
Received 28 April 2025, accepted 30 May 2025, date of publication 12 June 2025, date of current version 25 June 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3579204

A Systematic Review on Smart and Predictive
Maintenance in Tool Condition Monitoring
DHANALEKSHMI PRASAD YEDURKAR , THOMAS SCHLECH , AND MARKUS G. R. SAUSE
Department of Mechanical Engineering, Institut für Materials Resource Management, Universität Augsburg, 86159 Augsburg, Germany

Corresponding author: Dhanalekshmi Prasad Yedurkar (dhanalekshmi.yedurkar@uni-a.de)

ABSTRACT The main goal in the field of reliability and maintenance is ensuring and enhancing the
availability of assets. A decrease in the production capability of machines can be the outcome of untimely
and inefficient maintenance planning. Unexpected and unscheduled machinery shutdown due to required
maintenance reflects poorly on a business, resulting in damaged credibility and financial losses. This puts
organizations in a position to decide between undertaking preventive replacement of parts that could have
been used for some more time or running the machine till it dies (run to failure). On the other hand,
organizations can improve their uptime by promptly replacing potentially good parts that could have been
used for some more cycles. In addition to assisting enterprises in minimizing or preventing unplanned
downtime, smart and predictive maintenance (SPM) extends the machinery’s remaining useful life (RUL).
A crucial instance is the cutting tool in machinery used for milling, drilling, or turning. It is an ideal asset to
apply tool condition monitoring (TCM) since a breakdown of this part will result in unexpected downtime,
resulting in a downturn in productivity. In a situation like this, a well-planned SPM strategy involving
monitoring real-time health of tools used for cutting is beneficial. In the industrial predictive maintenance
domain of Industry 5.0, accurate prediction of RUL of machinery is highly desired. Much research has been
done on this topic, but none of it has covered all the techniques that have been used or have the potential to
be used in the future. This study aims to support a comprehensive and methodical review of studies on the
data-driven approach for estimating the RUL of cutting tools used in various computer numerical control
(CNC) machining processes, including drilling, milling, and turning operations. This paper is a summary
of various methods for monitoring, feature extraction techniques, decision-making models, and sensors
currently available in this domain. A comparison of the accuracy of different prediction models used for
estimating tool wear in TCM is also presented in this paper. The study concludes with a discussion of recent
advances, challenges, and limitations in RUL prognostic methods that use artificial intelligence (AI), as well
as the potential for further research in this domain.

INDEX TERMS Artificial intelligence, sensors, smart and predictive maintenance, tool condition
monitoring, tool wear.

I. INTRODUCTION
In recent years, Internet of Things (IoT) has taken the world
by storm. It allows one machine to communicate with another
in real time over the Internet. In the industrial arena, one of the
major applications of IoT is known as Industry 5.0. Presently,
innovation is at the heart of a revolution in Industry 5.0,
especially for people desirous of revamping organizational
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procedures in industry [1]. This has resulted in a huge surge in
the use of Industrial Internet of Things (IIoT). In the domain
of IIoT, industrial machinery is mainly driven by the use of
sensors and sensor data, partly restricted to a local network
only instead of the Internet. For any given industry, be it
manufacturing, thermal, or automobile, it is data that makes
the industry run, and it is possible for manufacturers to use
this data to glean insights into their business. An example
of such information would be making use of condition-based
monitoring in the identification of a fault. Moreover, data can
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be deemed to be a crucial asset when checking structurally
used equipment in the business.

Nevertheless, in a majority of checks done in industries,
identifying alert rules is not easy because of the complexity
of procedures. Moreover, processes are dynamic. There is a
possibility of a reduction in the total productive capacity of
machinery by 5% to 25% because of deficient maintenance
procedures [2]. Recent surveys reveal that unexpected or
sudden equipment downtime because of breakdown can cost
industrial businesses roughly $50 billion annually [3]. SPM
has become one of the primary aims of Industry 4.0, and it
relies on how remaining useful life (RUL) is predicted to a
very great extent even as it tries to remain cost-effective.

Smart and predictive maintenance (SPM) is a cutting-
edge maintenance methodology that benefits from various
technologies and maintenance strategies, such as condition-
based maintenance and predictive maintenance [4]. These
methods apply to situations where profit and safety of
facilities are enhanced by anticipating a failure and taking
steps to prevent and mitigate its effects. SPM also attempts
to preserve system functionality and behavior while guar-
anteeing efficacy and safety. Reducing expenses associated
with maintaining industrial assets and unexpected services
brought on by industry malfunctions and failures can prove
to be very expensive. As a result, SPM technology should
be included in regular maintenance for critically important
business assets. Supervisors of operations and maintenance
can obtain sophisticated information about the end-of-life of
assets using this methodology. This enables manufacturers
to budget ahead of time for system replacements or repairs,
cut down maintenance expenses, and maximize asset uptime
through automated system diagnosis and assessment.

Excellent and timely maintenance is essential, and as
digitalization grows, more emphasis is being placed on
utilizing data that is already accessible, making use of
supporting technologies such as AI, machine learning (ML),
digital twins, and big data along with the digital sector
to pursue SPM. To maximize asset performance, an SPM
system combines artificial intelligence (AI), specifically ML
approaches for new dependability and maintainability, with
integrated IoT. The use of SPM can be seen through the prism
of organizational innovation to stay up to date with tech-
nological advancements made by manufacturing companies
generally and maintenance organizations specifically.

A. CONTEXT ANALYSIS
SPM, which uses real-time data analytics to improve
maintenance tasks and minimize operational disruptions,
has become a crucial industrial asset management tech-
nique. Conventional maintenance techniques, like preven-
tative maintenance (time-based servicing) and reactive
maintenance (run-to-failure), frequently result in higher
downtime, worse asset efficiency, and needless maintenance
expenses. SPM, on the other hand, uses tool condition
monitoring (TCM) methods, such as vibration analysis,

acoustic emission, ultrasonic testing, thermal imaging, and oil
analysis, to continually evaluate the health of the equipment
to anticipate breakdowns before they happen. The emergence
of digital twins, IoT, ML, and AI has greatly improved
SPM by facilitating data-driven decision-making, predictive
analytics, and real-time issue diagnostics [5].

In several high-reliability industries where operational
safety and asset performance are crucial, TCM-based SPM
has become widely used. SPMmakes real-time engine health
tracking possible in the aircraft industry, which aids airlines
in planning maintenance schedules and preventing unplanned
breakdowns that can endanger passenger safety [6]. Smart
factories use AI algorithms and IoT-enabled sensors to
monitor vital equipment, identify irregularities, and initiate
maintenance before a breakdown happens [7]. By integrating
condition-monitoring sensors into industrial robots and
electric vehicles (EVs), SPM also helps the automotive sector
by guaranteeing smooth production line operations. In the
energy industry, TCM-driven SPM is used by wind farms
and oil refineries for condition-based pipeline and turbine
monitoring, which lowers expensive downtime and increases
asset lifespan [8].

Despite its capacity to transform, SPM in TCM has
several drawbacks. Because industrial assets are varied, data
integration becomes complicated, necessitating sophisticated
interoperability solutions. Financial obstacles may arise
from the high upfront expenses of implementing AI-driven
analytics, cloud computing, and smart sensors, especially for
small and medium-sized businesses. Large-scale adoption
is further complicated by the requirement for cybersecurity
safeguards and industry-specific predictive models to protect
critical operational data [9]. Innovations in digital twin
simulations, federated learning (FL), and edge computing
can help overcome these obstacles and improve SPM
efficacy in industrial environments. SPM inside TCM is
an essential step toward creating automated data-driven
maintenance ecosystems, especially in light of the growing
digital transformation across industries. The most recent
approaches, difficulties, and prospects in SPM for TCM are
examined in this evaluation, which offers information on how
businesses can use cutting-edge technology to optimize asset
dependability and operational effectiveness.

B. IMPORTANCE OF RESEARCH
The field of manufacturing is evolving very rapidly. TCM
procedures, in particular, have advanced a great deal with the
use of high speed machining tools and demanding workpiece
materials with high hardness (>45 HRC) [10] or multi-
material compounds. Sudden or unexpected breakdowns
of tools can be costly to repair and have the potential
to result in damage to the work environment harming
the machine as well as operators [11]. Moreover, there
is a growing need to implement research-backed solutions
to assess the RUL of CNC processes. The estimation of
RUL is considered a fundamental and challenging aspect
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of prognostics and health management of machinery and
procedures. In this methodology, RUL is the most significant
factor [11]. It enables predicting how healthy the current
system is by constant indication of systems performance
degradation and preventing unexpected breakdowns [12].
Concepts for RUL estimation also develop cost-effective
solutions for maintenance that ensure that the considered
systems are reliable [13]. As per ISO 13381, with the help
of a method that is prognostic, manufacturers can calculate
the risk as well as the time of system breakdowns [14].
RUL is predicted by analyzing the past operation status of
the equipment as well as the present condition. In today’s
competitive economic climate, such estimation of RUL is
often necessary [15]. Numerous critical applications, such as
required components of machinery, airplanes, nuclear power
plants, and so on, find RUL estimation very advantageous.
It is possible to determine the useful life of machinery using
traditional methodologies. However, such approaches only
factor in the static conditions of the equipment. With the
industrial evolution leading toward the age of Industry 5.0,
it is possible to estimate RUL of systems during operation
with the help of real-time monitoring. RUL is a key target
in condition-based maintenance [16], [17]. In fundamental
terms, RUL can be defined as the period from the present time
to the end of the functional lifespan of a given product [13].
Such prediction of RUL is beneficial when checking the
operational functioning of machinery, managing inventory,
planning maintenance schedules, and so on.

As per predictions for the years 2021 to 2026, maintenance
of prescriptive and predictive nature will cost the industry
around $22.72 billion by 2026 with a compound annual
growth rate of 19.68% [18]. For every type of business, as per
a survey, the average cost of equipment downtime is about
$260,000 per hour [19]. Due to ignorance of RUL estimation,
it is said that about 70% of industries are unaware of their own
machinery replacement or maintenance schedules [20]. In the
manufacturing sector, about 20% of equipment downtime
results from a breakdown in the cutting tool. The selection
of an appropriate maintenance plan and a well-thought-
out estimation of the useful life of equipment minimizes
unexpected downtime. Monitoring systems carefully and
accurately will raise productivity by 10-40% alongwith a cost
saving of up to 40% [21].

C. EVOLUTION AND MOTIVATION OF STUDY
As a result of the significance coupled with the pressing
demands of TCM in practical machining, in-depth research
has been undertaken in this field. This has resulted in a large
volume of academic material over the past half-century [22].
In Figure 1, TCM numbers have been published on the basis
of a search from theWeb of Science, and these numbers show
a rising trend [23]. A few in-depth and comprehensive review
papers have been written as part of these publications. The
papers analyze fundamental tenets, primary technologies, and
TCM applications used in industry from various perspectives.

FIGURE 1. Trend of literature in RUL-based TCM prediction.

Walter et al. [22] worked on researching TCM as part
of RUL, where the authors studied the workability of a
telemonitoring model. In the two decades from 1960 to 1980,
intensive research was conducted in feasibility [23], mecha-
nism [24], and the hardware layout of vision-based condition
monitoring. During the 1990s experiments were increasingly
conducted to investigate degradation behaviour. Such exper-
iments revealed a correlation between wear of machining
tools and the machined surface texture [25], the feature
characterization making use of light scattering patterns [26],
and the correlation between chatter marks and features of
the machined surface texture [27]. Since the start of the
21st century, numerous studies have focused on improving
hand-coded feature extraction methods used for selecting and
making decisions (i.e., classification and regression). The last
few years have seen a rise in the emergence of concepts used
in industry, such as big data and intelligent manufacturing.
These concepts have resulted in numerous sensors being
brought into use in the process of manufacturing. These
sensors generate a large volume of data with sparse and
high-dimensional fault or information on degradation. When
data characteristics become complicated and processing
conditions change frequently, it is tough to use hand-coded
features to represent these tasks. Due to these disadvantages,
researchers worked on studying and developing techniques
that use intelligent data-driven methods that use AI [28].
The study charts the development of texture representation
over two decades, emphasizing techniques like convolutional
neural network (CNN)-based approaches, gabor filters, and
local binary patterns (LBP), which are currently essential to
TCM for tool wear analysis.

Recently, there has been a shift in the focus of the research
from conventional ML to deep learning (DL).

The work in [29] was the primary ground-breaking basis
of the use of TCM methodologies in industrial applications.
According to the study, a machined surface texture can reveal
information about machine quality and tool wear. Using
image processing techniques, the study analyzes surface
roughness, a crucial sign of tool deterioration. One of the
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main objectives of SPM in TCM is to help manufacturers
prevent machine breakdowns, and the research supports the
notion that surface quality analysis can act as an early
predictor of tool wear.

The study undertaken in [30] detailed implementation
of machine vision sensors and digital image processing
methodologies in TCM. The authors of [29] were the first
to use the newest innovations in machining monitoring
even as they worked with sensor fusion techniques and
reconfigurable sensor applications in industrial procedures.

The authors in [31] detailed the development of a system
to monitor processes that were based on AI approaches along
with specific instructions on implementation. Authors of [32]
investigated sensingmethods, signal processing, and decision
algorithms of TCM for various machining procedures.
Authors of [33], [34], and [35] investigated drilling, turning,
and milling machining, respectively. The study undertaken
in [36] and [37] underlined the advantages of artificial
neural networks and wavelet transforms when used in TCM.
DL methodologies, along with their basic theories and
application cases, have been depicted methodically in [38]
and [39]. The authors have also tried to investigate new
possibilities for TCM within the framework of industrial big
data.

The study in [40] and [41] focused on existing challenges
TCM faced in model performance and data processing
along with possible solutions. When using TCM procedures,
accurately estimating tool life is crucial to optimize the
functional life of the cutting tool. To avoid unexpected or
sudden downtime, it is essential to implement maintenance
strategies that are applicable to undertake non-stop, real-time
monitoring of the cutting tool. In recent times, advancements
in sensor technology and cutting-edge AI methods have
provided in-depth data about the health of the milling
machine. Data-driven techniques for predicting RUL during
milling were reviewed comprehensively in [40] and [42].

The study described in [43] makes use of machine data that
already exists, removing the need for more sensors. It has
also been verified in actual production settings, improving
product quality and encouraging zero-defect manufacturing.
In [44], a sensorless monitoring system that detects tool wear
while dry, high-speed milling for aerospace aluminum alloys
using internal machine signals is evaluated. Themethod seeks
to detect wear patterns by examining these internal signals
without extra external sensors, which would streamline the
monitoring procedure and save expenses. The study in [45]
introduces a data acquisition system that can capture cutting
forces and the positional coordinates of the cutting tool at
the same time while complex shapes are being milled. The
method solves typical problems in milling experimentation,
including correctly linking force data to particular machining
places by connecting the cutting forces with precise tool
positions. This improves analysis and optimizes the milling
process. During machining experiments, the authors of [46]
present a technique for simultaneously monitoring cutting
forces and the exact location of machine tools. Understanding

the link between tool position and the forces experienced
during cutting operations allows for a thorough examination
of the machining process, improving diagnostics and opti-
mization. These studies collectively advance manufacturing
processes by combining digital technologies and real-time
monitoring, by increasing productivity and product quality.

This study aimed to introduce the readers to feasible
predictive maintenance methods. The following are the
primary contributions of this study: A review of the existing
literature on this subject has shown that very little in-
depth research has been conducted on sensors, algorithms,
and monitoring techniques for RUL estimation utilizing a
data-driven approach. The lack of model diversity, precise
construction rules, and industry-specific applications in ML
for condition monitoring study published in [1] makes practi-
cal implementation difficult. Furthermore, it ignores time and
cost limitations, essential for realistic implementation. High
upfront costs and unpredictability in monitoring device reli-
ability are highlighted in the study in [2], indicating the need
for more robust and affordable condition-based maintenance
systems. This analysis also covers advancements in RUL and
the direction of this field in the future, which will encourage
researchers in the fields of prognostics and health to look at
data-driven methods for forecasting RUL of vital equipment.
This study extends the limits of SPM in machining by
integrating FL, physics-based modeling, and data science.
This study also helps close the gap between AI research and
practical application by: i. using contemporary methods like
physics-basedAI to improve data-driven TCM; ii. using FL to
ensure AI privacy and scalability; and iii. discussing the best
ways to improve SPM explainability using data visualization
techniques like interactive dashboards. Manufacturers can
use these technologies to boost productivity, lower failure
rates, and move toward completely self-sufficient Industry
5.0 systems.

This paper provides a comprehensive step-by-step survey
on the topic of data-driven RUL estimation for cutting tools
used during drilling, milling, and turning. Table 1 lists
research questions the proposed study tries to answer by
this comprehensive survey in the field of data-driven RUL
estimation.

D. ORGANIZATION OF THE PAPER
The significance of the study, its evolution and motivation,
its goals, and research questions have been outlined so
far. The research methodology is described in section II,
along with selection criteria, selection outcomes, and quality
analysis. Background information about TCM measurement
techniques, machining events, and SPM is provided in
Section III. The general TCM process flow for CNC
machining is described in Section IV. RUL data-driven
decision-making methods are discussed in section V. The
role and significance of big data in smart TCM are described
in section VI. Section VII offers suggestions for more
research. It also provides the paper’s conclusion at the
end.
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TABLE 1. Research questions and approach taken to address the questions.

II. RESEARCH METHOD
Since the field of estimating RUL is very broad, the authors
undertook a systematic literature survey using a methodical
review procedure to respond to the research questions. The
current study takes into account the following criteria to
assure the caliber and applicability of the chosen research
articles in the fast developing field of AI approaches in
RUL estimation: i. reputable conferences and journals such
as IEEE, ACM, and Elsevier are taken into consideration,
as are highly reputed universities such as MIT or Stanford
and leading companies such as Google or Siemens; ii. since
AI is developing rapidly, include papers published within
the last three to five years; and iii. confirm the datasets
and methodology used aligning with current best practices;
articles that include case studies or real-world applications
in sensor data processing, anomaly detection, or predictive
maintenance.

The methodology has been divided into three sections:
selection criteria, query results and content assessment.

A. SELECTION CRITERIA
For the purposes of retrieving pertinent documents, the
databases that the authors used, were Science Direct, Scopus,
Web of Science, ACM, Springer, IEEE and PubMed.
A specialized query or search string was made up to extract
related research articles, using numerous database searches.
Table 2 lists the search string or query that was executed
to look up a number of documents. This was done by
enjoining the master, primary, and secondary keywords and
also using the Boolean operator AND. A well-thought-out
search strategy is necessary to guarantee a thorough but
objective retrieval of pertinent TCM literature. To gather all
the relevant studies without overlooking important research
and to avoid irrelevant or biased results that could skew the
review, entails improving boolean operators, keywords, and
filtering strategies. The search query was carefully refined

using boolean operators (AND,OR), which ensured a balance
between specificity and inclusivity. By removing pointless
research on TCM in non-machining domains such as robotics
or electrical systems, the AND operator guarantees that
studies address TCM only in machining procedures. The
OR operator ensures more complete information by cap-
turing various terminologies used across fields. Integrating
conventional TCM research with contemporary AI-driven
methodologies is ensured by combining domain-specific
and AI keywords. It includes both traditional monitoring
methods and contemporary AI-based strategies, such as Tool
wear’’ OR ‘‘Sensor’’ OR ‘‘Artificial Intelligence’’ OR ‘‘AI’’
OR ‘‘Machine Learning’’ OR ‘‘ML’’ OR ‘‘Decision-Making
Model’’ OR ‘‘Data Driven Model’’ OR ‘‘Predictive Main-
tenance’’. To retrieve the best-ranked web pages, research
papers, and white papers, snowballing methodologies were
applied.

B. QUERY RESULTS
Snowballing is a method for conducting a literature review
in which more pertinent papers are chosen by looking
through a research article’s citations (ahead snowballing) and
references (reverse snowballing). Combining database search
and snowballing improves the search method and increases
the quality and coverage of the literature [41]. An initial seed
of 18 articles was used to apply the snowballing approach.
There were four iterations of the snowballing process.
In the initial iteration, 35 articles, out of which 33 from
forward snowballing and 2 from backward snowballing,
were obtained. After applying inclusion/exclusion criteria
to these 35 records, 23 articles were ultimately chosen for
the following iteration. There were 23 articles in the initial
seed for the second iteration. 82 articles were retrieved
using the forward snowballing method (68 articles) and
the backward snowballing method (14 articles). Fifty-three
were chosen for the following iteration upon the completion
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TABLE 2. Terms that are included in the search string (query conducted).

of the inclusion/exclusion criteria. The snowballing process
was completed after the third and fourth iterations, which
produced 102 and 41 articles, respectively. The snowballing
process yielded a total of 219 articles.

After examining publications using multiple databases
(ScienceDirect/Scopus-181, ACM/Springer/Web of Science-
101, and IEEE-21) through 2025, 303 recordswere identified.
Repetitive articles from the various databases were excluded
(N = 28). To ensure methodological consistency, specificity,
and relevance, some studies, such as those that concentrated
on electrical parameters, gears, and pumps, were not included
in the thorough assessment of TCM in this study. Exclusion
involves the following implications: i. concentrating only
on machining-related TCM techniques, improves relevance;
ii. reduces diminution of conclusions with insignificant
approaches that might not directly pertain to cutting tool
degradation; iii. maintains an exclusive focus on direct tool
wear indicators instead of indirect machine-level factors;
and iv. excluded investigations might employ different
performance indicators, such as current deviation of motors
and oil particle count of gears, making cross-comparison
challenging. Additional documents were also omitted, such
as examples unrelated to drilling, milling, or turning, work
involving electrical parameters like motor power, and records
about gear boxes, pumps, wind turbines, shafts, and bearings
(N = 61). Finally, after removing documents, 219 key
documents related to TCMRUL estimate were considered for
the study.

C. CONTENT ANALYSIS
The authors have compiled a short list of the chosen published
papers. As per the research questions, an appropriate
maintenance plan is required to be examined, which can be
applied effectively to attain the research goal. This paper
includes the following points based on the short-listed papers
for quality analysis.

(i) SPM: emphasis was given by the research work to the
various predictive maintenance approaches that are used in
industry;

(ii) Sensors: researchwas also undertaken to investigate the
various sensors that are utilized in the milling machine for
gathering data;

(iii) Data-driven RUL model: this paper primarily focuses
on data-driven methodologies for estimating RUL in TCM
procedures such as milling, drilling, and turning;

(iv) Decision-making algorithms: another area on which
the paper focuses is the various algorithms that are utilized to
make decisions in the estimation of RUL;

(v) Advancement in RUL Prediction using AI: the
published papers also have shed light on AI-based methods
that can be applied to estimating RUL exactly and robustly.

An unbiased screening framework was used to conduct
the review evaluation to enhance the caliber, dependability,
and transparency of the articles chosen. The procedure
integrated inter-rater reliability (IRR) evaluation with sys-
tematic screening procedures, such as preliminary keyword-
based screening, abstract and title examination, and full-text
suitability evaluation, all directed by predetermined inclusion
and exclusion criteria. Structured consensus techniques were
used to settle disagreements found during the review. This
method significantly reduced subjectivity, lessened selection
bias, and improved the rigor of the synthesis of the literature.
Therefore, the final selection provides a fair summary of
current developments in SPM in TCM research.

III. BACKGROUND RESEARCH
An in-depth survey on the different techniques to measure
TCM has been undertaken in this study to develop a system-
atic review of the existing literature, which is discussed in the
following sections.

A. TCM MEASUREMENT METHODS
Systems for keeping track of conditions can be used in real-
time, online, inline, and offline. While undertaking TCM, the
primary distinctions between online and real-time need to
be considered, including those related to latency, processing,
decision-making, and reliance.

Online systems function rather slowly, gathering and
processing data regularly, frequently utilizing cloud-based
solutions to gain predictive insights. On the other hand,
real-time systems process data quickly, allowing for prompt
decision-making, typically at the edge or via local com-
puting. While real-time systems are essential for prompt
reactions, like emergency shutdowns or safety measures,
online monitoring is utilized for trend analysis and long-
term optimization. Online systems evaluate data over time,
whereas real-time systems operate within milliseconds. This
is the main difference between the two types of systems.
The research mentioned in [47] offers a thorough strategy
to improve condition monitoring in broaching operations.
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The methodology combines offline tool wear examinations
with real-time monitoring, using motor drive consumption
data, load cells to quantify cutting forces, and accelerometers
to record process vibrations. This combination reduces
production errors and increases overall process efficiency by
enabling the early diagnosis of tool damage.

Using inspection tools like an optical microscope to assess
tool health at random intervals is a TCM system offline
method, as it requires stopping the machining operation [5],
[47]. In contrast, the machining process is unaffected
by online TCM systems, where the tracked parameters
are recorded at distinct intervals and linked to the tool
state at predetermined intervals. There are no restrictions
on the duration of the acquisition intervals or the time
required to process the collected data to initiate corrective
measures [47].With minimal latency, real-time TCM systems
constantly gather and process data at precisely controlled
intervals without stopping the machining operation. This
makes establishing preventative measures against cutting tool
malfunction and workpiece damage feasible. It can also be
used as an adaptive control mechanism to implement dynamic
tool compensation, enhancing machining process accuracy
and economy [48]. Nevertheless, it requires a relatively short
interval for obtaining and analyzing the tracked signals and
forecasting the state of the tool’s health, resulting in the
application of low-cost computational algorithms [47].

A typical real-time TCM system comprises four stages:
signal acquisition, pre-processing, feature extraction, and
selection, and a requisite tool health model.

Initially, the system undergoes offline training to establish
the correlation between the signals and predictive features
of the chosen sensors. Subsequently, picked sensors and
features are employed to determine the degree of tool wear
via real-time system implementation. Based on the tool health
state, corrective measures involving changed cutting federate,
optimization loops, or tool change, including the possibility
for regrinding of a worn tool, are carried out. The information
can be classified into two types based on their measurement
methods: direct and indirect, as shown in Figure 2 [49].

Using machine vision [50], and optical microscopy [51] to
precisely assess tool wear is generally reliable. Regardless,
because of the challenging environment of machining pro-
cesses and the necessary process pauses to determine the tool
health state, they are not as practical, efficient, or economical
as the indirect methods [52]. Moreover, any unanticipated
cutting tool wear, such as chipping and/or breakage while
the tool/workpiece is involved, cannot be detected by direct
techniques. Consequently, indirect measurement methods
have been established for real-timemonitoring so that prompt
action can be taken when required.

The techniques above are associated with a tool health
state with supplementary parameters that are measured,
like cutting forces, torque, vibration, acoustic emission, and
power signals. Although indirect measurement methods are
applicable and cost-effective, they are less accurate than the

direct methods and the signals they generate are noisy due to
varying process parameters and the machining environment.
Therefore, to improve the reliability and to indicate the
health state of the tool precisely, characteristic features
extracted from the obtained signals using advanced signal
processing techniques are necessary. As a result, TCM is
more dependable and robust, and helps prevent false alarms
and general malfunction of process control methods.

Also, in TCM, the presence of a coolant greatly impacts
sensor readings, variations in chip flow, and machine tool
dynamics. A coolant can change temperature readings,
reduce vibrations, and change acoustic signals, which could
cause tool wear or defects to be misinterpreted. Uneven
force fluctuations brought on by variations in chip flow
produce erratic vibration and acoustic signals, which makes
anomaly detection more difficult. The accuracy of condition
monitoring models is impacted by changes in sensor data
introduced by machine tool dynamics, such as spindle
performance, structural vibrations, and thermal expansion.
It is essential to comprehend and account for these elements
to enhance tool life estimation and predictive maintenance.

With the advancement of sensing and industrial big
data, multi-sensor fusion technology has become popular
for TCM. Uncertainties in the decision-making process
of the monitoring system might arise from time-varying
cutting process elements such as tool wear and machine
vibration. To increase monitoring accuracy and robustness,
the multi-sensor fusion technique seeks to reflect tool
state changes through complementing information fully. The
kind and quantity of sensors, and the fusion strategy are
critical factors in the effectiveness of multi-sensor fusion
approaches. It should be noted that not all sensor types are
appropriate for the fusion approach. For instance, force and
vibration data or force and current/power are comparable, and
combining them does not affect increasing the monitoring
accuracy. In the TCM work, accuracy, sensitivity, reliability,
complexity, non-intrusiveness, and real-time performance
must also be considered. The effectiveness of the various
sensors monitoring these factors is shown in Table 3. All
things considered, the AE and current perform better than the
other sensors.

Two approaches have been proposed to model the tool
health state in TCM systems: i. models that are data-driven;
and ii. models based on the laws of physics. Mechanistic
models or semi-empirical laws are often employed in physics-
based models to facilitate the cutting processes [53]. They
offer an understanding of the inner principles of the machin-
ing process and can operate in a-priori untested machining
scenarios. However, owing to the intricate and nonlinear
characteristics of the cutting process, several factors can
hardly be addressed thoroughly, such as the lubrication
conditions and cutting temperature, which reduces the
precision of the prediction [47]. Given this, physics-based
models that have been proposed in literature, like the generic
tool wear model [53], the Taylor model [54], and many
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FIGURE 2. Types of tool condition monitoring.

TABLE 3. Qualitative evaluation of several TCM techniques according to significant performance factors.

more [55], cannot‘ be used to accurately predict tool wear
in real operation conditions.

Advanced machining aims to optimize the entire process
by maximizing the machine’s capabilities to reduce produc-
tion costs, increase output, satisfy pre-established component
quality standards, and improve tool life. It includes ongoing
offline or online optimization of the cutting speed, feed
rate, and strategies. To handle this ongoing variability with
the least amount of calibration work and minimal process
disruption, a real-time autonomous TCM system with an
excellent generalization and robustness is desired.

B. TOOL EVENTS IN MACHINING
Developing an advancedmachining process requires a greater
focus on the variables that affect the process and its
ultimate results, including surface roughness, tool breakage,
progressive wear, and breakdown. A significant enhancement
in the efficiency of machining operations may be attained by
reducing the impact of various variables that deteriorate the
condition of tools. To lower their impact, it is essential to be
familiar with all the specifics of uncertain events occurring
during machining.

The essential events inextricably linked to machining that
minimize the productivity of cutting tools are tool wear,
tool breakage, chip formation, chip breakage, chip removal,

and tool breakdown. Various factors can cause a tool to
malfunction, as shown in Figure 3. An approximate estimate
of the frequency of occurrence for each significant tool event
is provided in Table 4. Both the process and the tool condition
are specifically impacted by the phenomenon as a whole.
Additionally, they may have an abrasive, thermal, chemical,
ormechanical impact on the tool. A detailed description of the
mechanism of tool wear during metal cutting, including steel,
polymers, and aluminum alloys, and its associated effects, has
been provided in [55].

Tool wear is a gradual failure process that usually consists
of the most common wear mode, which is determined by
the geometry of the tool insert, the surface of the workpiece
and tooling material, and the cutting demands. Tool wear
advancement for a given cutting tool and workpiece material
amalgamation may depend solely on the cutting conditions,
primarily the undeformed chip thickness, cutting speed, and
a mix of various wear mechanisms. The swept area increases
dramatically as the depth of the cut increases, dramatically
reducing the tool life. The leading cause of tool wear at
minimal cutting speeds is the cutting point rounding off,
resulting in a sharpness loss. With abnormally high values
causing plastic flow at the cutting point, the wear-land pattern
adjusts to the resulting change as the cutting speed rises. The
two primary wear processes at low cutting speeds include

VOLUME 13, 2025 106253



D. P. Yedurkar et al.: Systematic Review on SPM in Tool Condition Monitoring

FIGURE 3. Typical tool wear patterns [55].

TABLE 4. Estimated occurrence rates of various tool wear and machining damage mechanisms.

adhesion and abrasion. High cutting speeds are necessary for
abrasion and chemical wear, mainly when chip formation is
ongoing [56].

C. SMART AND PREDICTIVE MAINTENANCE
Smart maintenance in Industry 5.0 encompasses all the
organizational and technical measures taken to utilize digital
tools to enhance the efficiency of servicing and maintenance,
which, in turn, creates greater value for the organization.
At the heart of smart maintenance is the gathering and
linking of data from various equipment, buildings, and plants.
Sensors are installed in the technical infrastructure tomeasure
the performance and functionality of the equipment. The data
gathered by the sensors is forwarded to the various digital
or software applications or, in a more advanced setup, to a
central application platform.

The function of SPM is to recognize any indication of
damage or wear and tear in different parts of the equipment
as soon as possible to prevent sudden and unexpected
breakdowns. SPM involves continuous monitoring as well

as analyzing of all the assets of an organization, which
allows the organization to predict and take notice of possible
breakdowns. Moreover, it generates data on the planning
of maintenance and spare parts and automates maintenance.
Multiple parameters such as temperature, energy consump-
tion, vibration and others are monitored and measured by
sensors installed in the equipment so that active operations
can be monitored. In case of deviations from the norm or
indications of possible problems or breakdowns, alarms are
triggered by the system so that countermeasures can be
implemented to avoid a breakdown. Despite such awareness
and need, most of the systems available in the market for
monitoring are proprietary solutions that work in isolation
and only keep track of the conditions of individual parts.

1) BEYOND PREDICTIVE MAINTENANCE
There are three ways in which SPM extends beyond mere
predictive maintenance:

i) Monitoring: A wide network of various assets can be
monitored by SPM when IoT connects them. It becomes
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easier to manage the integrity of all the equipment using
one dashboard when the assets are all linked together.
Moreover, a lot more data points are generated by a network
than by individual machines. By creating a combination
of operational technologies and network data, it becomes
possible for maintenance professionals to discover patterns
that exist between equipment breakdowns and utilize an
ML platform that enables optimization or enhancement of
prediction algorithms over some time;

ii) Automated maintenance: It is possible to automate
a few of the maintenance tasks with the help of SPM.
Moreover, predictive maintenance can forecast possible
machine failures. However, SPM extends further, and it can
automate a few of the maintenance tasks, making use of
cognitive data processing techniques. For example, if in case
an inherent fault in the equipment is detected, SPM raises
a red flag and issues a maintenance order. Next, it assigns
a technician to address the issue, and schedules a ticket for
a Computerized Maintenance Managed System. If any parts
need to be replaced, SPM checks the spare parts inventory and
replaces the faulty part in an Enterprise Resource Planning
(ERP) system and includes it in the work order. If the spare
part is not in stock in the inventory, SPM creates a purchase
request in the ERP system. This request needs to be approved
by the procurement specialist; and

iii) Implementation: Integrating SPM into other mainte-
nance management systems. For the automation of specific
tasks, the predictivemaintenance platform should be included
with either the ERP, or manufacturing execution system
(MES). It is possible for conventional predictive maintenance
to cause significant overhead if it is not incorporated into
daily maintenance processes of an organization. A combina-
tion of SPM and other maintenance systems helps develop
both, a sustainable platform for the procedures and the
possibility of automating the maintenance procedures over a
period of time.

2) STEPS TO SPM
As a rule of thumb, a pilot phase should be undertaken on
one production line or on one or two assets that are well-
suited. Figure 4 depicts the five steps to obtain SPM as
proposed in [56]. To start with, just the first two steps, namely
Asset Monitoring and Health and Condition Monitoring can
be covered. It is difficult to move straight on to predictive
maintenance because it takes a bit of time to put data
collection procedures in place. A very significant point is that
the equipment has to fail a few times, at least, or alternately
it has to exceed the defined tolerance limit in order to
apply and verify the algorithms. The prediction models will
become more experienced in accurately predicting the more
frequently a machine fails over a given period of time. It is
possible to optimize error thresholds once adequate error
information has been gathered reliably. With such data in
hand, statistical analysts can come up with predictive models.
Machine availability and uptime can be raised by 20% to
30% with predictive maintenance. It becomes easier for an

ML platform to monitor failure information and enhance
algorithms if more errors occur. This helps enhance the
forecasting ability for each breakdown and minimizes sudden
and unexpected downtime. Maintenance planning can prove
to be significant in improving the efficacy, safety, quality, and
throughput of an organization.Moreover, cost ofmaintenance
and spare parts inventory can be brought down.

Data-driven decision-making is made possible by SPM,
which can also lower costs, boost safety, optimize main-
tenance schedules, and improve reliability. Organizations
can utilize SPM to anticipate malfunctions in equipment,
schedule maintenance proactively, and prevent unplanned
breakdowns by using cutting-edge technologies and data
analytics. This strategy prolongs the life of the equipment,
reduces the need for emergency repairs, and minimizes
downtime. Prompt action to avert significant failures is
ensured by early detection of irregularities by continuously
monitoring and evaluating the health of the equipment [56].
The primary principle of SPM is to diagnose, come up with a
prognosis, and analyze the signals that have been captured
by the sensors [57]. The main purpose of SPM is to raise
productivity and quality due to a reduction in the cost of
maintenance and downtime.

Figure 5 depicts the diagnostics and prognostics frame-
work to calculate RUL of the components. Authors in [56]
categorize RUL prediction into four steps:

i) Fault detection: detecting abnormal conditions;
ii) Fault isolation: identification of which component is

failing;
iii) Fault identification: estimating the nature of the fault;

and
iv) RUL prediction: predicting lead time to failure.

IV. OVERALL PROCESS FLOW OF TCM IN MACHINING
PROCESS
The foundation for achieving an intelligent TCM using
an SPM system in machining is sketched in Figure 6.
This framework supports real-time process optimization and
quality control and it offers a feedback prediction of the tool
condition according to analytical and sensor-based models.
With the huge number of studies, enormous efforts are
being made to establish new approaches, and cutting-edge
technologies are being put in place in order to enhance TCM
system performance and offer solutions to problems that
manufacturers encounter.

A. DATA SOURCES
The development of highly sensitive, accurate, and depend-
able techniques—which can be divided into ‘‘direct’’ and
‘‘indirect’’ methods—is required to monitor tool wear and
failure. For precise, dependable, and real-time tool wear
prediction, fault detection, and RUL estimate, the types
of sensors used in TCM are crucial. The selection of
sensors is based on their capacity to record high-quality
data pertinent to machining operations while conforming to
the most recent developments in Industry 5.0 and TCM.
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FIGURE 4. The method to achieve SPM as proposed in [56].

FIGURE 5. The four steps for RUL prediction.

The following justifications support the choice of sensors
in TCM: i. In practical machining, the selected sensors
successfully record tool wear patterns. ii. They complement
applications for digital twins, DL, and contemporary AI.
Meanwhile, the selected sensors have specific qualities that
fit the TCM selection: Acoustic and vibration sensors are
the best for measuring tool wear in real-time and identifying
problems early; Force sensors are excellent for force-based
wear analysis and adaptive machining; Temperature sensors
are useful for predicting wear caused by heat, while vision-
based sensors are best suited for AI-based tool wear image
analysis.

1) INDIRECT APPROACHES
As previously mentioned, indirect approaches are preferred
as real-time tool health gauges as they create a relationship
between the tool health state and the measured process
parameters. In TCM systems, cutting forces [58], vibra-
tions [59], acoustic emissions (AE) [60], and spindle motor
feedback signals [61] are examples of frequently observed
indirect parameters. Although they are less practical for use
in industrial settings, additional parameters like the spindle
rotation speed and cutting-edge temperature [62] can also

be monitored to determine the health state of the tool. The
standard method involves attaching the required sensors to
the workpiece or spindle.

The following subsections explain indirect TCM measur-
ing techniques. Here, the TCM factors taken into account are
feed rate Fn, cutting depth ap, and cutting speed Vc.

a: CUTTING FORCE SIGNAL
The force of the cutting signal is the most frequently used
signal for identifying tool wear because of its high degree
of sensitivity to tool conditions and its status as the most
stable and reliable parameter in machining processes [63].
The cutting tool turns dull and its sharpness is reduced as
the machining process passes on. This increases the friction
force between the tool and theworkpiece and the cutting force
required to eliminate chips coming from the material of the
workpiece under similar cutting circumstances [64]. The rise
in cutting forces may additionally be linked to various other
aspects, such as the cutting conditions, the material of the
cutting tool, and the material of the workpiece.

Considering that the thermal softening process out-
competes the strain hardening effect, the cutting force
may not increase for hard-to-cut materials like Ti6Al4V
beyond a certain point. The TCM system may raise a
false alarm when it operates in different cutting conditions.
If the sensor bandwidth being used is sufficient to cover
the chatter frequencies, cutting forces may also be applied
in chatter detection [65]. Because of its high sensitivity
and dependability, the table dynamometer is a highly used
sensor for force measurements in indirect TCM adjustments
in educational institutions. It is positioned beneath the
machined part, allowing it to detect minimal changes in load.
However, because of its high cost and the requirement for
protection from overload, it is unsuitable for application in
manufacturing environments [66].
Additionally, the table dynamometer lowers the rigidity of

the machining unit and limits the dimension of the machined
part. One way to improve the practicality of this technique for
use in industrial settings and address most of its shortcomings
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FIGURE 6. An illustration showing the global TCM systems process.

FIGURE 7. Forces acting on the workpiece.

is to integrate the force sensors into the tool holder. However,
this comes at an additional cost. Figure 7 shows various types
of cutting forces that are active during the TCM processes.

Table 5 reviews the kind of cutting force sensor that is being
utilized for testing and sensor demands.

b: VIBRATION SIGNAL
Piezoelectric along with micro-electromechanical system
(MEMS) accelerometers are used tomeasure the vibrations of
the cutting tool to anticipate various aspects of the machined
area, such as surface roughness and tool edge wear [89].
Sharp cutting tools produce small vibrations, and these
vibrations get stronger as the tool gets worse. The unevenness
and waviness of the machined area strongly correlate with the
unwanted transitions of the cutting tool that are caused by tool
vibrations [90]. Cutting-dependent and cutting-independent
vibrations are two categories of vibrations produced while
metal cutting.Cutting-independent vibrations include forced
vibrations brought on by machine parts, such as uneven
rotating parts. In contrast, cutting-dependent vibrations show

the features of the cutting process, such as interrupted cutting.
Processing the signal to differentiate between both is crucial.
To accurately represent tool wear, it is essential to analyze the
signal to discern between the two types of vibrations [91].
In comparison to other types of sensors like dynamometers

and AE sensors, a vibration sensor is less expensive and
easier to install. Nevertheless, the signals are often complex
to filter, which increases the likelihood that they may deliver
false information. Further, the cutting fluid directly affects
the vibration signal, as does the transmission path from the
vibration source to the vibration sensor location. Based on the
type of vibration sensor used for experimentation and sensor
specifications, a summary is presented in Table 6.

c: ACOUSTIC EMISSION SIGNAL
When a material undergoes irreversible processes like wear,
chipping, and breaking of the cutting tool, chip formation, and
thermal reaction, AE sensors are used to collect the radiation
of the acoustic waves released. The acoustic emission (AE)
signal is widely regarded as being among the most efficient
ways to detect tool wear and breakage because its frequency
bandwidth (10 kHz–1 MHz) is more significant than that of
ambient noises and machine vibrations (1 Hz–10 kHz) [103],
[108]. Furthermore, by tracking acoustic waves produced
during unsteady crack development in the pre-failure phase,
the AE signal may anticipate impending events and provide
an opportunity to mitigate unanticipated and unfavorable
occurrences.

Hence, applying the AE approach may serve as a warning
system, especially in the event of failure, thereby potentially
reducing production costs [109]. In the cutting process,
AE signals are made up of both transient and continuous
signals based on the source of the signal. While transient
and burst AE signals are produced by various factors such
as tool fracture, chip breakage, and tool engagement and
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TABLE 5. Studies using cutting force as an input.

disengagement with the workpiece, continuous signals are
produced by breaking in the primary shear region and wear
on the tool flank face [109]. Regarding the two recommended
locations for mounting the AE sensor—on the spindle or the
workpiece— various data is reported in the available research
concerning the AE sensor efficacy in TCM. However, its
proximity to the signal source at the cutting area and its
short signal transmission path generates more reliable signals
while placed on the spindle [110]. The level of precision of
the AE signal may be affected by the machine condition,
the reflective surfaces that exist between the cutting region
and the sensor, and the signal transmission direction, even

though AE sensors are comparatively cheap and simple to
incorporate into the machine [110]. Based on the type of
acoustic emission sensor used for experimentation and sensor
specifications, Table 7 lists all the studies related to acoustic
emission for TCM.

d: MOTOR CURRENT SIGNAL
Spindle motor current is the principal energy source in
cutting operations and is correlated with various aspects
of the cutting zone, such as the condition of the tool.
Cutting forces rise as tool edge wear progresses, increasing
the drawn current [120]. The inertia of the motor rotor
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TABLE 6. Studies using vibration as a signal input.

functions as a low-pass filter, restricting the bandwidth of
the signal identified and the ability to pick up high-frequency
changes in cutting forces. Consequently, specific details may
be lost in the recorded signal when the motor frequency
has a lower value than the tool-pass frequency. However,
400 Hz two-pole induction motors are used in contemporary
CNC machines, enabling frequency ranges of up to 24,000
rpm [121].

The number of instances of current sensors in TCM
systems discussed in peer-reviewed literature is negligible
when compared with other types of sensors [122]. However,
dynamic threshold methods are frequently employed to
determine the tool state in commercial TCM frameworks,
where this signal is the primary input. Depending on

the workpiece material and the cutting conditions, the
limit changes. Motor current sensors are inexpensive and
straightforward to install without obstructing the cutting
zone [121]. However, at high spindle speeds, the signal
becomes less sensitive to fluctuations in the cutting force
and is instead affected by the state of the machine and its
viscous damping of the feed mechanism. Table 8 summarizes
the review of motor current in the literature.

e: TEMPERATURE SIGNAL
Temperature sensors can monitor the amount of tool wear.
Still, their use in real-time TCM systems is rarely seen
due to high thermal inertia, low response from encased
traditional thermocouples [136], and challenges associated
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TABLE 7. Studies using acoustic emission for TCM.

with embedding the sensor in a rotating tool near the cutting
edge, such as in milling operations. An additional method for
measuring the intense heat in the Ti6Al4V cutting zone is to
use a thermal imaging device [136]. But this kind of approach
is inappropriate in severe machining surroundings. He et al.
[63] used a temperature signal obtained from a thin-film
thermocouple encased into a cutter in turning operations for
measuring the wear of the tool to fix the inadequate response
time of the conventional thermocouple. The robustness of this
information to enhance wear estimations is highlighted by
high prediction levels under a range of cutting conditions.
Due to the different wear mechanisms brought on by the
high cyclic thermal loading, monitoring the cutting zone
temperature during the milling of hard-to-cut materials is
crucial [64]. Table 9 summarizes a review for the use of
temperature as a signal.

f: SPINDLE ROTATIONAL SPEED SIGNAL
The leading cause of the variations in spindle speed is the
repeated shocks and friction between the cutting tool and the
workpiece. The spindle motor encoder has been employed
in very few studies [150], [151] to measure the immediate
spindle speed, but at a low resolution of below 150 Hz.

It identifies chatter, including track tool wear and breakage.
By integrating a gyroscope sensor into the tool holder, it is
possible to achieve a higher resolution [151].When used with
the cutting torque signal, a precise real-time assessment of the
cutting power can provide immediate feedback regarding the
condition of the tool and the cutting process for AC systems
when compared to the motor current. Table 10 summarizes
literature on spindle rotational speed.

g: AUDIBLE SOUND
Since hard materials are cut at high speeds during machining
operations, nearly all produce a particular kind of sound in
the audible range [163]. Unlike AE, this originates from the
type of mechanisms that receive in the frequency range below
20kHz. Considering that the cutting tool enters and exits the
workpiece material consecutively during intermittent cutting
in milling, a discontinuous sound is produced. On the other
hand, based on the material’s characteristics and the cutting
conditions, turning results in chips of varying shapes from
the constant contact between the tool and the workpiece.
In addition, a fresh cutting tool works better than a worn-out
one at removing metal. This makes cutting challenging, and
because of the shifting cutting tool geometry, scraping begins
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TABLE 8. Studies using motor current as a signal input.

instead of cutting. The sound produced by a malfunctioning
cutting mechanism can provide information about the state
of tool wear [164]. Although microphones are essentially
used for sound measurement, sound signals have certain
limitations. To identify the desired quality characteristic, the
frequency range of sounds originating from machine tool
vibration, tool wear, breakage, chip formation, and other
sources must be separated precisely. This makes a sound
sensor the better choice. Table 11 outlines the study for sound
as the measurement signal.

h: THERMAL IMAGING
Infrared thermography has been used to monitor tool fault
while performing a micro-end milling process. It was
observed that speed, feed, and the depth of cut increased as
cutting tool temperature increased. Similarly, heat generation
results from contact between the tool and workpiece [175].
Therefore, as cutting speed increases, so does the cutting tool
temperature. To monitor the temperature range, an infrared
camera also measures the temperature on the opposite end of
the cutting edge. The results confirm the relationship between
the rise in temperature and the cutting direction, the depth of
cut feed, and speed. An infrared sensor and specially designed
software helped in the high-speed machining of a bronze
alloy to measure the heat transferred to the workpiece. This
technique improved accuracy and required fewer tests [175].
Online temperature monitoring of the tool is required dur-

ing the machining process to prevent tool failure. Numerous
non-contact and contact techniques are used to monitor the
temperature of the workpiece and the tool [176]. Table 12
is summarized based on the kind of camera or monitoring
device being used for tool supervision.

2) DIRECT APPROACHES
Direct approaches entail a process to measure the actual
value of defects directly utilizing tools like lasers and optical
microscopes. This can be expensive and interfere with the
manufacturing process of the measures.

a: TOOL FLANK WEAR
The two primary regions of the cutting tool, the chip surface,
and the side surface, are where tool wear typically arises. As a
result, tool wear is typically separated into flank wear, and
crater wear [186], [187]. This is displayed in Figure 8.

The ISO 3685 standard [188] is followed while evaluating
tool wear. Flank wear is the kind of wear brought on by
friction between the cutting tool’s insert clearance angle and
the part’s newly formed surface at that angle. The main load
factors influencing the flank wear appear to be diffusive,
mechanical, and chemical [188]. Several factors cause flank
wear to form on the flank face of the cutting tool. The
primary causes of flank wear are elevated cutting speeds,
plastic deformation brought on by excessively high cutting
temperatures, and edge chipping triggered by a high load on
the cutting tool. Table 13 wraps up the review of flank wear
in the study.

b: SURFACE ROUGHNESS
The nominal surface is partially used in engineering applica-
tions to express the desired surface shapes.

Surface texture is comprised of periodic departures from
the part’s nominal surface, which can be characterized as
follows:

(i) Waviness: Irregularities whose measurement ranges
exceed the sampling distance for surface roughness;
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TABLE 9. Studies using temperature as a signal input.

FIGURE 8. Types of tool wear.

(ii) Defects: These include fractures, scratches, stress
concentration, and alignment mistakes; and

(iii) Surface roughness: Themean of the vertical deviations
over a given distance on a treated surface.

Surface roughness is the average of the vertical deviations
at a specific distance from a surface that has received a par-
ticular treatment. Nowadays, the average surface roughness
method is widely employed to calculate surface roughness.

High standards for quality are expected, particularly in
sectors like the automotive and aircraft industries, where
surface roughness is the only criterion to deliver this
excellence [205]. Surface roughness is a significant output,
particularly for machined components. In addition to shaping
the part, machining is used to ensure that the correct
procedure is followed to maintain surface quality. As the
ultimate goal, surface roughness is a crucial process variable
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TABLE 10. Studies using spindle rotational speed as a signal input.

FIGURE 9. Fish-bone diagram of parameters contributing for surface roughness.

in turning. The radius of the cutting tool, the feed, and
cutting speed are the variables that clearly impact the surface
roughness during turning. The vibration of the machine tool
impacts the surface roughness in addition to the material of
the workpiece, and each of these variables is found to be
statistically significant [205].

There are two primary categories into which the param-
eters influencing the surface roughness can be analyzed:

dependent and independent variables. Feed rate, depth
of cut, part material, and insert are indicated as the
parameters that impact the surface roughness independently.
In contrast, parameters like AE, vibration, temperature,
and tool wear are dependent variables [206]. The primary
objective of surface roughness investigations has been to
minimize surface roughness with these parameters [206].
Figure 9 depicts different parameters that cause surface
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TABLE 11. Studies using sound as a signal input.

roughness. Table 14 sums up the study for surface
roughness.

3) PATTERN RECOGNITION USING DIGITAL IMAGE
PROCESSING
Digital image processing (DIP) with machine vision has
several applications in machining operations, like surface
quality control, tool wear measurement, and surface texture
measurement of workpieces. Statistical data analysis, ML,
signal processing, and other fields employ image processing,
a pattern recognition technique which measures the textures
of images. Since images contain repeating patterns, these
systems only require a camera to split the image into segments
for a thorough analysis [226]. Determining boundaries and
segmenting an image is the main obstacle for pattern
recognition algorithms. A description of each region’s
features is necessary for additional research and decision-
making. It is necessary to distinguish between the worn and
unworn regions of a cutting tool when measuring tool wear
and flank wear, particularly. Table 15 displays vision-based
studies.

In contrast to previously discussed sensors, image pro-
cessing takes place post-machining. One drawback of this
situation is that it becomes difficult to prevent excessive
tool wear and breakage. However, pattern-recognition-based
applications can be used when machining ceases for various
reasons, like measuring surface roughness. This method
can help verify the sensor data gathered and offers more
details about the tool. Notably, well-designed software
has a high success rate in predicting the tool’s condi-
tion, significantly raising the machining quality. According
to [244], 9.8% of investigations in the field of monitoring
progress of turning operations for flank wear preferred DIP
techniques.

FIGURE 10. Architecture proposed by Luo and Kay.

4) MULTI-SIGNAL APPROACH
According to Luo and Kay’s architecture, as per Figure 10,
unprocessed sensor data is combined with nodes within
an information system [245]. For instance, data y(1,2) can
be created by combining data from sensors 1 and 2.
Following that, information collected by sensor 3 will be
more thoroughly fused with the resultant information y(1,2) in
the subsequent fusion node to create data y(1,2,3). Similarly,
the most significant fusion result comes from details y(1,2,...,n)
from the final fusion node. The authors enumerated four
levels, namely, signal, pixel, feature, and symbol—that
fluctuate between low and high for displaying data in various
fusion processes. Multiple stages provide different degrees
of information quality promotion, encompass distinct input
trends in data, and are used in other systems for multiple
goals.
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TABLE 12. Studies demonstrating the TCM analysis using thermal based image information.

Raw sensor data is fed into fusion models so that it can
be directly combined. The fusion models associated with
this procedure fall under the signal level information fusion
heading. After this fusion process, the data will have more
accuracy, reduced noise, or refined features. Raw data can
be fused at this level if they correspond or follow the same
pattern. Signal-level fusion can sometimes be an extra step
in the pre-processing of signals, or it can happen in real-time
fusion scenarios. These models have also occasionally been
referred to by researchers as ‘‘low-level fusion’’ or ‘‘raw data
fusion.’’

A novel approach that can handle challenging real-world
issues is multi-sensor information fusion. Multiple sensors
work together to provide such data in industrial situations.
It is simpler to assess the condition of tools and workpieces
when various sensors compare data from various locations.
Table 16 highlights the summary of existing works. Findings
of such studies indicate that such multi-information fusion
methods produce good tool wear monitoring outcomes.

B. PRE-PROCESSING
Sensor characteristics and interference from electrical,
mechanical, and ambient disturbances usually require signal
pre-processing, via a sensor-specific conditioner prior to
or following signal digitalization. This is represented in
Figure 11.

During the signal pre-processing phase, the following
common signal conditioning techniques are used:

FIGURE 11. A typical overview of the pre-processing approach.

i. Amplification [260];
ii. Sampling [261];
iii. Filtering [262];
iv. Segmentation [263]; and
v. Handling missing and outlier values [264].
Table 17 highlights various pre-processing methods for

TCM in SPM.

C. FEATURE EXTRACTION
A machine’s condition analysis is a complicated process that
frequently has an objective in mind. As a result, there are
many different approaches to feature extraction, which can be
divided into three main groups. Domain names include time,
frequency, and time-frequency. The categorization of feature
extraction appears primarily adapted based on requirements
identified by the current information collection, while it has
been motivated by earlier work by Riaz et al. [282].

Feature engineering, one of the most critical phases in
TCM systems, is the component that makes any classification
model successful. Typically, during the signal processing
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TABLE 13. Studies using flank wear as a signal input.

stage, physical and statistical features that convey the
characteristics of the input data are constructed, while
at the dimensionality reduction stage, they are optimized.
By gathering characteristic features in the time, frequency,
and time-frequency domains, it is possible to express the
majority of the characteristics of the monitored variables.
In the past, researchers have typically employed these
parameters. Various characteristic features in these domains
are highlighted in Table 18.

As per the proposed taxonomy, Table 19 presents an
overview categorization of the statistical time, frequency, and
time-frequency domain characteristics. The methods utilized
to extract features, as well as those that modify the signal
to make it more suited for feature extraction, fall under the
three core domains of time, frequency, and time-frequency
that have been maintained in the adopted classification. Apart
from the three basic domain classes, there are two further
categories that cover particular situations that either barely
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TABLE 14. Studies using surface roughness as a signal.

fit within the canonical domains or do not fit at all. Whereas
unique instances include the employment of new or specially
designed procedures for the object’s specialty, hybrid cases
involve applying methods from more than one domain.

1) DIMENSION REDUCTION AND FEATURE SELECTION
The features correlate with the machine’s health condition
after they are extracted into various domains. To select
the features appropriately, the methods used are systematic
feature dimension reduction and ranking [312]. This helps
with the ranking of significant features that are related to the
health condition of the machine.

Condition monitoring equipment has several different
types of sensors installed. Each continually generates one
or more features at various sampling rates between 10 Hz

and 10–50 kHz. A vast amount of data is produced
throughout the long monitoring period. However, not all of
the features created are useful for analysis. Furthermore,
operational and environmental aspects would also be crucial
in expanding the dimensions of the features [313]. In this
sense, only themost reliably significant and damage-sensitive
features may be extracted by reducing the size of the
features. This step is referred to as dimensionality reduction.
Combining sensor arrays to extract similar information,
such as various mode shapes that are gathered at each
sensor node and then reduced to create a low-dimensional
variety of features that only contain a handful of pattern
forms, is one method of addressing the issue. A break-
down of dimensionality reduction methods is shown in
Figure 12.
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TABLE 15. Studies using digital image processing based analysis.

FIGURE 12. Overview of dimensionality reduction approaches (PCA:
Principal component analysis).

Subset feature selection techniques are used to select
the most discriminative features of the tool health state to
minimize computational effort and increase the accuracy of
the classification model. No relevant information can be lost
during the feature selection process. Typically, conventional
feature selection techniques rank the extracted features based
on their sensitivity to tool conditions and then choose the
top-ranked features. Feature selection techniques can be
categorized as shown in Figure 13.

2) DATA-DRIVEN DECISION-MAKING METHODS
Various ML models are available to monitor and predict.
These models undertake analysis of the sensor data that is
utilized in data-driven models. ML algorithms based on
classifiers have been widely used to support the decision-
making phase, especially for monitoring the progressive tool
wear [314]. Results for forecasting the tool health state look
very promising for optimizing the service life of a cutting
tool. This is done by preventing early replacements and
limiting scraps as a result of part damage prevention [314].
Some of the more widely used ML classifiers for monitoring
tool wear are artificial neural networks (ANN), Support
Vector Machine (SVM), Bayesian networks, Hidden Markov
model (HMM), Decision Tree (DT), k-Nearest Neighbour
(kNN), Gaussian Process Regression (GPR), and fuzzy
logic [315]. To thoroughly evaluate the effectiveness of SPM
in TCM models, literature that concentrated on error-based,
classification, prognostic, and computational metrics or a mix
of these methods was investigated. Some studies employed
benchmark datasets such as Prognostics Health Management
(PHM) Society and NASA CMAPSS to standardize the
comparisons. Priority was given to works that considered
industry standards (ISO, IEEE) that guided performance
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TABLE 16. Multi-signal based studies present in the literature.

evaluation to match real-world SPM requirements. Evalua-
tion of published papers classified in the diagnostic domain
enabled a taxonomy of the main classes of ML techniques
utilized for this, as depicted in Figure 18.

These approaches typically use hand-crafted features as
input, each with its own set of benefits and limitations.
This topic has been covered in [316]. Even though ANN
has been used extensively in TCM systems because it is
adaptable and robust, slow convergence, the need to tune
numerous biases and weights and local minima are some of
its limitations [317].

Researchers have also used adaptive neuro-fuzzy infer-
ence system (ANFIS), relevance vector machine (RVM),
and random forest (RF) in TCM systems for monitoring
tool wear along with the normal ML methodologies. The
process of selecting features is very time-consuming and
requires knowledge of feature engineering. Moreover, the the
sensitivity of the selected features may be reduced if the
conditions based on which the model is tuned are altered.

Also, these models are mostly shallow and have a very
restricted ability to generalize. To raise the robustness and
precision accuracy of the TCM system, it has been proposed
that data-driven models be fused [318].

In addition, as the volume of the training data goes up,
multi-layer neural networks and DL methods demonstrate
enhanced performance as far as learning and prediction
go [319]. Currently, the most widely used DL techniques
like CNNs, recurrent neural networks (RNNs), long short-
term memory (LSTM), and auto-encoder (AEN) are used for
tracking the performance of tools [319].
In CNC machining, TCM is an essential component of

SPM, where AI models evaluate tool wear, forecast failures,
and maximize tool longevity. To identify wear and cracks,
as well as chipping in high-resolution scans of cutting tools,
CNNs are frequently utilized in image-based TCM. Real-
time defect identification, quality control automation, and
the reduction of manual inspection errors are all made
possible by models such as ResNet, EfficientNet, and YOLO.
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TABLE 17. Studies using pre-processing algorithms to remove different artifacts.

FIGURE 13. Benefits and challenges of feature selection methods.

In sensor-based TCM, time-series data from CNC sensors,
including cutting forces, vibration, temperature, and AE, are
processed using LSTM and gated recurrent units (GRU) to
forecast the tool wear progression. Early fault identification
made possible by these models permits prompt interventions
before significant failures. Furthermore, to maximize tool
longevity and efficiency, reinforcement learning (RL) models
such as deep deterministic policy gradient and proximal pol-
icy optimization assist in dynamically adjusting machining
parameters like spindle speed and feed rate depending on real-
time tool conditions. By incorporating these AI frameworks,

SPM in CNC machining guarantees decreased downtime,
cheaper operating costs, and improved machining precision.

In the case of TCM, effective fusion of the multi-
mode monitoring of data with process parameters is a
crucial aspect of successful implementation. DL has a
strong ability to express complex data, which is the latest
evolution in the domain of AI. It can train and learn
deep networks very effectively to manage the multi-level
characteristic representation of data. In heterogeneous data
fusion, it is uniquely superior [320]. Figure 15 depicts
an end-to-end heterogeneous data fusion model that is
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TABLE 18. Frequently used features for TCM using SPM.

based on DL. It can design varying network structures to
extract features for various monitoring signals. Moreover,
it can also develop uniform representations and fusion
methodologies of different data types. Table 20 summarizes
suitable AI methods used across various industries for SPM
in TCM.

Also, several edge devices (such as sensors or CNC
machines) work together to jointly train a global model
using FL, a decentralized ML technique, without exchanging
raw data. The ability to jointly train models across many
devices without exchanging raw data across production units
is highly advantageous for TCM, especially for calculating

RUL. To forecast tool wear in CNC machines while
maintaining data privacy, the authors of [321] investigate
FL. The FL architecture put forth by the authors allows
several CNC machines to work together to train a model
without exchanging raw data. LSTM networks are included
in the method to record time-series dependencies during
tool wear. To improve condition monitoring in ultrasonic
metal welding while maintaining data privacy, the study
in [322] makes use of the FL framework. The method
enhances model generalization across many machines and
operating environments by combining transfer learning and
task personalization.
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TABLE 19. Studies using time/frequency/time-frequency domain analysis.

FIGURE 14. Classification of the most studied machine learning diagnostic techniques.

3) BIG DATA IN SMART TOOL CONDITION MONITORING
As a result of the evolution of modern sensing techniques
along with the digitization of the CNC machining procedure,

the entire machining procedure generates a large volume
of heterogeneous ‘‘big data,’’ which is made up of process
parameters and signals generated during monitoring and
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FIGURE 15. Tool wear monitoring using deep learning based diverse information fusion.

TABLE 20. Summary of suitable AI methods across various industries for SPM in TCM.

running historical records. Some big data consists of one-
dimensional signals like vibration, force, acoustic emission,
3D point clouds, 2D images, and textual process data. It is
because of this data that digitized and networked manufac-
turing is possible. It represents the idea of 4Vs: namely,
volume, variety, velocity and veracity. This ‘‘big data’’ grows
exponentially as the machining procedure progresses making
it challenging to manage the acquisition of the existing data
and the procedural techniques. It becomes hard to get an
accurate judgment of the tool state and to optimize the
procedure of machining. Currently, in depth research has
been undertaken in the domain of CNC machining procedure
monitoring [2]. These investigations are primarily undertaken
based on the conventional theory of signal processing and
AI techniques as being applied to state monitoring and
diagnosing machine tools, which has partially realized the
intelligent manufacturing procedure [327]. Some researchers

have also attempted the STEP-compliant numerical control
(STEP-NC) data methods, including advanced machining
procedure data formonitoring and optimization [4]. However,
while this entails a lot of post-processing, data conversion,
and recognition, the expected efficiency and intelligence in
machining did not materialize [3]. The primary usages of
TCM are restricted and it does not include new perspectives
of big data fusion for the monitoring system [327].

D. THE ROLE OF DATA VISUALIZATION
Engineers, maintenance crews, and decision-makers must
properly interpret the complex outputs produced by RUL
prediction models. To improve the interpretability, action-
ability, and reliability of these models, data visualization
is essential. RUL models frequently yield unintelligible
raw numerical outputs, regardless of whether they are
hybrid, data-driven (ML and DL), or physics-informed.
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By converting these predictions into understandable, intu-
itive insights, visualization improves the interpretability
of RUL predictions. Furthermore, RUL forecasts generate
maintenance plans, so visualization should facilitate prompt,
well-informed choices. This will enhance decision-making
usability. Therefore, effective data visualization fills the
gap between intricate RUL models and useful insights.
Organizations can increase usability, optimize maintenance
procedures, and improve interpretability by utilizing time-
series plots, dashboards, anomaly detection graphs, and
feature importance charts.

Tableau and python dash, for instance, will assist in
integrating various RUL visualizations in the context of inter-
active visualizations for a CNCmachine using Power BI. This
will make it possible to develop dashboards for monitoring in
real-time. Displaying features like the RUL trend line, real-
time tool wear score, and suggestedmaintenancewindowwill
be made easier with this information.

Actionable insights and intricate RUL models are con-
nected using effective data visualization. Organizations
can increase usability, optimize maintenance procedures,
and improve interpretability by utilizing time-series visu-
alizations, dashboards, anomaly detection illustrations, and
feature-relevant infographics.

V. DISCUSSION
This data-driven-based predictive maintenance methodology
for estimating the tool’s useful life generates significant
and crucial data about complex machining operations.
Literature has shown that various sensors like dynamometers,
accelerometers, current, and AE are efficacious and even
preferred in data-driven condition monitoring. Although
the initial implementation costs rise because of expensive
sensors and data analytics, the overall advantages of reduced
downtime and higher productivity are noteworthy.

A. STUDY OUTCOME
The investigation highlights the significance of data-driven
SPM for estimating RUL in different CNC TCM procedures.
RUL refers to the time a given machine will run before
needing repairs or replacement. By assessing the RUL
accurately, engineers can plan their maintenance schedules,
optimize the usage of the resources provided formaintenance,
and prevent delays that occur because of machine downtime.
Hence, it is necessary to estimate RUL as accurately
as possible in predictive maintenance plans. An in-depth
literature survey reveals that using multiple sensors generates
more reliable results than a single sensor approach. Multiple
decision-making algorithms such as SVM, CNN, ANN and
LSTM have proven to be accurate in their predictions.

SPM and TCM extensively used data-driven and physics-
based methods for estimating RUL. Nevertheless, this study
prioritizes data-driven approaches since they offer several
useful benefits above models solely based on physics. Due
to their capacity to manage intricate wear patterns, real-
time forecasts, and multi-sensor data fusion, data-driven

methodologies perform better in practical applications
than conventional physics-based models. However, future
research is still needed to develop hybrid systems that
combine AI with physics-based insights.

B. DIFFICULTIES IN THE ESTIMATION OF RUL
The literature survey also revealed some of the restrictions
and limitations in this domain, which are listed below:

(i) Extensive RUL estimation is required to take into
account performance of the equipment from the perspective
of multiple faults. Data generated by various sensors can
be gathered to analyze these faults. Nevertheless, this multi-
sensor data varies in size, formats, and measuring units,
making it hard to analyze using a common framework of
analysis. Hence, developing AI-based architectures and data
analytics to use the data provided by numerous sensors
effectively is a challenging task and requires further study in
the future of RUL estimation;

(ii) Implementation of an intelligent RUL estimation
design relies heavily on the data gathered, using different
sensors. However, the working environment includes many
factors, such as noise from the factory floor, temperature
of the environment, and working conditions that include
machining chips, flood lubrication, and so on, which have
a great effect on the input signals from the sensors and can
possibly result in noisy data. In turn, this noisy data impacts
the accuracy of the AI-based RUL forecasts. Hence, there is
a need for efficacious data pre-processing methods, outcome
validation metrics, and also AI data analytics that are auto-
correcting;

(iii) The development of an unbiased RUL estimation
design based on AI needs a huge volume of historical data
including samples from different fault events. However, such
gathering of large volumes of data is not always possible in
terms of cost and time. Hence, data augmentation methods to
generate synthetic data are needed;

(iv) It has also come to light that it is impossible to use
the same prediction algorithms for varying fault data that has
been gathered under varying conditions. An amalgamation
of numerous fault prediction algorithms that can be applied
to various scenarios needs to be part of any given AI
model;

(v) Although numerous sensors make for a high confidence
level design that can make decisions, the difficulty lies in the
identification of redundant and noisy signals from various
sensors while undertaking data pre-processing and feature
extrication;

(vi) The outcome of the estimation of RUL models based
on AI has to be easy to interpret and comprehend logically
so that users can figure out why a given RUL prediction
was made at a given time and how the value was calculated;
and

(vii) Although SPM has several advantages such as
minimizing downtime and improving maintenance plans, its
deployment has several challenges, mostly related to latency,
computational efficiency, scalability and cost.
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1) LATENCY AND COMPUTATIONAL EFFICIENCY
Lightweight models, edge computing, and improved data
pretreatment help reduce latency. Model compression, GPU
acceleration, and adaptive sampling enhance computational
efficiency.

2) SCALABILITY AND COST
Large-scale deployment complexity: Standardization and
interoperability between many systems are necessary when
deploying SPM across numerous locations or a variety of
equipment. IoT connectivity problems: Real-time monitoring
may be hampered by network dependability problems, com-
mon in industrial settings. Heterogeneity across machines:
It is challenging to develop a general predictive model that
applies to all assets since different machines produce hetero-
geneous data. Algorithm adaptability and performance: AI
models must be re-trained frequently to accommodate novel
failure trends, leading to higher computational intensity.

High initial investment: Setting up SPM is costly because
it calls for sophisticated sensors, cloud computing, IoT
infrastructure, and AI-driven analytics; Costs of data pro-
cessing and storage: The need to store, process, and analyze
vast volumes of machine data in real-time raises the cost
of on-premises or cloud storage; Integration with current
systems: It can be expensive to retrofit SPM into older
devices which calls for specialized hardware and software
modifications; Skilled workforce requirement: Operating
expenses are increased when staff are hired or trained for data
science, AI model development, and system maintenance.

C. RECENT ADVANCEMENTS
The domain of RUL prediction making use of AI has evolved
greatly in the last few years. Techniques included in this
domain are shallow-structure-dependent ML methodologies
to multiple hidden layer-dependent DL approaches. In the
last few years, enhancements in AI have led to the
strengthening of RUL estimation models. AI-based models
like explainable AI, generative adversarial network (GAN),
domain adaption, transfer learning, digital twin, domain
adaption, and adversarial ML will go a long way towards
resolving the more significant challenges currently prevailing
in the RUL estimation domain in predictive maintenance.
Table 21 enumerates some of these open concerns and the
resolutions provided by these approaches [328], [329].

SPM within TCM has significantly been improved across
a variety of industries by recent developments in sensor
technologies. A thorough comparison showcasing these
developments has been realized in Table 22.
In addition, industrial operations are being revolutionized

by the combination of TCM with robotics, digital twins, and
AI-driven SPM. A summary of important multidisciplinary
techniques and their practical uses can be found below
in Table 23. When TCM is combined with robotics,
digital twins, and AI-powered SPM, extremely effective,
self-sufficient maintenance systems are produced. Sectors

including manufacturing, aerospace, and energy lead the way
in the use of these technologies. In future, robotics and
AI-enhanced digital twins will be essential for SPM and
industrial automation.

Industry 5.0 signifies a substantial change from Industry
4.0 automation-focused approaches in SPM for TCM [330].
Tomonitor tool wear, forecast failures, and planmaintenance,
traditional SPM mostly depended on ML algorithms and IoT
sensors. Nevertheless, it frequently lacked human-machine
cooperation and faced limited flexibility, opaque AI-driven
choices, and data security flaws. By combining AI-driven
SPMwith human experience, Industry 5.0 improves decision-
making and makes maintenance procedures more flexible,
efficient, and intuitive [331].

A significant distinction in SPM allowed by Industry
5.0 is the real-time user-AI cooperation. AI serves as
a tool for decision-making that makes recommendations
in place of completely automated systems; operators can
modify and disregard these recommendations in light of
their own experience. This method works especially well
in high-precision sectors, including aerospace and medical
production, where chipping and notch wear on cutting
tools can greatly affect the quality of the final product.
Additionally, more localized data processing is made possible
by FL, which lessens reliance on cloud computing while
improving data security [332].

D. IMPLICATIONS FOR ETHICS OF AI-POWERED
PREDICTIVE MAINTENANCE
Industries are transforming thanks to AI-driven SPM, which
prolongs the life of machinery, maximizes productivity,
and minimizes downtime. Its broad use, however, raises
several ethical issues, namely regarding data privacy and
employment displacement.

SPM depends on gathering a lot of data from operational
systems, machine records, and IIoT sensors. However, this
data frequently includes confidential company information,
such as failure rates, equipment problems, and operational
efficiencies. This information could, therefore, reveal trade
secrets or provide rivals with an edge if it is mishandled or
disclosed. A manufacturing plant’s SPM system gathering
real-time sensor data from CNC machines could serve as
an example to demonstrate this situation. Sharing this data
with outsideAI suppliersmaymake the businessÂ production
tactics more visible.

Additionally, previous maintenance records are necessary
for AI models, but frequently, workers are not aware that
their interactions withmachines such as the ways they operate
or fix equipment are being documented. When data is not
properly anonymized, AI models may link it to particular
workers or devices, which could lead to worker spying
issues. Furthermore, constant data transmission between
cloud systems, AI servers, and industrial equipment is
necessary for AI-driven SPM. Hackers have the possibility
of manipulating predictive models or purposefully causing
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TABLE 21. Challenges and resolutions.

TABLE 22. An overview of recent sensor technologies in TCM for SPM.

errors by introducing erroneous data. Do third-party AI
providers who oversee SPM have the authority to utilize
customer data to enhance their models in the interim?
Businesses need to ensure that AI suppliers adhere to data
governance guidelines and refrain frommisusing confidential
data to resolve this challenge. The following may be used
as data privacy mitigation strategies: i. use edge computing
to process sensitive data locally rather than transferring it
to the cloud; ii. train AI models across multiple machines
using FL without sharing raw data; iii. create explicit data
governance policies that specify ownership, usage rights, and
third-party access; and iv. anonymize sensitive datasets before
AI training using differential privacy techniques.

AI-powered SPM minimizes the demand for human
involvement in identifying and resolving machine malfunc-
tions. As AI automates operations that they traditionally
perform, maintenance professionals and operators run the
risk of losing their jobs. Further, AI-driven SPM alters the
nature of employment rather than eliminating jobs. However,
workers require new abilities in digital troubleshooting, data
analysis, and the interpretation of AI models. Failure to adapt
could result in wage reduction or unemployment. However,
AI decreases the need for low-skilled maintenance personnel
while increasing the need for highly trained engineers (data
analysts, AI specialists).

The following are examples of mitigating techniques
for job displacement: i. reskilling initiatives: teach current
employees data analysis and AI-based maintenance; ii.
Human-AI cooperation: AI should support human decision-
making rather than completely replace it; iii. ethical AI
deployment: include regulations that guarantee gradual
integration instead of sudden automation; and iv. workforce
diversity in AI strategy: involve staff members in AI decision-
making to minimize resistance and fear.

VI. FUTURE RESEARCH WORK
In addition to the models mentioned above in each of the
current advancements, the authors would like to include a few
more potential approaches:

(i) A hybrid method for RUL modeling and decision-
making for TCM: It was noted that numerous researchers
separately work on data-driven designs or model-based
techniques for calculating the RUL of the machine, which
may include prediction errors due to uncertainties in the
individual designs. A combination of data-driven as well
as model-based architecture coupled with hybrid decision-
making data analytics has the potential to decrease the
occurrence of errors in RUL prediction;

(ii) Fine tuning ofmachine parameters: Undertaking condi-
tioning monitoring during predictive maintenance optimizes
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TABLE 23. TCM for SPM: Multidisciplinary Approaches.

TABLE 24. Comprehensive analysis of cutting-edge AI methods.

the input parameters of the equipment to enhance the RUL
of the model. Researchers can consider real-time procedure
parameters and degradation machine state to optimize input
procedure parameters;

(iii) Holistic technique for de-noising: Very often, the
signals received from the sensors are contaminated due
to alterations in the working conditions of the sensors,
disturbances caused by the starting of large equipment,
interference from high frequency, and so on. It becomes a
challenge to filter out or eradicate noise from the raw signals
tomake themmore reliable and accurate to be able to extricate
the original features. Use of integrated de-noising on the basis
of energy-correlation analysis and wavelet transform packets
can be made to get over de-noising of the signals sent by
industrial sensors.

(iv) Sturdy Condition-Based Predictive Maintenance tech-
nique: Factors such as remote location monitoring, hetero-
geneous data, and network infrastructure are why condition-
based predictive maintenance (CBPM) is still challenging
in a complex system. The data gathered from the model is
heterogeneous (discrete) in form. Some examples of such
data are system error data, system state data, data gathered
from the environmental sensors, data collected manually and
observed by the operator’s maintenance action data, etc.
Smart sensors, a hybrid predictive analysis architecture, and
a secure network framework can be used to implement robust
CBPM for a complex system. Smart sensors can manage

heterogeneous data. Hybrid predictive analysis systems
can analyze the data to generate the necessary prognostic
alarms, estimate the RUL of the primary components,
the maintenance action needed, and the comprehensive
health management of the entire model. A secure network
framework can provide a framework that is flexible as
well as extensible to apply CBPM successfully to complex
systems;

(v) Maintenance guidelines: The goal of prescriptive
maintenance methodology is to automate the maintenance
procedure. Such an approach can not only monitor, predict,
and come up with the requisite maintenance recommenda-
tions, but it is also able to take decisions about the necessary
maintenance steps making use of advanced ML/DL as well
as AI methods; and

(vi) Prognostics Health Management (PHM) as a Ser-
vice: In manufacturing, cloud computing methodologies are
applied by cloud manufacturing [168]. Cloud manufacturing
is a manufacturing model that is heavily customer-based, and
it benefits from on-demand access to a pool of dispersed
and diversified equipment tools used in manufacturing to
produce a single product [169]. It is possible to offer PHM as
a service on the cloud, providing facilities such as PaaS, SaaS,
and IaaS. The service provider can provide cloud-dependent
data acquisition software and techniques that can be used
for prognostic models. Leveraging the cloud infrastructure,
such as storage and networking resources, a manufacturer
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can design a maintenance model making use of the existing
platforms;

For predictive maintenance and production optimization,
RUL estimate is essential in machining operations such as
milling, turning, and drilling. Cutting-edge AI techniques
like FL, physics-induced DL, Big Data, and RL present
encouraging insights. Their practical application, viability,
and possible influence are covered in Table 24.

Additionally, combining these methods can improve the
accuracy and dependability of RUL predictions. For example,
FL experiments and reinforcement learning training can
be conducted in safe contexts using digital twins and
virtual representations of manufacturing operations. At the
same time, real-time federated RUL prediction may reach
unprecedented efficiency levels thanks to quantum ML and
neuromorphic computing.

VII. CONCLUSION
The efficiency and dependability of contemporary production
systems have greatly increased using data-driven SPM in
TCM. SPM systems can more accurately forecast tool wear
and failures by utilizing ML, DL, and AI. This reduces
unscheduled downtime and improves production schedules.
Real-time analytics, feature engineering, and multi-sensor
data integration have made it possible to precisely monitor
tool health, enabling companies to move from reactive or pre-
ventative maintenance to completely predictive solutions. For
wider deployment, issues including data heterogeneity, model
generalization throughout different machining settings, and
real-time implementation barriers still need to be resolved.

To improve scalability and real-time processing, future
studies should concentrate on edge computing, digital twins,
and hybrid AI models. Furthermore, methods such as FL will
be essential for enhancing the security and interpretability
of models in industrial contexts. SPM in TCM will continue
to evolve due to the shift to Industry 5.0, which prioritizes
sustainability, adaptive intelligence, and human-machine
collaboration. SPMwill keep transforming manufacturing by
resolving existing constraints and incorporating cutting-edge
technology, making production procedures more intelligent,
robust, and economical. In order to improve generalization
across tool types and lessen dependency on labeled data,
self-supervised learning methods are emerging approaches
in TCM employing SPM. In order to provide a precise
assessment of the condition of the tool in real time, there is
also increasing interest in combining multi-modal sensor data
and implementing lightweight AI models at the edge.

VIII. ACRONYMS
SPM Smart and Predicitve Maintenance
TCM Tool condition monitoring
RUL Remaining Useful Life
AE Acoustic Emission
AEN Auto-Encoder
AI Artificial Intelligence
ANN Artificial Neural Network

ANFIS Adaptive Neuro-Fuzzy Inference System
ARMA Auto-Regressive Moving Average
CBPM Condition-Based Predictive Maintenance
CNC Computer Numerical Control
CNN Convolutional Neural Network
DIP Digital Image Processing
DL Deep Learning
DT Decision Tree
DWT Discrete Wavelet Transform
ERP Enterprise Resource Planning
EV Electric Vehicles
FL Fedearted Learning
GAN Generative Adversarial Networks
GPR Gaussian Process Regression
HMM Hidden Markov Model
IIoT Industrial Internet of Things
IoT Internet of Things
kNN k-Nearest Neighbour
LSTM Long short-term memory
MEMS Micro-electromechanical system
MES Manufacturing Execution System
ML Machine Learning
PCA Principal Component Analysis
PHM Prognostics Health Management
RF Random Forest
RL Reinforcement Learning
RMS Root Mean Square
RNN Recurrent Neural Networks
RVM Relevance Vector Machine
SVM Support Vector Machine
IRR Inter-Rater Reliability
XAI Explainable AI
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