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The properties of interfaces are key to understanding the physics of matter. However, the study of
quantum interface dynamics has remained an outstanding challenge. Here, we use large-scale tree tensor
network simulations to identify the dynamical signature of an interface roughening transition within the
ferromagnetic phase of the 2D quantum Ising model. For initial domain wall profiles we find extended
prethermal plateaus for smooth interfaces, whereas above the roughening transition the domain wall decays
quickly. Our results can be readily explored experimentally in Rydberg atomic systems.
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Introduction—The static and dynamical properties of
interfaces are fundamental to understanding the physics
and to engineer the functionality of materials. Interfaces
can even undergo their own unique phase transitions
independently of the bulk matter. At a roughening tran-
sition, first identified in models for surface growth and
classical magnetism [1–3], the nature of interfaces changes
qualitatively from being smooth to rough. Intuitively these
different phases can be characterized by their interface
fluctuations, with small bounded fluctuations in the smooth
phase and large unbound ones in the rough phase. The
theoretical analysis of effective solid-on-solid (SOS) mod-
els revealed the Berezinskii-Kosterlitz-Thouless (BKT)
nature of the transition [4,5], which was confirmed in
numerical simulations [6]. For experimental studies, the
interface between liquid and crystallized Helium-4 is a
particularly suited model system [7]. At the involved low
temperatures, however, quantum effects enter. It was found
that quantum fluctuations can cause a roughening transition
at vanishing temperature T ¼ 0 in two-dimensional sys-
tems, but not in three dimensions [8,9]. Interface properties
are relevant also in a broader scientific context beyond
condensed matter. For instance, in high-energy physics, the
flux tube connecting quarks realizes an interface that can

undergo roughening [10]. Signatures of which were
recently observed via digital quantum simulation of a
lattice gauge theory [11]. The exploration of such interface
roughening in quantum matter away from equilibrium has,
however, remained an outstanding challenge to date.
In this Letter, we study the nonequilibrium signatures of

the roughening transition in the quantum Ising model.
Based on large-scale Tree Tensor Network (TTN) simu-
lations for real-time evolution [12–14], we find that the
underlying quantum roughening transition is reflected in a
qualitative change of dynamical behavior of domain wall
initial conditions upon tuning the transverse field strength.
In particular, we identify the independent equilibration of
the interface in the smooth interface regime as an alter-
native cause of prethermal plateaus, which is distinct from
the known mechanisms relying on approximate conserva-
tion laws or Hilbert space fragmentation [15,16]. The
phenomenology can be readily explored in experiments
with Rydberg atomic systems [17–31].
Model—For the central objective to study the dynamics

of interfaces we consider the paradigmatic transverse-field
Ising model (TFIM) on a square lattice, given by

H ¼ −J
X
hi;ji

σxi σ
x
j − g

X
i

σzi ; ð1Þ

where the first sum runs over all neighboring spin pairs.
The TFIM exhibits a ferromagnetic phase, which extends to
nonzero temperatures, with a quantum phase transition
at gc=J ≈ 3.04 and a thermal transition temperature of
Tc=J ≈ 2.27 at g ¼ 0 [32]. Importantly, the 2D quantum
Ising model inherits a second quantum phase transition
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point of BKT type within the ferromagnetic phase, which is
associated with a transition from smooth to rough interfaces
[9]. A suited order parameter will be defined at a later point
of this Letter, providing a quantitative description of the
transition. In the quantum domain, when considering the
limit J ≫ g, the TFIM can be perturbatively linked to
the PXP model, which shows strong dynamical constrains
and Hilbert space fragmentation, leading to a slow relaxation
of various domain wall initial conditions [13,14,33,34].
For the purpose of studying the dynamics of quantum

interfaces, we will initialize the system with two oppositely
polarized magnetic domains, separated by a straight
domain wall; see Fig. 1(a). This is a natural choice for
experimental platforms, while not introducing any addi-
tional effects stemming from, e.g., interface curvature. For
weak enough transverse fields, i.e., within the PXP
approximation, these states remain stable due to sectors
of different interface lengths being dynamically discon-
nected from each other, preventing thermalization up to
timescales that scale exponentially with J=g. (Eventual

thermalization is expected to happen for transverse fields
g=J ≥ 0.2 as is revealed by an analysis of the level-spacing
statistics of a 4 × 5 system; see SM for more details [35],
which includes Refs. [36,37].)
In the following we depart from any such perturbative

limit and target the dynamics in strongly correlated regimes
g=J ∼ 1. As will be shown later, we observe prethermal
plateaus that cannot be explained by Hilbert space frag-
mentation. Instead, this nonperturbative effect is related to
the thermalization of the interface below a roughening
temperature.
Numerical methods—In order to comprehensively

explore the quantum roughening dynamics, we employ a
variety of complementary tensor network techniques. The
simulations of the full dynamics on the 2D lattice were
performed using TTNs and the time-dependent variational
principle [12–14]. Being loop-free, TTNs are efficiently
contractible and their hierarchical structure allows for amore
natural covering of the 2D lattice than thewidely usedmatrix
product states (MPSs) [38]. MPSs will be used later in the
text in order to solve time evolution of an effective 1D
model. Furthermore, we utilize the variational uniform
matrix product state (VUMPS) algorithm [39–41] to study
the ground state properties of the effective model in the
thermodynamic limit. Quantum Monte Carlo (QMC) sim-
ulations [42–44] are employed to estimate effective temper-
atures corresponding to the domain wall initial conditions.
More details on the aforementioned methods are given in
Supplemental Material (SM) [35].
Interface dynamics—A first indication for the slow

thermalization dynamics is provided by the time evolution
of the magnetization imbalance,

I ¼ MT −MB; ð2Þ

withMT=B ¼ ð1=NÞPi∈T=B σ
x
i and T=B indicating the top

and bottom halves of the system [see Fig. 1(a)]. The
imbalance is maximal in the initial state hIðt ¼ 0Þi ¼ 1
and it has to vanish in a thermal state. Figure 1(b) shows
hIðtÞi for a range of transverse fields; the spatially resolved
magnetization hσxi ðtÞi at three time points is included
exemplarily in Fig. 1(a). For the largest transverse fields
we expect a rapid thermalization, which is reflected by the
observed rapid drop in the imbalance on a timescale of
tJ ≈ 1. The subsequent slow decay of the remaining
imbalance is attributed to the diffusive approach to a finally
homogeneous energy density. The smallest field values
conversely show extremely long-lived nonthermal states
due to the aforementioned emergent constraints [33,34].
Noticeably, however, prethermal plateaus seem to dominate
the dynamics even up to intermediate values of the trans-
verse fields of up to g=J ≈ 1 and timescales of Jt ≈ 10.
The fact that the domain wall length operator D ¼

1
2

P
hi;ji ð1 − σxi σ

x
jÞ shown in Fig. 1(c) strongly departs

from its initial value highlights, that the existence of

(a)

(b)

(c)

(d)

FIG. 1. Time evolution of a flat interface on an 8 × 8 lattice
with open boundary conditions. (a) Spatially resolved magne-
tizations at times tJ ¼ 0, 10, and 100 for a transverse field of
g=J ¼ 0.75. The bottom three plots show (b) the imbalance,
(c) the domain wall length, and (d) the entropy of entanglement
across the initial interface for several transverse fields: the color
coding is indicated in the color bar to the right. The imbalance
shows the existence of long-lived plateaus, even at transverse
fields g ≈ J. All the results are shown for three different bond
dimensions χ ¼ 181, 256, 362, where the opacity increases with
the bond dimension. For panels (a) and (b), almost all of the data
points lie on top of each other.
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prethermal plateaus at intermediate transverse fields cannot
be captured within the usual framework of Hilbert space
fragmentation governed by restricted domain wall lengths.
We will instead demonstrate in the following that an
effective description can be formulated in terms of a
single-domain-wall approximation.
Figure 1 includes a convergence check of the numerical

results with different bond dimensions up to χ ¼ 362.
While late times and stronger transverse fields become
challenging, the prominent prethermal plateaus are well
within the regime of certain convergence. Most sensitive to
varying bond dimension is the half-system entanglement
entropy [Fig. 1(d)], when splitting the system into two
equal partitions along the initial interface, which shows that
the moderate amounts of entanglement generated up to the
lifetime of the plateaus are well captured.
Effective model—In order to explain the observed non-

perturbative prethermal effects, we formulate an effective,
one-dimensional model that corresponds to the projection
of Eq. (1) onto the subspace of domain wall states with
exactly one horizontal interface segment per column (see
SM for a more detailed derivation [35]),

Heff ¼ 2J ·
X
i

jNi − Niþ1j − g ·
X
i

�
Ei þ E†

i

�
: ð3Þ

Here, we introduced height operators Ni measuring
the perpendicular displacement of the domain wall; see
Fig. 2(a). The raising (lowering) operators E†

i ðEiÞ are the
projection of the σzi , which in the manifold of single
horizontal domain walls can only flip spins next to the
domain wall. The raising and lowering operators obey the

commutation relations ½Ei; Nj� ¼ Eiδi;j similar to the
standard definition used in quantum rotor models [45].
Hence, the phase operator φ defined through Ej ¼
expðiφjÞ is canonically conjugate to the height operator
and the Ni can alternatively be viewed as bosonic occu-
pation number operators. It is important to note that the
model is not based on some low-order Schrieffer-Wolff
transformation, but instead captures the relevant fluctua-
tions of the initial domain wall.
The effective model (3) is also closely related to SOS-

like models [4,5], in which roughening appears as a BKT
transition [46]. The critical point of Heff has been argued to
be upperbounded by the critical point of the quantum rotor
model [47–49]. This is noticeably below the symmetry-
breaking phase transition of the full TFIM.
Roughening is indicated by the kink operator

KαðlÞ ¼ cos½αðN1 − NlÞ�; ð4Þ

which probes the fluctuations of the interface in the
direction perpendicular to its initial orientation. It is a
suited order parameter because a value of hKαðlÞi ¼ 1
corresponds to a flat (smooth) interface, while a value of
hKαðlÞi ¼ 0 corresponds to a highly fluctuating (rough)
interface. A universal quantitative analysis would require
taking the limits limα→0liml→∞hKαðlÞi for the angle α and
distance l. In our numerical analysis of finite systems, we
choose l ¼ Lx maximal and we find that α ¼ 1 is the
minimal value, that sufficiently suppresses bulk contribu-
tions when considering the full TFIM; see SM [35] for
more details. From now on we will drop the dependency on
α and l, i.e., K ≡ Kα¼1ðl ¼ LxÞ.

(a) (b) (c) (d)

FIG. 2. (a) Mapping from a domain wall state in the full two-dimensional model to an effective one-dimensional bosonic state.
(b) Expectation value of the kink operator, evaluated on the ground state of the effective model as a function of the transverse field.
Different maximal occupation numbers 4 ≤ Nmax ≤ 14 in steps of two are shown; asNmax increases, the kink operator starts exhibiting a
jump at gR=J ≈ 1.38 corresponding to the roughening transition; see also SM [35]. (c) Expectation value of the kink operator, evaluated
on the thermal state of the effective model in the classical limit (g ¼ 0) as a function of temperature. We consider chain lengths
Lx ∈ ½500; 512 × 103�, with exponentially increasing steps. The inset shows that the crossover temperature TR, defined by
hKðTR=JÞi ¼ 0.5, vanishes in the thermodynamic limit as the inverse logarithm of the system size, confirming the analytical
prediction (5) that is indicated by the dashed gray line. The constant b in the x axis label is given by b ¼ 2ð1 − cos 1Þ= log 2. Data points
in (b) and (c) are represented by crosses, with a linear interpolation between them. (d) Phase diagram of the 2D TFIM. The blue line
represents the critical line separating the ferro- from the paramagnetic phase, the red line denotes the effective temperature of the initial
state based on its energy, obtained from QMC simulations; see SM [35]. Our results point toward the existence of a roughening transition
at a value of gR=J ≈ 1.38 < gc=J. The green shaded region shows the extended smooth interface regime present in finite systems.
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Figure 2(b) shows the ground state expectation value of
the kink operator for varying g=J and different values of the
occupation number truncation Nmax, obtained using the
VUMPS algorithm. The drop of hKi with increasing g=J
clearly indicates the transition from a smooth to a rough
interface regime. This drop becomes sharper as Nmax is
increased, pointing toward the existence of a phase tran-
sition—a fit of the correlation length provides the critical
value gR=J ≈ 1.38. Further analysis strengthens the hypoth-
esis of a BKT transition in the SOS model; see End Matter
and SM [35].
Next, we turn toward the question of whether its

signatures survive even at nonzero temperatures T. Note
that order at T > 0 would not violate the Mermin-Wagner
theorem due to the infinite local Hilbert space dimension
[50]. We consider the classical limit of the effective model,
i.e., g=J ¼ 0, and use a transfer matrix based method to
calculate the expectation value of the kink operator in the
thermal state; see End Matter and SM for more details [35].
The thermal expectation value of the kink operator shown
in Fig. 2(c) exhibits an extended regime with a clear
signature of smooth interfaces at low temperatures for
system sizes up to Lx ¼ 5 × 105. However, the turning
point shifts with increasing system size and its location
behaves perturbatively as

TR=J ¼ 2 log

�
2½1 − cosðαÞ�Lx

logð2Þ
�

−1
: ð5Þ

See the inset of Fig. 2(c) as well as End Matter and
SM [35], which includes Ref. [51]. Thus, in the thermo-
dynamic limit Lx → ∞, roughening occurs immediately for
any T > 0. Nonetheless, clear signatures of a smooth
interface regime at nonzero temperature survive up to very
large system sizes due to the logarithmic dependence of TR
on Lx, which has especial relevance for current experi-
mental realizations in quantum simulators.
Figure 2(d) shows a sketch of the inferred phase diagram

in the full two-dimensional Ising model, summarizing all
the previously discussed results: The ferromagnetic phase
encompasses an extended smooth interface regime delim-
ited by a roughening quantum phase transition (QPT) and a
system-size dependent crossover at nonvanishing tempera-
tures. We include the effective temperatures fixed by the
domain wall initial condition for the range of considered
transverse fields g=J, indicating that signatures of a smooth
interface regime will vanish already at field strengths below
the critical gR. Concerning the nonequilibrium dynamics,
this phase diagram suggests that the effective model can
thermalize in the smooth domain wall regime, implying
stability of domain walls for long times. We will show next
that this prediction is even quantitatively accurate for the
full dynamics of the two-dimensional TFIM.
Dynamical signature of roughening—The effective

model covers the subspace of single domain wall states

without bubbles or overhang. To check the validity of
this description, we plot the time dependence of the hori-
zontal domain wall length Dx ¼ 1=2

P
i;jð1 − σxi;jσ

x
i;jþ1Þ in

Fig. 3(a). The small deviations of hDxi=Lx from 1 for
transverse fields up to g=J ≈ 1 support the validity of the
effective model in that regime.
We now turn to a direct comparison between the

dynamics of the full and the effective model—the latter
simulated using MPS. In the full 2D TFIM, the operator
probing the vertical position of the domain wall at site i is
given by Ni ¼

P
j⊥i j=2ð1 − σxi;jσ

x
i;jþ1Þ with the sum run-

ning over all lattice sites j perpendicular to the domain
wall. For a meaningful comparison with the effective
model, however, we need to account for bulk contributions
such as single spin flips away from the domain wall.
For that purpose, we define a modified kink operator
KM ¼ hKi=hKbulki, where hKbulki is obtained by calculat-
ing the kink operator for a system where the interaction

(a)

(b)

(c)

FIG. 3. (a) Time evolution of the horizontal contribution to the
domain wall length divided by the horizontal lattice dimension.
The plot shows that up until g=J ¼ 1, each column has approx-
imately one horizontal domain wall for the times considered,
confirming the validity of the effective model (3) in that regime.
(b) Comparison between the effective (dashed lines and crosses)
and the full model (solid lines and circles) for the time evolution
of the kink operator. In order to filter out the strong fluctuations
of the data we show the running mean of the kink operator.
For the full model, we calculate the modified kink operator
KM ¼ hKi=hKbulki. We do not show data for transverse fields
beyond g=J ¼ 1, as bulk and interface contributions become
increasingly difficult to disentangle. (c) Late-time averages of the
kink operators shown in (b), taken over the interval tJ∈ ½20; 100�,
as functions of the transverse field. The values agree well up to
g=J ¼ 1, once again confirming the quantitative predictive power
of the effective model in that regime.

PHYSICAL REVIEW LETTERS 134, 240402 (2025)

240402-4



along the initial domain wall is removed, i.e., only bulk
effects contribute to the time evolution. Since the time-
dependent expectation values obtained from the full and the
effective models differ in their high frequency fluctuations,
we will moreover consider their running time averages
K̄ðtÞ ¼ ð1=tÞ R t

0 dthKðtÞi instead for the direct quantitative
comparison. See SM for more details [35].
The time evolution of the modified kink operator in

comparison with the kink operator of the effective model is
shown in Fig. 3(b). Data for the full model is restricted to
transverse fields g=J ≤ 1, since the separation of bulk from
interface effects becomes infeasible for larger fields. We
find very good quantitative agreement between these two
models, meaning that the dynamics of interfaces in
the TFIM can be understood in terms of the SOS model:
for the considered intermediate values of the transverse
field, the SOS model thermalizes within the smooth inter-
face regime [cf. Fig. 2(d)] and the initially flat domain wall
profile remains eternally stable. This stability of the domain
wall manifests itself in the full TFIM in the form of
prethermal plateaus with K̄MðtÞ > 0. In contrast to the
effective model, a subsequent decay of these prethermal
states is to be expected in the full model, but these
timescales seem out of reach for current numerical
approaches. Figure 3(c) displays the late-time stationary
values of the running, time-averaged kink operator by
taking the mean over points lying in the interval
tJ∈ ½20; 100�, which once more highlight the compelling
quantitative agreement between the SOS model and the
TFIM. Results obtained for a 16 × 16 lattice confirm said
agreement for larger system sizes, without the need to
suppress temporal fluctuations via taking the running
mean; see SM [35] for more details. Finally, notice that
the imbalance in Fig. 1(b) and the kink operator in Fig. 3(b)
exhibit different lifetimes of the prethermal plateaus. This
indicates that restoring the rotational symmetries requires
longer times than the restoration of translational symmetry.
Discussion—Our analysis establishes a connection

between the roughening transition and the relaxation
dynamics of quantum interfaces in the 2D TFIM. The
stability of domain walls in the smooth interface regime
constitutes a new mechanism for prethermalization beyond
known ones like proximity to an integrable point [15] or
Hilbert space fragmentation and quantum scars [16], high-
lighting a qualitative change within the dynamical phase
diagram of the TFIM in two dimensions.
The domain wall dynamics of the quantum Ising model

can be probed experimentally in state of the art Rydberg
atomic systems [31,52–54]. Domain wall initial conditions
can be prepared via programmable locally controlled light
shifts, and recent experiments demonstrate the feasibility of
a transversely oriented magnetic field of the required
intermediate magnitude [31,53]. Our formulation of the
effective model remains unchanged for the typical anti-
ferromagnetic interactions. Since the imbalance and the

kink operator are immediately accessible through snapshot
measurements, we expect that the described phenomenol-
ogy is readily accessible in current Rydberg atom quantum
simulators. An exciting prospect would be the possibility to
probe longer timescales in this way.
Furthermore, it will be interesting to investigate other

initial domain wall configurations in the light of roughening.
Examples include the observed self-straightening dynamics
of a initial zigzag configuration [31] and potential implica-
tions for false vacuum decay probed via bubble formation
[55–58]. More generally, the impact of curvature on the
phenomenology of the roughening dynamics remains to be
explored in a future work. Another immediate question
concerns the generalization to other symmetries, since the
results presented here rely on a Z2 symmetry-broken phase.
The TTN simulations presented in this Letter were

produced with TTN.jl [59], a software packagewe developed
based on the ITensor library [60]. The MPS simulations were
performed with the help of ITensor. The QMC simulations
were produced with the help of the ALPS software package
[61] and a rust library [44].
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End Matter

BKT transition of the SOS model—Here, we
demonstrate that the nature of the transition in the
effective SOS model (3) belongs to the BKT universality
class. To this end, we use the VUMPS algorithm [39–41]
to study the ground state properties of the effective
model. This allows us to work directly in the thermo-
dynamic limit with a fixed truncation of bosonic
excitations Nmax ∈ 2Z. In the two-dimensional model, this
is equivalent to considering an infinitely long slab of
width Ly ¼ Nmax þ 1 with the interface oriented along

the infinite direction. To observe the critical properties, it
is necessary to scale the results against Nmax → ∞.
In practice, we considered Nmax ≤ 14. Since the local

Hilbert space scales as dimðHlocÞ ¼ Nmax þ 1, a maximum
bosonic occupation of 14 already leads to very long
simulation times of 13 × 103 s per iteration for a bond
dimension of χ ¼ 600.
In contrast to continuous phase transitions described by

the Landau-Ginzburg theory, the BKT transition cannot be
detected by the divergence of any derivative of the energy
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density ϵðgÞ, which is an analytical function of g. This is
demonstrated in Fig. 4(a) via the example of the first and
second derivative of ϵðgÞ. Moreover, we observe that ϵðgÞ
and its derivatives are quickly converging in Nmax.
Characteristic of the BKT transition is the exponential

divergence of the correlation length when approaching the
critical value gR,

ξðgÞ ¼ ξ0 exp

�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg − gRj

p
�
; for g < gR: ðA1Þ

Here, ξ0 and B are nonuniversal constants depending on the
model and on the observable used to extract the correlation
length. We observed the largest correlation length for the
vortex-vortex correlation function

CðlÞ ¼ he−iN0eiNl i⃗l→∞Ae−
l
ξ þ C∞;

which is closely related to the kink operator (4). The
constant C∞ is expected to be close to 1 in the g < gR
region, while we expect it to vanish after the BKT transition
for Nmax → ∞. In particular one has hKαðlÞi → jC∞j for
l → ∞. The results are displayed in Fig. 4(b) for
6 ≤ Nmax ≤ 14. For increasing Nmax, the correlation length
shows a divergent behavior around g=J ≈ 1.4 with ξ ∼ 800
for Nmax ¼ 14.
To quantify that ξðgÞ has the correct behavior approach-

ing gR=J, we fit ξðgÞ for Nmax ¼ 14 for 1.1 < g=J < 1.385
with higher resolution using Eq. (A1). From this fit, we
obtain gR=J ≈ 1.38. In Fig. 4(c) we plot the logarithmic
correlation length as a function of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg − gRj
p

for g < gR
and 6 ≤ Nmax ≤ 14 using the value of gR obtained by the
fit. Increasing Nmax leads to a better agreement between the
data and the prediction for the correlation length, which
should be exact in the limit Nmax → ∞. For lower Nmax the
curve starts flattening out and thus deviating sooner,
illustrating the finite Nmax effects.

Finite temperature crossover in the classical limit—In
the classical limit g → 0 the effective model (3) contains
only commuting operators jNj − Njþ1j. Thus, all
eigenstates are simply given by product states jfsjgi,
fixing the occupation on the jth site. To study the
thermodynamic properties in this limit, it is sufficient to
replace the number operator Nj by its eigenvalues
sj ∈ f0; Nmaxg,

HclassðfsjgÞ¼2J
XLx−1

j¼1

jsj−sjþ1j¼
XLx−1

j¼1

hðsj;sjþ1Þ: ðB1Þ

Let Vs;s0 ¼ exp½−βhðs; s0Þ� be the transfer matrix of the
classical system and define the general α twisted
boundary vector jEðαÞi ¼ PNmax

s¼0 eiαsjsi. The α twisted
partition function of a chain of length Lx with open
boundary conditions can be written compactly as

ZðαÞ ¼
XNmax

s1¼0

…
XNmax

sLx¼0

e−βHclassðfsjgÞ−iαðs1−sLx Þ

¼ hEðαÞjVLx−1jEðαÞi: ðB2Þ

The standard partition function corresponds to zero
twisting, i.e., Z ¼ Zð0Þ. We can now write down the
expectation value of the string operator hKli. For simplicity,
we consider l ¼ Lx, i.e., the end-to-end expectation value.
Using the twisted partition function, we obtain

hKαðLxÞi ¼
ZðαÞ
Zð0Þ : ðB3Þ

The calculation can be further simplified by diagonal-
izing the transfer matrix V ¼ UΛU†. In this case, the

(a)

(b)

(c)

FIG. 4. (a) The energy density and its first two derivatives with
respect to the transverse field g, as a function of g. All of the
different orders do not show any sign of nonanalyticity around the
transition point, excluding the possibility of it being a first or
second order phase transition. (b) The correlation length shows a
divergence at g ¼ gR when increasing the maximal bosonic
occupation number. All results are obtained with a bond
dimension of χ ¼ 600 and are converged for Nmax < 14. For
the Nmax ¼ 14, the points around the transition are not yet fully
converged, showing numerical artifacts for g > gR. (c) Fit of (A1)
to the data, showing the correct BKT type divergence law of the
correlation length. Increasing Nmax again leads to a better
agreement between the data and the expected law. The critical
transverse field obtained from the fit for the largest Nmax ¼ 14 is
gR=J ¼ 1.38.
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twisted partition function can be written as

ZðαÞ ¼ λLx−1
1

XNmax

s¼0

fLx−1
n jcnðαÞj2; ðB4Þ

where λ1 is the largest eigenvalue, fn ¼ λn=λ1, and cnðαÞ
are the form factors obtained by calculating the overlap
between the eigenstates jψni of V and the twisted boundary
vector jEðαi.
Numerically we found the operator hKαðLxÞi to rapidly

converge in Nmax; more specifically Nmax ¼ 200 is large
enough for our analysis (see SM [35] for more details).
It is also possible to understand the crossover behavior

analytically and derive a functional form for the transition
temperature TRðLxÞ. Using the exact eigenvectors and
eigenvalues of the transfer matrix V of the classical

model (B1), we were able to find an approximation of
the end-to-end string operator in the limit of large
Nmax; Lx ≫ 1, and small q ≪ 1 [35],

hKαðLxÞi ≈ exp ð−2qð1 − cosðαÞLxÞ: ðB5Þ

By setting hKαðLxÞi ¼ 1=2 and solving for T=J ¼
−2= logðqÞ, we find that the transition temperature TR
should vanish logarithmically with the system size Lx,

TRðLxÞ=J ¼ 2 log

�
2½1 − cosðαÞ�Lx

logð2Þ
�

−1
; ðB6Þ

which has been confirmed numerically; see inset of
Fig. 2(c).
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