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ABSTRACT
Destructive quantum interference in molecular junctions might be used to build molecular quantum rulers, allowing us to quantify changes
in external control parameters electrically. For this reason, it is important to understand which patterns of destructive quantum interfer-
ence can occur inside the electronic excitation gap of a molecule coupled to conducting electrodes. By considering a four-level model,
we show that much more complex destructive quantum interference behavior can arise than expected for just two levels. We classify the
destructive quantum interferences analytically and show that they may even occur in regions forbidden by the standard orbital rule for elec-
tron transport. Our results suggest that appropriate molecular design may indeed allow us to construct highly sensitive molecular quantum
rulers.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0277769

I. INTRODUCTION

Control of transport through molecular junctions by exter-
nal parameters is crucial to improve our understanding of these
nanosystems and to ultimately use them as functional units. The
energy landscape of the transmission may be explored by elec-
trostatic or electrochemical gating,1–4 adjusting the alignment of
molecular orbitals with respect to the Fermi energy. Other exter-
nal control parameters may be of a mechanical nature. The elec-
trode displacement may change, e.g., the molecular extent,5 lead-
ing to the displacement of decks in π-stacks,6–15 unfolding of a
helicene spiral,16–18 or variations in the orientation of rings in
ferrocene.19

If the landscape of transmission vs energy and, in principle, the
arbitrary control parameter is known, the measurement of the elec-
trical conductance informs conversely about the state of a molecule
inside the junction. A molecule may then serve as a quantum sen-
sor, detecting intrinsic or environmental interactions.15 For exam-
ple, destructive quantum interferences can be tuned mechanically

through the full gap between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)
for π-stacked molecules.10–13,15 By measuring the conductance upon
changes in electrode displacement and counting destructive quan-
tum interference dips, distances can, in principle, be determined
in a similar way as counting constructive and destructive interfer-
ences upon changes in the length of a Fabry–Pérot interferometer in
optics. If it were possible to generate grids of destructive quantum
interferences in the HOMO–LUMO gap of a molecular junction,
a molecular quantum ruler could be built to measure any kind of
variation in the external control parameter electrically.

For such sensors to be highly sensitive, large changes in con-
ductance are needed as a function of the external control. It has been
shown that destructive quantum interference can cause changes in
the conductance by orders of magnitude, even at room temper-
ature, in specifically designed junctions that use mechanoelectri-
cally sensitive molecules.11–13,15 The conductance minima, caused
by destructive interference, can then serve as reference points to
quantify fluctuations.15
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It is, therefore, important to understand which destructive
quantum interference structures can be expected in molecular junc-
tions. We consider specifically a four-level model and classify analyt-
ically and numerically the kind of interferences that occur. Multiple
levels can lead to quite complex destructive interference structures
inside the HOMO–LUMO gap, suggesting the possibility of real-
izing molecular quantum rulers. In the following discussion, we
have mechanoelectrically sensitive molecular junctions in mind. The
external control can thus be imagined to be the separation between
two macroscopically large electrodes. However, the external control
parameter might be of any other kind, such as a dihedral angle or a
static magnetic field.

This paper is structured as follows: In Sec. II, we introduce
the scattering formalism for the elastic coherent transport through
molecular junctions. Subsequently, we present the well-established
orbital rule for electron transport through molecules in Sec. III. In
Sec. IV, we discuss how to reduce the description of transport to just
four electronic levels. This four-level model is then studied in two
versions: a simplified binary one in Sec. V that can be treated ana-
lytically and a nonbinary one in Sec. VI that has so many degrees of
freedom that we restrict ourselves to special cases. We highlight cru-
cial differences between the models before concluding in Sec. VII.
In the Appendix, we explain further technical aspects such as the
connection between the electronic transmission and the propagator,
which we use as an important concept to understand the interference
of electron waves.

II. TRANSPORT DESCRIPTION
We consider the linear conductance of a molecular junction,

where a molecule is contacted by two metallic electrodes, as sketched
in Fig. 1. The size of the molecule and its environmental coupling
should be such that the electronic transport through the molecule is
coherent. According to Landauer–Büttiker scattering theory,20 the
conductance

G(x) =
2e2

h
τ(EF, x) (1)

is then given by the transmission τ at the Fermi energy EF up
to the quantum of conductance 2e2

/h. In the expression, we have
additionally indicated the control parameter x, which modifies the
transmission and consequently the conductance.

Contacts to left and right electrodes are assumed to be made
by single atomic orbitals “l” and “r” on left and right anchoring
atoms of the molecule, respectively; see Fig. 1. In addition, transport
shall be off-resonant such that the transmission is typically much less

FIG. 1. Sketch of a molecular junction consisting of a molecule attached to two
electrodes. The energy levels and associated states of the molecule depend on
a control parameter x. The yellow dots labeled “l” and “r” refer to the atomic
orbitals on the anchors of the molecule, e.g., sulfur atoms forming a bond to gold
electrodes.

than 1. Within the wideband approximation for the electrodes, the
transmission of electrons through the junction is then given by

τ(E, x)∝ ∣Gr
lr(E, x)∣2, (2)

where

Gr
lr(E, x) =∑

n

cl,n(x)c∗r,n(x)
E + iη − ϵn(x)

=∑
n

ρn(x)
E + iη − ϵn(x)

(3)

is the spectral representation of the zeroth-order retarded Green’s
function. The sum runs over all molecular orbitals n with energy
ϵn, which might be considered to be renormalized by the presence
of the electrodes. The expansion coefficients of the n-th orbital at
the anchoring molecular sites “l” and “r” are denoted by cl,n and
cr,n, respectively, and the star indicates the complex conjugate. The
product of the orbital expansion coefficients is abbreviated as the
residue ρn = cl,nc∗r,n. The imaginary part η can be viewed as arising
from the finite lifetime acquired by the molecule–electrode coupling.
For numerical purposes, we choose η = 10−4Δ to avoid divergences
of the Green’s function Gr

lr, with Δ being basically the size of the
HOMO–LUMO gap. For its precise definition within the four-level
model, see Eqs. (4) and (5). Within the analytical treatment, η will
be set to zero, and to indicate this, we will then drop the superscript
“r” and denote the propagator as Glr. While a finite value of η will
lead to a broadening, the features in the transmission will be robust
as long as η≪ Δ. As far as the real part of the self-energies is con-
cerned, we assume that the energies ϵn refer to the dressed levels of a
molecule attached to two leads. We refer the reader to the Appendix
for further explanations of the approximations involved.

In the remainder of this paper, we will not be interested in
absolute values of the conductance and will, therefore, omit propor-
tionality constants. Our main interest will thus be in the squared
propagator, i.e., the right-hand-side of Eq. (2), together with the
spectral decomposition, Eq. (3). In particular, our focus will be on
zeros of the transmission due to the interference of contributions
arising from different molecular orbitals.

III. ORBITAL RULE FOR ELECTRON TRANSPORT
THROUGH MOLECULES

An orbital rule for the electron transport through junctions
made from aromatic molecules has been derived by Yoshizawa
et al.21,22 by taking into account the two frontier orbitals HOMO and
LUMO, abbreviated in the following by H and L, respectively. Two
aspects determine the conductance of the molecular junction. The
contribution of each orbital depends on the magnitude of the coeffi-
cients cl,n and cr,n at the terminal sites of the molecule, to which the
metallic electrodes are coupled; see Fig. 1. In this respect, the symme-
try properties of the molecular orbital wavefunctions play a crucial
role. In addition, interference effects between the different molecu-
lar orbitals are relevant. Taking the expansion coefficients to be real,
the relative sign of the residues ρn = cl,ncr,n for different orbitals n is
decisive. This is particularly true for the suppression of the transmis-
sion at positions between the energies of the two frontier orbitals.
A destructive interference of the contributions of the two frontier
orbitals can occur if the signs of ρH and ρL agree, as illustrated
in Fig. 2(a). In contrast, for the case of differing signs depicted in
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FIG. 2. Illustration of the orbital rule for electron transport through molecules with
regard to the interference of contributions of the frontier orbitals HOMO and LUMO.
The blue and green dashed curves represent the individual Green’s functions for
the HOMO and the LUMO level, respectively, while the red solid curve represents
their sum. In panel (a), the signs of the residues ρH and ρL are the same, while
they differ in panel (b).

Fig. 2(b), the conductance cannot vanish in the gap between HOMO
and LUMO.

IV. REDUCTION TO THE FOUR-LEVEL MODEL
In the following, we will focus on the case of four orbitals in

the sum of Eq. (3) and explore the emerging rich structure of zeros
of the transmission inside the HOMO–LUMO gap. The choice of
four levels is motivated by the architecture of mechanoelectrically
sensitive molecules.10–15 They typically consist of two identical con-
jugated molecular decks that can be mechanically shifted against
each other. The weak tunnel-splitting of the HOMO and LUMO of
each deck, arising from the coupling of π electrons, leads to four
relevant molecular states. Their energetic order can be varied since
the sign of the tunnel-splitting of HOMOs and LUMOs depends on
the displacement of the molecular decks.10,11 Further energy levels
can be neglected, provided that the applied voltage and the tem-
perature are sufficiently small. Below, we will collectively refer to
HOMO-1 and HOMO as HOMOs and correspondingly for LUMOs.
We will also assume that the residues ρn of all levels are nonzero, as
otherwise, their number would effectively be less than four.

In the following, we will study the transmission as a function of
energy E and a control parameter x. While the Fermi energy can be
varied by applying a gate voltage, x can be related, e.g., to a mechan-
ical force applied to the molecule. Alternatively, one can imagine
applying a torsion to the molecule or modifying some other rele-
vant degree of freedom, which influences the energy levels and states
involved. The dependence of the transmission on E and x can thus,
in principle, be mapped experimentally.

When a molecule is manipulated, both the energies of the
molecular orbitals and the orbital wavefunctions themselves will
change. Variations of the transmission in Eq. (2) as a function of the
control parameter x may thus result from modifications of the ener-
gies ϵn as well as the residues ρn, as indicated in Eq. (3). We will from
now on restrict the sum over n in Eq. (3) to the two highest occupied
levels, denoted H,+ and H,−, and the two lowest unoccupied lev-
els, denoted L,+ and L,−. For numerical purposes, we will vary the

energy levels as a function of the control parameter x according to

ϵH,±(x) = Δ[−
1
2
± aH(x)] (4)

for the two highest occupied orbitals and

ϵL,±(x) = Δ[
1
2
± aL(x)] (5)

for the two lowest unoccupied orbitals. We choose aL + aH < 1
to ensure that the HOMO–LUMO gap Δ(1 − aH − aL) is always
positive. The zero of energy always lies in the middle of the
HOMO–LUMO gap. For convenience, we vary the energies period-
ically as a function of the control parameter as

aH(x) = δH cos (2πx) (6)

and

aL(x) = δL cos (2παx) (7)

with the dimensionless coefficients δH, δL, and α. Due to the lack of
a detailed molecular model, we will, in the following, only briefly
numerically discuss the effect of x-dependent variations of ρn(x)
on the transmission in Sec. VI. In the largest part of the following
discussion, the residues will be assumed to be independent of x.

The dependencies (6) and (7) are not necessarily meant to
model a realistic dependence of the molecular energy levels on
the control parameter, even though an oscillating behavior can be
observed in π-stacks.10,11,23 They would rather allow us to study
the appearance of destructive quantum interference for different
sequences of the signs of the residues ρn and as a function of the
varying energy differences between the two HOMO levels and the
two LUMO levels, respectively.

To investigate destructive quantum interferences analytically,
it is convenient to set η = 0 in Green’s function (3). Then, instead
of searching for transmission valleys, it is sufficient to determine
the zeros of Glr. In realistic situations, the imaginary part of η
will not vanish, leading to a broadening of transmission valleys
and a somewhat incomplete destructive interference. Bringing Glr
to the common denominator, the search for zeros of τ reduces to
determining the zeros of the resulting numerator,

f (E, x) =∑
n

ρn(x)∏
i≠n
(E − ϵi(x)). (8)

Since for four levels n the product runs over three factors, the
numerator f(E, x) will typically be a third-order polynomial in E.
However, if the sum of the residues vanishes, the numerator will
simplify to a quadratic polynomial.

V. BINARY FOUR-LEVEL MODEL
In this section, we will analytically study destructive quantum

interference in a simplified four-level model as introduced in Ref. 22,
where all residues ρn have the same absolute value. Similar models
were used by other authors.10,11,13,24 Without loss of generality, we
can set each residue ρn to one of the two values 1 and −1, as shown
in Ref. 11, and therefore refer to the model as a binary four-level
model.
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Even though the binary four-level model in principle allows for
sixteen different combinations of signs, it is possible to restrict our
considerations to four cases. Clearly, multiplying all residues by −1
will not change the structure of the transmission valleys. Further-
more, exchanging E by −E will not lead to new structures. Finally, we
allow aH and aL to have either sign. For our numerical results, these
sign changes are ensured by the dependencies (4)–(7) as a function
of the control parameter x. As a consequence, it is sufficient to con-
sider the four sign combinations −−++, +−−+, +−++, and ++++,
which we assign to the residues of the levels for ascending energy
at x = 0. According to the remark at the end of Sec. IV, the first
two cases will lead to a quadratic polynomial f(E, x) in Eq. (8) as
a function of E, while the last two cases result in a cubic polynomial.

We start our analytical investigation with the simplest case,
where the signs of the residues for the levels with increasing energy
are given by −−++. From Fig. 2(a), we know that between two lev-
els for which the signs of the residues agree, there necessarily exists
an odd number of zeros. As there are two such pairs, namely, the
two LUMOs as well as the two HOMOs, there will be a destruc-
tive quantum interference minimum between each of the two pairs.
Since f(E, x) is given by a quadratic polynomial, we have already
identified all destructive quantum interferences. This situation is
visualized in Fig. 3(a). Degeneracy points of the energies ϵH,± and
ϵL,± are thus connected horizontally by a transmission valley, and
we refer to such a horizontal valley either between the two HOMOs
or the two LUMOs as type I.

The second sign combination, leading to a quadratic polyno-
mial for f(E, x), is +−−+. For the choice of energies (4) and (5) as a
function of the control parameter x, we find regions where the signs
of the residues for the HOMO and LUMO agree. This is the case, for
example, around x = 0. On the other hand, the LUMOs go through
a degeneracy point at x = 1/4α ≈ 0.19 in Fig. 3(b), and the sequence
of the signs of the residues is subsequently inverted. As long as the
HOMOs in Fig. 3(b) do not go through a degeneracy, we no longer
find two neighboring levels with equal signs of the residues.

In order to determine whether any zeros of f(E, x) exist in the
different regions of the control parameter, we take a closer look at
the corresponding quadratic polynomial,

E2
+ E

aL(x) + aH(x)
aL(x) − aH(x)

+
1
4
− aH(x)aL(x)

!
= 0. (9)

The signs of the residues in the HOMO pair or the LUMO pair can
be interchanged by reversing the sign of aH or aL, respectively; see
Eqs. (6) and (7). It is straightforward to determine the corresponding
discriminant,

D(x) = 4aH(x)aL(x)(1 +
1

(aH(x) − aL(x))2 ), (10)

which is positive provided aH and aL have the same sign, i.e., if the
signs of the residues are either +−−+ or −++−. On the other hand,
for the combinations of signs −+−+ or +−+−, the discriminant is
negative, and no zeros exist for real energies E. In Fig. 3(b), we thus
find regions of x where two zeros exist as a function of energy or
where no zeros exist at all. Note that the second zero may not be
visible in Fig. 3(b) because it lies outside the range of energies shown.

In order to understand the existence of zeros above the high-
est level and below the lowest level, it is sufficient to consider the
asymptotic behavior of Glr. For the signs +−−+ of the residues, one
finds

Glr(E, x) ∼
2(aL(x) − aH(x))

E2 for ∣E∣→∞. (11)

For the case aH > aL [see Fig. 3(b)], Glr thus approaches zero from
below for large energies. On the other hand, for energies slightly
exceeding the energy of the uppermost level, Glr is positive. There-
fore, a zero has to exist somewhere above the uppermost level. For
the parameters chosen in Fig. 3(b), the two branches of the trans-
mission valley in the vicinity of x = 0 join at an energy E ≈ 3.9Δ
outside of the energy range displayed here. We designate such a loop
structure of the transmission valley as type IIa.

If, on the other hand, aH < aL, the asymptotic behavior (11)
changes sign, and, following the same line of reasoning, a zero occurs
at an energy below the lowest level. For aL ≈ aH, one solution of
Eq. (9) is found at E = (aH + aL)/(aH − aL). If aL changes from val-
ues smaller than aH to values larger than aH, the zero moves to
infinite energy and reappears at negative infinite energy. This behav-
ior is illustrated in Fig. 4, and the transmission valley is classified as
type IIb. Of course, this behavior is specific to the four-level model
and will be perturbed by the presence of other energy levels.

As a result of this discussion, we see that the destructive quan-
tum interferences for signs of the residues of the type +−−+ are

FIG. 3. Square modulus of the propagator as a function of the energy E and the control parameter x is shown for the four basic sign combinations of the residues in a
binary four-level model: (a) −−++, (b) +−−+, (c) +−++, and (d) ++++. The signs are listed in energetically ascending order and are indicated at x = 0 in each panel.
The different structure types of the transmission valleys are marked by numbered white boxes. The parameters appearing in the level energies as a function of the control
parameter x, see Eqs. (4)–(7), are chosen as δH = 0.25, δL = 0.15, and α = 1.3.
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FIG. 4. Square modulus of the propagator as a function of the energy E and the
control parameter x is shown for the sign combination +−−+ of the residues in
the binary four-level model with δH = 0.1, δL = 0.7, and α = 1.3. The two parts of
the transmission valley structure, referred to as type IIb, are connected at infinite
energy.

never found between the pair of HOMOs or the pair of LUMOs.
Degeneracies are connected by transmission valleys running outside
the HOMO or LUMO pairs. If two degeneracies either in the pair
of LUMOs or in the pair of HOMOs are connected, we obtain a
structure of type II, which we already discussed. In addition, it is pos-
sible that a transmission valley connects a degeneracy in the HOMO
pair with a degeneracy in the LUMO pair, thus crossing the entire
HOMO–LUMO gap. Such structures are also shown in Fig. 3(b)
and designated as type III. The upper and lower ends join at infinite
energy if we identify positive and negative infinity.

The remaining two cases, +−++ and ++++, shown in Figs. 3(c)
and 3(d), respectively, lead to cubic polynomials for f(E, x) as a
function of E. For the case ++++, depicted in Fig. 3(d), all residues
have the same sign. Therefore, three transmission valleys occur, one
valley between each successive pair of levels. We thus have two
transmission valleys of type I. In addition, a horizontal transmission
valley appears in the HOMO–LUMO gap, which we refer to as type
IV.

The other case, +−++, requires a more detailed analysis.
Because the signs of the residues of the two LUMOs agree, we find a
transmission valley of type I between the two LUMOs.

In regions of x where the signs of the residues agree for the
HOMO and LUMO, e.g., around x = 0.5 in Fig. 3(c), a destructive
quantum interference appears inside the HOMO–LUMO gap. Then,
for a similar reason as for the sign combination +−−+, a third trans-
mission valley occurs simultaneously below the four levels. In this
situation, with the sign order of residues −+++, the lowest level with
a negative sign of the residue makes a large positive contribution to
Glr for energies below the lowest level. On the other hand, asymptot-
ically for E → −∞, Glr ∼ 2/E, thus approaching zero from below. As
a consequence, a transmission valley occurs below the lowest level.
The resulting loop structure of the transmission valley is of type
IIa. Originally, we had introduced type II structures as solutions of
the quadratic equation (9). However, by dividing out a linear factor
resulting from the zero of type III, we obtain a quadratic equation
for which our previous line of reasoning applies.

In regions where the HOMO and LUMO have residues of dif-
ferent signs, such as around x = 0 in Fig. 3(c), there will be no

transmission valley in the HOMO–LUMO gap because the contri-
bution of the LUMOs in the gap is negative, and the same holds true
for the sum of the contributions of the HOMOs. Destructive quan-
tum interference below the lowest level is also excluded. However,
one can imagine that there occur two transmission valleys between
the two HOMOs. This is not the case for the parameters used in
Fig. 3(c). However, reinterpreting ϵH and ϵL in Fig. 2(b) as the ener-
gies of two HOMOs, the negative contribution of the LUMOs could
pull the red curve below zero, resulting in two zeros.

In order to explore this scenario, we apply a suitable shift of
the energy to bring the cubic polynomial for f(E, x) into its reduced
form

E3
+ p(x)E + q(x) = 0 (12)

with

p(x) = −
(2aL(x) − 1)3

3
(13)

and

q(x) = −
11
27
(aL(x) −

1
2
)

3
+

1
2
(aL(x) −

1
2
)

2

+
1
4
(aL(x) − 1) + aL(x)a2

H(x). (14)

Three real zeros of f(E, x) and, thus, two transmission valleys
between the pair of HOMOs occur if the discriminant D = (p/3)3

+ (q/2)2 of the cubic equation is negative. Inserting expressions (13)
and (14) into D and solving for aH, one finds that a total of three
transmission valleys can occur for the sign combination +−++ if the
condition

(aL(x) + 1)

¿
Á
ÁÀ4 − 5aL(x)

27aL(x)
< ∣aH(x)∣ < 1 − aL(x) for aL(x) >

1
2

(15)

FIG. 5. In the white region, a transmission valley of type V occurs. The regions
excluded by the first and second inequalities in Eq. (15) are marked by the light
gray and dark gray areas, respectively.
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FIG. 6. A transmission valley of type V is shown for the sign combination +−++,
using the parameters δH = 0.05, δL = 0.85, and α = 1.3.

is fulfilled. The constraint imposed on aH by the left inequality only
applies for aL < 4/5. The right inequality not only results from the
requirement D < 0 but also ensures that there exists a nonvanishing
HOMO–LUMO gap. In Fig. 5, the parameters for which the inequal-
ities in Eq. (15) are fulfilled are indicated by the white area. The areas
shown in light gray and dark gray are excluded by the first and sec-
ond inequalities in Eq. (15), respectively. As an example, Fig. 6 shows
the appearance of a transmission valley of type V, forming an inner
loop between the two HOMOs.

For the binary four-level model, we find that the occurrence of
transmission valleys follows the orbital rule for electron transport
through molecules:21,22 Inside the HOMO–LUMO gap, either no or
one destructive quantum interference emerges. Destructive quan-
tum interference occurs for energies between two levels for which
the signs of the residues agree. However, it turns out that under cer-
tain circumstances, a valley of type V can occur between the two
HOMOs or between the two LUMOs, even though the signs of the
respective residues differ.

VI. NONBINARY FOUR-LEVEL MODEL
While the binary four-level model, treated in Sec. V, lends

itself to an analytical treatment, the choice of residues ±1 is very
special. However, then, the full four-level model features a fairly
large parameter space, which complicates analysis. Therefore, we
focus on the destructive quantum interference characteristics in the
HOMO–LUMO gap. As we have seen, the number of destructive
quantum interferences in the gap is limited to one in the case of the
binary four-level model. Figure 7 shows that complex transmission
valley structures can appear in the HOMO–LUMO gap in the non-
binary four-level model. In particular, for four levels, it is possible
that three destructive quantum interferences exist inside the gap at a
given x.

In order to avoid the complexity of the full four-level model,
we consider some simplifications. In Fig. 7, we have set the residues
of the HOMO and LUMO at x = 0 to −ρ0 as defined below Eq.
(16), while the residues of the other orbitals are set to one. As the
signs of the residues of HOMO and LUMO agree in the region
around x = 0, we expect either one or three transmission valleys in
the HOMO–LUMO gap. The existence of more than one destruc-
tive quantum interference can be explained by an argument that
resembles the reasoning for a transmission valley above or below
the four levels, given in Sec. V. The scenario describes, for example,

FIG. 7. Square modulus of the propagator in the nonbinary four-level model as a
function of the energy E shows up to three destructive quantum interferences in
the HOMO–LUMO gap at a given control parameter x. The energy levels are given
by the relations (4)–(7) with δH = δL = δ = 0.2 and α = 1.3. At x = 0, the residues
were chosen as ρH,− = ρL,+ = 1 and ρH,+ = ρL,− = −ρ0.

the situation realized in Fig. 7 for −1/4α < x < 1/4α. As depicted
in Fig. 8(a), the residues of the two HOMO levels have differ-
ent signs, but the absolute value of the residue of the upper level
H,+ is smaller. Close to the upper level, the negative contribution of
this level dominates, while the lower HOMO level H,−with its larger
positive residue, is decisive at larger energies. Therefore, a zero in the
propagator occurs. If the mirror image of this scenario holds for the
two LUMOs, one finds three zeros, as shown in Fig. 8(b).

Let us now try to obtain a better analytical understanding
of the situation shown in Fig. 7. We, therefore, study the case
where the residues of the HOMO and LUMO are given by −ρ < 0,
while the outer two orbitals have residues equal to one. Further-
more, we assume that the level pairs are equally spaced at energies
ϵH,± = −Δ( 1

2 ± a) and ϵL,± = Δ( 1
2 ± a). The zeros of the propagator

are then given by solutions of the cubic equation

E[E2
(1 − ρ) + ρ(

1
2
+ a)

2
− (a −

1
2
)

2
] = 0. (16)

FIG. 8. (a) Sketch of the propagator for two HOMOs with residues of different
signs and different absolute values. A zero in the propagator for energies above
the higher level can occur if the magnitude of the residue of this level is the smallest
one. (b) With a mirrored scenario for the two LUMOs, three zeros are found in the
HOMO–LUMO gap.
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For ρ0 = (2a − 1)2
/(2a + 1)2, the three zeros will degenerate to yield

a single zero, as shown in Fig. 7 at x = 0. For ρ < ρ0, the degeneracy is
lifted, and a total of three zeros emerges. Note that the deviation of ρ
from ρ0 in Fig. 7 is achieved by the different dependence of aH and aL
on x. For non-vanishing values of ρ close to zero, the two additional
zeros move toward the energies of the HOMO and LUMO; see also
Fig. 8(b).

Inspecting Fig. 7 closely, we notice another interesting fea-
ture of the nonbinary four-level model. Zeros also exist in intervals
of the control parameter, where the signs of the HOMO and the
LUMO differ. Such regions are, for example, 0.57 ≲ x ≲ 0.65 and
1.16 ≲ x < 1.25. Although we found a possibility to induce two zeros
between the HOMO-1 and HOMO in the binary model (see Fig. 6),
this time the zeros appear in the HOMO–LUMO gap. This behav-
ior is in contrast to the orbital rule for electron transport through
molecules valid for a two-level model, nor can it occur in the binary
four-level model, as shown in Sec. V.

In contrast to the binary four-level model, where at most
one destructive quantum interference can occur inside the
HOMO–LUMO gap at a given x, the nonbinary four-level model
in general allows for any number of transmission valleys in the
HOMO–LUMO gap between zero and three, depending on the
choice of the values of residues. While the parameter space is large
and its full exploration is beyond the scope of this paper, we can
at least say that for three destructive quantum interferences to arise
in the HOMO–LUMO gap at a given x, the signs of the residues
of HOMO and LUMO must be the same, and the signs of the
residues within the two HOMOs and within the two LUMOs must
differ. Otherwise, transmission valleys of type I would exist out-
side the HOMO–LUMO gap, and the number of zeros inside the
HOMO–LUMO gap would be at most two.

So far, we have taken the residues to be independent of the
control parameter x. In general, this will not be the case. Without
an appropriate model for a concrete situation, we limit ourselves to
present one example, which exhibits an interesting structure in the
HOMO–LUMO gap. In Fig. 9, we have chosen residues to oscillate
as a function of the control parameter. The choice of parameters
is given in the figure caption. In this specific example, we find a
transmission valley with a loop structure as a function of E and x
near x = 0. Furthermore, a transmission valley of type III connects

FIG. 9. Square modulus of the propagator for a four-level model with parameters
δH = δL = 0.15 and α = 1.7. The residues depend on the control parameter as
ρH,±(x) = 0.7 cos(πβHx) ∓ 1 and ρL,±(x) = 0.7 cos(πβLx) ± 1 with βH = 1.7
and βL = 1.

degeneracies in the HOMOs and the LUMOs. However, it exhibits
a non-monotonic behavior as a function of x and does not connect
the two closest degeneracies.

VII. CONCLUSIONS
We have presented a comprehensive analytical study of the

structure of transmission valleys appearing in the binary four-level
model as a function of energy E and a control parameter x. In agree-
ment with previous work, it is found that within the HOMO–LUMO
gap, at most one destructive quantum interference can exist at a fixed
value of x. A necessary condition is that the signs of the residues of
the two frontier levels agree.

Within a nonbinary four-level model, we have kept the residues
of a HOMO- and a LUMO-related level equal but different from
the residues of the two other levels. Then, it was found that up
to three destructive quantum interferences can exist inside the
HOMO–LUMO gap at a given x, and a condition on the residues
was given for this case. Finally, we have presented an example
with residues depending on the control parameter, where even
more interesting structures appear for the transmission in the
HOMO–LUMO gap.

The global structure of the transmission valleys discussed in
this paper will, of course, be affected by additional levels not
accounted for in the four-level model. If we generalize to n molec-
ular orbitals in the Green’s function in Eq. (3), we might obtain up
to n − 1 zeros inside the HOMO–LUMO gap. However, one would
expect that energetically distant levels will require increasingly larger
residues to affect the transmission in the HOMO–LUMO gap. Nev-
ertheless, at least in principle, much more complicated multiple
destructive quantum interferences as a function of energy E can then
arise at a fixed x than what we have discussed here.

Complex destructive quantum interference structures could
be used to build precise molecular quantum rulers to electrically
measure both energetic and control parameter separations, e.g.,
changes in electrode displacement, using the molecule inside a
molecular junction as a quantum sensor. In this way, much might
be learned about fluctuations that single-molecule junctions are
subject to.15

It is presently not clear in all cases how a molecule would
need to look to show the desired transmission properties. Destruc-
tive quantum interferences that cross the entire HOMO–LUMO gap
(type III in Fig. 3) have been reported for π-stacked molecules early
on.10,11 In simulations of anthracene double-deckers with various
anchor group attachment points using extended Hückel parameters,
we find between zero and two destructive quantum interferences
inside the HOMO–LUMO gap for selected electrode separations,
and some destructive interference valleys are loop-like (type II in
Fig. 3). The choice of appropriate intermolecular bridges13 or the
attachment points of anchoring groups14 may offer ways to steer the
sliding motion of the π-electron systems of two molecular decks. An
unfolding, as in helicene spirals, may additionally allow for chang-
ing orbital orientation upon stretching, offering possibilities to vary
residue sizes. We hope that the predicted quantum interference
types will be observed in the future. The finding of suitable molecu-
lar structures represents an exciting challenge for talented synthetic
chemists and experimentalists.
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APPENDIX: CONNECTION BETWEEN TRANSMISSION
AND ZEROTH ORDER GREEN’S FUNCTION

In order to better understand the assumptions behind Eqs. (2)
and (3), let us briefly sketch a derivation. The electronic transmis-
sion of a single-molecule junction can be expressed by the Landauer
formula20,25 as

τ(E, x) = Tr [ΓL(E, x)Gr
CC(E, x)ΓR(E, x)Ga

CC(E, x)]. (A1)

Here, Gr
CC denotes the retarded Green’s function of the molecule,

which is related to the advanced Green’s function Ga
CC = (Gr

CC)
†

by Hermitian conjugation, and ΓX = −2Im(Σr
X) is the linewidth

broadening matrix of electrode X = L, R, which is derived from the
retarded self-energy Σr

X . Bold symbols here denote the matrices.
To simplify the expressions, we make use of the wide-

band approximation, yielding energy-independent self-energies and

linewidth broadening matrices for E in the vicinity of the Fermi
energy EF. We further assume that both electrodes interact only with
terminal anchor atoms, which establish the covalent bonds on each
side. If there is only a single atomic orbital relevant for transport at
the Fermi energy at each side “l” and “r” of the junction in Fig. 1, we
finally obtain

τ(E, x) = γLγR∣Gr
lr(E, x)∣2. (A2)

In the expression, Gr
lr is the retarded Green’s function of Eq. (3),

and γL, γR parameterize electronic couplings of molecular anchor-
ing orbitals to the electrodes. The dependencies of the transmission
on energy E and control parameter x now result basically from the
Green’s function of the molecule.

Only one transmission eigenchannel is present in Eq. (A2)
due to the assumed coupling of the molecule to the electrode by
just one electronic orbital on the left and right sides. Similarly, the
four-level model in the main text admits only one transmission
eigenchannel, and the total transmission thus equals the transmis-
sion of the first eigenchannel, i.e., τ(E, x) = τ1(E, x). In contrast,
in quantum transport calculations based on density functional the-
ory (DFT), several transmission eigenchannels i might contribute to
τ(E, x) = ∑i τi(E, x) in Eq. (A1).26 The zeros of a simplified four-
level model, leading to suppressions of τ1(E, x), may then be
detected in the DFT results by searching for points in the (E, x) plane
where transmissions of first and second eigenchannels are similar,
i.e., τ1(E, x) ≈ τ2(E, x). The presence of more than one transmission
eigenchannel will typically lead to an incomplete suppression of τ at
the destructive quantum interference.
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der Zant, “Mechanical compression in cofacial porphyrin cyclophane pincers,”
Chem. Sci. 13, 8017–8024 (2022).
15S. van der Poel, J. Hurtado-Gallego, M. Blaschke, R. López-Nebreda, A. Gallego,
M. Mayor, F. Pauly, H. S. J. van der Zant, and N. Agraït, “Mechanoelectric sensi-
tivity reveals destructive quantum interference in single-molecule junctions,” Nat.
Commun. 15, 10097 (2024).
16Y.-D. Guo, X.-H. Yan, Y. Xiao, and C.-S. Liu, “U-shaped relationship between
current and pitch in helicene molecules,” Sci. Rep. 5, 16731 (2015).
17J. Vacek, J. V. Chocholoušová, I. G. Stará, I. Starý, and Y. Dubi, “Mechanical tun-
ing of conductance and thermopower in helicene molecular junctions,” Nanoscale
7, 8793–8802 (2015).

18T. de Ara, C. Hsu, A. Martinez-Garcia, B. C. Baciu, P. J. Bronk, L. Ornago, S. van
der Poel, E. B. Lombardi, A. Guijarro, C. Sabater, C. Untiedt, and H. S. J. van der
Zant, “Evidence of an off-resonant electronic transport mechanism in helicenes,”
J. Phys. Chem. Lett. 15, 8343–8350 (2024).
19M. Camarasa-Gómez, D. Hernangómez-Pérez, M. S. Inkpen, G. Lovat, E.-D.
Fung, X. Roy, L. Venkataraman, and F. Evers, “Mechanically tunable quan-
tum interference in ferrocene-based single-molecule junctions,” Nano Lett. 20,
6381–6386 (2020).
20J. C. Cuevas and E. Scheer, Molecular Electronics, World Scientific Series
in Nanoscience and Nanotechnology, 2nd ed. (World Scientific Publishing,
Singapore, 2017), Vol. 15.
21K. Yoshizawa, T. Tada, and A. Staykov, “Orbital views of the electron transport
in molecular devices,” J. Am. Chem. Soc. 130, 9406–9413 (2008).
22K. Yoshizawa, “An orbital rule for electron transport in molecules,” Acc. Chem.
Res. 45, 1612–1621 (2012).
23W. M. Schosser, “Mechanical control of charge transport through single
molecules and relativistic electronic structure theory,” Ph.D. thesis, University of
Konstanz, 2022; http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1s1rkdmctkqco8.
24X. Li, A. Staykov, and K. Yoshizawa, “Orbital views on electron-transport prop-
erties of cyclophanes: Insight into intermolecular transport,” Bull. Chem. Soc. Jpn.
85, 181–188 (2012).
25F. Pauly, “Phase-coherent electron transport through metallic atomic-sized
contacts and organic molecules,” Ph.D. thesis, University of Karlsruhe, 2007.
26F. Pauly, J. K. Viljas, U. Huniar, M. Häfner, S. Wohlthat, M. Bürkle, J. C.
Cuevas, and G. Schön, “Cluster-based density-functional approach to quantum
transport through molecular and atomic contacts,” New J. Phys. 10, 125019
(2008).

J. Chem. Phys. 163, 024707 (2025); doi: 10.1063/5.0277769 163, 024707-9

© Author(s) 2025

 10 July 2025 12:03:47

https://pubs.aip.org/aip/jcp
https://doi.org/10.1039/c4fd00083h
https://doi.org/10.1021/acs.jpclett.6b02989
https://doi.org/10.1021/acs.nanolett.8b02810
https://doi.org/10.1021/jacs.1c06966
https://doi.org/10.1039/d1nr06484c
https://doi.org/10.1039/d2sc00937d
https://doi.org/10.1038/s41467-024-53825-x
https://doi.org/10.1038/s41467-024-53825-x
https://doi.org/10.1038/srep16731
https://doi.org/10.1039/c5nr01297j
https://doi.org/10.1021/acs.jpclett.4c01425
https://doi.org/10.1021/acs.nanolett.0c01956
https://doi.org/10.1021/ja800638t
https://doi.org/10.1021/ar300075f
https://doi.org/10.1021/ar300075f
http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1s1rkdmctkqco8
https://doi.org/10.1246/bcsj.20110256
https://doi.org/10.1088/1367-2630/10/12/125019

