
p ()
URL: http://www.elsevier.nl/locate/entcs/volume19.html 17 pages

(Ω,Ξ)-Logic: On the Algebraic Extension of
Coalgebraic Specifications

Rolf Hennicker

Institut für Informatik
Universität Augsburg

Universitätsstr. 14, D-86135 Augsburg
Germany

Alexander Kurz

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München
Germany

Abstract

We present an extension of standard coalgebraic specification techniques for state-
based systems which allows us to integrate constants and n-ary operations in a
smooth way and, moreover, leads to a simplification of the coalgebraic structure
of the models of a specification. The framework of (Ω,Ξ)-logic can be considered
as the result of a translation of concepts of observational logic (cf. [9]) into the
coalgebraic world. As a particular outcome we obtain the notion of an (Ω,Ξ)-
structure and a sound and complete proof system for (first-order) observational
properties of specifications.

1 Introduction

In this paper we propose a logical framework, called (Ω,Ξ)-logic, for the al-
gebraic extension of coalgebraic specifications of state-based systems (in par-
ticular, of object-oriented programs). The underlying ideas stem from the
(algebraic) framework of observational logic presented in [9] and from similar
ideas of swinging data types (Padawitz [19]) and hidden algebra (Goguen and
Malcolm [6]). We show that the basic principles of observational logic can be
transferred into the coalgebraic setting thus leading to a flexible extension of
current coalgebraic specification techniques (cf. Reichel [21], Jacobs [13]).

The specific goals of our approach are to integrate constants and n-ary op-

c©1999 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Hennicker, Kurz

erations, 1 to allow arbitrary first-order formulas for specifying observational
properties of systems, to use a loose semantics approach in order to obtain
sufficient flexibility for the choice of implementations and to provide a sound
and complete proof system for the verification of observational properties.

The starting point of our study is a consideration of standard coalgebraic
specification techniques in the case where a polynomial functor Ξ : Set→ Set
is used to represent the possible operations on a (non-observable) state space
X. As a simple example let us consider the following usual operations on bank
accounts

bal : X → �, update : X × �→ X.

which are extracted from the functor

ΞX = �×X�

as the projections of the transition function β : X → � × X� (whereby,
for update, we use the fact that functions X → X� correspond to functions
X×�→ X). According to the definition of Ξ both operations bal and update
are used to define an indistinguishability relation for bank accounts (formally
expressed by Ξ-bisimulation). Thereby two bank accounts a and b are indis-
tinguishable (in the following also called observationally equivalent), if each of
the observable experiments .bal , .update(n).bal , .update(n1).update(n2).bal ,
. . . yields the same result whether applied to a or to b.

We believe that using both operations, bal and update , for determining the
observational equivalence of accounts imposes unnecessary complexity (for
instance, for the construction of the terminal Ξ-coalgebra) and is even not
adequate since the essential information carried by an account is simply given
by its balance whereas the update operation is just a method which does not
reveal any new information. On the contrary, the update operation has even to
respect the observational equality of accounts (since, obviously, if two accounts
have the same balance and then are credited by the same amount they should
have again the same balance after the operation is performed).

As a consequence of this discussion we propose to split the set of opera-
tions of a specification into “true” observers (in the following simply called
observers) and the “other” operations (in the following simply called opera-
tions). To decide what should count as an observer and what as an operation
is part of the task of the specifier. This is analogous to algebraic specifications
where also a decision has to be made what operations are to be considered
as constructors and what operations have to be defined by induction on the
constructors.

Technically, this splitting in observers and operations is achieved by using
two functors Ω,Ξ : Set → Set such that Ξ defines a coalgebra structure
(for the observers) and Ω defines an algebra structure (for the operations).

1 Recently, n-ary operations have been integrated into the framework of extended hidden
algebra, see Diaconescu [5] and Roşu and Goguen [22].

2

Hennicker, Kurz

Typically, the operations will be defined by coinduction w.r.t. the observers.
For instance, the signature of bank accounts can be represented by the two
functors

ΩX = X × �, ΞX = �,

representing update : X×�→ X and bal : X → �, respectively. A coinductive
definition of update is x.update(n).bal = x.bal + n.

The structure of the paper is the following. Section 2 contains notational
conventions and recalls some technical preliminaries. Then, in section 3, an
(Ω,Ξ)-structure is defined as an algebra-coalgebra pair (α : ΩX → X, β : X →
ΞX) such that the operations of the algebra part respect the observational
equivalence determined by the observers of the coalgebra part (i.e. the opera-
tions are compatible with the greatest bisimulation induced by Ξ). Our mor-
phism notion for (Ω,Ξ)-structures is chosen in such a way that it reflects the
relationships between the observable behaviour of (Ω,Ξ)-structures. 2 Also,
several characterisations of (Ω,Ξ)-structures are given which show the ade-
quacy of this notion. Finally, we discuss some consequences of defining alge-
braic operations coinductively.

In section 4 we consider specifications Sp = (Ω,Ξ,Ax) with a set Ax of
first-order axioms and we define the (loose) semantics of Sp as the class of
all (Ω,Ξ)-structures (α, β) which Ξ-satisfy the axioms Ax. This means that
(α, β) satisfies Ax up to Ξ-bisimilarity of elements which allows us to focus on
observable properties and to abstract from internal (non-visible) properties of
states. As a consequence of the distinction of observers and operations we ob-
tain a straightforward method for coinductive specifications of the operations
by a complete case distinction w.r.t. the given observers.

For proving observable properties of a specification Sp (i.e. formulas which
are Ξ-satisfied by all models of Sp), we present (in section 5) a sound and
complete proof system for (Ω,Ξ)-logic.

2 Notation and Technical Preliminaries

Given a category C and two functors Ω,Ξ : C → C and an object X ∈ C,
morphisms α : ΩX → X and β : X → ΞX are called algebras and coalgebras,
respectively. An algebra morphism f : α → α′ of algebras α : ΩX → X,
α′ : ΩX ′ → X ′ is a morphism f : X → X ′ in C such that f ◦ α = α′ ◦ Ωf .
Analogously, a coalgebra morphism f : β → β ′ of coalgebras β : X → ΞX,
β ′ : X ′ → ΞX ′ is a morphism f : X → X ′ in C such that Ξf ◦ β = β ′ ◦ f .
Algebras and coalgebras form categories CΩ and CΞ, respectively. Following
Malcolm [17] we call a pair (α, β) of an algebra α : ΩX → X and a coalgebra

2 Algebra-coalgebra pairs are also considered in Malcolm [17], but without assuming the
above compatibility requirement for (Ω,Ξ)-structures and with another morphism notion.
It is, however, interesting to observe that the technical postulates used to achieve the results
of [17] indeed force algebra-coalgebra pairs to be (Ω,Ξ)-structures.

3

Hennicker, Kurz

β : X → ΞX on the same object X an algebra-coalgebra pair. Algebra-
coalgebra pair morphisms are morphisms that are both algebra and coalgebra
morphisms.

In this paper, C will always be the category Set of sets and functions.
Furthermore the functors Ω,Ξ are required to preserve weak pullbacks 3 and
we assume that a final Ξ-coalgebra always exists.

The notion of a Ξ-bisimulation is well-known but we will recall it here
to point out the correspondence to the perhaps less well-known notion of Ω-
congruence (see [24], [18]). Since we do not need bisimulations between two dif-
ferent coalgebras we give directly the specialised definition. A Ξ-bisimulation
on a coalgebra β : X → ΞX is a relation R ⊂ X × X such that there is a
function γ : R → ΞR that makes the left-hand diagram below commute. An
Ω-congruence on an algebra α : ΩX → X is a relation R ⊂ X ×X such that
there is a function δ : ΩR → R that makes the right-hand diagram below
commute. (π1, π2 are the canonical projections.)

X ✛π1
R

π2✲ X ΩX ✛Ωπ1
ΩR

Ωπ2✲ ΩX

ΞX

β
❄

✛Ξπ1
ΞR

γ
❄ Ξπ2✲ ΞX

β
❄

X

α
❄

✛π1
R

δ
❄ π2✲ X

α
❄

According to this definition, an Ω-congruence need not be an equivalence
relation, but it has to be substitutive, i.e., it is compatible with the algebraic
operations α. For example, fix a set A and let α : A×X → X be an algebra.
Then R is an Ω-congruence on α iff for all a ∈ A, for all x, y ∈ X it holds that
xRy ⇒ α(a, x)Rα(a, y).

A final coalgebra π : Z → ΞZ is characterised up to isomorphism by the
property that for all coalgebras β : X → ΞX there is a unique coalgebra
morphism ! : β → π. This morphism ! is intimately related to the greatest
Ξ-bisimulation on β because ! identifies exactly the bisimilar elements of X.
Categorically this property may be expressed by the following lemma (Rutten
and Turi [23], Malcolm [17]).

Lemma 2.1 Let β : X → ΞX be a Ξ-coalgebra, π : Z → ΞZ a final Ξ-
coalgebra. Then R ⊂ X ×X is the greatest bisimulation on β iff the diagram
below is a pullback in Set:

R
π2✲ X

X

π1
❄ ! ✲ Z

!
❄

3 Weak means that the arrow into the weak pullback may not be unique, see Rutten [24]
and Gumm [7] for a discussion.

4

Hennicker, Kurz

It might be interesting to note that the proof of this lemma is the essen-
tial point where the requirement enters that the functor Ξ preserves weak
pullbacks.

3 (Ω,Ξ)-structures

As discussed in the introduction we are interested in structures of the kind
ΩX → X → ΞX where the algebraic part respects the observational equiva-
lence 4 expressed by the coalgebraic part.

Definition 3.1 ((Ω,Ξ)-structures) Let Ω,Ξ be functors on Set and let π :
Z → ΞZ be the final Ξ-coalgebra. Then an algebra-coalgebra pair (α : ΩX →
X, β : X → ΞX) is called an (Ω,Ξ)-structure (on X) iff there is a function
h : ΩZ → Z such that the following diagram commutes (! denotes the unique
morphism from the coalgebra β to the final coalgebra π):

ΩX
α✲ X

β✲ ΞX

ΩZ

Ω!
❄

.........
h

✲ Z

!
❄ π✲ ΞZ

Ξ!
❄

Note that h is in general not uniquely determined. But it follows from
proposition 3.4 below that the restriction of h to the image of Ω! is unique.

The intuition that Ω-operations of (Ω,Ξ)-structures are compatible with
Ξ-observations is made precise by the following proposition (which, as shown
in theorem 3.6, is even a characterisation of (Ω,Ξ)-structures):

Proposition 3.2 Let (α, β) be an (Ω,Ξ)-structure on X. The greatest Ξ-
bisimulation on the coalgebra β is an Ω-congruence on the algebra α.

Proof. The greatest bisimulation R on β is given by the pullback diagram of
lemma 2.1. Hence ! ◦π1 = ! ◦π2. Using h ◦Ω! = ! ◦α, it follows ! ◦ (α ◦Ωπ1) =
! ◦ (α ◦ Ωπ2). Since R is a pullback there is a mapping (even a unique one)
δ : ΩR → R making R into a Ω-congruence. ✷

Consider an (Ω,Ξ)-structure (α, β) and the corresponding unique mor-
phism ! into the final Ξ-coalgebra. Then the image of ! gives rise to an (Ω,Ξ)-
structure that is—from the observational point of view—equivalent to (α, β)
and in which all Ξ-bisimilar elements are identified. Such a structure is called
a behaviour. 5

Definition 3.3 (Behaviour) Let ΩX
α→ X

β→ ΞX be an algebra-coalgebra
pair, π : Z → ΞZ terminal in SetΞ and ! : β → π. Furthermore let X

e→
Im(!)

m→ Z be the unique factorisation of ! (as a function in Set) through its

4 Recall that the notion of observational equivalence is formalised in the coalgebraic ap-
proach as the greatest Ξ-bisimulation.
5 The notion of minimal realisation in Malcolm [17] is equivalent to our notion of behaviour.

5

Hennicker, Kurz

image. Then any algebra-coalgebra pair (ᾱ, β̄) on the image of ! such that the
diagram below commutes is called a behaviour of (α, β).

ΩX
α✲ X

β ✲ ΞX

Ω Im(!)

Ωe
❄

.....
ᾱ
✲ Im(!)

e
❄

.....
β̄
✲ Ξ Im(!)

Ξe
❄

Z

m
❄ π ✲ ΞZ

Ξm
❄

Similarly, we call β̄ the behaviour of β.

Since we know from Rutten [24] that a coalgebra morphism uniquely factors
through its image it is clear that β̄ always exists. The important point about
the existence of a behaviour of (α, β) is therefore the existence of ᾱ.

Proposition 3.4 Let ΩX
α→ X

β→ ΞX be an algebra-coalgebra pair. Then its
behaviour—if it exists—is uniquely determined.

Proof. Uniqueness of β̄ follows from e epi, uniqueness of ᾱ from Ωe epi (which,
in turn, is due to the fact that epis in Set are split). ✷

Note also that any behaviour is its own behaviour. Together with the following
characterisation of behaviours, this implies that all behaviours are (Ω,Ξ)-
structures.

Theorem 3.5 Let ΩX
α→ X

β→ ΞX be an algebra-coalgebra pair. Then (α, β)
is an (Ω,Ξ)-structure iff its behaviour exists.

Proof. Let us write X
e→ X̄

m→ Z for the factorisation of ! : β → π. Consider
the following diagram:

ΩX
α✲ X

β✲ ΞX

ΩX̄

Ωe
❄ ᾱ✲ X̄

e
❄ β̄✲ ΞX̄

Ξe
❄

ΩZ

Ωm
❄ h✲ Z

m
❄ π✲ ΞZ

Ξm
❄

and let j be a left inverse of m (i.e. j ◦m = idX̄). For the “only if” part define
ᾱ = j ◦ h ◦ Ωm and for the “if” part let h = m ◦ ᾱ ◦ Ωj. That the respective
conditions are met in both cases is checked easily. ✷

6

Hennicker, Kurz

We can now prove the converse of proposition 3.2 and thereby give a second
characterisation of (Ω,Ξ)-structures. 6

Theorem 3.6 Let ΩX
α→ X

β→ ΞX be an algebra-coalgebra pair. Then (α, β)
is an (Ω,Ξ)-structure iff the greatest Ξ-bisimulation on β is an Ω-congruence
on α.

Proof. The “only if” part was proved as proposition 3.2. For the converse
we show that the behaviour of (α, β) exists (see theorem 3.5). Let us write
X

e→ X̄
m→ Z for the factorisation of ! : β → π. From Rutten [24] we know

that there is an appropriate β̄ : X̄ → ΞX̄. To define ᾱ : ΩX̄ → X̄ we fix a
right inverse i of e (i.e. e ◦ i = idX̄) and let ᾱ = e ◦ α ◦ Ωi.

We have to show that e is an algebra morphism, i.e., ᾱ ◦Ωe = e◦α. Let R

be the greatest bisimulation on β and ΩR
δ→ R

γ→ ΞR the functions making
R into a congruence and a bisimulation. Consider the following three layered
diagram:

ΩX̄ ✛Ωe ΩX

❅
❅

❅
id
❘

ΩX

Ωi
❄

✛Ωπ1
ΩR

r
❄ Ωπ2✲ ΩX

X

α
❄

✛π1
R

δ
❄ π1✲ X

α
❄

❅
❅

❅! ❘ ✠�
�

�

!
Z

Recall that as a greatest bisimulation R is a pullback. Therefore (Ω preserving
weak pullbacks) ΩR is a weak pullback. Together with Ω!◦Ωi◦Ωe = Ω!◦ idΩX

this shows that there is r : ΩX → ΩR such that the topmost layer commutes.
The second layer commutes since R is a congruence and the third since it is a
bisimulation. Now, going from the top to the bottom yields !◦α◦Ωi◦Ωe = !◦α,
and therefore (using ! = m ◦ e and m mono) ᾱ ◦ Ωe = e ◦ α. ✷

In order to obtain a category of (Ω,Ξ)-structures we still need an appro-
priate notion of morphism. Of course, we could use the obvious notion of an
algebra-coalgebra pair morphism (see section 2). Since this does not reflect
the relationships between the observable behaviour of algebras, we have cho-
sen a different definition which implies in particular that (Ω,Ξ)-structures are
isomorphic iff they have the same behaviour:

Definition 3.7 ((Ω,Ξ)-morphisms, SetΩΞ) Let (α1, β1), (α2, β2) be (Ω,Ξ)-

6 Theorem 3.6 is closely related to the result of Rutten and Turi [23] saying (very roughly)
that a final semantics has an equivalent initial semantics if bisimulation is congruence.

7

Hennicker, Kurz

structures. An (Ω,Ξ)-morphism f : (α1, β1) → (α2, β2) is a function f that is
both an algebra morphism f : ᾱ1 → ᾱ2 and a coalgebra morphism f : β̄1 → β̄2

between the respective behaviours (ᾱ1, β̄1) and (ᾱ2, β̄2). The category of (Ω,Ξ)-
structures together with their morphisms is called SetΩΞ.

An interesting consequence of this definition is:

Proposition 3.8 SetΩΞ is equivalent to the full subcategory consisting of the
behaviours in SetΩΞ.

It follows that, from a categorical perspective, it is sufficient to work in the
much simpler category of behaviours. Nevertheless, from the point of view of
computer science, it is essential to have the larger category where the imple-
mentations live.

Coinductive Definitions

As indicated in the introduction, in our setting a typical style of writing spec-
ifications is to define the algebraic structure via coinduction using the coalge-
braic signature Ξ. For example, in the introduction we called x.update(n).bal =
x.bal + n a coinductive definition of the update-operation. We now want to
justify this informal terminology by relating axioms like x.update(n).bal =
x.bal + n to the formal account of coinduction as presented in Rutten [24] or
Jacobs and Rutten [11].

There, the coalgebra f : X→ΞX is said to be a coinductive definition of
the function α : X → Z if Z

π→ ΞZ is the final coalgebra and α is the unique
coalgebra morphism, see the left hand diagram below:

X
α✲ Z ΩX

α✲ X

ΞX

f
❄

Ξα
✲ ΞZ

π
❄

ΞΩX

f
❄

Ξα
✲ ΞX

β
❄

In our context, we want to define the algebraic operations α : ΩX → X on
a coalgebra β : X→ΞX coinductively. First, let β be the final coalgebra and
consider the right hand diagram above. Then any function f : ΩX→ΞΩX
provides a coinductive definition of algebraic operations α : ΩX → X. To see
what f has to be in our example (α as update) recall ΩX = X ×�, ΞX = �,
Ξα = id�, β = bal . It is easy to see that f(x, n) = x.bal + n defines the
operation update.

Second, suppose that β is (isomorphic to) a subcoalgebra of π. Now, every
function f : ΩX→ΞΩX defines a unique morphism α′ : ΩX → Z. Moreover,
α′ (and hence f) determines a morphism α : ΩX → X if and only if α′ factors
through ! : β → π. In this case, the algebraic operations α are uniquely

8

Hennicker, Kurz

determined by α′ = ! ◦ α (since ! is mono), see the left hand diagram below:

ΩX
α

✲ X
! ✲ Z ΩX

Ωe✲ ΩX̄

ΞΩX

f
❄

......
Ξα

✲ ΞX

β
❄

Ξ!
✲ ΞZ

π
❄

ΞΩX

f
❄

ΞΩe
✲ ΞΩX̄

f̄
❄

.........

Third, let β be any Ξ-coalgebra and suppose that α′ : ΩX → Z factors
throughX as α′ = !◦α. Then α is unique up to bisimulation. 7 But it may well
be that α is not compatible with observational equivalence, i.e., that (α, β) is
not an (Ω,Ξ)-structure. (The reason is that an arbitrary f may distinguish
between observably equivalent states.) We therefore need a condition forcing
f to depend only on observable properties of states. This can be done as
follows. 8

Definition 3.9 (Coinductive definition of (Ω,Ξ)-structures) A coinduc-
tive definition of (Ω,Ξ)-structures consists of a function f : ΩX→ΞΩX for
each coalgebra β : X→ΞX such that there is a function f̄ : ΩX̄ → ΞΩX̄
making the right hand diagram above commute (where X̄ is the carrier of the
behaviour β̄ of β and e : β → β̄ the corresponding morphism, see defini-
tion 3.3).

Let f : ΩX→ΞΩX be a coinductive definition of (Ω,Ξ)-structures, π :
Z → ΞZ the final coalgebra, and α′ : f → π. We say that an (Ω,Ξ)-structure
(α, β) on X is defined by f : ΩX→ΞΩX iff α′ = ! ◦ α (where ! : β → π).

The following proposition generalises the second point above to arbitrary
coalgebras.

Proposition 3.10 Let f : ΩX→ΞΩX be a coinductive definition of (Ω,Ξ)-
structures, π : Z → ΞZ the final coalgebra, and α′ : f → π. Then a coalgebra β
on X gives rise to an (Ω,Ξ)-structure (α, β) defined by f iff α′ factors through
! : β → π. Moreover the (Ω,Ξ)-structure is unique up to Ξ-bisimulation.

Proof. Assume α′ factors through ! : β → π. Let α be such that α′ =
! ◦ α. Uniqueness up to bisimulation is clear from the respective definitions.
It remains to show that (α, β) is an (Ω,Ξ)-structure. As in the proof of
theorem 3.5 we write X̄ for the image of ! and ! = m ◦ e for the corresponding
factorisation. We show that the behaviour (α, β) exists, i.e., that there is ᾱ :
ΩX̄ → X̄ with ᾱ ◦Ωe = e ◦α. First, by the existence of an f̄ : ΩX̄ → ΞΩX̄ it
follows that there is α′′ : ΩX̄ → Z such that α′ = α′′◦Ωe. Also, α′ = m◦(e◦α)
(by definition of α) and, hence, α′′ ◦Ωe = m◦ (e◦α). Now, since m mono and
Ωe epi there is a “diagonal fill-in” ᾱ : ΩX̄ → X̄ such that ᾱ ◦ Ωe = e ◦ α. ✷

7 We call two functions α1, α2 : Y → X equal up to bisimulation iff !◦α1 = !◦α2 (where Y
a set, X the carrier of a coalgebra, ! the corresponding morphism into the final coalgebra).
8 The idea behind the definition is the same as in definition 3.1.

9

Hennicker, Kurz

The first part of the discussion above showed that coinductive definitions
of (Ω,Ξ)-structures always have a model, namely the final coalgebra itself.
This shows the following important property of coinductive definitions.

Proposition 3.11 Coinductive definitions of (Ω,Ξ)-structures are consistent.

A final remark on the nature of coinductive definitions of (Ω,Ξ)-structures:
The discussion above showed that the class of models of such a definition is
determined by those Ξ-coalgebras β : X → ΞX such that the morphisms α′

factor through X. That is, a coinductive definition imposes closure condi-
tions on a coalgebra X, in other words, forces the coalgebra to contain enough
“good” elements. In this respect our approach differs fundamentally from
other approaches like Jacobs [12], Gumm [8], and Kurz [15] where specifica-
tions force coalgebras to avoid “bad” elements.

4 (Ω,Ξ)-logic

In this section we show how first-order logic can be used to specify (Ω,Ξ)-
structures. The important point is that Ξ-bisimulation is used to interpret
the equality symbol w.r.t. states.

For the remainder of the paper, we consider the case where Ω is a sum of
finite products, more precisely,

ΩX =
∑

i∈I

Ci ×Xai ,

where the Ci are a finite number of arbitrary (but fixed) sets and the arities
ai range over the natural numbers. In particular, we allow binary (ai-ary)
operations on states.

Ξ is a functor of the kind

ΞX =
∏

j∈J1

XAj ×
∏

j∈J2

B
Aj

j ,

where Aj , Bj are a finite number of arbitrary (but fixed) sets. The Aj, Bj , Ci

are called parameter sets, the Bj output sets.

The functors Ω,Ξ define a signature that allows to name the components
of α : ΩX → X, β : X → ΞX via the categorical laws α = [α ◦ in1; . . .] and
β = 〈π1 ◦ β, . . . , πn ◦ β〉 (where J1 = {1, . . . , m}, J2 = {m + 1, . . . , n}). To
be able to define the notion of (Ω,Ξ)-terms it is nevertheless convenient to
name the single components explicitly. This is done by introducing the sets
Opns(Ω), Obs(Ξ), called operations and observers, see the definition below.

Furthermore, for specifications, we need terms referring to standard op-
erations on the parameter sets. And we need to use theorems concerning
the parameter sets. Similarly to the hidden algebra approach (see e.g. [6]),
we therefore assume that the parameter sets form a many-sorted algebra D

10

Hennicker, Kurz

(called the underlying data algebra) with respect to a signature Σ that has one
sort for each parameter set Aj, Bj , Ci (for simplicity the sorts corresponding
to Aj, Bj , Ci are also named Aj, Bj , Ci) and has operation symbols Opns(Σ).
It is required that Opns(Σ) is disjoint from Opns(Ω)∪Obs(Ξ) and that every
element of a parameter set is denoted by some ground Σ-term. Given a logic
based on the terms formed from Opns(Σ) and variables, we will write Th(D)
for the set of formulas valid in D.

Definition 4.1 (Opns(Ω), Obs(Ξ), (Ω,Ξ)-terms)
Let Ω,Ξ be functors as above. The set Opns(Ω) consists of typed function
symbols fi : Ci ×Xai → X for every i ∈ I. The set Obs(Ξ) consists of typed
function symbols gj : X ×Aj → X, j ∈ J1 and hj : X ×Aj → Bj , j ∈ J2. The
set Terms(Ω,Ξ) of (Ω,Ξ)-terms is formed in the usual way using a countable
set of variables Var and the function symbols of Opns(Ω)∪Obs(Ξ)∪Opns(Σ).

Using (Ω,Ξ)-terms we can define the set L(Ω,Ξ) of many-sorted 9 first-
order (Ω,Ξ)-formulas as usual from equations t = r (with the terms t, r ∈
Terms(Ω,Ξ) of the same sort), the logical connectives ¬,∧,∨ and the quan-
tifiers ∀, ∃. In some cases we will also consider infinitary conjunctions and
disjunctions over countable sets of formulas.

Given an (Ω,Ξ)-structure (α, β) on X and a valuation for the variables,
we have the usual interpretation of terms of state sort as elements of X and
of terms of parameter sort as elements of D. In particular, terms formed
from observers gj : X × Aj → X, j ∈ J1 and hj : X × Aj → Bj , j ∈ J2 are
interpreted by using the isomorphisms

X × Aj → X � X → XAj , X × Aj → Bj � X → B
Aj

j .

To be more precise, given a valuation v : Var → X +D, we define a mapping
v∗ : Terms(Ω,Ξ) → X +D as follows. The definition of v∗(t) is obvious if t is
a variable or a term with leading function symbol from Opns(Ω) ∪ Opns(Σ).
To see how function symbols from Obs(Ξ) are interpreted recall that β : X →∏

j∈J1
XAj × ∏

j∈J2
B

Aj

j . Therefore

v∗(gj(t1, t2)) = πj ◦ β(v∗(t1))(v∗(t2)) ∈ X,

v∗(hj(t1, t2)) = πj ◦ β(v∗(t1))(v∗(t2)) ∈ Bj.

Next, we define the satisfaction relation. From the observational point of
view two elements of an (Ω,Ξ)-structure are equal if they cannot be distin-
guished by observations determined by the coalgebra functor Ξ, i.e. if they are
Ξ-bisimilar. This idea leads to our notion of Ξ-satisfaction of arbitrary first-
order formulas where the equality symbol is interpreted by Ξ-bisimulation.
This idea corresponds to the notion of observational satisfaction which origi-
nally goes back to Reichel [20].

9 One sort for each of X, Aj , Bj , Ci. The name X is used synonymously as a sort called
state sort and also for the set of states.

11

Hennicker, Kurz

Definition 4.2 (Ξ-satisfaction) Let Ω,Ξ be functors as above, (α, β) an
(Ω,Ξ)-structure on X, Var a set of variables, v : Var → X + D a valua-
tion and ϕ ∈ L(Ω,Ξ). Then (α, β), v |=Ξ ϕ is defined by induction on the
structure of ϕ:

• (α, β), v |=Ξ t1 = t2, where t1, t2 are terms of state sort, iff there is a Ξ-
bisimulation R on β such that v∗(t1)Rv∗(t2),

• (α, β), v |=Ξ t1 = t2, where t1, t2 are terms of parameter sort, iff v∗(t1) =
v∗(t2),

• for logical connectives and quantifiers as usual.

We use the following standard notation: Let M be an (Ω,Ξ)-structure, ϕ an
(Ω,Ξ)-formula and Φ a set of (Ω,Ξ)-formulas. Then M |=Ξ Φ iff M |=Ξ ϕ for
all ϕ ∈ Φ. Moreover, Φ |=Ξ ϕ iff for all (Ω,Ξ)-structures M : M |=Ξ Φ implies
M |=Ξ ϕ.

Another way to achieve that equality is interpreted as Ξ-bisimulation is
to interpret the equality symbol as equality in the behaviour of a structure.
The next proposition shows that both ways to define satisfaction are indeed
equivalent. (It is the analogue of Bidoit et al. [4], theorem 3.11.) Thereby, we
write |= for the standard satisfaction relation that is defined as |=Ξ but using
standard set-theoretic equality instead of Ξ-bisimulation in the first clause of
definition 4.2.

Proposition 4.3 Let Ω,Ξ be functors as above, (α, β) an (Ω,Ξ)-structure,
and ϕ ∈ L(Ω,Ξ). Then

(α, β) |=Ξ ϕ iff (ᾱ, β̄) |= ϕ,

Now, we introduce specifications and the class of models satisfying a given
specification.

Definition 4.4 ((Ω,Ξ)-specification) An (Ω,Ξ)-specification Sp is a tuple
(Ω,Ξ,Ax) where Ax is a set of formulas of L(Ω,Ξ). The class of models
Mod(Sp) of the (Ω,Ξ)-specification Sp consists of all (Ω,Ξ)-structures that
Ξ-satisfy Ax, i.e.,

Mod(Sp) = {(α, β) ∈ SetΩΞ : (α, β) |=Ξ Ax}.
Example 4.5 The following specification of bank accounts (taken from [9])
has additionally to the observer bal an observer undo which is intended to
reconstruct the previous state of an account after having performed an action.
Hence, by using undo one can potentially reveal more information (namely
the account’s history) than a single balance check would provide. Thus undo
has indeed to be declared as an observer. (We may call undo an “indirect” ob-
server because it only leads to visible output in combination with the “direct”
observer bal .) In addition to the update operation the specification contains a
constant new (representing the initial state of an account) and an operation
paycharge which reduces the balance of an account by a constant monthly fee.

12

Hennicker, Kurz

spec ACCOUNT

observers

.bal : account→ int

.undo : account→ account

operations

new : → account

.update : account, int → account

.paycharge : account→ account

axioms

∀x ∈ account, ∀n ∈ int :
new .bal = 0, new .undo = new

x.update(n).bal = x.bal + n, x.update(n).undo = x

x.paycharge .bal = x.bal − 10, x.paycharge .undo = x

The above notation shows the concrete syntax of the specification. Its
abstract syntax is given by the functor

ΞX = �×X

corresponding to the two observers 〈bal , undo〉 : X → � × X and by the
functor

ΩX = 1 +X × �+X

corresponding to the operations [new ; update; paycharge] : 1+X×�+X → X.
A possible model of the specification ACCOUNT which satisfies the axioms
even literally can be defined in terms of lists of integers. Another model
which Ξ-satisfies the axioms (but not literally) can be constructed by using
the well-known array with pointer realization of lists.

In the above specification the behaviour of the operations is specified by
a complete case distinction w.r.t. the given observers. Moreover, it is not
difficult to see that this specification is a coinductive definition in the sense of
section 3. It follows from proposition 3.11 that this specification is consistent.

A more loose specification can be obtained, for instance, by removing the
equations for the paycharge operation. Then the semantics of the specification
is still restricted to those models where the interpretation of paycharge is
compatible with the greatest Ξ-bisimulation (since only (Ω,Ξ)-structures are
admissible models).

13

Hennicker, Kurz

5 (Ω,Ξ)-proof system

In this section we give a sound and complete proof system for (Ω,Ξ)-logic.
Then we discuss the implications of using infinitary logic (which is needed for
the completeness result). Finally we give an example of a proof in our system.

Definition 5.1 (Ξ-context) The set Cont(Ξ) of observable Ξ-contexts con-
sists of the terms of output sort formed from the set of function symbols
Obs(Ξ), variables of parameter sort, and a special variable z of state sort.
Substitution of a term t in the context c for the variable z is denoted by c[t].

The set of variables of parameter sort of a context c is denoted by Var(c).
We write ∀Var(c) to denote quantification over all variables in Var(c). Next
we formulate a coinductive proof principle for (Ω,Ξ)-logic which is expressed
by the following axiom:

Definition 5.2 (CoIndΞ)

CoIndΞ = ∀x, y ∈ X :
∧

c∈Cont(Ξ)

(∀Var(c) : c[x] = c[y]) ⇒ x = y

Whether the axiom is infinitary depends on the bisimulation defined by the
coalgebra functor Ξ. In the ACCOUNT example from the last section it is
infinitary, because—intuitively—observationally equivalent accounts have to
have the same balance after an arbitrary number of undo-operations. If we
omit undo from the specification, the axiom becomes finitary.

Definition 5.3 ((Ω,Ξ)-proof system) Let Ω,Ξ be functors as above, let D
be a data algebra and Th(D) the set of infinitary first-order formulas satisfied
by D. We write Φ �Ξ ϕ iff Φ ∪ {CoIndΞ} ∪ Th(D) � ϕ where � denotes
derivability w.r.t. a sound and complete proof system for infinitary first order
logic as given, for instance, in Keisler [14].

Obviously, the coinductive proof principle is sound, since our semantic
objects are (Ω,Ξ)-structures whose operations are required to be compatible
with the observational equivalence given by the greatest Ξ-bisimulation. In
previous approaches in the literature (see Malcolm and Goguen [16], Bidoit
and Hennicker [1]) this property is not assumed and therefore has first to be
checked before the coinductive proof principle can be applied.

Theorem 5.4 (Soundness)

Φ �Ξ ϕ ⇒ Φ |=Ξ ϕ.

Proof. Follows from the remarks above. ✷

Theorem 5.5 (Completeness) Let D be a countable data algebra and Th(D)
its theory w.r.t. infinitary first-order logic. Then

Φ |=Ξ ϕ ⇒ Φ �Ξ ϕ.

14

Hennicker, Kurz

Proof. (Sketch.) The proof uses the completeness proof in [9] by showing
that their models (called observational algebras) and (Ω,Ξ)-structures are in
a one-to-one correspondence. The main difference between observational al-
gebras and (Ω,Ξ)-structures is that in [9] the data algebra is not fixed in
advance but part of the specification. Now, using Φ∪Th(D) as a specification
for observational algebras and observing that, according to Scott’s theorem
(see e.g. [14]), Th(D) determines the data part up to isomorphism (since the
data algebra is assumed to be countable, since the data signature Σ allows to
denote every element of D, and since the logic has infinitary disjunctions), it
is not difficult to show that the observational algebras for Φ ∪ Th(D) are in
one-to-one correspondence to the (Ω,Ξ)-structures for Φ. Showing that this
correspondence preserves and reflects validity finishes the proof. ✷

Let us discuss the use of infinitary logic. First note that if there are only
direct observers there exist (up to α-equivalence) only finitely many observable
contexts and hence CoIndΞ is finitary. In this case we can choose a formal (i.e.
finitary) proof system and any available theorem prover for first-order logic
can be used.

Second, if there are also indirect observers there may be infinitely many
observable contexts and CoIndΞ becomes infinitary. In this case, the above
completeness result is mainly of theoretical interest. However, it is important
to note that the infinitary formulas CoIndΞ can still be very useful. In practical
examples the infinitary premise of CoIndΞ can often be established by a simple
inductive proof, see the example below. Using a result of [2] it is even possible
to encode the infinitary formulas CoIndΞ by finitary ones if one introduces
auxiliary symbols and reachability constraints. Hence the problem of the non-
completeness of finitary proof systems for (Ω,Ξ)-logic corresponds exactly to
the non-completeness of finitary proof systems for inductively defined data
types (in particular of arithmetic).

Example 5.6 Consider the example of the ACCOUNT specification from the
last section and suppose one wants to show that

∀x ∈ account : x.paycharge = x.update(−10).

As we have seen above the axiom CoIndΞ becomes

∀x, y ∈ account : (
∧

i∈�
x.undo i.bal = y.undoi.bal) ⇒ x = y.

Instantiating x with x.paycharge and y with x.update(−10), we see that it is
sufficient to prove the infinitary formula

∧

i∈�
x.paycharge.undoi.bal = x.update(−10).undoi.bal ,

which follows directly from the corresponding axioms.

15

Hennicker, Kurz

6 Conclusion

(Ω,Ξ)-logic provides the foundations of a flexible specification technique for
state-based systems which extends standard coalgebraic specifications by in-
corporating the basic ideas of observational logic. For simplicity we have only
considered here (Ω,Ξ)-structures with a single-sorted state space. The ex-
tension to the many-sorted case should be straightforward. Important next
steps of our approach are the construction of structured (Ω,Ξ)-specifications
for modular descriptions of large systems (which is already included in obser-
vational logic) and the investigation of refinement relations between (Ω,Ξ)-
specifications together with associated proof techniques. We are confident
that for this purpose we can use results of [3] and [10].

Acknowledgements

We want to thank Pietro Cenciarelli for the many discussions initiating our
work on the connection between algebraic and coalgebraic specifications and
also Alexander Knapp for carefully reading previous drafts. The diagrams are
drawn with Paul Taylor’s macro package.

References

[1] M. Bidoit and R. Hennicker. Proving behavioural theorems with standard first-
order logic. In G. Levi and M. Rodriguez-Artalejo, editors, Proc. Algebraic and
Logic Programming, 4th International Conference, ALP ’94, Madrid, September
1994, volume 850 of LNCS, pages 41–58, Berlin, 1994. Springer.

[2] M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 175:3–55, 1996.

[3] M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural
implementations. Acta Informatica, 35:951–1005, 1998.

[4] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor
specifications. Science of Computer Programming, 25:149–186, 1995.

[5] R. Diaconescu. Behavioural coherence in object-oriented algebraic specification.
Technical Report IS-RR-98-0017F, Japan Advanced Institute for Science and
Technology, 1998.

[6] J. Goguen and G. Malcolm. A hidden agenda. Technical Report CS97-538,
UCSD, 1997.

[7] H. Peter Gumm. Functors for coalgebras. Algebra Universalis. To appear.

[8] H. Peter Gumm. Equational and implicational classes of co-algebras. extended
abstract. RelMiCS’4. The 4th International Seminar on Relational Methods in
Logic, Algebra and Computer Science, Warsaw, 1998.

16

Hennicker, Kurz

[9] R. Hennicker and M. Bidoit. Observational logic. In Proc. of AMAST’98, 7th
International Conference on Algebraic Methodology and Software Technology,
LNCS 1548, pages 263–277, 1999.

[10] Rolf Hennicker. Structured specifications with behavioural operators:
Semantics, proof methods and applications. Habilitation thesis, Universität
München, 1997.

[11] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62, 1997.

[12] Bart Jacobs. Mongruences and cofree coalgebras. Lecture Notes in Computer
Science, 936, 1995.

[13] Bart Jacobs. Objects and classes, co-algebraically. In B. Freitag, C. B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence. Kluwer Acad. Publ., 1996.

[14] H. J. Keisler. Model Theory for Infinitary Logic. North-Holland, Amsterdam,
1971.

[15] Alexander Kurz. A co-variety-theorem for modal logic. Proceedings of Advances
in Modal Logic, Uppsala, pages 222–230, 1998.
http://www.informatik.uni-muenchen.de/~kurz.

[16] G. Malcolm and J. Goguen. Proving correctness of refinement and
implementation. Technical Report PRG-114, Oxford University Computing
Laboratory, 1994.

[17] Grant Malcolm. Behavioural equivalence, bisimulation, and minimal
realisation. Lecture Notes in Computer Science, 1130:359–378, 1996.

[18] Ernest G. Manes. Algebraic Theories. Springer, 1976.

[19] Peter Padawitz. Swinging data types: syntax, semantics, and theory. In O.-
J. Dahl M. Haveraaen, O. Owe, editor, Recent Trends in Data Type Specification,
volume 1130 of LNCS, pages 409–435, Berlin, 1996. Springer.

[20] Horst Reichel. Initial computability, algebraic specifications, and partial
algebras. Oxford, Clarendon Press, 1987.

[21] Horst Reichel. An approach to object semantics based on terminal co-algebras.
Mathematical Structures in Computer Science, 5(2):129–152, June 1995.

[22] G. Roşu and J. Goguen. Hidden congruent deduction. Proc. International
Workshop on First Order Theorem Proving, 1998.
http://www-cse.ucsd.edu/users/goguen/ps/cong.ps.gz.

[23] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for
concurrency. Report CS-R9409, CWI, Amsterdam, 1994.

[24] Jan Rutten. Universal coalgebra: A theory of systems. Report CS R 9652,
CWI, Amsterdam, 1996.

17

