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Abstract: This study evaluates the impact of precipitation ensembles on flood hazards in
the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS
model. Both models were calibrated and validated to simulate hydrological and hydraulic
processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps
and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani
formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydro-
graphs, flood maps, flood probability maps and additional statistics in West Africa for the
first time, offering a comprehensive understanding of flood dynamics under uncertainty.
Ensemble hydrographs and maps obtained enhance decision-making by showing discharge
scenarios, spatial flood variability, prediction reliability, and probabilities, supporting tar-
geted flood management and resource planning under uncertainty. The findings underline
the need for a comprehensive strategy to mitigate both common and rare flood events
while accounting for spatial uncertainties inherent in hydrological and hydraulic modeling.

Keywords: precipitation ensembles; coupling HBVHEC–RAS models; flood hazards; flood
depth prediction; uncertainty analysis; Ouémé River basin

1. Introduction
Flooding is a major hazard in West Africa, causing severe damage and putting large

numbers of the African population at risk [1–4]. In the Guinean coastal zone, the increasing
population density and urbanization aggravate flood exposure and vulnerability, and
hence, flood risk [5,6]. In addition, the river basins in West Africa are characterized
by high hydro-climatic variability [2], such as the Ouémé river basin in Benin, where
frequent flood events of different magnitudes were observed [7]. Managing the risk of flood
hazards and the hydro-climatic variability in West Africa necessitates a reliable hazard
assessment, prediction, and mitigation. Models such as hydrological and hydrodynamic
models are widely used to quantify and understand flooding for flood risk management.
Thus, hydrologic models are used for the rainfall-runoff modeling in the catchment, where
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the modeled output (discharges) is used as inputs for hydrodynamic models (inflows).
Hydrodynamic models facilitate an accurate computation of the flood routing in the stream
and the precise calculation of water levels and the spatial extent of the flood event. These
models are thus essential tools for decision-makers and practitioners in many regions
of the world. One hydrodynamic model widely used in West Africa is the HEC–RAS
model [8–12].

Yet, flood modeling is subject to various uncertainties [13,14] that need to be ac-
counted for in hazard quantification and decision-making. Generally, uncertainties in flood
modeling can be categorized into model assumption uncertainties, parameter estimation
uncertainties, and model input uncertainties [15]. Although uncertainty quantification is
now well established in weather and flood forecasting [16,17], such approaches are rarely
applied to flood hazard modeling, especially in data-poor regions such as West Africa. In
the past, the first efforts were made to account for these sources of uncertainty in hydrology,
for example, by [18]. They used the Generalized Likelihood Uncertainty Estimation (GLUE)
method to quantify the uncertainties of different hydrological models in selected river
basins of West Africa. Modeling techniques, such as Bayesian model averaging, were
explored and applied by [19] to address the model uncertainties in data-scarce river basins.
It is, however, commonly understood that model input uncertainty, i.e., the precipitation
input, is the main contributor to uncertainties in flood modeling [20,21]. This uncertainty
is especially pronounced by the spatial variability of precipitation [22]. To assess the un-
certainty of flood modeling, precipitation ensembles were used in various flood studies
(e.g., [23,24]). In the Ouémé River basin, ref. [25] moreover investigated the impacts of
uncertainties linked to a random component of rainfall using the least action principle.

However, these studies on flooding in West Africa focused only on discharge estima-
tion, whereas the computation of flood extents was not considered. In the present study,
we propose a modeling framework to account for the challenges of flood hazard evaluation
in West Africa using the Ouémé river as a case study. In this study, we address how large
flood maps for extreme events differ when precipitation uncertainty is considered using
stochastic simulation techniques for ensemble generation. Moreover, we assess whether a
single precipitation input from interpolation technique is already sufficient information for
comprehensive flood modeling in comparison to the ensemble-based approach. Moreover,
our framework aims to highlight what decision-makers and practitioners can expect for
flood maps if multiple precipitation ensembles are used for flood management analysis.

For these purposes, we apply a coupled modeling approach to evaluate the flood
hazard for the Ouémé river basin in Benin using precipitation and discharge ensembles.
The precipitation ensembles are stochastically derived from in situ data to maintain the
rainfall variability in this region. We use the hydrological model Hydrologiska Byråns
Vattenbalansavdelning (HBV) model [26,27] to generate discharge ensembles as inflows
for the flood model HEC–RAS [28]. Applying the HEC–RAS model then allows the
quantification of accurate flood extents and flood maps. To the best of our knowledge, a
coupling of hydrological and hydrodynamic models and the application of precipitation
ensembles for flood map investigation have not been applied yet in West Africa.

In the following, we first present the methodology applied, the datasets and models
used, and how the models are set up and evaluated. Then, the results are shown, the
methodology is discussed, and last, we conclude the paper with the major findings of
this study.

2. Materials and Methods
Figure 1 gives an overview of the methodology applied in this study to evaluate

precipitation ensembles on flood hazard. Precipitation ensembles were first generated by
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stochastic geostatistical simulation technique based on the Spectral Turning Bands Method
(STBM). These precipitation ensembles were then used as input in the hydrological HBV
model for simulating discharges. These discharges served inflows to the hydrodynamic
HEC–RAS–1D model for simulating discharges and flood maps. This methodology is
explained in more detail in the following.

 

Figure 1. Flow chart of the method used in the study.

2.1. Study Site and Datasets
2.1.1. Study Site

The study area, the Ouémé basin, is located in Republic of Benin, West Africa. Benin
is geographically situated between 06◦25′ to 12◦30′ northern latitude and 01◦00′ to 03◦40′

eastern longitude (Figure 2). It is bordered to the north by Niger, to the northwest by
Burkina Faso, to the west by Togo, to the east by Nigeria, and to the south by the Gulf of
Guinea. Benin is located entirely in the tropical sub-Saharan region. The Ouémé river rises
in the Atacora massif in northwestern Benin and has two main affluents: the Okpara and
the Zou. The Ouémé basin at the Bonou gauge is about 50,000 km2, and the river length is
around 500 km [8].

Figure 2. The location of the study area and HBV gauged subcatchments.
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The catchment is mainly characterized by the Precambrian basement. It consists
predominantly of complex migmatites granulites and gneisses, including less abundant
mica shists, quartzites, and amphibolites [29]. The Ouémé Basin is characterized by four
major soil types [30]. In its northern and center parts, there are mostly crystalline base soils;
in its southern part, the soils are the hydromorphic Vertisols, the sand-stone plain and the
quartz rich sand.

There are three climatic zones in the Ouémé River basin [30,31]. North Ouémé endures
a unimodal rainfall regime with a rainy season from May to October and a dry season from
November to March. In middle Ouémé, a transitional rainfall regime prevails with a rainy
season from March to October, with or without a small dry season during August [32]. The
southern Ouémé River basin endures a bimodal rainfall regime with two wet seasons (a
long one between March and July and a short one between September and mid-November)
and two dry seasons (a long one between November and March and a short one in August).

2.1.2. Datasets

The data used in this work are summarized in Table 1. The precipitation data are
gridded data generated by stochastic geostatistical simulation technique based on the
Spectral Turning Bands Method (STBM) [33]. The air temperature data are provided by
Météo Bénin for the Bétérou and Savè subcatchments. ERA5 re-analysis data [34] are
used for the Kaboua, Atchérigbé, Zangnanado, and Bonou subcatchments. The discharge
and water level data are obtained from Direction Générale de l’Eau (DGEau) for the
Bétérou, Savè, Kaboua, Atchérigbé, Zangnanado, and Bonou gauges. We selected the best
overlap from the input data for the modeling in the present study (from 1994 to 2016). The
completeness and spatial consistency of meteorological and hydrometric datasets, spanning
the period 1994–2016, were rigorously evaluated. A detailed analysis of precipitation
data quality is provided in [33]. As illustrated in Figure A1 (Appendix A), discharge
data availability across all monitoring stations averaged 82.31% during the study period
(1994–2016), reflecting a high degree of temporal coverage despite localized gaps. The
simulation period for the hydrological modeling is split into three periods: a warming up
period (1994), a calibration period from 1995 to 2004, and a validation period from 2005 to
2014. For the hydrodynamic–numerical modeling, the simulation period covers the years
between 2011 and 2016.

Table 1. Data used in this study.

Data Period Source

Daily precipitation 1994–2016 CS-STBM [33]
Daily air temperature 1994–2016 Météo Bénin, ERA5

Daily discharge 1994–2016 DGEau, Benin
Daily water level 2011–2016 DG Eau, Benin

Flood maps October 2016 SENTINEL-1
DEM - Copernicus-GLO30

Rating curve 2011–2016 DG Eau, Benin

2.2. Precipitation Estimation

To improve the reliability of hydrological modeling, we addressed uncertainty in
rainfall input by using two rainfall products: a reference dataset created through nearest-
neighbor interpolation (“Reference”) and a stochastic ensemble of 20 simulated rainfall
scenarios generated with the Conditional Simulation with Spectral Turning Bands Method
(CS-STBM, “simulation”). The Reference dataset provides a deterministic baseline es-
timation of rainfall, while the simulation ensemble captures broader spatial variability,
accounting for uncertainties that standard interpolation methods cannot represent [35].
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Following the methodology detailed in [33], we configured the CS-STBM with an
isotropic variogram (30 km range, no nugget effect) and regionalized the in situ observations
to a 0.05◦ grid (approximately 5 km). The spatial distribution of the rain gauges used for
both the interpolation and the conditional simulation is shown in Figure 1 of [33], which
provides an overview of the station network across the study region. The generated rainfall
fields were then spatially averaged over each sub-catchment. This approach yielded six
spatialized time series representing key aspects of rainfall variability across each catchment,
which were then used as inputs in the coupled HBV–HEC–RAS model setup to simulate
discharge and flood inundation.

Based on this rainfall modeling approach, we gain insights into the impact of rainfall
uncertainty on hydrological and hydraulic model outputs.

2.3. Models
2.3.1. The HBV Model

The HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological model [26,27]
is a global conceptual model on the catchment scale. In 1996, the HBV light version was
created [27]. The HBV model simulates daily flow using daily temperature, precipitation
and an estimate of potential evapotranspiration as input data. Despite its relatively simple
structure, the HBV model works well and continues to be used by a large number of
scientists around 50 years after its first use [36]. Integrating conceptual models like HBV
with climate projections offers a robust tool for managing uncertainties in future water
availability and flood risks [37–39]. Within its structure, the model has fifteen parameters
constituting the different routines (Figure 3). These routines are the following: the snow
routine, the soil moisture routine, the response function, and the routing routine. The
parameters within the different routines are summarised in Table 2. Given that there
is no snow in Benin, the snow module was deactivated in the model setting up. The
evapotranspiration data are calculated for the same periods using the Hargreaves–Samani
formula [40,41] shown by Equations (1) and (2):

ETr = 0.0135RS(Tmean + 17.8) (1)

RS = 0.16Ra(Tmax – Tmin)0.5, (2)

where ETr is the reference evapotranspiration in a given time period (day, month), Tmax (◦C),
the mean maximum air temperature, Tmin (◦C), the mean minimum air temperature, and
the incoming short-wave solar radiation, RS, in the considered period (mm/d), Ra, is the
extraterrestrial radiation.

Table 2. HBV model parameters in the different routines.

Parameter Explanation Unit

Snow routine
TT Threshold temperature ◦C

CFMAX Degree-∆t factor mm ◦C−1∆t −1

SFCF Snowfall correction factor -
CWH Water holding capacity of snow -
CFR Refreezing coefficient -
SP Seasonal variability in degree-∆t factor -

Soil moisture routine
FC Field capacity: Maximum soil moisture storage mm
LP Soil moisture value above which AET reaches PET -

BETA Shape coefficient -
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Table 2. Cont.

Parameter Explanation Unit

Response routine
K0 Additional recession coefficient of upper groundwater store ∆t −1

K1 Recession coefficient of upper groundwater store ∆t −1

K2 Recession coefficient of lower groundwater store ∆t −1

UZL threshold parameter for K0 outflow mm
PERC Threshold parameter mm ∆t −1

Routing routine
MAXBAS Length of equilateral triangular weighting function mm ∆t −1

 

Figure 3. HBV model structure [42,43].

2.3.2. The HEC–RAS Model

The HEC–RAS model is a hydraulic numerical model developed by the US Army
Corps of Engineers [28]. The application of the model facilitates the computation of flood
routing in the river channel and the inundation extents. In HEC–RAS, the computational
domain of the river is spatially discretized into user-defined cross sections. Between
adjacent cross sections, the mass and momentum conservation (so-called “Saint Venant
equations”) are calculated. The conservation of mass is computed as

∂Q
∂x

+
∂A
∂t

= 0. (3)

And the conservation of momentum is described with

1
A

∂Q
∂t

+
1
A

∂(Q2/A)

∂t
+ g

∂h
∂x

− g(S0 − Sf) = 0, (4)
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where Q is the discharge, A is the cross-section area, t represents time, g is the gravitational
acceleration, h is the flow depth, S0 is the channel bed slope, and Sf is the friction slope.
In HEC–RAS, numerical approximations are used to solve the Saint Venant Equations.
The flow discharge Q and the flow depth h are computed for every cross section at each
time step.

The HEC–RAS model requires geospatial information for the modeling domain, in-
cluding topographic data, channel geometry, and land cover data. We use the DEM data
from Copernicus-GLO30 to delineate the floodplains and river profiles. The length of
the river reach analyzed is 320 km. The spacing of the cross sections is 150 m. The river
width (bank lines) is estimated from Google Earth imagery. Figure A2 give an exemplary
cross section in the HEC—RAS model of the Ouémé river and the riverbed geometry
of this cross section. We postulate that the satellite-based DEM data are reliable for all
spatial regions apart from where the bankfull river water is impairing the remote sensing.
Hence, the elevation of each point in between the bank lines is subject to adjustment, i.e.,
calibration. The roughness parameter is represented by the Manning’s value to account
for the land cover in HEC–RAS. The mean flow velocity vm is computed based on the
Gauckler–Manning–Strickler equation using the hydraulic radius R and the energy slope I:

vm =
1
n
·R2/3·I1/2. (5)

The roughness parametrization is separated for the main stream and the floodplains
and requires calibration. The observed discharge and water level data at the gauging
station of Bonou are used for calibration and validation. The model calibration consists of
two steps. First, the river bed geometry in between the bank lines is adjusted with steady-
state simulations to fit the modeled to the observed rating curve at Bonou. Second, the
roughness parameters for the mainstream and the floodplains are calibrated with unsteady-
state simulations to fit the modeled to the observed discharge time series at Bonou. The
model validation is applied for additional flow events and compares the modeled flood
inundation extent with observed flood maps from the SENTINEL-1A mission.

2.3.3. Model Evaluation Criteria

The HBV model is calibrated for a better reproduction of the observations in the Ouémé
basin. The calibration is conducted by adjusting automatically (by GAP optimization and
Monte Carlo tools offered in HBV-light) and manually the parameters in order to have the
best fitting possible between simulated and observed flows. The objective functions used
in this work are the Nash–Sutcliffe efficiency coefficient (NSE) [44,45], the Kling and Gupta
coefficient (KGE) [45,46], the coefficient of determination (R2) [44,47], and the volume error
(Vol-Eff) [44] that the equations are following:

NSE = 1 − ∑n
i=1(Qobsi − Qsimi)

2

∑n
i=1

(
Qobsi − Qobsi

)2 (6)

KGE = 1 −
√
(r − 1)2 + (α− 1)2+(δ− 1)2 (7)

R2 =

(
∑n

i=1
(
Qobsi − Qobsi

)(
Qsimi − Qsimi

))2

∑n
i=1

(
Qobsi − Qobsi

)2
∑n

i=1
(
Qsimi − Qsimi

))2 (8)

Vol − Eff = 1 − |∑n
i=1(Qobsi − Qsimi)|

∑n
i=1(Qobsi)

, (9)
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where r is the linear correlation coefficient between observed and simulated discharge, α is
the ratio of the standard deviation of the simulated discharge over the standard deviation
of the observed discharge, δ is the ratio of the mean simulated discharge over the mean
observed discharge, Qobsi is the observe discharge, Qsimi is the simulated discharge, Qsimi

is the mean simulated discharge, and i is the number of time steps. These criteria are the
most commonly used in hydrology [48]. The calibration is good if the objective functions
are all greater than 0.5 and the fitting is perfect if the values are as close as possible to 1 [49].
Sensitivity analysis is applied in order to improve the calibration. Once the calibration
has been carried out, the set of optimal parameters is used to run the model over another
period for validation.

For the evaluation of the HEC–RAS modeling, the rating curves derived at the gauge
of Bonou are used. The rating curves can include uncertainties [1,50]. Hence, we add
95%-confidence intervals based as suggested by [1]. A robust performance is achieved
when the simulated rating curve is within the confidence interval. The performance of
predicting the flood inundation with HEC–RAS is quantified with the Pierce skill score
(PSS) [51]. The fit of the simulated to the observed flood extent with the PSS compares
modeled hit rate with the overprediction of the model:

PSS =
A

A + C
− B

B + D
(10)

where A, B, C, and D are read from the contingency table (Table 3). The PSS ranges from
0 to 1, where a value of 1 indicates a perfect fit. The contingency table counts the raster
pixels, whether they are flooded in the model or not, and compares whether the raster pixel
is inundated in the observation. As the observed data, we used the flood map derived from
the SENTINEL-1 mission from October 2016 for the area around the gauge of Bonou.

Table 3. Contingency table summarizing the cells being classified as correct and over- or under-predicted.

Simulated Flooded Simulated Not Flooded

Observed flooded A (correct flooding) C (under-prediction)
Observed not flooded B (over-prediction) D (correct dry)

2.3.4. Coupling HBV–HEC–RAS

This work focused on the uncertainty linked to the precipitation data. The methodol-
ogy used in this study allows to estimate the uncertainty in two ways from the precipitation
scenarios and the coupling of the two models. One (1) is to use the discharges from the
coupling and the other (2) is based on the analysis of the differences observed across the
different flood maps. To run, the HEC–RAS model needs, as boundary conditions, the
flow hydrograph at the Bétérou gauge (the upstream), the lateral inflow hydrographs
at tributaries (Savè1, Savè2, Savè3, Savè4, Okpara, and Zou (Figure 4)) and the normal
depth at the outlet (Bonou). The observed discharge data at the Bétérou outlet are used
as an inflow boundary condition upstream. There is no streamflow measured directly at
the outlets of the tributaries. These flows were simulated with HBV. Spatial precipitation
data were generated for the sub-basins of these tributaries and used as inputs for the
calibrated and validated HBV model. The outputs of the HBV model are used as inputs
for the HEC–RAS hydrodynamic model. This coupling provides simulated discharge at
Bonou, flood maps with water levels, and flood extents. To apply this methodology, twenty
(20) precipitation patterns were generated stochastically. These precipitation patterns, as
well as the spatialization of the actual precipitation termed “Reference”, were used in the
HBV–HEC–RAS coupling for the year 2011. Twenty simulated discharges (Q_sim) were
then obtained, plus the Reference flows (Q_Ref) and the flood maps. A comparison was
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carried out between Q_HBV, Q_Ref, their average Q_Mean_Ref_HBV, and the observations
Qobs to see the advantage from the coupling and the possible use of the prediction average.
For the approach, (1) the 20 simulated discharges were plotted in the same graphic as well
as the observation (Q_obs) and Q_Ref curves to constitute the discharge ensembles. The
two statistic descriptions, r-factor and p-factor, were calculated. For the approach, (2) flood
maps were computed for the twenty scenarios as well as the Reference. The Mean, the
Maximum, the Standard Deviation, the flood occurrence and the flood probability maps
were computed for making comparison and finding out the difference in flood extent and
flood level. This is a conceptual approach to estimate the uncertainty in modeling.

Figure 4. HEC–RAS inflows subcatchments.

3. Results
3.1. Model Evaluation
3.1.1. Calibration and Validation of HBV Model

The HBV model is calibrated and validated with six gauging stations. Tables 4 and 5
show the criteria values over the Ouémé catchment. NSE-SS indicates the NSE for specified
season (high flows period). As shown in these tables, very satisfactory results have been
obtained in calibration as well as in the validation period. For the calibration period, Bonou
has the best model performance among subcatchments with 0.91, 0.90, 0.82, 0.91 and 0.95,
respectively, for KGE, NSE, NSE-SS, R2 and Vol-Eff. Atchérigbé is the least satisfactory
with 0.61, 0.62, 0.46 and 0.64, respectively, for KGE, NSE, NSE-SS, R2 but has the best
Vol-Eff value with 0.98. For the validation period, Zangnanado is the best subcatchment
in performance with 0.90, 0.89, 0.83, 0.89 and 0.95, respectively, for KGE, NSE, NSE-SS,
R2 and Vol-Eff. Atchérigbé is still the least satisfactory but acceptable, except NSE-SS
(KGE: 0.60, NSE: 0.51, NSE-SS: 0.42, R2: 0.54, Vol-Eff: 0.72). Bonou has dropped in most
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criteria. The model performance has improved in Kaboua and experienced a slight decline
in Savè. In most years, the observed and simulated discharges align well during peak flow
periods, showing a good agreement between the timing of high flows. It should also be
noted that the model occasionally overestimated peak discharges in Bonou subcatchment
in calibration period (1995, 1999, 2003) as well as in the validation period (2008, 2010, 2014)
(Figure 5). During dry seasons, the model aligns well with the observed flow.

(a) 

(b)

Figure 5. HBV calibration (1995–2004) (a) and validation (2005–2014) (b) in Bonou subcatchment.

Table 4. Model efficiency for calibration period (1995–2004) in Ouémé.

Eff. Bétérou Savè Kaboua Atchérigbé Zangnanado Bonou

KGE 0.83 0.73 0.80 0.61 0.88 0.91
NSE 0.86 0.85 0.78 0.62 0.87 0.90

NSE-SS 0.79 0.77 0.71 0.46 0.80 0.82
R2 0.87 0.88 0.79 0.64 0.87 0.91

Vol-Eff. 0.93 0.85 0.85 0.98 0.94 0.95

Table 5. Model efficiency for validation period (2005–2014) in Ouémé.

Eff. Bétérou Savè Kaboua Atchérigbé Zangnanado Bonou

KGE 0.77 0.61 0.82 0.60 0.90 0.64
NSE 0.80 0.76 0.86 0.51 0.89 0.77

NSE-SS 0.73 0.66 0.81 0.42 0.83 0.63
R2 0.81 0.82 0.86 0.54 0.89 0.90

Vol-Eff. 0.98 0.77 0.86 0.72 0.95 0.75
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3.1.2. Performance Evaluation of the HEC–RAS Model

The calibrated and observed rating curve for the gauge of Bonou is shown in Figure 6.
The calibrated rating curve is similar to the observed rating curve and fully lies within
the range of the confidence intervals. Low, medium, and high flows fit well with the
calibrated HEC–RAS model. The roughness parameters are calibrated with unsteady-state
simulations where the years 2011, 2012, 2014, and 2016 are considered. These four years
were selected because the data quality, e.g., the number of missing data points, is acceptable.
The model efficiency of the HEC–RAS–1D model for each year is given in Table 6. Overall,
the model performs well with mean values for KGE of 0.69, for NSE of 0.53, and for R2

of 0.69. The poor NSE fit for 2012 is explained with the temporal mismatch of the flood
peaks. The discharge time series and the rating curve of the unsteady runs are shown in
Appendix A, Figure A3.

 

Figure 6. Comparison of observed rating curve and its confidence interval as well as the modeled
rating curve at Bonou.

Table 6. Model efficiency of the HEC–RAS model for validation.

Eff. 2011 2012 2014 2016 Mean of All Years

KGE 0.78 0.50 0.72 0.75 0.69
NSE 0.72 −0.10 0.74 0.76 0.53
R2 0.72 0.50 0.78 0.77 0.69

A comparison with the flood extent derived from SENTINEL-1 is used not only to
validate the model pointwise for the gauging station of Bonou but also to determine the
model performance to predict the flood extent. Figure 7 shows the overlap of the HEC–RAS
flood model with the SENTINEL-1 flood mask for October 2016. The computed PSS value is
0.86 indicating a good performance of the HEC–RAS model. Overall, the applied HEC–RAS
model is capable to predict both the discharge at the gauge of Bonou (e.g., mean NSE = 0.53)
and the flood extent (PSS = 0.86).
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Figure 7. Comparison of modeled and observed flood extents around the gauge of Bonou.

3.2. Implications of Precipitation Ensembles on Discharge and Flood Map Modeling
3.2.1. Discharge Comparison

The simulated discharges (Q_HBV, Q_Ref, Q_mean, HBV_Ref) are similar to the
observed discharge data Qobs. An increasing discharge from July, peaking around October,
and then decreasing in December (Figure 8) can be observed. Q_HBV and Q_Ref show good
alignment with Qobs, but there are periods where the predictions deviate from the observed
data. For example, from late October to early November, Qobs is below Q_HBV and Q_Ref,
indicating an overestimation by the models. The HBV model (Q_HBV) tends to slightly
overestimate flow relative to observed values and lags in predicting event occurrence,
while the Reference model (Q_Ref) occasionally overestimates during peak flow periods
and provides a better temporal fit with Qobs. Q_Mean_HBV_Ref serves as a balance
between the two predictions, averaging the strengths and weaknesses of Q_HBV and
Q_Ref. It provides a reasonable estimate for periods of more moderate flow, but struggles
to reproduce extremes (high or low flows) and lags in predicting event occurrence.

Figure 8. Discharge at Bonou for the year 2011.
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3.2.2. Use of the Flow Rates Resulting from the Coupling of the Two Models

The simulated hydrographs (Qsim_0 to Qsim_19) represent a range of discharges
whose dispersion indicates the uncertainty in the model predictions (Figure 9). This dis-
persion is greater during periods of higher discharge, particularly during the peak around
October, and is much reduced during periods of low discharge (July and late November).
The observed discharge (Qobs) is generally within the range of the simulated values, but
there are cases where it deviates, as is the case in September where it is lower than most
of the simulated values. The variability between simulations highlights the importance of
considering several scenarios in hydrological modeling to capture the full range of possible
outcomes. Overall, the observed data are within the band of the simulations. Determination
of the statistical quantities, r-factor and p-factor calculated give r-factor = 0.60 and p-factor
= 0.45. These results, more or less acceptable, show the capacity of the model to predict real
conditions, despite the inherent uncertainties.

Figure 9. Hydrographs ensemble at Bonou for the year 2011.

3.2.3. Use of Flood Maps for Uncertainty Estimation
Ensembles Maps

In the following, the spatial variability of flow depth across the twenty ensemble
scenarios (Ensembles 0 to 19) along the Ouémé River is discussed. Figure 10 shows
the flood maps for scenarios 0 to 3, flood maps for scenarios 4 to 19 are presented in
Figures A4–A7 in the Appendix B. The analysis focused only on the lower part of the river
(Lower Ouémé) flowing through the communes of Zangnanado, Ouinhi, Zogbodomè, Zè
and Bonou as in the upper part the differences are minor. The general shape and flow of
the river remain consistent across all ensembles. There are areas where the depth agrees
across all ensembles such as the upper and lower sections of the Lower Ouémé indicating
high certainty in the depth predictions. Depth variability is observed, particularly in the
middle sections of the Lower Ouémé, indicating uncertainty in the model predictions. For
example, some sets show large areas of deeper water (red and brown areas) compared to
others, which show these areas as shallower (blue or yellow). The observations from these
sets (0 to 3 in Figure 10) are similar to the maps in the Appendix B.
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Figure 10. Flood maps for ensembles 0 to 3; For the twenty ensembles, each map is color-coded to
represent different depth ranges, with the color legend showing depths from less than or equal to
0.85 m (light blue) to greater than 7.66 m (dark red).

Uncertainty Analysis Through Statistic Descriptions

The Reference, Mean, Maximum, and Standard Deviation have been used in this
chapter to highlight the consistency or variability in depth predictions across ensembles.
The “Reference” map serves as a reference or control for comparison. It represents a
specific model output, the standard prediction. The “Mean” map displays the average
depth calculated across all simulations. It smooths out individual variations and provides a
central tendency of the depth predictions. Compared to the Reference map, the “Mean” map
shows a general pattern that appears similar, but the extreme values are less pronounced.
The “Maximum” map highlights the maximum depths recorded across all ensembles (more
red and brown colors) (Figure 11).

The Standard Deviation map (Figure 12) measures the variability or spread of depth
predictions across ensembles. Areas with low standard deviation (light blue) indicate high
certainty and consistent depth predictions across ensembles. Areas with higher standard
deviation (green to red) indicate greater uncertainty and variability in predictions. River
sections with consistent coloration across the Reference, Mean, and Maximum maps, com-
bined with low standard deviation, suggest high certainty in predictions. For example,
some river sections are consistently light blue (≤0.85 m) or another specific color across
all three maps and are light blue in the Standard Deviation map, indicating strong agree-
ment between the ensembles. On the other hand, areas where the Maximum map shows
significantly deeper sections (red or brown) compared to the Reference and Mean maps
indicate potential extreme values. These regions would correspond to higher standard
deviation values, highlighting uncertainty. Sections with varying colors across the Ref-
erence and Mean maps, but with consistent extreme colors on the Maximum map, also
reflect variability.
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Figure 11. Reference, Ensemble mean, and Maximum flood maps.

Figure 12. Ensemble Standard Deviation flood map.

Flood Occurrence and Flood Probabilities Maps

The flood occurrence map shows the frequency of flooding in different regions. High
percentages (80–90%) indicate regions that are consistently flooded. Flood probability maps
(0.5 m, 1 m, 2 m) display the likelihood of flooding at specified water levels (Figure 13). As
the water level increases, the area prone to flooding generally decreases. Regions with high
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flood occurrence (80–90%) also show high probability of flooding at 0.5 m. This indicates
that areas frequently flooded tend to have a high probability of shallow floods. Concerning
the flood probability at 1 m, the pattern is similar to the 0.5 m map, but fewer areas
exhibit high probability. It suggests that while many regions are prone to shallow flooding,
fewer experience floods at the 1 m level. As for the flood probability at 2 m, significantly
fewer areas show high probability of flooding, which indicates that deep flooding is less
common and occurs in very specific areas. Areas with high standard deviation in depth
measurements might correspond to regions with high variability in flood probability.

Figure 13. Flood Occurrence and flood probabilities maps.

4. Discussion
4.1. Modeling

The HBV model was well calibrated and validated in the Ouémé basin, with a good
fit between observed and simulated discharge in most years. Zagnanado station showed
the most reliable performance, highlighting the model’s robustness there. In contrast,
Atchérigbé had the weakest performance, although the results are acceptable, suggesting
a need for improved calibration or better representation of local hydrology. At Bonou,
model performance decreased in KGE from 0.91 (calibration) to 0.64 (validation), indicating
possible calibration overfitting or changes in hydrological behavior. This drop may be due to
interactions between subcatchments, as Bonou is the basin’s outlet, making it susceptible to
upstream influences. The model’s tendency to overestimate peak flows aligns with findings
by [48], who reported similar results in Ouémé at Savè and Bonou. Other studies in the
region [8,18,52] also observed this issue, potentially due to precipitation overestimation or
parameterization limitations. This behavior is typical in hydrological modeling because
high-flow events are harder to predict accurately due to greater variability in underlying
processes [53]. Despite some peak overestimations, the model remains practical for flood
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prediction, accurately capturing the timing and general patterns of extreme events. Most
performance metrics were satisfactory, with Atchérigbé being the only station below the
acceptable thresholds (NSE-SS = 0.46 in calibration and 0.42 in validation). These results are
similar to those of [18] in Bétérou and Savè and [8] in Bonou. They surpass those from [48]
in Ouémé using HBV and GR4J, as well as those from [31] and [52] with the SWAT and
WaSiM models. The differences with other models could be due to the complexity of the
models, the availability of the input data required by the models or to the interaction
between precipitation data, and the hydrological model [24].

The coupling of HBV and HEC–RAS models offers slight advantages in capturing
flood timing, with Q_Mean_HBV_Ref providing a smoothed but less precise alternative at
extremes. The close alignment of Q_HBV and Q_Ref with Qobs suggests consistency in
predictions, while the spreads at lower and peak flows indicate uncertainty in predictions.
This reveals key insights into discharge uncertainty.

4.2. Flood Hazard Maps and Uncertainty

The analysis of flood depth variability along the Ouémé River through twenty en-
semble scenarios offers valuable insights into model reliability and prediction uncertainty.
Focusing on the lower river (Zangnanado to Bonou), the results show consistent depth
predictions in most areas, indicating model certainty likely due to stable hydrological condi-
tions. This consistency boosts confidence in the model for informed flood risk management
in these regions, which may require less frequent monitoring.

However, the middle river sections show discrepancies across ensembles, indicating
uncertainty in water depth prediction. This variability likely reflects complex river dy-
namics, including local morphology and hydraulic interactions. These sections may need
additional monitoring and model refinement due to unpredictable flood behaviors.

Ensemble modeling effectively highlights areas of uncertainty, a finding that aligns
with studies by [54], who also used ensembles to expose variability in flood predictions.
High-variability regions indicate critical zones where flood risks are less predictable, em-
phasizing the need for adaptive flood mitigation.

Reference, Mean, Maximum, and Standard Deviation maps complement each other
in assessing flood risk. While the Reference and Mean maps show general patterns, the
Maximum map aids in identifying extreme flood risks, corroborating [55] on the importance
of maximum depth predictions in ensemble models. High standard-deviation areas reveal
regions of model disagreement, indicating more unpredictable flooding.

Flood occurrence and probability maps can help us understand spatial flood risks. The
0.5 m flood probability map shows shallow floods with high occurrence, likely affecting
agriculture, breeding and infrastructure. Higher-depth floods (1 m and 2 m) are less
frequent but more damaging, requiring targeted interventions. This aligns with [7], who
link extreme rain events to deeper floods.

Areas with high flood occurrence and low standard deviation indicate consistent
risk, while high flood occurrence with high standard seviation signals variable risk, need-
ing detailed monitoring. The gradient from 0.5 m to 2 m probabilities helps identify
high-risk zones.

This study echoes [56], who stressed the impact of spatial flood correlation on risk
estimates, underscoring the importance of mapping uncertainties for effective decision-
making. It is consistent with the findings of [12], where the flooding extent at the lower
part of the Ouémé (around the station of Bonou) remains crucial for flood risk assessment.
The study of [12] and our findings demonstrate that adaptation measures are required
for the lower Ouémé part, such as technical (levees, reservoir) or nature-based solutions
(wetland restoration) [57]. In Ghana, [10] used coupled HEC–HMS and HEC–RAS models
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for two flood scenarios and the importance of the retention basins in flood management.
The ensemble approach of our study provides a comprehensive view of possible flood
scenarios, aiding robust and adaptable flood management strategies.

While the geostatistical simulation approach (STBM; [33]) used in this study has
proven effective in generating ensembles of daily precipitation fields, it represents only
one class of ensemble generation methods. It may not fully capture the structural and
meteorological uncertainty. Other approaches like multi-site stochastic weather generators
can produce time series of both precipitation and temperature and have demonstrated
performance in hydrological modeling applications [58,59]. These methods can intro-
duce alternative sources of uncertainty and may therefore expand the range of stochastic
rainfall realizations.

For future climate projections, the precipitation in the Ouémé Catchment is assumed
to change. Thus, the future discharge and flood genesis can vary [8]. The present study
focuses on the impact of precipitation ensembles derived from an observation network.
With this study focus, we are able to estimate the input uncertainty (from precipitation)
for the flood modeling. But for future projections of flood extents, a detailed climate
impact assessment is essential. This impact study should consider different climate models
and scenarios.

5. Conclusions
In this study, we assessed the impact of precipitation ensembles on flood hazards

in the Ouémé basin. Twenty precipitation ensembles were used as input for the flood
hazard evaluation using a coupled approach of HBV–HEC–RAS models. Both models were
calibrated and validated to simulate hydrological and hydraulic processes in the basin.
This HBV–HEC–RAS coupling allows to obtain not only simulated hydrographs for the
Ouémé but also flood maps along the Ouémé River. We used 20 precipitation ensembles
from Conditional Simulation with Spectral Turning Bands Method [33] and a precipitation
interpolated from station data. From the 20 maps derived from each precipitation ensemble,
we generated maps of mean and maximum flow depths, standard deviations, the flood
occurrence map, and flood probability maps for water levels of 0.5 m, 1 m, and 2 m. The
close alignment of Q_HBV and Q_Ref with Qobs suggests general reliability but indicates a
need for further refinement. The ensemble hydrographs reveal key insights into discharge
uncertainty, with wider spreads at peak flows indicating higher uncertainty and tighter
clustering at low flows suggesting lower uncertainty. An ensemble approach to simulate a
range of outcomes could help address uncertainties in high-flow predictions.

The ensemble maps show both consistent patterns and areas of variability in depth
prediction across different ensembles, providing valuable insight into the spatial uncertainty
inherent in the predictions. The use of flood probability maps and additional statistics
allows for a detailed understanding of the reliability and uncertainty of depth predictions.
They are also meaningful tools for understanding flood dynamics at different depths. The
variability observed at different water depths underscores the need for a depth-specific
strategy for flood management in the Ouémé basin, ensuring that frequent, shallow floods
and rare and severe flooding events are effectively managed. Focusing on the lower river
(Zangnanado to Bonou), our results show consistent depth predictions in most areas,
indicating model certainty, likely due to stable hydrological conditions. These results align
with the established practices in flood risk management, which emphasize frequent and
extreme events in the design of comprehensive flood mitigation strategies.
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Appendix A

Figure A1. Average availability of discharge data in the study area’s gauges for the 1994–2016 period.

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview
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Figure A2. Exemplary cross section in the HEC—RAS model of the Ouémé river (a) and the riverbed
geometry of this cross section (b). Cross sections in (a) in dark green color are derived from the DEM;
cross sections in (a) in light green and with superscript * are interpolated from the DEM.

 

Figure A3. Rating curve for the unsteady-state simulation of the year 2016. The orange curves
represent the 95% percentile uncertainty.
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Appendix B

Figure A4. Flood maps for ensembles 4 to 7.

Figure A5. Flood maps for ensembles 8 to 11.
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Figure A6. Flood maps for ensembles 12 to 15.

Figure A7. Flood maps for ensembles 16 to 19.
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