
HNR have been shown to be relevant for the communication of emotion [138,
139].

Spectral domain features can be computed on the frequencies or on the energy
in different frequency bands and generally measure voice quality [140–142]
and vocal effort [143] that are relevant for the communication of emotion [144].
Spectral energy features are often computed by measuring ratios (e.g., alpha
ratio, Hammarberg index) or slopes (e.g., spectral slope) across the spectrum
(i.e., the distribution of energy across frequencies). Spectral balance features
are computed by measuring the energy in different frequency bands (e.g.,
spectral flux). Another commonly used spectral feature are Mel-Frequency
Cepstral Coefficients (MFCC), which are computed by taking the Fourier
Transform of the signal, applying a Mel filterbank, and taking the logarithm of
the energy in each filter. This condensed representation of the signal based on
the Mel scale (which aligns better with human perception) has been shown to
be particularly useful for emotion recognition [145–147].

In linguistics, acoustic features are commonly extracted with the software
Praat [133]. While it is a powerful tool for phonetic analysis, it has several
limitations for emotion recognition:

▶ it does not provide a standardized feature set (and there are many hy-
perparameters to compute each feature), which makes it difficult to
compare results across studies,

▶ it does not compute features in real-time, which is necessary for real-
time emotion detection, and

▶ it does not have a convenient API and is thus not suitable for large-scale
analysis of speech corpora.

To overcome these limitations, OpenSMILE [134, 135] was developed, which
is a software that extracts standardized acoustic features from speech signals
in real-time. For emotional prosody, the eGeMAPS standard feature set [100],
has been extensively used and with 88 features it spans most prosodic di-
mensions [40, 119, 148]. In Table 2.1, we summarize the perceived correlates
for each of the features. We can see that most of the perceived correlates in
Table 2.1 are relevant for the communication of emotion.



2.1 Emotional prosody 9

Table 2.1: Description of the features included in the eGeMAPS feature set Also, see the summary in [152]

Type Acoustic cue Definition and measurement Perceived correlate

Time Rate of loudness peaks Number of loudness peaks per second. Velocity of speech
Number voiced regions
per second

Number of continuous voiced regions per second; similar to
syllable rate.

Velocity of speech

Duration of (un-) voiced
regions

Duration of consecutive voiced or unvoiced regions; unvoiced
regions approximate pauses.

Speech rhythm and fluency

Frequency Fundamental frequency
(f0)

f0 describes the rate of vibration of the vocal folds. It is
described with summary statistics (e.g., arithmetic mean).
The change of f0 over time (referred to as pitch contour)
is solely described with a slope. f0 tends to be higher in
aroused states [104].

Pitch and intonation contour

Jitter Jitter refers to small perturbations in f0 in one cycle to an-
other. It is caused by irregular fluctuations in the time it takes
to open and close the vocal folds.

Pitch perturbations; “roughness” in
the voice [116]

First three formants (f1 to
f3)

Caused by resonance in and speaker modulations of the
vocal tract.

Voice quality [142]

Amplitude Intensity Sum of amplitudes across all frequency bands. It reflects
the effort of the speaker to produce the utterance. Another
amplitude measure used is equivalent sound level, which
expresses the amplitude in decibels.

Loudness of speech

Shimmer Variations in amplitude from cycle to cycle, caused by irregu-
lar fluctuations in amplitude.

"Roughness" in the voice [115]

Harmonic-to-Noise Ratio
(HNR)

Proportion between harmonic (e.g., in vowels) and noise
components (e.g., in unvoiced speech) in the voice.

"Breathy voice" [149]

Spectral Alpha ratio Ratio between the summed amplitude in the 50-1000 Hz and
1-5 kHz frequency bands.

Voice quality [140]

Hammarberg index Ratio of the strongest peak amplitude in the 0-2 kHz and the
2–5 kHz frequency bands.

Vocal effort [143]

Spectral slope Linear regression slope of the amplitudes of two frequency
bands 0-500Hz, 500-1500Hz.

Voice quality [141]

Energy proportion Energy below and above 500 Hz, and 1000 Hz respectively. Voice quality (related to spectral
slope) [141]

Harmonic difference Difference H1 and H2 and H1 and A3, where the first f0
harmonic is H1, and the second harmonic is H2; A3 is the
highest harmonic in the third formant range.

Voice quality (also related to spec-
tral slope) [141]

Relative energy in f1−3 Amplitude of the formants relative to f0 Voice quality [142]
Spectral flux Speed at which energy distribution in different frequencies

changes over time.
Rhythm and timbre [150]

MFCCs (1–4) Mel-Frequency Cepstral Coefficients (MFCC) using the Mel
frequency scale which mimics human hearing.

Timbre [151]

.

More recently, deep learning methods have been used to automatically learn
the relevant features from the data. Initially, unsupervised methods were used
to directly learn the prosodic features from the audio alone, either the raw sig-
nal [153] or from a processed audio representation, such as a spectrogram [154,
155]. The acoustic features are then obtained by taking the output of the net-
work at a particular layer. Later approaches, involved self-supervised learning,
in which themodel is trained to predict the next sample in the audio [156–161].
The latent audio representation can then be used to predict the emotion.

These advancements raise the question of whether you still need handcrafted
features at all. While the handcrafted features performed on par with learned
features for paralinguistic recognition tasks [162] or better [163], the use of
handcrafted features is still justified, especially in cases with limited data (for
example in low-resource languages), when the interpretability of the features
matters (e.g., which acoustic features are used to communicate particular
emotions across multiple cultures), or when the model is used in a real-time
setting (e.g., in a call center).
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2.1.1.4 Classifying Emotional prosody

These acoustic features can then be extracted from speech recordings with
an annotation of the intended emotion or the recognized emotion. These
annotations can either be discrete labels (e.g., basic emotions [59] such as
“sad” or “happy”) or dimensional (e.g., the circumplex model [164] with the
dimensions valence and arousal). The extracted features were then put into a
supervised learning method, such as a SVM, to predict the intended emotion
or the recognized emotion from the features extracted from a new speech
recording [129]. The classification performance of these datasets has been
improved by the various challenges in the field of emotion recognition in the
last two decades [165–173].

Most recently, foundation models have been proposed that are trained on
text and data from other modalities [174–176] and can be used for emotion
recognition [177]. For example, if the model is trained on sentence recordings
and loud sentences tend to have captions containing the word “anger”, the
model would learn that loud sentences are associated with the word “anger”. In
contrast to previous methods, the supervision signal is no longer the emotion
label in the corpus, but the association between the emotion term and the stim-
ulus learned in the training data of the model. One can argue that foundation
models solve the three core problems of creating emotional prosody corpora
because emotion labels are no longer needed as a supervision signal, and the
model learns the meaning of emotions from context. However, foundation
models are trained on massive datasets scraped from the internet and this data
might contain associations that are rather stereotypes than helpful for emotion
recognition in real life (e.g., not all happy people smile or all angry people
scream).

Now we have a basic understanding of how speech is produced, what prosody
is, how prosody can be automatically extracted from speech signals, and how
it can be used to classify emotions.

In the next section, we will discuss the psychological theories of emotion,
which are relevant to the study of emotional prosody as well.

2.1.2 Emotion

For centuries people have been interested in the nature of emotions and how
they are expressed [178]. In particular, the question to what extent emotions are
universal or culturally constructed [59, 131]. The study of emotions has led to
several influential theories that explain the relationship between physiological
responses and emotional experiences.

2.1.2.1 How emotions emerge

Here is an overview of four major theories:

▶ James-Lange theory [179]: The theory proposes that emotions are the
result of physiological changes in the body. Concretely, an external
stimulus leads to a physiological response, and the perception of this
response is what constitutes the emotional experience. For example,
encountering a threatening stimulus (like a snake) causes physiological
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changes (like increased heart rate), and the awareness of these changes
leads to the feeling (e.g., fear).

▶ Cannon-Bard theory [180]: In contrast to James-Lange theory, this
theory proposes that emotions are the result of the simultaneous acti-
vation of the autonomic nervous system and the cognitive appraisal of
the situation. So, according to this theory, the physiological arousal and
the emotional experience are independent of each other. For example,
encountering a snake leads to both physiological arousal and fear, but
these two processes are independent of each other.

▶ Schachter-Singer theory [181]: This theory proposes that emotions are
based on two factors: physiological arousal and cognitive labeling. It
suggests that physiological arousal occurs first, and then the individual
must identify the reason for this arousal to experience and label it as a
specific emotion. According to this theory, physiological arousal is the
same for different emotions, and the cognitive appraisal of the situation
determines the type of emotion. For example, if you experience arousal
(e.g., a racing heart) after encountering a stimulus, you interpret the
context to determine whether you are feeling fear (e.g., encountering a
snake), excitement (e.g., winning a lottery), or another emotion.

▶ Lazarus’ Cognitive-Mediational Theory [182, 183]: This emphasizes
the role of cognitive appraisal in the experience of emotion. It posits that
our emotions are determined by our appraisal of a stimulus, which me-
diates between the stimulus and the emotional response. This appraisal
can be immediate and often unconscious, determining whether we ex-
perience stress in response to a potential threat. For instance, hearing
footsteps behind you in a dark alley might lead to an appraisal of danger,
resulting in fear and physiological arousal.

These explanations differ to what extent emotions are hardwired (fearful stim-
ulus leading to perception of fear) or constructed by the individual (appraisal
of the situation leading to fear) and thus predict differences with respect to
the universality of emotions. The explanations have influenced three major
emotion theories: discrete [59], appraisal [184], and psychological construc-
tivist theories of emotion [185]. The theories distinguish themselves by how
emotions are conceptualized and internally structured [186].

2.1.2.2 Discrete Theories of Emotion

Discrete theories of emotions have largely been influenced by the work of
Darwin [131], who proposed that emotions are universal and are a product of
evolution to serve specific functions. For example, the idea that indicators for
anger – such as bared teeth and narrowed eyes – are a functional preparation
for an attack or that signs for fear – such as widened eyes and raised eyebrows –
increase sensory input to detect threats and are thus a good preparation for
flight.

Ekman’s basic emotion theory [59] is a modern instantiation of this idea.
He proposed that there are six basic emotions – happiness, sadness, anger,
fear, disgust, and surprise – that are universally recognized across cultures.
These emotions are thought to have a specific facial expression, which can be
recognized by people from diverse cultural backgrounds [187].

So emotions are viewed as hardwired, biologically based responses, essentially
“programs” that are activated by specific environmental triggers [186] and have
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developed over time to aid survival and social interaction. These automatic
responses arise from particular stimulus events without prior learning or
complex cognitive processing.

While the theories emphasize the universality of certain emotional expressions,
there are also weaker versions of the theory that allow for some degree of vari-
ability in the expression of emotions. For example, the “in-group” effect [188]
predicts that emotions are better understood by a member of the same commu-
nity speaking the same “emotion dialect” [189, 190], hence allowing for some
cultural variability in the expression of the same emotions [191]. Another
example is “display rules”, which are culturally specific norms that dictate how,
when, and to whom individuals should express their emotions. For example,
Matsumoto [192] found cultural differences in display rules across individualis-
tic and collectivist cultures, differing in their social norms to express emotions.
Further studies have explored how display rules vary not only across cultures
but also within different social contexts, such as between work and non-work
environments [193]. Also, particular emotions like “shame” seem to be more
culturally specific [194].

So while discrete theories of emotion allow for some degree of variability in the
expression of emotions, they emphasize the universality of certain emotional
expressions and the biological basis of emotions.

2.1.2.3 Appraisal theories

Appraisal theories of emotion [184] take a different approach. They argue that
emotions arise from an individual’s cognitive evaluation or appraisal of an
event or situation. These appraisals assess factors such as relevance to personal
goals, congruence with desires, and perceived control over outcomes, thereby
influencing the type and intensity of the emotion experienced. This perspective
predicts that different individuals can experience varying emotional reactions
to the same event based on their unique appraisals.

Lazarus’ Cognitive-Mediational Theory (see Section 2.1.2.1) is a foundational
framework within the appraisal tradition, emphasizing the adaptive function
of emotions and their roots in personal meaning-making. Scherer further
developed this theory [195] with the Component Process Model (CPM) of
emotion [196], that emotions result from a continuous evaluation of events
across multiple appraisal dimensions, leading to synchronized changes in
experiential, physiological, and behavioral components.

Scherer [197] proposes a sequential appraisal process leading to the differen-
tiation of emotional experiences, by implementing the following “appraisal
checks”:

▶ Relevance: Is the event relevant to the individual or their social group?
▶ Implication: Does the event imply a change in the individual’s well-

being? Does it have short- or long-term consequences?
▶ Coping potential: Does the individual have the resources to cope with

the event?
▶ Normative significance: Does the event violate social norms and values?

How does it influence the individual’s self-concept?

By doing so, Scherer connects the appraisal process to the evolutionary function
of emotions, where appraisal checks have evolutionary significance, such as
preventing death, advancing reproductive goals, or avoiding social exclusion.
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Another influential cognitive appraisal theory is the Ortony, Clore, and Collins
(OCC) model of emotions [198], which provides a hierarchical structure for
categorizing emotions based on the nature of what is being appraised. The
theory posits that emotions arise from cognitive evaluations of three kinds of
appraisals: events (e.g., joy, distress, hope, fear; for example when watching
a movie), agents (e.g., admiration, reproach, gratitude, anger; for example
towards your parents), and objects (e.g., love, hate, attraction, disgust; for ex-
ample towards food). The OCC model is based on a hierarchical structure of
cognitive appraisals, which are thought to lead to more than 20 distinct emo-
tions based on different levels of cognitive appraisals. For example, “joy” and
“distress” come from evaluating whether an event is desirable or undesirable,
while “guilt” and “shame” arise from negatively appraising one’s actions. The
intensity of emotions is also influenced by additional factors such as personal
relevance, expectations, and the likelihood of outcomes.

It has been shown that certain cognitive appraisals are rather universal (such
as “valence” and “arousal”), others are more culturally specific (such as “re-
sponsibility” or “immorality”) [199]. Compared to the discrete theories of
emotion that predict a limited and universal set of basic emotions, appraisal
theories predict more individual and cultural differences in the expression and
recognition of emotions, as the emotional response depends on the appraisal
of the situation and certain appraisals are culturally specific than others. Psy-
chological constructivist theories of emotion, which are introduced in the next
section, also predict more individual and cultural differences in the expression
of emotions, but they assume that emotions are constructed from more basic
psychological and physiological processes, rather than triggered by specific
cognitive appraisals of events. This predicts a larger variation because there are
more sources for psychological differences across individuals and cultures.

2.1.2.4 Psychological constructivist theories

Constructivist theories of emotion [185] extend the Schachter-Singer theory
(see Section 2.1.2.1), arguing that emotions are constructed from more basic
psychological and physiological processes [200]. These theories emphasize that
emotions result from the interplay between an individual’s perceptions, con-
ceptual knowledge, and context. The brain constructs emotions by integrating
sensory input, past experiences, and cognitive processes.

Concretely, like the Schachter-Singer theory, they assume a two-step process
of emotions: In the first step, people receive an ongoing stream of bodily
sensations that can give rise to emotions when interpreted in context. The idea
is that emotions arise from basic feelings of arousal (activation–deactivation)
and valence (pleasant–unpleasant) which is called “core affect”. In the second
step, core affective states are categorized and labeled. The ability to label these
feelings is shaped by cultural, social, and individual differences, meaning that
emotions are flexible and vary across cultures and individuals.

Psychological constructivist theories are influenced by WilhelmWundt’s emo-
tion theory [201] assuming three bipolar dimensions:

▶ Pleasure–Displeasure (Lust–Unlust): Ranges from positive to negative
affective states.

▶ Arousal–Relaxation (Spannung–Lösung): Reflects the level of physio-
logical activation or tension.
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Figure 2.2: Circumplex model The cir-
cumplex model of emotion maps emo-
tions onto a two-dimensional space of va-
lence and arousal.

▶ Excitement–Depression (Erregung–Beruhigung): Captures dynamic
changes in emotional intensity.

This led to the development of the PADmodel of emotion [202, 203], which is a
three-dimensional model of emotion that maps emotions onto the dimensions
of pleasure (similar to valence), arousal, and dominance (degree of control–
submission in a situation). The basic feelings referred to as core affect, are
commonly described using the circumplex model of emotion [164] mapping
emotions onto a two-dimensional space of valence and arousal (see Figure 2.2).
While PAD allows to disambiguate certain emotions with similar valence and
arousal values such as “anger” (high dominance) and “fear” (low dominance),
the circumplex model can help to explain emotional similarity (e.g., anger and
fear are both high-arousal negative emotions and are similar in this sense).

Psychological constructivist theories depart from the Schachter-Singer theory,
by assuming that emotional responses are not only triggered by a particular
stimulus (e.g., seeing a person cry can make you feel negative which is labeled
as “sad”) but instead can also be triggered by the individual’s internal state
(e.g., being hungry can make you feel negative which can be labeled as “sad”).
This idea builds upon predictive coding [204], which posits that the brain is
constantly making predictions about the world and updating these predictions
based on incoming sensory information and interoception, referring to the
brain’s perception of internal bodily states [205]. In the context of emotions,
this idea has been further developed [206, 207] to suggest that emotions are
constructed by the brain based on the integration of sensory input and intero-
ceptive predictions, leading to the theory of constructed emotions [205].

In contrast to discrete theories of emotion, psychological constructivist theories
assumeno hardwired links, but rather that emotions are constructed frommore
basic psychological and physiological processes. Also, appraisal theories, differ
from psychological constructivist theories in two fundamental ways: (1) they
assume that emotions are triggered by specific cognitive appraisals of events
(and not constructed by the brain through the integration of sensory inputs,
interoceptive signals, and learned concepts) and (2) they emphasize appraisals
of external events, rather than re-evaluating internal states (interoception).

To summarize, the theories predict different levels of variability in the expres-
sion of emotions, but in part have in-theory explanations for the variability in
the expression of emotions [188, 192, 199]. A limitation of these theories is that
they all rely on theoretical constructs that may not align with empirical data
from diverse populations or naturalistic settings. For example, discrete theories
of emotion have been criticized for their reliance on a small set of emotions and
facial expressions, which may not capture the full range of human emotional
experiences [208], which may lead to limited generalizability. Also, appraisal
theories have been criticized for their reliance on cognitive appraisals, which
may not be universal across cultures [199]. Finally, psychological constructivist
theories have been criticized for their reliance on the brain’s construction of
emotions, which may not be directly observable or measurable [206]. This is
amplified by the fact that theories are often tested in small studies and strug-
gle to incorporate large-scale data. Data-driven approaches, which we will
discuss next, have the potential to overcome these limitations by uncovering
latent patterns in emotional data without pre-existing theoretical biases and
by incorporating large-scale data from diverse populations and naturalistic
settings.
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3: Click on the links to view the semantic
spaces of the modalities: evocative videos,
responses to them, music, non-verbal vocal-
izations, speech prosody, facial expressions,
and art

2.1.2.5 Cowen’s Semantic Space Theory

The internet (e.g., via scraping and crowd-sourcing) and the development of
low-cost sensors in mobile devices and have enabled a massive collection of
data related to emotions [209]. Data-driven approaches have the potential
to overcome the limitations of traditional theories of emotion by uncovering
latent patterns in emotional data without pre-existing theoretical biases and
by incorporating large-scale data from diverse populations and naturalistic
settings.

Cowen and Keltner [210] are influential for the ideas developed in this thesis
and have made a substantial contribution to the field by proposing the Seman-
tic Space Theory, which is a data-driven approach to study emotions [210,
211]. Concretely, they asked participants to select an emotion label (from a
pre-defined longer list of emotion labels based on previous literature) for a set
of evocative stimuli. They then use mathematical methods to uncover the un-
derlying structure of the emotional space, which they call the “semantic space”.
They study this space in various modalities including evocative videos [53] and
responses to them [56], speech prosody [212], music [52], vocalizations [213,
214], facial expressions [208, 215], and art [216]3. They focus on three aspects
of the semantic space:

▶ Dimensionality: The number of distinct meanings of experiences or ex-
pressions within the space. In other words, howmany different emotions
can be communicated in a particular modality?

▶ Conceptualization: Whether the space is rather categorical or dimen-
sional. Is the semantic space better described by a set of discrete cate-
gories or by a set of continuous dimensions?

▶ Distribution: How are the experiences in the space distributed? Do they
form clusters or are there blends across states (gradients)?

To describe the dimensionality of the space, they developed a mathematical
method which looks for orthogonal dimensions that have the highest covari-
ance across two datasets (e.g., split-halves [53] or different cultures [52]). So,
in other words, they look for dimensions that are consistent across different
datasets. They then use statistical tests to determine which dimensions are
significant. The number of significant dimensions tells us how many different
emotions are communicated in a particular modality. They find the following
number of distinct emotions for the following modalities: 27 for evocative
videos [53], 12 for the responses to them [56], 12 in speech prosody [212],
13 for music [52], 24 for vocalizations [213], 28 for facial expressions [208],
and 25 for art [216]. While the number of emotions varies substantially across
modalities, it always covers a wide range of emotions that goes beyond the six
basic emotions.

To characterize the conceptualization of the space, they compare dimensional
ratings (such as valence and arousal) with categorical ratings. For facial ex-
pressions, they predicted category ratings from dimensional ratings and vice
versa using linear regressions and found that categorical ratings explained but
were not fully explained by general appraisal dimensions (appraisal judgments
explained 56.1% of the variance in categorical judgments, while categorical
judgments explained 91.4% of the variance in appraisal judgments) [208]. For
music, they predict valence and arousal ratings from categorical ratings and
show the correlation across two cultures (China and US) is higher between
the predicted valence (r = .88 and .90) and arousal (r = .97 and .91) ratings
than between the actual valence (r = .75) and arousal (r = .80) ratings across

https://s3-us-west-1.amazonaws.com/emogifs/map.html
https://emogifs.s3-us-west-1.amazonaws.com/reactsPG.html
https://s3.amazonaws.com/musicemo/map.html
https://s3-us-west-1.amazonaws.com/vocs/map.html
https://s3-us-west-1.amazonaws.com/vocs/map.html
https://s3-us-west-1.amazonaws.com/venec/map.html
https://s3-us-west-1.amazonaws.com/face28/map.html
https://precolumbian.s3.amazonaws.com/map.html
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4: For example, they could have estimated
the variability in the position of the stimuli
in the semantic space by using subsets of
the data.

the two cultures [52]. And for emotional prosody, they show that the category
judgements correlate more (r = .80) than the appraisal judgements (r = .59)
across two cultures (India and US) [212]. From these findings, they conclude
that the space is better described by a set of discrete categories than a set of
continuous dimensions, answering the question of conceptualization.

To address the distribution of the space, they apply dimension reduction [217]
on the categorical ratings to project the stimuli into a 2D space. They show that
expressions of emotions do not form distinct clusters, but instead are gradients
of emotional states. This is criticized by Barrett, Khan, Dy, and Brooks, because
the fixed position of the stimuli in the semantic space hides the variability in
the perception of the stimuli, which is introduced by context, and individual
or cultural differences [218]. In order to project the stimuli into a 2D space,
Cowen aggregated the ratings of the participants, which means that individual
differences in the perception of emotions are lost.

In a reply to this criticism, Cowen and Keltner do not provide an answer to
the concern of aggregating out individual differences in the perception of
emotions4 but instead, they clarify that the method they used to estimate the
dimensionality of the spacewas exploratory and not confirmatory as claimed by
Barrett, Khan, Dy, and Brooks. This clarification is important to them because
in a confirmatory analysis, there is a concern that the authors pre-assumptions
influence the number of dimensions that are found. In the next paragraph, we
will argue that Cowen’s work actually suffers from authors pre-assumptions
(participants pick from a pre-defined list of emotion labels, see “Taxonomy
curation problem”).

In addition, we identify the following three fundamental limitations of Cowen’s
work:

▶ Stimulus selection problem: The corpora he used in his work are either
corpora of intended emotions [212, 213] – which pre-assume particular
emotions (e.g., recordings for all six basic emotions) –, or he asked partic-
ipants or search engines to propose stimuli for a particular emotion [52,
53]. This is problematic because the stimuli are not independent of
the emotion labels, and he later uses the labels to create the semantic
space. So, in essence, he shows that you can partially reconstruct the
input emotions in the semantic space and it does not show how many
emotions can be communicated in a particular modality.

▶ Taxonomy curation problem: In all his work, he relies on a pre-defined
list of emotion labels (which are also not the same across studies!). He
does not provide proof that the labels are the best labels to describe the
data, or if gathering the labels in a data-driven way would lead to the
same labels.

▶ Lost-in-translation problem: In his cross-cultural work [52, 56, 212,
214], he either relied on the translations of co-authors or on dictionary
translations and treated the labels as synonyms across languages, but did
not check systematically if the labels are actually used synonymously.

Other smaller limitations are that (i) while he did the semantic space analysis
on many modalities, he did not compare the spaces across modalities (which is
also difficult because the input labels differed across studies) and (ii) his “cross-
cultural” work is only limited to a few cultures, which is not representative of
the world’s diversity, and (iii) he reported different statistics (e.g., for prosody
he reports the correlation between categorical and appraisal judgements, but
not for vocalizations) which makes it hard to compare across studies.
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Recognizing these limitations, the work of Cowen demonstrates that: (i) the
semantic space of emotions covers a larger array of emotions than the six basic
emotions (dimensionality), (ii) the space is better described by a set of discrete
categories than a set of continuous dimensions (conceptualization), and (iii)
the expressions of emotions do not form distinct clusters, but are gradients
of emotional states (distribution). For my thesis, this implies that I can focus
on emotion categories as they can describe a rich emotional experience, that
I can expect to find a large number of emotions in the data, and that single
stimuli can evoke a wide range of emotions.

To summarize, in this section, we surveyed the literature of emotional prosody.
First, we have explained how speech is produced, what prosody is, and how
prosody can be automatically extracted from speech signals. For emotions, we
have discussed three major theories and have shown a data-driven approach
to study emotions using massive online experiments. Despite their potential,
these approaches are fundamentally limited in a number of ways that we
described above. To resolve these problems, I propose in my dissertation to
extend the data-driven approach by using HITL sampling techniques. The
advantages of these techniques are that they allow sampling in a balanced
way from the mental spaces that are associated with emotional prosody and
obtaining a representative sample of latent mental spaces, which is the key to
the success of the proposed work. In the next section, we will describe the
background and prior work describing HITL approach.

2.2 Human-in-the-loop algorithms

Corpora of emotional prosody enable to study associations between acoustic
features and emotions. By learning these associations, it becomes possible
to predict emotions from speech signals. However, in such corpora, the rela-
tionship between acoustic features and emotions is often indirect and noisy,
influenced by factors such as background noise, linguistic prosody, and the
speaker’s accent. The true association between prosody and emotions, however,
is stored in the minds of humans.

HITL algorithms leverage these mental representations by integrating human
judgments into computational processes. Specifically, machine learning sam-
pling algorithms are employed to iteratively characterize high-dimensional
probability distributions. By involving humans in the iterative procedure, these
algorithms obtain representative and diverse samples of stimuli, capturing la-
tent concepts in the human mind, such as the joint distribution of prosodic
features and emotions. These more direct samples frommental representations
can be used to create better corpora to improve the generalization of machine
learning models.

In this section, we will introduce existing HITL algorithms and demonstrate
how they can be used to sample from latent mental representations.

2.2.1 Serial reproduction

Many of us enjoyed playing the game of telephone in our childhood (also
known as Chinese whispers or “Stille Post” in German), where a secret message
is whispered from one person to the other. The fun in the game often arises
from that the message revealed by the last speaker is often completely different
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Figure 2.3: Visual illusion While this
picture does not contain the color red,
most people perceive the strawberries as
red. The image by Akiyoshi Kitaoka is
taken from [221] (CC BY-NC-SA).

from the original. The reason why this occurs is that people respond not
only to what they actually hear but what they think they hear; thus, their
expectations affect their choices and accumulate over the course of the game.
This game has been studied in the context of psychology to characterize human
expectations, biases, and prior beliefs starting in the 1930s [71]. Later research
in cognitive science inspired by this paradigm and used different variants to
understand a wide range of cognitive phenomena, ranging from language [66]
to perception [72, 74–76, 220]. Importantly, this is a simple, yet paradigmatical,
example of HITL computation. The end result of the chain is influenced by all
previous decisions, manifesting a simple computation.

Look at the strawberries in the image in Figure 2.3. What color are they?
Most people perceive the strawberries as red, even though the image does not
contain the color red. This visual illusion exemplifies how our perception is
influenced by our expectations and biases. This observation is central to serial
reproduction in which participants are shown a noisy stimulus – for example,
by whispering, or by showing it briefly – and have to reproduce the stimulus
from memory, amplifying biases of perception and memory, revealing shared
priors that generate them.

Conceptually, one can think of serial reproduction as a Markov chain over
stimuli (e.g., rhythms, stories, prosody) x0 → x1 → . . . → xt (see Figure 2.4).
Each step involves a participant encoding and decoding the stimulus with a
prior π(x), capturing previous experiences with the stimulus, and a likelihood
p(x′|x), mapping stimulus x to the noisy percept x′ (e.g., due to production
constraints, perceptual noise, or memory limitations) [65]. So, for input stimu-
lus xi it is encoded as noisy percept x′

i and the reproduction decodes it into a
new stimulus xi+1 [69]. This process repeats over iterations and will converge
to the priorπ(x) if it is shared across participants [222]. Interestingly, this holds
independent of the noise model p(x′|x), which makes serial reproduction a
powerful tool to study priors in a variety of domains [65].

Since then, serial reproduction has been used to study priors in a variety of
domains, including spatial memory [72], rhythm [74, 75], and melodies [76,
77], which we will discuss in the next paragraphs.

2.2.1.1 Spatial memory

Langlois, Jacoby, Suchow, and Griffiths [72] shows that serial reproduction
can be used to study spatial memory. Concretely, participants were shown
a shape or a natural image with a point on top. The position of the point
was initially randomly positioned (drawn from a uniform distribution) and
participants had to reproduce the position of the point within the image (see
Figure 2.5A). Throughout iterations, the initially randomly positioned points
gradually move towards areas of high agreement, which tend to be landmarks
in the image, such as the corners in the triangle and the roof of the lighthouse
(see Figure 2.5B). The paradigm allowed to uncover spatial memory priors
in unprecedented detail, and the authors showed that these perceptual biases

Figure 2.4: Serial reproduction Partic-
ipants observe a stimulus (encode) and
then reproduce it (decode) for the next
participant. Drawings from the Bartlett’s
study [71], Figure reproduced from [65]
with permission.
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Figure 2.5: Using serial reproduction
to study spacial memory A Partici-
pants are shown a shape or a natural
image with a point on top. The image and
the point disappear for 1 second and the
image is now shown at a jittered position.
The participant has to reproduce the posi-
tion of the point within the image. B Over
the course of iterations, the initially ran-
domly positioned points gradually move
towards landmarks in the image, such as
the corners in the triangle (top) and the
roof of the lighthouse (bottom). The figure
is adapted from [72] with permission.

covary with variations in discrimination accuracy (participants tend to be
more sensitive to differences in the areas of high agreement) [72].

2.2.1.2 Rhythm

Serial reproduction can also be used to study priors of rhythms. Jacoby and
McDermott [74] have presented participants with four-tone rhythms that can
be expressedwith three intervals, which can be expressed as ratios. For example,
1:1:2 is a rhythm where the third interval is twice as long as the first two (see
Figure 2.6A). In this example, the ratios are integers, but not all possible ratios
are integers (e.g., 1.6:2.14:1). Each of the combinations of intervals can be
visualized as a point in a 3D space, which can be visualized in a triangle (see
Figure 2.6A). Participants listen to a rhythm and have to tap back the rhythm
from memory. The authors show that initially uniformly sampled rhythms
converge to integer ratios over the course of iterations (see Figure 2.6B). They
also show that while both US and Tsimane’ participants favor integer ratios,
there are substantial differences in rhythm priors (see Figure 2.6C) [74].
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Figure 2.6: Using serial reproduction
to study rhythm priors A Four-tone
rhythms can be expressed with three in-
tervals, which can be expressed as ra-
tios. Each of the combinations of inter-
vals can be visualized as a point in a
3D space, which can be visualized in a
triangle. B Kernel density estimates of
the reproduced rhythms over the course
of iterations by US participants. Initially,
the reproduced rhythms are uniformly
distributed, but over the course of iter-
ations, the reproduced rhythms converge
to points in the triangle that correspond to
integer ratios. C Cross-cultural compari-
son of reproduced rhythms by US and Tsi-
mane’ participants show that while both
populations favor integer ratios, there are
substantial differences in rhythm priors.
The figure is modified from [75] with per-
mission.
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Figure 2.7: Using serial reproduc-
tion to study melody perception A
Melodies are sequences of notes that can
be expressed as intervals. In this exam-
ple, a sequence of three pitches can be
expressed as two intervals. B Participants
listen to the previous melody and have
to reproduce it by singing. The melody
is automatically analyzed, synthesized,
and played to the next participant. C Ker-
nel density estimates of the reproduced
melodies over the course of iterations
by US participants. Each interval ranges
from -12 to 12 semitones. Melodies con-
verge to integer ratios over the course of
iterations. The figure is modified from [76]
with permission.
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2.2.1.3 Melodies

In another study, Anglada-Tort, Harrison, Lee, and Jacoby [76] have shown that
the same procedure can also be used to study priors of melodies. In their study,
participants listened to a melody and had to reproduce it by singing. A melody
is a sequence of notes that can be expressed as intervals (see Figure 2.7A).
The sung melody played to the next participant as the input melody (see
Figure 2.7B). The authors show that melodies converge to integer ratios over
the course of iterations (see Figure 2.7C) [76].

Previous work has also explored using serial reproduction for prosody. For
example, Jacoby andMcDermott [74] have shown that participants have similar
rhythm priors for speech and music, and Kochanski [223] used it to study
pitch imitation in speech. However, to the best of my knowledge, no study has
used serial reproduction to study the priors of emotional prosody.

More recently, serial reproduction has also been recognized as a tool for ex-
plainable AI, by explosing the priors in Deep Neural Network (DNN)s [224].

In the next section, we will discuss an alternative formulation of serial repro-
duction, called iterated learning, which is used in the context of language
evolution and learning.

2.2.2 Iterated learning

Figure 2.8: Iterated learning A One
can think of iterated learning as a process
in which participants receive data from
other participants, have to form a hypoth-
esis about the data, and then emit data
for the next participant. B This process
can be formalized as a Markov chain. The
schematic figure is taken from [68] with
permission.
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Serial reproduction and iterated learning are conceptually related, but differ in
their focus. Where the former is about perception, the latter is about inference.
Iterated learning is the process in which a population of agents learns from
the output of the previous generation. Here, each participant receives data
from other participants, has to form a hypothesis about the data, and then
emits data for the next participant (see Figure 2.8A) [68]. Again this process
is formalized as a Markov chain, in which a hypothesis is sampled from the
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posterior p(h|d) and data is sampled from the likelihood p(d|h) (Figure 2.8B),
which will converge to its stationary distribution h if all learners have the same
prior p(h) [69, 70].

This conceptualization is particularly useful when one wants to study how
structured patterns emerge or how culture shapes the transmission of informa-
tion. One can consider each iteration in an experiment as a separate generation,
where the data is passed from one generation to the next, where chain experi-
ments are a way to mimic the process of cultural transmission.

Kirby, Cornish, and Smith use this paradigm to study language evolution [66].
In their experiment, participants are shown a novel artificial language and
have to learn the language by observing the behavior of the previous partic-
ipant. They found that over the course of iterations, the language becomes
easier to learn and more structured, providing evidence that the process of
cultural transmission can introduce gradual changes and regularities in the
system [225].

In another study, Xu,Dowman, andGriffiths have studied how iterated learning
shapes the emergence of color categories [67]. In their study, participants are
shown examples of labeled colors and classify new colors based on those
examples, and these classifications of the participants are used to generate
new examples for the next participant. Participants are randomly assigned to
a group in which a fixed number of color terms are used to describe the colors
(the actual color terms were non-words). Initially, terms are randomly assigned
to colors, but over the course of iterations, the categorization of colors becomes
more similar to the color categorization in languages with the same number of
color terms [226]. This indicates that the categorization of colors emerging
from languages is not random, but follows certain universal regularities.

2.2.3 Markov Chain Monte Carlo with People

One limitation of serial reproduction is that it entangles perception and produc-
tion, as the responses depend on the process of memorizing and internalizing
the stimuli before reproducing. One way to overcome this limitation is to study
mental representations without production constraints. This can be done with
the paradigmMarkov Chain Monte Carlo with People (MCMCP) [64]. The
paradigm can be compared with the process of constructing a facial composite,
where a forensic artist iteratively draws a face based on witness description
until the drawn face matches the memory of the suspect’s face. Instead of a
forensic artist, faces can also be created using a generative model, but this
requires a parametrization of the model (e.g., facial features of the suspect)
and an efficient procedure to search all possible combinations.

Sanborn and Griffiths [64] realized that this process of finding a facial com-
posite can be described in mathematical terms as a Markov Chain Monte
Carlo (MCMC) sampler over the facial feature space. MCMC is a statistical
method used to sample from probability distributions that are difficult to sam-
ple from directly. Metropolis-Hastings algorithm [227] is a popular MCMC
algorithm [228], which starts at a random point in the space, proposes a new
sample close to the current state using the proposal distribution, and then
accepts or rejects the new sample based on the acceptance probability. The
novelty proposed by Sanborn and Griffiths [64] was to use human decisions
to decide which sample to take and hence included human decisions in a
computer algorithm [64, 78].
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In this section, we have shown how serial reproduction can be used to study
biases in perception and memory, how iterated learning can be used to study
the emergence of structured patterns in a population, and how Markov Chain
Monte Carlo with People can be used to study mental representations. In the
dissertation itself (Chapters 4–6), we will develop additional HITL paradigms
that extend MCMCP and serial reproduction to study the priors of emotional
prosody and for other similar applications.

2.2.4 Parallels to data augmentation

In this thesis, we use HITL algorithms to obtain representative samples that
capture latent associations between emotions and prosody. Another approach
to achieving this is data augmentation, a commonmachine learning technique
that expands training datasets by applying transformations to existing data.

For instance, Liang, Chen, Zhao, Jin, Liu, and Lu proposed an adversarial
learning framework to mitigate the influence of cultural differences in video-
based emotion recognition [229]. Their approach frames emotion and culture
recognition as adversarial tasks: the system learns to accurately identify emo-
tions while simultaneously attempting to confuse a culture classifier. This
dual-objective training encourages the model to extract emotion features that
are invariant across cultural contexts.

A related challenge is that many emotion datasets are limited in size and
restricted to discrete emotion categories. However, real-world emotional ex-
pressions often exist along a continuum, blending multiple emotions [53, 56,
208]. To address this, Mertes, Schiller, Lingenfelser, Kiderle, Kroner, Diab,
and André introduced a generative approach using label interpolation within
Generative Adversarial Networks (GANs) [230]. By interpolating between
discrete emotion labels during training, their model learns to generate facial
images that reflect nuanced emotional expressions, effectively bridging gaps
between categorical emotions.

These studies demonstrate how data augmentation techniques can help refine
the association between emotions and stimuli, denoising the latent associations
between emotions and their expression.

2.3 Influence of language and culture

In this section, we will review the literature on how language and culture
shape the expression of emotions, which is crucial for understanding the cross-
cultural aspects of emotional prosody.

Recent studies have shown considerable variability in the expression of emo-
tions [60, 231–233], touching upon the longstanding question in psychology
and cognitive science whether emotions are shaped by universal constraints or
by experience (e.g., influences of culture or language). This research question
ties into broader inquiries in cognitive science, such as how language and cul-
ture shape mental representations and influence various cognitive processes.
It also raises the issue of how to determine whether the demographic sample
of participants is representative of the global population, ensuring the validity
of general claims about human cognition.
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Figure 2.9: Bits of information per sec-
ond Data from [234, 235]. Bits per sec-
ond on a log10 scale.

2.3.1 Language shapes thought?

There is a long-standing debate in cognitive science about whether language
shapes thought [236]. One particularly influential hypothesis is the Sapir-
Whorf hypothesis, which posits that the structure of a language can shape the
way people think and perceive the world. This idea has been supported by a
number of studies showing that language can influence mental representations
and cognitive tasks [90, 237–239].

Grounded semantics provides an interesting perspective on this debate, in
which the same stimuli are presented and categorized by participants from dif-
ferent cultures and languages. The stimuli aremainly sensory experiences—such
as viewing a color, smelling an odor, listening to sounds, or feeling a texture.
To speak about these experiences, they need to be compressed, because speech
only transmits at a rate of 39 bits per second [234], while humans receive
more than 11 million bits of information per second through the sensory
system [235] (see Figure 2.9).

Interestingly, the same sensory experiences are compressed differently across
different languages for all five senses:

▶ Vision: Different languages have different color terms [99] or facial
expressions for emotions [231].

▶ Touch: Different languages have differentwords for tactile experiences [240]
and pain terms [241].

▶ Hearing: Different languages have different sound-meaning associa-
tions [242] or rhythm priors [220] and show differences in emotional
non-verbal vocalizations [233] and prosody [11].

▶ Smell: Different languages have different odor terms [62]. For example,
where Western languages tend to describe a scent by referring to the
source (e.g., a banana) or the impression of the receiver (e.g., “stinky”),
other languages (e.g., Jahai) have a distinct vocabulary for describing
odors [243].

▶ Taste: Different languages have different taste terms [244], for example,
where Westerners would describe the taste of Parmesan cheese as “salty”,
Japanese people would describe it as “umami”.

Analyzing these differences can provide insights into the influence of language
on mental representations and whether these differences – in part – can be
explained by more general cognitive processes and biological constraints.

This question is tightly linked to a larger problem: obtaining a sufficiently
diverse sample of cultures and languages to make general claims about human
cognition. In the next section, we will discuss the limitations of unrepresenta-
tive population sampling in the social sciences.

2.3.2 Representative sample

2.3.2.1 WEIRD people

Henrich, Heine, and Norenzayan [245] raised awareness of the fact that the
majority of participants in psychological studies are Western, Educated, In-
dustrialized, Rich, and Democratic (WEIRD). This is particularly problematic
because, based on a narrow sample of the world’s population, general claims
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are made about human cognition [246]. Where more than 90% of the partici-
pants in psychological studies are fromWestern countries (with the majority
being from the US), the rest of the world accounts for less than 10% of the
participants, but about 90% of the world’s population [247].

Overgeneralizing fromWEIRD participants to the rest of the world can lead
to not recognizing differences in:

▶ Sensory abilities and perception: Recent work has demonstrated sub-
stantial cross-cultural abilities in underwater vision [248], olfaction [249],
and spatial navigation [250].

▶ Economic preference: Researchers long assumed that preferences or
motivations for reciprocity (i.e., mutual exchange of benefits, e.g., selling
products for money), fairness, and altruism were universal. However,
recent work has shown that these preferences can vary substantially
across cultures [251].

▶ Personality traits: The “Big Five” [252] personality structure is often
assumed to be universal, but recent work suggests this is not the case in
some small-scale societies [253].

▶ Morality:Morality judgments were assumed to bemade along fivemoral
foundations [254], but recent work has shown that certain cultures have
more moral foundations [255] or that the moral foundations are not as
universal as initially hypothesized [256].

▶ Emotions: Recent work has shown substantial differences in emotion
words [60, 61], facial expressions [231, 232], and non-verbal vocaliza-
tions [233] (e.g., moaning or screaming).

These findings highlight the need to include more diverse samples of cultures
and languages in psychological studies to make more general claims about
human cognition. This debate also has implications for other research fields.
For example, in medicine, the majority of research is conducted on WEIRD
bodies [257], which can lead to not recognizing differences in disease preva-
lence, treatment efficacy, or side effects across different populations. It also
highlights problems in computer science where the majority of training data is
fromWEIRD people, which have become amplified with the rise of generative
models [258].

Working with a WEIRD population also has other side effects, namely mainly
involving participants who speak English. In the next section, we will discuss
why this overreliance on English is problematic.

2.3.2.2 Overreliance on English

More than 70%of the participants in human experiments are from theUSA [247]
where for 80% of the participants English is their first and only language [259].
This is in sharp contrast to the world’s population, where bilingualism and
multilingualism (speaking at least one foreign language) are the norm [259].

Also, English is a non-representative language of the 7,000 languages spoken
worldwide [260, 261]. This is problematic because the language someone
speaks can influence mental representations and cognitive tasks [90, 237–239,
259].

For example, English is quite particular in that it:

▶ writes from left to right: But writing direction influences spatial cogni-
tion [262] and memory [263].



5: Although remote societies are also be-
coming more connected through satellite
phones, radios, and smartphones.

▶ has a small vocabulary for certain sensory experiences: For example,
English has a very limited vocabulary for odors [62], with the word
either referring to the object (e.g., “rose”) or the impression of the smell
(e.g., “stinky“). Other languages, such as Jahai, have a distinct vocabulary
for describing odor perception [243].

▶ is a right-branching language: Whether a language is right- or left-
branching (i.e., the order of the subject, verb, and object) influences
working memory [264].

▶ frequently uses a relative viewpoint: English frequently uses a relative
viewpoint from the speaker’s perspective (e.g., left or right), which can
influence spatial cognition [237, 265].

▶ is optimized for direct information exchange: In other languages,
direct information exchange is considered rude and vagueness is pre-
ferred [266, 267].

▶ prefers frequent expression of gratitude: English speakers frequently
express gratitude (e.g., “thank you”, “please”, “you are welcome”), but not
all languages even have words for expressing gratitude [268].

These examples illustrate that English is not representative of all languages and
that the particularities of a language can influence ostensibly non-linguistic
tasks and capabilities, such as memory [263, 264], spatial cognition [262, 265],
or odor perception [62, 237, 243].

2.3.2.3 Towards a more representative sample

As we discussed above, while the majority of research is conducted onWEIRD
people, a fraction of research is conducted on remote societies. While this
research allows one to obtain valuable insights into human cognition, the
sample sizes are tiny, the expeditions come at a high cost, and there is very
little room for automation.

In this thesis, we argue that recruiting participants from a diverse set of coun-
tries and languages is a more scalable and cost-effective way to study human
cognition across the globe. As of 2024, 66.2 % of the world population has
internet access, and with 5.35 billion smartphones on average, 69.4 % of the
world population owns a smartphone [269]. While this population accessible
through the internet is more exposed to other cultures5, it is likely to still
exhibit a strong linguistic and cultural diversity. Online cross-cultural experi-
ments, unlike research expeditions, allow to collect massive amounts of data,
are less expensive (only paying for the server infrastructure and for the local
wage, which tends to be much lower than in the Global North), and have high
potential for automation (e.g., recruitment, payment, translation).

To accomplish this goal, I have developed a fully automated pipeline for run-
ning massive online experiments and created an infrastructure to collect data
from a large and diverse sample of languages spoken worldwide. In particular,
I have implemented a recruitment service which, as of 2024 allows to recruit
participants from 135 countries and 72 languages.

This is one step ahead towards a more informed sampling of languages and
cultures to study cognition across cultures [270].





The first part of this thesis is about how emotions are com-
municated with the voice when speaking (emotional prosody).
In Chapter 3, I conduct a large-scale meta-study of emotional
prosody and show that there are considerable differences in the
expression of emotions across countries, languages, and indi-
viduals, matching previous findings in the other modalities [60,
231–233]. The analysis, furthermore, reveals three core problems
in corpora of emotional prosody (stimulus selection, taxonomy
curation, and lost-in-translation problem) and we develop three
Human-In-The-Loop (HITL) approaches to provide solutions
to them. In Chapter 4 and 5, we present approaches to better
sample from the stimulus space and, in Chapter 6, we develop
an approach obtain an emotion taxonomy.

Part I
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Emotional Prosody
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Figure 3.1: Basic emotions The six
basic emotions and “neutral” are used as
mapping targets.
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A key question in psychology is how prosody can communicate emotions in
speech [119]. More specifically, the question is which acoustic features are used
to convey particular emotions in speech and how these features potentially
differ across cultures, languages, and individuals. This objective slightly differs
from the research question in affective computing, where one of the goals
is to detect emotions in real-life applications reliably. So in psychology, the
emphasis is more on people’s abilities to reliably detect the emotions from
prosody alone (i.e., without context) [190, 191, 271, 272] and which acoustic
features can be directly associated with specific emotions [39, 40, 42]. Study-
ing the mapping between prosody and emotion typically relies on supervised
data generated by recruiting actors to record sentences for specific emotions
with neutral sentence meaning. The neutral content is important for psycho-
logical research because emotional cues in sentence content would override
prosodic cues, leading to ceiling performance in human emotion recognition
experiments [271, 273].

To study the mapping between emotions in acted corpora, existing studies
investigate the mapping within a single speech corpus [40–46, 274–290] or
conductmeta-studies on the reported acoustic features in the respective papers.
Existing meta-studies traditionally:

▶ do not estimate differences in the mapping at more granular levels of
analysis (e.g., individual speakers, languages, cultures),

▶ average over participants, leading to false confidence due to the removed
variation,

▶ do not account for sampling imbalances (e.g., unequal number of record-
ings per culture, number of speakers, or number of sentences), and

▶ use the acoustic features as reported in the respective papers and do
not recompute the features using identical preprocessing and feature
sets [291].

At the time of writing the paper, there was no contemporary study investigat-
ing the mapping between prosody and emotions in acted corpora at a large
scale. To overcome these shortcomings, I collected a large array of acted emo-
tional recordings, including 432 individuals worldwide, speaking 2,963 unique
sentences totaling 3,252 minutes of emotional speech, and preprocessed (Sec-
tion 3.2.2) and extracted the features from the recordings (Section 3.2.2–1).
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Figure 3.2: Multilevel mappings The
model learns a multilevel mapping, con-
sisting of a mapping that exists in all cor-
pora as well as mapping deviations based
on certain grouping variables, like culture
or speaker. In this particular example, the
mapping for “anger” for a male Kenyan
English speaker is depicted.

Global
Anger

Kenyan
Anger

Male
Anger

Speaker CK
Anger  

voice
quality

loudness
pitch &

formants
rhythm &

tempo
shimmer

pitch
variation
MFCC 3

+ + + =

1: The requirements are full-sentence
recordings with a single basic emotion
annotation. See supplementary materials of
the paper for more details [11].
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Figure 3.3: Correlatation across acous-
tic features A Correlations between
the 88 features in the eGeMAPS set. B
Correlations between seven factors with
Varimax rotation.

Since the majority of studies rely on basic emotions (with some exceptions [42,
45, 212]), we only include speech corpora that cover basic emotions and “neu-
tral” (Figure 3.1). In each corpus, a single speech recording is associated with
one intended emotion.

To study the relationship between emotions and speech prosody, we employ
Bayesian multilevel multinomial logistic regression models (Section 3.2.4).
These models make a linear prediction for each emotion. The predicted emo-
tion is the one with the highest value. Each predictor includes an intercept to
account for potential imbalances in the base rate of emotion labels, as well as a
series of coefficients for each of the seven acoustic features that describe the
connection between speech prosody and emotions.

The overall procedure is depicted in Figure 3.2.

3.1 Background

3.1.1 Theories of Emotion

In the general background (Section 2.1.2), we described three theories of emo-
tion: discrete [59], appraisal [184], and psychological constructivist theories
of emotion [185]. We have argued that while all theories have in-theory expla-
nations for a high variability in the expression of emotion, the discrete theory
would predict a low variability, the appraisal theory a medium variability, and
the psychological constructivist theory a high variability.

3.2 Methods

3.2.1 Speech corpora

To collect a large array of acted emotional recordings, we adopted a principled
approach to scanning available speech corpora [191]. Using the approach, I
identified 200 suitable corpora but obtained access to only 42. In total, 24
corpora passed our requirements1 and were included in the analysis [40–46,
274–290]. The full list of corpora has been released here: http://emotional.
speechcorpora.com.

http://emotional.speechcorpora.com
http://emotional.speechcorpora.com
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Figure 3.5: Watanabe-Akaike Informa-
tion Criterion WAIC for models with an
increasing number of factors. The dark
area around the line is a 89% credible
interval.
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Figure 3.6: Factor loadings Factor
analysis reveals seven acoustic dimen-
sions that relate to perceptual qualities of
speech prosody. To ease the visualization
of the data, weak loadings (< .45) are not
shown in the loading plot. The full loading
plot can be found in [11].

3.2.2 Preprocessing

To process all corpora identically, I ran the following preprocessing steps. First,
I made sure that there were no sounds other than speech that could disturb
the acoustic feature extraction, like background music. For one corpus [288],
I had to segment the speech from longer fragments into sentences. This was
done with an adaptive algorithm changing a loudness threshold and a minimal
silence duration in Praat [133] using Parselmouth [292]. If there were only
video recordings of the spoken sentence, audio was extracted from the video
signal. Finally, all recordings were converted to mono and downsampled to
16,000 Hz. For each file, I encoded the following information in the filename:
corpus, intended emotion, sentence code, and speaker.

3.2.3 Acoustic features

We use the eGeMAPS standard feature set [100] since it has been extensively
used to classify emotions. Since acoustic features are highly correlated (see
Figure 3.3A) and including highly correlated features in a model can lead to
multicollinearity, we reduce the dimensionality of the feature set by performing
factor analysis.

We conducted a factor analysis since 74 of the 88 features are correlated at least
.3 with at least one other feature, suggesting reasonable factorability, and the
Kaiser-Meyer-Olkin measure of sampling adequacy is .87, and Bartlett’s test
of sphericity is significant (χ2(3828) = 9429598, p < 0.01). Since we apply
principal component analysis with Varimax rotation (using the R package
psych [293]), the final features are decorrelated (see Figure 3.3B).

To assess the minimal number of dimensions, we plot the eigenvalues per
component (see Figure 3.4), showing a decay around seven features. We also
computed the Widely Applicable Information Criterion (WAIC) for models
with an increasing number of factors (see Figure 3.5). Again, we can show that
the WAIC improvement stagnates for factor solutions with more than seven
features.

We, therefore, selected a seven-factor solution. The factors explain 12%, 11%,
10%, 10%, 6%, 4% and 4% of the variance (57% in total). Factor 1 “voice
quality” mainly loads on Alpha ratio, Hammarberg index, andMFCC 1, 2, and
4 (see Figure 3.6 for the loading plot). Factor 2 “loudness” loads mainly on
loudness and spectral flux. Factor 3 “pitch and formants” loads on fundamental
frequency, on the formants (F1−3), and mildly on HNR. Factor 4 “rhythm
and tempo” mainly loads on durational features. Factor 5 “shimmer” loads
on shimmer and mildly on HNR. Factor 6 ‘pitch variation” loads on pitch
variation and jitter. Factor 7 “MFCC 3” loads on MFCC 3.

To further assess the robustness of the factor analysis, we computed a seven-
solution factor analysis for each of the four largest countries and largest lan-
guages, covering 87% and 89% of the data, respectively. We predict all data
into the factor analysis of the respective country or language. For each country
and each language pair, we compute the optimal alignment by maximizing
the correlation between the dimensions. For each country and language pair,
we compute an average correlation of each of the seven aligned factors. Some
country and language pairs align better, but on average, we find a correlation
of r = .67 and r = .65, indicating a fair overlap in factor solutions across the
largest languages and countries.
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Figure 3.7: Obtain a prediction per
emotion To obtain a prediction for a spe-
cific emotion, we take the mapping and
multiply it with the respective acoustic fac-
tor values of some input stimulus, sum
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Figure 3.8: Model prediction Predic-
tions for all six emotions. “Neutral” always
obtains the prediction 0, as it is the pivot
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is the category prediction for some input
stimulus.
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Figure 3.9: Example mapping for
“anger” The model internally combines
the population- and group-level effects. In
this particular example, the estimates for
“anger” in the corpus “SAV” for RC1–7 are
depicted. The black line is the combined
mapping, which is plotted in the following
subplots. The larger the size of the dots,
the smaller the credible interval.

3.2.4 Modelling

As described at the beginning of this chapter, we describe themapping between
speech prosody and emotion by using Bayesian multilevel multinomial logistic
regression models (see Figure 2.1). The model learns a linear predictor of
intercepts and coefficients for each of the seven factors. To obtain a prediction
for a certain emotion for a particular speech sample, we multiply the acoustic
factor values with the respective coefficients, sum the values up, and add the
intercepts (see Figure 3.7).

This is repeated for all other emotions (except “neutral” which is the pivot
category). The prediction is passed to a softmax and the model predicts the
emotion with the highest value (see Figure 3.8). For an interactive version of
this process, see http://mapping-emotions.pol.works.

All multilevel models were fitted using the R package brms [294], which is a
high-level interface to Stan [295]. The models use the categorical response
distribution and logit link function. Where possible, standard normal priors
are used (i.e., a normal distribution with a mean of 0 and a standard deviation
of 1). The target distribution is explored using Hamiltonian Monte Carlo. The
target acceptance rate is set to 99 % to avoid divergent transitions after warmup.
To avoid exceeding the maximum tree depth, we set the hyperparameter to
12. For reproducibility, all models use the same seed. To speed up sampling,
we use cmdstan as a backend. All models use eight chains, and we collected
4,000 posterior samples. The models reported in the paper were defined as
follows:

▶ Corpus model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +

RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 |

corpus),
▶ Null model: emotion ∼ 1 + (1 | corpus),
▶ Base model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6

+ RC7 + (1 | corpus),
▶ Country model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +

RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 |

country) + (1 | corpus),
▶ Language model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +

RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 |

language) + (1 | corpus),
▶ Culture model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +

RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 |

country:language) + (1 | corpus)

▶ Big model: emotion ∼ 1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6

+ RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 | sex

+ country:language + speaker) + (1 | corpus)

3.3 Results

3.3.1 Low variability within and high variability across corpora

To assess the degree of variability in the mapping of emotional prosody, we
fit a model that estimates a coefficient for each of the seven acoustic factors
across the six emotions. On top of this “global mapping”, a corpus-specific

http://mapping-emotions.pol.works
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deviation from this coefficient is computed (see Figure 3.9). In doing so, we
measure the variability of the mapping within a corpus and across corpora.
The estimates are depicted in Figure 3.10.
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Figure 3.10: Model estimates Each col-
ored dot represents a combined estimate
for a specific corpus (average across cor-
pora + corpus-specific estimate) of an
acoustic factor (RC1–7) for all emotions.
Large dots indicate small credible inter-
vals (i.e., narrow distributions). The black
line is the average coefficient, and the
area around the line is a 89% credible
interval. The vertical gray line indicates 0.

The estimated emotion coefficients across corpora mostly match empirical
predictions from two reviews on emotion-specific acoustic profiles [39, 40].
For example, angry speech tends to be loud, and sad speech tends to be slow
(see Figure 3.11).

However, the variability across corpora tends to be high. The variability within
a corpus is characterized by the spread of the distribution of estimates. Wide
distributions indicate more variability for the given estimate in a corpus (small
dots indicate greater variability in Figure 3.10). On the other hand, variability
across corpora can be described by the overlap in the estimated distributions
across corpora. If there is a poor overlap of the distributions, then there is a
great deal of variability across corpora.
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Figure 3.11: Global Mapping Zoomed
in version of the global mapping pre-
sented in Figure 3.10.
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Figure 3.12: Zoomed-in mapping for
“anger” Zoomed-in version of factor
RC2 “loudness”. The combined estimates
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dicates an 89% credible interval. The ver-
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In Figure 3.12, we zoom in on a single factor (RC2 for anger), and one can see
that the estimates for the coefficients are rather tight (i.e., the distribution of
estimates is narrow). This implies that the mapping of a certain acoustic factor
to an emotion label is consistent within a corpus. However, across corpora, one
can observe that the credible intervals of the distributions only partially overlap,
which means that the estimates from one corpus to another often differ. If the
mapping between acoustic features and emotion labels were identical across
corpora, one would expect a greater degree of overlap. Given the observed
variability in the estimates across corpora, the next step is to investigate the
origin of the variability.

3.3.2 Identifying the origin of variability

Given that estimates across corpora are heterogeneous, we ran a series of
models accounting for different moderators. Every model estimates a separate
intercept for each corpus to account for possible imbalances in the base rate of
emotions across corpora. Models are compared to each other using the Widely
Applicable Information Criterion (WAIC), which provides an approximation
of the out-of-sample deviance while penalizing overly complex models. Thus,
the relative WAIC difference between contrasting models is important, where
lower WAIC values indicate a better model fit.

As a lower boundary, we fit an intercept-only model estimating an intercept for
each emotion and corpus. The “base”model additionally estimates a coefficient
for each acoustic factor. As shown in Figure 3.13, the base model is much better
than the intercept-only model.

Next, we fit a series of models inspired by the emotion dialect theory [189],
based on the “in-group” effect. One way to model this membership is to add a
group-level effect for languages and countries.

base null

100000 120000 140000 160000 180000
WAIC

Better models Worse models

Models: big, corpus, culture, country, and language

Figure 3.13: Model comparison The models from right to left: The null model containing only intercepts; the base model estimating the
global mapping; the in-group model estimating the interaction between country and language; the corpus model from Figure 3.10; and the
big model, which is the in-group model with additionally modeling speaker and sex differences. Error bars are standard errors of the WAIC.
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135000 140000
WAIC

Figure 3.14: Model comparison for cul-
ture Zoomed-in version of the black box
in Figure 3.13. It shows the WAIC of the
in-group models modeling the group-level
effect of countries, languages, or the inter-
action of both. Same legend as in Figure
3.13.

As shown in Figure 3.14, the language model and the country model perform
similarly well (the country model is slightly better). However, the combina-
tion of both categories “language” and “country” (“culture” model) performs
even better, allowing for useful distinctions, such as between American and
Canadian English.

As shown in Figure 3.13, the culture model is outperformed by the corpus
model from the reliability analysis (see lower non-overlapping WAIC value
for the “corpus” model), as the grouping variable “corpus” contains the same
grouping information as in “culture” — each corpus is usually assigned to one
country and one language — and additionally consists of more specific infor-
mation potentially relevant for the communication of emotion. For example,
speakers are often recruited from the same area or institution (e.g., same city
or university), targeting a more specific social group [188].

However, the grouping variable “corpus” is — in contrast to “language” or
“country” — an artificial construct that is transcended by a series of more real-
istic constructs, such as cultural proximity and social belonging. We, therefore,
extend the culture in-group model — and not the corpus model — by adding
sex and individual speaker differences. As shown in Figure 3.13, this “big”
model outperforms all other models.

The model comparison shows that models only assuming a global mapping
are outperformed by models accounting for differences across cultures, sexes,
and individual speakers. In the next section, we will investigate the relevance
of these moderators for predicting the model.

3.3.3 Relevance of culture, sex, and individual differences

To examine how individual levels of the mapping contribute to the prediction
of the model, we compute the contribution of each level of analysis to the
prediction of the model. First, we obtain the model prediction on the data
the model was fitted on, and we then measure how much each group-level
contributes to the value for the predicted emotion (see Figure 3.15).

In all emotions (except “surprise”) individual differences have the greatest
impact on the model prediction. The second most important level of anal-
ysis is “culture” for most emotions, followed by the global mapping or sex
differences.

Remarkably, only 20%–25% of the model prediction originates from the global
mapping, as depicted by the pie charts in the right upper corner of each panel
in Figure 3.15.

As depicted in Figure 3.15, the intercepts — marked by the darker color —
play a subordinate role in the prediction of the emotion. In addition, the
intercept of the corpus has in all emotions— except for “disgust”— the smallest
contribution to the final prediction.

3.3.4 Variability is largest for speakers and cultures

In the previous analysis, we have shown that the contribution to the model
prediction is largest for individual and cultural differences. In the current
analysis, we investigate the degree of variability in the coefficients for different
levels of analysis. We do this by extracting the posterior estimates for each
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Figure 3.15: Contribution of different
levels of analysis to the model predic-
tion Each panel shows the mean con-
tribution of different levels of analysis in
all cases in which the emotion was pre-
dicted. The error bars are standard devi-
ations across single posterior draws (n
= 4,000). The color of the bars indicates
the level of analysis. The darker section
of the bars represents the contribution of
the intercept. The lighter section repre-
sents the contribution of the acoustic co-
efficients. The pie chart in the upper right
of each panel shows the contribution of
global mapping to the full prediction.
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acoustic factor, each emotion, and each group-level and computing the average
standard deviation as a metric of the variability of the estimates.

As depicted in Figure 3.16, most variability can be found in the “speaker” and
“culture” estimates. Overall, the first three acoustic factors (voice quality, loud-
ness, and, pitch & formants) show themost variability (see inset in Figure 3.16).
The remaining factors (except RC7, and MFCC 3) have decreased variability
corresponding to their component number.

The variability results per emotion also show that the estimates for “speaker”
and “culture” are the most variable. All estimates for the emotions are variable
(see inset in Figure 3.17).



3.4 Discussion 37

0

3

RC1 RC3 RC2 RC7 RC4 RC5 RC6

0

1

2

3

R
C

1
R

C
1

R
C

3
R

C
2

R
C

3
R

C
2

R
C

7
R

C
4

R
C

4
R

C
5

R
C

7
R

C
5

R
C

1
R

C
3

R
C

1
R

C
2

R
C

6
R

C
2

R
C

3
R

C
7

R
C

6
R

C
7

R
C

4
R

C
5

R
C

6
R

C
4

R
C

6
R

C
5

Acoustic Factor (by number)

M
ea

n 
SD
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Figure 3.18: Correlation across map-
pings Left upper panel: mappings of
all emotions correlated with each other.
Diagonals are always 1. The remain-
ing three panels: Correlation between
the global mapping with sex, cultural, or
speaker difference. The fill color is the av-
erage correlation (Pearson).

3.3.5 Emotion expression across cultures, sexes, &
individuals

In a follow-up analysis, we investigate the correlation between the mappings
of different emotions across different levels of analysis showing how the ex-
pression of emotion differs across levels (see Figure 3.18). In this analysis, we
correlate the mean mapping of an emotion to all other mappings of other
emotions.

We start by correlating the global mapping across emotions. As depicted in the
upper left panel of Figure 3.18, “sadness” is the only emotion with a distinct
profile— as it has only a strong correlation with itself and low correlations with
all other emotions. Interestingly, the profiles of the other emotions correlate
more strongly with each other, especially the correlations among the profiles
for “fear”, “happiness”, and “surprise” (note the visual resemblance across those
emotions in Figure 3.11).

In three further analyses, we describe the relationship between emotions across
sexes, cultures, and individuals. A first analysis showed that the mapping for
a specific emotion correlates most strongly with the mapping for the same
emotion of the other sex (right panel of Figure 3.11), For instance, female anger
is, on average, closer to male anger compared to any other emotion. When
compared to the global mapping, adding sex further increases the correlation
among the profiles of “fear”, “happiness”, and “surprise”.

Adding “culture” or “speaker” to the global mapping leads to a substantial de-
crease in the overall correlations across emotions, indicating that the mapping
for individual cultures and speakers is relatively distinct. The overall drop in
correlation is greater for speakers than for cultures, confirming the pattern of
results in the previous analyses (see Figure 3.18). Nonetheless, the diagonals
are mildly preserved, indicating that the mapping for a given emotion is more
similar across speakers and cultures than to another emotion.

3.4 Discussion

3.4.1 Summary

Using a Bayesian modeling framework, we have shown that:

▶ there is considerable variability in the mapping of emotions to speech
prosody (Section 3.3.1),
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2: This is not specific to corpora of in-
tended emotions but also applied to sponta-
neous recordings, e.g. actors engaging in an
improvisation task.

▶ differences across sexes, cultures, and individuals contribute to this
variability (Section 3.3.2),

▶ individual differences followed by cultural differences are the most im-
portant for the prediction of the model (and the global mapping only
contributes 20%–25%; Section 3.3.3),

▶ the variability across acoustic coefficients is largest for speakers and
cultures (Section 3.3.4), and

▶ the expression of emotion differs more across speakers than across
cultures and cultures than across sexes (Section 3.3.5).

The observed variability is most compatible with constructivist theories, pre-
dicting emotions are perceptually variable, and appraisal theories, predicting
different appraisals will lead to different emotions. It is least compatible with
affect program theories that predict low variability across sexes, cultures, and
individuals because of the assumption of innate action programs. However,
the theory also in-theory explanations for larger variability, such as:

▶ The notion of “refinement” [59] (the assumption that there are refined
emotions within a basic emotion, e.g., “hot anger” as a subtype of
“anger”) might lead to more variability across cultures.

▶ Display rules [296] (some cultures might not allow the portrayal of
certain emotions like “sexual pleasure”) might lead to more variability
across cultures.

▶ The auditory modality might not be sufficient to capture the full range
of emotions, as information from other modalities is missing [297]. This
might lead to more variability across individuals.

However, meta-analytic investigations like the current study do not allow to
dismiss or confirm emotion theories, because they in part have in-theory
explanations for the observed variability and the study has exposed several
limitations present in emotional prosody corpora.

3.4.2 Limitations

The exposed limitations concern the stimulus space (X), the semantic space
(Y), and conducting cross-lingual comparisons (Z):

X1 Overreliance on actors.Most corpora rely on actors to portray emotions
that are not representative of the general population. 2

X2 Unnatural prompting. The present study is based on acted corpora,
often involving an unnatural emotion prompting in which the actor has
to record a sentence with a neutral meaning for a particular emotion.
These recordings lack ecological validity and thus might not represent
the expression of emotions in daily life [298–300] and might reproduce
stereotypes [200, 232].

X3 Production bias.Not all individuals are physically capable of producing
speech that conveys a particular emotion, especially if they have no
training. But even for trained actors, producing particular emotions
might be difficult (e.g., display rules).

X4 Mismatch between felt and expressed emotions. When prompting
actors to record a sentence in a particular emotion, the actor might not
feel the emotion they are portraying.

X5 Lack of standardization. The corpora are recorded in different settings,
participants receive different instructions, and the recordings are made
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with different equipment. This might lead to noise in the data and thus
enhance the variability across corpora.

Y1 Assumption of a single emotion.Corpora of intended emotions assume
that only a single emotion is communicated in a recording. However, in
real life, emotions are often mixed [232].

Y2 Assumption of existing emotion taxonomy. By selecting a list of emo-
tions to be recorded, the experimenter implicitly assumes the existence
of particular emotions (and the non-existence or irrelevance of others).

Y3 Unclear alignment of subtypes. In meta-studies, one has to summa-
rize over emotion labels. For example, Juslin & Laukka [40] count the
emotions “afraid”, “anxiety”, “frightened”, “scared”, “panic”, “terror”, and
“worry” all to the category “fear”. However, it is disputable if they all refer
to the same concept.

Z1 Lost-in-translation. The problem of unclear alignment of subtypes of
emotions (e.g., “panic” and “fear”) is further amplified once emotional
concepts are translated. Since English is a lingua franca, emotion labels
tend to be translated into the closest English equivalent, which is often
not straightforward or even possible [60, 61]. This introduces a bias
towards English-speaking cultures.

The subproblems of the stimulus space (X) contribute to the stimulus selec-
tion problem, the semantic space (Y) contributes to the taxonomy curation
problem, and Z is the lost-in-translation problem.

3.4.3 Outlook

In the following three chapters, we will describe Human-In-The-Loop (HITL)
approaches that address these limitations. In Table 3.1, we summarize the
contributions of each paradigm. In each chapter, we will explain how the
paradigm exactly solves the problem. The problem of overreliance on actors is
solved for all paradigms because the HITL involves online participants who
are a more general sample of the overall population.

Problem GSP GAP STEP

X1 Overreliance on actors ✓ ✓ ✓
X2 Unnatural prompting ✗ ✓ -
X3 Production bias ✓ ✗ -
X4 Mismatch between felt and expressed emotions ✗ ✓ -
X5 Lack of standardization ✓ ✓ -
Y1 Assumption of a single emotion ✗ ✓ ✓
Y2 Assumption of existing emotion taxonomy ✗ ✓ ✓
Y3 Unclear alignment of subtypes - - ✓
Z1 Lost-in-translation - - ✓

Table 3.1: Core problems in studying
the expression of emotion Checkmark
indicates the paradigm addresses the
problem, a cross indicates the paradigm
does not address the problem, and a
dash indicates the problem is irrelevant
to the paradigm.
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A longstanding question in psychology is whether there exist acoustic profiles
for particular emotions andwhether they differ across cultures [39, 40, 42, 119].
To efficiently study this, one would like to associate a particular emotional label
with a paradigmatic speech example. At the same time, one wants to avoid
involving actors and limit production biases because it can significantly alter
themapping [299, 301], since asking people to depict a particular emotion does
not necessarilymake them feel the emotion. Gibbs Sampling with People (GSP)
is a method to address these constraints, specifically, it can be used to sample
a representative sample of a particular semantic category, and it can do that
without relying on overt production. GSP is a HITL iterative procedure that
optimizes stimulus features to subjectively match a given verbal description
(such as “happy”), which makes it suitable for high-dimensional feature spaces
like prosody.

Here, we show that this procedure can be used to sample a paradigmatical
exemplar of a verbal descriptor from the space of emotional prosody in a
principled way. The same method could also be applied to other domains as
discussed below.

4.1 Background

Psychologists, cognitive scientists, and more recently computer scientists, have
developed various tools to study human representations. Traditionally, these
representations have been studied by presenting participants with stimuli and
asking them to make judgments. In cognitive science, this is commonly done
by presenting participants with pairs of stimuli and asking them how simi-
lar they are. From these similarity judgments, one can infer a representation
of the stimuli in a high-dimensional space using Multidimensional Scaling
(MDS) [302–305] (see Figure 4.1). Another example from psychology is re-
verse correlation [306], in which participants are shown the same base stimulus
(e.g., an image of a face) with noise added to the stimulus. In each trial, the
participant is asked to categorize the stimulus (e.g., the face looks either mas-
culine or feminine) [307]. By averaging the noise patterns across selected and
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Pairwise
similarity

MDS

Figure 4.1: Multidimensional Scaling
(MDS) A matrix of all pairwise sim-
ilarities (left) is transformed into a low-
dimensional space (right) such that the
distances in the low-dimensional space
approximate the similarities in the high-
dimensional space. Data from [7].
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Average noise
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mean(happy)
– mean(unhappy)
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mean(female)
– mean(male)

Figure 4.2: Reverse Correlation In
each trial, pixel noise is added to the
same base face (top). After collecting all
the trials, the mean noise patch for the
selected category (e.g., “happy”) and the
not selected category (e.g., “unhappy”)
is computed. The two noise patches are
subtracted. By adding the resulting noise
patch to the base face, one can infer the
mental prototype that participants use to
categorize the stimuli. Data from [307].

not selected trials, one can infer the mental prototype that participants use to
categorize the stimuli (see Figure 4.2).

The problem with both approaches is that they require a large number of
trials. For example, collecting similarity judgments for a large number of
stimuli quickly becomes infeasible, since the number of judgments required is
quadratic to the number of stimuli – forN stimuli, (N ∗(N−1))/2 judgments
are required.

In both pairwise similarity judgments and reverse correlation, trials do not
depend on previous trials. In the general background (Section 2.2), we showed
that one can speed up the exploration of high-dimensional stimulus spaces by
adding dependence across trials. In particular, we presented Markov Chain
Monte Carlo with People (MCMCP), a HITL algorithm that integrates human
judgments into the MCMC algorithm to explore high-dimensional stimulus
spaces.

4.2 Paradigm

One problem with MCMCP is that it requires participants to make a binary
choice, which is only one bit of information per trial. So to explore a high-
dimensional stimulus space, one needs a lot of trials. The second problem is that
the proposal distribution has to be defined, which is not always straightforward
and requires some trial-and-error. While this is not a problem for computer
algorithms (you can do a grid search over hyperparameters), it can become
costly when running experiments with people. To overcome this problem, we
developed Gibbs Sampling with People (GSP) [1].

4.2.1 Gibbs Sampling

A Gibbs sampler [308] is another instance of a Markov Chain Monte Carlo
algorithm. The idea is that one can sample from a high-dimensional distribu-
tion by sampling from the conditional distribution of each dimension, given
the other dimensions. So concretely, this means that one starts with a vector
state z(0) = (z

(0)
1 , . . . , z

(0)
n ) which is usually a random sample, where n is the

number of dimensions. Then one iteratively updates each dimension (zk) —
where k is the index of the current dimension and v indicates how often all
dimensions have already been visited — by sampling from:

p(z
(v+1)
k |z(v+1)

1 , . . . , z
(v+1)
k−1 , z

(v)
k+1, . . . , z

(v)
n ) (4.1)

4.2.2 Gibbs Sampling with People

In Gibbs Sampling with People (GSP) the participant controls the value of the
current dimension (zk) by controlling a slider. The participant is instructed
to move the slider to optimize for a particular target, for example, the color
that is most similar to the concept of “sky”. In GSP, each point (i) of the slider
(x = {zvk}i) is associatedwith a utility value (U(x)).Where the utility function
consists of a deterministic loss while keeping the other fixed dimensions (z−k)
fixed and a noise component associated with perceptual noise (nv

k):

U(x) = ℓ(x, z−k) + nv
k (4.2)
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Figure 4.3: Reducing participant noise
Chains can be assigned to single partici-
pants, across participants, or responses
of participants can be aggregated (e.g.
taking the mean or median response).

Figure 4.4: HSL Space Color space
parametrized by hue, saturation, and light-
ness. Copyright Mike Horvath (CC BY-
SA)

To reduce the noise associated with a particular trial, one can assign the same
chain to multiple participants (so the perceptual noise does not come from an
individual participant) and potentially aggregate the responses of the partici-
pants to average out the noise, for example by taking the mean (Figure 4.3).

4.2.3 Comparison to MCMCP

To compare GSP to MCMCP, we conducted a study in which participants had
to explore the three-dimensional space of color. Participants had to match the
color to the following targets: “chocolate”, “cloud”, “eggshell”, “grass”, “lavender”,
“lemon”, “strawberry”, and “sunset”. The color space was parametrized by hue,
saturation, and lightness (Figure 4.4, see also [309]).

We compared three conditions (all across-participant chains): MCMCP, regu-
lar GSP, and GSP with aggregation (mean over 10 participants). Each chain
was 30 iterations long, 5 chains were run per target, and each participant
contributed up to 40 chains (see Figure 4.5 for the participant interface). 422
participants were recruited from Amazon Mechanical Turk recruitment plat-
form (MTurk) and had to pass a color-blindness test and a color-vocabulary
test before continuing with the online experiment (see paper for details [1]).

In Figure 4.6A, we plot the individual chains for the different conditions. We
can see that theMCMCPchains are noisier than theGSP chains, and sometimes
don’t even converge to the color prototype (e.g., the third “lemon” chain). Also,
the aggregated GSP chains are much cleaner than the regular GSP chains,
indicating that the aggregation of responses can reduce the noise associated
with a single trial. One might argue that the poor performance of MCMCP is
due to the selection of a poor proposal distribution, however, in a follow-up
experiment in which we did a grid search over proposal distributions, we found
little difference in performance between the different proposal distributions.
Another concern might be that aggregated MCMCP would be equally good as
aggregated GSP, however, in follow-up experiments, we found that aggregated
MCMCP still does worse than aggregated GSP (see paper for details [1]).

To validate our results, we conducted a validation experiment in which par-
ticipants had to rate how well the samples matched the target color (see Fig-
ure 4.6B). We found that the aggregated GSP chains were rated significantly
higher than the regular GSP chains and the MCMCP chains (see Figure 4.6C).
From these findings, we conclude that GSP is a more efficient way to explore
high-dimensional stimulus spaces than MCMCP (even when taking into ac-
count that a GSP trial takes longer than a MCMCP trial) and that aggregating
responses can reduce the noise associated with a single trial.

4.2.4 Finding a good parametrization

While GSP only has a few assumptions concerning the parametrization of the
stimulus space (e.g., continuous dimensions), in practice, we found that it can
sometimes be challenging to find a good parametrization.

While there is no general prescription for constructing a good parametrization,
the following properties are desirable:

▶ Independence: The dimensions are independent, namely, they oper-
ate on different features of the stimulus space. Circulating over highly
correlated dimensions could result in unnecessarily long chains.
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Figure 4.6: Color results A Individual
chains for the different conditions. B In-
terface for the validation experiment. C
Validation results.
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Figure 4.7: GSP interface for prosody
Moving the slider changes only one
prosody dimension. In this example, the
range of the pitch contour changes.

▶ Perceptual alignment: The dimensions are perceptually aligned, namely,
the individual slider manipulations result in intuitive changes to the
stimulus.

▶ Smoothness: Changes in the dimensions should result in smooth changes
in the stimulus (i.e., a small change in the slider should not lead to an
abrupt change in the stimulus).

▶ Consistency: The dimensions should be consistent (e.g., a slider of a face
model where the first part of the slider changes the sex and the second
part of the slider changes the age is not consistent). The consistency
will also make the sliders more predictable, allowing for a more efficient
exploration of the stimulus space.

▶ Completeness: All sliders allow for a complete exploration of the stimu-
lus space. For example, only changing the red and blue color channels
of a color space, but not the green channel, would not be complete.

▶ Efficiency: The stimulus space should not have inactive dimensions,
namely, dimensions not relevant for the mental representation (e.g.,
when exploring the space of voices, linguistic prosody is not relevant).

▶ Synthesis: The dimensions are synthesizable in real-time (this can be-
come a challenge when using generative deep-learning models).

While we applied GSP to four modalities in the paper [1], we will only describe
the results of the emotional prosody experiment in the next section since we
designed and conducted those experiments.

4.3 Emotional prosody

4.3.1 Methods

In the emotional prosody experiment, participants use sliders to control one
prosody dimension at a time (see Figure 4.7). We use three phonetically bal-
anced sentences with a neutral meaning from the Harvard sentence text cor-
pus [310], which were recorded by a female speaker [311]. Participants modify
seven prosodic dimensions (all conducted in Praat [133] via the Python wrap-
per Parselmouth [292]) in the following order:

▶ Pitch level: From the extracted pitch contour (pitch floor: 100Hz, ceiling:
500 Hz), participants shift the pitch contour up or down in the range of
[-37, 37] Hz.
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1: I selected those three emotions because
they occupy distinct positions within the
valence arousal space.

2: All participants passed a headphone
check [312].
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▶ Pitch range: Scaling the pitch contour in the range of [0.2, 1.8] centered
at the mean pitch.

▶ Pitch slope: Changing the pitch contour in the range of [-37, 37] Hz,
where the slope is defined as the difference between the first and last
pitch value. We therefore added the linear function f(t) to each pitch
point:

f(t) = x ∗ t− t0
t1 − t0

(4.3)

▶ Jitter: The amount of frequency perturbation by applyingGaussian noise
in the range of [0, 0.0001] to the glottal pulses. This mimics irregularities
in the opening and closing of the vocal folds (see Table 2.1) and thus
adds an impression of roughness to the voice [116].

▶ Duration: The speed of the fragment in the range of [0.8, 1.2] times the
original duration.

▶ Tremolo depth: Tremolo is the periodic variation of the intensity of the
sound. We choose to control tremolo because shimmer (the intensity
perturbation) is difficult to control in existing recordings, and tremolo
applies a similar effect. The tremolo depth is the amplitude of the in-
tensity variation in the range of 0.01 dB (inaudible) to 10 dB (strong
effect).

▶ Tremolo frequency: The frequency of the intensity variation is in the
range of [0, 5] Hz.

Participants have to change the sliders such that the speaker either sounds:
“angry”, “happy”, or “sadness”.1 In contrast to the other experiments, the prosody
experiment does not start at a random point in the stimulus space but starts
with applying no effects (this does not violate any GSP assumptions) since a
random initialization would lead to a too distorted voice in the beginning.

4.3.2 Results

We recruited 110 participants from MTurk2 who contributed 220 within-
participant GSP chains with each 21 iterations (so two chains per participant).
The mean feature values are plotted for the final iteration in Figure 4.8. One
can see that the acoustic profiles of the three emotions are fairly distinct. For
example, sad speech is associated with longer durations and a low pitch range,
whereas happy and angry speech is associated with short durations and a high
pitch range (note this is also consistent with the results from my meta-study,
see Figure 3.11 and other previous research [42]).

In Figure 4.9 we plot the mean feature values over the iterations. One can
see that the acoustic profiles start to deviate, but start to stabilize once all
dimensions have been visited once.

This is also consistent with the validation results (N = 161), where the ratings
increase steadily for the first sweep of the parameter vector and then plateau
with a reliable mean contrast of 0.9 points (see Figure 4.10). The contrast is the
mean rating for the correct emotion minus the mean rating for the incorrect
emotions. Thus, if the contrast is > 0, the ratings for the intended emotion are
higher than the ratings for the not-intended emotions.

In another experiment (N = 210), we replicate our findings by running the
experiment with across-participant chains. Figure 4.11 shows that the mean
acoustic profile is not altered substantially if one takes the mean feature values
over all within-participant chains or all across-participant chains.
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Figure 4.11: Across vs. within chains
95% confidence intervals over partici-
pants.

4.3.3 Summary

Compared to existing voice manipulation experiments [313, 314], GSP allows
for efficient exploration of the stimulus space (on average visiting each dimen-
sion just once). Also, the produced stimuli are recognizable as the intended
emotion by a separate group of participants in the validation experiment. These
results show that GSP is an efficient algorithm to explore emotional prosody.

4.4 Expressive Text-To-Speech

While the previous study allowed for identification acoustic profiles associated
with particular emotions, it has three major limitations:

▶ Subjective selection: By focusing on the seven acoustic features, we
made strong assumptions about which acoustic manipulations are rel-
evant for the expression of emotions (and one can see that while we
assumed tremolo is relevant for the communication of emotions, it is
not used by participants).

▶ Low audio quality: Changing acoustic features in existing recordings
can lead to unnatural and distorted speech. This is because many acous-
tic features are correlated to each other (e.g., a pitch contour correlates
with spectral properties of the sound), and modifying the acoustic fea-
tures independently of each other can create artifacts.

▶ Limited expressivity: Traditional hand-crafted features such as pitch
slope and pitch range struggle to capture the full expressivity of underly-
ing pitch or intensity contours (e.g., it does not allow sampling from all
possible pitch contours possible for the particular recordings).

4.4.1 Methods

To solve these problems, we use a deep learning model to generate the speech.
The quality of Text-To-Speech (TTS) models has improved substantially over
the last years, and they can now generate speech that is indistinguishable from
human speech [315]. Recent developments have also allowed for controlling
the sentence, speaker identity, and prosody in isolation from each other [316].
The rationale here is that if one has a TTS model that can learn a distinct
representation of the prosody and themodel is trained on expressive recordings,
human participants can sample from all possible prosodies for particular
sentences.

4.4.1.1 GST Tacotron

At the time of the study, GST Tacotron [316] was a popular TTS model that
allows for control of the prosody of the generated speech.GST Tacotron extends
the Tacotron base model [317] by adding the following components (see
Figure 4.12A):

▶ Reference encoder: The input recordings are converted to a Mel spec-
trogram. The encoder now has to learn to map the Mel spectrogram to
a fixed-size vector (called “reference embedding”).
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▶ Style token layer: The reference embedding is now fed into an attention
module and then into the style token layer. The attention module learns
a mapping between the reference embedding and a bank of “Global Style
Tokens”, hence applying weight to each of the learned ‘styles’.

▶ Style embedding: The weighted average of the Global Style Tokens is
called the style embedding, which is then fed into the Tacotron model
together with the text embedding.

Instead of extracting the GST weights from the reference embedding, they can
also be set via GSP (Figure 4.12B). The GST Tacotron has desirable properties
for GSP: (i) themodel can generate high-quality speech (at least for the time we
wrote the paper), (ii) it learns self-emerging prosodic styles from the training
data, and (iii) the weights allow to make smooth interpolations across styles
(which would naturally happen in GSP).

We trained the model3 on the Blizzard 2013 dataset, which consists of 9,741
segmented English utterances from expressive audiobook recordings by the
professional speaker Catherine Byers [318]. After 380,000 epochs we stopped
the training since we did not observe further improvement.

4.4.1.2 Experiment setup

We used the same targets as in the prosody experiment (“angry”, “happy”, and
“sadness”) and also used the Harvard sentences [310] as stimuli.

Each slider consisted of 32 equidistant points and the range of all dimensions
is constrained to [-0.24, 0.38], corresponding to a 94% confidence interval
of the attention weights given by the model in the training data (trade-off
between expressivity and distortions created by using extreme slider values).
When synthesizing audio, we used a fixed seed to make the audio samples
deterministic. We used across-participant chains, because (i) the results of
the prosody experiment showed that the mean feature values are not altered
substantially, and (ii) due to the autoregressive nature of the TTS model, the
generated speech takes quite some time to generate.

Since aggregation worked well for the domain of color, we also used aggrega-
tion for the weights (see Figure 4.13). We used median aggregation to avoid
obtaining a sound none of the participants ever listened to (e.g., a mean value
can lie between two slider selections). Every chain starts with all weights set

https://github.com/syang1993/gst-tacotron
https://github.com/syang1993/gst-tacotron
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Figure 4.14: Example validation trial
Audio plays automatically and the user is
prompted to select one option.

PC1

PC
2

sad

happy

angry

PCA on style embeddings
iteration 9-20

Figure 4.15: PCA on style embeddings
Principal Component Analysis (PCA) on
style embeddings of 39 chains at itera-
tions 9–20.

0 1 2

3 4 5

Figure 4.16: Style embeddings over it-
erations Development over iterations
in Principal Component style embedding
space at iterations 0–5.

to 0. 130 US participants recruited fromMTurk engaged in the experiment,
finishing 39/45 chains after (20 iterations).

The results were validated by a separate group of participants (N = 82) who
rated how well the samples matched the intended emotion on a four-point
scale (see Figure 4.14). We also created 156 transfer stimuli by applying the
median attention weights of the final GSP iteration to four novel sentences
from the Harvard sentence corpus and adding 18 random samples. On average,
every stimulus was rated 4.5× for every emotion.

4.4.2 Results

In Figure 4.15 we plot the first two principal components of the style embed-
dings of the chains at iterations 9–20.

One can see that the three emotions separate moderately well on these two
components, indicating that the emotional sentences group together in the
latent space regardless of the sentence.

This grouping manifests from early on (again after approximately visiting each
dimension once), providing additional support for early convergence of the
GSP process (see Figure 4.16).

In Figure 4.17, we plot the average ratings for the initial sample (iteration 0),
binned iterations, the transferred prosody, and the random sample. One can
see that the ratings for the intended emotion steadily increase throughout the
iterations, whereas the ratings for non-intended emotions plateau or drop.
Interestingly, there are imbalances in the rating of the initial and random
samples, representing some perceived biases (e.g., iteration 0 sounds more
happy than sad).

To summarize all ratings, we computed the contrast between the ratings (same
as in the prosody experiment, Figure 4.10). The contrast shows that over the
course of iterations, the intended emotion reliably achieves higher ratings
than the non-intended emotions. Also, the transferred prosody receives a
similarly high rating as the final binned iteration (see Figure 4.17 and 4.18).
This provides additional evidence that the emotional prototypes are separated
from the sentence and thus can be transferred to new sentences.

Figure 4.17: Average rating split by
emotion Average ratings for the initial
sample (iteration 0), binned iteration 1–4,
5–8, 9–12, 13–16, 17–20, the rating for
the transfer and random sample (95%
confidence intervals).
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4.5 Discussion

4.5.1 Summary

In this chapter,

▶ We introduced Gibbs Sampling with People (GSP), a novel paradigm
that allows for efficient exploration of high-dimensional stimulus spaces.

▶ we showed that GSP is more efficient than other methods such as reverse
correlation and Markov Chain Monte Carlo with People (MCMCP)

▶ we applied GSP to the domain of emotional prosody and showed that
the intended emotion of the produced stimuli is recognized.

▶ we improved the synthesis quality and limited expressivity of the prosody
experiment by using a deep learning model that allows us to control the
prosody of the generated speech.

▶ we showed that the emotional prototypes are separated from the sentence
and the emotional prosody can be transferred to new sentences.

4.5.2 Contributions to Emotional Prosody

When GSP is applied to the domain of emotional prosody, it allows solving
two identified problems (see Table 3.1):

▶ Production bias: GSP relies on a generative model controlled by partic-
ipants via sliders, so participants do not have to produce the emotional
prosody themselves.

▶ Lack of standardization: Related to the previous point, all participants
receive the same slider interface and go through the same hardware
checks (e.g., wired headphones), leading to a standardized procedure
for all participants.

4.5.3 Limitations and Outlook

While the results are promising, several limitations need to be addressed in
future research:

▶ Generalization: Both experiments only included three emotions, whereas
the space of emotions is much larger.

▶ Multi-speaker: Both experiments only included one (female) speaker.
Future research should investigate if prosody prototypes are speaker-
specific and also if there are sex differences in the communication of
emotions. In Chapter 10, we show how GSP can be used to create a
specific voice. One possible direction would be to do some double GSP
where participants first have to find a voice for a particular speaker and
then have to find the prosody for a particular emotion.

▶ Cross-lingual: Currently, the experiment has only been conducted in
English. It would be interesting to see if the results generalize to other
languages, especially to tonal languages, like Mandarin or Thai.

▶ Cultural context: Finally, the experiments only included US partici-
pants recruited from MTurk, which is a very narrow population and
unrepresentative of the world population. Follow-up research should
include more heterogeneous populations and also train on non-Western
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and non-English corpora to make valid claims about emotional prosody
and to develop robust applications [246].

▶ Stereotypes: The prototypes might be stereotypical and might not fully
represent how emotions are communicated in real life [200, 299]. Future
research should investigate how the prototypes are perceived in different
contexts and how they can be used to create more nuanced emotional
expressions.
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Existing corpora of emotional prosody rely on existing emotion taxonomies.
For example, acted emotional speech corpora involve actors producing speech
prosody for a particular emotion or spontaneous corpora require raters to anno-
tate the emotion in speech segments, thus relying on pre-assumed taxonomies.
Mediating the selection of stimuli through assumed emotion categories is
problematic because it can lead to an unrepresentative sample of all emotional
prosodies and training a model on such a corpus leads to an impaired repre-
sentation of all possible prosodies. For example, for supervised models, this is
problematic because the model can only predict emotions it was trained on, or
for self-supervised models, the model might lack an acoustical representation
typical for that emotion (e.g., screaming for “anger”). GAP tries to overcome
this problem, by creating a high-quality corpora without any pre-specified
taxonomy.

In this chapter, we will describe how corpora of emotional prosody are con-
structed, discuss the limitations of existing methods, and provide a Human-
In-The-Loop (HITL) approach that can solve most of these limitations.

5.1 Background

5.1.1 Corpora of Emotional Prosody

Representative sampling from emotional recordings is particularly difficult,
because emotional events are fairly rare in everyday speech, and emotional cues
are usually transmitted using multiple simultaneous cues (e.g., body posture,
facial expression, sentence meaning, prosody), which makes it hard to study
how emotions are communicated through prosody (other cues also provide
emotional information).

Corpora of emotional prosody – collections of emotional speech recordings –
can be divided into two groups: corpora of intended and corpora of perceived
emotion.

5.1.1.1 Corpora of intended emotion

In intended corpora, participants – usually actors – are asked to say the same
sentence for multiple emotions. The sentences are usually constructed by the
experimenter to capture a wide range of possible emotions (e.g., “Let me tell
you something” [42, 46, 319]) or are jabberwocky sentences with no meaning
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(e.g. “I nestred the flugs”, [287]). This approach has the following advantages: It
allows to study of emotional cues in isolation and provides high experimental
control – both over the emotion elicitation procedure, the recorded sentences,
and the (usually high-quality) recording.

However, the approach also has the following limitations:

▶ Limited size: Corpora of intended emotion usually consist of a small
number of recordings involving different recordings of the same sen-
tence by a limited number of speakers (potentially overemphasizing
idiosyncrasies of individual speakers).

▶ Overreliance on actors: Saying the same sentence for different emotions
is not easy for most people and thus requires training. Therefore, most
corpora of intended emotion rely on professional actors. This makes the
speakers of the corpus a very particular subsample of the full population
(certain demographic groups are overrepresented) and makes acted
corpora expensive to create (actors are usually paid more than laymen).

▶ Unnatural elicitation procedure: Each corpus of intended emotion
uses its own emotion elicitation procedure. For example, some corpora
only give the emotion word [44], whereas other corpora try to induce
emotions by using scenarios [46]. This raises the concern if the portrayed
emotion is also the felt emotion of the speaker – which largely depends
on the emotion induction method (e.g., just reading the label “sad”
probably does not make the speaker feel sad). Another concern is that
most corpora of intended emotion try to induce a single emotion, which
is not representative of real emotions in daily life since the expression
of emotion is embedded in a larger context that is missing here. Taken
together, this raises concerns about the authenticity of the expressed
emotion.

▶ Sentence bias: The sentences read by the actors are usually chosen by
the experimenter, but it often remains untransparent why this sentence
was selected. For example, it is unclear if a neutral sentence can carry
all emotions (e.g., “Let me tell you something” is more likely to carry an
angry prosody than a disgusted prosody). Sentences also differ in the
amount of emphasis they allow onwords. One concern is that speakers in
corpora of intended emotions overemphasize certain prosodic cues [119]
and thus that the recordings consist of exaggerated or stereotypical
prosodic patterns that do not reflect natural variations in emotional
expression. Related to this concern is that if the same speaker reads the
same sentence many times for the same emotion, the recordings start
sounding less authentic due to fatigue or boredom.

▶ Pre-assumed semantic space: To create a corpus of intended emotion,
the creators of the corpus have to make a selection of emotions that are
used to elicit emotions in the speakers. This implies that the selection
of stimuli is mediated through the selected categories of emotion. It is
problematic to select such a corpus if one wants to make a statement
about the semantic space of emotions [212] since the space of possi-
ble emotions was already constrained by selecting a subset of possible
emotions.

5.1.1.2 Corpora of perceived emotion

Corpora of perceived emotion use (human) emotional annotations to identify
and label emotional segments in speech recordings. The speech recordings can
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come from data scraped from naturalistic contexts [288, 289, 320] or by record-
ing participants in game-like activities such as acting improvisation [321] or
user interactions with robots [322]. The corpora vary in the amount of experi-
mental control: some corpora use scraped recordings from the internet or from
movies [320], whereas other corpora involve interactions between actors [49].
Compared to corpora of intended emotion, corpora of perceived emotion: are
more scalable, and can be less expensive to create (do not necessitate actors,
although in practice they often do [49, 50, 321]) and are more natural (the
elicitation of emotions is embedded in a larger context and the spoken content
is determined by the speaker and not by the experimenter).

However, perceived emotion corpora have the following limitations:

▶ Consent: The recordings are often scraped from the internet or from
movies, which raises concerns about the consent of the speakers [323].

▶ Inefficient data collection: Since emotional events are rare in everyday
speech, raters have to listen to a large number of speech recordings to
find emotional segments.

▶ Assumption that intended emotions can be recognized: The labels
given in perceived emotion corpora are based on the emotion label
given by the raters. This builds upon the controversial assumption that
emotions can be recognized at an above-chance level from the voice.
However, low agreement across raters indicates that annotators quite
often do not agree [324]. Furthermore, there is no consensus on cutoff
values to call a fragment an instance of a particular emotion — such as
the minimal number of ratings per stimulus or the minimal rating. One
criticism expressed for intended emotion corpora – that the procedure
leads to stereotypical depictions of emotions – also applies to corpora
of perceived emotion: Recordings that are rated highly on a particular
emotion, are not necessarily valid depictions of that emotion, but instead
might also lead to the selection of prototypical depictions.

▶ Entangled emotional cues: The emotional information is encoded si-
multaneously through multiple channels [271, 273] but some channels
are entangled with one another and cannot easily be separated (e.g., if
you say angry things, you probably also say it with an angry prosody).
This does not allow us to dissect whether the judgment provided by the
annotators arises from a single channel (e.g., prosody) or a combination
of channels.

▶ Pre-assumed semantic space: Corpora of perceived emotion also have
to make a selection of emotions that are used to identify emotional
segments in the speech recordings.

5.1.1.3 Synthetic corpora

A third category of corpora consists of synthetic corpora, generated using gen-
erative speech models. These approaches leverage expressive Text-To-Speech
(TTS) models, which can manipulate prosody and other paralinguistic fea-
tures [e.g., 316, 325, 326] (see Section 4.4), or Emotional Speech Synthesis (ESS)
models, which incorporate an additional emotional supervision signal [for an
overview: 327].

Expressive TTSmodels are typically trained on expressive speech datasets, such
as audiobook recordings, that capture a broad range of affective states. However,
since these datasets lack explicit emotion labels, HITL approaches can be used
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1: Because MCMCP yields only one bit of
information per trial, whereas GSP provides
information gain proportional to the slider’s
granularity.
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Figure 5.1: Create and Rate Illustra-
tion of Genetic Algorithm with People
for Prosody. Creators generate mutant
recordings of the previous generation
by recording themselves saying the sen-
tence as if they were in the same situation.
Raters select the most emotional record-
ing and hence the Darwinian selection is
applied.

to identify emotionally expressive speech within the generative model. For in-
stance, Mertes, Don, Grothe, Kuch, Schlagowski, and André proposed a HITL
method for synthesizing voices that reflect specific personality traits [328].
This approach is an instantiation of MCMCP[64] (see Section2.2.3), where
the generative model proposes a new sample based on the current state (akin
to a mutation step), and a human rater evaluates whether it is an improve-
ment (analogous to selection in an evolutionary algorithm). In Chapter 4, we
demonstrated that GSP is a more efficient searchmethod for high-dimensional
spaces than MCMCP1. Using this procedure, we identified emotional speech
samples within an expressive TTS model [3]. However, like other corpus-
based approaches, this method remains constrained by predefined emotion
spaces—optimizing for a fixed set of emotions does not necessarily capture
the full diversity of emotional prosodies.

ESS models, by contrast, rely on corpora of intended (see Section 5.1.1.1) or
perceived emotions (see Section 5.1.1.2) for training and thus inherent biases
and limitations.

To address these challenges, we propose a novel method for constructing
emotional prosody corpora that mitigates many of these issues.

5.2 Paradigm

5.2.1 Create and Rate

To overcome these problems, we developed a new paradigm called “Create and
Rate” that is inspired by MCMCP. In MCMCP, a Markov chain is constructed
by proposing new states close to the current state and by asking participants to
accept or reject the move. In “Create and Rate”, the proposals are not generated
by an algorithm, but come from the creations of participants. In contrast to
MCMCP, the proposal is human-generated and the acceptance criterion is
not a binary decision. This has three advantages: (i) rating multiple creations
instead of just twomeansmore information per rating, (ii) the human creations
are not random moves around the current state but represent human biases,
and (iii) multiple raters implement a form of human aggregation.

In the paradigm, “raters” are either rating (e.g., on a Likert scale) or selecting
(forced choice) creations. The creations are generated by participants who
view the selected previous generation’s creation and then create a new one. The
paradigm supports all kinds of creations, for example, text input (e.g., asking
participants to describe all details in an image), voice recordings, or even a
generative model (e.g., you can do GSP with human aggregation, where the
same slider is presented to multiple creators and the raters pick the best slider).
To select a creation for the next generation, the paradigm supports different
aggregation methods (e.g., majority vote or highest average rating) and can in
principle take multiple selection criteria into account (e.g., select descriptions
of images that are both highly detailed and concise).

One can think of this paradigm as a genetic algorithm with people, in which
the creations are mutations of the previous creation and the ratings implement
selection (Figure 5.1).
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vious speaker, followed by a playback of
their recording to confirm that the record-
ing is correct. B Raters listen to the cre-
ations and the recording presented to the
creator (random order) and select the
most emotional recording. C Schemat-
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2: Previous literature has shown that intro-
ducing a majority voting approach reduces
participant error [329] and improves the
quality of productions [330].

5.2.2 Genetic Algorithm with People

We developed Genetic Algorithm with People (GAP), a variant of the Create
and Rate, to especially solve limitations in corpora of emotional prosody. In
this paradigm, two creators listen to the recording of the previous creator
(see Figure 5.2A). When listening to the recording, they are asked to imagine
themselves in the same situation as the speaker and then record themselves
saying the sentence. They then listen to their own recording to confirm that
the recording is correct (e.g., it captures the intended situation, the sentence
is correctly spoken). The raters then listen to the recordings of the creators
and select the most emotional recording (see Figure 5.2B). To avoid breaking
progress in the chain (e.g., both creators have difficulty recording the sentence),
the recording of the previous generation is always added to the set of proposals.
The recording with the majority vote is then selected for the next generation.2

The process is repeated for 10 generations. Each participant had a fixed role
because raters and creators have different tasks that could potentially influ-
ence one another. This procedure differs from other corpora using emotional
mimicry [331] in that GAP is an iterative procedure amplifying the emotional
content over generations and that the creators are not aware they should opti-
mize for emotionality, avoiding the production of stereotypes. The schematics
of the experiment are shown in Figure 5.2C. Over the generations, the speech
prosody becomes more and more emotional (see Figure 5.2D).
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5.3 Methods

5.3.1 Sentences

Prior to conducting the experiment, we compiled a list of 10 semantically
neutral sentences. Eight of these sentences are included in the two emotional
corpora, which are later used in the validation experiment [42, 46]. The re-
maining two sentences come from the phonetically balanced and semantically
neutral Harvard sentence corpus [310].

5.3.2 Initial seed generation

For each sentence, we generated five speech recordings each with a different
speaker using the expressive TTS model Flowtron [325] trained on LibriTTS
(2,456 speakers). We chose this TTS model, because (i) at the time of the
experiment, it was one of the best available expressive TTS models (generating
high-quality synthetic speech, while having varied prosody), and (ii) it was
trained on a large number of speakers allowing to start each chain with a
different speaker. We manually inspected if recordings contained glitches and
replaced them with new ones when necessary.

5.3.3 Validation

To validate the robustness of our paradigm, we recruited an independent
group of participants to provide annotations for the recordings, as well as the
recordings obtained from two existing emotional prosody corpora [42, 46].
In addition to the stimuli created with GAP, we presented 20 recordings each
from the 6 categories of emotion in CREMA-D [46], and 10 recordings each
from the 11 categories of emotions in the US subset of VENEC [42].

For each recording, participants answered the following questions: perceived
strength of emotion (“how emotional was the speech?”, 4-point scale), valence
(“how negative or positive was the speech?”, slider value ranging from -50 to
+50) and arousal (“how low or high in energy was the speech?”, slider value
ranging 0 to +100), and were asked to type a single word related to the mood
that best describes the state of the speaker in the recording.

5.3.4 Pre-Screening

All participants had to pass a lexical decision task (LexTALE) [332] to ensure
they were fluent speakers of English and had to pass a check to make sure
they were wearing headphones [312]. Creators had to pass two additional
tasks. The first task consisted of distinguishing good from bad recordings. Bad
recordings were defined as recordings that were silent, contained too much
noise, repeated sentences, or sentences cut out too early. If participants made
more than onemistake in this test, they could not participate in the experiment.
In the second task, participants were asked to reproduce the heard sentences
and were excluded if there was a textual mismatch (identified using Google’s
speech-to-text API transcription).

In the validation experiment, we excluded participants posthoc who repeatedly
gave the same answers for text labels (at least 4 unique words for 20 trials)
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and ones who had low response consistencies (r <.40) between the main
experiment trials and the repeated trials at the end.

5.3.5 Participants

Participants were recruited fromMTurk, had to reside in the US, had a HIT
approval rate of over 99% on the platform, and had completed at least 2,000
tasks. 126 participants completed the GAP study and 131 participants com-
pleted the validation. All participants received monetary compensation at a
rate of $9 an hour for their participation.

5.4 Results

5.4.1 Created stimuli

All stimuli generated in the experiment chains can be explored through an on-
line, interactive visualization: https://polvanrijn.github.io/prosody-GAP/.
The stimuli were validated by an independent group of participants.

5.4.2 Recordings become more emotional over iterations

In Figure 4.14, we show the average emotion strength for neutral stimuli,
the seed stimuli of GAP, the selected creations by the raters, and the stimuli
from CREMA-D and VENEC. The TTS-generated initial seed stimuli are
slightly less emotional (mean = 1.79, sd = 0.80) than the neutral stimuli from
CREMA-D and VENEC (mean = 2.09, sd = 0.86), but the creations become
more emotional over the generations. They reach a plateau around the 6th
generation, where the last generation (mean = 2.79, sd = 0.86) was slightly
higher than CREMA-D (mean = 2.70, sd = 0.97) but lower than VENEC (mean
= 3.11, sd = 0.88).

In line with this, we show that the average arousal and absolute valence of the
recordings increase over the generations (see Figure 5.4) also indicating the
recordings become more emotional over the generations.

The Kernel Density Estimation (KDE) showed dense concentration around
the center of the valence and arousal 2-dimensional space (see Figure 5.5).
The seed of GAP and the neutral sets of the other two corpora also showed
comparable levels of arousal and absolute valence.
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Figure 5.3: Emotion strength rating
Average rating on the strength of emo-
tions for the neutral stimuli (gray) and
emotional stimuli from the VENEC (blue)
and CREMA-D (green) corpus. The initial
generation of GAP is bin 0 and the follow-
ing generations are binned into 1–3, 4–6,
and 7–9. The area and the error bars rep-
resent 95 % confidence intervals.

https://polvanrijn.github.io/prosody-GAP/
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Figure 5.4: Valence and arousal rating
Average arousal and absolute valance.
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Moreover, the coverage of the valence-arousal space dispersed over the genera-
tion, and by the last generation, one can observe that the covered regions were
similar to CREMA-D and VENEC (see Figure 5.5).

5.4.3 Samples span a wide array of emotions

To further investigate the number of emotions captured by the recordings,
we analyzed the word labels provided by the annotators in the validation
experiment (see word clouds and word frequency distributions in Figure 5.5).
We quantified the variability and the term-frequency distributions and made
comparisons across the three datasets.

For GAP, we took the stimulus of the last generation where the ratings con-
verged in each of the 50 independent chains (i.e., recording that the rater
group judged as most emotional). Since the size of the stimuli was unbalanced
across the three sets (GAP = 50, CREMA-D = 100, VENEC = 100; excluding
neutral stimuli), we sampled 50 stimuli from CREMA-D and VENEC at ran-
dom to match the stimuli size. We then computed 1,000 bootstraps without
replacement in each set by randomly drawing 100 word label samples from
all responses (where each stimulus can have multiple annotations made by
independent annotators). All word labels were lemmatized using the textstem
R package.
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To measure variability, we counted the number of unique word labels in each
of the bootstrapped samples. The results showed that both GAP (mean = 72.1,
sd = 3.30) and VENEC (mean = 73.9, sd = 3.85) obtain comparable variability,
and higher value on average than CREMA-D (mean = 64.0, sd = 4.16). High
variability indicates that more diverse semantic labels are present, covering a
wider range of semantic vocabulary associated with emotions, whereas low
variability suggests that the frequency of words is concentrated in a smaller
subset of words. Considering VENEC consists of more emotion categories
than CREMA-D (11 and 6, respectively), higher variability for VENEC was
expected. The fact that GAP achieves comparable variability to VENEC is
indicative of the large breadth of emotion space GAP is able to capture.

5.5 Discussion

5.5.1 Summary

In this chapter,

▶ We proposed a new approach, Genetic Algorithm with People (GAP),
for efficient sampling of the high-dimensional emotion prosody space
by introducing genetic algorithms with human raters.

▶ We showed that with GAP the speech became more emotional over the
generations (Figure 5.3) and also showed that the mean arousal and
absolute valence increased over the generations (Figure 5.4).

▶ We quantified, using a word-frequency analysis, that the variability of
the word labels obtained using GAP was comparable to VENEC and
better than CREMA-D (Figure 5.5) indicating that GAP captures a wide
array of emotions.

Overall, these results demonstrate the robustness of GAP and suggest that (i)
emotional speech can be obtained in a less biased way without the prior as-
sumptions of emotion categories, and (ii) the obtained recordings from online
crowd-sourced samples can achieve comparable results to carefully curated
corpora generated in professional settings. Furthermore, the convergence of
emotional levels around the 6th generation demonstrates the efficiency of our
method and shows highly promising potential for its scalability.

5.5.2 Evaluation and Limitations

In the Background section of this chapter (Section 5.1.1), we have outlined
the limitations of existing corpora of emotional prosody. We will now explain
how GAP at least in part addresses these limitations (see Table 5.1).

Problem intended perceived GAP

Limited size ✗ ✓ ✓
Overreliance on actors ✗ ✓ ✓
Unnatural elicitation procedure ✗ ✓ ✓
Sentence bias ✗ ✓ ∼
Inefficient data collection ✓ ✗ ✓
Assumption that intended emotions can be recognized ✓ ✗ ∼
Entangled emotional cues ✓ ✗ ✓
Pre-assumed semantic space ✗ ✗ ✓

Table 5.1: Solving problems of corpora
of emotional prosody Checkmark indi-
cates the paradigm addresses the prob-
lem, a cross indicates the paradigm does
not address the problem, and a tilde indi-
cates the problem is only solved partially.



60 Chapter 5 Genetic Algorithm with People

▶ Limited size: GAP is scalable (both in the number of stimuli as in the
number of cultures sampled from) and can generate a large number of
emotional recordings in a relatively short amount of time.

▶ Overreliance on actors: In contrast to corpora of intended emotion,
speakers do not have to say a sentence in a particular emotion but instead
have to imagine themselves in the same situation as the previous speaker.
This is a much easier and more natural task than in intended emotion
and does not need to involve trained actors. While we acknowledge that
the online crowd workers are not a perfect representation of the general
population either, the diversity of the participants is likely to be higher
than in corpora of intended emotion.

▶ Unnatural elicitation procedure: Listening to a recording and then
imagining oneself in the same situation is amore natural task than having
to say a sentence in a particular emotion. For this task, it’s also more
likely that the portrayed emotion is the felt emotion of the speaker since
you have to imagine yourself in the same situation. It also overcomes the
problem of inducing a single emotion, since the emotion is embedded
in a larger context (imagined by the participant).

▶ Sentence bias: While in GAP the sentences are also chosen by the ex-
perimenter (and the sentence bias is thus not completely removed), the
creators read the same sentence much less often than in corpora of
intended emotion, which reduces the risk of overemphasizing certain
prosodic cues and potential fatigue or boredom.

▶ Inefficient data collection: Instead of searching for emotional segments
in a large corpus as in perceived emotion corpora, in GAP, the prosody
becomes more emotional over the generations (due to the evolutionary
pressure asserted by the raters), whichmakes it an efficient way to sample
from the emotional prosody space. Moreover, because the recordings
can be collected online, it can considerably reduce the expenses and
resources that are often necessary for amore traditional corpora curation
(inviting participants to the lab, booking recording studios, manual
annotation, etc).

▶ Assumption that intended emotions can be recognized: This problem
is only partially solved by GAP. While we do not ask raters to recog-
nize particular emotions, we do ask them to select the most emotional
recording (implying they can detect emotionality from speech). Also,
we acknowledge that the term “emotion” might be associated more with
certain emotion terms. For example, people might think more of words
such as “anger” or “happy” and less of words such as “surprise” or “dis-
gust” when they hear the term “emotion”. And these associations might
differ between cultures.

▶ Entangled emotional cues: Since the same sentence is propagated
throughout the generations, we can control for the influence of sen-
tence meaning on emotion perception.

▶ Pre-assumed semantic space: In the paradigm, participants are either
creators or raters. Creators do not know we are optimizing for emo-
tionality and we explicitly avoid the use of words such as “emotions” or
“feelings” in the experiment text. This allows us to minimize the poten-
tial biases in prompting participants to produce stereotypical emotions.
Raters on the other hand are only asked to select the most emotional
recording, and we thus do not make assumptions about the dimension-
ality of the emotional space.
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5.5.3 Contributions to Emotional Prosody

From the previous summary, it becomes apparent thatGAP solves the following
identified problems for corpora of emotional prosody (see Table 3.1):

▶ Unnatural prompting: see “Unnatural elicitation procedure” (see the
numeration in the previous section).

▶ Mismatch between felt and expressed emotions: since creators have to
imagine themselves in the same situation as the previous speaker, it is
more likely that the portrayed emotion is the felt emotion of the speaker
than just a shallow imitation.

▶ Assumption of a single emotion: creators are not asked to produce a
single emotion, but to imagine themselves in the same situation as the
previous speaker.

▶ Assumptionof existing emotion taxonomy: see “Pre-assumed semantic
space” (see the numeration in the previous section).

▶ Lack of standardization: creators and raters go through various auto-
mated quality checks (e.g., microphone noise, headphone check, ASR
transcript matching) to ascertain high-quality recordings.

5.5.4 Future work

While the current study only included US participants, the method can be
easily extended to other languages and cultures (especially because it’s scalable
online and it only relies on a few language-specific tools that are now available
for many languages [333, 334]). This makes it a particularly valuable tool
for conducting research on emotional prosody cross-culturally and for low-
resource languages.

Some recordings had – in spite of extensive screening tasks – poor audio
quality. In future work, we plan to implement better audio control to screen
for participants with bad microphone quality to improve the overall recording
quality of the corpora.

Furthermore, we want to construct a more principled way for selecting sen-
tences for initial generations that do not have to rely on an existing corpus and
that can be more easily extended to other languages.





1: Notably, this limitation also applies to
many machine learning datasets includ-
ing ImageNet [336], COCO [337], Kinet-
ics [338], AudioSet [339], Places [340] and
others.
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Identifying emotional concepts [335] and aligning them across languages is
difficult [212]. In emotional prosody, participants are usually presented with
a predefined list of emotions [42, 120, 191, 233, 271, 272, 287]. This involves
adopting a predefined taxonomy,which is often based onprevious research or is
curated by the researcher.1 However, this approach has several limitations. First,
the manual creation process introduces researcher bias. Distinctions relevant
to researchers might not be perceptually relevant. For example, researchers
often distinguish between hot (short and impulsive) and cold anger (subtle
and controlled) [335, 341], but it’s unclear whether these distinctions are
perceptually meaningful. Second, if taxonomies are sourced from previous
research, it is unclear if they cover the full range of concepts in the dataset.
Third, by using existing taxonomies, the taxonomy cannot be extended, thus
the discovery of new concepts is not possible. Finally, often taxonomies are
language- or culture-specific [246] and may not generalize across cultures
or languages. This becomes a problem if taxonomies from one language are
superimposed on another, or if the goal is to compare taxonomies across
languages (e.g., a dictionary translation [40, 52] is not likely to yield an optimal
alignment).

To solve these problems, We propose a novel adaptive tagging pipeline, called
Sequential Transmission Evaluation Pipeline (STEP), that involves the creation
of new tags and rating of existing tags. We describe previous work on HITL
annotation pipelines and show how STEP extends these ideas. We will also
show how STEP can be used to predict similarity judgments and how it can
be used to show that grounded semantic networks show small-world and
scale-free regularities.

6.1 Background

6.1.1 Games with a purpose

Games With A Purpose (GWAP) are a class of games that are designed to
solve a specific problem while entertaining the players [342]. The most famous
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example of a GWAP is the ESP Game [343], where two players are shown the
same image and have to guess the same word. If they guess the same word,
they get points. The paradigm has also been applied to other modalities (e.g.,
music [344]) and other tasks [345, 346]. While GWAPs have been developed
to create large-scale annotated datasets for machine learning, they have also
been used to study human behavior [342, 343, 347].

6.1.2 Cascade

One limitation of the GWAP design is that participants are incentivized to
come up with likely tags for the stimulus (which tend to be the most salient
aspects of the stimulus) and might not capture all details. Cascade [348] solves
this problem with a free creation step, followed by two filtering steps (selection
and categorization enforcing the consensus of multiple participants). The
paradigm consists of the following steps:

▶ Creation: Participants provide one tag for a given stimulus.
▶ Selection: Participants see all tags given for the stimulus and select the

best one.
▶ Categorization: Participants see one stimulus and all tags assigned to it

and have to categorize each tag (present or not present).

The three-step process is repeated if none of the tags is selected in the cate-
gorization step (this implements the consensus with the creators). The main
problem with Cascade is the cost of the process, costing the same or more than
hiring experts. Follow-up work suggested the process could be made more
efficient by using an early stopping criterion, that stops the most costly step
(categorization) earlier [349].

6.1.3 Visual Genome

Visual Genome [329] is a dataset developed to improve the performance of
computer vision models. It contains structured annotations for 108,077 images
from the MS COCO dataset [337] and YFCC [350]. It involved a sophisticated
human annotation pipeline consisting of the following steps:

▶ Region Descriptions: Participants describe regions by drawing bound-
ing boxes and providing a description (e.g., “yellow fire hydrant”,
“woman in shorts is standing behind the man”, “man jumping over fire
hydrant”). From the region descriptions, the following information is
distilled: objects are extracted and merged across region descriptions
(e.g., “yellow fire hydrant” is mapped to the hydrant in “man jumping
over fire hydrant”), attributes are extracted from the objects (e.g., “yel-
low” is an attribute of the hydrant), and relationships between objects
(e.g., “jumping over” in “man jumping over fire hydrant”).

▶ Objects: For each of the extracted objects, a participant is asked to draw
a bounding box. The bounding boxes are as tight as possible and should
be within the bounding box of the region description.

▶ Attributes and relationships: For each of the extracted objects,
participants are asked to create describe relationships as a triplet
(relationship, object, attribute|object) (e.g., (behind, man,

woman) or (in, woman, shorts)).
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▶ Question andAnswers: Participants nowprovide questions and answers
(six Ws: who, what, where, why, when, how) for the image as a whole
and for particular regions.

▶ Verification: Objects are validated by using rapid judgments [351] (i.e.,
participants are shown objects in a flashed manner and are asked to
verify if the object is present in the image). All other annotations are
validated using majority voting [352] asking three participants if the an-
notation is present (if two out of three participants agree, the annotation
is accepted).

The detailed annotation process of Visual Genome allows one to create a vali-
dated scene graph for each image and a global taxonomy of objects, attributes,
and relationships across all images.

6.1.3.1 Summary

GWAPs use the consensus of multiple participants to validate that newly given
tags are likely to be adequate (they are used by participants). The gamification
of the task (users receive points upon using the same word) allows to collect
the data without financial compensation, however, the exploration of labels
can be slow and inefficient since participants are incentivized to use words
that are likely to be also used by other participants (and might be trivial, non-
informative descriptions) potentially leading to an incomplete set of labels.

Cascade uses crowd workers to create taxonomies by letting participants write
new tags, select the best tag from a list of possible tags for a stimulus, and
mark which categories are present for a stimulus. While the process yields
high-quality taxonomies only including laymen, it costs as much or more than
taxonomies made by experts. One problem with this paradigm is that all tasks
are done in isolation (creation, selection, and categorization) which makes the
paradigm less efficient.

Visual Genome improves over this by letting participants write full captions
for bounding boxes drawn in images and by extracting objects, attributes, and
relationships by using NLP tools. They also use an efficient procedure for
validating objects by using a flashed presentation. However, the approach is
extensive (and thus laborious and costly) and it’s tailored to the imagemodality
(e.g., drawing bounding boxes would bemore difficult for auditory experiences,
especially if sounds overlap).

None of the three paradigms used the full potential of iterative annotation. In
the next section, we will show how adding the dependence across trials can
improve the efficiency of the annotation process.
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Figure 6.1: STEP Schematics An itera-
tive HITL approach, in which participants
can provide new tags, rate, and poten-
tially flag tags of other participants.



66 Chapter 6 Sequential Transmission Evaluation Pipeline

6.2 Paradigm

Sequential Transmission Evaluation Pipeline (STEP) integrates ideas from
iterated learning and serial reproduction [66, 70], by asking participants to
iteratively provide new tags, and to rate or flag existing tags (see Figure 6.1).

Figure 6.2: Co-occurrence graph of emotional prosody The color of the nodes is the modularity class. Modularity: 0.42. The size of the
nodes is proportional to the degree of the node.

In contrast, to Visual Genome, STEP is modality-agnostic and can be applied
to any stimulus type. In each trial, participants are presented with a stimulus
(e.g., an image, audio clip, or video excerpt) and are asked to provide at least
one tag. If the stimulus was presented before, participants are first asked to rate
the relevance of the tags provided by previous participants (on a 5-interval
Likert star-scale ranging from “not very relevant” to “very relevant”) or to flag a
tag if they find it inappropriate. If a tag is flagged by two or more participants, it
is removed from the list. However, participants are also given the opportunity
to re-add the removed tag if they feel it is relevant. For example, in Figure 6.1,
the image is first mistakenly labeled as “tomatillo”, which is then flagged twice
and removed. Also, the correct label “brussel sprouts” is added by a participant
in the third iteration and voted as highly relevant by the following participants.
To increase overlap in the used labels across stimuli and participants, each
response is stored in a global pool of tags. When participants start typing a
new tag, we provide auto-completion suggestions based on the global pool of
tags. Participants are incentivized to provide tags as single words, and unless it
is a lexicalized concept (e.g., “brussel sprouts”, which has a different meaning
from “brussel” + “sprouts”). Participants cannot provide the same tag twice
for the same stimulus or provide tags that are already assigned to the stimulus.
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We collected at least 10 iterations and the chain could have up to 20 iterations.
Chains could end early if they converge if the last iteration has at least 2 tags
that were rated at least 3 times and had a mean rating of 3 stars. After this
process is finished, one yields a weighted bag of words describing each stimulus,
i.e., a matrix T where Tij is the mean rating of tag i for stimulus j.

One can also compute a co-occurrence matrix C where Cij is the number
of times tag i and tag j co-occur in the same stimulus. This matrix can be
expressed as a graph where nodes are tags and edges are co-occurrences. In
Figure 6.2, we show the graph of tags for tags provided for emotional prosody
recordings taken from the RAVDESS corpus [44].

To detect semantic clusters in the graph, we used the Louvain community
detection algorithm [353]. The resulting modularity score describes how well
the network is compartmentalized into sub-networks. A modularity score
of 1 indicates perfect compartmentalization, while a score of 0 indicates no
compartmentalization. Each of the nodes is colored by the modularity class it
belongs to. In Figure 6.2, one can see that similar tags are grouped together
(e.g., “happiness” and “joy” or “anxious” and “frightened”), approximately
following the circumplex model of emotion [164]. The position of the nodes
is determined by the edges and their weights to other nodes (co-occurrence).
While most nodes tend to be connected to the neighboring nodes in the graph
(e.g., “male” and “man”), some nodes are not connected via an edge, e.g., “male”
and “bored” but are close in the graph.
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Figure 6.3: STEP respects MDS on the
predicted pairwise similarity matrix based
on tags. Participants listen to emotional
speech recordings from the RAVDESS
corpus and are either asked to provide
tags describing the emotion (left) or the
speaker (right).

Instead of asking participants to simply describe the stimulus, one can also ask
participants to focus on a particular respect of the stimulus. In Figure 6.3, partic-
ipants listened to the same emotional prosody recordings from the RAVDESS
corpus [44] but were either asked to either describe the emotion or the speaker.
While the MDS plot on the left shows that the tags are grouped by emotion,
the plot on the right shows that the tags are grouped by the sex of the speaker,
but the emotions are not as well separated.

6.3 Predicting pairwise similarity judgments

Pairwise similarity judgments are a common way to measure the similarity
between stimuli, however, they are costly to collect since they require par-
ticipants to compare each pair of stimuli. Here, we tried to predict pairwise
similarity judgments from (i) SOTA machine learning models trained only on
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stimulus data and not on any text, (ii) human captions describing the stimuli,
and (ii) tags collected with STEP. For the tag and caption data, we obtained
embeddings either by using word or sentence embedding models (such as
ConceptNet [354] or BERT [355]) or by using embedding-free methods (such
as co-occurrence or cosine similarity on rouge score [356]). To then obtain the
predicted similarity judgments, we computed the cosine similarity between
pairs of embedding vectors to produce a similarity matrix. To benchmark the
predictions against a subset of real similarity judgments, we used the Spear-
man correlation coefficient between the predicted and the actual similarity
judgments.

6.3.1 Datasets

We collected tags for three modalities: images of objects (vegetables, furniture,
and animals) [357], audio recordings of emotional prosody [44], and video
clips of everyday activities [358].

6.3.2 Validating STEP

To benchmark STEP, we compared it against several baselines on the video
dataset. In the first comparison, we randomly selected only a single high-rated
tag from the last iteration per stimulus. We showed that using a single tag
greatly decreases the correlation with human similarity (from r = 0.74 using
all tags to r = 0.35 using a single tag).

In the second comparison, we compared tags from the first iteration of STEP
(equivalent to non-adaptive tag collection) to tags from the last iteration. We
showed that the correlation with human similarity greatly decreased when
using tags from the first iteration (from r = 0.74 to r = 0.44).

Finally, we extracted the activity labels for each video given by the corpus and
compared them to the tags from STEP. We showed that using labels decreased
the correlation with human similarity (from r = 0.74 to r = 0.64).

All in all, we showed that: (i) tags produced after multiple iterations of STEP
outperformed all three baselines and (ii) that the iterative nature of STEP leads
to higher quality tags.

6.3.3 Results

In Figure 6.4, we show the mean correlation for each method type (DNN,
captions, and tags) for each modality. We found that DNN are always outper-
formed by tags and captions (but not by a large margin), tags are usually better
than captions (except for video), and across all modalities, combining textual
embeddings (either caption or tags) with DNN embeddings (called “stacked”)
leads to the best performance. This indicates that the tags and captions capture
information that is not captured by the DNN embeddings but is relevant for
predicting similarity judgments.



6.4 Grounded semantic networks 69

0.0
0.2
0.4
0.6
0.8

Images

0.0
0.2
0.4
0.6

Audio

0.0
0.2
0.4
0.6
0.8

Video

Approach STEP DNN Captions Stacked

Figure 6.4: Correlation to human simi-
larity Mean correlation for each method
type for each modality. The error bars are
standard deviations. The gray line indi-
cates the inter-rater reliability, indicating
the upper bound of the correlation.

small-world

random scale-free

both

0 1 2
2
4
6
8

3 4
degree

Degree

co
un

t n
od

es

1 2
2
4
6
8

3 4 5 6
degree

1 2 3 4 5 6

Figure 6.5: Types of networks Top: Ex-
ample of a random and a scale-free net-
work and their degree distributions. Bot-
tom: Example of a small-world network
and a network with both small-world and
scale-free properties.

6.4 Grounded semantic networks

Previous research has shown that many biological (such as the neural network
of a worm [359]), technological (such as the US power grid [360]) and so-
cial networks (such as film actor networks [361] and collaborations between
scientists [362]) exhibit scale-free and small-world properties. In scale-free
networks, the degree distribution follows a power-law distribution, meaning
that there are a few nodes with many connections and many nodes with few
connections. As shown in Figure 6.5 (top) this is in contrast to random net-
works, where the degree distribution follows a normal distribution, meaning
that most nodes have a similar number of connections. Small-world networks
are characterized by sparse connectivity (i.e., few connections between nodes),
a high clustering coefficient (i.e., nodes tend to cluster together), and a low
average path length (i.e., the average number of steps it takes to get from one
node to another) [360].

Steyvers and Tennenbaum [363] showed that semantic networks also ex-
hibit small-world and scale-free properties, by analyzing three large text cor-
pora [364–366]. Here we used STEP to collect tags for grounded experiences
(e.g., seeing a physical image, hearing a sound, or watching a video).

6.4.1 Datasets

▶ RAVDESS [44]: The dataset comprises a set of sentences spoken by
24 US American actors to convey a specific target emotion (“neutral”,
“calm”, “happy”, “sad”, “angry”, “fearful”, “disgust”, and “surprised”). Out
of the 1,440 recordings, we selected 1,000 by selecting three emotions
per speaker per sentence, randomly omitting 104 emotional stimuli, and
including all 96 neutral recordings. The co-occurrence graph is shown
in Figure 6.2.

▶ BOLD5K [367]: The dataset consists of 4,916 images of indoor/outdoor
activities as well as natural scenes. The images can be further grouped
into i) 1,000 hand-curated indoor and outdoor scenes from 250 cate-
gories [368], ii) 2,000 images from the COCO dataset [337] depicting
multiple objects (both inanimate and animate) and interactions between
them (e.g., everyday human social interactions), and iii) 1,916 images
from ImageNet of individual objects [336]. All images were tagged with
STEP. The co-occurrence graph is shown in Figure 6.6.

▶ Mini-Kinetics [358]: The dataset consists of short video clips of every-
day activities from 200 activity classes taken from theMini-Kinetics-200
dataset. For each of the 200 activity classes, 5 random videos were sam-
pled, totaling 1,000 video clips. The co-occurrence graph is shown in
Figure 6.7.

▶ WikiArt [369]: The dataset consists of 4,105 artworks from WikiArt
that received annotations for the emotions they evoke. We randomly
sampled 1,000 artworks from the WikiArt Emotions dataset [369], by
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Figure 6.6: Co-occurrence graph of Bold5000 images Corpus of 4,916 images of activities and natural scenes. The color of the nodes
is the modularity class. Modularity: 0.35. We added speculative axes (indoor-outdoor) based on our impression of the communities’ content.
Images from [367] (public domain license).

sampling 100 images from each of the following categories: “Impression-
ism”, “Neo-Expressionism”, “Post-Impressionism”, “Cubism”, “Abstract
Expressionism”, “Minimalism”, “Color Field Painting”, “Art Informel”,
“Abstract Art”, and “Lyrical Abstraction”. The co-occurrence graph is
shown in Figure 6.8.

6.4.2 Participants

All participants were recruited through Amazon Mechanical Turk recruitment
platform (MTurk), had to reside in the United States, be at least 18 years old,
and have successfully completed at least 5,000 tasks onMTurk with an approval
rate of 99%. Participants additionally had to pass an English proficiency test
in order to participate [332]. Overall, N = 1,902 participants took part in the
STEP paradigm.

6.4.3 Results

As shown in the co-occurrence graphs of each of themodalities (Figures 6.2, 6.6, 6.7,
and 6.8), STEP reveals the rich semantics of each of the modalities. Where
emotional prosody recordings roughly follow the circumplex model of emo-
tion [164] (Figure 6.2), the BOLD5K images show a clear separation between
indoor and outdoor activities (Figure 6.6), the Mini-Kinetics videos show a
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Figure 6.7: Co-occurrence graph of Mini-Kinetics videos Videos of everyday activities from the Mini-Kinetics-200 dataset [358]
(CC-BY). Modularity: 0.55. We added speculative labels to the modularity classes based on our impression of the communities’ content.

clear separation between activities that involve people and those that do not
(Figure 6.7), and the WikiArt images show a clear separation between abstract
and representational art (Figure 6.8).

When inspecting the graphs, one can see that a few tags are big (i.e., high
degree) and the majority of tags are small (i.e., low degree), indicating that
the graphs are scale-free. Also, we can see that the tags are clustered together,
indicating that the graphs are small-world. To quantify those observations, we
computed:

▶ Average sparsity s̄: The average number of connections a node has in
relation to the maximum number of connections a node can have (i.e.
d̄/N , where d̄ is the average number of connections a node has andN

is the number of nodes).
▶ Average shorted path length L: The average number of steps it takes to

get from one node to another (shortest path).
▶ Clustering coefficient C : The average of the local clustering coefficients

of all nodes in the graph. Intuitively, this is the fraction of a node’s
neighbors who are themselves neighbors.

▶ Small-worldness σ: The ratio of the clustering coefficient and the aver-
age shortest path length (i.e., σ = (C/Cr)/(L/Lr)). A graph is said to
be small-world whenever σ > 1.

We found that all graphs were sparse (each node is only connected to < 3.5% of
all other nodes), had a low average the shortest path length (it takes on average
< 3 steps to get from one node to another), and had a high clustering coefficient
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Figure 6.8: Co-occurrence graph of WikiArt Sample of 1,000 artworks from WikiArt [369]. Sample artworks are reproduced from
WikiArt under a public domain license. Modularity: 0.31. We added speculative labels to the modularity classes based on our impression of
the communities’ content.

(neighboring nodes are likely to be connected, C > .7). The small-worldness
was > 20 for all graphs, indicating that the graphs are small-world (all σ > 1).

This shows that the grounded semantic networks obtained via STEP exhibit
small-world and scale-free properties, similar to other biological, technological,
and social networks.

6.5 Discussion

6.5.1 Summary

In this chapter,

▶ We reviewed three paradigms for HITL annotation pipelines: GWAP,
Cascade, and Visual Genome that all use consensus across participants
to obtain a validated set of tags describing stimuli (see Table 6.1).

▶ We introduced STEP, a novel adaptive tagging pipeline that involves the
creation of new tags and rating of existing tags.

▶ STEP is modality-agnostic, in contrast to Visual Genome, is less costly
than Cascade and Visual Genome, and improves over existing work by
combining multiple steps in once (stimulus rating and creating in the
same step), by using ratings instead of categorization, and by applying
an iterative approach to improve the quality of the tags.

▶ We showed that STEP can be used to predict similarity judgments and
that STEP outperforms class labels given by the corpus and tags from
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the first iteration of STEP (indicating that the iterative nature of STEP
leads to higher quality tags).

▶ We demonstrated that grounded semantic networks obtained via STEP
exhibit small-world and scale-free properties, similar to other biological,
technological, and social networks.

Problem GWAP Casc. VisG STEP

Consensus ✓ ✓ ✓ ✓
Modality agnostic ✓ ✓ ✗ ✓
Costly ✓ ✗ ✗ ✓
Multiple steps at once ✗ ✗ ✓ ✓
Soft-labels ✗ ✗ ✗ ✓
Iterative ✗ ✗ ✗ ✓

Table 6.1: STEP vs other HITL algo-
rithms VG = Visual Genome, C = Cas-
cade Checkmark indicates the paradigm
addresses the problem, a cross indicates
the paradigm does not address the prob-
lem, and a tilde indicates the problem is
only solved partially.

The results show that STEP can be used to collect high-quality tags involving
lay participants in a cost and time-efficient manner.

6.5.2 Contributions to Emotional Prosody

When STEP is applied to the domain of emotional prosody, it allows to solve
the following identified problems (see Table 3.1):

▶ Assumption of a single emotion: unlike forced-choice emotion recog-
nition experiments, STEP does not force participants to choose a single
emotion, but allows them to provide multiple tags describing the full
emotional experience.

▶ Assumption of existing emotion taxonomy: STEP does not present
the participant with a predefined list of emotions, but allows them to
provide their own emotion tags they think are relevant.

▶ Unclear alignment of subtypes: the co-occurrence of tags across emo-
tional recordings allows to identify subtypes of emotions, that are likely
to co-occur (e.g., “happiness” and “joy”).

▶ Lost-in-translation: When STEP is applied to different languages and a
subset of stimuli is presented to all participants, this allows to align the
semantic spaces across languages and allows tomeasure the alignment of
emotional concepts across languages (e.g., if the tag “traurig” in German
always co-occurs with “sad” in English they are likely to refer to the
same concept).

6.5.3 Limitations and Outlook

Future research can improve the following aspects of STEP:

▶ Quality of tags: The quality of the tags can be further improved. En-
hanced checks can be put in place to ensure that the tags are valid words
(such as spell checking or lemmatization). Another problem is that not
all participants followed the instructions closely. In the emotion dataset,
when asking participants about the emotion (Figure 6.3), some partic-
ipants provided tags related to the speaker (e.g., “male” or “female”).
Ways to reduce these problems could be to incentivize flagging of such
tags more (e.g., a financial bonus) or to filter such tags posthoc (e.g.,
tags related to speakers tend to cluster together and could be assigned a
different modality class).
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▶ Improved benchmarks: Here we only compared STEP to the video
modality. Future, work should extend this to different modalities and
compare STEP to other HITL annotation pipelines, potentially also
measuring differences in efficiency and cost across paradigms.

▶ Improved efficiency: Over the course of iterations, the number of tags
accumulates. The initial tags, which tend to describe the most salient
aspects of the stimulus, are rated more relatively to tags that are added
later. One idea to overcome this would be to implement freezing tags
after they received a certain number of ratings. Another idea would be
to implement early stopping. In the current data collection, the chain
can stop after 10 iterations, if the last iteration has at least 2 tags that
were rated at least 3 times and had a mean rating of 3 stars. Those values
were based on initial pilot data and future research can investigate more
principled ways to stop the chain early.



It is imperative to study emotional prosody across languages.
This is important for machine learning applications trained on
multilingual data that are used across the globe and for studying
how the expression of emotion in prosody varies across cultures
and languages. In the first part of this thesis, we identified three
problems of existing research. The second part of the thesis is
mainly about the last problem – the lost-in-translation prob-
lem – about how to align emotional terms across languages. In
this part, I developed an infrastructure to run massive multilin-
gual online experiments across the globe and benchmark it on
a well-established instance of grounded semantics study of the
influence of language on perception. In Chapter 7, I describe
my contributions to Psynet, a Python package I co-developed to
conduct large-scale, complex online experiments in many lan-
guages across the globe. Running multilingual data collection
requires verifying that participants are indeed native speakers of
different languages. In Chapter 8, I solve this practical problem
by developing an automated pipeline to create vocabulary tests
that are used to assess online participants’ linguistic backgrounds
efficiently. In Chapter 9, we benchmark the infrastructure, by
running it on a well-studied domain of color naming.

Part II
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Chapter 7

Massive Online, Cross-Cultural
Experiments

Studying emotional prosody across languages is essential because emotional
expression varies significantly across linguistic and cultural contexts [11, 189,
370]. This variability often leads to uncertainty about whether emotion con-
cepts align across languages, which we refer to as the “lost-in-translation”
problem. Addressing this issue has practical implications, particularly for de-
veloping emotion recognition systems used globally [153, 154, 160]. It also has
scientific importance, as the language a person speaks can influence nonlin-
guistic mental representations and cognitive processes [371, 372].

In particular, the field is hindered by the WEIRD recruiting bias [246], which
limits research to an unrepresentative subset of the global population [247].
Moreover, most experiments are conducted in English [259], and emotion is
typically studied using English terms (see Background Section 2.3.2), which
means emotion research is biased towards English-speaking populations. For
example, Prolific, the most widely used recruitment platform for online exper-
iments, predominantly includes participants from Europe and North America,
with an interface available only in English.

The solution is to conduct large-scale, cross-cultural online experiments, lever-
aging diverse recruitment platforms to reach participants from various coun-
tries who can engage with studies in their native languages. As of 2024, 66.2% of
the global population has internet access, and 69.4% owns a smartphone, equat-
ing to approximately 5.35 billion devices [269]. This widespread connectivity
indicates that a majority of the global population is accessible online. While
this online cohort is more exposed to intercultural influences than remote soci-
eties (e.g., the Pirahã in the Amazon, the Himba in Namibia, or the Tsimane in
Bolivia), it still exhibits significant linguistic and cultural diversity [260, 261].
Notably, even remote communities are becoming more connected through
satellite phones, radios, and smartphones.

However, online experiments offer several advantages over traditional field-
work. They enable the collection of large datasets at relatively low costs, re-
quiring payment only for server infrastructure and participant compensation,
which is often lower outside the Global North. Furthermore, online research
allows for high levels of automation, streamlining recruitment, payment, and
translation processes, which is not possible in fieldwork.

To address these challenges, I developed a research infrastructure for conduct-
ingmassive online experiments on a global scale. In this chapter, we will review
existing frameworks for running online experiments, introduce PsyNet—a
Python package designed for advanced behavioral experimentation—and de-
tail my contributions to the package, with a focus on enabling large-scale,
cross-cultural research.
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7.1 Background

Over the past decade, psychology, sociology, and economics have increasingly
incorporated online participant pools into research, offering significant advan-
tages. These pools enable experimenters to expand the size and diversity of
participant groups while facilitating studies that would be nearly impossible
in traditional lab settings, such as examining interactions among thousands of
participants within social networks. Such studies include virtual worlds where
participants engage in simulations of complex social systems [373–375], inves-
tigations into cultural transmission [376, 377], governance decisions within
online communities [378, 379], large-scale perception research [380], and
innovative methods combining humans with machine-learning algorithms to
explore high-dimensional perceptual representations in themind (Background
Section 2.2, Chapter 4– 6). Such experiments can provide unique opportunities
to study pressing issues of our time, such as the spread of misinformation [381]
and the political instability within social networks [382].

Over the years, a number of frameworks have been proposed to run online
experiments [383–386]. The frameworks differ in their focus, with some fo-
cusing on providing a graphical user interface (Gorilla [386], PsychoPy [383],
or OpenSesame [387, 388]), others focus on complete front-end processing to
enable maximal scalability since only static hosting is required (Pushkin [389]
and jsPsych [384, 390]), and other focus on providing a server which can run
multiple experiments in parallel (JATOS [385] or World-Wide-Lab [391]).
However, all of those frameworks support limited complexity in terms of
experiment design and processing capabilities.

One recent framework that addresses some of these challenges is Empir-
ica [392]. It supports the development of multiplayer experiments by coordi-
nating participants into rounds to complete tasks, such as solving a murder
mystery. It includes utilities for real-time communication between participants
and the server and provides a dashboard for monitoring participant progress.
However, experimenters must largely implement the game logic themselves, of-
ten requiring advanced web development skills. In one case study, researchers
hired a software developer to create a polished experiment, highlighting the
complexity of this process.

Another framework, Dallinger [393], specializes in experiments structured
around networks, such as those involving social networks or cultural evo-
lution. Its key feature is a standardized database structure that maps onto
Python objects using PostgreSQL, facilitating network-based experiment de-
signs. Dallinger also simplifies web server provisioning, experiment deploy-
ment, and participant recruitment via services like MTurk and Prolific. Under
the hood, it builds on the Flask web framework and Gunicorn WSGI server
giving Dallinger powerful back-end processing capabilities, such as generating
complex stimuli using generative AI and processing participant responses (e.g.,
audio recordings, and transcriptions). However, it provides limited support
for organizing event timelines within participant sessions and leaves front-end
interface design to the experimenter, making new experiment implementation
time-intensive.
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Figure 7.1: PsyNet Workflow PsyNet
is a wrapper around Dallinger. Dallinger
can be run by installing the dependen-
cies locally (regular) or can be container-
ized using Docker. Experiments can be
deployed to a server by pushing the ex-
periment to Heroku or via Docker. The de-
ployed experiment requests participants
through a recruiter. Currently, PsyNet sup-
ports MTurk, Prolific, and Lucid as re-
cruiters.
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Figure 7.2: Dallinger classes Example
of three networks, where individual partic-
ipants are assigned to Infos that are part
of a node which is part of a network.

7.2 Towards a virtual lab with PsyNet

To overcome these problems in Dallinger, PsyNet was developed as a wrapper
around it (see Figure 7.1). The package was initialized by Peter Harrison and
Nori Jacoby in 2019 and I have been a core developer of PsyNet since the
beginning.

Dallinger largely misses a vocabulary of standardized concepts ranging from
trials, to stimuli (e.g., audio, video), to paradigms (e.g., static experiment,
iterated reproduction), which is introduced in PsyNet.

In Dallinger, a Participant creates an Info, which is part of a Node in a
Network. An edge between two nodes is called a Vector. Vectors control the
flow of the network. In most experiments, the structure of the network is a
chain, where the infos of a given node is summarized in the next node, which
then serves as the input for the next infos (see Figure 7.2).

PsyNet improves this by introducing the following concepts (the relationship
of the most important classes is shown in Figure 7.3):

▶ Timeline: A timeline is a sequence of events that the participant will
experience. It supports all basic operations such as conditional logic,
branching, and looping.

▶ ModularPage: To render a page in Dallinger, one has to pass variables
to the Jinja template, which then renders an HTML page. In PsyNet,
a ModularPage accepts both a Prompt and a Control. A Prompt is a
display (e.g., video, audio, image), and a Control is a response (e.g., text
input, a slider, microphone recordings). This separation allows us to
easily change the modality of a particular experiment by only making
minor changes to the experiments.

▶ Asset: PsyNet introduces the notion of an Asset. Assets are used to store
files (e.g., images, audio, video) that can be used in a ModularPage.When
exporting the experiment, the assets are automatically downloaded from
the server or stored on a cloud storage (e.g., S3). An asset is a file that
can be used in a ModularPage.

▶ Trial: A Trial is a subclass of Info. The word “trial” aligns more with
the vocabulary used in psychology. Using the show_trial() method
a ModularPage (or a sequence of ModularPages) is shown to the
Participant.

▶ TrialMaker: In Dallinger, the creation of a Network is done manu-
ally in the Experiment class, as well as adding a Node to the Network,
which makes it hard to reuse the same structure in different exper-
iments and cumbersome to change the experiment logic. To solve
this, PsyNet introduces the concept of a TrialMaker. A trial maker
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Figure 7.3: Truncated PsyNet UML
UML diagram of most important classes
in PsyNet.

is responsible for assigning a network (and thus a node) to a par-
ticipant (find_networks()), creating the trial, and assigning it to
a node and a participant (prepare_trial()), and finalizing a trial
(finalize_trial()), e.g., asynchronously wait for the post-processing
of the trial to be done, such as analyzing a voice recording. If this pro-
cess succeeds the trial is marked as finalized and if it fails the trial is
marked as failed. Participants can be excluded from the experiment
if they fail a certain number of trials (which will also fail the partici-
pant). Once a Node reaches the targeted number of finalized trials, it
will call summarize_trials() which will prepare the next node based
on the trials in the current node. The information of the next node in
definition and the degree indicates the iteration of the node in the
network. What makes trial makers powerful is that they can implement
a paradigm (e.g., GSP, Create and Rate, or STEP), but the trial, node,
and network class can be overridden such that the presentation can
be changed but the logic can be reused. This allows experimenters to
easily change experiments, e.g., change an image-based experiment to
an audio-based experiment by only changing the stimulus display type.

▶ Experiment: The experiment class is the main class in Dallinger and
PsyNet. It will periodically check if a network can grow (i.e., the last
node of the network has reached the targeted number of finalized trials
and the network is not already full). If a participant reaches the end of
an experiment (progress is 1), the participant is marked as complete
and is paid the amount specified in the experiment through the recruiter.
If the participant failed, participants receive a partial payment if this
is supported by the recruiter. Depending on the experiment settings
(config), a new participant is recruited automatically if not all networks
are full.

▶ Prescreening tasks: Prescreening tasks are essentially little trial makers
that make sure that the participant meets the criteria of the experiment.
For example, this can be an automated check to make sure people are
wearing headphones [312], a language proficiency task [10], or a check of
the microphone quality. PsyNet provides a large library of prescreening
tasks that can be easily added to the experiment.

▶ Questionnaires: Quite often, experiments require participants to fill in
a questionnaire. This can be demographic information, a standardized
questionnaire (e.g., on musicality or personality such as the Big Five),
or some standard questions after the experiments (e.g., feedback or
technical issues). Psynet provides a library of questionnaires that can be
easily added to the experiment.

▶ Monitoring: PsyNet provides various dashboards that allow to monitor
the progress of the experiment (where the participants are within the
timeline), the progress of the chains (by plotting the chains as a graph),
and the status of the experiment (e.g. CPU usage, memory usage, num-
ber of participants, recruiter metrics). This makes it easy to see if the
experiment is running smoothly and if there are any issues that need to
be addressed.

7.3 Contributions

Over the years, I have made various contributions to PsyNet and Dallinger
including the implementation of an audio JavaScript API, slider interfaces for
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Figure 7.4: Internationalization API
Four steps of the internationalization API:
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GSP, improvements to the dashboard for data monitoring, automated error
reporting during data export, improved browser detection, and the implemen-
tation of the STEP and “Create and Rate” paradigm. In the following sections,
I will focus on three main contributions: the internationalization API, the
provisioning API, and the Lucid integration.

7.3.1 Internationalization API

In order to run an experiment in many languages, the experiment has to be
translated. To facilitate this, we used the gettext utilities to extract trans-
latable strings from the experiment and to translate them using the Google
Translate or DeepL API. When marking a string as translatable, the string can
either be translated in isolation or together with all text in a particular ‘con-
text’, for example, all text on an instruction page would be translated together.
Strings are marked as translatable by wrapping them in a function call (e.g.,
_(’Hello World’)). We now use gettext to extract all translations from all
Python files in the experiment and the pybabel package to extract translatable
strings from other files (e.g., HTML, JavaScript). The extracted strings are then
translated using the DeepL API. If the language is not supported by DeepL, the
Google Translate API is used. The translations are then checked for consistency,
for example within the same context the same translation cannot be used twice
and each string needs to have a non-empty translation. Variable replacement
in fstrings can only be done after the translation has been looked up (e.g.,
_(’Hello {name}’).format(name=’James’)), this means that the variable
placeholders have to be present in the translation. This can be challenging be-
cause translators sometimes also translate the variable placeholders or HTML
tags (like <strong>). To check for these issues, we developed a consistency
checker that checks for these issues and reports them to the experimenter. Fi-
nally, variable insertions are tested to avoid runtime errors. The translations are
then stored as a .po file and are compiled during runtime. Each participant

has a locale attribute that is set to the language of the participant and attaches
the translator to the participant. PsyNet is now available in 40 languages: Ara-
bic, Belarusian, Bulgarian, Chinese, Croatian, Czech, Danish, Dutch, Estonian,
Finnish, French, German, Greek, Hebrew, Hindi, Hungarian, Indonesian, Ital-
ian, Japanese, Korean, Lithuanian, Malay, Norwegian Bokmål and Nynorsk,
Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish,
Swahili, Swedish, Tagalog, Thai, Turkish, Ukrainian, Urdu, Vietnamese.

7.3.2 Lucid Integration

The majority of online studies are currently conducted on Prolific. However,
Prolific has a limited reach in terms of countries and languages (see Figure 7.5),
the interface is only available in English, and captures a biased sample of demo-
graphics (mainly younger, educated, and highly fluent speakers of English).

To overcome this recruiter bias, we contributed to the integration of Lucid
Marketplace recruitment platform (Lucid) in PsyNet. The marketplace, owned
by Cint, connects businesses with a diverse network of respondents for survey-
based research. Unlike Prolific, Lucid is a marketplace in which suppliers
(e.g., researchers) propose a survey or experiment for a certain compensation.
Bidders, which are usually market research companies, then bid on the survey
or experiment and contract the participants. This means as a researcher you



82 Chapter 7 Massive Online, Cross-Cultural Experiments

Figure 7.5: Lucid vs. Prolific A Re-
cruitable countries in Prolific and Lucid. B
Number of participants per language on
Prolific and Lucid. For a country or lan-
guage to be listed, it must have at least
100 active participants.

A Global reach on Prolific & Lucid

B Participants by language on Prolific & Lucid

A
fr

ik
aa

ns
Es

to
ni

an
C

at
al

an
La

tv
ia

n
W

el
sh

Sl
ov

en
ia

n

G
re

ek

H
eb

re
w

Po
lis

h

D
ut

ch
H

un
ga

ria
n 

Ita
lia

n

C
ze

ch

En
gl

is
h

Po
rt

ug
ue

se
G

er
m

an

Sp
an

is
h 

Fi
nn

is
h

Sw
ed

is
h

Fr
en

ch

C
ro

at
ia

n
B

ul
ga

ria
n

Sw
ah

ili
U

kr
ai

ni
an

Se
rb

ia
n

Be
ng

al
i

D
an

is
h

U
rd

u
Sl

ov
ak

N
or

w
eg

ia
n

Ta
ga
lo
g−
Fi
lip
in
o

R
us

si
an

H
in

di
Vi

et
na

m
es

e
R

om
an

ia
n

M
al

ay
Tu

rk
is

h
A

ra
bi

c
Th

ai
In

do
ne

si
an

Ko
re

an
C

hi
ne

se
Ja

pa
ne

se

100,000

100,000

Log10
count

Active participants residing in country of language

only interact with the participant during the experiment (e.g., there is no direct
messaging before or after the experiment possible).

This made it quite challenging to integrate Lucid into PsyNet because partici-
pants would not arrive at the experiment or progress through the experiment
as expected, which makes it hard to debug why this happens. To overcome
this, we developed a monitoring system that polls the Lucid API to backmatch
registered submissions on the Lucid platform and in the experiment, load and
display all recruiter metrics (e.g., what is the median duration of the experi-
ment for completed and failed participants) and log all interactions between
the recruiter and the experiment.

7.3.3 Provisioning API

In order to run experiments across the globe, it is important to have a server that
is close to the participants to reduce latency. AWS provides on-demand servers
using EC2 in a large number of regions. We have developed a command line
API to automatize setting up a new server in a region of choice (provisioning),
pause and resume the server (to cut costs when the data collection is paused,
e.g. during multi-day recruitments where the experiment is paused overnight),
and to destroy the server when the data collection is done (teardown).

To support custom subdomains, we have implemented support for the Route
56 service, which allows users to set up a custom domain and wildcard SSL
certificate for the domain.
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7.4 Discussion

7.4.1 Summary

In this chapter,

▶ We have introduced Dallinger and PsyNet, two Python packages I ac-
tively contributed to, that allow me to run advanced behavioral experi-
ments online.

▶ Wehave described the internationalizationAPI that allows one to quickly
translate an experiment into many languages.

▶ We have described the Lucid integration that allows to recruit partici-
pants from a more diverse set of countries and languages than Prolic.

▶ We have described the provisioning API that allows to automatically set
up a server in a region of choice to reduce latency for the participants.

7.4.2 Outlook

▶ Internationalization API: I am currently working on an integration
of ChatGPT translation to cover a larger number of languages and po-
tentially enhance the translation quality, measure translation quality
(e.g., by using BLEU scores), use an LLM to mark translatable strings
in the experiment and develop a command line client to easily perform
translations (e.g. psynet translate fr de).

▶ Lucid integration: I am in direct contact with the Lucid API team to
improve the integration, e.g., find a way to enable variable or bonus pay-
ment and improve quality metrics to identify low-quality participants.

▶ Provisioning API: I am developing a pipeline to easily provide a certain
service (e.g., a TTS or a transcription model) as a Flask app and to
dockerize and deploy it as a RESTful API on a provisioned server.
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When running multilingual experiments, it is difficult to know the language of
the participants. This is different from lab experiments where the experimenter
meets the participants in person or a company running a survey on a known
pool of respondents.With PsyNet you can deploy online experiments anywhere
in the world withinminutes, but as an experimenter, you have little control over
the language of the participants. For example, participants might report they
speak a certain language to participate in a study or use automatic translation
to participate in a study in a different language.

So with increased global access to the internet and increased possibilities to
recruit online participants from all over the world [12, 75, 394–397], it is
important to have a quick and reliable way to assess the language proficiency
of participants. It is necessary to objectively verify participants’ linguistic
background beyond self-report in online studies [398], because (i) online
participantsmay have diversemultilingual backgrounds [399], (ii) may provide
noisy responses [400, 401], and can be less motivated or honest than lab
participants [402].

To quickly screen the linguistic background of a participants, one needs a
language proficiency test which:

▶ is fast to administer,
▶ is available in many languages,
▶ can be administered online,
▶ can be created automatically (to support repeated participation), and
▶ is reliable and valid.

In this chapter, we present an automated pipeline to create language proficiency
tests for any language with sufficient text data. I use the pipeline to create
vocabulary tests for 1,939 languages and validate them in three large-scale
online experiments.

Connected more broadly, the language test allows studying more diverse
populations and reducing the WEIRD bias in psychology [246] (see Back-
ground 2.3.2.1).
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8.1 Background

Language proficiency is commonly measured using vocabulary tests. There are
different types of tests, each developed for specific purposes. For example in
DIALANG [403] was developed to assess language proficiency in 14 European
languages. Vocabulary size is assessed by asking participants to fill the gap
in a sentence, both measuring receptive (fill the gap using forced choice)
and productive vocabulary (type a word). The Peabody Picture Vocabulary
Test [404] on the other hand was developed to orally measure vocabulary size
by presenting participants with four pictures and asking them to select the one
that matches the word spoken by the experimenter.

8.1.1 LexTALE

LexTALE [332] has been developed to quickly measure the receptive vocab-
ulary knowledge of a participant before taking part in a psycholinguistics
experiment, being substantially more time-efficient than other language profi-
ciency tests [405]. In this test, participants identify the real words from a list
containing also fake words (pseudo-words). A test is designed by manually
selecting rare real words and creating fake words with matching structural
similarities to the selected real words. Native speakers find this test easy, while
non-native speakers find it difficult. While the test was initially developed for
English, it has been extended to 13 other languages [406–417].

However, LexTALE is limited in its generalizability. Manually creating the
word list requires human domain experts and, therefore, introduces subjective
biases. This reliance on human labor also limits the number of words in the list,
which restricts the possibility of repeated testing. Furthermore, LexTALE
requires a word frequency database that is not available for low-resource
languages. Indeed, LexTALE is currently available in 14 languages, whereas
in comparison, online recruiting platforms can provide access to speakers of
over 90 languages [418, 419].

8.2 Pipeline

To overcome these limitations, I developed an automated pipeline to create
language proficiency tests for any language with sufficient text data, that is
comparable to LexTALE and allows to distinguish native speakers from speak-
ers of closely related languages. The proposed pipeline consists of five steps
(Figure 8.1): (1) collect the text, (2) clean the text, (3) create pseudo-words,
(4) select real words, and (5) create pairs.

Figure 8.1: Pipeline Summary of the
automated pipeline consisting of the fol-
lowing steps: Collecting and cleaning the
text, creating pseudo-words, selecting
rare words, and matching the real and
pseudo-words.

Automated pipeline
Clean
text

Create
pairs

Compute
Create pseudo-words

Select real words

Sample
P(A|B)

Select

Collect
text
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Macroareas
Africa
Australia
Eurasia
North America
Papunesia
South America

Figure 8.2: All 1,939 BibleVocab lan-
guages mapped onto the globe Each
dot represents a language for which we
created a vocabulary test. Dots are col-
ored according to the UN macro areas.
The location of the dots originates from
glottolog [424].

1: We have originally considered various
ways of sampling Wikipedia articles. Ini-
tially, we considered sampling the articles
on the same topic to equate them across the
vocabulary tests. However, there is only a
limited number of articles on the same topic
that exist for all included languages. This
constraint would lead to too few articles
per language. Another concern is that the
length per concept strongly differs across
languages (e.g., Finnish Wikipedia might
have a long article about Finland, whereas
the articles in other languages are shorter).

8.2.1 Collect the text

I collected Wikipedia articles for 60 languages (WikiVocab) and Bible transla-
tions in 1,939 languages (BibleVocab).

8.2.1.1 Wikipedia

Wikipedia has been used for various research projects ranging from a database
of notable people [420] to studying governance in online communities [421].
Due to its size, it is a suitable text source for estimating vocabulary frequency in
multiple languages. For each language, we downloaded all Wikipedia articles
using wiki40b [422] and wikipedia [423], which allows to directly down-
load the Wikipedia dump for a language. Both packages implement basic
pre-processing, e.g., removing non-content sections. To obtain a large enough
vocabulary we ranked all Wikipedia articles in a language by the article length
and processed the longest 10,000 articles.1 For three languages (Gothic, North-
ern Sami, and Wolof), there were less than 10,000 articles. Since article length
differs per language, we include the first 100,000 longest articles if they had less
than 5million valid words to reliably estimate the word frequency of infrequent
words occurring down to only once per million.

8.2.1.2 Bible

The Bible is one of the world’s most translated texts, making it a good tex-
tual source for creating vocabulary tests despite its relatively small size. It
has shown to be a valuable resource for low-resource languages by training
Natural Language Processing (NLP) models on the Bible, including machine
translation [425], Part-Of-Speech (POS) tagging [426], and multilingual TTS
and ASR using Bible recordings [427]. Here, we downloaded the Bibles from:
https://www.Bible.com/. This website includes Bible translations for 2,068
languages. However, some languages only consist of a small portion of the
Bible (e.g., only a few chapters) and thus are limited in the number of words.
We removed languages that produced a final vocabulary list of less than 30
items, resulting in 1,939 languages, densely covering all UN macroareas of the
world (Figure 8.2).

https://www.Bible.com/
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2: While some languages, like German, cap-
italize nouns and thus case can be a vocabu-
lary marker, the pipeline is designed to be
language-agnostic and thus does not take
into account language-specific rules.
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ebrew
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Figure 8.3: Unicode blocks Writing
systems occupy distinct Unicode blocks.
For example, the Latin script is in the
block 0000-007F. Words that contain char-
acters from unfrequently used blocks are
likely to be foreign words.

Autobahnraststätte
Figure 8.4: Compound words In some
languages – especially in West Germanic
languages like German and Dutch – indef-
initely long compound words can be cre-
ated by concatenating words. Quite often
the compound words fall into subwords,
which again can be compound words. We
use a model to detect likely word bound-
aries. For example, if one were to cut
the German word “Autobahnraststätte”, it
would most likely be split into “Autobahn”
and “Raststätte”, but both subwords are
also compound words.

3: There are also some disadvantages to re-
moving compound words. One disadvan-
tage of compound word detection is that
lexicalized compound words also tend to
be flagged as compound words. For exam-
ple, the lexicalized compound word “dood-
skist” in Dutch consists of two parts “dood”
(death) and “kist” (box), and has a meaning
beyond the two compounds, namely coffin.
While the compound word removal might
lead to excluding some potential real lexi-
calized compound words, the removal of
compound words is necessary to avoid that
the pseudo-words are compound words.

8.2.2 Clean the text

8.2.2.1 General text-cleaning

The following processing steps are general and are applied both for Wikipedia
and the Bible:

General pre-processing. To improve the quality of the generated words, we
implemented the following checks: (i) we rejected tokens that are written in
exclusively capital letters since they are potential acronyms or anomalies in
the text, (ii) we excluded one-letter words in the Latin alphabet as they tend to
be used as indexes (e.g., “may n be the number of participants”), and (iii) we
removed words containing letters or punctuation. All words are then changed
to lowercase.2

Remove words with foreign characters To avoid typos, foreign words, or
proper nouns, we removed words that contain characters that are not part
of the writing system (e.g., a Chinese character in an English word). The
removal is done using Unicode, a standardized text encoding to support most
of the world’s writing systems. Characters in Unicode are organized into blocks.
For example, there is a block for Cyrillic, Arabic, or Hebrew characters (see
Figure 8.3). We obtained a histogram of Unicode blocks for all characters in
each of the accepted tokens. Based on this distribution, we removed words
that are not part of the writing system. For WikiVocab, we manually identified
the Unicode blocks (based on the expected language). We kept including the
largest Unicode blocks for the Bible texts until the cumulative percentage
exceeds 50 %.

Detect compound words Compound words are made by combining multiple
existing words in a language. Languages differ in their usage of compound
words. Certain languages, such as Dutch and German, allow to spontaneously
create new words by combining two existing words. This is problematic in
the context of the test for two reasons: First, compound words tend to occur
much less frequently than each of its components, however, the infrequent
compound word is not more difficult than each of the components. This means
that compound words are likely to be selected as difficult words, whereas they
are not. Second, without removing compound words, the created pseudo-
words are more likely to be compound words themselves. Since the text corpus
will not contain all possible compound word combinations, the generated
word is likely to be marked as a fake word where actually it is an uncommon
but real compound word.3

To remove compound words, we trained charsplit [428] for each language,
which is a model to detect likely word boundaries. The model is trained on all
cleaned words. We considered a word to be a compound word if the boundary
is likely (> 0, threshold proposed by the author) and if the last segment is a
valid word (part of the word list) in that language. For example in German,
the model would split the word “Autobahnraststätte” into “Autobahn” and
“Raststätte” (see Figure 8.4), because this is the most likely split and “Raststätte”
is a valid word in German. We did not use compound word detection for
Chinese, Japanese, and Korean (CJK), as each word is a chain of different
characters, and most characters can occur in isolation, so almost all words
would be flagged as compound words.

Character to letter conversion For both tests, we converted characters to a
letter-like representation from which one can obtain n-grams. In WikiVocab,
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Figure 8.5: Character-to-letter conver-
sion Characters are converted to a
letter-like representation. For WikiVocab
this is done using language-specific pack-
ages, for the BibleVocab this is done uro-
man [429] if needed.
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Figure 8.6: Token article ratio Jar-
gon words tend to be used frequently in a
small number of articles. One way to de-
tect jargon words is to compute the ratio
between the number of occurrences of a
word and the number of articles the word
occurs in. The blue points are above the
the 95 % percentile.

we used custom packages to convert CJK languages to a letter-like string.
For Chinese, we use Pinyin [430], Hiragana for Japanese [431], and Jamo for
Korean [432]. For the Bible, we checked if themedianword length was less than
four characters. If this was the case, we assume it is a character-based language,
and we converted the characters to Roman letters using uroman [429]. We
store the mapping between characters and letters to convert the letters after
the sampling back to characters.

8.2.2.2 Wikipedia text-cleaning

The following processing steps were applied only to Wikipedia data. Here,
we used NLP tools available for the 60 languages but may not be available
for low-resource languages. If the language does not have this resource, this
process can be skipped.

General pre-processing In addition to the cleaning procedure described in
Methods 8.2.2.1, we use the isalnum function in Python to filter alpha-numeric
strings (note that this is not supported by all writing systems, e.g., Sanskrit, in
only 6 of the 60 languages for which we created the task this function was not
available).

Avoid jargon Jargon words such as “hippocampus” are problematic because
they occur infrequently, but they are not known to all native speakers (only
known to domain experts). So to avoid marking jargon words as real difficult
words, we removed them automatically. To detect possible jargon words, we
computed the ratio between the number of occurrences of a word and the
number of articles the word occurs in (Figure 8.6). Jargon words tend to be
used frequently in a small number of articles. We, therefore, only kept tokens
in the 95 % percentile of the ratio.

Lemmatizer and POS-Tagger Proper nouns (e.g., “Obama” or “Paris”) are
problematic in the context of the vocabulary test since they are names and not
words. A POS-tagger labels the Parts Of Speech of all words in the sentence. To
make the test more comparable across languages, we only select nouns.We also
use a lemmatizer to find the lemma of a given token (e.g., “shoes” → “shoe”).
Lemmas are better suited for a vocabulary test than tokens since irregular word
forms of tokens can obfuscate the lexical item. Sometimes the lemmatization
can lead to a misspelled word form (e.g., “ponies” might be lemmatized as
“poni”, where “pony” would be the correct lemma). We, therefore, only include
lemmas which also exist as tokens. There are various POS-taggers, such as
Natural Language Toolkit [433] or spacy [434]; however, they mainly support
English and a limited set of majority languages. We, therefore, use UDPipe
2.0 [435], which supports more than 60 languages and provides additional
meta-information, for example, if the token is a foreign word, an abbreviation,
or if it is a typo. We used this tool since it is available in many languages.

Spellchecker The generated pseudo-words should follow the regularities of the
language. It is, therefore, key to only include typical (i.e., no foreign words) and
correctly spelled words. We use the multilingual language-embedding model
fasttext, which was trained on 176 languages [436], to predict the language
from a given word, which filters out most foreign words. Where available, we
use open-source dictionaries from LibreOffice [437] to assess if the word is
correctly spelled using the Python packages guess_language-spirit [438]
and pyenchant [439]. Certain languages were too close to other languages,
leading to a wrong prediction. For example, Western Armenian was flagged
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Figure 8.7: Verse alignment Align all
verses overlapping with an English refer-
ence Bible. Use the Spacy POS tagger
to mark proper nouns. Search for proper
nouns in the English translation from a
curated list.
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Figure 8.8: Compute n-grams Pad
each word in the corpus by asterisks. Cut
each word into 5-grams. Compute all tran-
sitional probabilities of the 5-grams.
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Figure 8.9: Possible typo Pseudo-
words that are too similar to real words
(> 90% overlap) are likely to be read as
typos and thus are rejected.

as Armenian for 88 % of the tokens. In total, for 13 languages, we could not
detect the targeted language in at least 35 % of the tokens. In these cases, we
did not exclude words based on the spellchecker. The 13 languages are Faroese,
Irish, Scottish Gaelic, Galician, Gothic, Western Armenian, Latin, Maltese,
Norwegian Nynorsk, Sanskrit, Northern Sami, Uyghur, and Wolof.

8.2.2.3 Bible text-cleaning

The following processing steps were only applied to the Bible data. We explic-
itly did not rely on language-specific resources like dictionaries that are not
available in all Bible languages.

Verse alignment: We first align all verses overlapping with an English ref-
erence Bible (“New Living Translation”) using a universal text alignment
tool fast-align [440, 441]. We used the Spacy POS tagger to mark proper
nouns [434] due to the high performance on English and searched for proper
nouns in the English translation from a curated list [442].

Stopword removal: We then aggregated over all occurrences of a stopword
(e.g., “Jesus”). For each reference stopword, we retrieved all aligned target
words. Since the alignment is not perfect, the same stopword is not always
aligned to the same target word. We only included the most common target
word if it’s used in more than 20 % of the alignments. Since the word might be
spelled slightly differently due to inflection, we included words in the stop list
that are similar to the top match (> 80 % fuzzy match). We excluded those
stopwords obtained from the previous procedure to reduce proper nouns in
the translations.

Further processing: For all languages without character conversion, we used
compound word detection and removed words of an untypical length (Meth-
ods 8.2.2.1).

8.2.3 Pseudo-words generation

Both WikiVocab and BibleVocab used the following steps.

Compute n-grams Existing linguistic work on spoken lexicons of multiple lan-
guages has shown that pseudo-words generated from a 5-phone model capture
most phonotactic regularities across the real words of most languages [443,
444]. We, therefore, used 5-gram transitional probabilities to create pseudo-
words since they are the closest equivalents to 5-phone transitional probabili-
ties for the written language. To track different transition probabilities at the
beginning and end of each word, we padded the beginning and end of each
word with asterisks (the symbol for word termination).

Sample from n-grams We begin by choosing a sequence of five characters,
starting with four asterisks (‘****’) to signify the word’s beginning (see Fig-
ure 8.8). For each subsequent sequence, the initial four characters match the
final four of the preceding one. This process continues until we select a se-
quence ending in an asterisk, signaling the word’s end. After removing the
asterisks, we checked the resulting letter string. Using this padding method,
words with fewer than five letters can be created if the termination symbol
occurs earlier. We continued this process until 1,000 unique pseudo-words
were generated.
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Figure 8.10: Equating test difficulty To
establish a consistent test difficulty, we
computed the abundance of words with
corpus and selected word frequencies
that were similar to the one used in pre-
vious non-automatic tests [332] (shaded
yellow area).

nonword
[

]

1.98

4.02

1.82

5.40

trut

*trut
trut*

**tru
***tr

****t
real word

[

]

1.31

4.69

1.60

5.21

crop

*crop
crop*

**cro
***cr

****c

Figure 8.11: Pair word For each pseu-
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Validate pseudo-words We rejected generated pseudo-words that correspond
to real words in the language (tested using our corpus). We also rejected
pseudo-words that contain too few or too many letters based on the range of
word length of the real words in our list for each language (± 2 SD from the
median word length). For character-based languages like Chinese, we convert
each pseudo-word from the letter-based representation back to the character
representation. We do this by replacing all characters. To replace the longest
letter sequences first, we sort the letter-character mapping by the length of the
letter string. If not all letters in the pseudo-word can be replaced by characters,
the word is rejected. For all other languages, we checked if the created pseudo-
words are likely to be compound words (as explained in section 8.2.2.1). We
rejected the word if this is the case. To avoid the creation of pseudo-words that
looked similar to existing words and are potential typos, we compute a fuzzy
search using thefuzz [445] (see Figure 8.9). Since the total number of words
is extremely large, we limited the search to words that start with the first and
last three letters and are of a similar length (10 % difference in length allowed).
We stored the maximummatch between the pseudo-words and any word in
that language.

8.2.4 Select real words

To match the task difficulty of our task to LexTALE, thus making them compa-
rable for experiments, we first identified the real LexTALE items in our word
frequency distribution (log10-scale, see Figure 8.10). We then compute the
mean and standard deviation of the LexTALE items per language. We select
real words by finding words with frequencies that are randomized from a
normal distribution centered at the average LexTALE word frequency, with
the standard deviation being computed over all languages with LexTALE. The
same mean and standard deviation were used for all languages, as well as for
languages without LexTALE.

8.2.5 Creating pairs or words and pseudo-words with
matched difficulty

In the actual tests, it was important to balance the difficulty of real and pseudo-
words. We, therefore, created pairs of tests with similar expected difficulty and
structure. Of course, in the actual experiment, the words were presented in
random order, so participants could not take advantage of this pairing. Out
of the 1,000 created pseudo-words, we selected 500 that best matched the
words in that language. To do so, we obtained the logarithm of the transitional
probabilities of the letters’ 5-grams for both the words and the pseudo-words.
We then computed the average absolute difference between the words and
pseudo-words that have the same number of 5-grams. On the resulting dis-
tances, we performed greedy matching, where we kept matching the word
and pseudo-words with the smallest distance. We then matched words and
pseudo-words with a similar ‘rarity’ at the same position (see Figure 8.11). We
repeat this procedure until we match all pseudo-words. From the matched
list, we only included 500 matched pseudo-words that have the smallest fuzzy
match ratio to any of the words in that language. By doing so, we selected the
500 pseudo-words that are least likely to be typos (as typos are hard to detect
even for native speakers, especially when words are presented quickly). This
procedure tries to ensure that the low-level statistics of characters of words
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È una parola reale in Italiano?

inesistenza
Parola reale Parola falsa

Interface for Italian 
participant
Keyboard response

Figure 8.12: Interface Interface of the
validation experiment for an Italian par-
ticipant tested in Italian. The word is
presented as an image to avoid copy-
pasting.

and pseudo-words are similar, thus preventing participants from using this
knowledge to resolve the task without real lexical knowledge.

All tests can be administered online: https://vocabtest.org/. The pipeline
is available on GitHub https://github.com/polvanrijn/VocabTest and
can easily be extended to other languages by providing a text corpus.

In the next section, we will describe the interface shown to the participants.

8.3 Methods

8.3.1 Interface

The word lists are presented in a web-based interface (Figure 8.12). Each word
is displayed in the center of the screen for two seconds. Participants then
have to indicate using their keyboard if the word is real or fake. Words and
pseudo-words are presented in random order. To reduce the chance that a
participant will search for the word on the internet, we displayed the word
as an image (thus, the participant could not copy it as text). To estimate the
reliability of the test, participants did two batches of trials per language and
test. Each batch contained 30 trials except for the last experiment, where it’s
20 trials and 20 repetitions of the same trials. All texts in the interface of the
experiment (e.g., buttons, instructions, etc.) were presented in the participant’s
native language. Non-English texts were automatically translated using DeepL
or, if the language was not supported, then by Google Translate.

8.3.2 Participants

All participants provided informed consent according to an approved protocol
(Max Planck Ethics Council #2021_42) and were recruited through Prolific
(N = 543, 8 languages) and Lucid (N = 3,228, 35 languages). Participants on
Prolific received at least 9 GBP. On Lucid, the participant compensation was
matched to the local minimum wage as closely as possible.

In the next section, we will extensively validate the pipeline, by conducting
three large-scale online experiments involving 3,771 participants speaking 35
languages, resulting in 795,610 total word judgments. In the first experiment,
we applied the pipeline toWikipedia articles (WikiVocab) and showed that the
resulting test can accurately identify native speakers, even among non-native
speakers of closely related languages on Prolific [418], a common recruiting
tool. In the second experiment, we then utilized the pipeline to conduct large-
scale language proficiency testing in 35 countries, assessing proficiency in each
country across all 35 languages.We show how language proficiency is predicted
by participants’ demographics, linguistic distance to the native language of the
participant, and self-reported language proficiency. In the third experiment,
we applied our pipeline to the Bible and provided vocabulary tests for 1,939
languages (BibleVocab). We show that the resulting tests, while created on
smaller text corpora and minimal preprocessing, can still distinguish between
native speakers in typologically similar languages. This finding demonstrates
that the pipeline can be applied to an open-ended number of languages, even
ones with relatively low resources.

https://vocabtest.org/
https://github.com/polvanrijn/VocabTest
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8.4 Results

8.4.1 Distinguish between close languages on two platforms

To measure the quality of WikiVocab, we benchmark it with eight existing
LexTALE tests [332, 407, 410–412, 416] and examine whether the test would
be able to distinguish between native speakers of closely related languages.
We selected the eight languages to have linguistically remote (e.g., French and
Chinese) and close pairs (e.g., Dutch and German). Six languages are Indo-
European languages that can be divided into Germanic and Italic subfamilies,
each consisting of three languages (English, German, Dutch and Spanish,
French, and Italian, respectively). In addition, we also add two typologically
distinct languages (Chinese and Finnish, Figure 8.13).

Each participant did LexTALE andWikiVocab in their native language and
in one of the other seven foreign languages selected at random. The order of
the languages is random. For each test and language, there are two blocks of
each 30 items. For comparability with the LexTALE tests, we only included
the first 60 items in the test, indicating that all people saw all items in the two
languages and tests exactly once.

We run the tests first on Prolific and then replicate them on Lucid. For both
recruiters, we invited participants from the same country-language pairs (e.g.,
Spanish in Spain and not in Mexico), except for Chinese and Finnish since
there were not enough participants in Mainland China and Finland on Prolific.
Approximately 40 participants were recruited per language, per country, and
per platform, which corresponds to the number of participants in LexTALE
validation studies [332].

To measure consistency across tests or blocks of the same test, we use Pearson
correlations (the 95 % confidence intervals are obtained via bootstrapping,
n = 1,000). Figure 8.14 shows that both WikiVocab and LexTALE are highly
reliable, the correlation between the performance on the first and in the second
block for WikiVocab (r = 0.82 [0.78, 0.85], p < .001) was nearly as high as the
one of LexTALE (r = 0.87 [0.85, 0.89], p < .001). The performance of the two
tests was highly correlated (r = 0.85 [0.83, 0.88], p < .001, see Figure 8.15).

The heatmaps in Figure 8.15 depict the performance on LexTALE, WikiVocab,
and the language self-report. For both vocabulary tests, there is a prominent
diagonal, indicating that the native language obtained a higher accuracy com-
pared to the other languages. The average performance on the main diagonal
was 88 [87, 89] % in WikiVocab and 89 [88, 90] % for LexTALE, whereas on
all other languages, it was 62 [60, 63] % in WikiVocab and 57 [55, 58] % for
LexTALE, this difference was significant for both WikiVocab (d = 2.6) and
LexTALE (d = 3.2).4 This indicates that both tests significantly distinguish
between natives and non-natives, but on LexTALE, native speakers reached
slightly higher scores and non-natives slightly lower scores.

Importantly, as shown in Figure 8.16, the performance in the L1 was higher
than the other languages in the same subfamily (WikiVocab: 68 [65, 70] %, Lex-
TALE: 62 [58, 65] %), was lower even in a language within the same language
family (WikiVocab: 64 [62, 66] %, LexTALE: 57 [55, 60] %) and the score for
different language families was approximately at chance level (WikiVocab: 56
[55, 58] %, LexTALE: 53 [52, 55] %).
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Figure 8.15: Average performance
score for LexTALE, WikiVocab, and
self-report Average performance score
for LexTALE, WikiVocab, and self-report
in Prolific (upper panel) and Lucid (lower
panel). The x-axis represents the eight
countries, and the y-axis the eight lan-
guages. The color-fill indicates the accu-
racy. Vertical Pearson correlations reflect
the correlations of the same test in dif-
ferent recruiters. Horizontal correlations
show the correlation between WikiVocab
and LexTALE and self-report within the
same recruiter.
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Figure 8.16: Violin plots Violin plot
of test performance for native language,
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family. Dots represent the test scores of
single participants. The error bar is the
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The test performance was correlated with self-reports for WikiVocab (r =
0.84 [0.82, 0.86], p < .001). Interestingly, all matrices show a horizontal line
for English, indicating that most participants are quite fluent in this global
language. Overall, in terms of performance, LexTALE slightly outperformed
WikiVocab, but considering thatWikiVocabwas created through an automated
procedure, it is quite remarkable that it achieved almost the same high level of
performance without utilizing domain experts’ knowledge.

As shown in the lower panels of Figure 8.14–8.16, the performance in the two
tests was comparable to Prolific. The test-retest reliability was slightly higher on
Lucid (LexTALE: r = 0.88 [0.86, 0.9], WikiVocab: r = 0.85 [0.83, 0.87]) than on
Prolific. The heatmaps in Figure 8.15 show a similar structure of performance
compared with Prolific (LexTALE: r = 0.77 [0.68, 0.84], WikiVocab: r = 0.79
[0.71, 0.86], Self-report: r = 0.90 [0.84, 0.93]). Again, for both vocabulary tests,
there is a prominent diagonal (average performance on the main diagonal;
WikiVocab: 83 [81, 84] % LexTALE: 85 [83, 86] %), indicating that the native
language compared to the other languages (average performance off-diagonal;
WikiVocab: 55 [54, 57] %, LexTALE: 54 [53, 55] %) obtained a higher accuracy
(WikiVocab: d = 2.1, LexTALE: d = 2.3).

Figure 8.16, again shows that the performance in the L1 was higher than the
other languages in the same subfamily (WikiVocab: 59 [56, 61] %, LexTALE:
56 [54, 58] %), was lower or the same in a language within the same language
family (WikiVocab: 59 [57, 61] %, LexTALE: 54 [52, 56] %) and the score for
different language families was approximately at chance level (WikiVocab: 51
[50, 52] %, LexTALE: 53 [51, 54] %). The results on Lucid differ from Prolific in
two ways: The diagonal is slightly weaker on Lucid than on Prolific – indicating
the scores on the L1 were not as high as on Prolific – and the horizontal line for
English is not as strong as on Prolific, indicating that the English proficiency
is lower on Lucid (Lucid: 68.5 CI = [62.2, 74.7] %, Prolific: 77.6 CI = [69.3,
86.0] %). These differences suggest that Lucid participants capture a much
wider performance diversity, particularly including participants with lower
English performance than Prolific. This is likely due to a higher degree of
socio-economic diversity and lesser exposure to English.

8.4.2 Language proficiency survey across the globe

In the previous section, we have shown that WikiVocab can distinguish be-
tween closely related languages in two different recruiting platforms. To test if
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5: This is because if three out of four lan-
guages are completely unknown to the par-
ticipant, performance should be at a chance
level, and the task would become random
for the participant.
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this also holds for a larger set of languages, we conducted a second experiment
on Lucid involving 2,798 participants from 35 countries and 35 languages.
Those 35 languages span 9 different writing systems (e.g., Cyrillic, Devana-
gari, Korean) and 15 language subfamilies (e.g., Slavic, Malayo-Polynesian,
Indo-Iranian).

Before the main experiment, participants were asked how well they spoke
each of the 35 languages and if they learned it in school. Participants were
always tested in their first language and in three randomly chosen languages
(prioritizing foreign languages spoken by participants).5

Consistent with Experiment 1, the performance in the L1 (79.0 %) was higher
than other languages in the same subfamily (60.3 %; d = 1.38), was lower even
in a language within the same language family (56.2 %, d = 1.79) and the
score for different language families was approximately at chance level (51.7
%, Figure 8.17). So, on average, a native German speaker doing the Dutch
test (same language subfamily) should perform better than a Spanish native
speaker doing the Danish test (same family), and participants doing a language
from a different family should do even worse (e.g., an Arabic native speaker
doing the Chinese test).

Figure 8.18 shows that the score in the native language was always higher than
in the second language, except for Urdu.

The heatmap in Figure 8.19 shows that most languages have a prominent
diagonal, indicating the performance in the first languagewas better than in any
of the other languages (d = 1.92). In some cases the performance is symmetric.
For example, Slovakian participants do well in linguistically close Czech (79
[74, 84] %) and vice versa (83 [80, 86] %). Similarly, Russians understand
Ukrainian (72 [68, 77] %), and Ukrainians understand Russian (82 [75, 87] %).
A similar pattern is found for Serbian speakers, who show increased scores for
Slovenian (73 [67, 80] %) and Croatian (78 [67, 87] %) compared with their
native language (85 [83, 87] %). However, not all relations are symmetrical.
For example, Portuguese participants perform better in the Spanish test (64
[59, 69] %) compared to Spanish participants doing the Portuguese test (56
[50, 62] %).

While most languages have a prominent diagonal, some languages have a weak
diagonal (Urdu, Norwegian, Hindi, and Hebrew) and are also very close to
the diagonal in Figure 8.18, indicating the distance between performance on
L1 and L2 is small. One explanation for this difference might be that India,
Pakistan, and Israel are highly multilingual societies, which might lead to a
different view on language proficiency [424, 446]. However, when analyzing
the self-reports, participants indicated that they are most proficient in the
indicated L1 and not quite as proficient in the other languages of that country.
For Pakistani (Urdu), Norwegian (Norway), and Indian (Hindi) participants,
we find a low average performance on all tests (52 %, 55 %, 57 %, and 57 %).
Noticeably, Israeli participants performed well on the Russian test, potentially
because of the large immigration wave from Russia to Israel in the ’90s [447].
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In addition, participants from these four countries have the lowest correlations
between language self-report (Figure 8.20) and test performance and show
low test-retest reliability (Figure 8.21). This leaves open the possibility that
participants may have been dishonest in their self-reports.

8.4.3 Generalization to low-resource languages

In the previous two sections, we demonstrated that the vocabulary tests based
on Wikipedia articles (WikiVocab) can distinguish between closely related
languages and can be used to assess language proficiency across the globe.
However, not for all of the worlds this amount of text is available, and quite
often NLP tools are entirely missing. To assess if the pipeline can be applied to
low-resource languages, we conducted vocabulary tests on the Bible in 1,939
languages using a bare minimum of preprocessing (BibleVocab).
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6: For example, many biblical names –
like “Jehoshaphat” or “Mephibosheth” – are
marked as real words and real words that
don’t occur in the Bible – like “hash” or
“twinkle” – are marked as pseudo-words.
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In the experiment conducted on Prolific (n = 240), each participant does
BibleVocab and WikiVocab in their native language and in one of the other
seven foreign languages selected at random (same languages as in the first
experiment). The order of the languages is random. For each test and language,
there are two blocks of each 20 items. The items are presented at the end of
the block again in a randomized order.

Similarly to the WikiVocab results from the first experiment (d = 2.1), we
found that the performance in L1 is higher than all other L2s (d = 2.15, see
Figure 8.22). We also found that the accuracy on BibleVocab is significantly
higher in L1 compared to other L2s (d = 2.25). However, we found that the
mean score on the L1s is slightly lower on BibleVocab (81.5 [80.5, 82.5] %)
than in WikiVocab (89.7 [88.9, 90.4] %), which is caused by the minimal
preprocessing, small size and the use of old and less familiar words in Bible.6

This also explains the lower test-retest reliability in BibleVocab (r = 0.68 [0.63,
0.73]) than in WikiVocab (r = 0.78 [0.74, 0.82], see Figure 8.23). Both scores
were slightly smaller than previous experiments because of the reduced number
of items. The reduced performance can come from misclassified items. One
way to reduce false positives and negatives is to use item selection, namely, by
presenting the same test items to a larger pool of participants and selecting
those that allow distinguishing between the majority of participants. Item
selection can significantly improve the test reliability while also avoiding other
issues that our approach does not currently cover.

If one wants to avoid running an additional experiment, one can also use
item repetition instead. Namely, to show the same item twice and measure
response consistency. The hypothesis is that non-native participants are less
consistent in their choices because it is difficult to remember their previous
responses to the same item. Native speakers, on the contrary, should be able to
determine the lexicality of an item and thus should be more consistent. To test
this hypothesis, we use the fact that we repeated this experiment every item
twice (for each participant), we found that native speakers are significantly
more consistent in their choices than non-natives (native: 93.0 [92.4, 93.7] %,
non-native: 77.1 [75.6, 78.5] %, d = 1.28) and BibleVocab (native: 91.8 [91.1,
92.6] %, non-native: 76.1 [74.6, 77.6] %, d = 1.17) (Figure 8.23, lower panel).
This suggests that item repetition can be used as an alternative method to use
the test, even if some items are mislabeled.

8.5 Discussion

8.5.1 Summary

In this chapter,

▶ We proposed a fully automated pipeline to create vocabulary tests for
an open-ended number of languages only requiring a text corpus.

▶ We suggested two versions: one uses Wikipedia articles for 60 languages,
and the other uses the Bible for 1,939 languages.

▶ We benchmarked the pipeline with eight existing LexTALE tests and
showed that the test can accurately identify native speakers, even among
non-native speakers of closely related languages on Prolific, and repli-
cated these findings on Lucid.
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7: Approximately 12.4 % of the Israelis are
Russian-speaking [448].

▶ We validated the vocabulary tests in 35 languages spanning 9 differ-
ent writing systems and 15 language subfamilies and showed that the
pipeline can still distinguish between native speakers in typologically
similar languages.

▶ We showed that the pipeline is fairly robust to smaller-sized text corpora
and less preprocessing of the source material.

8.5.2 Limitations and Outlook

While the pipeline is a powerful tool for assessing language proficiency, it has
some limitations:

▶ Necessity of objective tests: The findings show that most participants
honestly self-report their language proficiency, which raises the question
of whether an objective test is necessary at all. However, when doing
research, one often needs to corroborate self-reports with objective pro-
ficiency tests. This is particularly important for multilingual societies,
the language tests allow screening of the linguistic background of a
whole participant population. For example, for Israeli online partici-
pants, we observed they were most fluent in Russian, suggesting that
test participants include immigrants.7 While self-report andWikiVocab
performance are correlated in most countries in both recruiters (Prolific:
r = 0.84 [0.81, 0.87], Lucid: r = 0.72 [0.67, 0.77]), we also find strong
differences across countries. In particular, we found participants who
report speaking Hebrew, Hindi, Norwegian, and Urdu have low test
performance in their native language but also have low correlations
between self-reported languages and test performance in general, which
indicates self-reports are misaligned with the test scores on the different
languages. In those four languages, we also observed substantially lower
test-retest reliability (r = 0.40–0.55) from the other languages (around r
= 0.80, Supplementary Figure 8.21), highlighting the relevance of testing
language proficiency before the experiment and not solely relying on
self-reports.

▶ Lab studies: The pipeline has been developed with running online stud-
ies in mind, emphasizing a high degree of automatization, and modular-
ity, and making the pipeline as language-agnostic as possible. However,
this comes at a cost, since not all possible orthographic and grammatical
rules of the language are followed. For example, our pipeline produces
lowercase nouns in all languages, even though the first letter of German
nouns should be capitalized. Another example comes from Hebrew,
where prefixes or suffixes integral to the word (such as the Hebrew letter
“Vav” and “Yod”) are not removed, though a domain expert creating the
test would likely exclude them (because they can confuse native speakers
in a similar way to typos, which we do eliminate from our test). In the
context of online experiments, this is acceptable since these rules are
usually not known by less proficient speakers or give no information
about the lexicality of test items (e.g., all words are lowercase). How-
ever, this can be a problem for lab studies that require more control
over the stimuli. To have the best from both worlds of manual and fully
automated vocabulary test creation, one can use the pipeline to propose
items for the vocabulary test and then have domain experts dismiss
items based on a predefined set of rules. This is particularly important
for multilingual projects because (a) the tests exist in a large number
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of languages and can easily be extended to new languages, (b) all items
are generated from the same language-agnostic rules, and (c) linguistic
rules can be specified before filtering which removes the subjectivity
inherent to LexTALE and its variants.

▶ Only one aspect of language proficiency: Language proficiency is a
multifaceted construct that includes vocabulary, grammar, pragmatics,
and spoken language skills. With the test, we only assess receptive vocab-
ulary knowledge, since the goal was to have a psychophysically reliable
and rapid test for language proficiency. Future research can extend the
pipeline to assess other aspects of language proficiency or apply the
pipeline to non-linguistic proficiency. For example, the same pipeline
can be used to distinguish between domain experts and non-experts
by creating real and pseudo-words from a large selection of technical
terms and asking experts and non-experts to judge which term exists
and which does not.

▶ Bots and automated quality control: Large Language Models and their
recent extensions to audio and vision pose a threat to online experi-
ments [449]. The vocabulary tests developed here can serve as a kind of
CAPTCHA to distinguish between human participants and bots [347].
To avoid cheating, items of the test are presented as images and the
URL of the image is obfuscated. However, the advent of multimodal
foundational models like GPT-4 [450] pose a threat to this approach, as
they can easily read text from images. Future research can try to add
noise to the images to make it harder for the model to read the text or
use a TTS model to present the items orally, which are also becoming
increasingly available for low-resource languages [427]. An oral version
of the test will also enable extending the pipeline to test participants in
less literate societies.
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Color naming across the globe
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Recruitment and Large Language Models’. CogSci .

To put the global recruitment infrastructure to the test, we conducted a large-
scale, cross-cultural online experiment on color naming. This is a particularly
interesting instance of grounded semantics to study, because (a) it is low-
dimensional (only requiring three dimensions to describe) and much less
high-dimensional than emotional prosody [123] and (b) it is well-studied [84–
98].

9.1 Background

9.1.1 Language shapes thought?

Research on grounded semantics has often been centered around the concept
of linguistic relativity. This is the question if language influences thought, and,
if so, how [451]. The study of how people name colors has been the most
influential modality to study this question [86–95] because color perception
has both linguistic (color words) and biological aspects (e.g., visual systems or
evolutionary constraints).

Before we will present both sides of the color naming argument, we will speak
about how we can define colors.

9.1.2 Color spaces

Colors can be described as tuples of numbers, typically three or four values.
The space of colors can be parametrized differently, each tailored to a different
use case. There are two main types of spaces: additive and subtractive color
spaces (Figure 9.1).

The Red, Green, Blue (RGB) color space is additive and combines different
intensities of red, green, and blue light, where each channel is represented
by a value ranging from 0 to 255, corresponding to the intensity of the color.
Thus, if all channels are set to 0, the color is black, and if all channels are set
to 255, the color is white. This space is commonly used for digital displays
like computer monitors and digital cameras, where each pixel consists of three
subpixels, each emitting one of the three colors.

There are also subtractive color spaces like Cyan, Magenta, Yellow, Key (Black)
(CMYK) developed for printing, in which colors are created by subtracting
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Munsell chips

in CIELAB space

Figure 9.3: Munsell color chips Top:
Palette of all 330 Munsell color chips.
Bottom: All chips are projected into the
CIELAB color space.

Ejagham (World Color Survey)

Mazahua (World Color Survey)

Figure 9.4: Two color maps from the
World Color Survey Maps of majority
colors in languages Ejagam and Maza-
hua from the WCS. The colors are the
mean RGB color of all chips with the
same majority color.

varying percentages of cyan, magenta, yellow, and black inks from white pa-
per.

However, both color spaces do not capture all perceivable colors. The CIELAB
color space (Figure 9.2) is a device-independent color space that includes
all perceivable colors. It is designed to be uniform with human vision and
consists of three components: L* (lightness), a* (green to red), and b* (blue to
yellow). The CIELAB color space is used in color management and to ensure
color consistency across different devices. One can also use CIELAB color
differences to quantify the perceptual difference between two colors.

9.1.3 Color naming studies

Berlin & Kay’s (1969) Basic Color Terms: Berlin & Kay (1969) collected color
naming data on speakers of 20 languages in the San Francisco Bay Area [452].
Each participant was shown 320 chromatic – subdividing the hue axis into
40 steps and 9 levels of brightness – and nine non-chromatic Munsell chips,
ranging from white to black (see upper part of Figure 9.3) [453]. Note that
the Munsell chips are not perfectly perceptually uniform (when projecting
the chips into CIELAB space the locations of these color values do not yield a
perfect symmetric shape, see Figure 9.3). The participants were asked to name
each chip using a Basic Color Term (BCT) [452], which are defined as:

▶ Monolexemic: The term must be a single word, not a compound or
descriptive phrase. For example, “red” is a basic color term, but “light
red” is not.

▶ Non-specialized: The term should not be restricted to specific contexts
or objects. In other words, it must be applicable to a broad range of ob-
jects and not limited to specific items or materials. For instance, “blonde”
(used only for hair or beer) does not fulfill this criterion.

▶ Psychological salience: The term should be psychologically significant,
easily recognized by speakers of the language, and should partition color
space exhaustively.

Berlin & Kay (1969) show that there are substantial differences in color naming
across languages, including the number of color terms across and their position
in the color space. However, the study was also criticized for its methodology,
because it covered ninety-eight languages with only twenty participants, so
many of these participants were highly multilingual. Furthermore, all speakers
resided in San Francisco, which may not accurately reflect the native linguistic
environments.

World Color Survey: To overcome these flaws, they conducted a large follow-
up study, theWorld Color Survey (WCS) conducted from 1976–1980, in which
color naming patterns were studied for speakers of 110 unwritten languages,
with low exposure to other cultures [226] (see Figure 9.4 for two maps). In this
study, the same methodology was used as in Berlin & Kay (1969), but a purely
white chip was added to the palette of Munsell chips (now 330 chips). The data
was collected in a twofold manner. First, participants name each chip using a
BCT (colors presented in a random order). Second, based on the elicited color
terms a list of BCTs was created, and for each color participants were asked to
select the color term that best represents the color chip.
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9.1.4 Universalist Theory

The following findings have been used to support the universalist theory:

▶ Berlin & Kay (1969) have claimed that there are maximal eleven color
categories that align with the English color terms (black, white, red,
yellow, green, blue, brown, orange, pink, purple, and gray) and other
languages would either use these categories or a subset of them down to
3 color terms. They argue that the color naming pattern is constrained
by evolution, such that languages with the same number of color terms
have similar color maps.

▶ Lindsey & Brown (2006) reanalyzed the WCS data using k-means
clustering on single participant color naming data and found that the
optimal clustering result (8 clusters) closely resembled the actual color
categories present in English [454].

▶ Regier et al. (2007) used irregular color samples from the CIELAB
space of Munsell color chips (see Figure 9.3) to explain the location and
shape of color categories in WCS [455].

▶ Zaslavsky et al. (2018) used the information bottleneck theory to explain
the evolution of color terms in the WCS languages, showing that the
WCS languages achieve nearly optimal communicative efficiency [456]
and are compatible with iterated learning experiments on color [67] (see
Section 2.2.2).

Taken together, these studies suggest that while languages may differ in the
number of color terms, the process of color naming is constrained by universal
principles.

9.1.5 Linguistic Relativity

The following findings have been used to support the linguistic relativity
theory:

▶ Linguistic categories influence perceptual boundaries: Languages dif-
fer in the number of BCTs. For example for Russian [88], Greek [91],
Turkish [89] and German [87] have different color categories than En-
glish. It has been shown that speakers of languages with different BCTs
differ in their speed and accuracy in distinguishing between colors of
BCTs in their own vs a foreign language [90, 239], showing that linguis-
tic categories (BCTs) influence perceptual boundaries (differentiating
between colors).

▶ Linguistic categories influence memory: Lowry and Bryant [238] have
shown that speakers of Russian and English are influenced by their color
representation of blue when remembering the color of objects that are
shown in a range from blue to gray.

9.1.6 Implications of the color naming debate

The color naming debate has shown that languages differ in the number of
color terms, but that the placement of these color terms is not random and lan-
guages with varying numbers of color terms are near-optimal communicative
efficiency.
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On the other hand, it has been shown that linguistic categories have down-
stream effects on color discrimination and memory. A larger literature has
shown that the language and cultural background affect cognitive abilities
not only for language-related tasks, such as emotion semantics [60], but also
for ostensibly nonlinguistic abilities, including memory [263], space [237],
time [457, 458] and sensory-perception [99, 243, 259, 459].

Studies have shown that the number of color categories in a language can
rapidly emerge over time [92, 93] indicating that new color categories can be
rapidly adopted and used.

These findings indicate that color naming evolves over time and may also be
influenced by cultural factors, such values [460, 461], economy [462, 463], and
more recently, globalization [464, 465].

To study if cross-lingual differences in color naming still persist in the age of
globalization, we conducted a large-scale, cross-cultural online experiment
on color naming. We compare the results against a highly globalized agent,
namely LLMs trained on multilingual digital content from around the world.
LLMs are particularly interesting from the perspective of the study of the
interaction between perception and language [466], as they are trained on a
substantial chunk of human language and can be used to interrogate the limits
of perceptual information that can be extracted from language [7, 18, 467].
Still, it is unclear if LLMs will capture the variability in color naming across
languages as it is mainly trained on English data [468].

9.2 Methods

9.2.1 Participants

Participants were recruited from both Prolific (N = 517) and Lucid (N = 1,763)
and had to speak the language as their mother tongue, be raised monolingually,
hold nationality, had to be born in the target country and had to pass a vo-
cabulary test [10] to make sure they were indeed speakers of the designated
language. Participants were recruited from 22 languages (see Figure 9.5). Data
of color-blind participants were excluded from the analysis based on the results
of a color blindness test [1, 469]. The wage per hour was adapted to the local
minimal wage.

Figure 9.5: Participants Worldwide re-
cruitment in 22 different languages. 2,280 participants

1. Arabic � (n=77)
2. Danish � (n=65)
3. Dutch � (n=65)
4. English � (n=302)
5. Finnish � (n=65)
6. French � (n=90)
7. German � (n=229)
8. Greek � (n=213)
9. Hungarian 	 (n=73)
10. Indonesian 
 (n=68)
11. Italian � (n=205)

12. Japanese � (n=64)
13. Korean 
 (n=66)
14. Norwegian �  (n=40)
15. Polish �  (n=75)
16. Portuguese �  (n=86)
17. Russian (n=141)
18. Slovak �  (n=63)
19. Spanish � (n=79)
20. Swedish � (n=63)
21. Turkish � (n=76)
22. Vietnamese � (n=75)
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Пожалуйста, определите ц
вет выше, используя часто 
используемое имя цвета.上記の色は一般的に使われて
いる色名で識別してください。

일반적으로�사용되는�색상 
이름을�사용하여�위의�색상을 
식별하세요.Please identify the color above 

using a commonly-used color 
name. 
blue next

Figure 9.6: Task Participants were
asked to name the color chip using a ba-
sic color term.

9.2.2 Procedure

In accordance with the literature, the participants were presented with 330
Munsell color chips [470] through a web interface (see Figure 9.6). To prevent
fatigue, each participant was only presented with a random subset of 50 color
chips.

The following prompt was translated into all 22 languages using a professional
translation service [471]:

Please identify the color above using a commonly used color name.
The color name should be the one you would normally use in
everyday life to describe that color. Avoid using compound words.
The color name should be a single-word

9.2.3 Language Models

All LLM experiments are conducted with OpenAI’s GPT-4 [450] using the
Microsoft Azure OpenAI API (version 0613 of the model) using the default
temperature parameter (0.7). The following system prompt was used:

Follow all instructions that users provide to you in their own
language. Respond to users in their own language using only a
single word and no other text. Do not use any compound words.

Followed by the translated user prompt:

COLOR: <hexcode>Please identify the color above using a commonly-
used color name. The color name should be the one you would
normally use in everyday life to describe that color. Avoid using
compound words. The color name should be a single word.

Since GPT-4 responses are stochastic at non-zero temperatures, 50 responses
are sampled for every color for each language.

The experiments are repeated with the Vision Language Model (VLM): Ope-
nAI’s GPT-4V (version gpt-4-vision-preview on Microsoft Azure’s OpenAI
API). The model would receive the same prompt as GPT-4 but with an image
of the color patch encoded in Base64. Due to rate limits at the time of the ex-
periment, only a single response was obtained for each color for each language
(at a temperature of 1).

9.2.4 Preprocessing

Since participants and LLMs provided free text, the responses had to be pro-
cessed. Responses containing spaces, digits, or punctuation marks were re-
moved. Furthermore, the word had to be written in the expected script (e.g., a
Russian color term in Cyrillic). Lemmatization was performed to remove word
variants [472] and replaced them with the most common variant. In the next
steps, diacritics were removed (e.g., “rosá” to “rosa”) and replaced characters
with smaller units in Korean (Hangul) and Japanese (Katakana) to detect the
same word written differently. For character-based languages, also the word
“color” was removed since the word was often added to the color term. We
replaced all variants under the same simplified form with the most common
variant. To detect compound words, we identify the top color terms (occur-
ring in > 1% of all responses) and check all other color terms for whether
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English (Lucid)

English (Linsey & Brown, constrained)

English (Prolific)

English (Linsey & Brown)

11 colors: green (93), blue (63), purple (46), pink (26), 
white (21),  brown (20), orange (18), yellow (15), red (14), 
black (8), gray (6)

14 colors: green (90), blue (66), purple (43), pink (26), 
white (21), brown (19), yellow (16), orange (15), red (13), 
black (8), gray (6), peach (4), maroon (2), lavender (1)

10 colors: blue (90), green (81), pink (44), purple (38), 
brown (24), orange (14), yellow (10), black (10), grey (10), 
red (9)

12 colors: green (87), blue (75), pink (48), purple (45), 
brown (23), orange (13), grey (11), yellow (10), black (7), 
red (6), lilac (4), teal (1)

Figure 9.7: Consistency across data
English color maps.

Dutch (Lucid)

Italian (Lucid)

Russian (Prolific)

Japanese (Lucid)

13 colors: groen (87), blauw (66), paars (42), roze (32), 
bruin (28), rood (20), geel (13), oranje (12), grijs (12), 
zwart (10), lila (5), wit (2), rose (1)

19 colors: むらさき (51), 青色 (48), みどり (47), 茶色 (44), ピ
ンク (36), 緑色 (29), 水色 (14), 黄色 (12), 赤色 (11), 黒色 (10), 
灰色 (10), オレンジ (7), 紺色 (3), みずいろ (2), 桃色 (2), 黄土
色 (1), 深緑 (1), グレー (1), 青緑 (1)

16 colors: зеленый (98), розовый (40), голубой (30), 
синий (30), коричневый (23), серый (15), оранжевый 
(13), желтый (13), бирюзовый (12), красный (8), 
сиреневый (7), черный (5), бежевый (4), бордовый (4), 
лиловый (1)

14 colors: verde (85), viola (50), rosa (42), marrone (28), 
azzurro (28), blu (26), giallo (14), grigio (14), arancione 
(11), nero (11), celeste (11), rosso (8), verdino (1), lilla (1)

Figure 9.8: Variability across lan-
guages persists Collected maps for
Dutch, Italian, Russian, and Japanese.

they end with this term. If they do and also co-occur, the compound word is
replaced with the top color term. For example, in Dutch, we would replace
“donkerblauw” (dark blue) with “blauw” (blue). For all words, we look up their
word frequency in a large text corpus [473]. Words that do not occur in the cor-
pus are unlikely to be color terms normally used in everyday life and are likely
to be typos. For each of the typos, we obtain a list of color terms it co-occurs
with. For each of those terms, we compute the Levenshtein Distance [474] and
merge if they match (score> 80%). We exclude all color terms that are used
less than five times in total. For all minority colors (occurring less than 1%
of all responses), we merge them with the majority color it co-occurs most
with. Terms without co-occurrence are removed. Terms are only removed if
this would not lead to removing all color terms in one chip (e.g. if a particular
term is used only for one chip and never for the remaining 329 chips). Since
we only have a single response per chip from GPT-4V, we did not apply the
pipeline to the VLM.

9.3 Results

To show the differences in color patterns, we plot the majority color term
for each chip in the Munsell space, by averaging the RGB values of the chips
that were assigned to the same color term. All maps can be viewed inter-
actively on: https://global-colors.s3-eu-central-1.amazonaws.com/
index.html.

9.3.1 Consistent with previous data and across recruiters

Generally, we can see that the English color maps are consistent across the two
recruiters (Prolific and Lucid) and are similar to previous data [92] (Figure 9.7).
To measure the similarity between the color maps, we computed the Adjusted
Rand Index [475], which measures how similar different clusterings are. We
found a high ARI between [92] and Prolific and Lucid (.72 [.67, .77] and
.67 [.62, .72], respectively, CIs via bootstrapping). We further found that for
languages that were tested on both recruiters (English, Italian, and Greek), the
ARIs were also high (.70 [.65, .74], .61 [.56, .66], and .63 [.57, .68], respectively).
These findings suggest that the human maps were reliable, and our findings
are consistent with prior literature for English.

9.3.2 Variability across languages persists

However, when we look at the color maps for Dutch, Italian, Russian, and
Japanese, we see that the variability across languages persists (Figure 9.8).

While Dutch still resembles the English color maps (.70 [.65, .76]), Italian (.59
[.55, .63]), Russian (.55 [.49, .60]), and Japanese (.42 [.38, .46]) show a more
distinct pattern with more differentiation between light blue colors [90]. In
Italian, for example, we see a distinction between three shades of blue: “blu”,
“azzurro”, and “celeste”.

https://global-colors.s3-eu-central-1.amazonaws.com/index.html
https://global-colors.s3-eu-central-1.amazonaws.com/index.html
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Korean (Lucid)

Vietnamese (Lucid)

Korean (GPT-4)

Arabic (Lucid) Arabic (GPT-4)

Vietnamese (GPT-4)

German (GPT-4)German (Lucid)

,(84) اخضر ,(38) بنفسجي,(42) بني,(46) ازرق ,(29) وردي
,(18) احمر,(18) اصفر ,(12) برتقالي ,(7) اسود رمادي (7), زيتي (6),
ابيض (6), سماوي (4), موف (4), نبيتى (3), بيج (2), رصاصي (2),
بمبى (2)

أخضر (36), أزرق (32), ,(32)بنفسجي ,(27)تركواز
بني (26), ,(21)سماوي ,(21)أرجواني وردي (21), ,(17)برتقالي
,(16)زهري ذهبي (14), ,(11)بيج ,(10)فستقي ,(8)زيتوني
رمادي (8), فضي (7), أحمر (7), بحري (5), أسود (4),
زرقاء (4), أصفر (3)

10 colors: xanh (148), tím (47), hồng (41), nâu (26), 
vàng (23), cam (15), xám (11), đỏ (10), đen (6), trắng (3)

16 colors: 녹색 (65), 보라색 (50), 분홍색 (42), 갈색 (39), 
파란색 (24), 하늘색 (17), 회색 (17), 노란색 (13), 청색 (12), 
주황색 (11), 검정 (8), 초록색 (8), 빨강 (7), 연두색 (6), 
민트색 (6), 남색 (5)

13 colors: grün (87), blau (71), lila (43), rosa (34), 
braun (28), rot (19), gelb (14), orange (11), grau (11), 
schwarz (7), beige (2), weiß (2), pink (1)

11 colors: xanh (140), tím (51), hồng (34), vàng (23), 
cam (22), đỏ (16), nâu (15), trắng (12), đen (9), lục (5), 
beige (3)

24 colors: 녹색 (40), 분홍색 (32), 갈색 (31), 하늘 (29), 자주 
(25), 청록 (24), 민트 (20), 보라 (14), 회색 (13), 남색 (13), 
베이지 (12), 파랑 (11), 노랑 (9), 황금 (7), 연두 (7), 라일락 (7), 
빨강 (7), 주황 (6), 살구 (5), 초콜릿 (5), 황토 (5), 와인 (5), 
초록 (2), 검정 (1)

18 colors: türkis (55), blau (42), grün (38), rosa (37), 
lila (30), braun (23), gold (21), oliv (14), pflaume (13), 
orange (11), burgunder (11), grau (9), pfirsich (8),
rot (5), mint (5), beige (4), schwarz (3), silber (1)

18 colors: 21 colors:

Figure 9.9: Human vs GPT Compari-
son of languages in humans and GPT-4.

1: Also GPT-4 with a temperature of 0.7
provided approximately a single answer per
chip.

9.3.3 LLMs use a larger number of color terms

Figure 9.9 shows examples of human and LLM color maps from the same
language. While the maps look qualitatively similar and have similar color
terms for the same language, GPT-4 maps exhibit a larger number of color
terms.

To quantify this effect, we plotted in Figure 9.10 the number of color terms and
the number of distinct responses per chip. We found that the newly collected
color maps (red) significantly have fewer color terms compared to the GPT-4
color maps (blue; p < 0.001), but significantly more color terms compared to
the WCS color maps (green; p < 0.001).

The vertical axis of Figure 9.10A represents the average consensus (number of
distinct responses) within each chip. The WCS data showed the most diverse
consensus, while GPT-4 provided far fewer distinct answers compared with
our new human data. Due to the way the experiment was conducted, GPT-4V
always provided a single answer (temperature 1).1
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Figure 9.10: Color entropy space The
x-axis is the number of color terms (ex-
ponent of the entropy of the color map),
and the y-axis is the number of distinct re-
sponses per chip (exponent of the mean
entropy per color chip).
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9.4 Discussion

9.4.1 Summary

In this chapter,

▶ we collected color naming data for 22 languages using two online re-
cruiting platforms.

▶ we found that the English color maps were consistent with the literature
and across the two recruiting platforms.

▶ we showed that color naming patterns still vary across languages, even
in globalized societies.

▶ we demonstrated that GPT-4 uses a significantly larger number of color
terms than the online participants and uses significantly fewer different
responses per chip.

9.4.2 Limitations

▶ Free naming task: The free naming task might have led to more diverse
responses than a constrained task. It remains to be seen whether other
paradigms such as color discrimination [90], serial reproduction [67],
and similarity judgments [7] would lead to similar conclusions.

▶ Unrepresentative sample: Our sample does not have enough represen-
tation of the global South, in particular, South America and Africa [259,
464]. Future work should cover such locations.

▶ Individual differences: Our analysis was focused on data at the pop-
ulation level, but it is reasonable to assume that there is some degree
of variation in color concepts across individuals from within the same
culture [92]. Future work should probe individual-level variation in
color naming.
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▶ Color calibration: In the online experiments, participants did not con-
duct a color calibration of their screen. Future work should compare the
online data with in-lab data.





In the last part of the thesis, we show that the HITL paradigms
developed to solve core methodological problems in emotional
prosody can also be used to solve more applied issues in the
voice modality. In Chapter 10, we show that GSP (see Chapter 4)
can be used for personalization by customizing voices for voice
assistants and digital avatars. In Chapter 11, we show that GSP in
combination with STEP can be used to align impressions across
modalities (here, the auditory and visual modality).

Part III

©Michael Marais

Applications





Chapter 10

VoiceMe: Personalized voice
generation in TTS

Based on
Pol van Rijn, Silvan Mertes, Dominik Schiller, Piotr Dura, Hubert Siuzdak,

Peter M. C. Harrison, Elisabeth André, and Nori Jacoby. 2022. ‘VoiceMe:

Personalized Voice Generation in TTS’. Interspeech.

In this chapter, we demonstrate how a HITL approach can address a significant
practical challenge in a related voice domain. We address a problem central for
human-computer and human-robot interaction, specifically, creating a voice
that fits an artificial agent. People make rich inferences about faces, including
the emotion, personality, age, or background of the person [59, 476–479]. This
implies that the voice should match the impression of the face. For example,
if one sees a picture of a young girl, but one hears a deep, smoky voice this
conflicts with our priors (children tend to have higher-pitched voices) and
beliefs about the world (children don’t smoke). This mismatch can lead to
eerie feelings, as seen in the uncanny valley effect [25].

In Chapter 4, we showed how one can use GSP to characterize prototypes of
emotions in speech. Here, we use GSP to a related domain where participants
try to find voices that match the mental representation of faces. In contrast
to the previous work on emotional prosody (see Section 4.3 and 4.4), partici-
pants do not optimize for a specific attribute (e.g., “happy”), but for a voice
that matches the face. This tool can be used to create personalized voices for
robots, speech assistants, or fictional characters, it can bring paintings to life,
or help people with speech impairments find a voice that matches their mental
representation.

10.1 Background

Recent multi-speaker text-to-speech (TTS) models can create entirely new
high-quality voices [480, 481] that were not seen during training. Jia et al.
[480] demonstrated that an independently trained speaker encoder network
trained on a speaker verification task can produce useful conditioning for a
multi-speaker text-to-speech model. By sampling random points from the
obtained speaker embedding space, the authors generated fictitious voices
that were not seen during the training. Another approach was proposed by
Stanton et al. [481] that does not rely on transfer learning from the speaker
verification task, but jointly learns a distribution over speaker embeddings,
also allowing for sampling a novel voice. However, all of these papers focus
on speaker generation, but not on speaker personalization, which we try to
address here.
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Figure 10.1: Modified VITS architec-
ture The architecture used in this paper
is a modified version of the VITS model
using SpeakerNet (θspk) and GST em-
beddings (θgst). zq is the posterior latent
sequence for a speech sample.

Normalizing Flow

GST

PhonemesText

WaveformSpeakerNet

Text Encoder

SDP

MAS

zq

θspk θgst

vits

10.2 Methods

10.2.1 VITS architecture

Here, we used the back then state-of-the-art TTS model VITS [315]. We chose
this model over Tacotron 2 [317], which was used in the previous work on
emotional prosody [3], because (i) it is not autoregressive, which makes it
faster to train and sample from (the real-time factor is also relevant for the
experiment) and (ii) VITS is trained in an end-to-end fashion, which leads to a
higher quality of the generated speech than Tacotron 2, which first predicts mel
spectrograms and then uses a vocoder to generate the audio. We chose VITS
over other non-autoregressive models, because (i) it was frequently used [334],
(ii) the implementation was available, and (iii) there is a pretrained model
available that can be used for transfer learning.

VITS consists of the following components (depicted in Figure 10.1):

▶ Text frontend composed of text normalization followed by a grapheme-
to-phoneme model producing phonemes [482].

▶ Transformer-based Text Encoder with a projection layer used to con-
struct the prior distribution for speech generation.

▶ The model uses a latent variable zq to represent the acoustic features of
speech.

▶ A Normalizing Flow is used to map the latent variable zq to the wave-
form space. Normalizing flows are invertible and allow for efficient
sampling and density estimation.

▶ The Monotonic Alignment Search (MAS) ensures proper alignment
between text input and audio output.

▶ The Stochastic Duration Predictor (SDP) models the timing and dura-
tion of speech sounds

▶ The spectrogram is converted to a waveform using the HiFi-GAN [483]
vocoder architecture.

All components are trained jointly in an end-to-end fashion.

We make two extensions to the VITS model: SpeakerNet and GST.

SpeakerNet is a speaker verification network that was pretrained on a large
dataset of speakers. Previous research has shown that the embeddings extracted
from a speaker verification network can be used to generate new voices [480].
We, therefore, used a pretrained SpeakerNet-M [484] model to extract speaker
embeddings.

We also used a bank of Global Style Tokens (GST) [316] to extract style em-
beddings from encoded spectrogram frames. We initialized 16 Global Style
Tokens with 8 attention heads and the resulting embedding size was set to
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Extract images from all speakers in RAVDESS

From original image generate four styles

image toonify OR EX3 R00/P00

Figure 10.2: Image materials Im-
ages are extracted for all speakers in the
RAVDESS corpus (CC BY-NC-SA). We
use deep-learning style transfer to con-
vert the images to cartoons and paintings.

256. For the GST encoder, an 8-layer convolutional network was used with the
same architecture as the Posterior Encoder. During training, the speaker and
style embedding were separately L2-normalized and concatenated. During the
experiments, we use the same zero embedding to keep prosody approximately
constant across samples.

To prevent the GSTs from learning speaker-dependent features in the pres-
ence of SpeakerNet embeddings, an additional adversarial loss is proposed
as follows. Alongside discriminators, a separate shallow feed-forward neural
network is trained to reconstruct the speaker embeddings from extracted style
embeddings. During the discriminator step, this network minimizes a cosine
distance between real and reconstructed speaker embeddings using cosine
embedding loss: (1− cos(x, x̂)). Conversely, during the generator step, the
style extractor is penalized if this network succeeded in reconstructing speaker
embeddings – the loss function is then: (max(0, cos(x, x̂))).

We applied transfer learning from the publicly availableVCTKcheckpoint [315]
and the training was continued using two NVIDIA V100 GPUs. For the first
400k iterations only the discriminators were allowed to train due to the lack of
a published discriminator checkpoint, and then normal training continued for
an additional 2M iterations with the learning rate lowered to 1e-4.

10.2.2 Faces

To create a dataset of faces, we extracted stills from the RAVDESS corpus [44],
in which actors were video-recorded saying sentences with a neutral meaning
for a variety of emotions and “neutral”. For all 24 actors, we extracted the still
from the same sentence that was intended to sound neutral.

To demonstrate our approach does not only work for real faces but also for
fictional characters, we created for each original image four fictional characters
based on style transfer. We used toonify [485] and three additional art portrait
styles from Ai Gahaku [486]: OR, EX3, and ROO or P00. We selected the images
in the following way. We start by creating 12 art portraits and one toonified
version and then select four styles with the highest perceptual similarity to the
real photo [487] (see Figure 10.2). Thus, we select toonify, OR, and EX3 styles,
but in 22 of 24 cases, we select R00 and in all other cases we select P00.

For all 24 speakers, we use the extracted images and four styles with the
highest perceptual similarity totaling 120 chains. To each chain, we randomly
assign one of the 720 phonetically balanced and semantically neutral Harvard
sentences [310].

10.2.3 Parametrization

In the current experiment, participants change the first ten principal com-
ponents of the SpeakerNet embeddings. Initial piloting suggested that these
principal components had the desired property of intuitive interpretability
(e.g., PC2 has a strong gender effect), and prior research with related models
suggested that 10 principal components should be enough to achieve meaning-
ful control over the stimuli [1]. The principal components were computed on
SpeakerNet embeddings extracted on a single utterance of the 45,825 speakers
present in the train, dev, and test partitions of the English CommonVoice
dataset [488] and account for 25.4 % of the variance.
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10.2.4 Interface

The participants are prompted to adjust a slider that corresponds to one princi-
pal component to make the voice maximally similar to a face (see Figure 10.2
for some of the faces). For practical reasons, every slider contains a finite reso-
lution of 31 equally spaced slider positions. As opposed to using static images,
we use Wav2Lip [489] to synchronize the lips to the voice so that the resulting
stimulus looks more natural.

10.2.5 Participants

All participants were recruited fromMTurk, were paid $9/hour, were at least
18 years old, had 99% or higher approval rate on at least 5,000 previous tasks,
resided in the US, and were wearing headphones [312]. 180 participants con-
tributed to the main experiment and 110 to the validation experiment.

10.3 Results

10.3.1 Main experiment

The experiment was terminated after 48 hours, after which 99 out of the
120 chains were full (22 iterations). In Figure 10.3A, we show that Euclidean
distance between consecutive iterations within a chain decreases over the
course of iterations, stabilizing toward the final 15 iterations. This means that
participants move the sliders to a lesser extent at later iterations, suggesting
convergence. Since the stills were extracted from audiovisual recordings, we
could also compute the speaker embedding of the original reference. In Fig-
ure 10.3B, we show that the Euclidean distance to the original reference drops
over the first ten dimensions and then mildly increases and decreases again.

10.3.2 Validation

In a separate validation experiment, participants rated how well the voice
matches the moving face on a 5-point Mean Opinion Score (MOS): “Excellent”,
“Good”, “Fair”, “Poor”, and “Bad match”. The validation included all stimuli gen-
erated in the first experiment (overall 2,409 stimuli). Participants performed
200 ratings per experiment and consequently on average every stimulus was
rated 9.1 times. As depicted in Figure 10.3, the average Mean Opinion Score
(MOS) increases over the course of iterations for all styles. However, the in-
crease is largest for the original faces moving from a 2.7 MOS at iteration 0

Figure 10.3: Validation A The Eu-
clidean distance between consecutive it-
erations is larger for earlier iterations than
later. B The Euclidean distance to the
original reference drops over the first ten
dimensions, increasing and decreasing
slightly. C The mean opinion score in-
creases throughout iterations.
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Figure 10.4: MDS on speaker embed-
dings Generated speaker embeddings
in MDS space in which voices for male
and female pictures occupy increasingly
distinct areas in the voice latent space.
Each row represents two iterations, read
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Figure 10.6: Sex differences In the final
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of the same face (purple), compared to a
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face (yellow).

to a MOS of 4.0 (“Good match”) in the later iterations (Wilcoxon rank sum
test, Z = .42, p < 0.001, Bonferroni-adjusted). The trend is followed by the
cartoons (Wilcoxon rank sum test, Z = .18, p< 0.001, Bonferroni-adjusted).
For art portraits the improvement over iterations is smallest (Wilcoxon rank
sum test, Z = .16, p< 0.001, Bonferroni-adjusted). One interpretation of this
result is that people have less specific expectations about the voice of a cartoon
or art portrait compared to a real face.

10.3.3 Toward personalized voice characteristics

To further understand what kind of voice features were selected by the per-
sonalization process, we visualize the speaker latent space using MDS on all
voices created in the experiment. As shown in Figure 10.4, over the course
of iterations, male and female faces occupy increasingly distinct areas in the
voice latent space.

Furthermore, the average pitch starts at roughly the same point due to the
random initialization of the voices and over the course of iterations is lowered
for male and increased for female voices (Figure 10.5). Voices for males and
females converge in a pitch range common for the sex (85–155 and 165–255
Hz respectively) as indicated by the shaded areas [490].

Based on these results, we can state that the speaker’s gender apparent from the
face is well-recovered in the voice. However, do people only focus on gender
or also on other characteristics of the face? In order to address this question,
we run another analysis.

Here, we compute the Euclidean difference between the voices created for
different styles of the same speaker versus a random speaker of the same sex.
Using bootstrapping (n = 1,000) we show that the voice differences within
the same speaker are significantly smaller compared to the voice of a random
speaker of the same sex (Figure 10.6), this indicates that the voice prototypes
captures face-specific image features in addition to gender.

10.4 Discussion

10.4.1 Summary

In this chapter,

▶ We used GSP for generating speech personalized to a specific face.
▶ The generated speech matched the face better over the course of itera-

tions.
▶ While we found that gender plays a dominant role in the face-voice

match rating, the voice prototypes also capture face-specific features.

10.4.2 Limitations and Outlook

▶ Room for improving the match: The ratings plateau at a MOS of 4
(“good match”) indicating that there is still room for improvement. Fu-
ture research can explore also doing GSP on the prosodic dimensions
using the GST embeddings.
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▶ Vague priors: Our results have shown that gender plays a dominant role
in the face-voice match rating and while the created voices fit better to
the face than a random voice, the improvement over random is rather
modest. One potential reason for this is that people have rather vague
priors about the voice of a face. Future research could try to include
more diverse faces, such as faces from different cultures or with different
facial expressions, and make the voice model more expressive to capture
these differences (e.g. by using the GST embeddings as discussed above).

▶ Cross-cultural extension: This work was done on a dataset of English
speakers, involving mainly white actors and involving US participants.
Future research could extend this work, by including more diverse faces,
and multilingual TTS and deploy the experiment in various cultures.
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RobotVoice: Giving Robots a Voice

Based on
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Nori Jacoby, and Elisabeth André. 2024. ‘Giving Robots a Voice:

Human-in-the-Loop Voice Creation and Open-Ended Labeling’. Proceedings

of the 2024 CHI Conference on Human Factors in Computing Systems.

In this chapter, we explore another voice-related human-computer interaction
domain. Again, we use two HITL approaches introduced in this thesis to study
another practical problem: How to create a voice for a robot that matches its
appearance and predict voices for unseen robots based on their appearance?
Robots are used in a wide range of scenarios, and they vary in purpose and
appearance [491]. The voice is an intuitive medium for humans to interact
with robots, conveying not only spoken content but also intentions [313], per-
sonality [492], conversational goals [493], and emotions [119]. However, a
discrepancy between what we see (the robot’s appearance) and what we hear
(its voice) can strongly hinder robots’ usability. Previous research has stressed
the importance of users’ affective responses to robots in fulfilling their func-
tions [494, 495]. However, amismatched voice can result in a variety of aversive
reactions, such as unsettling, eerie, uncanny, and repulsive responses [22–26].
The intensity of this dissonance can be influenced by factors like the user’s age
or the robot’s realism [496, 497].

Robots are used in a wide range of scenarios for varying in purposes [491].
Thus, the appearance of robots has many degrees of freedom – most likely
more than faces (Chapter 10). These rich impressions of robots, make it an
interesting domain to study the alignment between the auditory (the voice)
and visual modality (image of the robot) and thus demonstrate the versatility
of the developed methods.

Aligning impressions across different modalities is an important problem to
study [494–497] because misaligned impressions can lead to unsettling, eerie,
uncanny, and repulsive responses [22–26].

Concretely, we implemented a three-step process to predict the new voices:

▶ Participants use GSP to create voices for robots by changing the voice of
a TTS model and applying robotic effects.

▶ Participants use STEP to annotate both the impression of the robots in
the visual and auditory modality. The top 40 most frequently used tags
and those overlapping with literature are selected.

▶ Participants rate the voices and images along these 40 dimensions to
obtain dense associations between the dimensions in both modalities.
These associations are then used to predict a voice for a new robot.
The voice prediction tool can be found here: https://robotvoice.s3.
amazonaws.com/predict.html.

https://robotvoice.s3.amazonaws.com/predict.html
https://robotvoice.s3.amazonaws.com/predict.html
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Figure 11.1: IEEE robots Pie chart of
distribution of robot categories with an
example from each category.

11.1 Background

Existing TTS models have frequently been used as voices for robots [498]
and their quality has greatly improved in the last decade [334, 499], enabling
them to produce speech that is nearly indistinguishable from human record-
ings [315]. Previous research has shown that humanlike voices are typically
preferred over synthetic ones [500], which makes state-of-the-art TTS mod-
els an excellent voice creation tool. A recent switch from recurrent to non-
autoregressive models [5, 325, 501] brought about major improvements in
latency, allowing robots to produce voices faster than real-time. Modern TTS
models have great factorization abilities [316, 326, 502], allowing users to
independently change text, prosody, and speaker identity (i.e., what and how
something is being said by whom). Harnessing such rich latent features [2] not
only facilitates the crafting of new voice personae [480, 481] but also ensures
that these synthesized voices encapsulate the nuances and diversity inherent
to human speech.

A substantial body of extant work emphasizes the importance of synchronizing
the robot’s voice with its appearance [503, 504]. Simply adopting a TTS model
that delivers humanlike speech might be incongruous for a robot that has a
distinctly non-human appearance. For example, imagining R2D2 from Star
Wars speaking with a plain natural voice would be odd and likely uncanny [25,
26].

To align the voice with the impression of the robot, previous studies have inves-
tigated the correlation between appearance and voice along certain dimensions
(e.g., gender or naturalness). For example, McGinn et al. [505] developed a
voice association task (i.e., matching a picture of a robot to a voice) showing
that gender and naturalness strongly affect the visual appearance people asso-
ciate with a robot. Other studies have investigated the opposite relationship:
How the voice influences the mental model that people have of a robot. For ex-
ample, Powers et al. [506] showed that participants associate a male voice with
a more knowledgeable person. This research also highlights the risks of rein-
forcing existing social biases when matching specific vocal characteristics, like
a deep voice, with particular personality traits, such as being knowledgeable.
In addition to aligning the voice and appearance of a robot, its behavior must
also be synchronized. Torre et al. [507] show that while trust partly depends
on the voice, the consistency of voice and behavior is more important [508].

This is in line with previous research showing that people prefer serious-
sounding robots in work-related contexts [509] and empathetic voices for
healthcare robots [510].

11.2 Methods

11.2.1 Images of Robots

As robots vary greatly in their appearance, the goal was to collect a variety
of images that capture this variation. To simplify the complexity of possible
presentation methods (such as images, videos, and 3D designs), we focus on
static images. We used an existing dataset (IEEE Robots) and downloaded
all robots from https://robots.ieee.org/robots (April 2022), removing
robots without a frontal view and discarded devices such as exoskeletons or

https://robots.ieee.org/robots
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telepresence interfaces, which integrate a human user. For each robot, we se-
lected the best image, ideally showing the entire robot in isolation. The selected
images span diverse types of robots with 14 different categories, ranging from
industrial to consumer robots and humanoids to drones (see Figure 11.1).

This list of 160 IEEE Robots was extended with 15 images that were collected
from other sources, such as promotional pictures from manufacturer web-
sites or photographs taken by ourselves. To avoid contextual cues, shades and
backgrounds were replaced by a solid white background. This selection of
175 robots is notably larger than datasets in relevant previous literature with
maximally eight different robots [503–506, 508, 510–514].

11.2.2 Voice Manipulation and Effects

Architecture
SentenceVoice config

Voice dim
.

Speed

Active dimension

Effect
Strength

Waveform

Speaker
embedding 

Speaking speed

Effect rack

Text-To-Speech

Figure 11.2: Architecture The voice
of the robot is controlled via eight sliders.
The first five sliders control the voice of
the TTS model using the first five PCA
dimensions on the speaker embeddings.
The sixth slider controls the speed of the
speech. The seventh slider selects one
of the eight effects. The last slider deter-
mines the strength of the effect. When
moving the slider, the voice configuration
updates one parameter in the voice con-
figuration (here: speed). This triggers the
synthesis pipeline and the resulting audio
is played back to the user. Robot: Digit by
Agility Robotics (with permission).

To create a voice for a robot, one needs an expressive voice creation tool that is
fully parametrizable. The proposed solution is depicted in Figure 11.2.

Overall, the architecture changes the voice of a TTS model, changes the speak-
ing speed, and passes the resulting audio to a rack of effects. Participants use
sliders to adjust the model parameters, thus changing the voice.

The first five sliders modify the voice of the speaker of a TTS model. We
modified the state-of-the-art TTS model “VITS” [315] trained on the VCTK
dataset [515] so that it can be used to directly modify the voice representation
(speaker embedding). We performed a Principal Component Analysis (PCA)
on all 110 speaker embeddings of the same dataset and used the first five
PCA components, which seem to capture sufficient variation in the human
voice (different speaking speed, voice timbre, and speaker sex). We perform
reverse PCA to obtain a speaker embedding based on the PCA dimensions.
For maximum expressivity and minimum distortion, the range is constrained
to approximately four standard deviations in all dimensions.

Since the variability in speaking speed in natural human speech is rather limited
and the PCA dimensions by themselves did not provide enough variability
in terms of duration, we added a sixth slider that can parametrically change
the speaking speed ranging from 46% to 153% of the original speed using
Parselmouth [292], a Python wrapper for Praat [133].

The TTS system was trained on natural speech [515]. This means that the
TTS model mainly produces naturalistic human voices and does not create
robotic-like sounds. Therefore, we added sliders to apply robotic audio effects,
by combining modern TTS with traditional signal processing techniques. The
eight different effects implement commonly used to create robotic voices:
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changing the pitch, decreasing synthesis quality, applying a timeshift, using a
vocoder, or applying one of four different flanger configurations to the audio.
The effects are applied in a sequential using an effect rack [516]. To avoid
a strong mixture of voice effects, participants used a seventh slider to pick
one of the eight effects and used an eighth slider to adjust the strength of the
effect. The overall amplitude of the effects was manually normalized such
that each effect would be approximately equally salient. The slider positions
are linearly spaced (with a resolution of 16 positions) to make the synthesis
computationally efficient. The following types of effects were implemented:

▶ Pitch: The signal was enhanced with two transposed audio tracks, where
one was transposed five semitones up and the other transposed five
semitones down. By doing so, the intonation pattern of the voice gets
obscured, resulting in an unnatural voice. Further, both transposed sig-
nals are a minor seventh apart, which is generally considered a rather
dissonant interval in Western music perception [517]. As such, addi-
tional tension in the voice is induced. The corresponding slider in our
experiments allows us to control the ratio between the non-transposed
and transposed signals.

▶ Synthesis quality: Older text-to-speech systems are poor at phase re-
construction, which results in audible artifacts that sound “robotic”. To
emulate this poor reconstruction, the signal is transformed into the
frequency domain using a short-time Fourier Transform and then re-
constructed using an inverse short-time Fourier Transform but with ran-
domly initialized phase estimates. Our implementation utilized Librosa’s
Griffin-Lim algorithm [516] without executing phase approximation.

▶ Timeshift: To facilitate the creation of more “fuzzy” sounds, the original
voice can be blended with slightly time-shifted version. By doing so,
the warmth and resonance of a natural voice gets veiled. To obtain this
effect, the original signal was delayed for a few milliseconds, and the
time-shifted signal was combined with the original signal.

▶ Vocoder: Vocoder effects are frequently used to create robotic voices [518].
Here, the speech signal is used as a modulator for a carrier signal. By
fixing that carrier signal to a certain frequency, the resulting voice
sounds monotone and mechanical. The pipeline makes use of TAL
Vocoder [519], a publicly available VST implementation, which is in-
cluded into the codebase using Pedalboard [520].

▶ Flanger: Flanger is an audio effect that imparts a more synthetic quality
to the sound. The flanger effect is achieved by combining a signal with
a delayed version of itself where the delay time is modulated by a low-
frequency oscillator. This addition offers an avenue to offset the voice’s
natural tone. Four different flanger configurations were implemented,
each with a distinct modulation frequency and depth leading to unique
auditory experiences.

Each robot was randomly assigned to a sentence from the 720 phonetically
balanced and semantically neutral Harvard sentences [310].

11.2.3 Robot attributes proposed in the literature

To obtain a long list of attributes proposed for robots in literature, labels from
the “Big Five” personalitymodel [521–524], theGodspeed questionnaires [525]
(focussing on social robots), AttrakDiff questionnaire [526] (focusing on user
experience) and relevant dimensions for voice assistants [527] were included.
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This list was extended by three adjectives signifying demographic features,
namely “young”, “male” and “female” to specify age and gender and the word
“animallike” because our collection of robots contains many artificial pets and
animal-inspired robots. This yielded 260 unique attributes (see supplementary
information of the paper for the full list [15]). While this list clearly does not
capture all possible attributes ever mentioned for robots, it covers the most
widely used attributes in the literature.

11.2.4 Participants and experiments

Overall, 2,505 participants took part in all experiments. Participants were
recruited from Prolific, provided informed consent, were at least 18 years
old, resided and were living in the UK, had to speak English as their first
language, and had to have been raised monolingually. Participants earned at
least 9 pounds per hour. If audio was played in the experiment, participants
went through an automatic headphone check asserting they were wearing
headphones [312]. To ensure that participants were highly proficient in English,
they had to pass WikiVocab (Chapter 8).

11.3 Results

11.3.1 Voice Creation using GSP

803 participants engaged in the GSP experiment. In the experiment, partici-
pant control one of the eight dimensions of the voice of a robot and change
it to best match the voice with the robot’s appearance. Each participant visits
20 different robots. The same slider is shown to five participants, and the me-
dian of their responses is carried forward to the subsequent iteration. Initially,
all vocal parameters were uniformly randomized with the possible range val-
ues (see Methods, Section 11.2.2). The experiment concluded after 48 hours,
during which time 70 images underwent 15 iterations, and 105 images experi-
enced 16 iterations. Consequently, each of the eight dimensions was visited
approximately twice.

Figure 11.3 shows that the standardized slider difference between consecutive
iterations within a chain decreases over the course of iterations. This means
that participants move the sliders to a lesser extent at later iterations, indicating
convergence. In particular, there was a significant difference between the first
and last iteration (Wilcoxon signed rank test:V =11277.0,n=175, p< 0.001, r =
.43, this and all future tests are Bonferroni corrected for multiple comparisons)
but we did not find a significant difference between the last iterations to the six
iterations preceding it. The slider difference drops after all eight dimensions
have been visited once, which is in line with previous studies [1, 3, 4] (see
Chapter 4 and 10). The development over iterations can be listened to online:
https://robotvoice.s3.amazonaws.com/iterations.html.

To visualize the proximity of the matched robot voices to each other, we per-
formed a PCA on the standardized slider positions of all stimuli in the experi-
ment. Figure 11.4 depicts the first two principal components and shows the
distribution of all slider configurations using a KDE (gray lines). The initial
robot voice configurations are uniformly sampled from the sliders but occupy

https://robotvoice.s3.amazonaws.com/iterations.html


124 Chapter 11 RobotVoice: Giving Robots a Voice

Figure 11.4: PCA on slider configura-
tions PCA on all slider configurations
from all iterations. The gray KDE indi-
cates the distribution of all slider config-
urations in PCA space. The black points
are the final slider configurations. Robot
images are used with permission or are
in the public domain.
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Figure 11.5: Results validation experi-
ment Mean ratings as a function of the
iterations and a random voice. Shaded
areas are confidence intervals.

distinct slider positions at the end of the experiment. For example, the spider-
like robots in the upper right corner or the toy-like robots in the top left corner
of the plot group together in slider space (i.e., they received similar voices in the
final iteration). The final voices can be explored interactively using the online
visualization: https://robotvoice.s3.amazonaws.com/explore.html.

In order to validate whether the voice and robot match improves over time,
we recruited a separate group of participants (N = 142) that rated how well
the voice matches the robot.

This experiment comprised 2,730 stimuli. All stimuli were generated in the
GSP process with three additional random voices per robot. There were about
4.9 average ratings per stimulus. Totalling, 13,597 human judgments in this
experiment. As depicted in Figure 11.5, the average match increases over the
course of iterations. In particular, the average of the last three iterations was
significantly larger than the first three iterations (Wilcoxon signed rank test: V
= 1813.5, n = 175, p < 0.001, r = .64). In addition, the increase in rating over
iterations reduces after each dimension is visited approximately once (again in
line with previous GSP studies, see Chapter 4 and 10). For example, we did
not find a significant difference between the average of iterations 8–10 and the
average of iterations 13–15 (Wilcoxon signed rank test: V = 6321.5, n = 175, p
= 0.018, r = .10).

11.3.2 Annotation using STEP

To obtain a list of attributes that are used to describe the robots in the auditory
and visual modality, we used STEP. We recruited two new groups of partici-
pants to annotate the obtained final robot voices and the original images (N =
59 and N = 73 respectively). Each robot is sequentially annotated by 10 par-
ticipants. To facilitate convergence and avoid spelling variants and duplicate

https://robotvoice.s3.amazonaws.com/explore.html
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tags, participants can see words that start with the same letters while typing
and can select them if they find them appropriate. The proposed words are
either tags provided by other participants or the 260 dimensions proposed in
the aforementioned literature (see Methods, Section 11.2.3).
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Figure 11.6: STEP results Co-
occurrence networks between provided
tags per modality. Tags with a co-
occurrence below 4 are pruned to remove
words that are rarely used. The size of the
nodes indicates the degree. Networks are
created using Gephi [528]. Tag distribu-
tions are the raw occurrences of single
labels for the 175 images and 175 voices.

As depicted in the two histograms in Figure 11.6, the vocabulary used to
describe the 175 images of robots is generally larger than those of 175 voices
(765 and 217 unique tags for the image and voice modalities, respectively).
Also, the same labels are used more frequently for the voice compared to
the image modality (mean occurrence of 5.4 and 2.5 for the voice and image
modalities, respectively).

To investigatewhich terms are particularly relevant, we visualize the co-occurrence
network for each modality in Figure 11.6 using a network analysis [7]. The
nodes are tags proposed in the STEP process and the edges indicate if they
co-occur within the same robot with other tags. Those tags that have many
connections to other tags – indicated by the larger dots – are likely to be rele-
vant descriptors. In the co-occurrence network, terms that are semantically
similar are often located near each other, such as “animallike” and “doglike”
in the image modality. However, this isn’t always the case, as terms that are
semantically related do not necessarily appear together if they are inapplicable
to a significant number of robots.

Overall, we observed that tags in the voice modality are more interconnected
(average degree: image = 3.8, voice = 11.3), suggesting that a relatively small
number of recurring labels frequently appear together. This observation aligns
with what is shown in the histograms in Figure 11.6. This pattern can be
partially attributed to the challenge of identifying vocal properties compared
to image attributes. Voice representations might be less easily described in
words, or more ambiguous overall, leading to greater overlap in semantic
labels.

Interestingly, while our approach is open-ended (e.g., we don’t use post-
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Figure 11.7: Correlations across di-
mensions for images Correlation
across dimensions for images. Correla-
tion matrices are sorted by the order in
the dendrogram obtained via agglomera-
tive clustering. 1.0−1.0Correlation
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40 to ensure that each dimension was rated
by enough participants.

processing and involve lay participants), many central terms overlap with
those commonly mentioned in literature such as “friendly”, “humanlike” or
“female” (see, for example, [529] or [506]). Figure 11.6 furthermore reveals
that while some impressions are modality-specific (e.g., “high-pitched”, “echo”,
“accent”), the majority of terms proposed by the participants reflect general
impressions of the robot (e.g., “weird”, “cute”, “robotic” and “friendly”) and are
not modality-specific. However, other features differ across the two modali-
ties. For example, the biological sex or the age of the speaker is an important
category in voices, whereas the distinction between “animallike”, “human-
like”, and “robotic”/“mechanical” seems more important in the case of images.
Furthermore, the participants came up with terms for the voices that refer
to communication qualities, such as “inaudible” or “informative”, and the
communication style, such as “assertive” and “unenthusiastic”. Obviously, the
participants were able to produce voices that complemented the visual im-
pression of the robots by assigning additional attributes to them via the voice
modality. The observation that participants used terms related to communi-
cating qualities and styles when judging voices, but not when viewing static
images of robots, highlights the complementary of different sensorymodalities,
such as visual and auditory.

11.3.3 Dense Rating along Perceptual Dimensions

While STEP also involves rating the relevance of the tags, this rating data
is fairly sparse: It is only available for the tags that were proposed by earlier
participants and the later a tag was proposed, the fewer ratings it received. To
get a denser representation, we compiled a list of 40 relevant dimensions that
were rated by a new group of participants for the images and voices in separate
experiments.1
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Figure 11.8: Correlations across di-
mensions for voices Same plot as in
Figure 11.7 but for voices.

To compile the list of attributes, we selected the 26 dimensions that overlap
between the list of 260 labels from previous literature. The remaining 14
dimensions are the 7 perceptually most salient features (based on STEP) in
each of the modalities.

We recruited separate groups of participants to rate these 40 perceptual labels
in the image and voice modalities (N = 298 and N = 245 respectively). Each
participant rated the robot image or robot voice on 5 randomly selected di-
mensions using sliders that snap to 5 positions. On average, each stimulus
and dimension was rated 7.5 times for the images and 6.1 times for the voices.
Overall, the ratings were reliable for both experiments: the split-half reliability
for images was r = 0.65 and r = 0.61 for the voices. To compare the consistency
of the dense rating results with the STEP results in the previous experiments,
we correlated STEP ratings with the dense ratings for the labels that occur in
both datasets. We found that the mean rating was correlated with the mean
number of stars a label received in STEP (r = .31 and r = .24 for images and
voices respectively).

Figure 11.7 shows the correlations between the dimensions for the image
modality (i.e., a correlation between average rating per stimulus between all
dimensions). Generally, terms with similar meanings, such as “female” and
“feminine”, show strong positive correlations, while antonyms like “clear” and
“unclear” display strong negative correlations. The matrix reveals an additional
pattern: participants tend to associate female robots with labels like “young”,
“playful”, “cute”, and “friendly”, while male robots are linked with traits such
as “assertive”, “functional”, “complex”, and “intelligent”. These observations
align with previous literature [506], which suggests that societal stereotypes
influence how robots are perceived.

For the voice, the correlation matrix shows a more consistent structure (Fig-
ure 11.8): The largest cluster contains dimensions like “creepy”, “unpleasant”,
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Figure 11.9: Correlations between di-
mensions across modalities Correla-
tion across both modalities. The correla-
tion matrix is sorted by mean correlation
for the most consistently rated dimension
“feminine”.

Im
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Voice ratings
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“mechanical”, and “robotic”. Also, “female” is associated with a “young” and
“cute” voice (consistent with previous literature) [530], but not with a “friendly”
voice. Instead, a new cluster emerges for “friendly”, “helpful”, “clear”, and “in-
telligent” voices. This suggests that voice modality presents a much harder
challenge in terms of providing labels. Specifically, voices cluster to a smaller
number of interconnected terms (consistent also with the usage of smaller
vocabulary in Figure 11.6).

To investigate the robustness of our findings, we ran the dense rating experi-
ment on 175 new images from the ABOT dataset [531] and on 175 randomly
created voices using the voice tool. We found strong correlations between the
two image (r = .85) and two voice datasets (r = .91). These findings indicate
that the obtained correlations across the terms are robust across datasets.

We also investigated the correlations of the dimensions across the modalities.
Generally, the correlations were lower, indicating that the association between
the dimensions across the modalities is weaker (e.g., a masculine robot does
not necessarily become a male-sounding voice, see legend of Figure 11.9).
Furthermore, as depicted in Figure 11.9, the diagonals between the dimensions
were much weaker or entirely vanished for certain dimensions for example
for terms like “humanoid” or “unpleasant”. This indicates that the same labels
are not consistently used across modalities, for example, a “fast” voice does
not mean that the image of the robot looks “fast” too. The dimensions that are
best preserved across modalities are dimensions like “feminine”, “young”, and
“cute” (Figure 11.9).

In Figure 11.9, one can see that there is a large overlap between associations
from images to voices as well as from voices to images (e.g., male voices are
associated with mechanical robots, and vice versa). However, this relationship
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Figure 11.10: Prediction schematics
Schematics of the procedure to select
stimuli for the prediction validation exper-
iment. Images are taken by JPL/NASA
and are in the public domain.
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Figure 11.11: Prediction results Re-
sults of the prediction validation experi-
ment. Matched receives the highest score
followed by the closest and selected voice
configuration. The worst and random
voices receive the lowest scores and are
significantly lower than the matched, clos-
est, and selected voice configurations. ***
indicates that the paired Wilcoxon signed
rank test was significant (p < 0.001).

is not always bidirectional; for example, assertive robots are associated with
male voices (r = 0.32), but male robots are not really associated with assertive
voices (r = 0.09). Further comparisons between the modalities can be made
via the interactive visualization: https://robotvoice.s3.amazonaws.com/
compare.html.

In the voice modality, the first principal component primarily captures the con-
trast between “humanlike” and “robotic”, while the second dimension focuses
on the male-female dichotomy. In the image modality, a similar contrasting
pattern is observed between “humanlike” and “robotic” features, but here the
emphasis is on terms related to automaticity, such as “fast,” “monotone,” and
“unemotional,” as opposed to terms like “playful,” “friendly,” and “cute”. The
gender dichotomy is somewhat less pronounced here.

11.3.4 Predict Voices based on Labels

To use the created voices in real applications, we test whether one can predict
the voice of a robot based on the image ratings. So if we can predict a suitable
voice for a new robot based on its appearance (e.g., find a voice for a “cute” and
“female” looking robot)? To address this question, we recruited a new group
of participants (N = 94) and presented them with different combinations of
images and voices (Figure 11.10). For each robot image i, we provide five dif-
ferent combinations of an image and a voice: As ground truth, we included the
original matched voice of robot i (matched). To see how well verbal descriptors
of the image predict the voice, we searched for the robot i with perceptual
image rating across the 40 dimensions and found the closest robot j (closest,
i.e., with the highest cosine similarity, e.g., the Perseverance robot is closest to
the Spirit & Opportunity robot). We then used the voice of the j in the final
iteration of the GSP experiment. To test robustness, we also searched for robot
j for the GSP slider configuration and selected the closest voice in slider space,
which did not occur in any iteration for robot i and j (selected). As a negative
reference, based on the slider configuration of the matched robot iwe searched
for the worst slider combination (worst, i.e., which is maximally dissimilar
in cosine similarity). Finally, we also included a random voice configuration
(random). The interface of the prediction experiment was identical to the GSP
validation experiment.We had 875 stimuli and 7,444 human judgments overall,
and each stimulus received an average of 8.5 ratings.

Consistent with the validation of the GSP voices, the random voice received
the lowest voice match score and the final voice the highest match score (Fig-
ure 11.11, left panel). While the closest and selected voices received a slightly
lower match rating, we did not find a significant difference there (Wilcoxon
signed rank test: V = 6879.0, n = 175, p = 0.47, r = .07). However, the matched,
closest, and selected voices were all significantly better than the worst or ran-
dom voices (p < 0.001 in all cases), which both have much lower ratings. Thus,
this shows that while the predicted voices (closest and selected) were all bet-
ter matches than a random voice, they were not significantly worse than the
matched voice. This trend is not only visible when averaging over all partici-
pants, but also on a single-participant basis (see Supplementary Materials of
the paper [15]).

To assess if the findings also extrapolate to other datasets of robots, we run
another prediction experiment (N = 73). We wonder if the annotated features
of the new robot can be used to match the voice based on the old data set’s

https://robotvoice.s3.amazonaws.com/compare.html
https://robotvoice.s3.amazonaws.com/compare.html
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annotated features. In a real-world scenario where an engineer might have a
new, unseen robot image and want to use our results for voice matching, this
validation is crucial as it should show that even when using voices tailored to
the old dataset and a matching model trained solely on the old dataset, one can
still achieve accurate predictions with a new set of independently annotated
images. Thus, we looked up the closest robot in terms of its annotated features
for each of the new 175 robots in the old set of matched robots (closest). As
a reference, we also included the same matched voice and paired it with the
directlymatched old robot image (matched). As a negative reference, we looked
up the perceptually furthest robot in the old dataset and selected its voice
(furthest). We also add a random voice (random). As shown in Figure 11.11
(right panel), the closest and matched voices are all significantly better than
the furthest and random voice (p < 0.001 in all cases). While the closest voice
received a slightly higher rating than the matched voice, this difference was
not significant (Wilcoxon signed rank test: V = 8215.5, n = 175, p = 0.14, r
= .11). As in the previous prediction experiment, the furthest matched voice
was slightly higher than random though both of them had low ratings overall.
This is probably because random voices are uniformly sampled along the
dimensions, leading in some cases to sample extreme values, which is not
the case for the furthest or worst voices that were matched to a robot. This
additional prediction experiment shows that the prediction also works for
newly annotated robots from different datasets.

To try out the prediction tool, we provide an interactive voice prediction tool
online: https://robotvoice.s3.amazonaws.com/predict.html.

11.4 Discussion

11.4.1 Summary

Concretely,

▶ We provided a voice creation tool that covers a wide range of robotic
voices using both state-of-the-art TTS (extending upon previous work,
Chapter 10) and robotic effects using signal processing.

▶ We used GSP to create a matched, synthetic voice for 175 robots.
▶ We employed STEP to identify labels that are relevant for the percep-

tion of robots, both in audition and vision, and compared them with
attributes from the literature.

▶ We selected the most used attributes and participants annotated dataset
of 175 robots along those attributes.

▶ We show how those perceptual ratings can be used to propose suitable
voices for new robots.

11.4.2 Limitations and Outlook

▶ Dynamic materials: The study focused on the voice channel and used
static images to control for voice manipulation. The way robots move
can significantly affect human perception, and a wide range of literature
illustrates how robots convey personality through body language, ges-
tures, and facial expressions, as summarized in [495]. Future research

https://robotvoice.s3.amazonaws.com/predict.html
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can investigate how different use cases and scenarios of the same robot
can affect the perceived appropriate voices.

▶ Longer textual content: The voices we used were matched with short,
semantically neutral sentences, which might not generalize to longer
textual content. Future research could investigate the impact of longer,
semantically relevant spoken content on the perception of robots.

▶ Contextual biases:Whilewe purposefully selected a neutral background
for the robot to minimize contextual biases, it is essential to recognize
that participants may have held varying perceptions of the robot’s role,
task, and target audience while adjusting voice dimensions. Empirical
evidence indicates that factors beyond the robot’s attributes, such as
the task and user characteristics, significantly influence how it is per-
ceived and how humans interact with it [513]. The transition from a
toy-like robot to a robot serving as a speech assistant, as highlighted
by Aylett [511] using the example of the Cosmo robot, can result in a
mismatch between the robot’s function and its voice. Tags used by partic-
ipants to describe the robot, such as “functional” and “helpful”, highlight
the importance of its intended purposes and audience in addition to its
audio-visual characteristics. Both the robot’s visual appearance and the
mental models it triggered in participants may have influenced voice
modifications. Future research should gain further insights into these
factors, by conducting additional experiments with systematic changes
to the robot’s visual context aligned with its intended functions.

▶ Generalization: We based the voice creation tools on an English dataset,
which, while diverse in including multiple dialects, did not allow us
to explore the intricate relationship between culture and robot percep-
tion. This limitation applies to the user’s cultural background and the
culture the robot is intended to portray. Prior research [512] demon-
strated that a robot’s social category membership, including culture,
significantly influences how people perceive and interact with it. During
the annotation process, the participants included tags related to En-
glish dialects like “Scottish” and “American”, highlighting the relevance
of group membership as a distinguishing characteristic. McGinn and
Torre [512] manipulated the accent of a robot’s voice to investigate its im-
pact on the formation of stereotypes. However, due to the heterogeneous
background of the participants, their findings on the effect of accent ma-
nipulation were not consistent. Further research should, therefore, focus
on the alleged cultural background of robots portrayed by their accent.
In a broader perspective, the study only involved monolingual English
UK participants and future research should incorporate less “WEIRD”
participants (Western, Educated, Industrial, Rich, Democratic) [246,
464] to uncover associations across perceptual dimensions in different
cultures. Our approach is largely language-agnostic (it would solely re-
quire a TTS model trained on a different language) and thus can be
applied to a variety of languages and cultures.

▶ Expressiveness: While the matched voices are significantly better than
a random voice (Figure 11.11), the mean ratings for the matched voices
(3.4) are not quite at ceiling performance (5.0). One explanation is that
the voice model is not expressive enough yet. The voice dimensions
mainly capture aspects of the voice such as gender or sex. Future re-
search can improve the parametrization of the latent voice dimensions
to capture more expressive features of the voice.

▶ Individual differences: The split-half reliabilities in the rating experi-
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ments are high but there is still some disagreement across participants
(dense: image r = .68 and .53, voice r = .65 and .48; prediction: r = .56 and
.53). This indicates that future research should investigate individual
differences in the perception of robots.



Chapter 12

General discussion

In this thesis, we have identified three core problems in constructing corpora
for emotional prosody (Chapter 3) and have developed three Human-In-The-
Loop (HITL) algorithms that provide solutions to them (Chapter 4–6), namely:
the stimulus selection, taxonomy curation, and lost-in-translation problem.

12.1 Contributions

The first HITL algorithm – Gibbs Sampling with People (GSP) – is a domain-
agnostic sampling technique involving humans (Chapter 4). GSP allows us to
identify which parts of the stimulus space in a generative model (such as a TTS
model changing prosody) are associated with particular semantic concepts
(e.g., which prosodies are associated with “anger”). We have applied GSP to
the domain of emotional prosody using two generative models: a parametric
speech manipulation (e.g., changing the mean pitch of a voice recording)
and a TTS model controlling prosody. In both projects, we have shown that
GSP allows us to create prosodies that are reliably associated with a particular
emotion. For the TTS model, we also show that emotional prosody optimized
for a particular sentence can be transferred to other sentences without changing
their emotional content. Since minimal constraints are posed on the stimulus
space by the used generative models (e.g., the acoustic manipulations are
not exclusively used in emotion communication or the TTS model is not
trained on emotional speech), GSP allows to sample the full stimulus space
in a representative manner, providing a solution to the stimulus selection
problem.

We extend these ideas in two further projects also in the voice domain: VoiceMe
and RobotVoice. In VoiceMe, participants develop a voice that matches their
impression of a face by iteratively changing speaker embeddings in a TTS
model (Chapter 10). The project shows that GSP is not limited to optimiz-
ing a stimulus for a particular label (such as “angry” or “beautiful”), but the
paradigm can also be used to study associations across modalities. So, which
voice matches the impression of a face. In RobotVoice, this idea is extended to
creating voices for robots, in which participants change the voice, including
robotic sound effects, to match it to an image of a robot (Chapter 11). The
novelty of RobotVoice is that we use a human annotation pipeline (STEP; Chap-
ter 6) to obtain dimensions along which the robot images and created robot
voices differ and that we show that the perceptually meaningful dimensions
obtained from this process (such as “cute” or “mechanic”) allow predicting
matching voices for unseen robots without having to repeat the GSP process
again.

The second HITL algorithm – Genetic Algorithm with People (GAP) – also
provides a solution to the stimulus selection problem (Chapter 5).Most corpora
of emotional prosody rely on emotion taxonomies to create the corpus (e.g.,
ask people to find speech recordings that sound “angry” or ask actors to say a
particular sentence in an angry way). This is problematic because the stimulus
selection is constrained by the selected emotions and thus leads to a constrained
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sample of the stimulus space. GAP overcomes this problem by letting creators
imitate previous creations (without knowing the experiment is about emotions)
and raters who have to select the most emotional creation. Over the course of
iterations, this leads to increasingly emotional prosodies of the same sentence.
Unlike existing corpora, GAP does not rely on any pre-assumed taxonomy
and thus leads to a more representative sample of emotional prosody.

The third HITL algorithm – Sequential Transmission Evaluation Pipeline
(STEP) – shows participants a stimulus and asks them to provide tags describ-
ing their impression and rate the tags of others (Chapter 6). Over the course of
iterations, this leads to a weighted bag-of-words representation of all stimuli
and can be used to distill a taxonomy for the stimulus set. Thus, STEP solves
the taxonomy curation problem, which refers to the problem of superimposing
an existing taxonomy on new data without assessing if the taxonomy fits the
data.

STEP can also be used to solve the lost-in-translation problem, which means
that the same objects are named differently across languages, which raises the
question of how concepts in different languages relate to each other. For exam-
ple, does the German word “Wut” mean the same thing as “anger” in English,
or what about language-specific emotions like “Schadenfreude”? To make this
possible, I have co-developed a Python package called PsyNet (Chapter 7) that
is used to implement all three HITL algorithms and automates the process
of running massive online experiments across the globe. To make sure our
participants are fluent in the language they are tested in, I have developed a
language proficiency test in Chapter 8. Finally, in Chapter 9, we test this global
infrastructure by conducting a large-scale, cross-cultural color naming study,
which is a well-studied instance of grounded semantics [84–98].

Based on this summary, the contributions of this thesis can be summarized as
follows:

▶ We have identified three core methodological problems in emotional
prosody (stimulus selection, taxonomy curation, and lost-in-translation
problem).

▶ We have developed three HITL algorithms that provide solutions to
those problems.

▶ We have established and validated an infrastructure to run massive
online experiments across the globe to deploy HITL algorithms at a
large scale.

▶ We have shown that while those HITL algorithms have been developed
to solve core scientific problems, they can also be used in practical
applications.

In the next section, we will show that while the HITL algorithms have been
developed to solve problems in emotional prosody, they can also be applied to
other domains and modalities.

12.2 Generalization of the problem

To generalize the problem to other domains and modalities, we formalize it as
follows (see Figure 12.1): An emotional speech recording is a stimulus x in
stimulus spaceX, and the emotion associated with the recording is a verbal
description y in semantic spaceY. The relationship between the two spaces
can be studied in two directions. One can ask, for a given stimulus, which
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Stimulus
Space
X

Semantic 
Space
Y

f(x)

g(y)

Z languages
Figure 12.1: Formalization Assume the
existence of a mapping f from semantic
space Y to stimulus space X and vice
versa (mapping g). The mappings can be
studied across languages (Z).

verbal descriptions are associated with it (f : X → Y), or for a given verbal
description, which stimuli are associated with it (g : Y → X). The same
stimuli (X) can be presented to participants speaking different languages (Z),
and the obtained semantic spaces (Y) can be compared.

This conceptualization allows us to think about the developedHITL algorithms
in a more general framework: GAP allows us to create a stimulus space X
without pre-assuming a particular taxonomy. STEP allows us to annotate the
stimulus space and obtain a semantic spaceY, essentially implementing f(x).
Finally, GSP investigates the oppositemapping, g(y), namely finding a stimulus
x which best resembles a given verbal description y.

From this conceptualization, it becomes apparent that the three problems we
identified provide contributions to different aspects of this formalization:

▶ Solving the stimulus selection problem provides a contribution with
respect to the stimulus spaceX.

▶ Solving the taxonomy curation problem provides a contribution to the
semantic spaceY.

▶ Solving the lost-in-translation problem provides a contribution to
studying the mapping across languages Z.

This formalization also allows us to connect to a larger set of problems, both
in computer and cognitive science.

In computer science, many corpora suffer from the same problems we iden-
tified for emotional prosody, including corpora for object [336], scene [340],
sound [339], video [338], and facial expression recognition [532]. For example,
the domain of object recognition suffers from the:

▶ Stimulus selection problem: Popular corpora for object recognition,
like ImageNet [336], only contain a particular set of everyday objects,
which might look different depending on the location in the world or
might not even exist [533]. So, many object recognition corpora are an
unrepresentative sample of the full stimulus space of all objects.

▶ Taxonomy curation problem: The objects in ImageNet are organized
in a prespecified, particular taxonomy, which might not be an optimal
fit to the data [329], so it suffers from the taxonomy curation problem.

▶ Lost-in-translation problem: The objects in ImageNet are annotated
in English, but the same concepts of objects might not exist in other
languages, are divided into different subcategories, or only exist as an
abstract category [534]. The most famous example of this phenomenon
is probably the larger number of words for “snow” in Inuit languages
compared toWestern languages [535, 536], showing that languages differ
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in the granularity of how they describe the same concept. Thus, the lost-
in-translation problem is also present in corpora of object recognition.

The formalization also fits naturally to describe a well-known phenomenon
in cognitive science (called “grounded semantics”), describing that while all
participants observe the same physical stimulus (X, such as an emotional
recording, a solid color, or a piece of music), speakers of different languages
(Z) categorize the space (Y) differently [537]. The debate in cognitive science
is about the question if those differences arise from cross-linguistic differences
shaping perception [259, 372, 451] or if they can be explained by some universal
principles [454–456]. The phenomenon was popularized by the “World Color
Survey” [99], which showed that different languages have a different number
of basic color terms. More recent work has shown that this phenomenon is
not only limited to colors, but also to other modalities such as vision [99, 231],
touch [240, 241], hearing [220, 233, 242], smell [62, 243], and taste [244].
Emotional prosody can be considered as another instance of grounded seman-
tics [538], where participants all listen to the same emotional recordings, but
annotate the space differently depending on the language they speak.

This shows that the three problems we identified for emotional prosody, deeply
connect to a larger literature in cognitive science and to a related set of problems
in computer science.

In the next sections, we will zoom out and discuss the over-arching limitations
of the work presented in this thesis (Section 12.3), will show how this work
fits in a broader research agenda (Section 12.4), and discuss the implications
of the work to the field in general (Section 12.5).

12.3 Limitations

All three HITL algorithms incorporate human decisions in computer algo-
rithms, by orchestrating human labor in a chain. The product of the chains
can be prosodies associated with particular emotions, a representative sample
of all emotional prosodies, or a weighted bag-of-words representation of all
stimuli. In the next subsections, we will discuss the limitations and caveats of
these approaches.

12.3.1 Individual differences

Previous research for GSP has shown that individual priors are similar to the
priors of the group for certain domains, such as emotional prosody [1] and
aesthetic appreciation [539], but this is not a priori the case for all domains,
especially if priors are rather vague or subjective.

For example, in VoiceMe we showed that the face-voice match score mainly
depended on aligning the assumed sex of the face and the voice. While we
showed that voices for the same face were closer to each other than voices for
the same sex (indicating that the matched voices were matched for character-
istics beyond just sex), the effect was not as strong as the effect of assumed
sex. This indicates that participants had vague priors about the relation be-
tween faces and voices, and this can be explained by the fact that one is rarely
surprised about the voice of a person in daily life (except for some extreme
cases, such as a deep voice for a woman, a smoky voice of a young person, or a
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1: For example, a GSP experiment with 32
slider steps requires 32 stimuli at the same
time. So, stimulus generation either needs to
be very fast (32x real time) or massively par-
allelized. Since this is not always possible
(e.g., for TTS models), across-participant
chains (asynchronous design), as well as
aggregation (reuse the same slider multi-
ple times), can be used to relax these con-
straints.

pronounced accent where you would not expect it). Also, in RobotVoice, we
anecdotally observed that people strongly disagreed on the voice of a robot,
indicating that the priors of the participants for robot voices might be rather
subjective.

The same problem exists for GAP and STEP, where raters in GAP might not
agree on their representation of emotion (e.g., some raters would maybe first
think about positive emotions and other raters first about negative emotions
when asking about the concept of “emotion”) and raters in STEP might not
agree on the tags they provide (e.g., where some raters highly rate the relevance
of the tag and other raters flag the tag for removal).

Chains are not guaranteed to converge if participants have different priors [69,
70]. This might partially explain that, across all validation experiments, we
found that the ratings improved over iterations, but plateaued before reaching
the end of the rating scale.

The difficulty here is that one a priori does not know if the priors of the partic-
ipants are similar or not. Luckily, this can be quantified by comparing within-
and across-participant chains in GSP. So, while earlier work has shown that
group-level aggregation (e.g., taking the median response) can lead to faster
convergence [1] and across-participant chains might be necessary in particular
experiments1, it might be harmful in domains where people disagree because
they have different priors and the HITL algorithms will lead to suboptimal
results. This needs to be considered when using these HITL algorithms.

12.3.2 Saliency of cues

Another difficulty is thatmanymodalities, like the voice, consist ofmultifaceted
signals and communicate multiple channels of information at the same time
(e.g., assumed sex and age, emotions, and intentions), and some of these
channels are more salient than others. For example, in the voice, the assumed
sex of the speaker is more salient than voice timbre.

For STEP this implies that even when we ask people to describe their impres-
sion of an emotion in a fragment, some raters would still provide tags with
respect to the assumed sex of the speaker because it is such a salient feature of
the voice.

The same problem exists for GSP, where a few dominant channels can drive the
percept. For example, in VoiceMe, we showed that the face-voice match score
increased a lot once the assumed sex of the face was aligned with the voice.
Interestingly, context can influence the sensitivity to those cues: In VoiceMe,
we showed that fictional characters (such as cartoons or paintings) suffered
less than photographs of faces from the assumed sex misalignment.

Also, we found that the same channel of information can differ in saliency
across modalities. In RobotVoice, we showed again that the assumed sex was a
dominant dimension for the voice, but for the image modality, the dichotomy
between humanlike and robotic was particularly important. In this project, we
also investigated cross-modal associations, where we showed that most tags
were not used consistently across modalities (e.g., “animallike” robots do not
have “animallike” voices), again indicating that the saliency of cues can differ
across modalities.
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2: This also happened in the first GSP emo-
tion experiment, where dimensions chang-
ing tremolo (as a proxy for shimmer) were
inactive for all emotions.

These results highlight that not all channels of information inmultifaceted stim-
uli are equally salient and that one piece of information can overshadow others,
which should be taken into account when using these HITL algorithms.

12.3.3 Parametrization of the Stimulus Space

In GSP there is the additional question of how to parametrize the stimulus
space. The results of a GSP experiment strongly depend on the parametrization
of the stimulus space, and experimenters have to navigate the trade-off between
the number of dimensions and expressiveness of the model.

For emotional prosody, we initially used parametric manipulations of the
speech signal to change the prosody, however, such manipulations are prob-
lematic for more complex stimulus spaces—like prosody or music [540] –
where changing a single stimulus dimension irrespective of the others can
create artifacts and handcrafted manipulations can lead to a biased sample of
the stimulus space.2

We, therefore, moved to the latent representation of the stimulus space, because
if themodel is trained on a diverse enough dataset, it (i) learns natural prosodic
variations you can sample from using GSP (and you don’t have to constrain the
stimulus set by handpicked acoustic manipulations) and (ii) leading to fewer
artifacts since you sample from natural variations the model learned during
training.

However, latent representations – such as Global Style Tokens in Tacotron or a
PCA on the speaker embeddings – have other challenges: the dimensions tend
to be entangled, are often incomplete (e.g., the selected principal components
only explain a portion of the variance), and it is difficult to balance naturalness
and expressiveness of latent dimensions (especially if extreme values of the
latent dimensions are not well-represented in the training data).

These limitations might have also contributed to the suboptimal results in the
validation experiments (see Section 12.3.1).

It is to be noted that GSP in theory should be invariant to which generative
model is used, as long as the model is expressive enough to cover the stimulus
space and the slider is continuous in perceptual space (making it intuitive for
the participants to use and easy to anticipate intermediate values). In various
experiments, we have shown that using different generative models for the
same stimulus space leads to consistent results. For example, faces optimized
for a specific attribute using a StyleGAN trained on photos of faces leads to
consistent results with a StyleGAN trained on art portraits [1] and also the
prototypes of emotional prosody obtained using parametric manipulations of
the speech signal are consistent with those obtained using a TTS model [3].
These results indicate that GSP is fairly invariant to the generative model used,
as long as the generative model is expressive and continuous in perceptual
space.

To summarize, the outcome of the GSP process can only be as good as the
parametrization of the stimulus space.While there are stimulus spaces that can
exhaustively be described with just a few parameters (such as color), this is not
the case for more complex modalities. Therefore, researchers should carefully
consider the parametrization of the stimulus space when using GSP.
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Figure 12.2: GSP faces Final face as-
sociations obtained using GSP and Style-
GAN trained on Flickr-Faces-HQ [541]
(cc-by-nc). Data from [1].
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Figure 12.4: Effect of implicit bias train-
ing Correlations across terms with (left)
and without (right) implicit bias training.

12.3.4 Biases and stereotypes

The three HITL algorithms allow us to describe mental representations and
human biases. For example, in GSP we found that “attractive”, “fun”, and “youth-
ful” were reliably associated with female faces and “serious”, “trustworthy”, and
“intelligent” with male faces (Figure 12.2). Or with STEP we found that partic-
ipants used tags like “smoky”, “sexy”, “submissive”, and “worried” for female
voices and tags like “angry”, “loud”, “strong”, “bossy”, and “rich” for male voices
(Figure 12.3). These findings reveal strong stereotypes about gender and raise
the question of how these stereotypes can be mitigated and if these biases are
inherent to the data or are introduced by the participants.
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Figure 12.3: STEP describing speaker
Unpublished data where participants
were asked to describe the speaker frag-
ments from the RAVDESS dataset [44].

One recurring concern has been that studying these biases and describing
them has the potential to reinforce them. However, in order tomitigate biases it
is important to first make them explicit. One particular problem is that readers
of the work often conflate the subjective ratings with the objective truth. Just
the fact that participants associate the term “attractive” with a female, does
not mean that this is a causal relationship. It is a correlation, just like male
hair loss correlates with income [542], but bald men don’t earn more money
because they are bald, but because they are older and have more developed
careers than young men. The same applies to the associations in the data: they
are correlations, not causal relationships.

To actively mitigate these biases, we repeated the same experiments with and
without implicit bias training in RobotVoice, where we found similar gender
stereotypes for robots. Here, participants are first tested on their biases [543,
544], are confronted with the test outcome, then receive training on how to
mitigate those biases, and we ascertain participants understood the training
(text-comprehension questions). While participants clearly understood the
training material (on average, 6/8 questions answered correctly), the training
did not have a significant effect on the biases in the experiments. For the
STEP experiment, describing the images of robots, the tags largely overlap, and
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Correlation 1.0−1.0

r = .85

IEEE Robots Images ABOT

r = .91

GSP Voices Random voices

Figure 12.5: Replication in other
datasets Correlations across terms with
and without implicit bias training. Top row:
Correlations between the association ma-
trix in voices from GSP voices (left) and
initial random voices (right). Bottom row:
Correlations between association matrix
in images from IEEE Robots (left) and
ABOT (right) [531].

the frequency of the shared tags is strongly correlated (r = .78). In the rating
experiment, in which participants rated each of the dimensions for the images,
the ratings with and without training were strongly correlated (r = .91; see
Figure 12.4). This indicates that while participants were aware of their implicit
biases (see comprehension questions), they did not substantially change their
responses. This may be explained by the fact that the effects of the training are
short-lived and hence barely change the implicit biases [545]. More broadly,
this demonstrates that implicit biases are not becoming more pronounced as a
result of our experimental procedure. In fact, it is quite challenging to influence
these biases, even when employing what we consider the best practices in bias
training. Instead, our method enables to exposure of these biases, representing
a significant step toward mitigating their negative impact on societies.

To address the question of whether the biases originate from participants or
from the data (or the generative model which was trained on the data), we
conducted two follow-up experiments in RobotVoice (Figure 12.5). First, we
investigated if the GSP voice creation amplified the biases in the ratings of
the voices. We repeated the voice rating experiment on random voices drawn
from the GSP stimulus space. We found that the ratings on both datasets
are highly correlated (r = .91), indicating that the biases in the voice ratings
are not substantially amplified by the GSP process. In a second analysis, we
re-ran the rating experiment on a new dataset of robot images [531]. Again,
the ratings on both datasets are highly correlated (r = .85). While both image
datasets might have similar data biases (for example, both datasets have an
underrepresentation of perceived female robots, 13 % for IEEE Robots and 19
% for ABOT which is consistent with previous findings [546]), there was no
overlap in the images between the two datasets and the images were drawn
from different sources. This indicates that the biases in the image ratings are
more likely to originate from the participants than from the data. Since GSP
does not amplify the biases, future work can useGSPwith a generativemodel to
create images of robots, which would lead to the development of “customizable
robots” as proposed by Schiebinger [547]. To summarize, this shows that the
biases we discover are unlikely to be data biases, but reflect associations stored
in the minds of participants. This is different from machine learning models
trained on massive amounts of scraped data, which will inherit those biases
even if they are not a representative sample of all data [548, 549].

One limitation of the implicit bias mitigation strategy might be that partici-
pants are never confronted with the associations in the data. For example, if
a participant rates a cleaning robot as “submissive” and another participant
as “female”, this does not mean that the participant thinks that all females
are submissive. One way to mitigate this is to confront participants with the
associations and ask them if they agree with the association. We hypothesize
that many participants would mark the association as incorrect because they
are aware of the stereotype. This would allow us to systematically search for
stimuli that have this association and prune them, thus reducing the bias in
the data.

Another separate, but related concern is that the HITL algorithms may lead to
stereotypical depictions of emotions, which are not representative of everyday
emotional communication. For example, in GSP, participants will try to make
the sentence the best representation of a particular emotion, which might
lead to exaggerated or stereotypical depictions of the emotion. Also, in GAP,
raters will select the most emotional creation, which over iterations might
lead to selecting the most exaggerated prosody. However, both GSP and GAP
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can theoretically optimize for multiple objectives, for example, one part of
the participants optimizes for naturalness and another part optimizes for
emotionality. Furthermore, in GSP if a latent representation is used and the
parametrization of the space samples from natural variations in the training
data, the generated prosodies are less likely to be too extreme or exaggerated.

12.3.5 Cross-cultural validity

The goal of all three HITL algorithms has been to develop fairly general,
language- and culture-agnostic cognitive pipelines that can potentially be
employed in any culture. However, so far they have only been validated in a
Western context. While GSP has a fairly simple interface (only a slider) and
previous research has shown that sliders can be used cross-culturally [550,
551], the other two HITL algorithms might not be cross-culturally understand-
able. For example, in GAP asks creators to put themselves in the shoes of the
previous creator, but this might not be socially acceptable in all cultures (e.g.,
it might be considered rude). Or raters in GAP might not be aligned in what is
considered “emotional”, for example, some cultures might not even have a term
for “emotion” or the termmight be associated with different kinds of emotions
(e.g., while “disgust” is considered a basic emotion, it is maybe not the first
emotion Westerners think of). The same limitations apply to STEP, where the
text-based interface pre-assumes that participants are literate (although you
can make an oral version) and participants are familiar with Western concepts
learned in school (such as a Likert scale to rate the relevance of a tag).

These caveats should be considered when running these HITL algorithms in
a cross-cultural context but can be mitigated by breaking down the task into
subtasks and adapting the interface to the local context (e.g., providing an oral
version of the task, providing a visual Likert scale, or providing a different
interface), which requires careful piloting and validation in the respective
culture. However, we empirically found that participants recruited from the
internet across the globe tend to be fairly educated (thus are likely to be able
to read and are familiar with school concepts like Likert scales, multiple- and
forced-choice) and tend to be more globalized than participants from remote
areas of the world, and thus more exposed to Western concepts, which might
reduce the need for adaptation.

12.3.6 Human labour

All three HITL algorithms require human labor, which can be costly and time-
consuming. A frequent concern is that human labor is not scalable and that
the algorithms are not applicable to large datasets. One suggestion is to replace
humans – at least in part – with DNNs. We have shown that LLMs can be
integrated into the HITL algorithms and provide novel insights, for example,
on the alignment of human and LLMs [12, 17]. This also has great potential for
piloting the HITL algorithms and preparing a data analysis and visualization
pipeline before the human data is collected [552, 553]. However, replacing
humans entirely with DNNs comes at a risk of introducing biases and artifacts
inherent to the model, which might not be representative of human data. So
while the HITL algorithms are equally applicable to human and “machine
participants”, involving DNNs HITL algorithms is at most a proxy for human
behavior and thus cannot be used instead of human data.
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3: Alignment of taxonomies across lan-
guages is a non-trivial problem because the
same emotion might be expressed differ-
ently in different languages. One way to
solve this is to use a shared set of stimuli
across languages and align the taxonomies
based on the shared stimuli (use them as
landmarks). So you could compute the co-
occurrence of tags across languages and use
this to align the taxonomies. Another ap-
proach is to do dimension reduction (e.g.,
MDS) on the landmarks and a separate
MDS on all culture-specific stimuli. You can
now predict the position of culture-specific
stimuli in the landmark MDS space by min-
imizing the distance between the landmark
coordinates in both MDS spaces. This anal-
ysis requires a minimal number of shared
stimuli to be reliable, which is an empirical
question.

4: While we argued participants on Prolific
are moreWEIRD than on Lucid, they do on
average give less noisy responses than Lu-
cid participants, they know how to engage
in audio experiments, and you can reach
out to them if you have questions or they
encounter problems. This makes Prolific a
good platform for piloting cross-cultural
studies.

The HITL algorithms can also be used to create high-quality datasets, which,
after pruning harmful biases and artifacts, can be used to train DNNs. Partic-
ularly, in the context of LLMs and foundation models, the HITL algorithms
can be used to create a dataset that is representative of human data and can be
used to fine-tune them to be more human-like [554].

Finally, the development of PsyNet and the international infrastructure we
developed for running massive online experiments across the globe has shown
that human labor can be efficiently orchestrated, the process can be automated,
and the algorithms can be run on a large scale. Also, by running the experi-
ments across the globe and by paying the participants according to the local
wage, the costs can be reduced significantly, while enhancing the diversity of
the participants and the generalizability of the results.

12.4 Future research

The methods developed in this thesis accommodate a wide range of research
questions that can be applied to various domains and are both relevant to
computer science and cognitive science.

The developed global infrastructure allows us to employ the HITL algorithms
in a cross-cultural context and provide solutions to the lost-in-translation
problem. In particular, one could train a multilingual, multispeaker model
with a shared voice (i.e., speaker embeddings) and prosody latent space (e.g.,
Global Style Tokens). Since a priori, it is not clear if all languages have the
same emotions and if they refer to the same concept, one can prompt users to
match the prosody to emotionally evocative images (similar to VoiceMe and
RobotVoice). The factorizability of the TTS model allows us to apply the same
prosody to various languages, speakers, and genders, allowing us to shed light
on how different perceptual categories (such as gender and culture) interact
with the expression of emotions in speech.

Another project we are currently working on is to combine HITL algorithms
to create a taxonomy of emotions in speech that is cross-culturally valid. In
particular, we are using GAP to collect emotional prosodies from across the
world and in a second step use STEP to distill a taxonomy of emotions. To
break down the complexity of the project, we divide it into three stages. In
the first stage, we want to collect GAP data from two languages I speak (e.g.,
English and German), validate that the emotionality of the prosodies increases
over iterations, and run STEP in both languages on all stimuli. To make the
representation denser, we will do a dense rating on the most-used tags per
language. This pilot will help to: (i) validate the GAP task also works for non-
English speakers, (ii) estimate the minimal number of shared stimuli across
languages to align taxonomies in both languages,3 (iii) verify the obtained
taxonomy is of sufficient quality (e.g., “Wut” should be related to “anger”, but
not to “happiness”), (iv) estimate the need for dense rating, and if so, how
many stimuli need to be rated to get a reliable estimate. In the second stage,
we want to extend the pilot to nine languages (e.g., English, German, Tagalog-
Filipino, Vietnamese, Russian, Greek, Hungarian, Mandarin, and Spanish)
that span a large number of language families and are recruitable on Prolific4.
Concretely, we will collect GAP for the seven new languages and run STEP on
all stimuli from the own culture + the minimal number of shared stimuli per
culture to align the taxonomies (which was determined in the previous pilot).
This pilot will allow me to verify that the GAP task is also understandable for
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languages very different from English and obtain an aligned taxonomy in all
languages. The aligned taxonomy is then to be validated by native speakers of
all nine languages. The results and analyses provide answers to the number of
perceived emotions across languages, the proximity of the taxonomies (e.g., are
linguistically close languages also close in the taxonomy), and the alignment
sheds light on the universality of emotions.

In the last stage, we want to scale up the pipeline to a large number of languages
and countries using Lucid. To do so, this requires two additional steps: (i) test
the quality and the number of participants on Lucid who can engage in audio
experiments and (ii) obtain a more principled way to obtain sentences that
have a neutral meaning but can carry emotional prosody. To solve the latter,
we consider running a sentence creation experiment in eight linguistically
distinct languages. Participants should come up with sentences with a neutral
meaning that can occur in their daily lives (blocking copy-pasting from the
internet and prohibiting the use of LLMs). In the second step, all sentences are
cross-translated, and all obtained sentences are rated by native speakers of all
languages. The top-rated sentences across all languages are then used in the
GAP experiments.

Once the pipeline is established, it will be fairly straightforward to investigate
the relationship between the emotional space and stimulus spaces for other
modalities. For example, one could also use GAP to create emotional vocal-
izations (like moaning or screaming) or use GSP within GAP to use sliders
as proposed creations and use raters as some kind of “human aggregation”
to overcome production constraints. Participants using generative models
for stimulus creation will be allowed to extend the paradigm to a range of
stimuli, such as music, images, or videos. STEP can also be used to annotate
emotions in more principled sampled stimulus spaces. For example, we are
currently working on a project in which music charts from the US, South
Korea, and Brazil [63] are annotated with emotional tags across all three coun-
tries. Studying emotion taxonomies across modalities can provide insights
into the alignment and divergence of emotion taxonomies (e.g., are certain
emotions modality specific?) which goes far beyond existing work, who study
the taxonomies for different modalities, but do not compare them [52, 53, 56,
208, 212–216].

Since we identified that emotional prosody is essentially a mapping problem
between a stimulus and a semantic space (see Figure 12.1), one can also study
this mapping in domains beyond emotion. For instance, the HITL algorithms
can be used to study questions in grounded semantics, such as color naming,
study mental representations beyond emotions (such as speaker intentions) or
associations across domains [555, 556].

The developed HITL algorithms also contribute new tools to computer sci-
ence. In particular, they can be used to create high-quality corpora and can
provide solutions to three core problems inherent to most machine learning
corpora. These corpora, as proposed earlier, can then be used to fine-tune
LLMs and foundation models to improve the alignment between human and
machine representations and obtain more human-like responses from the
models. In particular, STEP can also be used to find more interpretable feature
representations in trained models, which can then be used to obtain a better
parametrization of the stimulus space in GSP. Finally, the HITL algorithms can
be used to create benchmarks for evaluating the performance of state-of-the-art
models.
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12.5 Implications

The three HITL algorithms as well as the global infrastructure developed in
this thesis have implications for both the study of emotional prosody and its
applications in machine learning. GSP and STEP can help identify harmful
biases and stereotypes in the data, which can be pruned to create high-quality
datasets. GAP can be used to create a representative corpus of emotional
prosody across a variety of languages, which can be used to train models that
are more balanced and diverse. These corpora can also provide benchmarks
for evaluating the performance of state-of-the-art models.

The work presented in this thesis also has theoretical implications for the
study of emotional prosody. In particular, it advances the data-driven study of
emotions by improved stimulus sampling (GAP), identifying emotional expres-
sions in high-dimensional stimulus spaces (GSP), and by theory-free taxonomy
curation (STEP). These tools can help answer fundamental questions about
the universality of emotions, their origin, and the pattern of cross-cultural
variation in emotional expressions.

Understanding how to create representative stimulus sets and effectively in-
tegrate human decisions to enhance the quality of training has become im-
perative. We believe the tools introduced in this dissertation can serve as a
vital part of the evolving infrastructure that will shape the future of machine
learning.
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Speech conveys more than just words—it carries emotional cues through 
prosody, which describes variations in pitch, loudness, timing, and voice quality. 
Detecting emotions from speech and expressive speech synthesis are crucial for 
successful communication in human-computer and human-robot interaction. 
This requires large datasets of emotional recordings. While corpora only 
indirectly capture the association between prosody and emotions, the actual 
association is stored in the minds of humans.

This thesis introduces three human-in-the-loop algorithms to efficiently 
characterize these associations through human experiments:
• Gibbs Sampling with People (GSP): Participants adjust speech 

dimensions (e.g., speed) using a slider to match a target emotion. Each 
participant only changes one dimension at a time. Over iterations, this 
converges to representative prosodies for particular emotions.

• Genetic Algorithm with People (GAP): Participants imitate and refine 
emotional speech samples through a process of mutation and selection. This 
yields a diverse set of expressive recordings.

• Sequential Transmission Evaluation Pipeline (STEP): Participants label 
emotional recordings, and can rate the relevance of labels provided by 
others. This process converges to a weighted taxonomy of emotions 
expressed through prosody.

To study the associations between emotions and prosody across cultures, I 
develop an infrastructure to run massive online experiments across the globe. I 
demonstrate the use and efficacy of it by running a large-scale, cross-lingual 
experiment.

Beyond emotional prosody, these algorithms have broader applications. I show 
how GSP can be used for voice personalization for digital agents and avatars, and 
I demonstrate how the combination of GSP and STEP can be used to align 
impressions of robots across the auditory and visual modality.

In a broader context, these algorithms allow the creation of more representative 
corpora  to train machine learning models that are more balanced and diverse 
and to benchmark the performance of state-of-the-art models.
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