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A B S T R A C T

As digitalization progresses and technologies advance rapidly, digital simulations offer great potential for 
learning professional practices in contexts such as medical or teacher higher education. The technological ad-
vancements increasingly facilitate the personalization of learning support to meet the individual needs of 
learners, whose diverse prerequisites influence their learning processes, activities, and outcomes. However, 
systematic approaches to combining technologies with educational theories and evidence are scarce. In this 
article, we propose to use data on relevant learning prerequisites and learning processes as a basis for person-
alizing feedback and scaffolding to facilitate learning with simulated practice representations. We connect 
theoretical concepts with methodological and technical approaches (e.g., using artificial intelligence) for 
modeling important learner variables as a basis for personalized learning support. The interplay between the 
learner and the simulation environment is outlined in a conceptual framework which may guide systematic 
research on personalized learning support in digital simulations.
Educational relevance statement: This paper introduces a conceptual framework, which aims to advance person-
alized simulation-based learning in higher education. Digital simulations can provide tailored learning experi-
ences that adapt to students' individual differences and needs, using artificial intelligence and other technological 
advances. This approach might have the potential to transform learning in higher education by increasing stu-
dent engagement and the effectiveness of learning professional knowledge and skills. The framework is discussed 
along five central questions of personalized learning, which may guide systematic research on how simulations 
can accommodate learners' diverse prerequisites and processes. In doing so, the framework provides a starting 
point for interdisciplinary research collaborations aimed at developing design principles for personalized 
simulation-based learning in higher
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1. The future of learning professional knowledge and skills in 
higher education

Many degree programs in higher education, such as medicine or 
teaching, aim to prepare students for professional situations of their 
domain. To support students in acquiring professional knowledge and 
skills relevant for mastering these situations, innovative instructional 
approaches are increasingly pursued. Such educational strategies follow 
the approximation-of-practice approach (Grossman et al., 2009), which 
suggests experiential learning with authentic practice representations in 
controlled, low risk learning settings. The idea associated with this 
approach is to develop professional knowledge and skills while, at the 
same time, preparing students for applying these in real-life contexts. 
For this purpose, simulation-based learning is an effective instructional 
method that can foster complex cognitive skills in higher education 
(Chernikova, Heitzmann, Stadler, et al., 2020). Through advancements 
in digitalization and technology, digital simulations offer higher edu-
cation flexible and scalable opportunities for learning through practice 
approximations in a controlled yet authentic environment. However, 
their design needs to balance authenticity and cognitive feasibility to 
ensure that learners are challenged but not overwhelmed (Chernikova 
et al., 2024; Fischer et al., 2022; Grossman et al., 2009; Seidel et al., 
2015).

The potential of digital simulations is continuously expanding with 
technological advances, particularly in the area of artificial intelligence 
(AI), which allows making digital simulations more and more adaptive 
to learners' individual differences and diverse needs. Harnessing these 
capacities can become a cornerstone of personalized learning in higher 
education, provided that conceptual, technological, and ethical con-
siderations can be adequately addressed. In this context, we refer to 
personalization as “the data-based adjustment of any aspect of instruc-
tional practice to relevant characteristics of a specific learner” (Tetzlaff 
et al., 2021, p. 865).

While there is valuable prior work on personalization both generally 
and in specific contexts, there has been limited exploration of how 
personalization can be systematically integrated into simulation-based 
learning for the development of professional knowledge and skills. 
This gap is particularly relevant as professional learning requires that 
learners engage with practice representations that both approximate 
real-world scenarios and facilitate the structuring and application of 
knowledge (Boshuizen et al., 2020; Jossberger et al., 2022; Norman 
et al., 2007), placing high demands on the learning context and 
personalization approach.

Our paper addresses this gap by presenting a theoretically and 
empirically informed perspective on integrating personalization into 
digital simulations for professional learning in higher education. We 
propose the SHARP conceptual framework for advancing research on 
personalized simulation-based learning in higher education, detailing 
the interaction between learners and a simulation environment for 
fostering complex professional practices in higher education (see Fig. 1). 
We structure the introduction to the framework around five key ques-
tions commonly addressed in the literature on personalized learning (e. 
g., Aleven et al., 2017; Bernacki et al., 2021; Vandewaetere & Clarebout, 
2014): (1) Why personalize? (2) What to personalize? (3) Who person-
alizes? (4) How to personalize? and (5) When to personalize? In doing 
so, we build on and extend prior frameworks by explicitly linking 
personalization approaches to the demands of learning in professional 
contexts through simulations.

The framework emphasizes the importance of modeling different 
dimensions of individual differences between learners (e.g., cognitive, 
metacognitive, motivational-affective, and social learning prerequisites 
and processes) as a basis for personalized learning support specifically in 
the context of digital simulations for higher education. In the context of 
learning professional knowledge and skills with simulations, scaffolding 
and feedback stand out as fundamental approaches for effective learning 
support (Chernikova, Heitzmann, Fink, et al., 2020). These can be 
adjusted by recording and integrating relevant learner variables into 
learner models. Thereby, the framework provides a structured view on 
the pedagogical reasons for personalizing simulations (e.g., learners 
with low prior knowledge are more likely experiencing cognitive 
resource depletion), what is personalized (e.g., complexity of the prac-
tice representation), how the personalization may be implemented (e.g., 
based on learners' tracked performance measures), and when the 
personalization occurs within the simulation flow (e.g., after each 
practice representation).

However, there are still many unanswered questions about how to 
design and implement personalization in digital simulations in a way 
that effectively addresses learners' individual differences. Many hurdles 
need to be overcome to realize personalized digital simulations for 
learning professional skills in higher education at scale—including 
empirical questions about interactions of various learner characteristics, 
technical questions about real-time analytics, and ethical questions 
about data recording and analysis—making personalized simulation- 
based learning a challenging but visionary, forward-looking approach 
for higher education. Given the lack of evidence-based design principles 
for personalized simulation-based learning in higher education, the final 

Fig. 1. SHARP framework for advancing research on personalized simulation-based learning in higher education.
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section of this paper highlights the research needed to make critical 
advances and pave the road ahead toward personalized digital simula-
tions in higher education.

2. Digital simulations for learning professional practices in 
higher education

2.1. Professional knowledge and skills

Medicine, teaching, engineering, architecture, nursing, law, design, 
social work, and other professions are shaped by their members' shared 
knowledge and skills (Blömeke et al., 2015; Goodwin, 1994; Grossman 
et al., 2009). The collective patterns of professionals' activities in spe-
cific practice situations and the underlying knowledge and skills define 
what is subsumed as professional practices (Bauer et al., 2020; Behling 
et al., 2022; Fischer et al., 2022; Gherardi, 2009; Goodwin, 1994; Kelly, 
2008; Seidel et al., 2021). Preparing future professionals for acting 
adequately in professional practice situations is a goal that is increas-
ingly adopted by higher education programs, for example, in teacher 
education (Floden et al., 2020) and medical education (Frank et al., 
2010).

To develop practice-oriented curricula, in several professions, there 
are efforts to understand professional practices that evolved therein, for 
example, by identifying professional core practices, such as core prac-
tices of teaching (CPoT; Grossman, 2021) and entrustable professional 
activities in medicine (EPAs; Amiel et al., 2021; for an overview of CPoT 
and EPAs see Fischer et al., 2022). When comparing various domain- 
specific frameworks, it is evident that certain types of practices, like 
diagnosing or intervening, are relevant for professionals across different 
domains. Diagnosing classifies phenomena (e.g., student difficulties or 
patient symptoms) based on evidence that is often not directly observ-
able but must be generated and evaluated in the form of observable cues 
(e.g., a student's facial expression or a patient describing discomfort; 
Heitzmann et al., 2019). Diagnostic conclusions often lead to in-
terventions aiming for positive change (e.g., in problematic conditions 
of clients) through activities such as designing, selecting, implementing, 
evaluating, and redesigning intervention measures, as well as engaging 
in argumentative communication about the intervention with others 
(Richters et al., 2024). Frameworks, such as CPoT and EPAs, help 
conceptualize practice-oriented learning objectives for professional 
learning in higher education. Such professional learning should focus on 
facilitating theoretical understanding, practical skill training, and 
experiential learning (Shulman, 1998), enabling future professionals to 
develop the knowledge for acting in professional practice situations 
(Seidel et al., 2024; Seidel, 2022).

A professional knowledge base can be characterized by its knowl-
edge facets, types, structure, and applicability. Facets of knowledge 
categorize knowledge into content areas. For example, in teaching, 
professional knowledge is commonly distinguished as content knowl-
edge (i.e., subject-specific knowledge), pedagogical knowledge (i.e., 
general knowledge about teaching and learning), and pedagogical 
content knowledge (i.e., knowledge about subject-specific teaching 
strategies; Shulman, 1987). Types of knowledge describe different 
knowledge representations, such as conceptual knowledge (i.e., models, 
principles, categories, and schemas) and strategic knowledge (i.e., 
methods and approaches for solving specific tasks; Förtsch et al., 2018). 
Structure of knowledge addresses the development of macro-concepts 
through a process called encapsulation, where theoretical knowledge 
applied to practical cases leads to compilation and abstraction processes; 
based on these macro-concepts, problem-specific scripts develop that 
help actors remember, decide, and act quickly, thus achieving better 
solutions (Boshuizen et al., 2020; Norman et al., 2007). Applicability of 
knowledge to professional situations and problems reflects how well 
(future) professionals can apply professional knowledge in specific 
practice situations (Bromme & Tillema, 1995). This can be captured by 
situation-specific performance indicators: process indicators (e.g., 

diagnostic activities; Heitzmann et al., 2019) and outcome measures (e. 
g., judgment accuracy; Norman, 2005; Urhahne & Wijnia, 2021; or 
quality of arguments for justifying the judgment; Bauer et al., 2022). 
These dimensions help outline professional knowledge essential for 
acting in professional practice situations.

2.2. Approximating practice with digital simulations to learn professional 
knowledge and skills

To acquire knowledge essential for professional practice and 
enhance its structure and applicability, learners need to gain experience 
within relevant practice situations or cases (Boshuizen et al., 2020; 
Jossberger et al., 2022; Norman et al., 2007), driving higher education 
to implement experiential learning and reflection. Using representations 
of practice (i.e., of practice situations or cases) in higher education, 
professional practice can be approximated in a risk-free manner 
(Grossman et al., 2009). Representations used for approximating prac-
tice should incorporate key characteristics of the professional practice 
situations being represented (Fischer et al., 2022). In addition, the 
approximation-of-practice approach suggests decomposing professional 
practice situations to select and adjust practice representations that 
cover important aspects of practice without overwhelming learners with 
the full demands of professional practice (Fischer et al., 2022; Grossman 
et al., 2009; Seidel et al., 2015).

Simulations—models of natural, social, or artificial systems in which 
certain features can be manipulated—provide an effective means for 
approximating practice with relevant practice representations in higher 
education programs (Fischer et al., 2022; Heitzmann et al., 2019; Leh-
tinen, 2023). The simulation-based learning approach incorporates el-
ements of situated learning, problem-based learning, and case-based 
learning (Hmelo-Silver, 2004; Kolodner, 1992; Lave & Wenger, 1991; 
Wood, 2003). By engaging in professional activities via interactive 
representations of practice, learners familiarize themselves with the 
demands of professional situations. Results of meta-analytic studies 
suggest that simulation-based learning yields large effects for higher 
education (Chernikova, Heitzmann, Stadler, et al., 2020). Simulations 
span from analogue role-playing exercises and document-based learning 
formats to digital multimedia learning environments, and advanced 
digital applications employing Virtual and Augmented Reality. Simu-
lations with high authenticity are associated with larger effects 
compared to less authentic simulations. However, functional corre-
spondence to real-world tasks (i.e., functional authenticity) seems more 
crucial for cognitive learning outcomes than physical resemblance (i.e., 
physical authenticity; Chernikova, Heitzmann, Stadler, et al., 2020; 
Hamstra et al., 2014; Norman et al., 2012).

Simulations of professional practices are often conceptualized as skill 
training. Simulation-based learning environments in medical and 
teacher education can effectively advance complex knowledge and skills 
essential for professional practice. In medical education, simulations are 
widely used to foster diagnostic reasoning, including gathering patient 
data, formulating differential diagnoses, and justifying decisions under 
uncertainty (Braun et al., 2019; Cook et al., 2012). Virtual patient 
simulations provide opportunities to engage in realistic diagnostic 
decision-making while receiving feedback that promotes reflection. In 
teacher education, simulations can, for example, be used to train com-
plex skills such as diagnosing the mathematical skill level of students 
(Nickl, Sommerhoff, Böheim, et al., 2024). These environments offer a 
controlled space to practice the knowledge and skills critical for pro-
fessional practice.

To systematically approximate professional practice, a simulation 
targeting a professional practice may involve multiple simulated prac-
tice representations to offer learners repeated training and confront 
them with a variety of practice scenarios. The sequencing of the indi-
vidual representations may follow an approximation strategy that in-
corporates the sequencing principle of increasing difficulty: guiding 
learners to increasingly realistic representations of practice, through 
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which they progress to representations with high demands and re-
sponsibilities that are similar to real professional practice (Collins et al., 
1989; Fischer et al., 2022; Koedinger & Aleven, 2007; Seidel et al., 2017; 
van Merriënboer, & van, & Kirschner, P. A., 2017). Experienced chal-
lenges such as unsuccessful solution attempts or errors provide valuable 
learning opportunities through internal feedback, when learners 
compare their current knowledge and skills against reference informa-
tion (Black & Wiliam, 2009; Jossberger et al., 2022; Narciss, 2013; 
Nicol, 2021; Zimmerman, 1989). Learners' errors have less severe con-
sequences in simulations compared to real practice contexts; therefore, 
they are less associated with high emotional arousal, that might be 
detrimental for learning (Tulis et al., 2018). Moreover, simulations 
facilitate adjustment strategies such as pausing to reflect an error or 
discuss with collaborating learners. Through these and other mecha-
nisms, learning processes in simulations address cognitive, meta-
cognitive, motivational-affective, and social dimensions of learning 
(D'Mello & Graesser, 2012; Järvelä et al., 2019; Mayer, 2014; Pekrun & 
Linnenbrink-Garcia, 2014; Zimmerman & Schunk, 2011).

Especially digital simulations offer high potential by taking advan-
tage of the growing digital infrastructure in higher education and 
making simulation-based learning accessible to large numbers of stu-
dents. Digital simulations are technology-driven applications repre-
senting real-world systems, processes, or practices (Gegenfurtner et al., 
2014; Heitzmann et al., 2019). Digital simulations allow learners to 
engage with dynamic representations of tasks, roles, systems, or prac-
tices. In higher education, they are used to foster professional skills by 
enabling learners to actively explore, make decisions, and receive 
feedback within authentic scenarios (Chernikova, Heitzmann, Stadler, 
et al., 2020). Digital simulations are highly scalable, provided that suf-
ficient infrastructure is available. Moreover, advancements in technol-
ogy are progressively facilitating the design and implementation of 
digital simulations. Especially with the increasing popularity and 
accessibility of generative AI models, such as GPT (OpenAI, 2023), 
LLaMA (Touvron et al., 2023) and many more, the possibilities for 
automatically generating content and learning materials (e.g., case 
studies and dialogues), and for developing digital learning environments 
are significantly enhanced. As a range of studies and theoretical 
frameworks have highlighted, the media design has substantial effects 
on learning processes in digital learning environments, such as digital 
simulations (Martin et al., 2022; Mayer, 2014; Mutlu-Bayraktar et al., 
2019; Schneider et al., 2018). In addition, technological advances 
facilitate the personalization of digital simulations. For example, inte-
grating multimodal foundation models, such as Gemini (Gemini Team 
Google et al., 2023), can be useful for tailoring learning support or 
content to individual learners (Dai & Ke, 2022; Kasneci et al., 2023; 
Küchemann et al., 2024). Therefore, these technological advancements 
offer high potential for enriching the media design of digital simulations, 
creating representations of practice with varying degrees of difficulty, 
and personalizing learning support to match learners' individual dif-
ferences and diverse needs.

3. Personalized learning support in digital simulations for 
higher education

To conceptualize personalized learning support in digital simulations 
for higher education, our framework integrates relevant theoretical 
foundations with methodological and technical considerations. Ap-
proaches to personalized learning have often been characterized by a 
focus on methodological and technical dimensions—such as the timing, 
frequency, method, and control of personalization— meaning that more 
emphasis is needed on the theoretical underpinnings and empirical 
findings that inform effective personalization (Bernacki et al., 2021; 
Rong et al., 2023; Walkington & Bernacki, 2020).

Therefore, our framework builds on previous research that has 
addressed the issue of integrating theory and technology. For example, 
Aleven et al. (2017) proposed the Adaptivity Grid, a framework that 

systematically organizes personalization across dimensions such as 
goals, targets, and methods of adaptation, and levels of granularity. 
Within this framework, they introduced a three-loop model—design 
loop, task loop, and step loop—that reflects increasingly fine-grained 
instructional personalization, from long-term system redesign to real- 
time, individualized feedback. This model illustrates how adaptive 
systems can support learning by responding dynamically to student 
needs at multiple levels of interaction. Complementary work by Plass 
and Pawar (2020) emphasizes the importance of selecting personaliza-
tion variables that are both instructionally relevant and sufficiently 
varied across learners. Their contributions also offer a granular typology 
of personalization strategies along with illustrative exemplars, high-
lighting how personalization can be designed and studied across mul-
tiple educational contexts. Bernacki et al. (2021) synthesize the growing 
body of research on personalized learning into a comprehensive 
framework that maps personalization along dimensions such as learner 
characteristics, contexts, and instructional purposes. This framework 
provides conceptual orientation for describing, comparing, and 
extending personalization designs in research, implicitly underscoring 
the need to bridge broad theoretical models with context-specific ap-
plications such as those required for simulation-based learning in higher 
education. Complementary strands of research focus on domain-specific 
implementations of personalized learning—for example, in K–12 edu-
cation (Hardy et al., 2019), higher education (Fariani et al., 2023), or in 
relation to specific approaches to learning such as self-regulated 
learning (Steinert et al., 2024). Despite these valuable models, limited 
work to date has explored how personalization can be systematically 
integrated into simulation-based learning to support the development of 
professional knowledge and skills. This gap is especially relevant given 
the demanding nature of professional learning, which requires learners 
to engage with representations of practice that approximate real-world 
contexts and support the structuring and application of knowledge 
(Boshuizen et al., 2020; Jossberger et al., 2022; Norman et al., 2007).

Existing personalized learning frameworks (e.g., Aleven et al., 2017; 
Plass & Pawar, 2020; Bernacki et al., 2021) provide overarching models 
for tailoring instruction to individual learner needs, delineating key 
dimensions of adaptivity (e.g., cognitive, motivational, and affective). 
Simulations extend these personalization possibilities beyond conven-
tional learning environments by allowing learners to engage in iterative 
trial-and-error practice on complex tasks without real-world risk, 
thereby providing a safe, feedback-rich environment for skill develop-
ment. Such simulation environments also provide structured opportu-
nities for reflection (e.g., pausing to consider outcomes or incorporating 
dedicated reflection phases). In addition, simulations generate fine- 
grained data on learners' actions, enabling in situ personalized scaf-
folding and feedback. Adaptive supports can be dynamically triggered 
by deviations in a learner's problem-solving trajectory; for example, the 
system might offer hints or prompts to guide the learners actions, or 
adjust the scenario's representation to aid understanding (i.e., process- 
oriented and representational scaffolding). These real-time, context- 
specific support capabilities surpass what is addressed by existing 
personalization frameworks that—due to their broader scope or 
different focus—do not offer a theoretical account of the unique affor-
dances of personalizing simulation-based learning (e.g., balancing task 
complexity with help of embedded supports). Therefore, a framework 
that elaborates on personalization in simulation-based learning of pro-
fessional knowledge and skills can offer opportunities for advancing this 
area of research and education.

Introducing the SHARP framework (see Fig. 1), we address five key 
questions commonly addressed in the literature on personalized 
learning (e.g., Aleven et al., 2017; Bernacki et al., 2021; Vandewaetere 
& Clarebout, 2014): (1) Why personalize? (2) What to personalize? (3) 
Who personalizes? (4) How to personalize? and (5) When to person-
alize? In addressing these questions, we consider how learners' indi-
vidual differences—such as variations in prior knowledge, 
metacognitive capacities, and motivational beliefs—can serve as 
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meaningful input for personalization, particularly in simulation-based 
learning. However, there are still many challenges and unanswered 
questions about the design and implementation of personalized digital 
simulations. Therefore, our framework provides an overview of current 
options and challenges concerning the personalization of digital simu-
lations, including approaches to modeling learners and tailoring support 
through AI-driven systems (for a summary, see Table 1; for two exam-
ples of personalized simulations, analyzed along the key questions, see 
Table 2). In doing so, we aim to guide systematic research toward the 
development of design principles for personalized simulation-based 
learning in higher education.

3.1. Why to personalize?

Learners with varying characteristics differ regarding what repre-
sentations of practice are challenging for them and where in the learning 

process they encounter which difficulties. Individual differences in 
learners' prerequisites, processes, and activities may result in diverse 
needs for learning support. Therefore, when learning with digital sim-
ulations, students may greatly benefit from personalization. Through 
personalized support, educational programs can specifically target 

Table 1 
Overview of typical questions as well as options and challenges when 
approaching personalization of digital simulations.

Questions Options Challenges

1. Why to 
adapt?

Learners' individual differences 
and diverse needs related to their:  

• Cognitive, metacognitive, 
motivational-affective, and so-
cial learning prerequisites

• Cognitive, metacognitive, 
motivational-affective, and so-
cial learning processes

• Learning activities related to 
task processing and regulating

• Considering interaction 
effects of learner variables (i. 
e., combinations of variables 
forming learner profiles)

• Considering collaborative 
learners' joint composition of 
learning prerequisites

• Identifying which variables 
provide sufficient 
heterogeneity for 
personalization

2. What to 
adapt?

Learning support measures:  

• Learning process scaffolding
• Representational scaffolding
• Feedback

• Choosing the right learning 
support for learners with 
different characteristics

• Balancing learner support 
with the potential 
obtrusiveness of support 
measures

3. Who 
adapts?

Adjustments can be made:  

• For the learner, by an 
instructor or a computer (i.e., 
adaptivity)

• By the learner (i.e., 
adaptability)

• Choosing the right 
personalization approach for 
learners with different 
characteristics

• Balancing learner support 
with learner autonomy

4. How to 
adapt?

Creating learner models through:  

• Video, audio, text, logfile, eye 
tracking or other physiological 
measures, tests and 
questionnaires, all of which 
can be used to infer learning 
prerequisites and learning 
processes (i.e., recording 
learner data)

• Supervised, unsupervised, 
semi-supervised, self-super-
vised, and reinforcement 
learning methods (i.e., 
analyzing learner data)

• Limiting the obtrusiveness of 
data recording

• Ensuring reliability, validity, 
and interpretability of 
measurements

• Integrating multimodal data
• Balancing prediction 

accuracy with model 
interpretability

• Ensuring data protection and 
privacy

• Interpreting learner 
behaviors in ill-structured, 
authentic simulation tasks.

5. When to 
adapt?

Adjustments can be made:  

• Before the start of the 
simulation (i.e., macro-level)

• After completion of a 
significant segment, e.g., one 
simulated practice 
representation (i.e., meso- 
level)

• Within smaller learning 
segments, e.g., during practice 
representations using real-time 
analyses (i.e., micro-level)

• Choosing the right 
personalization strategy for 
more or less stable or volatile 
learner variables

• Determining the stability or 
volatility of learner variables

Table 2 
Examples of personalized support in digital simulations, described along the 
guiding questions.

Questions Example: Adaptive scaffolding in 
a video-based simulation for 
learning pedagogical content 
knowledge (PCK) in biology 
teacher education (Irmer et al., 
2024)

Example: Adaptive feedback in a 
document-based simulation for 
learning diagnostic reasoning in 
teacher education (Bauer et al., 
2025)

1. Why to 
adapt?

• Learners' levels of prior PCK 
vary, which impacts their 
effective planning and 
reflection across multiple 
simulated practice 
representations of teaching 
situations.

• Learners with low prior PCK 
struggle with enacting 
knowledge due to the lack 
thereof and thus might benefit 
from scaffolding that provides 
input on relevant knowledge 
aspects (cPCK-scaffolds).

• Learners with high prior PCK 
might benefit from scaffolding 
that supports them in applying 
their available knowledge 
(pPCK-scaffolds).

• Learners vary in their levels of 
prior knowledge and self- 
regulation skills, resulting in 
challenges during the pro-
cessing of detailed practice 
representations about stu-
dents' learning difficulties.

• Especially low performing 
learners might experience 
difficulties with integrating 
feedback about detailed case 
information in the own 
knowledge structures without 
cognitive resource depletion.

• Learners' performance in 
reasoning about the case 
might indicate their 
difficulties regarding 
cognitive processing (e.g., 
which case information they 
considered) and learning 
activities related to task 
processing (e.g., how 
information was generated).

2. What to 
adapt?

• Learning process scaffolding 
in this simulation aims to 
adjust to learners' prior PCK, 
providing cPCK-scaffolds to 
learners with low prior PCK 
and pPCK-scaffolds to learners 
with high prior PCK.

• Adaptive feedback in this 
simulation aims to adjust to 
the learners' diagnostic 
reasoning performance, 
highlighting achievements 
and difficulties in learners' 
cognitive processing and 
learning activities.

3. Who 
adapts?

• Adjustments are initiated and 
supervised by the higher 
education teacher (i.e., 
adaptivity).

• Adjustments are made by the 
computer (i.e., adaptivity) to 
spare learners' cognitive and 
self-regulatory resources.

4. How to 
adapt?

• A pre-test assesses learners' 
prior PCK to determine the 
type and level of scaffolding 
each learner receives. Adap-
tations are assigned according 
to a predefined cut-off in 
learners' prior PCK based on 
the initial PCK assessment.

• Learners' text data (written 
diagnostic reasoning) is used 
to infer the achievements and 
difficulties in learners' 
cognitive processing and 
learning activities.

• An artificial neural network (i. 
e., a supervised learning 
method) was trained to 
automatically recognize 
relevant case information and 
learning activities in learners' 
text data and automatically 
select predefined feedback 
paragraphs.

5. When to 
adapt?

• The adaptation is determined 
before the learners engage 
with the simulation, based on 
their prior PCK scores. This 
adaptation sets the stage for 
the entire learning session, 
providing a consistent level of 
support tailored to the initial 
assessment (i.e., macro-level 
personalization).

• After learners submitted their 
responses, a real-time analysis 
enabled making adjustments 
to the feedback message 
within one practice represen-
tation (i.e., micro-level 
personalization) to dynami-
cally respond to learner per-
formance changes across 
practice representations.
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learners' difficulties, aiming to optimize learners' engagement with 
simulated situations to maximize the educational benefits of simulation- 
based learning (Chernikova et al., 2025).

3.1.1. Learning prerequisites
The effectiveness of simulation-based learning is affected by the in-

dividual differences in learners' prerequisites, which influence how 
learners process and engage with simulations (e.g., Bichler et al., 2020; 
Huber et al., 2015; Kalyuga, 2007; Pieger & Bannert, 2018; Seufert, 
2018). When learners notice cues in a simulated situation, their learning 
prerequisites—cognitive, metacognitive, motivational-affective, and 
social—are activated and regulate their learning processes and activities 
(e.g., cue processing), which in turn may affect the learning outcomes 
and thereby change learners' prerequisites.

Cognitive learning prerequisites include general cognitive abilities (e. 
g., Bichler et al., 2020), such as analytic and complex problem-solving 
abilities, important for novel learning situations where relevant 
knowledge has not yet been acquired. However, the more task-specific 
prior knowledge is available, the greater its importance for task pro-
cessing (Hetmanek et al., 2018). In higher education, it is notable that 
while there might be less discrepancy among students regarding their 
general cognitive abilities, there remains a wide spectrum in terms of 
their prior knowledge. This implies that accommodating individual 
differences in task-specific prior knowledge can be crucial for effective 
simulation-based learning in higher education.

Metacognitive learning prerequisites encompass knowledge about one's 
cognitive processes and the metacognitive skills needed for self- 
regulation activities, such as goal setting, planning, self-control, moni-
toring, and reflection (e.g., Azevedo, 2009; Zimmerman, 1989). These 
have been shown to play a critical role in regulating learning processes 
and, consequently, in achieving learning outcomes (Bannert et al., 2014; 
Engelmann & Bannert, 2021; Lim et al., 2021; van der Graaf et al., 
2022). Simulations afford learners considerable flexibility to experiment 
with problem-solving strategies and reflect on their actions without se-
vere consequences, suggesting potential benefits of support that is 
personalized to individual differences in learners' metacognitive pre-
requisites to facilitate their coping with the demands of simulation- 
based learning.

Motivational-affective learning prerequisite are crucial for initiating 
and persisting in actions in learning (Hidi & Renninger, 2006). Indi-
vidual differences in prerequisites such as interest in the learning con-
tent and environment significantly influence engagement with 
simulations, especially in higher education scenarios where students 
might work independently before sharing insights in their seminars 
(Bernacki & Walkington, 2018; Kron et al., 2022). Additionally, moti-
vational factors like students' perceived success expectancy and sub-
jective task value regulate learners' engagement in simulation-based 
learning, yet the impact of these expectancy-value components on 
learning outcomes varies considerably by context and construct oper-
ationalization, highlighting the situational nature of motivational pro-
cesses (Holzberger et al., in-principle accepted, 2024; Nickl, 
Sommerhoff, Böheim, et al., 2024). Nonetheless, adjusting the level of 
task difficulty and providing additional support to sustain engagement 
might be vital for learners with lower motivational-affective 
prerequisites.

Social learning prerequisites include social knowledge and skills for a 
broad scope of social interactions (Schneider et al., 2017) as well as 
specialized forms for professional interaction with clients (e.g., physi-
cian's patient communication or teachers' communication with students 
and parents; Gartmeier et al., 2015) and collaboration with colleagues of 
the same or a different specialization (Radkowitsch et al., 2021). Such 
social knowledge is stored in internal knowledge structures or cognitive 
scripts (e.g., internal collaboration scripts; Kollar et al., 2006). If 
learners have not yet developed such cognitive scripts, this can nega-
tively impact the learning benefits of simulated social interaction and 
collaboration, suggesting that the learners might require higher degrees 

of external guidance to support their learning.
Interplay and relevance of learning prerequisites can vary, as practice 

situations differ in their demands (e.g., including or excluding social 
interaction; Fischer et al., 2022) and different learning prerequisites 
may facilitate or hinder each other (e.g., interest and motivation can 
influence prior knowledge activation). This complexity underscores the 
need for further research on learner profiles, exploring how different 
combinations of characteristics affect learning processes and outcomes 
and interact with varying demands of different practice situations (e.g., 
Kron et al., 2022; Nickl, Sommerhoff, Böheim, et al., 2024). For 
example, in a simulation designed to train preservice teachers in diag-
nostic skills, Nickl, Sommerhoff, Böheim, et al. (2024) noted that 
learners with above-average cognitive prerequisites (i.e., prior knowl-
edge) tended to demonstrate higher diagnostic accuracy and invested 
more time, compared to those with below-average cognitive and moti-
vational prerequisites but also those with above-average motivation but 
lower cognitive prerequisites. This suggests that high motivation is 
important but cannot compensate for insufficient prior knowledge. 
Since most current research predominantly examines individual 
learning prerequisites in isolation, further studies are essential to 
comprehensively understand how these elements interact within learner 
profiles during simulation-based learning. Additionally, in collaborative 
simulation-based learning, the composition of group members' learning 
prerequisites becomes crucial (e.g., Weinberger et al., 2007), suggesting 
research on a layered dimension that might extend personalization 
beyond individual learning needs to including group dynamics.

3.1.2. Learning processes
During simulation-based learning, students' learning prerequisites 

are activated and regulate the learning processes (e.g., Seufert, 2018). 
These processes then regulate the learning activities and affect the 
learning outcomes. For example, when interacting with simulated 
practice situations, learners perceive and process cues, including visual 
and verbal information, and engage in learning activities, through which 
the simulation might reveal more cues, enriching the task-relevant in-
formation. Latent learning processes become inferable through the 
learning activities (see subsequent section) and through further behav-
ioral manifestations such as verbalizations or eye movement (see section 
4. How to adapt?). Like learning prerequisites, learning processes span 
cognitive, metacognitive, motivational-affective, and social dimensions.

Cognitive learning processes in simulations—from the view of multi- 
memory models—include learners' processing of sensory information 
in their working memory, using prior knowledge from long-term 
memory for encoding (Gegenfurtner et al., 2023; Sweller et al., 2019). 
The capacity of working memory is constrained, influenced by the 
structure of prior knowledge and the working memory resource deple-
tion resulting from cognitive effort (Chen, Castro-Alonso, et al., 2018). 
Information, once processed, is integrated through elaborating and 
organizing activities into long-term memory, forming the basis for 
future learning and application (Stern, 2017). This integration process is 
further explained by the knowledge restructuring through case pro-
cessing theory (KR–CP; Boshuizen et al., 2020), which posits that 
learning through cases (i.e., representations of practice) leads to the 
dynamic adjustment of cognitive schemata that enhance expertise 
development, especially in fields where there is a strong link between 
academic knowledge and professional practice. Individual differences 
such as expertise dependent differences in how learners process, inte-
grate, and restructure knowledge underscore the importance of 
personalized cognitive support in simulation-based learning for profes-
sional knowledge and skills, particularly as these simulations can be 
demanding for learners' cognitive resources.

Metacognitive learning processes involve learners' awareness and 
control over their learning (Azevedo, 2009; Bannert et al., 2014; Zim-
merman, 1989), critical for effectively navigating a simulated situation 
and adjusting solution approaches based on ongoing feedback and 
reflection. Metacognitive processes are intertwined with cognitive 
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processes and influenced by metacognitive and cognitive learning pre-
requisites, determining, for example, how learners analyze and plan the 
learning tasks (Lim et al., 2021). Metacognition plays a crucial role in 
deep reflection of failures within simulations (Zhang & Fiorella, 2023). 
Adapting learning support to individual differences in learners' meta-
cognitive processes, such as non-ideal strategy adjustments after failure, 
might prevent learners' shallow processing and facilitate their deep 
reflection and learning from errors (Heitzmann et al., 2023).

Motivational-affective learning processes include motivational states 
and processes that, according to self-determination theory, can range 
from external to self-determined forms (Deci & Ryan, 2004). Self- 
determination, characterized through feeling competent, autonomous, 
and socially related, fosters intrinsic motivation and positive affective 
states, such as students' enjoyment during learning (Krapp, 2005; Pek-
run, 2006). Such motivation and positive emotions enhance volitional 
processes, resulting in deeper and longer engagement in learning ac-
tivities and, consequently, higher learning outcomes (Pekrun & 
Linnenbrink-Garcia, 2012; Schiefele et al., 2003). Simulations that cater 
to learners' situation-specific motivational-affective needs (catch 
component of interest) might help sustain engagement and facilitate the 
development of a trait interest in the subject matter (hold component; 
Knogler et al., 2015), contributing to students' ongoing professional 
development. Considering individual differences in motivational- 
affective learning processes for targeted support while learning with 
simulations might be instrumental in fostering sustained interest and 
engagement.

Social learning processes underscore the importance of learning from 
and with others—both in terms of simulated social interaction and 
collaborative simulation-based learning. Theories such as vicarious or 
observational learning highlight how observing models and mentally 
rehearsing observed activities can enhance learning (Bandura, 2008; 
Jarodzka et al., 2013; Rummel et al., 2009). In simulations, social 
learning extends to the co-construction of knowledge, where learners 
refine and possibly assimilate their own individual understandings 
through activities such as sharing insights and negotiating meaning, 
which may result in modifying the ideas of other learners (Dubovi & 
Tabak, 2020). The effectiveness of these social learning processes can be 
influenced by the composition of the learner group, suggesting that 
strategic grouping based on similarity or complementarity of knowledge 
and skills but also strategic support of social learning processes might 
further enhance learning outcomes in simulations that involve social 
learning processes (Radkowitsch et al., 2021; Weinberger et al., 2007).

3.1.3. Learning activities
Learning prerequisites and processes often are latent learner vari-

ables, which regulate and thereby become evident in learning activities, 
that is, learners' interactions with a simulation environment, learning 
materials, or peer learners. Such learning activities may be aimed at 
processing the learning task and regulating the learning experience. 
When learning is conducted collaboratively, these activities take on an 
added collaborative layer, incorporating group dynamics alongside in-
dividual actions.

Task processing in simulations encompasses a wide range of cognitive 
activities, including, but not limited to noticing, inquiry, problem- 
solving, reasoning, interpreting, explaining, argumentation, design, 
decision-making, and intervention. The analysis of these task-processing 
activities in various situations and professional fields are facilitated by 
conceptual frameworks, such as the epistemic activities framework 
(Fischer et al., 2014) or the professional vision framework (Seidel & 
Stürmer, 2014). The epistemic activities framework, for example, cate-
gorizes a variety of actions such as generating hypotheses, constructing 
and redesigning artifacts, generating and evaluating evidence. This 
framework has proven useful across multiple professional fields, 
including medicine, economics, teaching, and social work (Bauer et al., 
2020; Berndt et al., 2021; Ghanem et al., 2018), as it allows for a 
detailed understanding of how learners approach epistemic tasks in 

simulations and other contexts and helps to identify unproductive or 
erroneous behaviors that often indicate insufficient task-relevant prior 
knowledge (Heitzmann et al., 2023; Richters et al., 2023; Stadler, 
Fischer, & Greiff, 2019).

Regulating the learning experience is another central purpose of 
learning activities in simulations. Regulation activities relate to the 
metacognitive and motivational-affective dimensions of learning, 
encompassing self-regulation activities, such as goal setting, planning, 
self-control, monitoring, and reflection (Azevedo, 2009; Bannert et al., 
2014; Zimmerman, 1989). Through these activities, learners not only 
monitor and adapt their approach to learning tasks but may also modify 
the learning environment (e.g., learning support) to better suit their 
needs, given that the environment affords such flexibility. These regu-
lating activities can become especially relevant when learners encounter 
an impasse in a simulation task, prompting them to reevaluate and 
adjust their strategies.

Social interaction and collaboration introduce an additional layer to 
task-processing and regulating activities that needs to be considered if 
simulated professional tasks are social by nature or if the design includes 
collaborative learning. For analyzing this collaborative dimension, 
frameworks specific to collaborative problem-solving (e.g., Chen, Wang, 
et al., 2018; Liu et al., 2016) suggest activities, such as sharing infor-
mation, negotiating meaning, (co-)regulating collaboration, and initi-
ating and maintaining interaction. These activities can help, for 
example, to identify a lack of information sharing in simulated profes-
sional collaboration (Radkowitsch et al., 2021).

3.2. What to personalize?

To address learners' prerequisites, processes, and activities, digital 
simulations can be enhanced through adaptive learning support, that is, 
measures that are adjusted to learner's individual differences and needs 
in order to facilitate the learning processes and outcomes. In the context 
of skill training, scaffolding and feedback stand out as fundamental 
learning support for guiding the acquisition of knowledge and skills and 
are, therefore, promising means for the personalization of simulation- 
based learning environments.

3.2.1. Scaffolding
Scaffolding structures and facilitates learners' processing of a 

learning task (e.g., a simulated situation) within their zone of proximal 
development—the zone of task difficulty where learners need guidance 
to succeed (Belland, 2014; Tabak & Kyza, 2018; Vygotsky, 1980; Wood 
et al., 1976). This zone is unique for every learner at a given point of 
time, emphasizing personalization as a central aspect of scaffolding. 
However, digital learning environments still often use hard scaffolding, 
offering static supports for anticipated learner difficulties (see Brush & 
Saye, 2002). In digital simulations, scaffolding can be implemented in 
different ways, through learning process and representational 
scaffolding.

Learning process scaffolding enhances learners' engagement in an 
effective learning process by offering additional instructional support 
beyond the core learning task's instruction (Fischer et al., 2022). 
Learning process scaffolding encompasses various forms (Chernikova, 
Heitzmann, Fink, et al., 2020; Sailer et al., 2024): worked and modeling 
examples for exemplifying appropriate task processing (Renkl, 2014; 
van Gog & Rummel, 2010); prompts and hints for directing attention to 
specific task elements (e.g., cognitive and metacognitive prompts; 
Bannert, 2009; Berthold et al., 2007; Martin et al., 2022, 2023; Quintana 
et al., 2004); scripts and roles for defining responsibilities and detailing 
task steps (e.g., collaboration scripts; Fischer et al., 2013; Vogel et al., 
2017); and reflection phases for task evaluation (e.g., identifying goals 
and planning next steps) and self-assessment (Mamede & Schmidt, 
2017). According to a meta-analysis, learning process scaffolds in digital 
learning environments improve cognitive outcomes in various contexts 
(Belland et al., 2017). In digital simulations, for example, knowledge 
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activation prompts target relevant prior knowledge in long-term mem-
ory (Nickl, Sommerhoff, Radkowitsch, et al., 2024; Sommerhoff et al., 
2023). Learning process scaffolding may also promote self-regulation 
activities, such as planning (Brydges et al., 2015; Lim et al., 2023; van 
der Graaf et al., 2023). Further, learning process scaffolding may aim to 
improve motivational-affective learning experiences (e.g., Farrell et al., 
2024; Nickl, Sommerhoff, Böheim, et al., 2024) and boost collaborative 
learning through scripts that foster information sharing (e.g., assigning 
roles; Radkowitsch et al., 2021; Vogel et al., 2017).

Representational scaffolding, a second type of scaffolding in 
simulation-based learning, involves selecting and adjusting simulated 
practice representations to adapt the level of difficulty for learners with 
varying learning prerequisites (Fischer et al., 2022). Based on the 
approximation-of-practice approach (Grossman et al., 2009), it focuses 
on adjusting representational features of simulated cases or practice 
situations—namely, informational complexity, typicality, agency, and 
situation dynamics (Fischer et al., 2022): Complexity scaffolds manage 
informational complexity by adjusting the amount, interconnectedness, 
and salience of information (see Mamede et al., 2012; Stadler, Niepel, & 
Greiff, 2019). For example, making relevant case information relatively 
well identifiable might prevent cognitive overload for learners with 
limited prior knowledge (Chernikova et al., 2024; Farrell et al., 2024). 
Typicality scaffolds adjust the exemplarity or prototypicality of simu-
lated situations (see Norman et al., 2007; Papa, 2016). For example, to 
facilitate the construction and restructuring of cognitive schemata (see 
KR–CP; Boshuizen et al., 2020), typical cases may be offered to novices 
and atypical cases to advanced learners. Agency scaffolds control the 
range of activities and the degree of self-regulation needed (Fischer 
et al., 2022); for example, for learners with lower metacognitive or so-
cial learning prerequisites, a simulated professional collaboration may 
focus only on few crucial professional social activities. Dynamics scaf-
folds modify the simulation's tempo and progression (see Stadler, Nie-
pel, & Greiff, 2019), allowing, for example, to pause the simulation, 
potentially promoting metacognitive reflection, preventing cognitive 
overload, and reducing negative epistemic emotions. The effects of 
representational scaffolding are yet to be investigated empirically and 
systematically (Seidel et al., 2022). However, generally, simulations 
show large effects on higher education learning outcomes as shown in a 
meta-analysis (compared with small to medium effects of learning pro-
cess scaffolding within simulations; Chernikova, Heitzmann, Stadler, 
et al., 2020)—suggesting great potential of purposefully designing 
simulated practice representations.

Dynamic personalization to learners' changing needs is a crucial 
aspect of scaffolding (referred to as contingency by Wood et al., 1976). 
Especially fading, which gradually reduces scaffolding until its removal 
(Collins et al., 1989), is considered a defining element of scaffolding (e. 
g., Belland, 2014; Pea, 2004). An example is the gradual fading of a 
complexity scaffold in the simulation, which progressively increases the 
informational complexity of the simulated situation to approximate real 
practice situations. Fading is also recommended to prevent the expertise 
reversal effect (Kalyuga et al., 2003), according to which scaffolds may 
even impede task processing and outcomes of advanced learners with 
higher task autonomy. An alternative approach is cross-fading, that is, 
transitioning from one scaffold to a qualitatively different scaffold, 
which provides less basic support, but instead targets more advanced 
task levels. A meta-analysis shows that high-guidance scaffolds (e.g., 
worked examples) benefit beginners, while advanced learners only 
benefit from scaffolding requiring some degree of self-regulation 
(especially reflection phases; Chernikova, Heitzmann, Fink, et al., 
2020). The overall theory and empirical evidence thus suggest that 
personalizing scaffolding to each learner's prerequisites, learning pro-
cesses, and activities is key in digital simulations for maximizing the 
benefits of this learning support.

3.2.2. Feedback
Instructional feedback offers evaluative information on intermediate 

or final outcomes of the learning task. It provides information about 
discrepancies between learners' current performance and learning goals, 
aiding in learners' success and failure assessment during knowledge 
application and skill development, such as in digital simulations (Sadler, 
1989). Feedback is often divided into summative feedback, assessing 
goal achievement, and formative feedback, focusing on advice for 
improving learners' future task processing and learning progress (Black 
& Wiliam, 2009; Bloom et al., 1971; Lipnevich & Panadero, 2021). 
Hattie and Timperley (2007) conceptualize effective feedback as 
encompassing updates on current learning progress (feed back), refer-
ences to the learning goals (feed up), and suggestions for improvement 
strategies (feed forward). According to this definition, effective feedback 
is adapted to learners' current prerequisites and learning processes, 
supporting learners' self-assessment and internal feedback mechanisms 
essential for simulation-based learning (Black & Wiliam, 2009; Heitz-
mann et al., 2023; Narciss, 2013; Nicol, 2021; Zimmerman, 1989).

Hattie and Timperley (2007) also identify four feedback content 
levels suited for learners with different prerequisites: Process level 
feedback gives detailed information and guidance on learners' task 
processing and is particularly beneficial for learners with low prior 
knowledge; self-regulation level feedback guides the learner's self- 
monitoring and self-regulation when they already achieved basic task 
understanding; task level feedback gives corrective performance infor-
mation, for example, for advanced learners aiming to increase their task 
efficiency; and person level feedback expresses personal evaluations and 
affective responses, being uninformative for task learning but poten-
tially serving motivational-affective purposes (Hattie & Timperley, 
2007). In a synthesis of meta-analyses, Wisniewski et al. (2020) found 
that high-information feedback is generally more effective than simple 
corrective feedback, with larger effects on cognitive than motivational 
outcomes.

A previous synthesis of meta-analyses indicated that not only human 
but also computer-based feedback is effective for fostering cognitive 
outcomes (Hattie, 2008), however, its implementation varies consider-
ably. Narciss et al. (2014) distinguished different types of feedback in 
digital learning environments (see also Sailer et al., 2024): Static feed-
back—which can be simple or elaborated—reveals the correct answer 
post-response, requiring minimal technical effort but lacking personal-
ization (Attali, 2015; Bauer et al., 2025; Sailer et al., 2023). Simple 
adaptive feedback provides a summative assessment about the correct-
ness of a learner's response at the task level (e.g., Stark et al., 2011). 
Elaborated adaptive feedback at the process level or self-regulation level 
is informed by a detailed analysis of learner's prerequisites, task pro-
cessing, and outcomes—for example, to determine and explain where 
and why learners experienced difficulties in simulation-based learning. 
This type of feedback can be delivered by human instructors or com-
puters using advanced data analysis techniques like natural language 
processing with deep learning techniques (Bauer et al., 2025; Cavalcanti 
et al., 2021; Sailer et al., 2023; Steinert et al., 2024). In line with the 
synthesis by Wisniewski et al. (2020), results of a meta-analysis indicate 
that in digital learning environments, elaborated forms of feedback are 
generally more effective than simple adaptive (knowledge of correctness 
of response) and static feedback (knowledge of correct response; der 
Kleij et al., 2015).

3.3. Who personalizes?

Personalization in learning can be achieved through computer or 
human agents, including learners or instructors (Chernikova et al., 2025; 
Kucirkova et al., 2021; Plass & Pawar, 2020). If adjustments to the 
learning environment are made through an instructor or a computer, 
after assessing relevant learner variables, this is referred to as adaptivity. 
In this form of personalization, the responsibility for adapting learner 
support can also be shared to varying degrees between human in-
structors and a computer (Fischer, 2001; Lee & Park, 2008; Molenaar, 
2022; Plass & Pawar, 2020). In digital simulations, adaptivity is realized 
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by using data on learner variables to adjust the amount, type, or timing 
of scaffolding or feedback according to learners' individual needs, such 
as providing worked examples for learners with low prior knowledge.

On the other hand, adaptability allows learners to modify their 
learning experience by regulating the amount, type, or timing of scaf-
folding and feedback to suit their preferences (Fischer, 2001; Lee & Park, 
2008; Plass & Pawar, 2020). This allows learners to take ownership of 
their personalized learning experience (Walkington & Bernacki, 2018). 
Examples are offering learners hint buttons or a choice between cases of 
different difficulty levels. Offering learners autonomous control over 
their learning can enhance motivation and interest (Deci & Ryan, 2004; 
Ryan & Deci, 2000; Zimmerman & Moylan, 2009). However, learners 
might need adequate metacognitive prerequisites to assess their support 
needs, which can influence the effectiveness of adaptable learning 
support (Chernikova, Heitzmann, Stadler, et al., 2020; Lim et al., 2021; 
Yang & Stefaniak, 2023).

Support for human agents (learners and instructors) can come from 
computer systems, that accumulate and preprocess information on 
learning prerequisites, processes, and activities, helping to identify 
learners' struggles and suitable support measures. For example, moni-
toring processes of learners' performance may be facilitated through 
student-facing or teacher-facing dashboards (Jivet et al., 2017; Wied-
busch et al., 2021). In addition, learning environments can suggest 
suitable learning support, for example, through pop-up prompts guiding 
learners' task-processing, that can be switched off by learners 
(Chernikova et al., 2025). However, accurately assessing learner vari-
ables to optimally personalize the learning support remains a key 
challenge for both human and computer agents.

Although the present framework centers on the personalization of 
simulation-based learning from a learner's perspective, the role of 
teachers remains essential in shaping how personalization is imple-
mented and experienced. Teachers are critical in designing or using 
simulations that align with educational goals, selecting or approving 
personalization strategies, and interpreting learner data when adaptive 
technologies fall short. As highlighted in recent work (Chernikova et al., 
2025), instructional support in simulations is most effective when 
grounded in theoretically informed decisions about scaffolding and 
learner needs. Consequently, teachers need competencies not only in 
using simulations but also in understanding principles of adaptivity, 
learner modeling, and instructional support. These roles become even 
more relevant in AI-supported learning environments, where instruc-
tional decisions increasingly involve integrating automated guidance 
with human pedagogical judgment.

3.4. How to personalize?

To personalize learning support or display accumulated information 
to a human agent (e.g., via dashboards), computer systems create learner 
models. These models represent assumptions about a learner's (or a 
group of learners') current learning state, including their learning pre-
requisites, processes, activities, and predicted outcomes, for example, to 
optimize scaffolding and feedback in digital simulations. Learner models 
can be informed by a variety of data sources, from prior knowledge tests 
to multimodal indicators like self-reports, behavioral observations, or 
physiological data. The goal is to provide a basis for personalized in-
struction by identifying meaningful patterns in the data. The resulting 
estimate of an individual learner's current state, provided by a learner 
model based on a set of observed predispositions, results, or behaviors, 
then serves as an adjustment base for the personalization. While not 
always visible to learners or instructors, the transparency of learner 
models is subject to ethical discussions in learning analytics (Rosé et al., 
2019).

3.4.1. Recording learner data
To effectively personalize instruction, it is essential to decide which 

learner data—indicating learning prerequisites, processes, activities, 

and outcomes—may be recorded and analyzed to construct learner 
models for tailoring learning support. The learner data can be assessed 
through capturing observable learning activities and additional mea-
sures that allow to infer latent learner variables. Traditionally, educa-
tional research has relied on tests (e.g., knowledge tests) and 
questionnaires (e.g., self-assessments of motivation or cognitive load) to 
assess learning prerequisites and processes. However, there's a growing 
trend toward employing a broader array of process-based data collection 
methods, including video, audio, text, logfile, eye tracking, and physi-
ological measures, to get increasingly nuanced pictures of learners 
(Sailer et al., 2024). However, prioritization and necessity in collecting 
such diverse data for personalized simulation-based learning remain 
open questions due to the nascent state of research in this area. The 
potential risks associated with data collection, such as the psychological 
impact on learners of being constantly monitored, requires critical 
evaluation. Determining which types of data are most effective for 
specific learner characteristics, learning objectives, and learning con-
texts is still an open question that requires further systematic investi-
gation. This critical evaluation is essential, as it will guide educators and 
developers in choosing the most pertinent and practical data collection 
methods without overwhelming the learning process with unnecessary 
complexity.

Additionally, adopting data minimization principles—collecting 
only the necessary amount of data for specific purposes and employing 
data anonymization techniques to protect learner identities—is an 
ethical imperative when transitioning from a research stage to the 
curricular implementation. Ensuring clear communication about the 
data recording and analysis practices and obtaining informed consent 
from learners upfront is crucial. Individual identities of the learners need 
to be protected as best as possible through privacy-enhancing technol-
ogies. Also, offering learners the ability to opt out of non-essential data 
recording without penalty is essential for maintaining control over their 
personal information.

When personalizing learning environments, the obtrusiveness of 
data collection methods is a key consideration. Frequent and intrusive 
assessments can disrupt learning continuity and might lead to learner 
fatigue, thereby negatively affecting the learning processes (e.g., moti-
vational declines). For example, self-report measures might interrupt the 
learning flow, compared to less obtrusive methods, such as logfiles 
(Kovanovic et al., 2023; Sailer et al., 2024). Therefore, it is more 
promising to choose methods that integrate seamlessly into learning 
activities to maintain engagement and reduce learner burden (Rahimi & 
Shute, 2024). While the assessment of learning processes and activities is 
increasingly diversifying to include a variety of measures, the evaluation 
of learning prerequisites often still relies on tests and questionnaires. 
Such distinct assessments can be enhanced or even replaced through 
data from learners' previous learning tasks (e.g., interactions with sim-
ulations), if available, to reduce the burden of frequent testing.

In addition, the reliability, validity, and interpretability of the 
multimodal measurements are crucial for the successful personalization 
of digital learning environments (Ehlenz et al., 2022). Tests and ques-
tionnaires are typically optimized for reliability and validity; other data 
types, such as logfiles, offer relatively ambiguous insights (e.g., inter-
preting learning time as indicator for cognitive or motivational 
engagement) and require careful interpretation to ascertain their rele-
vance to specific learner variables (Fan et al., 2022). These challenges 
can be addressed through robust theoretical frameworks, validation 
studies, and the triangulation of multimodal data to ensure meaningful 
personalization (Giannakos & Cukurova, 2023; Järvelä et al., 2021; 
Kovanovic et al., 2023; Molenaar et al., 2023; Olsen et al., 2020).

Cognitive learner variables can be assessed through verbal data, 
capturing knowledge integration in written reasoning (Sailer et al., 
2023) and knowledge co-construction in dialogue (Dowell & Kovanović, 
2022; Lippert et al., 2020; Nye et al., 2021). Logfile data, reflecting 
learners' interactions with digital simulations (e.g., page visits, click 
patterns, dwell time), can be analyzed regarding learners' task- 
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processing activities to predict success in reasoning outcomes (Richters 
et al., 2023; Stadler, Fischer, & Greiff, 2019). Eye tracking offers insight 
into cognitive task processing (e.g., using fixation patterns; Kosel et al., 
2021). Eye tracking metrics, such as pupil dilation are also used as in-
dicators for cognitive load, especially in combination with other phys-
iological measures, such as electrodermal activity, and self-assessment 
questionnaires (Appel et al., 2019; Ayres et al., 2021; Vanneste et al., 
2021). Learners' prior knowledge is usually assessed with knowledge 
tests (e.g., Hofer et al., 2017; Lichtenberger et al., 2017). Such tests need 
to consider the situation-specific nature of professional knowledge, 
limiting the predictiveness of rather general knowledge tests (Kolovou 
et al., 2021; Stadler et al., 2021).

Metacognitive learner variables are critical in simulations demanding 
high degrees of self-regulation. Logfile analysis can reveal learners' self- 
regulation activities, such as planning, monitoring, and evaluating (Fan 
et al., 2021; Salehian Kia et al., 2023). These activities can also be 
inferred from verbal data (e.g., think-aloud; Lim et al., 2021; Raković 
et al., 2023), distinguishing between more and less successful learners 
based on their self-regulation activities. While the reliability and pre-
dictiveness of global metacognition questionnaires have been repeatedly 
questioned, more fine-grained self-report questionnaires offer nuanced 
insights into metacognitive behaviors (Greene & Azevedo, 2010; Rovers 
et al., 2019).

Motivational-affective learner variables during simulation-based 
learning can be identified through sentiment analysis in verbal data 
(Barrón-Estrada et al., 2017) or emotion detection via facial expressions 
recorded with web cameras (Greipl et al., 2021; Mangaroska et al., 2022; 
Taub et al., 2021), providing information about learners' affective states, 
such as confusion or joy (Frenzel et al., 2024). Behavioral indicators 
from logfiles may indicate learner motivation and volition (e.g., through 
learning time or number of responses; Motz et al., 2019). Also, physio-
logical measures of arousal (e.g., electrodermal measures) have been 
explored as measures for motivational-affective states (Richter & Slade, 
2017; Roos et al., 2021). Questionnaires can supplement these methods 
by offering learners' self-perceptions (e.g., Kron et al., 2021; Nickl, 
Sommerhoff, Böheim, et al., 2024).

Social learner variables are essential in simulations involving profes-
sional interactions or collaborative learning formats. Logfile data can be 
interpreted regarding the collaborative dimensions of task processing, 
such as information sharing and negotiating meaning (Liu et al., 2016; 
Richters et al., 2023). During collaborative simulation-based learning, 
eye tracking data on gaze similarity and electrodermal measures on 
physiological synchrony offer further understanding of group dynamics 
(Haataja et al., 2018; Olsen et al., 2020). Verbal data, such as written 
responses and dialogic chat or audio, can capture social learning pro-
cesses and activities, aiding in the analysis of collaborative learning and 
simulated professional interaction (e.g., Vogel & Weinberger, 2018). 
Complementary tests and questionnaires can provide additional infor-
mation, assessing knowledge and attitudes toward professional collab-
oration (e.g., Orchard et al., 2012).

3.4.2. Analyzing learner data
Creating learner models for personalized digital simulations criti-

cally depends on the analysis and integration of learner data, which 
necessitates employing computational data science methods, particu-
larly from AI and machine learning domains. These methods are 
instrumental in detecting patterns within recorded learner data-
—especially if integrating multimodal indicators—and can be distin-
guished into different categories.

Supervised learning methods—such as linear regression, support 
vector machines, decision tree learning, random forests, or artificial 
neural networks—analyze labeled datasets (marked with specific attri-
butes or categories) to establish patterns. These methods not only 
enhance the understanding of input-output relationships but also predict 
future outputs based on input data (Baker & Siemens, 2022; Bond et al., 
2024; Chen et al., 2020; Du et al., 2021; Hilbert et al., 2021; James et al., 

2021; Namoun & Alshanqiti, 2021; Sailer et al., 2024). For example, 
Richters et al. (2023) used support vector machines to predict learner 
success from task-processing activities in simulation logfiles. Pfeiffer 
et al. (2019) applied artificial neural networks for analyzing learners' 
written reasoning in simulation-based learning. Küchemann et al. 
(2020) compared different supervised learning methods for predicting 
physics task success using eye tracking data, finding a support vector 
machine to be most accurate. Appel et al. (2021) employed random 
forest classification to predict cognitive load from eye tracking metrics 
in a simulation game. Unsupervised learning methods—including 
methods for clustering, dimensionality reduction, and association rule 
mining techniques—focus on extracting patterns from unlabeled data 
(not marked with specific attributes or categories), identifying intrinsic 
structures without explicit output labels (Baker & Siemens, 2022; Sailer 
et al., 2024). For example, Nickl et al. (2022) and Radkowitsch et al. 
(2023) used latent profile analyses to cluster typical patterns of learning 
prerequisites and activities in simulation-based learning. To analyze 
collaborative knowledge construction based on audio-recorded group 
discussions, Ouyang et al. (2023) employed hidden Markov modeling, 
lag sequential analysis, and frequent sequence mining.

Positioned between supervised and unsupervised learning, semi- 
supervised learning integrates labeled and unlabeled data, for 
example, through techniques such as self-training and co-training, 
which are particularly valuable when acquiring comprehensive 
labeled data is challenging (James et al., 2021). Also, self-supervised 
learning is gaining prominence due to its ability to generate supervi-
sory signals from the data itself without relying on external labels 
(Jaiswal et al., 2021). Moreover, reinforcement learning, which is 
inspired by behaviorist psychology, uses methods like Q-learning and 
deep reinforcement learning to refine strategies that enhance decision- 
making based on outcomes from prior interactions with the environ-
ment (van Otterlo & Wiering, 2012).

Well-known examples of self-supervised algorithms are found in the 
context of natural language processing, namely GPT (generative pre- 
trained transformers; Brown et al., 2020) and BERT (bidirectional 
encoder representations from transformers; Devlin et al., 2019). These 
large language models are pre-trained on vast text corpora using a lan-
guage modeling objective, where the model learns to predict the next 
word in a sequence while considering the context. After pre-training, 
these models can be fine-tuned for specific tasks in a supervised 
learning manner, making them adaptable to various applications in the 
context of education (Kasneci et al., 2023; Tay et al., 2022). Considering 
data protection regulations, alternatives consist in fine-tuning smaller 
open-access models that can be hosted on regulated servers (Kasneci 
et al., 2023). Beyond large language models, multimodal foundation 
models, such as CLIP (contrastive language-image pre-training; Radford 
et al., 2021) and ViLBERT (vision-and-language BERT; Lu et al., 2019), 
represent a significant advancement in integrating diverse data types. 
These models are trained on extensive datasets comprising both text and 
images, employing objectives that enable them to understand and 
generate predictions across modalities. Once pre-trained, these models 
can be fine-tuned for tasks, such as visual question answering and cross- 
modal information retrieval, marking a significant progress toward 
comprehensive AI systems that can be very useful in educational con-
texts (Küchemann et al., 2024). Using multimodal models, digital 
learning environments, such as digital simulations, can personalize 
learning support based on learner data integrated from multiple sources 
of different modalities, such as dialogue and eye tracking data.

However, choosing the right analytical approach involves balancing 
prediction accuracy with model interpretability. While deep learning 
methods offer high accuracy, their complexity may obscure interpret-
ability, raising critical concerns about the potential for bias and misin-
terpretation. In particular, biases in machine learning models can 
perpetuate or even exacerbate existing disparities when used in educa-
tional settings, requiring thorough examination and adjustment. 
Therefore, transparent methods, such as regression analyses, maintain 
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their value not only for their clarity but also for easier validation against 
ethical standards and bias mitigation (Hilbert et al., 2021; James et al., 
2021; Sailer et al., 2024). Integrating different methodologies enriches 
personalization strategies in digital simulations and enhances the 
comprehension of relationships between learner variables in accompa-
nying educational research (Kitto et al., 2023).

Furthermore, handling learners' data privacy in digital simulations 
that potentially record and analyze a wide variety of learner data for 
personalized learning is a key concern. Ensuring data privacy becomes 
especially complex when employing advanced data analysis techniques, 
which might utilize sensitive or multifaceted learner data. Accompa-
nying the educational and technological developments of personalized 
digital simulations for higher education with developments of strategies 
to safeguard learner data is essential to ensure trust and security in these 
educational technologies. This involves adhering to data protection 
regulations and implementing robust privacy measures to protect 
learners' information from misuse or unauthorized access, as well as 
continually auditing and updating these measures to address new pri-
vacy challenges as they arise.

3.5. When to personalize?

A crucial aspect of personalization strategies in digital simulations is 
the time scale used for updating learner models that make decisions 
about personalized learning support. A macro-level personalization 
strategy builds on infrequent measurements of learner data (e.g., prior 
knowledge tests) to assign learners to groups receiving different learning 
support (e.g., Johnson et al., 2014), such as types of scaffolds. However, 
such personalization cannot account for short-term changes in learner 
variables, such as those occurring between or within individual simu-
lation cases (Tetzlaff et al., 2021). With a meso-level personalization 
strategy, the learner model is updated after learners complete a signif-
icant segment of the simulation—such as one of multiple simulated 
practice representations—based on the learner data accumulated during 
this segment (Tetzlaff et al., 2021). Meso-level personalization, for 
instance, could involve adjusting the difficulty level of subsequent 
practice representations based on the learner's performance in earlier 
ones. This approach, however, still overlooks changes in learner vari-
ables occurring within individual practice representations. The micro- 
level personalization strategy considers changes within smaller learning 
segments, such as individual practice representations (Tetzlaff et al., 
2021). This requires a real-time analysis of learner variables to infer 
dynamic learning prerequisites or processes (e.g., Stadler, Fischer, & 
Greiff, 2019), for example, to offer immediate hints and prompts based 
on learners' task processing.

The three personalization strategies differ in the frequency with 
which changes in the need for learning support are checked. It is plau-
sible to assume that the effectiveness of the personalization strategy 
depends on the stability or volatility of the supported learner variables 
(Tetzlaff et al., 2021). For example, motivational or emotional learning 
processes may fluctuate rapidly, making personalization based on a 
meso-level or micro-level strategy potentially more effective than a 
macro-level strategy. However, cognitive and metacognitive processes 
are also likely to benefit from a higher frequency of personalization due 
to their dependence on motivational–affective processes, as well as 
contextual variables. In contrast, higher stability is assumed for general 
cognitive abilities. However, there has hardly been any systematic 
research on the extent to which an increase in the frequency of 
personalization of scaffolding and feedback (i.e., at the meso-level and 
micro-level) is superior to less frequent personalization (i.e., at the 
macro-level).

4. The road ahead: Research on personalized digital simulations 
in higher education

In this paper, we have outlined the SHARP framework (see Fig. 1) as 

a starting point for advancing both foundational and applied research on 
personalized simulation-based learning in higher education. To enhance 
the framework's practicality and theoretical robustness, the effective-
ness of the proposed personalization approach requires further empir-
ical validation. Systematic empirical studies are essential, especially to 
better understand the relationships between different learner charac-
teristics and how to select and apply the best methodologies for 
recording and analyzing related data. Second, the technical integration 
of advanced AI and machine learning technologies can pose challenges, 
including costs as well as development and maintenance demands, 
which could hinder widespread adoption. Furthermore, while the paper 
acknowledges the importance of data privacy and ethical consider-
ations, more detailed strategies need to be developed to mitigate risks 
associated with extensive data collection and analysis, ensuring robust 
protection of learner's privacy. Lastly, the generalizability of the 
framework across diverse educational settings remains to be explored 
across various learner groups and institutional contexts. These limita-
tions underscore the necessity for future research to validate and refine 
the SHARP framework, ensuring it is explanatory, effective, and ethi-
cally sound.

The SHARP framework can guide this research endeavors by struc-
turing (1) the generation and refinement of research questions and hy-
potheses that may be systematically investigated by (2) interdisciplinary 
research collaborations for developing design principles for personal-
ized simulation-based learning in higher education. (1) merging 
research directions include: (a) understanding learner profiles by 
investigating interactions of learning prerequisites, processes, activities, 
and outcomes; (b) examining effects of personalization through various 
scaffolding and feedback approaches, especially the effects and syn-
ergies of representational scaffolding; (c) analyzing the differential ef-
fects and synergies of adaptivity and adaptability, as well as their 
synergies with teacher support, while taking into account learners' 
characteristics such as their self-regulation; (d) addressing technological 
challenges (e.g., integration of multimodal data) as well as privacy 
concerns and other ethical considerations in data recording and analysis; 
(e) investigating the effectiveness of different personalization strategies 
(e.g., at the micro-level) for adapting to learner variables of varying 
stability or volatility; and (f) testing the generalizability of effects across 
professional fields.

Future research may prioritize enhancing our understanding of how 
to systematically address individual differences among learners through 
personalization, focusing on the various learner variables that are 
crucial for acquiring knowledge and skills with simulations. As outlined 
in our framework, relevant learner characteristics include individual 
differences in cognitive, metacognitive, motivational-affective, and so-
cial prerequisites, as well as in the related learning processes and ac-
tivities in a simulation. Future studies may investigate which data—such 
as pre-simulation diagnostics, learner input, or interaction data—are 
most indicative for these dimensions and how they can best inform 
personalization strategies in a targeted and theoretically grounded 
manner. Furthermore, research may explore how personalized simula-
tions might not only adapt to learners' current characteristics but also 
support the development of effective learning processes such as self- or 
co-regulation over time. Additionally, future research might explore 
how teachers can be meaningfully involved in co-designing and facili-
tating personalized simulations and what kinds of professional devel-
opment are needed to support this role. (2) Addressing these directions 
requires a comprehensive framework, integrating conceptual, method-
ological, and technical foundations (Heitzmann et al., 2021), as outlined 
in this paper. The SHARP framework may facilitate collaborative 
research across educational science, psychology, computer science, and 
relevant professional fields like medical and teacher education. Such 
interdisciplinary projects may examine conditions for effective person-
alized simulations, exploit methodological synergies between different 
areas of expertise, establish effective data science infrastructures for 
personalization, and synthesize data and findings across studies and 
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projects (Fink et al., 2021). Research might also address how to integrate 
the findings into higher education practice, for example, by identifying 
knowledge and resources needed by higher education teachers. More-
over, qualifying a new generation of interdisciplinary educational re-
searchers that is data science savvy and aware of privacy concerns is 
essential to keep pace with AI and educational technology advance-
ments. This research may offer transformative perspectives on learning 
in higher education, possibly enhancing engagement and effectiveness 
through personalized simulations. In this context, the SHARP framework 
seeks to bridge theoretical concepts with methodological and technical 
approaches, calling for comprehensive interdisciplinary research to 
advance learning through personalized digital simulations in higher 
education.
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Psychologie, 38(1–2), 27–34. https://doi.org/10.1024/1010-0652/a000362

Nickl, M., Sommerhoff, D., Radkowitsch, A., Huber, S. A., Bauer, E., Ufer, S., … Seidel, T. 
(2024). Effects of real-time adaptivity of scaffolding: Supporting pre-service 
mathematics teachers’ assessment skills in simulations. Learning and Instruction, 94, 
Article 101994. https://doi.org/10.1016/j.learninstruc.2024.101994

Nicol, D. (2021). The power of internal feedback: Exploiting natural comparison 
processes. Assessment & Evaluation in Higher Education, 46(5), 756–778. https://doi. 
org/10.1080/02602938.2020.1823314

Norman, G. (2005). Research in clinical reasoning: Past history and current trends. 
Medical Education, 39(4), 418–427.

Norman, G., Dore, K., & Grierson, L. (2012). The minimal relationship between 
simulation fidelity and transfer of learning. Medical Education, 46(7), 636–647. 
https://doi.org/10.1111/j.1365-2923.2012.04243.x

Norman, G., Young, M., & Brooks, L. (2007). Non-analytical models of clinical reasoning: 
The role of experience. Medical Education, 41(12), 1140–1145.

Nye, B. D., Davis, D. M., Rizvi, S. Z., Carr, K., Swartout, W., Thacker, R., & Shaw, K. 
(2021). Feasibility and usability of MentorPal, a framework for rapid development of 
virtual mentors. Journal of Research on Technology in Education, 53(1), 21–43. 
https://doi.org/10.1080/15391523.2020.1771640

Olsen, J. K., Sharma, K., Rummel, N., & Aleven, V. (2020). Temporal analysis of 
multimodal data to predict collaborative learning outcomes. British Journal of 
Educational Technology, 51(5), 1527–1547. https://doi.org/10.1111/bjet.12982

OpenAI. (2023). GPT-4 technical report (ArXiv, 2303).
Orchard, C. A., King, G. A., Khalili, H., & Bezzina, M. B. (2012). Assessment of 

Interprofessional team collaboration scale (AITCS): Development and testing of the 
instrument. The Journal of Continuing Education in the Health Professions, 32(1), 
58–67. https://doi.org/10.1002/chp.21123

Ouyang, F., Wu, M., Zhang, L., Xu, W., Zheng, L., & Cukurova, M. (2023). Making strides 
towards AI-supported regulation of learning in collaborative knowledge 
construction. Computers in Human Behavior, 142, Article 107650. https://doi.org/ 
10.1016/j.chb.2023.107650

Papa, F. J. (2016). A dual processing theory based approach to instruction and 
assessment of diagnostic competencies. Medical Science Educator, 26(4), 787–795. 
https://doi.org/10.1007/s40670-016-0326-8

Pea, R. D. (2004). The social and technological dimensions of scaffolding and related 
theoretical concepts for learning, education, and human activity. The Journal of the 
Learning Sciences, 13(3), 423–451.

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, 
corollaries, and implications for educational research and practice. Educational 
Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9

Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student 
engagement. In Handbook of research on student engagement (pp. 259–282). Boston, 
MA: Springer. https://doi.org/10.1007/978-1-4614-2018-7_12. 

Pekrun, R., & Linnenbrink-Garcia, L. (2014). Introduction to emotions in education. In 
International handbook of emotions in education. Routledge. 

Pfeiffer, J., Meyer, C. M., Schulz, C., Kiesewetter, J., Zottmann, J., Sailer, M., … 
Gurevych, I. (2019). Famulus: Interactive annotation and feedback generation for 
teaching diagnostic reasoning (arXiv:1908.11254). arXiv. https://doi.org/10.48550/ 
arXiv.1908.11254

Pieger, E., & Bannert, M. (2018). Differential effects of students’ self-directed 
metacognitive prompts. Computers in Human Behavior, 86, 165–173. https://doi.org/ 
10.1016/j.chb.2018.04.022

Plass, J. L., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of 
Research on Technology in Education, 52(3), 275–300. https://doi.org/10.1080/ 
15391523.2020.1719943

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., … 
Soloway, E. (2004). A scaffolding design framework for software to support science 
inquiry. Journal of the Learning Sciences, 13(3), 337–386. https://doi.org/10.1207/ 
s15327809jls1303_4

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … Sutskever, I. 
(2021). Learning transferable visual models from natural language supervision. 
arXiv:2103.00020 arXiv. https://doi.org/10.48550/arXiv.2103.00020.

Radkowitsch, A., Sailer, M., Schmidmaier, R., Fischer, M. R., & Fischer, F. (2021). 
Learning to diagnose collaboratively – Effects of adaptive collaboration scripts in 
agent-based medical simulations. Learning and Instruction, 75, Article 101487. 
https://doi.org/10.1016/j.learninstruc.2021.101487

Radkowitsch, A., Sommerhoff, D., Nickl, M., Codreanu, E., Ufer, S., & Seidel, T. (2023). 
Exploring the diagnostic process of pre-service teachers using a simulation – A latent 
profile approach. Teaching and Teacher Education, 130, Article 104172. https://doi. 
org/10.1016/j.tate.2023.104172

Rahimi, S., & Shute, V. J. (2024). Stealth assessment: A theoretically grounded and 
psychometrically sound method to assess, support, and investigate learning in 
technology-rich environments. Educational Technology Research and Development, 72 
(5), 2417–2441. https://doi.org/10.1007/s11423-023-10232-1
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