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Dental implant-associated infections increase the risk of implant failure, presenting significant 
challenges in modern dentistry. The host-microbe interaction plays a crucial role in the development 
of implant-associated infections. To gain a deeper understanding of the underlying mechanisms, 
numerous studies have been conducted using in vitro co-culture models of bacteria and human 
cells or in situ samples. Due to the complexity of the images generated throughout these studies, 
however, the analysis by means of classical image processing techniques is challenging. This study 
proposes a workflow—based on two custom Cellpose models—that, for the first time, allows the 
analysis of microbial surface coverage in microscopy images of fluorescent-stained and co-localized 
microorganisms and human cells with substantial background signals. The first Cellpose model 
demonstrated its efficacy in the analysis of individual bacteria within images derived from an 3D 
implant-tissue-oral biofilm in vitro co-culture model. In combination with the second custom model, 
which was trained to recognize microcolonies, images obtained from an in situ study could also be 
automatically segmented. The model’s segmentation accuracy could be further enhanced by acquiring 
additional training images and improving image quality, making the proposed workflow now valuable 
for a range of dental implant-related and other co-culture images.
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Microorganisms residing in the human oral cavity have the ability to adhere to surfaces (such as teeth or dental 
implants) and induce the formation of highly tolerant biofilms1,2. Mature biofilms can provoke infections in both 
the soft and hard tissues surrounding dental implants, potentially resulting in implant failure and necessitating 
implant removal3. To deepen our understanding of implant-associated infections and to test innovative 
approaches for their prevention and treatment, a variety of in vitro and in situ models have been developed. 
Ideally, in vitro models should contain all components involved in infection development—namely, tissue cells, 
oral bacteria, and the implant material. One example of such a model is the 3D implant-tissue-oral bacterial 
biofilm model INTERbACT, where an artificial oral mucosa with integrated titanium implant is co-cultured with 
an oral multispecies biofilm4. By contrast, in situ grown biofilms are typically collected from volunteers who carry 
individualized splint systems5,6. These splints are equipped with the implant material of interest, which faces 
oral biofilms and mucosal tissue simultaneously, thereby enabling the adhesion of both microorganisms and 
human cells. For analysis of these biofilms, fluorescence staining and microscopy techniques are often utilized—
for example, confocal laser scanning microscopy (CLSM)7. Yet the most commonly utilized fluorescent dyes 
unspecifically bind to DNA, and are thus not selective for bacteria8. This means that when bacteria and cells are 
kept in a co-culture, these dyes will stain both cell types identically, making it very challenging to stratify based 
on fluorescence intensity. To overcome the limitations of such nonspecific fluorescent dyes and enhance the 
accuracy of biofilm analysis, innovative image analysis techniques have become increasingly important.
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The analysis of fluorescence images for cellular colonization is typically done using a digital image processing 
called cell segmentation. This procedure can be used to obtain information about a cellular population’s 
morphological characteristics or cell count from biological images. To prevent researchers from having to 
manually label and deal with large amounts of data, several image processing algorithms have been developed. 
Traditional image-processing techniques, including intensity thresholding and watershed-based algorithms, are 
limited in their ability to effectively distinguish individual cells in crowded images, images with large background 
signals, or varying fluorescence intensities9,10. By contrast, more recent strategies predominantly involve machine 
learning approaches, including the use of deep neural networks10,11 that are more suitable for this task.

One innovative tool for biological image segmentation is Cellpose, which was first introduced in 2021. This 
software utilizes a U-net-like neural network to predict topological maps, with the final segmentations achieved 
via gradient tracking12. In addition to a variety of pretrained models, users also have the option to train custom 
models to achieve optimal segmentation accuracy for their own specific type of images13. Although Cellpose was 
initially designed for the segmentation of eukaryotic cells, there are several examples of researchers utilizing it 
across diverse applications, including the detection of autophagic bodies in yeast vacuoles14 and the quantification 
of ice crystal size and shape15. To enhance segmentation accuracy for irregularly shaped morphologies, 
Omnipose was introduced in 2022. Building on the foundation of Cellpose, Omnipose incorporates distinct 
methods for network predictions and mask reconstructions, specifically aiming to optimize performance in 
bacterial segmentation16. However, neither of these programs has been applied to images of co-cultured human 
cells and microorganisms before.

The aim of this study was to develop a digital workflow that enables the quantification of the microbial surface 
coverage within CLSM images of co-localized human cells and microorganisms on titanium implant materials. 
To achieve this objective, images obtained from the INTERbACT model, as well as an in situ study were utilized 
to train two custom Cellpose models, CP_I and CP_M, intended to segment single bacteria or chains of bacteria 
and microcolonies, respectively. Finally, the combined models were successfully tested on an additional set of in 
situ grown biofilms. The obtained results significantly extend the analysis possibilities within the scope of dental 
implant-related research but also far beyond. Through the refinement of the underlying models, the setup holds 
the potential for fully automated, multi-level image analysis.

Methods
In vitro samples from the INTERbACT model
The 3D implant-tissue-oral-bacterial-biofilm in vitro (INTERbACT) model consists of a peri-implant mucosa 
model which is co-cultured with a multispecies biofilm. The peri-implant mucosa was prepared as previously 
reported17. In summary, human gingival fibroblasts (HGFs; 4 × 105  cells/model, 121  0142, Provitro GmbH, 
Berlin, Germany) were mixed with collagen type 1 hydrogel (bovine type-I collagen, 3 mg/mL, PureCol®, 5005-
100ML, Advanced Biomatrix, Carlsbad, USA), fetal bovine serum (FBS), L-glutamine (G7513, Sigma-Aldrich, 
St. Louis, USA), 10 × DMEM (P03-01510, Pan-Biotech), reconstitution buffer (2 mg/mL sodium bicarbonate, 
2  mM HEPES, and 0.0062  N NaOH) and poured into culture inserts (3414, Corning B.V. Life Sciences, 
Amsterdam, Netherlands). The HGF-hydrogels were then cultivated for 4 days in a humidified atmosphere at 
37 °C and 5% CO2. Subsequently, titanium disks (3 mm diameter, 2.7 mm height, grade 4) were inserted, and, 
after a three-day cultivation period, oral keratinocytes (OKF6/TERT-2; 1 × 106 c/mL18) were then added on top 
of the HGF-hydrogel. The models were raised to an air-liquid interface and further cultivated in a specific airlift 
medium (3:1 DMEM [P04-03591, Pan-Biotech] and Ham’s F-12 [P04-14559, Pan-Biotech], 5 μg/mL insulin, 
0.4 μg/mL hydrocortisone, 2 × 10–11 M 5 triiodo-L-thyronine, 1.8 × 10–5 M adenine, 5 μg/mL transferrin, 10–10 M 
cholera toxin, 2 mM L-glutamine, 10% v/v FBS, 1% v/v penicillin/streptomycin) at 37 °C in a 5% CO₂ humidified 
atmosphere for 15 days.

The multispecies biofilms were grown as previously described4. In brief, Streptococcus oralis (ATCC 9811, 
American Type Culture Collection, Manassas, USA), Actinomyces naeslundii (DSM 43,013, German Collection 
of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany), Veillonella dispar (DSM 20,735, 
DSMZ), and Porphyromonas gingivalis (DSM 20,709, DSMZ) were cultured in brain-heart infusion (BHI) 
medium (Oxoid Limited, Hampshire, UK), supplemented with 10 µg/mL vitamin K, at 37 °C under anaerobic 
conditions. The bacteria were mixed equally in BHI with vitamin K so that each species would be present with 
an optical density at 600 nm of 0.01. Subsequently, the bacteria were grown under anaerobic conditions at 37 °C 
to form biofilms on glass cover slips (10 mm diameter, thickness 1, Fisher Scientific GmbH, Schwerte, Germany) 
in 24-Well plates. After 48 h of cultivation, both the mucosa model and the biofilms were washed with PBS. 
Thereafter, the glass cover slips were placed on the titanium of the mucosa model with the biofilm side facing the 
titanium implant and cultured for 48 h at 37 °C in a humidified atmosphere with 5% CO2.

In situ samples from splints worn by volunteers
The study was approved by the ethics committee of the Hannover Medical School (ethical vote no 4348). The 
experiments were performed according to the relevant guidelines and regulations. Ten volunteers between the 
ages of 21 and 38 were included in this study after giving their informed and written consent and verifying 
their oral health by periodontal screening. The volunteers were non-smokers and did not undergo antibiotic 
treatment four weeks prior to the beginning of the study. For each volunteer, an individual splint was fabricated 
from thermoforming polyethylene (PE; Erkodur transparent, Erkodent Erich Kopp GmbH, Pfalzgrafenweiler, 
Germany) adapted to the lower jaw. These splints contained buccally-facing PE blocks on each side where 
titanium disks (3 mm diameter, 1.5 mm height, grade 4) could be individually inserted without direct contact 
with the cheeks or one another. Titanium samples were fixed with adhesive wax and protected from accidental 
swallowing by an additional thin plastic bridge. Throughout the duration of this study (8 days), the splints were 
worn by the volunteers and removed exclusively for the purposes of eating, drinking (with the exception of 
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water), and teeth brushing. To avert the drying out of biofilms, the splints were placed in a 0.9% NaCl solution 
during that time. The splint itself was not cleaned. At 48-h intervals, one individual titanium disk was retrieved 
from each splint for subsequent microscopic analysis.

Fluorescent staining and microscopic analysis
Both titanium disks from the in vitro and in situ sampling were stained using the LIVE/DEAD® BacLight™ 
Bacterial Viability Kit (Fisher Scientific GmbH). The fluorescent dyes Syto9 and propidium iodide (PI) were 
diluted in phosphate buffered saline (PBS; Biochrome GmbH, Berlin, Germany). For the samples derived from 
the mucosa model, a 1:2000 dilution was applied, and the samples were incubated for 30 min at room temperature. 
Samples from the splints were treated with a 1:1,000 dilution of fluorescent dyes and incubated for 15 min at 
room temperature. Subsequently, all samples were fixed for 30 min at 4 °C using 2.5% (v/v) glutardialdehyde in 
PBS and then covered with PBS for microscopy.

All samples were analyzed by CLSM (Leica TCS SP8, Leica Microsystems, Mannheim, Germany) at 400-fold 
magnification. While the excitation wavelength of the laser was set to 488 nm for Syto9, a wavelength of 552 nm 
was used to excite PI. To detect the emissions, the detector was set to wavelengths of 500–540 nm and 675–
750 nm for Syto9 and PI, respectively. For each sample of the mucosa model, image stacks with a z-step size of 
2 µm were taken at four separate positions from the top as well as from the side of the titanium disk. Image stacks 
with a z-step size of 2 µm were recorded at five positions for each sample deriving from the volunteer’s splints.

Digital image preprocessing
The raw images acquired via CLSM were stored in the lif format, with each featuring a z-stack of multiple sub-
images with dimensions of 1024 × 1024 pixels. Independently of the channels recorded, preliminary experiments 
revealed that the green Syto9 channel was the most suitable for further analysis. Maximum intensity projections 
were generated by transferring the highest pixel intensity values along the z-stack (x, y plane) into a single 
composite image. Subsequent image enhancement procedures included flatfield correction, executed with 
a sigma value of 50 using MATLAB’s ‘imflatfield’ function, followed by contrast enhancement through the 
‘imadjust’ function (MATLAB version 24.1.0 [R2024a], The Mathworks Inc., Natick, USA).

Training custom cellpose models using in vitro images
To develop the first Cellpose model (CP_I) capable of accurately segmenting individual bacteria or chains of 
bacteria that are not part of microcolonies or biofilms, a total of 46 preprocessed images from the INTERbACT 
model were used. Of these images, 23 were captured from the top of the titanium disk and 23 from the side. 
The images were segmented using Cellpose 2.0, employing a human-in-the-loop approach (Cellpose version 
2.3.213). Prior to the labeling procedure, images underwent manual quality control. This step involved discarding 
any images in which distinguishing between background noise and microorganisms proved to be unfeasible. 
For this purpose, and given the absence of a suitable pre-existing model from the available model zoo, manual 
segmentation was conducted on the first image. In brief, a first Cellpose model was trained from scratch over 
500 epochs, segmenting the green channel. The following settings were employed for the training of all Cellpose 
models presented in this study: Learning rate: 0.1, weight decay: 1 × 10–5, batch size: 8, solver: Stochastic Gradient 
Descent. No image augmentation strategies were employed, and the training was terminated upon reaching the 
maximum number of epochs.

This model facilitated the segmentation of the subsequent image, which was manually corrected before 
training a new model. This iterative process was then continued until a model capable of reliably identifying 
a satisfactory proportion of bacteria within the images was achieved. Individual bacteria not in contact with 
adjacent cells were labeled separately, whereas clusters or chains of bacteria were designated as a single region 
of interest (ROI).

Following the complete segmentation of the dataset, the images were divided into training and testing data 
subsets. Using the training images, a new Cellpose model was trained from scratch over 3,000 epochs, saving 
the model every 100 epochs. The accuracy (Acc; Eq. 1) of each resultant model was assessed by applying the 
models to segment the images in the test data set and comparing the generated segmentation masks to the 
ground truth masks. In this context, a true positive (TP) was defined as a pixel correctly identified as belonging 
to a microorganism.

	
Acc = True Positive

True Positive + False Positive + False Negative
� (1)

In addition to the custom Cellpose models, pre-trained models from the Cellpose model zoo were also evaluated 
for the test data set. For this purpose, the Cellpose models ‘bact_phase_cp3’, ‘bact_fluor_cp3’ and ‘deepbacs_
cp3’ (Cellpose version 3.1.019) were employed to segment the test data set, and the accuracy was calculated as 
described above. The diameter for the segmentation was set to the respective models’ default value as well as to 
7.06 pixels, the mean diameter of the ROIs in the training data set.

Using the correct segmentations of the training set and the test set, the microbial surface coverage was 
calculated using Eq. (2) for the two image groups of the INTERbACT model (images derived from the top and 
the side of the titanium disk). Statistical analysis was performed using Welch’s t-test.

	
cov = Number of pixels belonging to microorganisms

Total number of pixels
× 100%� (2)
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In order to assess the effectiveness of the CP_I model in segmenting images deriving from sources other than the 
in vitro model presented in this study, two independent datasets were selected. The first dataset was published 
in the Cell Tracking Challenge (https://celltrackingchallenge.net/) and comprises a series of time-lapse images 
of pancreatic stem cells20. The CP_I model was used to automatically segment 40 images of the dataset, and the 
accuracy was determined with the respective reference masks, as described above. Furthermore, the CP_I model 
was applied to a set of 35 images selected from the Electron Microscopy Particle Segmentation (EMPS) dataset21. 
Given the heterogeneity of the dataset, which comprises a variety of electron microscopy images, a selection 
was made to focus exclusively on images that exhibited a reasonable degree of resemblance to microorganisms. 
In addition to calculating the accuracy of the models predictions, the average precision (AP) values were 
determined for intersection over union (IoU) thresholds of 0.5 and 0.75, as described by Stringer et al.12. In 
summary, the IoU measure provides information on how well two objects overlap, where perfectly overlapping 
objects yield a value of 1 and no overlap results in a value of 0. The predicted segmentation masks are matched 
with their respective reference masks and if the calculated IoU value for one ROI exceeds a certain threshold, it 
is counted as a true positive. The AP value is then calculated as shown in Eq. (1).

Establishment of three methods for analyzing in situ images
For the preprocessed images derived from the in situ study, following the manual quality control (described 
above), the microbial surface coverage was quantitatively assessed using three distinct methodological 
approaches, which are illustrated in Fig. 1.

Fig. 1.  Schematic overview of the experimental workflow. CLSM images were obtained from the in vitro 
INTERbACT model and in situ from splint-wearing volunteers. Following preprocessing, images were analyzed 
by three different methods, depending on image quality and content. Method 1 is a thresholding operation, 
which was applied for images without disturbing signals. For images with few disturbing signals, they were 
labeled in the Cellpose graphical user interface (GUI) and subtracted from the image before applying the 
thresholding operation (method 2). For method 3, two Cellpose models were used to segment the image 
separately. The resulting masks were combined and corrected in the Cellpose GUI (this figure was created 
using biorender.com).
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For images that were completely covered by biofilm, a thresholding operation was applied. Pixels exhibiting 
an intensity greater than 50 within the green channel were classified as microorganisms, while those with lower 
intensities were identified as background.

For images with minimal interference (such as background noise or human cells), an alternative method 
was utilized. In this approach, human cells were segmented using the pretrained model ‘cyto2’ (included in 
Cellpose version 2.3.213) and the interfering regions were manually labeled using the GUI of Cellpose 2.0. 
Subsequently, the pixels within these marked regions were assigned a value of 0, after which the previously 
mentioned thresholding method was applied.

For images with substantial background noise and/or multiple human cells, a third method was employed. 
Initially, the custom Cellpose model designed to identify individual bacteria (CP_I) was utilized for image 
segmentation. Then, the resulting segmentation masks were manually corrected. Upon segmenting half of the 
dataset, a second custom Cellpose model was developed to identify microcolonies (CP_M). For this purpose, 
the existing segmentation masks were filtered to retain only ROIs ranging from 500 to 15,000 pixels in size. The 
resulting masks served as the foundation for training a new model over 1000 epochs.

For the remaining unsegmented images, both models (CP_I and CP_M) were applied separately and then 
combined using a Python script and manually corrected within the Cellpose GUI. These manually corrected 
masks of the dataset as well as the output images of the thresholding method were then used to calculate the 
surface coverage following Eq. (2). Statistical analysis was performed for seamless data series using a repeated 
measures one-way ANOVA with Bonferroni multiple comparison tests and α = 0.05.

The performance of the CP_M model was assessed by evaluating images containing microcolonies selected 
from the in situ dataset. The images and their corresponding corrected masks were then cropped to a size of 
256 × 256 pixels, resulting in the creation of training and testing subsets containing 78 and 20 images, respectively. 
Based on the training set, a new CP_M model was trained for 500 epochs. Following the training process, the 
accuracy of the model was determined, as described above, using the testing set and Eq. (1).

In order to estimate the time saved by using the two Cellpose models as opposed to manual segmentation, a 
set of 12 images was selected (six images from the in vitro model and six images from the in situ study). The time 
required to manually label the 12 images and to correct the segmentations predicted by the two Cellpose models 
was measured by four test persons with varying levels of experience in image analysis. To assess the consistency 
of the manual corrections, the manual segmentation masks were compared to the respective reference mask for 
one of these images. For this, AP values were calculated for varying IoU thresholds.

Results
Custom cellpose model for in vitro INTERbACT model image analysis
In the INTERbACT model, peri-implant mucosae with integrated titanium implants were cultivated in the 
presence of oral multispecies bacterial biofilms. For the analysis of bacterial implant colonization, titanium disks 
were removed from the model after live/dead fluorescent staining and images were obtained via CLSM. These 
images were subsequently preprocessed to facilitate further analysis.

The in vitro dataset comprised 46 images and a total of 15,381 ROIs. Of these, 35 images were utilized as 
a training set for the custom CP_I model, while the remaining 11 images were reserved as a testing set. A 
manual evaluation of the images revealed the presence of bacteria in varying amounts with a heterogeneity of 
background signals in both groups. The majority of the images exhibited the coexistence of human cells and 
bacteria, with the latter present either as individual cells or as chains.

Figure  2A provides two examples from the test set alongside their respective correct segmentations and 
the predicted segmentations generated by the model with the highest accuracy. The average accuracy across 
five independently-trained CP_I models exhibited a significant increase within the initial 300 training epochs 
(Fig. 2B), ultimately reaching a plateau after 1,000 epochs. The model achieving the highest test accuracy of 
0.68 was attained after 3,000 epochs of training. Of the pretrained Cellpose models evaluated, ‘bact_fluor_cp3’ 
demonstrated the highest performance, attaining an accuracy of 0.15.

Utilizing the segmentation masks generated by the CP_I model, a surface coverage of 3.47% (± 3.92%) 
and 0.05% (± 0.08%) was calculated for images captured on the top and on the lateral surfaces of the titanium 
disks from the INTERbACT model, respectively. The difference in surface coverage was found to be statistically 
significant (adjusted p-value = 0.0005).

The CP_I model was also tested for its capacity to segment images derived from other sources. For a set 
of pancreatic stem cell images published in the Cell Tracking Challenge20, an accuracy of 0.67 (± 0.09) was 
achieved. This image dataset consists of time series images, with images captured at early time points exhibiting a 
lower cell density compared to those taken at later stages, where cells are more densely packed. For images within 
the first 20% of the time series, an accuracy of 0.75 (± 0.03) was obtained. For a subset of images from the EMPS 
dataset, which contains electron microscopy images from diverse sources, the CP_I model exhibited an accuracy 
of 0.77 (± 0.10) and AP values at IoU thresholds of 0.5 and 0.75 of 0.84 (± 0.16) and 0.65 (± 0.24), respectively.

Combined threshold and custom Cellpose model analysis for in situ biofilms
In situ grown biofilms on titanium disk-equipped splints were retrieved at two-day intervals from each participant 
and subjected to live/dead fluorescent staining, followed by imaging via CLSM. Across the study, a total of 176 
images were preprocessed for analysis. Example images from two participants are shown in Fig. 3. The titanium 
disks retrieved on day 2 showed predominantly single microorganisms, smaller chains or small aggregates of 
microorganisms. By day 6, however, most images revealed an extensive surface coverage by biofilms.

To quantify the microbial surface coverage, three distinct methods were employed, each one tailored to 
the specific quality and characteristics of the image being analyzed. The first method involved a thresholding 
operation, which was applied to images that were entirely covered by biofilm (compare Fig. 3, P7, day 6). For 
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images exhibiting minimal unwanted signals in addition to the microorganisms (compare Fig. 3, P6, day 6), 
a second strategy was adopted. Prior to applying the thresholding operation, unwanted areas were labeled in 
the Cellpose GUI and subtracted from the image. The third method was applied for images with substantial 
background noise or areas where the background could not easily be labeled (as shown in Fig. 4A). In these 
cases, the images underwent segmentation through two separate Cellpose models (Fig.  4B,C). The resulting 
masks were combined (Fig. 4D) and corrected in the Cellpose GUI to give the final segmentation (Fig. 4E). Out 
of the 176 images, 14 were analyzed using the thresholding method, while 79 and 83 images were evaluated using 
the second and third methods, respectively. The selection of the appropriate method was made manually on an 
image-by-image basis.

For small ROIs of less than 101 pixels, the CP_I model demonstrated an overall segmentation accuracy of 
0.63 for images assessed using the third method. Notably, the accuracy for the example image (Fig. 4B) was 

Fig. 3.  Example images (preprocessed) of in situ grown biofilms obtained by CLSM over the course of 8 days. 
For P6 Day 6, the areas that were subtracted during analysis are marked with an asterisk (*).

 

Fig. 2.  Comparative analysis of example images from the INTERbACT model and segmentation outcomes. 
(a): Example images obtained from the top of the titanium implant of the INTERbACT model and their 
corresponding ground truths and segmentation results achieved using a custom Cellpose model. (b): 
Mean ± standard deviation of the accuracy of the custom Cellpose models throughout the training process, 
evaluated using a test dataset that was not involved in the training process.
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0.75. The accuracy of the CP_M model for ROIs of 101 or more pixels was calculated based on a testing subset 
generated from images of the in situ dataset and was found to be 0.74.

Based on the corrected masks (method 3) and the results of the thresholding operations (methods 1 & 2), 
the microbial surface coverage was calculated for all images (Fig.  4F). The mean surface coverage on day 2 
was 27.81% (± 27.84%), which increased over time—eventually reaching 71.88% (± 15.25%) by sampling day 
8. A substantial variation was observed among samples from different persons, however, particularly during 
the initial two sampling periods. While some images displayed only a few individual microorganisms, others 
were nearly fully covered. In general, most surfaces became densely populated with microorganisms by day 6. 
Statistically significant differences were identified between the surface coverages of day 2 and day 8 (adjusted 
p-value = 0.02).

A test data set comprising 12 images was utilized to demonstrate the efficacy of the trained Cellpose models. 
The utilization of these models resulted in a 70.13% (± 15.11%) reduction in the time required for manual 
corrections, as compared to the time necessary for manual labeling of the images without the assistance of the 
Cellpose models. In order to examine the consistency in the manual corrections between different researchers, 
a representative image was selected and the manual segmentations were compared to the reference mask 
(Supplementary Figure S1). At IoU thresholds of 0.5 and 0.75, the AP values of the manual segmentations were 
found to be 0.94 (± 0.01) and 0.67 (± 0.09), respectively. The maximum difference in the AP value between two 
researchers was 0.25 at an IoU threshold of 0.75.

Discussion
Implant-associated infections pose a major challenge to modern dentistry. Numerous studies have been 
conducted to enhance our comprehension of the underlying mechanisms, which involve complex interactions 
between co-localized microorganisms and human cells. In this effort, extensive imaging datasets are generated, 
which, due to their complexity, necessitate analysis techniques that conventional image processing methods 
cannot readily accommodate.

In this study, we developed a workflow suitable for the semi-automated analysis of the bacterial surface 
coverage on titanium surfaces exposed to the human oral microbiome and oral tissue—something which 
would simply be infeasible to conduct manually4–6,22,23. For the analysis, three distinct methodologies were 
employed, each tailored to specific image content and quality. For images that were entirely covered with 
biofilm, a thresholding operation was performed. For images predominantly comprising microorganisms, i.e., 
with only a few areas of background or human cells present, the respective areas were marked in the Cellpose 

Fig. 4.  Analysis of in situ study images. (a): Example image from the in situ study (preprocessed and cropped 
to 512 × 512 pixels). (b): Segmentation results of the CP_I model. (c): Segmentation results of the CP_M 
model. (d): Combination of both predicted masks. (e): Ground truth of the example image. (f): Boxplot of the 
microbial surface coverage of all images over the course of 8 days.
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2.0 GUI and subtracted from the image prior to applying a thresholding operation. A third method was used 
for images in which the interfering elements could not be separated from the microorganisms. To address this 
challenge, a Cellpose model was trained to recognize individual microorganisms using co-culture images from 
the INTERbACT model (CP_I). Additionally, a separate model was trained using microscopy images from in 
situ biofilms to recognize microcolonies (CP_M). The resulting segmentation masks from these two models 
were then combined to minimize the manual labeling effort.

The images employed in this study originate from one of two sources: the INTERbACT model and orally 
exposed test specimens. Both of these datasets featured microorganisms that co-localized with human cells 
on titanium surfaces, and which were subjected to live/dead fluorescent staining. However, due to the non-
specificity of the fluorescent dyes (which also stain human cells and their debris), signals are generated that 
disturb classical image analyses. Additionally, the fluorescent dyes also tend to create background signals on 
the titanium surface, possibly due to unspecific binding to surface-attached proteins. And the unevenness of 
surfaces or cells in different z-planes can also result in variations in signal intensity across individual images. 
In order to prepare images for analysis, several preprocessing techniques have been described. Frequently 
employed methods include the reduction of noise within images through filtering, such as by applying Gaussian 
filters24. However, due to the inhomogeneity of the images in our dataset, the preprocessing for all three 
analytical methods included the application of flat-field correction and contrast enhancement to address the 
aforementioned issues. This approach obviated the need to manually set thresholds on an image-by-image basis 
and eliminated the necessity for repeated contrast adjustments to compensate for intensity variations.

A variety of image segmentation tools are available, which include Stardist25, CellProfiler26, DeepCell27, and 
others. Additionally, there are tools such as COMSTAT28 or BiofilmQ29 that have been developed specifically for 
the analysis of biofilms. While numerous of these tools might be applicable to our study, due to the inhomogeneity 
and substantial background noise present in our images, we elected to utilize Cellpose in this investigation. 
This decision was made on the basis of several factors, including the comprehensive documentation, the 
intuitive GUI, and the reported capacity to segment objects of varying morphologies12, as well as encouraging 
preliminary outcomes using Cellpose23. With images derived from the INTERbACT model, a custom Cellpose 
model (CP_I) was trained to recognize individual microorganisms or chains of bacteria. While small ROIs have 
comparatively diminished impact on the surface coverage in comparison to microcolonies due to their size, 
their high abundance (up to several thousand per image) rendered the manual annotation process notably time-
consuming. The efficacy of the CP_I model was assessed with respect to its ability to automatically segment a 
set of test images from the INTERbACT model that were not part of the training process. The accuracy of this 
segmentation was found to be approximately 0.68. This suggests that overfitting did not occur despite the high 
number of training epochs employed—which was higher than what is typically observed in other studies14. The 
achieved accuracy was, thus, below that described in the literature for other Cellpose applications12. Spahn et 
al. investigated the performance of several available tools in regard of their ability to segment Bacillus subtilis 
cells in fluorescence images, obtaining precision values between 0.44 and 0.889. For fluorescence images 
containing Escherichia coli cells, it was demonstrated that the Bacterial Cell Morphometry 3D (BCM3D) tool, 
presented by Zhang et al., could outperform comparable segmentation tools. Interestingly, it was shown that 
the segmentation accuracy is dependent on the cell density and the signal to background ratio of the images, 
resulting in comparable accuracies for unfavorable conditions as observed in the present study10. Therefore, we 
assume that the accuracy of the CP_I model can be attributed to the diverse shapes and sizes of the bacteria and 
their aggregates present in the dataset, as well as to the significant and irregular background which frequently 
resulted in false positive predictions. Because the automatically generated masks are subsequently manually 
corrected, the resulting segmentations can still be considered reliable. The microbial surface coverage calculated 
for the INTERbACT dataset exhibited statistically significant higher values for images captured at the top of the 
titanium cylinders in comparison to those acquired at the cylinder’s side. This finding suggests that bacteria 
migrate from the top (which is directly in contact with the models’ biofilm component) along its side towards 
the oral mucosa component, which would directly resemble the clinical situation.

The CP_I model has also demonstrated its effectiveness in segmenting smaller microorganisms in images 
derived from the in situ model, achieving an accuracy of approximately 0.62. Given the minimal discrepancy in 
accuracy between the CP_I model and the in vitro model on which it was trained, it can be concluded that the 
CP_I model is also applicable to images containing individual oral microorganisms deriving from sources other 
than the in vitro model. For the in situ study, however, at later sampling times, the images were predominantly 
covered by microcolonies or larger biofilm areas which could not be detected with this model alone. To address 
this limitation, the segmentations of the CP_I model were combined with the masks generated by a second 
Cellpose model (CP_M) that was trained to recognize microcolonies. This strategy led to a substantial reduction 
in the manual correction effort, requiring 70% less time in comparison to the fully manual labeling of the images. 
The CP_M model demonstrated an accuracy of 0.74 in segmenting microcolonies within a subset of training 
images generated from the in situ dataset, which is slightly higher than the segmentation accuracy of individual 
microorganisms of the CP_I model. While the efficacy of the proposed methodology has been demonstrated for 
a limited number of images, we note that further refinement with a larger dataset could be beneficial to optimize 
the CP_M model in future. Furthermore, in order to ensure precise segmentation outcomes, manual corrections 
were still required.

The consistency of these manual corrections was examined by comparing the manual segmentation masks 
generated by different researchers with the reference mask. For IoU thresholds of 0.5 and 0.75, AP values of 0.94 
and 0.67 were observed, respectively. This difference indicates that the researchers identified the same cells, but 
interpreted the cell boundaries slightly differently, resulting in lower AP values at higher IoU thresholds. This 
finding is supported by the higher standard deviation of 0.09 at an IoU threshold of 0.75, with a maximum 
disparity in the AP value of 0.25 between two individual researchers. This underscores that although the use 
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of the Cellpose GUI is intuitive and straightforward for users with and without expertise, the manual effort 
required for correcting segmentation masks should be minimized. In addition to the considerable time savings, 
this would also result in more consistent segmentation outcomes, given the variability in manual corrections 
among individual researchers.

The CP_I model was furthermore applied to images originating from two other sources than the datasets 
generated within the present study. While the achieved accuracy for the segmentation of a subset of pancreatic 
stem cell images was observed to be comparable to the aforementioned values, it should be noted that the 
model performed better (acc = 0.75) for images obtained at early time stages. The cells in these images were 
predominantly present as individual cells and not as aggregates or touching objects. Given that the CP_I model 
was developed to recognize individual cells and not microcolonies, these results are consistent with the model’s 
functionality. Additionally, the CP_I model was employed to segment electron microscopy images from the 
EMPS dataset. The accuracy of 0.77, as well as the average precision of 0.84 (IoU threshold 0.5) and 0.65 (IoU 
threshold of 0.75), indicate that the performance of the model could be enhanced by increasing the image 
quality, as the EMPS images show a relatively high resolution and very low background signals in comparison 
to the images generated in this study. The overall segmentation outcome for the images presented in this study 
could therefore be supported by enhancing the image quality through specifically selecting the CLSM settings, 
to eventually exclude z-planes with large background signals. Additionally, future work could focus on refining 
the preprocessing steps through the implementation of operations such as background subtraction or filtering 
methods. As the images in the presented datasets are inhomogeneous, a method that categorizes them and then 
applies different preprocessing steps depending on the background style could be beneficial.

Due to the inhomogeneity of the images in question—particularly those derived from the in situ study 
depicting the known variability between persons22—it was necessary to select between one of the three analysis 
approaches presented above. While the thresholding operation is less time-consuming in comparison to the other 
two methods, it can only be applied to images that are free of any disturbing signals. Furthermore, additional 
processing steps are required to obtain morphological information about touching microorganisms. The second 
method is especially useful for images with few background signals and many human cells present. While the 
background signals required manual labeling, the human cells could be detected with high accuracy by the 
pretrained Cellpose models. Although both approaches are faster than the custom Cellpose model approach, 
they do not contribute to the objective of achieving fully automated segmentation by generating additional 
training data. A potential solution to this issue would be to further process the images with other image analysis 
tools, such as BiofilmQ. To extend the image dataset, new experiments could be performed, or existing images 
could be modified using image data augmentation methods30. Nevertheless, in general, the combination of the 
three methods was found to be adequate for the analysis of microbial surface coverage within in situ study-
derived images. The results demonstrated an increase in surface coverage during the initial sampling times and 
the attainment of nearly fully covered surfaces by sampling day 6, indicating the rapid growth of early biofilms 
on dental implants. The values obtained in this study are consistent with published results of Azzola et al., 
who observed surface coverages of 28% and 65% on implant surfaces worn by a volunteer after 2 and 5 days, 
respectively31. While the surface coverage alone cannot be considered a sufficient measure for the assessment 
of the pathogenicity of a biofilm32, it can provide valuable insights into the development of biofilms, especially 
at early stages. Analyzing the surface coverage can, for example, be used to assess biofilm growth at different 
positions in the oral cavity33 or to identify biofilm-growth hindering properties of different implant materials or 
surface modifications34.

In conclusion, this study introduces an innovative workflow designed for the effective analysis of the cell-
specific surface coverage in dental implant-related images, where traditional methods fall short, thus, addressing 
a critical challenge in the field of dental implant research. The study’s approach combines two custom Cellpose 
models, leading to the successful segmentation of microorganisms within images of co-localized microorganisms 
and human cells, despite the presence of significant background signals, while requiring minimal labeling 
effort necessary for manual corrections. Moving forward, acquiring a greater number of high-quality images, 
facilitated by the careful selection of microscopy settings, will be essential to improving segmentation accuracy 
and reducing manual labor. These advancements have the potential to contribute substantially to the broader 
goal of fully automated, precise segmentation, ultimately advancing our understanding of the interactions 
between microorganisms and human cells in dental implant applications.

Data availability
The data generated and/or analyzed in this study will be provided by the corresponding author upon reasonable 
request.
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