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Abstract
The problem of shift detection in image processes is addressed in this study. It 
is assumed that the pixel intensities follow a spatial autoregressive process, and 
potential shifts manifest in average intensities. The objective is to detect shifts as 
quickly as possible after their occurrence. To accommodate high-resolution images, 
a scalable technique is suggested, focusing on the surveillance of regions of interest. 
For shift detection, multivariate exponentially weighted moving average (EMWA) 
control schemes and various types of control statistics are employed. The efficiency 
of the proposed unique approach is demonstrated through an extensive simulation 
study. Additionally, recommendations for practitioners are provided regarding the 
selection of the chart, its setup, and calibration.

1  Introduction

The simplicity of taking and storing images leads to an increasing importance of 
image-type data not only in social media but also in manufacturing, economics, 
medicine, engineering, etc. Moreover, we often consider not only a single isolated 
image, but a sequence of images observed or taken with a given frequency at fixed 
time periods. The general aim is to extract meaningful and useful information from 

Received: 15 May 2024 / Accepted: 23 May 2025
© The Author(s) 2025

Monitoring time dependent image processes for detecting 
shifts in pixel intensities

Yarema Okhrin1  · Viktoriia Petruk2 · Wolfgang Schmid2

	
 Yarema Okhrin
yarema.okhrin@uni-a.de

Viktoriia Petruk
petruk@europa-uni.de

Wolfgang Schmid
schmid@europa-uni.de

1	 Chair of Statistics and Data Science, Faculty of Business and Economics, University of 
Augsburg, Augsburg, Germany

2	 Department of Statistics, Faculty of Business and Economics, Europa-Universität Viadrina, 
Frankfurt (Oder), Germany

1 3

https://doi.org/10.1007/s00180-025-01645-y
http://orcid.org/0000-0003-4704-5233
http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-025-01645-y&domain=pdf&date_stamp=2025-7-1


Y. Okhrin et al.

this sequence and use it for further problem-driven analysis. Furthermore, the resolu-
tion of images has dramatically increased in recent years and the number of possible 
applications of images became very heterogeneous. Therefore, statistical and econo-
metric tools became of great importance for analyzing this kind of data.

An ordered sequence of images can be seen as a realization of a stochastic process. 
Each image is characterized by the set of pixels, their coordinates, color, and inten-
sity. This results in a time series of multivariate spatial data and its modelling became 
an important field of research in statistics. The objective of the analysis typically 
deals with issues in feature extraction, image classification, image transformation, 
etc. Popular statistical methods, such as multivariate time series models, Kalman 
filtering, Markov random fields, hidden Markov processes, Bayesian approaches, etc. 
need to be adjusted to handle this type of data and to offer solutions for the above 
problems. An excellent overview can be found in, e.g., Fieguth (2010).

In this paper, we focus on monitoring changes in a sequence of images using 
methods of statistical process control. This application is of particular importance for 
production processes that use digital imaging for quality assurance. For example, a 
company wishes to detect the violation of the specified quality requirements as soon 
as possible. It uses for this purpose a suitable imaging equipment. These ideas can 
also be applied in other fields, for example, in medicine for early detection of tumors, 
vascular changes, etc. An excellent overview of control charts for images is given in 
Megahed et al. (2011). Horst and Negin (1992) were the first to apply control charts 
to image data, with a special focus on web applications. In Armingol et al. (2003) 
illumination changes through a transformation of the pixel values are controlled. The 
authors construct individual moving-range control charts for each pixel. Hotelling’s 
T 2 control chart was widely applied in image analysis, e.g., by Mason et al. (1997), 
Tong et al. (2005) and Liu and MacGregor (2006). Lin (2007a) and Lin (2007b) use 
a combination of multivariate control charts and wavelets to detect defects in elec-
tronic components. Lin et al. (2008) compare a wavelet with an imposed Hotelling’s 
T 2 control chart with a wavelet and a principal component approach to detect faults 
in LED chips. Jiang et  al. (2005) used a spatially exponentially weighted moving 
average chart to find defects in LCD monitors and Lu and Tsai (2005) used a spatial 
x̄ chart for the same application.

Koosha et al. (2017) suggest a non-parametric regression method to extract fea-
tures from grayscale image data. The resulting features are monitored to detect 
out-of-control situations using a generalized likelihood ratio (GLR) control chart. 
Amirkhani and Amiri (2020) present a defect detection method for image processes, 
segmenting images into regions of interest (ROIs) and applying a p-value-based con-
trol chart based on analysis of variance (ANOVA). Dunnett’s test is used to localize 
defects, and a simulation study compares performance metrics with a prior monitor-
ing approach of Koosha et al. (2017). A case study on tile production provides practi-
cal guidelines, though it relies on simulated defects rather than real-world images. 
Yeganeh and Shadman (2021) does not handle image monitoring directly but pro-
poses a novel artificial neural network to monitor logistic profiles, using average run 
lenghth (ARL) as a performance criterion. Results are compared with multivariate 
exponentially weighted moving average (MEWMA) and likelihood ratio test (LRT) 
approaches. Okhrin et al. (2020) consider and compare several monitoring schemes 
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applied to the characteristics of ROIS. Contrary to most of the previous literature, 
they take into account a spatial dependence between the pixel intensities. Dastoorian 
et al. (2022) review different shift types in previous control charting approaches, and 
focus then on academically unexplored but relevant shift types in high-density spatial 
data. The use of information from several images simultaneously was explored in 
Chen and Wells (2022). The authors apply multilinear principal component analysis 
(MPCA) to fuse several images into a single one and deploy single-image MEWMA 
for monitoring purposes. Frequently, one observes both an image and an additional 
numeric data. A regression-based approach is introduced in Eslami et al. (2023) to 
monitor image data as geometric profiles, using wavelet transformation to extract 
large-scale features and a generalized likelihood ratio (GLR) control chart for moni-
toring. Small-scale features are analyzed with an omnibus control chart, considering 
both spatial and temporal correlations. The method is validated on a real carpet pro-
duction process and includes a useful flowchart. Dastoorian and Wells (2023) deal 
with this problem by suggesting a hybrid monitoring technique that uses MPCA too. 
Yeganeh et al. (2024) develop an ensemble control chart approach to enhance the 
performance and computational efficiency of control charts for image data. Yao et al. 
(2024) proposes a method for monitoring large images by splitting them into non-
overlapping sub-images and using two-dimensional input multi-variate functional 
principal component analysis (2D-MFPCA) to capture spatial correlations. A global 
multivariate cumulative sum (MCUSUM) statistic is used for monitoring, with ARL 
as a performance measure. The case study involves a digital twin of a 3D scanning 
system to detect uneven surface defects on vertical structures. A CUSUM-type con-
trol chart for online grayscale image monitoring is proposed in Roy and Mukherjee 
(2025), aiming to detect small changes while preserving edges and textures. The 
method focuses on extreme values of pixelwise statistics rather than averages. ARL 
is used as a performance measure, with ARL0 set lower than traditional values. The 
case study involves textile images, but their lack of time-dependency and inconsis-
tent thread positioning may limit applicability. The paper also includes a section on 
image pre-processing.

This paper contributes to the current literature in several directions. First, we 
assume that the characteristics of the pixels at a certain time point are not independent 
as is generally assumed in the literature, but exhibit spatial dependence (see, e.g., 
Anselin 2010; Elhorst 2010; Cressie and Wikle 2011). To overcome the problem of 
spatial dependence, we use a spatial covariance matrix, which can be flexibly fixed or 
estimated from the data. Second, a sequence of images is frequently very persistent in 
time, and thus exhibits a certain autocorrelation. The pixel characteristics depend not 
only on the lagged characteristics of the same pixel but also on the lagged character-
istics of the neighboring pixels. Therefore, we suggest a spatio-temporal time series 
model (Cressie and Wikle 2011) to capture this behavior. It is important to note that 
this is a completely new point that has not been analyzed for image monitoring in the 
literature up to now.

Since spatio-temporal models are complex and can hardly be handled in higher 
dimensions, we specify ROIs of a much smaller size that cover the whole image. This 
method of dimension reduction has been applied to image analysis by several authors 
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(see, e.g., Megahed et al. 2011, 2012; Okhrin et al. 2020, 2021). The stochastic prop-
erties of the characteristics of ROIs are derived directly from the model for the pixels.

In this paper, we introduce several new multivariate control charts for spatio-tem-
poral processes which are based on an EWMA recursion. To overcome the problem 
of time dependence, some authors have proposed to transform the original data in 
such a way that the transformed observations are independent. Residual charts are a 
popular method to monitor time series processes (cf. Alwan and Roberts 1988) but 
then the problem is how a change influences the residuals, usually a starting prob-
lem is available in calculating the residuals and the estimated residuals are no lon-
ger independent. A comparison of residual charts and charts directly monitoring the 
observations, so-called modified charts, is given in Knoth and Schmid (2004). Here 
we apply such type of residual charts to image processes for the first time and provide 
an extensive comparison of the newly introduced control charts with their residual 
counterparts. We calculate the control design and provide several theoretical results, 
providing a better insight into the behavior of the introduced control procedures. The 
aim of the schemes is to detect a location shift in the intensity of a grayscale image.

The paper is structured as follows. In Sect. 2 we give a brief introduction to image 
analysis and statistical image analysis. Here we explain the spatio-temporal model 
used in the rest of the paper and provide important theoretical results. In Sect. 3 we 
develop the control charts and discuss the high-dimensional setting of the underlying 
problem in detail. In Sect. 4, we provide a comparison study of the introduced proce-
dures for several out-of-control situations.

2  Model

Let Xt = (Xt,ij)i=1,...,r1,,j=1,...,r2
 denote the observed pixel intensities of a rect-

angular image of size r1 × r2. Since noise is always present in the measurement of 
pixel intensities due to changing environmental influences, the obtained values can 
be regarded as realizations of a random process. Given that the set of possible col-
ors is very large, we assume that the intensities are continuous random variables. In 
Okhrin et al. (2020, 2021), grayscale images are considered, and it is assumed that 
the nominal image is fixed in the in-control state. Moreover, the pixel intensities are 
assumed to be spatially correlated at a fixed time point but independent across time. 
In this paper, we relax this restriction.

We assume that the image process is stationary over time. Under this setting, it 
is possible to describe various dependency structures. For example, if the data fol-
low a VAR-type process, then a weak dependence structure is implied. In contrast, 
assuming a long-memory process results in a strong dependency structure. Note that 
the stationarity assumption excludes sequences of images, such as movies, from 
consideration.

Typically, a grayscale image is regarded as a matrix of pixel intensities. Thus, an 
image process is originally a matrix process over time. However, we can uniquely 
transform it into a vector process that takes the spatial locations of the pixels into 
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account. Moreover, the number of pixels is very large in most cases, and therefore, 
we are confronted with a high-dimensional process.

In the following, the symbols E∞(.), Var∞(.), and Cov∞(.) denote the mean, 
variance, and covariance matrix, respectively, computed under the assumption 
of no change–that is, in the in-control state. The in-control process is denoted by 
Yt = (Yt,ij) i = 1, . . . , r1, j = 1, . . . , r2. We primarily use the vectorized matrices. 
The vec  operator transforms a matrix into a vector by stacking its columns on top of 
each other, beginning with the first column, followed by the second column, and so on. 
Let Xt = vec (Xt) and Yt = vec (Yt). It is assumed that E∞(Xt) = E(Yt) = µ 
and that Cov∞(Xt+h, Xt) = Cov(Yt+h, Yt) = Γ(h) for any t, h in the in-control 
state.

2.1  Modelling the in-control process

For modelling the temporal dependence of {Yt}, matrix-valued time series models as 
recently proposed by Chen et al. (2021) can be used, i.e.,

	 Yt = AYt−1B′ + Et.

However, the number of parameters is quite high in the high-dimensional case, and 
the model does not exploit the specific structure of an image process.

Vectorizing {Yt}, we can make use of multivariate time series models, such as the 
vector autoregressive process

	 Yt − µ = A(Yt−1 − µ) + εt,� (1)

with εt ∼ Nr(0, G). Here, A and G are (r, r)-matrices with r = r1r2, and since r is 
large, they are difficult to estimate. In order to take the spatial correlation into con-
sideration, the parameter matrices must be chosen in a specific way. Thus, this model 
suffers from the same disadvantage as the matrix-valued time series model.

Recently, factor models for matrix-valued high-dimensional time series (e.g., 
Wang et al. 2019; Hallin et al. 2020), i.e.,

	 Yt = ΛFtC′ + Et,

have been introduced. In this approach, the high-dimensional problem is transformed 
into a lower-dimensional one. However, since the spatial structure of an image is not 
considered, we believe that this approach is of limited use in the present case.

In our research study, we want to use approaches that have been used in a similar 
way in spatial econometrics (see, e.g., LeSage and Pace 2009). Let Wi denote an 
arbitrary weight matrix, i.e., all elements of Wi are non-negative and all values on the 
main diagonal are equal 0. Note that in applications, Wi usually depends on certain 
parameters. We will discuss this point below. Now let
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Yt = µ +

p∑
i=1

Wi(Yt − µ) + A(Yt−1 − µ) + εt,� (2)

where the random vectors {εt} are assumed to be independent and identically dis-
tributed with mean 0 and covariance matrix G. In this model, the dependence over 
time is modelled by the autoregressive part and the matrix A controls the influence 
of past values. The spatial dependence is expressed by the weight matrices and the 
covariance matrix G. The characteristic of a pixel depends on a linear combination 
of neighboring pixels. Assuming that the matrix I −

∑p
i=1 Wi has a full rank, we can 

write (2) as follows

	
Yt = µ +

(
I −

p∑
i=1

Wi

)−1

A(Yt−1 − µ) +

(
I −

p∑
i=1

Wi

)−1

εt.

Thus, {Yt} is a VAR(1) process. The process is stationary and causal if the absolute 
values of all eigenvalues of A are smaller than 1. We can show that

	
Yt = µ +

∞∑
v=0




(
I −

p∑
i=1

Wi

)−1

A




v (
I −

p∑
i=1

Wi

)−1

εt−v.� (3)

For the model (2), we get the autocovariance function given by (cf. Brockwell and 
Davis 1991)

	
Γ(h) =

(
(I −

p∑
i=1

Wi)−1A

)h

Γ(0)

for h ≥ 1 and Γ(0) is obtained as a solution of the discrete Ljapunov equation 
(Kitagawa 1977), a special case of the Sylvester equation,

	
Γ(0) =

(
I −

p∑
i=1

Wi

)−1

AΓ(0)A′

(
I −

p∑
i=1

W′
i

)−1

+

(
I −

p∑
i=1

Wi

)−1

G

(
I −

p∑
i=1

W′
i

)−1

.� (4)

An analytic solution for Γ0 as stated in the next Lemma is crucial for monitoring 
purposes.

Lemma 2.1  The explicit solution of Eq. 4 is given by

	
vec(Γ(0)) =

(
(I −

p∑
i=1

Wi) ⊗ (I −
p∑

i=1
Wi) − (A ⊗ A)

)−1

vec(G).� (5)
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Note that although (5) provides an explicit expression of Γ(0), in the high-dimen-
sional case the dimension of the matrices may be huge and the calculation of the 
inverse matrices may be challenging. Here, the direct procedures for solving the Syl-
vester equation work much faster (Kitagawa 1977).

2.2  Dimension reduction with regions of interest

Since the number of pixels of a digital image is usually huge, we suggest con-
sidering subimages—regions of interest (ROI). They are obtained by split-
ting the original image into disjoint subimages which add up to the whole 
image. Let r1 = τ1l1 and r2 = τ2l2 with natural numbers τ1, τ2, l1, l2. Let 
Yt,ij =

(
Yt,(i−1)τ1+ν1,(j−1)τ2+ν2

)
ν1=1,...,τ1,ν2=1,...,τ2

 then

	
Yt =

( Yt,11 . . . Yt,1l2
. . . . . . . . .

Yt,l11 . . . Yt,l1l2

)
.

Thus the Yt,ij’s, i = 1, . . . , l1, j = 1, . . . , l2 build non-overlapping subimages of Yt. 
First, {Yt} is assumed to be an arbitrary pseudo-image process. In order to reduce 
the dimension, the characteristics of the subimages are compared with each other. 
The most popular choice of a characteristic is the mean value of the intensities of 
the pixels within a subimage. Now, let Ȳt,ij  denote the mean value of the subimage 
Yt,ij , i.e.,

	
Ȳt,ij = 1

τ1τ2

τ1∑
ν1=1

τ2∑
ν2=1

Yt,(i−1)τ1+ν1,(j−1)τ2+ν2 = 1
τ1τ2

1′
τ1

Yt,ij1τ2 .

Then we define Ȳt = (Ȳt,ij)i=1,...,l1j=1,...,l2 . Suppose next that the mean process 
{ vec (Ȳt)} satisfies the Eq. (2). Is it possible to construct an original process {Yt} 
which fulfils (2) as well? In principle, it can be expected that the process possesses 
this property since the weights of the mean process only fix the relationship between 
the rectangles and there is still a lot of freedom to choose the weights for the indi-
vidual pixels. This problem is discussed in full detail in Okhrin et al. (2025). The 
main result is summarized in Theorem 2.2.

Theorem 2.2  Let {Yt} denote an image process and {Ȳt} its mean process as defined 
above. Suppose that the mean process is a spatial process which fulfils (2). Then there 
exists an image process {Yt} which satisfies (2) as well and it has the same order as 
its mean process.

Note that a weight matrix W is a r1r2 × r1r2-matrix. Let wij,vµ correspond to 
the weight related to the pixel points at positions (i, j) and (v, µ). If, e.g., r1 = 2 and 
r2 = 3 then
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W =




w11,11 w21,11 w12,11 w22,11 w13,11 w23,11
w11,21 w21,21 w12,21 w22,21 w13,21 w23,21
w11,12 w21,12 w12,12 w22,12 w13,12 w23,12
w11,22 w21,22 w12,22 w22,22 w13,22 w23,22
w11,13 w21,13 w12,13 w22,13 w13,13 w23,13
w11,23 w21,23 w12,23 w22,23 w13,23 w23,23




=

(
W11 W12 W13
W21 W22 W23
W31 W32 W33

)
.

In general, we have that Wjµ = (wiµ,vj)v=1,..,r1,i=1,..,r1
 for j, µ ∈ {1, .., r2}. Now 

if, e.g., W is the 1-nearest neighbor matrix, i.e. wiµ,vj = 1 if (i − v)2 + (j − µ)2 = 1, 
else 0, then we get for the above case that

	

W =




0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0




.

We see that Wjµ = 0 if |j − µ| ≥ 2. In the case of a τ -nearest neighbor matrix, it 
holds that Wjµ = 0 if |j − µ| ≥ τ + 1. Thus, a lot of the blocks are equal to zero, 
which simplifies the practical analysis.

In practice, the weight matrix usually depends on some parameters. This makes 
their application more attractive. The easiest approach is to assume a multiplicative 
factor. In that case, it holds that Wi = δiW∗

i  with δi ∈ (0, 1). W∗
i  is a weight matrix 

as described above which in most cases is also assumed to be row-standardized, i.e. 
the sum of the elements of a row is equal to 1.

This approach seems to be simple and natural. However, the variety of possible 
images is huge, and this model provides only a first step. It can be generalized easily 
by allowing δ’s to change over time, e.g., assuming (δt1, . . . , δtp) follows a VAR(1) 
process. Then, we would have one non-observable process, as in the case of Kalman 
filters. We will not discuss such attempts here and focus on the discussion of the 
model (2).

The disadvantage of this approach is that the δti’s do not depend on the specific 
spatial point of the image and are the same for all points. Models where the transition 
of a pixel from a time point to the next is explained in an individual way seem to be 
quite complicated. Here a Bayesian approach could be useful. This will be a topic of 
future research.

2.3  Modelling the out-of-control process

The number of possible disturbances in real images is vast. In our paper, we focus on 
changes in the pixel intensities. We make use of the following change point model 
for t ≥ 1

	
Xt =

{
Yt + a for t ≥ τ

Yt for t < τ � (6)
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where a ∈ Rr − {0} and τ ∈ {1, 2, . . . , ∞}. We say that the observed process is 
in-control if τ = ∞, else it is said to be out-of-control. The model implies that the 
change influences the mean behavior of the pixel intensities. It holds that E(Xt) = µ 
for t < τ , E(Xt) = µ + a for t ≥ τ , and Cov(Xt+h, Xh) = Γ(h).

Note, that intensities in image analysis are standardized to the unit interval. Both 
in the in-control or out-of-control states, the simulated intensities may fall outside 
the interval and render false images. This problem can be handled either by manual 
constraining of the values or by choosing small variances of the residuals and, thus, 
making the probability of large or negative values of the intensities negligible.

3  EWMA type control statistics

In this section, we consider several multivariate control charts for the mean, which are 
based on exponentially weighted moving average (EWMA) recursions. It is assumed 
that {Yt} is a stationary process with mean µ and cross-covariance matrices Γ(h).

3.1  The multivariate EWMA chart for time series

Kramer and Schmid (1997) extended the multivariate EWMA control chart of Lowry 
et al. (1992) for independent samples to time series. Let

	 Zt = (I − Λ)Zt−1 + ΛXt, t ≥ 1,� (7)

where Z0 = µ, Λ = diag(λ1, . . . , λr) with λ1, . . . , λr ∈ (0, 1]. Rewriting (7) we get

	 Zt − µ = (I − Λ)(Zt−1 − µ) + Λ(Xt − µ), t ≥ 1

and thus for t ≥ 1 we obtain

	
Zt = µ + Λ

t−1∑
i=0

(I − Λ)i(Yt−i − µ) + Λ
t−τ∑
i=0

(I − Λ)ia.� (8)

According to Kramer and Schmid (1997), we get for r fixed that

	 E(Zt) = µ + (I − (I − Λ)t−τ+1)aI{τ,τ+1,...}(t)

and

	

Cov(Zt) =Λ
t−1∑

i,j=0
(I − Λ)iΓ(j − i)(I − Λ)jΛ

→Λ
∞∑

i,j=0
(I − Λ)iΓ(j − i)(I − Λ)jΛ
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as t → ∞, provided that {Γ(v)} is absolutely summable, i.e. that 
∑∞

v=0 ||Γ(v)|| < ∞.
Now let

	
Σt,r = Cov∞(Zt), Σl;r = lim

t→∞
Cov∞(Zt) = Λ

∞∑
i,j=0

(I − Λ)iΓ(j − i)(I − Λ)jΛ.� (9)

Σl;r denotes the limit of the covariance matrix of Zt as t → ∞ and r is fixed.
The MEWMA chart is based on the Mahalanobis distance between Zt and its 

expected value in the in-control case. This leads to

	 T1,t,r = (Zt − µ)′Σ−1
t,r (Zt − µ).

Frequently, the asymptotic covariance matrix is used instead of the exact one. This 
procedure has the advantage that the inverse matrix has to be determined only once 
and not for every time period. In the high-dimensional case, this property is of great 
advantage. Thus, we obtain

	 T2,t,r = (Zt − µ)′Σ−1
l;r (Zt − µ).

Kramer and Schmid (1997) proposed these control procedures. They analyzed under 
what conditions the resulting charts are directionally invariant. Bodnar et al. (2023) 
derived several distributional properties of these statistics. Among others, the first 
two moments in the out-of-control state are given. In the following, we will make 
use of some of these results, and we derive further properties of the applied control 
statistics. These results are summarized in Lemmas 6.1 and 6.2 of the appendix.

Now, our control statistics are obtained by normalizing Ti,t,r, i = 1, 2. Using 
Lemma 6.1 we get

	

CS1,t,r = T1,t,r − r√
2r

and CS2,t,r =
T2,t,r − tr(Σ−1

l;r Σt,r)√
2tr((Σ−1

l;r Σt,r)2)
.� (10)

The corresponding control charts give a signal at a time point t if the control statistics 
are sufficiently large. The run lengths of these schemes are

	 Ni = inf{t ∈ N : CSi,t,r > ci}

for i = 1, 2 where c1 and c2 denote suitable constants. In industrial engineering, the 
constants are frequently chosen to be 3. This is motivated by the case of independent 
Shewhart-type control statistics where for τ = 1 the expected run length is equal to 
the inverse of the power function and 3σ intervals are chosen. For dependent control 
statistics, the situation is more complicated. There are only explicit expressions for 
the ARL for special cases (e.g., Schmid 1995). Usually, Monte Carlo simulations 
are used to estimate the ARL and the control limits ci are taken such that the sample 
in-control ARL is equal to a pre-specified value, say ξ. The value of ξ depends on 
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the amount of observations. It says that on average a false decision is made after ξ 
observations because it is concluded that the process is out-of-control while it is in-
control in reality. The in-control ARL0 is usually determined either for computational 
convenience or based on a specific application. An ARL0 of 370 corresponds to the 
critical value c = 3 for the Shewhart control chart. In engineering as common value 
is 500; in finance, common choices include 60, 120, or 250, reflecting three, six, or 
twelve months of trading data.

Since the first two moments of T1,t,r do not depend on t, the normalization in (10) 
does not influence the stochastic properties of the corresponding control charts. It is 
not necessary to normalize in this case. The advantage of doing this is to make use 
of the asymptotic normality of the normalized quantities and thus, to get 3σ control 
limits which are comparable with that of a normal sample. In contrast, normalizing 
T2,t,r is important, since both the first and the second moment depend on t.

Now let

	

at−τ = (I − (I − Λ)t−τ+1)aI{0,1,2...}(t − τ),
ζτ,t,r = a′

t−τ Σ−1
t,r at−τ , ζl;τ,r = a′Σ−1

l;r a IN(τ).
� (11)

Note that both non-centrality parameters are non-decreasing in a and they are equal 
to zero if there is no change.

Lemma 6.1 shows that

	
E(CS1,t,r) = ζτ,t,r√

2r
, Var(CS1,t,r) = 1 + 2ζτ,t,r

r
= 1 + 23/2E(CS1,t,r)√

r
.

Consequently, the change influences both the mean and the variance of the control 
statistic CS1,t,r. The expectation and the variance are getting larger if a change is 
present. We also see that the change influences more the mean than the variance.

Further, Lemma 6.1b) shows that for t and r large the distribution of CS1,t,r 
behaves approximately as

	
N

(
ζl;τ,r√

2r
, 1 + 2ζl;τ,r

r

)
.� (12)

Here we also see the influence of r. However, the asymptotic behavior is questionable 
since in our applications r is large but t may be relatively small. Thus, it is of inter-
est to know the asymptotic behavior as r goes to infinity and t is fixed. Lemma 6.1c) 
shows that the asymptotic distribution of CS1,t,r is

	
N

(
ζτ,t,r√

2r
, 1 + 2ζτ,t,r

r

)
.� (13)

It is not the same as in (12) if a change is present, since for t fixed ζτ,t,r − ζl;τ,r does 
not converge to zero as r tends to infinity. Thus, the asymptotic (12) should not be 
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applied in that case. Summarizing, we can state that the control chart CS1,t,r works 
well with the approximation (13).

The situation is slightly different for CS2,t,r. On the one side, it holds that for r 
fixed tr(Σ−1

l;τ,rΣτ,t,r) → r and tr((Σ−1
l;τ,rΣτ,t,r)2) → r as t goes to infinity. On the 

other side, this is not the case if t is fixed and r goes to infinity. Because of Lemma 
6.1e) and f) the control statistic with the exact in-control means must be used as 
defined in (10).

Comparing CS1,t,r and CS2,t,r, we see that the calculations with T2,t,r are easier, 
since the inverse of the covariance matrix must be calculated only once. To compute 
CS2,t,r we need the first two in-control moments that depend on t and, therefore, 
we have to determine an inverse matrix for each t. Thus, the effort of calculating 
both control charts is comparable and none of the charts dominates concerning this 
criteria.

Further, we see that if limr→∞
ζτ,t,r√

2r
= 0, i.e., if for instance ζτ,t,r is bounded, the 

change disappears asymptotically. Therefore, a change in one or a few components 
will be difficult to detect in a high-dimensional environment. The same holds for the 
chart based on the asymptotic variance.

Next, we analyze the results for model (2). Note that {Yt} is a VAR(1) process. 
Further, it is assumed that Λ = λI with λ ∈ (0, 1]. This assumption is often made in 
applications to reduce the amount of smoothing parameters. It follows with remark 
b) to Theorem 1 of Kramer and Schmid (1997) that with Φ = (I −

∑p
i=1 δiWi)−1A

	

Σt,r =λ2
t−1∑
i=0

t−1−i∑
v=0

(1 − λ)i+2vΦiΓ(0) + λ2Γ(0)
t−1∑
i=1

t−1∑
v=i

(1 − λ)−i+2v(Φ′)i

= λ

2 − λ

[
(I − (1 − λ)Φ)−1(I − (1 − λ)tΦt)

− (1 − λ)2t(I − (1 − λ)−1Φ)−1(I − (1 − λ)−tΦt)
]

Γ(0)

+ λ

2 − λ
Γ(0)

[
−(1 − λ)2t(I − (1 − λ)−1Φ′)−1(I − (1 − λ)−tΦ′t)

+ (I − (1 − λ)Φ′)−1(I − (1 − λ)tΦ′t)
]

− λ

2 − λ
Γ(0)(1 − (1 − λ2t))

and

	
Σl;r = λ

2 − λ

(
(I − (1 − λ)Φ)−1Γ(0) + Γ(0)(I − (1 − λ)Φ′)−1 − Γ(0)

)

using that 
∑t−1

i=0 Bi = (I − B)−1(I − Bt) and provided that the inverse of I − B 
exists. Note that an explicit expression for Γ(0) is given in (5). This shows that both 
Σt,r and Σl;r can be explicitly calculated if G and Φ are known. Nevertheless, it is 
necessary to determine the inverse of high-dimensional matrices for the calculation 
of CS1,t,r and CS2,t,r which may be a problem for large r.
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3.2  A control approach based on the euclidean distance of the EWMA recursions

Next, we use as a control statistic the Euclidean distance between Zt and its in-
control mean, i.e.,

	 (Zt − µ)′(Zt − µ)

for t ≥ 1. The great advantage of this quantity compared to the control statistic based 
on the Mahalanobis distance is that it does not depend on the inverse covariance 
matrix and, therefore, is much easier to calculate.

Motivated by the papers of Bai and Saranadasa (1996), Chen and Qin (2010), 
Okhrin et al. (2020) and Okhrin et al. (2021) introduced two control charts for moni-
toring independent image processes based on the Euclidean distance. Bodnar et al. 
(2023) considered an EWMA chart based on the Euclidean distance for multivariate 
time series. Next, we want to analyze the performance of their approach for moni-
toring image processes. We make use of Lemma 6.2 of the Appendix, where some 
results of Bodnar et al. (2023) together with some new results are summarized.

We normalize the Euclidean distance by its first two in-control moments (see 
Lemma 6.2) and get

	

CS3,t,r = (Zt − µ)′(Zt − µ) − tr (Σt,r)√
2 tr (Σ2

t,r)
.� (14)

Bodnar et al. (2023) proved that in the in-control state the control statistic CS3,t,r is 
asymptotically standard normally distributed if t is fixed and r converges to infinity 
(cf. Lemma 6.2).

Note that replacing Σt,r by Σl;r in (14) does not change its asymptotic behavior 
if r and t converge to infinity (Lemma 6.2c), second part), but it does in the case that 
r is fixed and t tends to infinity (cf. Lemma 6.2c), first part).

Following Lemma 6.2d), CS3,t,r behaves asymptotically for t fixed and r tending 
to infinity as

	

N


 a′

t−τat−τ√
2tr(Σ2

t,r)
, 1 + 2

a′
t−τ Σt,rat−τ

tr(Σ2
t,r)


 .� (15)

Note that to calculate C3,t,r only the traces of Σt,r and Σ2
t,r must be known. Never-

theless, we need to know these quantities for all values of t. Equation (15) illustrates 
how a influences the speed of change detection. The change influences the mean and 
the variance of the asymptotic distribution.
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3.3  Residual charts

Residual charts are based on a transformation of the original data. The aim is to get 
new quantities that are independent in the in-control state. Then all the classical con-
trol procedures can be applied to these residuals. Residual charts were originally pro-
posed by Alwan and Roberts (1995). A general discussion of this approach is given 
in Okhrin and Schmid (2007). Since the residuals can be easily recursively calculated 
for stationary processes (cf. Brockwell and Davis 1991), this approach is very useful 
for this data type. A disadvantage of this approach lies in the fact that the original data 
are transformed and thus changes in the transformed variables are detected. There are 
several comparisons of the residual charts with the modified chart, i.e., charts which 
are obtained by extending the classical charts for independent variables taking into 
account the time series structure (e.g., Schmid 1997; Knoth and Schmid 2004).

Suppose that the process {Yt} is stationary with mean µ. Let Ŷt be the best lin-
ear 1-step predictor of Yt given Yt−1,..., Y1, 1. Then Ŷt = µ +

∑t−1
v=1 AvtYt−v  

with certain matrices Avt, v = 1, . . . , t − 1( cf. Brockwell and Davis 1991). Now 
let X̂t = µ +

∑t−1
v=1 AvtXt−v , i.e., X̂t is equal to Ŷt in the in-control state. Then 

normalized residuals are given by

	 ηt = (Cov∞(Xt − X̂t))−1/2(Xt − X̂t).

They are independent in the in-control state with ηt ∼ Nr(0, I). Consequently, all the 
previous results of this paper can be applied to the residuals by replacing Xt by ηt.

If we apply the EWMA recursion (7) to the residuals {ηt}, then we denote the 
EWMA statistic by Z(r)

t  and the components of vec(Zt) by Z(r)
ti . The upper index r 

is also used for the covariance matrices in (9). We obtain that

	Σ
(r)
l,r = Λ(I − (I − Λ)2)−1Λ = Λ(2I − Λ)−1, Σ(r)

t,r = Λ(2I − Λ)−1(I − (I − Λ)2t).

Thus, the residual charts based on C1,t,r, C2,t,r, and C3,t,r have the control statistics

	

CS
(r)
1,t,r =

∑r
i=1

2−λi

λi (1−(1−λi)2t) Z
(r)
ti

2
− r

√
2r

,

CS
(r)
2,t,r =

∑r
i=1

2−λi

λi
Z

(r)
ti

2
−

∑r
i=1(1 − (1 − λi)2t)√

2
∑r

v=1(1 − (1 − λv)2t)2
,

CS
(r)
3,t,r =

∑r
i=1 Z

(r)
ti

2
−

∑r
i=1(1 − (1 − λi)2t) λi

2−λi√
2

∑r
i=1

λ2
i

(2−λi)2 (1 − (1 − λi)2t)2
.
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In applications, frequently the matrix Λ is chosen as a diagonal matrix to reduce the 
amount of smoothing parameters, i.e., Λ = λI with λ ∈ (0, 1]. Note that in this case 
we have that CS

(r)
1,t,r = CS

(r)
2,t,r = CS

(r)
3,t,r.

Since the residuals are independent, it is also possible to apply the charts proposed 
in Okhrin et al. (2020) and Okhrin et al. (2021) to the residual process. Using the 
notation of Okhrin et al. (2021), we denote the residual control statistics based on 
Rn, Mn, and Un by CS

(r)
4,t,r, CS

(r)
5,t,r, and CS

(r)
6,t,r. A chart gives a signal at time t if 

CSi,t,r is sufficiently large.
Thus, the control design is on the one side simpler. However, in order to obtain 

X̂t, we have to fix a certain model for Xt in the in-control case and to determine 
Cov∞(Xt − X̂t). In the present case, i.e., model (2), the predictor is given by (cf. 
Brockwell and Davis 1991)

	
X̂t =

{
µ + (I −

∑p
i=1 δiWi)−1A(Xt−1 − µ) for t ≥ 2

µ for t = 1 .

The in-control prediction error is equal to

	
Cov∞(Xt − X̂t) =

{
(I −

∑p
i=1 δiWi)−1G(I −

∑p
i=1 δiW′

i)−1 for t ≥ 2
Γ(0) for t = 1 .

Note that the parameters of the underlying spatial time series model are unknown 
and must be estimated in practice. This leads to two critical problems. First, disentan-
gling the spatial and temporal components given by matrices Wi and A is computa-
tionally and technically demanding (LeSage and Pace 2009). Second, the estimation 
risk influences the performance of the monitoring schemes. In the context of quality 
control, this problem has been studied by several authors for independent samples 
(e.g., Jensen et al. 2006; Psarakis et al. 2014; Does et al. 2022) but there are only 
a few papers dealing with univariate time series (e.g., Kramer and Schmid 2000; 
Garza-Venegas et al. 2018). Recently, Bodnar et al. (2024) studied the influence of 
parameter estimation on high-dimensional time series. The impact of the misspecifi-
cation on the performance was analyzed analytically and with simulation. A similar 
analysis within the context of the spatial model considered in this paper is left for 
future research.

4  Simulation study

In the presented simulation study, the proposed analysis method starts with select-
ing a nominal image and partitioning it into ROIs. Parameters for the spatial vector 
autoregressive process are then specified, enabling the simulation of an in-control 
process. Control limits for the proposed control charts are determined, ensuring the 
same in-control average run length (ARL0). Subsequently, different change scenar-
ios are introduced for the out-of-control case. The performance of the control charts 
is evaluated by their capacity to quickly detect the changes, corresponding ARLs are 
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then summarized in a table. This is followed by a result analysis together with some 
recommendations for the practitioners. Each step is elaborated upon in detail in the 
following portions of this section.1

We start the analysis by assuming an already pre-processed image, meaning 
there is no need to adjust positioning or lighting. For this study, we consider a real 
photo of size 300 × 300 pixels as shown in Fig. 1 (left) and normalize the values of 
pixel intensities to be between 0 and 1. The picture is then divided into ROIs of size 
20 × 20 pixels, resulting in 15 × 15 non-overlapping ROIs. We characterize each 
region of interest by the average intensity of pixels contained in the corresponding 
ROI (Fig. 1, right). This matrix of values is rearranged in a vector and will be further 
used for simulations.

The next step is to specify parameters for the spatial vector autoregressive process 
of order 1 model (2). The in-control mean µ0 equals the vectorized matrix of expected 
ROI characteristics. The weight matrix is chosen to be W1 = δ1W∗

1, the matrix A is 
a diagonal matrix with all diagonal elements equal 0.5, i.e., A = diagr×r(0.5), and 
G = diagr×r(0.0052). The matrix W∗

1 is taken as a normalized nearest neighbor 
matrix. Its entries are equal to 1 if the Euclidean distance between the coordinates 
of the neighboring pixels is less than 

√
18, else the value is 0. Further, the matrix is 

normalized such that all row sums are equal to 1. Note that the choice of parameters 
is crucial for the stationarity of the spatial temporal process. Following Ekström and 
Serra-Capizzano (2018) (Eq. 9), we can guarantee that the eigenvalues of the process 
are less than one by choosing a suitable factor δ1. Here we set δ1 = 0.01.

Now, a sequence of time-dependent values can be generated (by using the model 
(2), which represents the in-control process. The images in Fig. 2 illustrate the result-

1 The R code is available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​V​​i​k​t​o​r​​i​i​a​P​e​​t​r​​u​k​/​​M​o​n​i​​t​o​r​i​​n​​g​-​T​​i​m​​e​-​D​e​p​​e​n​d​​e​​n​t​-​I​​​m​a​g​e​-​P​​r​o​c​e​​

s​​s​e​​s​​-​f​o​r​-​​D​e​t​e​​c​​t​i​n​g​-​​​S​h​i​​f​​t​s​-​i​​n​-​P​i​x​e​l​-​I​n​t​e​n​s​i​t​i​e​s.

Fig. 1  Original image 300 × 300 pixels (left) and 15 × 15 non-overlapping ROIs 20 × 20 pixels each 
(right)
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ing ROI image and its noisy version during the in-control generating procedure. A 
closer look reveals vague differences in the brightness of the corresponding ROIs due 
to the noise in the data-generating process.

To compare the performance of the proposed control charts, i.e. the charts based 
on the original values CS1,t,r, CS2,t,r, CS3,t,r and the residual chart CS

(r)
3,t,r( Note 

that in the present case it holds that CS
(r)
1,t,r = CS

(r)
2,t,r = CS

(r)
3,t,r) the ARL: E[RL(c)] 

is used as a performance measure, where the run length is defined as

	 RL(c) = inf{t ∈ N : |CS·,t,·| > c},� (16)

where c is the control limit. To reduce the number of parameters, we assume equal 
smoothing parameters, i.e. the diagonal elements of the weight matrix Λ are λi = λ 
for i = 1, . . . , r. Here λ ∈ {0.2, 0.5, 0.8, 1.0}( i.e., Λ = λ Ir×r) to reflect different 
levels of memory of the control statistics.

Since the exact distributions of the control statistics are unknown, the control lim-
its of the control charts are determined by simulations. The control limit is calibrated 
to guarantee an ARL = 100 in the in-control state, for this purpose we simulate 
20000 independent runs of the process to estimate the ARL. The first 20 values of the 
simulated in-control process are used as burn-in values. The resulting control limits 
are summarized in Table 1.

λ = 0.2 λ = 0.5 λ = 0.8 λ = 1.0
CS1,t,r2.112586 2.337000 2.416760 2.442373
CS2,t,r2.113669 2.341900 2.417600 2.447500
CS3,t,r2.111868 2.339200 2.417677 2.446350

CS
(r)
3,t,r

2.272030 2.430834 2.458000 2.465000

Table 1  Control limits of the 
control statistics CS1,t,r , 
CS2,t,r , CS3,t,r  and CS

(r)
3,t,r  

for different values of the 
smoothing parameter λ for an 
in-control ARL = 100

 

Fig. 2  Visualisation of 15 × 15 non-overlapping ROI characteristics (left) and one of the steps of the 
in-control process simulation with noise (right)

 

1 3



Y. Okhrin et al.

A convenient way to apply a control chart in practice is to plot the control statistics 
together with the control limit. Figure 3 illustrates the CS1 chart for two values of the 
smoothing parameter. A later larger (not later) λ renders a stronger impact of the most 
recent sample and a more volatile control statistics.

To check the performance of the control statistics in the out-of-control state, we 
consider six different scenarios for possible changes in different areas of the pic-
ture. The mean value of the pixels in a considered area is changed to fi,j + δ where 
δ ≤ 0.05. Note, that this change is almost impossible to be noticed by the naked eye. 
The changes were applied to the pixels inside a single ROI, inside neighboring ROIs, 
inside non-neighboring ROIs, and to the whole picture. The scenarios are: 

(a)	 In this scenario, the changes are applied to the whole picture. Because of the very 
fast reaction of the control charts, we choose a smaller shift size. Hence, 

	 δ ∈ {0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.003, 0.004, 0.005}.

(b)	 The changes are applied to a square consisting of 60 × 60 pixels located at 
[120  :  180,  120  :  180], which equals 4% of the entire image area. The shift 
affects nine neighboring ROIs. The performance of the control charts for 
the described scenario and all the scenarios below (i.e. d– f) is analyzed for 
δ ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05}.

(c)	 The changes in the third scenario are applied to 30 × 30 pixels located at 
[11 : 40, 11 : 40], which equals 1% of the entire image area. This change affects 
four neighboring ROIs.

(d)	 The changes affect two areas of 15 × 15 pixels located at [21 : 35, 21 : 35] and 
[201 : 215, 201 : 215]. This accounts to 0.5% of the entire image area. The two 
changed areas are inside separate non-neighboring ROIs.

(e)	 The changes are applied to 15 × 15 pixels located at [21 : 35, 21 : 35]. This cov-
ers 0.25% of the entire image and the area is covered by one ROI.

(f)	 Finally, an area of 15 × 15 pixels located at [11 : 25, 11 : 25] is considered, which 
equals 0.25% of the image. The size of the changed area is the same as in the 
scenario above, but it affects four neighboring ROIs.

The considered scenarios cover a wide range of possible changes (see Fig. 4). This 
refers on the one hand to the shape of the areas with shifts and, on the other hand, 
to the size of the shift. The considered shifted areas differ in size and coverage by 

Fig. 3  Visualization the CS1 chart with λ = 0.2( left) and λ = 0.5( right). The shift of the same in-
tensity occurs at sample 101 in both charts
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the ROIs. Since the shape and the size of the ROIs are prespecified in advance, it 
is important to show the robustness of the charts with respect to their choice. In 
many cases, the size of the considered shifts is almost invisible to the human eye, 
but the charts are still capable of detecting it. Note that in all the settings we increase 
the intensity, i.e. the affected area becomes more white. A reduction of the intensity 
would be detected with the same speed. However, if the intensity is as well increasing 
and decreasing within the ROIs, the charts may behave worse since they are based on 
averaging the values within the ROIs.

The results of the simulations were systematically organized into Tables (2, 3, 4, 
5, 6, 7), each corresponding to a different change scenario. These tables encapsulate 
the ARLs of the applied control charts, including differing smoothing parameters. 
For each specified change, the best (the smallest) ARL values are highlighted in bold. 
For example, in Table 4 for the change of the intensity δ = +0.05, Control Statistics 
CS1,t,r with the smoothing parameter λ = 0.2 performs the best (ARL = 2.010)

The simulation study shows that all charts are capable of quickly detecting the 
shifts in the pixel intensities. There is, however, a subtle difference in the perfor-
mance that allows us to make recommendations to practitioners. First, for small shifts 
in the intensities, it is appropriate to choose smaller smoothing parameters for any of 
the charts. This is consistent with the general recommendation for EWMA charts to 
select smaller values of the parameter λ for detecting smaller shifts. The control sta-
tistics CS1,t,r, CS2,t,r, and CS3,t,r have very similar performance, whereas CS3,t,r, 
which is based on the Euclidean distance, seems to react slightly faster [scenarios 
a), c), e), and f)]. The difference in the performance is still marginal and practitio-
ners can select any of these charts. For all simulated scenarios, the residual control 
chart CS

(r)
3,t,r is less successful in detecting shifts in the mean and reacts substantially 

Fig. 4  Visualization of the different types of changes. 1st row: scenarios (a–c); 2nd row: scenarios (d–f)
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Table 2  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r  and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.0004 69.542 69.753 68.397 73.814 80.410 81.736 80.753 87.689
+0.0006 46.901 47.591 45.376 52.974 62.764 63.772 62.768 74.941
+0.0008 31.146 30.779 29.610 36.137 46.590 47.275 45.588 61.581
+0.001 20.479 20.506 19.809 25.083 32.648 33.384 32.024 47.034
+0.002 5.855 5.844 5.638 7.526 6.979 7.049 6.780 11.079
+0.003 3.200 3.221 3.807 4.426 3.337 3.340 3.278 4.354
+0.004 2.183 2.199 2.315 3.258 2.243 2.260 2.229 2.704
+0.005 1.642 1.657 1.734 2.640 1.716 1.726 1.686 2.128
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.0004 85.486 85.557 84.892 92.696 87.394 88.973 88.122 96.149
+0.0006 70.191 70.788 70.523 85.692 75.034 74.729 74.719 90.550
+0.0008 55.042 55.548 54.518 76.074 60.261 60.696 59.691 82.764
+0.001 41.458 41.093 40.303 66.472 47.447 46.841 46.117 75.262
+0.002 8.751 8.827 8.449 23.260 10.610 10.717 10.243 34.914
+0.003 3.584 3.603 3.507 7.184 3.904 3.919 3.807 12.489
+0.004 2.279 2.286 2.236 3.018 2.358 2.356 2.315 4.321
+0.005 1.741 1.746 1.713 1.843 1.758 1.771 1.734 1.949
The change influences the whole picture (scenario a)

Table 3  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r , and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 19.772 19.752 19.771 24.314 31.738 31.941 31.946 45.923
+0.01 5.678 5.651 5.638 7.342 6.696 6.750 6.642 10.771
+0.02 2.129 2.125 2.115 3.202 2.194 2.209 2.1928 2.650
+0.03 1.282 1.285 1.284 2.094 1.358 1.349 1.351 1.924
+0.04 1.012 1.012 1.012 1.991 1.021 1.021 1.022 1.247
+0.05 1.0001 1.0000 1.0000 1.499 1.0000 1.0000 1.0001 1.0014
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 40.530 40.906 40.712 65.835 45.802 46.744 45.977 74.682
+0.01 8.465 8.546 8.501 22.412 10.167 10.348 10.288 33.760
+0.02 2.241 2.229 2.233 2.904 2.292 2.296 2.288 4.128
+0.03 1.375 1.379 1.3682 1.279 1.387 1.380 1.381 1.185
+0.04 1.0224 1.0227 1.0232 1.005 1.0252 1.0254 1.0238 1.001
+0.05 1.0000 1.0001 1.0001 1.0000 1.0000 1.0001 1.0001 1.0000
An area of 60 × 60 pixels located at [120 : 180, 120 : 180] is influenced by the change (scenario b)
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Table 4  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r , and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 67.370 67.144 66.366 70.907 79.033 80.252 79.537 86.526
+0.01 27.961 27.733 27.728 33.161 42.872 42.932 43.150 57.243
+0.02 7.634 7.651 7.574 9.689 10.134 10.140 10.116 17.148
+0.03 4.041 4.042 4.024 5.414 4.377 4.341 4.371 6.134
+0.04 2.697 2.715 2.700 3.863 2.803 2.801 2.794 3.473
+0.05 2.010 2.012 2.012 3.085 2.091 2.091 2.086 2.522
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 84.211 83.754 83.599 93.202 86.065 87.434 87.108 94.572
+0.01 52.162 52.089 51.894 74.525 57.955 58.135 57.263 81.302
+0.02 13.585 13.609 13.647 33.371 16.649 16.682 16.646 45.699
+0.03 4.992 4.979 5.002 12.203 5.720 5.758 5.689 20.202
+0.04 2.901 2.911 2.899 4.863 3.090 3.098 3.092 8.171
+0.05 2.114 2.114 2.105 2.625 2.171 2.178 2.158 3.456
An area of 30 × 30 pixels located at [11 : 40, 11 : 40] is influenced by the change (scenario c)

Table 5  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r , and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 84.834 82.807 84.208 85.446 91.697 91.809 90.962 93.642
+0.01 53.811 53.749 53.476 58.968 68.947 69.268 69.255 78.590
+0.02 17.612 17.663 17.793 21.532 28.528 28.583 28.490 42.427
+0.03 8.250 8.294 8.237 10.418 11.397 11.456 11.294 19.226
+0.04 5.178 5.116 5.157 6.728 5.946 5.991 5.976 9.302
+0.05 3.698 3.704 3.679 5.033 3.916 3.929 3.949 5.321
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 92.844 93.006 92.408 96.174 93.527 94.553 95.657 98.689
+0.01 74.099 75.686 75.140 88.162 78.838 79.205 79.592 92.895
+0.02 36.419 36.775 36.798 61.797 42.134 42.383 42.668 71.521
+0.03 15.221 15.332 15.430 36.061 18.230 18.933 18.617 48.504
+0.04 7.260 7.256 7.351 19.040 8.715 8.681 8.702 29.681
+0.05 4.396 4.386 4.394 10.032 4.923 4.964 4.956 16.949
Two areas of 15 × 15 pixels located at [21 : 35, 21 : 35] and [201 : 215, 201 : 215] are influenced by the 
change (scenario d)
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Table 6  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r , and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 92.850 92.298 91.445 92.663 94.563 96.136 94.974 97.070
+0.01 71.291 72.990 70.903 76.574 81.841 83.121 83.293 88.914
+0.02 33.3607 33.245 33.378 39.022 49.530 49.649 50.520 62.913
+0.03 15.670 15.693 15.734 19.396 25.072 25.354 25.471 38.388
+0.04 9.187 9.145 9.139 11.530 13.037 13.181 13.109 22.032
+0.05 6.270 6.271 6.257 8.051 7.715 7.765 7.685 12.786
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 96.198 96.306 96.331 98.237 96.553 97.445 97.982 98.585
+0.01 86.138 86.170 87.305 93.645 89.275 89.521 88.582 96.101
+0.02 58.135 58.281 57.833 77.824 63.594 62.888 64.097 85.842
+0.03 33.102 32.863 33.105 58.628 38.030 38.487 38.771 68.525
+0.04 17.713 17.676 17.828 39.724 21.101 21.644 21.355 52.511
+0.05 10.054 9.952 10.005 25.923 12.051 12.277 12.137 38.317
An area of 15 × 15 pixels located at [21 : 35, 21 : 35] is influenced by the change (scenario e)

Table 7  ARLs of the control charts based on CS1,t,r , CS2,t,r , CS3,t,r , and CS
(r)
3,t,r

Change δ λ = 0.2 λ = 0.5
CS1,t,r CS2,t,r CS3,t,r CS

(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 96.664 97.118 95.646 96.772 98.207 98.510 99.723 99.459
+0.01 90.304 89.455 89.553 90.557 94.532 95.551 94.314 96.500
+0.02 66.537 67.116 66.525 70.663 79.248 80.699 79.620 86.702
+0.03 43.543 44.065 44.405 49.161 59.992 61.386 60.059 72.633
+0.04 28.127 27.463 28.024 33.373 43.364 43.783 42.744 57.426
+0.05 18.275 18.180 18.249 22.373 29.477 29.866 29.312 43.731
Change δ λ = 0.8 λ = 1.0

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

CS1,t,r CS2,t,r CS3,t,r CS
(r)
3,t,r

+0.005 98.784 99.448 98.781 99.203 99.346 100.338 99.662 100.163
+0.01 95.237 94.546 95.920 98.007 97.001 97.141 96.124 96.854
+0.02 83.466 83.927 84.546 93.516 87.097 87.127 87.473 95.723
+0.03 67.404 68.850 68.593 84.467 71.994 73.451 71.931 88.776
+0.04 51.164 52.447 51.977 73.962 57.102 57.789 57.517 80.644
+0.05 37.853 37.950 37.808 63.359 43.583 43.558 43.188 73.892
An area of 15 × 15 pixels located at [11 : 25, 11 : 25] is influenced by the change (scenario f)
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slower in comparison with the other control charts. Since the computational com-
plexity for this chart is much lower, it still can be used for monitoring in settings with 
time constraints.

5  Practical issues

In this section, we summarize the methodological framework, provide recommenda-
tions, and discuss practical challenges associated with applying the proposed meth-
odology to real data. The main steps are illustrated in Fig. 5.

In statistical process control, a distinction is made between Phase I and Phase 
II analysis (cf. Jones-Farmer et  al. 2014). Phase I analysis focuses on estimating 
the unknown process parameters, while Phase II is concerned with monitoring the 
process using the fitted model from Phase I. The steps involved in Phase I are sum-
marized in the left panel of the flowchart.

We begin by addressing potential issues in Phase I. The initialization of the moni-
toring process requires in-control data that exhibit no shifts or changes. Although this 
may seem straightforward, collecting a sufficiently large number of in-control images 
can be challenging in practice due to the absence of a formal verification process for 
in-control status or an insufficient sample size. After data collection, it is crucial to 

Fig. 5  Flowchart of the monitoring process with real data
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adjust the images to ensure that variations in lighting or camera positioning do not 
trigger false signals in the control chart. To mitigate such issues, it is recommended 
to use stationary cameras, permanent lighting, and a fixed object position.

In the next step, the image is decomposed into ROIs. The selection of ROIs is criti-
cal for efficient shift detection. Several general approaches can be employed, such 
as chessboard-type ROIs or expanding squares and rectangles. The optimal choice, 
however, depends on the nature of the expected changes and the type of image being 
monitored. Determining the best ROI configuration is left for future research. Finally, 
a spatial autoregressive process is fitted to the ROI characteristics, followed by the 
selection of an appropriate control chart. The sample size plays a crucial role in 
model fitting, as small samples introduce noise into the estimated parameters, poten-
tially leading to false alarms in the control chart due to biased parameter estimates.

Phase II presents fewer challenges compared to Phase I. New images must be 
preprocessed in a manner consistent with the original in-control data, encompassing 
both image adjustments and ROI selection. If the analysis of an image suggests that 
the process is out of control, the out-of-control action plan is initiated. As part of this 
plan, the practitioner must determine whether the spatial statistical process or the 
image source requires recalibration. In such cases, a return to Phase I is necessary.

6  Conclusions

In this paper, we deal with the problem of detecting shifts in a sequence of images 
with temporal dependence. We assume that the pixel intensities are subject to an 
abrupt change, and the aim is to detect this change as soon as possible after its occur-
rence. This problem arises in industrial quality control if production lines are moni-
tored by cameras. Up to now, it has been assumed that the images are independent 
in time. It allows to use relatively simple monitoring tools for independent data. In 
practice, the image data are frequently time-dependent. Another issue that hinders 
the direct application of established monitoring techniques to image data is the high 
dimensionality of the problem. High-resolution images are computationally burden-
some to handle, so we aggregate the pixels into regions of interest to overcome this 
challenge. Finally, the pixel intensities exhibit spatial dependence, as neighboring 
pixels tend to have similar colors. To the best of our knowledge, this is the first paper 
to propose a statistically rigorous method for monitoring time-dependent, high-reso-
lution image data that exhibits spatial correlation between pixel intensities.

We suggest monitoring the average pixel intensities for the ROIs to reduce the 
dimensionality and speed up the computations. Furthermore, we develop several 
EWMA-type control charts that account for temporal dependence and derive explicit 
analytical results. An extensive simulation study reveals the advantages and weak-
nesses of the individual charts. Our approach also differs from conventional clas-
sification methods used in machine learning, which often ignore spatial correlation 
and, in many cases, temporal dependence as well. Moreover, our method can detect 
gradual changes in images and does not require a large number of out-of-control 
images for training, as is typically necessary for machine learning methods such as 
convolutional neural networks (CNNs).
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The two key issues still require further investigation. First, a data-driven choice 
of ROI shapes may lead to more efficient shift detection. This refers to both the geo-
metric shape and the size. Second, the spatial covariance matrix estimation is still 
an unsolved problem in image analysis, and heuristic methods are usually applied. 
These two open questions are left for future research.

Appendix

Here we present some theoretical results about the stochastic properties of our control 
statistics. In Lemma 6.1 and Lemma 6.2 we summarize some results of Bodnar et al. 
(2023), add some results, and give some minor corrections to the original paper. In 
Lemma 6.1 the second part of b) and e) is new, and part f) contains a correction of 
the original paper where an assumption is incorrectly given. In Lemma 6.2 the parts 
b) to e) are new.

The symbols at−τ , ζτ,t,r, and ζl;τ,r are used as in (11), i.e.

	 at−τ = (I − (I − Λ)t−τ+1)aI{0,1,2...}(t − τ), ζτ,t,r = a′
t−τ Σ−1

t,r at−τ , ζl;τ,r = a′Σ−1
l;r a IN(τ).�(17)

Proof of Lemma 2.1  Let Φ = (I −
∑p

i=1 Wi)−1A. Then the Eq. 4 can be written as

	
Γ(0) = ΦΓ(0)Φ′ +

(
I −

p∑
i=1

Wi

)−1

G

(
I −

p∑
i=1

Wi

)−1′

� (18)

and

	
vec (Γ(0)) = vec (ΦΓ(0)Φ′) + vec


(I −

p∑
i=1

Wi)−1G

(
I −

p∑
i=1

Wi

)−1′

 .

Since vec (ABC) = (C′ ⊗ A) vec (B) we get that

	
vec (Γ(0)) = (Φ ⊗ Φ) vec (Γ(0)) +




(
I −

p∑
i=1

Wi

)−1

⊗

(
I −

p∑
i=1

Wi

)−1

 vec (G)

with
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Φ ⊗ Φ =




(
I −

p∑
i=1

Wi

)−1

A


 ⊗




(
I −

p∑
i=1

Wi

)−1

A




=




(
I −

p∑
i=1

Wi

)−1

⊗

(
I −

p∑
i=1

Wi

)−1

 (A ⊗ A).

Consequently,

	

vec (Γ(0)) =


I −




(
I −

p∑
i=1

Wi

)−1

⊗

(
I −

p∑
i=1

Wi

)−1

 (A ⊗ A)




−1

×




(
I −

p∑
i=1

Wi

)−1

⊗

(
I −

p∑
i=1

Wi

)−1

 vec (G).

Using that E−1 ⊗ E−1 = (E ⊗ E)−1 and (I − C−1B)−1C−1 = (C − B)−1 we 
obtain

	
vec (Γ(0)) =

((
I −

p∑
i=1

Wi

)
⊗

(
I −

p∑
i=1

Wi

)
− (A ⊗ A)

)−1

vec (G).

This completes the proof. � □

Lemma 7.1  Let {Yt} be a stationary Gaussian process with E(Yt) = µ and 
Cov(Yt+h, Yt) = Γ(h). Let τ  be fixed. 
(a)	 Then T1,t,r ∼ χ2

r,ζτ,t,r
 and 

	 E(T1,t,r) = r + ζτ,t,r,Var(T1,t,r) = 2(r + 2ζτ,t,r).

(b)	 Suppose that {Γ(v)} is absolutely summable, i.e. that 
∑∞

v=0 ||Γ(v)|| < ∞. Let r 
be fixed then 

	
T1,t,r

d−−−→
t→∞

χ2
r,ζl;τ,r

.

 If further limr→∞
ζl;τ,r

r < ∞, then 

	
lim

r→∞
lim

t→∞
P

(
T1,t,r − r − ζl;τ,r√

2(r + 2ζl;τ,r)
≤ x

)
= N(0, 1)(x).

(c)	 Let t be fixed and suppose that limr→∞
ζτ,t,r

r < ∞. Then 
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T1,t,r − r − ζτ,t,r√
2(r + 2ζτ,t,r)

d−−−→
r→∞

N(0, 1).

(d)	 It holds that 

	

E(T2,t,r) =tr(Σ−1
l;r Σt,r) + a′

t−τ Σ−1
l;r at−τ ,

Var(T2,t,r) =2tr((Σ−1
l;r Σt,r)2) + 4a′

t−τ Σ−1
l;r Σt,rΣ−1

l;r at−τ .

(e)	 Suppose that {Γ(v)} is absolutely summable. Let r be fixed and let 

	
lim

t→∞
Σ1/2

t,r = Σ1/2
l;r � (19)

 then 

	
T2,t,r

d−−−→
t→∞

χ2
r,ζl;τ,r

.

 If further limr→∞
ζl;τ,r

r < ∞, then 

	
lim

r→∞
lim

t→∞
P

(
T2,t,r − r − ζl;τ,r√

2(r + 2ζl;τ,r)
≤ x

)
= N(0, 1)(x).

(f)	 Let t be fixed. Suppose that Ul;t,r is an orthogonal matrix such that 

	 U′
l;t,rΣ1/2

t,r Σ−1
l;r Σ1/2

t,r Ul;t,r = diag (λl;t,r,1, . . . , λl;t,r,r)

 and let U′
l;t,rΣ−1/2

t,r at−τ = (δl;t,r,1, . . . , δl;t,r,r)′. If 

	
lim

r→∞

max1≤i≤r λ2
l;t,r,i(1 + 2δ2

l;t,r,i)∑p
i=1 λ2

l;t,r,i(1 + 2δ2
l;t,r,i)

= 0� (20)

 then 

	

T2,t,r − tr(Σ−1
l;r Σt,r) − a′

t−τ Σ−1
l;r at−τ√

2(tr((Σ−1
l;r Σt,r)2) + 4a′

t−τ Σ−1
l;r Σt,rΣ−1

l;r at−τ

d−−−→
r→∞

N(0, 1).

Proof  The second part of b) follows directly with Lemma 4 of Bodnar and Reiss 
(2016).

In order to prove e) we use that Zt − µ ∼ Nr(at−τ , Σt,r) and that
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(Zt − µ)′Σ−1

l;r (Zt − µ) =
(

Σ−1/2
t,r (Zt − µ)

)′
Σ1/2

t,r Σ−1
l;r Σ1/2

t,r

(
Σ−1/2

t,r (Zt − µ)
)

We observe that Σ−1/2
t,r (Zt − µ) ∼ Nr(Σ−1/2

t,r at−τ , I). Because of (19) we get that 

Σ1/2
t,r Σ−1

l;r Σ1/2
t,r

t→∞−−−→ I and the first part of a) is proved.

In order to prove f) we use that Zt − µ ∼ Nr(at−τ , Σt,r) and that

	

(Zt − µ)′Σ−1
l;r (Zt − µ) =

(
Σ−1/2

t,r (Zt − µ)
)′

Σ1/2
t,r Σ−1

l;r Σ1/2
t,r

(
Σ−1/2

t,r (Zt − µ)
)

=
(
U′

l;t,rΣ−1/2
t,r (Zt − µ)

)′
U′

l;t,rΣ1/2
t,r Σ−1

l;r Σ1/2
t,r Ul;t,r

(
Ul;t,rΣ−1/2

t,r (Zt − µ)
)

=
r∑

i=1
λl;t,r,iH

2
l;t,r,i

with (Hl;t,r,i)i=1,..,r ∼ Nr((δl;t,r,i)i=1,..,r, I). Following the proof of Lemma 2 of 
Bodnar et al. (2023) we make use of Lemma 4 of Bodnar et al. (2023). To apply this 
Lemma we need that (20) holds. � □

Note that the condition (19) is fulfilled if, e.g., all eigenvalues of Σl;r are simple. 
If, e.g.,

	 U′
Eu;t,rΣt,rUEu;t,r = diag (λEu;t,r,1, . . . , λEu;t,r,r)

then

	 Σ1/2
t,r = UEu;t,r diag (

√
λEu;t,r,1, . . . ,

√
λEu;t,r,r)U′

Eu;t,r.

UEu;t,r consists of the normalized eigenvectors which could be chosen to be con-
tinuous in the case of simple eigenvalues if t is sufficiently large. This is in principle 
a result of the implicit function theorem. Thus the matrix converges to Σ1/2

l;r . We refer 
to Lax (2007) for more discussions.

Lemma 7.2  Let {Yt} be a stationary Gaussian process with E(Yt) = µ and 
Cov(Yt+h, Yt) = Γ(h). Let τ  be fixed. 

(a)	 If r is fixed then 

	

E((Zt − µ)′(Zt − µ)) =tr(Σt,r) + a′
t−τat−τ

−−−→
t→∞

tr(Σl;r) + a′aIN(τ),

Var((Zt − µ)′(Zt − µ)) =2tr(Σ2
t,r) + 4a′

t−τ Σt,rat−τ

−−−→
t→∞

2tr(Σ2
l;r) + 4a′Σl;raIN(τ).

(b)	 Let r be fixed and let UEU ;t,r be an orthogonal matrix such that 
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	 U′
Eu;t,rΣt,rUEu;t,r = diag (λEu;t,r,1, . . . , λEu;t,r,r)

 then 

	
(Zt − µ)′(Zt − µ) d=

r∑
i=1

λEu;t,r,iH
2
Eu;t,r,i

 with (HEu;t,r,i)i=1,...,r ∼ Nr(U′
Eu;t,rΣ−1/2

t,r at−τ , I).

(c)	 Suppose that {Γ(v)} is absolutely summable. Let r be fixed and UEu;l,r be an 
orthogonal matrix such that 

	 U′
Eu;l,rΣl;rUEu;l,r = diag (λEu;l,r,1, . . . , λEu;l,r,r).

 If 

	
lim

t→∞
UEu;t,r = UEu;l,r� (21)

 then 

	
(Zt − µ)′(Zt − µ) d−−−→

t→∞

r∑
i=1

λEu;l,r,iH
2
Eu;l,r,i

 with (HEu;l,r,i)i=1,...,r ∼ Nr(δEu;l,r, I), 
δEu;l,r = (δEu;l,r,i)i=1,...,r = U′

Eu;l,rΣ−1/2
l;r aIN(τ). If further 

	
lim

r→∞

max1≤i≤r λ2
Eu;l,r,i(1 + 2δ2

Eu;l,r,i)∑r
i=1 λ2

Eu;l,r,i(1 + 2δ2
Eu;l,r,i)

= 0

 then 

	

lim
r→∞

lim
t→∞

P ( (Zt − µ)′(Zt − µ) − tr(Σl;r) − a′aIN(τ)√
2tr(Σ2

l;r) + 4a′Σl;raIN(τ)
≤ x) = N(0, 1)(x).

(d)	 Let t be fixed. Suppose that 

	

max1≤i≤r λ2
Eu;t,r,i(1 + 2δ2

Eu;t,r,i)∑r
v=1 λ2

Eu;t,r,v(1 + 2δ2
Eu;t,r,v)

−−−→
r→∞

0� (22)

 then 

	

(Zt − µ)′(Zt − µ) − tr (Σt,r) − a′
t−τat−τ√

2tr(Σ2
t,r) + 4a′

t−τ Σt,rat−τ

d−−−→
r→∞

N(0, 1).� (23)
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Proof  To prove part b) we use that

	

(Zt − µ)′(Zt − µ) =
(
U′

Eu;t,rΣ−1/2
t,r (Zt − µ)

)′
U′

Eu;t,rΣt,rUEu;t,r

(
U′

Eu;t,rΣ−1/2
t,r (Zt − µ)

)
=

r∑
i=1

λEu;t,r,iH
2
Eu;t,r,i.

To prove part c) we use that the eigenvalues of a matrix are continuous functions of 
the elements of the matrix (cf. Lax 2007). Using (21) we get that

	

Σ1/2
t,r =U′

Eu;t,r diag (
√

λEu;t,r,1, . . . ,
√

λEu;t,r,r)UEu;t,r

−−−→
t→∞

U′
Eu;l,r diag (

√
λEu;l,r,1, . . . ,

√
λEu;l,r,r)UEu;l,r = Σ1/2

l;r

and the result follows.
The second part of c) follows again with Bodnar and Reiss (2016).
Part d) is proved in Bodnar et al. (2023) but here the condition (22) is correctly 

formulated. � □
In the proofs of Lemma 6.1 and Lemma 6.2 we make use of the fact that the eigen-

values of a matrix are continuous functions of the elements of a matrix (cf. Theorem 
9.6 of Lax 2007). Note that the eigenvectors of a matrix may not be continuous func-
tions of the elements of the underlying matrix. This point is analyzed in detail in, e.g., 
chapter 9 of Lax (2007). A sufficient condition for (21) to hold is that all eigenvalues 
of Σl;r are simple.
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