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Abstract

In time-dependent systems, autoregressive models are frequently employed to investigate the interactions between
variables of interest in fields such as climate science, macroeconomics, and neuroscience. Typically, these variables
are aggregated from smaller-scale variables into large-scale variables, for instance, representing modes of climate
variability in climate science. A key aspect of these models is estimating the long-term effects of external
perturbations, once the system stabilizes. Our primary contribution is an explicit formula for quantifying these
long-term effects on small-scale variables, which is directly estimable from the model’s linear coefficients and
aggregation weights. This improves traditional autoregressive models by providing a localized understanding of the
system behavior. We conduct a series of numerical experiments to evaluate the performance of various methods to
estimate perturbation effects from data. Our second contribution is the derivation of the asymptotic properties of these
estimators under suitable assumptions. These asymptotic properties can be leveraged for uncertainty quantification.
In a numerical experiment, we compare the uncertainty ranges of the proposed asymptotic-based approach with four
bootstrap-based methods. Finally, we apply our methods to investigate the effects of economic activities on air
pollution in Northern Italy, demonstrating their ability to reveal local effects. Our novel approach provides a
comprehensive framework for analyzing the impacts of perturbations on both large- and small-scale variables,
thereby enhancing our understanding of complex systems. Our research has implications for various disciplines
where the study of perturbation effects is crucial for understanding and predicting systems’ behavior.

Impact Statement

Autoregressive models often are aggregated variables from smaller scales. Of particular interest in these models
is studying the impact of external perturbations on large-scale variables, which has led to numerous applications
across diverse fields. Such studies mainly focus on the effects between the aggregated variables and do not
consider the effects between the small-scale variables. Our work presents two contributions. First, we develop a

©TheAuthor(s), 2025. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

This research article was awarded OpenMaterials badge for transparent practices. See the Data Availability Statement for details.

Environmental Data Science (2025), 4: e33, 1–31
doi:10.1017/eds.2025.10007

https://doi.org/10.1017/eds.2025.10007 Published online by Cambridge University Press

https://orcid.org/0000-0001-6006-8750
mailto:kevin.debeire@dlr.de
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eds.2025.10007
https://doi.org/10.1017/eds.2025.10007


method to quantify the effects of perturbations on small-scale variables within an aggregated autoregressive
model. Second, we introduce an approach to provide uncertainty bounds for these effects. Our approach enables
the estimation of the effect of an external perturbation at the level of the small-scale variable.

1. Introduction

What are the effects of increased economic activities on air pollution levels? How do different regions of
the brain interact and influence one another? Can we accurately estimate the effects of these interactions
with a high degree of spatial precision? Understanding the impact of external perturbations on a system is
a crucial aspect of dynamic system analysis. However, in fields such as economics and climate science,
direct intervention in the system to measure the impact of an external disturbance is often neither feasible
nor ethical. Consequently, data-driven approaches are predominantly used to estimate the effects of
perturbations on such systems.

In particular, linear time-lagged dependencies between variables are commonly estimated using
autoregressive models in neuroscience (Friston, 2009), Earth system and climate data analysis (Runge
et al., 2019), and macroeconomics (Sims, 1980; Zha, 2010). Beyond the estimation of the linear
dependencies, the interest often centers on analyzing the effect of an external perturbation on the system.
One frequently used quantity to estimate the effects of a shock is, for example, the impulse response. The
impulse response indicates the temporal response of an exogenous shock in one of the variables on one or
all the other variables. Other measures, such as the accumulated response, reveal the cumulative effect of
this shock over several time steps. Finally, the long-run effects (LREs) are the total accumulated effects
over all future time steps. In a linear vector autoregressive model (VAR model) (Sims, 1980), there are
explicit formulas for the impulse response, the accumulated response, and the long-term effects, which
can be used to estimate the effect of a shock on the system analyzed (Pesaran and Shin, 1998; Lütkepohl,
2005). The applications of these explicit formulas are numerous in the literature, especially in macro-
economics. In addition, the estimation uncertainty of these measures can be derived from an asymptotic-
based argument or using bootstrapping methods (Benkwitz et al., 2001; Lütkepohl, 2005).

To illustrate the range of applications, we give a non-exhaustive list of analyses in which the effects of a
perturbation using a VAR model were of interest. In Lütkepohl and Wolters (2003), the authors have
investigated the effects of German monetary policy on the monetary sector during the pre-euro period.
Blanchard and Perotti (2002) have studied the effects of a change in government spending and taxes on
Gross Domestic Product (GDP) in the United States. More recently, Prüser and Schlösser (2020) have
analyzed the effect of economic policy uncertainty on European economies. In Hayat et al. (2021), the
relationships between inflation, interest rate, and economic growth have been the main interest. In between
macroeconomic, social science, and environmental science, Khan et al. (2020) have examined the
relationships between environmental degradation, economic growth, and social well-being in the countries
of the Belt andRoad Initiative.More focused on public health, Jiang and Liu (2022) have analyzed the effect
of inflation on infant mortality. Also, in public health, Liu et al. (2019) have estimated the effects of
economic growth and health progress in the United States. In all of these studies, the variables in the VAR
model are often aggregates of smaller-scale variables. In neuroscience, Bullmore and Sporns (2009) have
used the VARmodel to study the organization and interaction of different brain regions. In climate science,
the interactions between climate indices and modes of variability have been studied. These modes, such as
the El Niño–Southern Oscillation (Wunsch, 1990), the North Atlantic Oscillation (Barnston and Livezey,
1987), or the Pacific Decadal Oscillation (Mantua et al., 1997), are the main drivers of global climate from
the ocean to stratospheric dynamics. To obtain time series data, modes are extracted from spatially gridded
data. While some modes are defined based on expert knowledge, some require the use of dimension-
reductionmethods such as principal component analysis (PCA) (Storch and Zwiers, 1999). The time-lagged
dependencies between the modes have been analyzed using various methods (Ebert-Uphoff and Deng,
2012; Runge et al., 2014; Runge et al., 2015; Kretschmer et al., 2016; Kretschmer et al., 2017; Runge et al.,
2019; Nowack et al., 2020; Galytska et al., 2023; Karmouche et al., 2023).
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In the aforementioned fields of study (macroeconomics, public health, environmental science, Earth data
analysis, and neuroscience), large-scale variables have commonly been aggregates of smaller-scale vari-
ables. This aggregation is mostly spatial (for instance, the climate modes) but can also be an aggregation of
individuals, types of products, and so forth (e.g., economic or social indices). Due to the high cross-
correlations between small-scale variables and the high dimensionality of the system, it is generally not
recommended to model the dependencies between small-scale variables using an autoregressive model.
However, some approaches have been developed to overcome this challenge. For example, Yan et al. (2021)
propose aVARmodelwhere each variable represents a process in a single spatial location. To reduce the high
dimensionality of the system, they enforce sparsity and coefficient homogeneity in the transition matrix. To
avoid the challenge of high dimensionality, in this study, we take advantage of the time-lagged linear
dependencies between large-scale variables, which reveal emergent behavior that coherently appears at the
small scale, thereby leading to large-scale dependencies. As a result, we aggregate small-scale variables into
large-scale variables whose dependencies can be modeled using an autoregressive model. We use the
spatially aggregated VAR (SAVAR) model introduced by Tibau et al. (2022). The SAVAR model was
originally designed to benchmark causal discovery methods and was developed for spatial aggregation. In
practice, however, the aggregation does not have to be spatial and can be any type of nontemporal
aggregation. This model is particularly suited to represent the aggregation of the VAR processes and their
linear dependencies due to its matrix of aggregation weights and a single matrix of linear dependencies.

The effects of an external perturbation between large-scale variables can be explicitly calculated using
formulas available in the literature. However, the effects of an external perturbation between small-scale
variables need to be determined. In addition, approaches for building uncertainty bounds for small-scale
effects should also be investigated. Our main contribution is in addressing those two points. We introduce
LREs and sensitivity, two measures that indicate the long-term effects of an external perturbation on the
small-scale variables.We derive their explicit formulas as functions of the linear coefficients and aggregation
weight matrices of an SAVARmodel. In addition, we derive the asymptotic distributions of the estimators for
thesemeasures under certain assumptions and show how to utilize them for uncertainty quantification. As an
illustrative application, we analyze the long-term effects of economic activities on air pollution in Northern
Italy, thereby demonstrating the practical utility of our approach in environmental science.

This article is divided into two sections. Section 2 provides a motivational example followed by a detailed
description of materials and methods. We briefly introduce the SAVARmodel along with relevant notations.
We define the sensitivity and the LREs, as twomeasures that express the long-term effects of a perturbation in
an SAVAR model. We derive their explicit formulas as follows. Assuming that the aggregation weights are
known and that the underlying VAR process is stable, we derive the asymptotic distributions of their
estimators. This asymptotic property can be used to build uncertainty bounds. Section 3 demonstrates the
methods through several applications: two experiments with synthetic data and one real-world application. In
Experiment 1, we evaluate various methods for estimating the sensitivity using synthetic data. In the second
experiment, we analyze different techniques for establishing uncertainty bounds. Specifically, we assess the
previously mentioned asymptotic method against multiple bootstrap methods. Finally, in the real-world
application, our motivation is to quantify the long-term effects of economic activities on nitrogen dioxide
(NO2) pollution in northern Italy. Our approach allows for estimating these effects at a finer resolution of a
spatial grid, rather than the broader resolution of the modeled VAR processes. Additionally, we evaluate the
statistical significance of these long-term effects using both bootstrap and asymptotic methods.

2. Materials and methods: Response to a forcing in a linear dynamical system

2.1. Motivating example

In the following, we illustrate the problem of estimating the effects of a particular perturbation in the
SAVAR model (Tibau et al., 2022) at the level of the small-scale variables. We first present the
characteristics of an SAVARmodel. In this manuscript, vectors are denoted in bold (e.g., y) while scalars
remain in regular font.
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Consider, for instance, a set of three VAR processes X0,X1,X2 that we call modes, as depicted in
Figure 1A. The Xi are defined on the small-scale variables yj stored in a column vector y so that Xi =W0

i y
whereWi is a weight vector. A concrete example of such modes is a set of climate modes defined as the
weighted average of variables over a grid (temperature, sea level pressure, etc.). In the literature, the
estimation of the VAR linear coefficients and the estimation of the effect of a perturbation on one VAR
variable on the others are well documented. Diverse measures were derived to study the effect of a
perturbation, shock, or impulse in a VAR model, including the impulse response analysis, forecast error
variance decomposition, and accumulated response, among others (Pesaran and Shin, 1998; Lütkepohl,
2005). However, such measures describe the impact at the level of the VAR processes (in Figure 1 the Xi)
and not at the level of the small-scale variables (in Figure 1 the y). We think it is also essential to quantify
the effects of perturbing one or several small-scale variables on the other small-scale variables in such a
model and to provide uncertainty bounds for these effects, as this information is crucial for a thorough
understanding of the system’s behavior.We illustrate this problem in Figure 1B. The small-scale variables
y are subject to a particular perturbation, a forcing of intensity f at time t0, where we define a forcing as
follows:

Definition 2.1 (Forcing). A forcing is an external perturbation of intensity f and weights b∈ℝL, as
shown in Figure 1B (where L is the total number of grid points). We assume the forcing begins at time t0
and remains constant after that (t≥ t0), with nonuniform weighting across the grid, specified by b.

Figure 1. (A) Example of large-scale variables X0,X1,X2 following a VAR model. Arrows indicate direct
linear time dependencies between the large-scale variables defined inA, whereAij τð Þ indicates the effect
of variable Xj on variable Xi at time lag τ. The large-scale variables X0,X1,X2 are aggregates of the
small-scale variables y defined on the spatial grid (gray grid) with weights W0,W1,W2, respectively.
Each large-scale variable Xi can be calculated from the small-scale variables y thanks to the weights
vectorWi such thatXi =Wi

0y. (B) An example of an external forcing of intensity f with spatial weights b is
applied for all time t≥ t0. The forcing is constant over time, but nonuniform spatially. (C) An example of
the effects of the forcing once the system reaches equilibrium (LREs). Note that the aggregation weights
are obtained solely via standard dimensionality reduction methods (e.g., PCA or PCA-Varimax) or prior
knowledge and are not optimized based on the linear coefficient estimation. In particular, there is no
feedback from the estimation of the linear coefficients to the determination of these weights.
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The question we want to address is: can we quantify the effects of the forcing at the small-scale level
once the processes reach equilibrium? If yes, we can calculate these effects for the small-scale variables y
and plot them as in Figure 1C.Answering this question is relevant as it enables the estimation of the effects
of a perturbation with a higher degree of locality (at the level of the small-scale variables yi). A standard
VAR model will provide these effects only at the coarser resolution of the VAR processes (aggregated
variables Xi). There is a well-established body of literature on the estimation and the properties of the
effects of a perturbation at the level of the VAR processes (Pesaran and Shin, 1998; Lütkepohl, 2005).
However, to answer our motivational question, we have not found previous studies that derive similar
measures at the small-scale level (y) and provide their asymptotic properties and statistical significance.

To achieve this, we model the system at the small-scale level using an SAVAR model introduced in
Tibau et al. (2022). This model is an extension of a VAR model, in which the VAR processes are mapped
onto small-scale variables with a matrix of weightsW. Going back to the example given in Figure 1, the
matrix of weights of the SAVAR model could be, for example, the following:

W=

W0
0

W1
0

W2
0

0
B@

1
CA,such thatX≔

X0

X1

X2

0
B@

1
CA=Wy

We explore the impact of a unit forcing (an external factor that influences one or several small-scale
variables for all future time steps) on the global mean of system variables at equilibrium, whichwe refer to
as sensitivity. Additionally, we investigate the effects of the forcing at the level of individual small-scale
variables, providing a more detailed understanding of its impacts on the yi, as opposed to the VAR
processesXi. This is characterized by theLREs, which capture the changes induced by the external forcing
on the small-scale variables at equilibrium.

Definition 2.2 (Sensitivity). The sensitivity quantifies the equilibrium response of global means or
regional averages to a forcing, capturing the magnitude of its impact. More precisely, the sensitivity, α, is
defined as the ratio of the difference between the post-forcing and pre-forcing temporal averages of y over
the forcing intensity f, where the temporal mean is computed over the appropriate time intervals.

Definition 2.3 (LREs). We define the LREs as a two-dimensional matrix, where each entry ij represents
the equilibrium response of variable yi to a unit forcing applied to variable yj.

These twomeasures offer quantitative information on the effects of the forcing at the level of the small-
scale variables (long-term effects) or on a specific area of interest (sensitivity) in an SAVAR model. Our
approach enables the practitioner to estimate the effects of a forcing with higher locality. The effects are
estimated at the finer resolution (scale of the yi) rather than the coarser resolution of the VAR processes
(the Xi), which will result from a standard VAR model.

The previous example has motivated the need for a model that accounts for the representation of linear
dependencies at the grid level. Such a representation is possible with the SAVAR model (Tibau et al.,
2022). The following sections outline the SAVAR model and derive the explicit formulas for the
sensitivity and LREs. We then derive the asymptotic properties of these estimators, enabling the
construction of confidence intervals (CIs) for sensitivity and LREs, which can be used to quantify
uncertainty and evaluate the statistical significance of the LREs at the small-scale level.

2.2. A simple spatiotemporal stochastic model: the SAVAR model

The SAVAR model introduced by Tibau et al. (2022) is a model that combines a VAR model with a
mapping. This mapping can be spatial, as described in Tibau et al. (2022). In general, the mapping does
not have to be spatial and can be any dimension that is not temporal. The mappingW∈ℝN × L defines N
modes over L points. The N modes are weighted combinations of the L grid points, thereby defining
coarse-grained regions within the system. The N modes correspond to the large-scale components of the
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system, whereas the L grid points capture the small-scale features. Similar to theVARmodel, theN modes
are linearly time-dependent, which we represent with the matrices of dependencies noted A τð Þ∈ℝN ×N .
We note yt ∈ℝL the vector of values of the variables on the L points.

The SAVAR model is given in matrix notation by Tibau et al. (2022):

yt ≔W +
Xτmax

τ = 1

A τð ÞWyt�τ + εt, (2.1)

εt �N μy,Σy

� �
,

Σy = λW
+DxW

+T +Dy

Here, we note εt ∈ℝL an independent noise. The noise is assumed to be independent and identically
distributed. The diagonal covariancematricesDx ∈ℝN ×N andDy ∈ℝL ×Lmodel the noise occurring at the
mode level and the noise at each point, respectively. The covariant noise strength λ is a coefficient that
indicates the relative strength of these two noises. We denote W+ ∈ℝL ×N the Moore–Penrose pseu-
doinverse ofW. AsW is amapping from the point level to themode level,W+ is the inversemapping that
maps from themode level to the point level.We assume that the modes are linearly independent, such that
W has independent rows and is full rank. For example, a sufficient and feasible condition for linearly
independent rows of W would be that the modes do not overlap Tibau et al. (2022).

Although the model initially appears to include only a single process, it can be extended to accom-
modate as many processes as required. For example, suppose that Figure 1A shows the temperature field
on L0 grid points and that the sea level pressure field is defined on L00 grid points (not shown in the figure).
To include both processes, we can extend the grid to L= L0 + L00.

The off-diagonal of λW+DxW +T models the covariance structure of the fast dynamics, that is,
contemporaneous dependencies. The direct time-lagged dependencies at time τ > 0 are modeled by
W+A τð ÞW, which represents the emergent behavior within each mode region, leading to the collective
effect rather than individual effects between single points.

Tibau et al. (2022) also give a mode-level representation of the SAVARmodel. We introduce xt ∈ℝN ,
such that xt ≔Wyt. After left-multiplying by W in Equation (2.1) and using the property WW+ = IN,
where we use the notation In for the identity matrix of size n, Tibau et al. (2022) obtained the following
equation for xt:

xt =
Xτmax

τ = 1

A τð Þxt�τ +Wεt (2.2)

The direct linear time-lagged dependencies between the modes are modeled with the A τð Þ matrices.
We assume the variability at the point level to be much smaller than the mode-level variability, which
is the case for the large covariant noise strength λ for which we get Σx ≈ λDx. Here, model-level
variability refers to the variability of the aggregated mode process (xt), which is typically larger than
the variability observed at the individual grid point level (yt).Then the model is approximately a
Markovian Structural Causal Model, here a VAR model, with independent noise terms (Tibau et al.,
2022). The statistical properties of the SAVAR process, such as stationarity, stability, and identifia-
bility, are deduced in Tibau et al. (2022). Under the assumptions detailed in Tibau et al. (2022), the
stationarity and stability of the SAVAR process are guaranteed by the corresponding properties of the
underlying mode-space VAR process. Similarly to VAR models, SAVAR models can be augmented
with an exogenous term, which is particularly useful for incorporating specific characteristics of the
data into the analysis. For instance, seasonal dummy variables can be added to an SAVAR model to
account for periodic patterns in the data.
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2.3. Derivation of the LREs and sensitivity in an SAVAR model

In the considered framework, the introduction and the motivating example of Section 2.1 have displayed
the importance of measures that identify the effects of a perturbation in a system at the small-scale level.
We introduce such measures and derive their explicit formulas in an SAVAR model.

2.3.1. Sensitivity in an SAVAR model
We call a forcing of intensity f and of weights b∈ℝL an external perturbation that is applied to the system,
as illustrated in Figure 1B.We assume that the underlying VAR process is stable before the application of
the forcing, which is then introduced after the system has reached equilibrium.Without loss of generality,
we assume that the forcing is applied at time t0 and that therewas no forcing for t < t0. For t≥ t0, the forcing
is constant but does not have to be uniform. Each coefficient bi of b represents theweighting of the forcing
at grid point i. In this context, the sensitivity is a measure that indicates the average effect of the forcing on
the system (or a custom region of interest) at equilibrium (the system reaches a stable state) normalized by
the value of its intensity f . For t≥ t0, we have:

yt ≔W +
Xτmax

τ = 1

A τð ÞWyt�τ + fb+ εt

The forcing weights vector b is assumed to be known a priori and specifies the spatial pattern of the
external perturbation. The definition of the sensitivity, denoted by α, is given by the following formula:

α≔
〈yt > t0〉� 〈yt < t0〉

f
(2.3a)

where 〈y〉 denotes the temporal mean of y. Here, y is the mean of y over all the L points or over a specific

area of interest such that y= 1
∥h∥1

h0y. Here, h denotes a column vector with ones for the points inside the

custom region of interest and zeros otherwise.
In the following, we assume that xt is a stable VAR process as defined in Equation (2.2). Then, yt as

defined in Equation (2.1) is also a stable SAVAR process (see proof in Tibau et al., 2022). Using the
formula of the SAVAR model yt, one can derive two explicit formulas of α:

α= IL�W+AKWð Þ�1b (2.3b)

and α=W+ IN �AKð Þ�1� IN
� �

Wb+ b (2.3c)

where we introduce the blockmatrices:A = A 1ð Þ, A 2ð Þ, …, A τmaxð Þð Þ andK0 = IN , IN , …, INð Þ such
that the product AK =

Pτmax
τ = 1A τð Þ to facilitate future derivations. We recall that N denotes the number of

modes and L is the number of points. Equations (2.3b) and (2.3c) provide two mathematically equivalent
formulations for the sensitivity α as derived from the SAVAR model. The calculations leading to the two
explicit formulas are detailed in Appendix A.1.

We notice that the value of the forcing f does not appear in the explicit formula. However, the forcing
weights b play a role in the calculation of the sensitivity. We also point out that the sensitivity depends on
the mode weights W and on the matrices of linear time-lagged dependencies A τð Þ.

2.3.2. LREs in an SAVAR model
The explicit formula for sensitivity shows the role of the forcing weights b. If the forcing f involves only a
single grid point, for example, grid point i with weight 1, b is then a vector of zeros except for bi = 1. By
introducing the matrixΨ∞ such that α≔Ψ∞b, we notice that only the coefficient of the ith column ofΨ∞
play a role in the calculation of the sensitivity. The coefficient Ψ∞ð Þij indicates the effect of a unit forcing
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at grid point j on grid i at equilibrium. For this reason, we refer to Ψ∞ as the matrix of LREs. For an
SAVAR model, the LREs are given by explicit formulas:

Ψ∞ =W + IN �AKð Þ�1� IN
� �

W+ IL (2.4a)

Ψ∞ = IL�W+AKWð Þ�1
(2.4b)

Both Expressions (2.4a) and (2.4b) provide equivalent representation under the model assumptions.
The coefficient of the LREs Ψ∞ð Þij indicates the long-term effect of a unit change in grid point j on grid
point i.We can also interpretΨ∞ in terms of columns. The jth column ofΨ∞ contains the long-term effects
of a unit change in the jth small-scale variable of the system. In a standard VAR model, the LREs matrix
can be derived for a shock (Lütkepohl, 2005) and has a similar form: Ψ∞ = IN �AKð Þ�1. Unlike
Equations (2.4a) and (2.4b), this latter formula does not include the matrix of weightsW, which expresses
the aggregation of the large-scale variables in the SAVAR model.

2.3.3. Estimation
If W is known, and A is estimated, one can also estimate α and Ψ∞ by plugging them in the explicit
formulas of α and Ψ∞.

Given an estimator Â of A, α̂ introduced below is an estimator of α:

α̂=W+ IN � ÂK
� ��1� IN
� �

Wb+ b (2.5a)

or α̂= IL�W+ ÂKW
� ��1

b (2.5b)

And an estimator Ψ̂∞ of Ψ∞ is given by:

Ψ̂∞ = IL�W+ ÂKW
� ��1

(2.6)

2.4. Asymptotic distribution of the LREs and sensitivity estimators

We then derive the asymptotic distributions of the estimated sensitivity and LREs. IfW is known and A is
estimated, then in Proposition 2.1, we give the asymptotic distributions for Ψ̂∞ and α̂ under the assumptions.

Proposition 2.1. (Asymptotic distribution of α̂ and Ψ̂∞).

Let xt be a stable VARprocess as defined in Equation (2.2). Then, yt as defined in Equation (2.1) is also
a stable SAVAR process (see proof in Tibau et al., 2022). This implies that IL�W +AKWð Þ�1 and

IN �AKð Þ�1 are invertible. We note β̂ = vec Â
� �

and β = vec Að Þ where vec denotes the vectorization of a
matrix (see Appendix A.2). T is the sample size.

If ffiffiffiffi
T

p
β̂�β
� �

!d N 0,Σβ̂

� �
Then, ffiffiffiffi

T
p

vec Ψ̂∞
� �� vec Ψ∞ð Þ� �!d N 0,GΣβ̂G

0
� �

with G = KWΨ∞ð Þ ⊗ Ψ∞W
+ð Þ

(2.7)
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And ffiffiffiffi
T

p
α̂�α½ �!d N 0,FΣβ̂F

0
� �

with F =
1
L

b0 ⊗ h0ð ÞG
where h0 = 1, …, 1ð Þ 1× Lð Þ

(2.8)

The normal distribution is represented by the symbolN , and the Kronecker product is denoted by the
symbol ⊗. The proofs can be found in Appendix A.3.

2.4.1. Assumptions and estimation
Here are some important comments regarding this last proposition:

• Assumptions: One key assumption is that the distribution of the estimated matrix of linear
coefficients is asymptotically normally distributed and that the estimator of the linear coefficient
is consistent, which is the case, for instance, whenW is known and A is estimated using the least-
squares estimator (Lütkepohl, 2005).

• Implications: The proposition demonstrates that the estimators of the LREs and sensitivity are
consistent. In addition, the proposition gives the asymptotic distribution of the estimators, which are
normal distributions.

• When the sensitivity is not computed on all the L points, one has to replace h by a vector with one
coefficient for the ~L≤L small-scale variables of interest and a zero coefficient elsewhere. Then, in
the expression of F, 1L has to be replaced by 1

~L
.

• To estimate the covariancematrix of the linear coefficientsΣβ̂ in practice, we use the consistent estimator

provided in Lütkepohl (2005) for a VAR model: Σ̂β̂ =
ZZ0
T ⊗ Σ̂ε. We define Z≔ Z0,…,ZT�1ð Þ

where Z0
t = 1 y0t ⋯ y0t�τmax + 1

� �
. And Σ̂ε is an unbiased estimator of the covariance matrix of the

residuals. Σ̂ε = ε̂ε̂0
T�P, here ε̂ are the estimated residuals and P is the total number of parameters of the

VAR model embedded in the SAVAR model.

2.4.2. CI and statistical significance
If the actual asymptotic distributions of the LREs and sensitivity are not degenerate, we can derive
asymptotic CIs from the asymptotic variance of the sensitivity and covariance matrix of the LREs
(Benkwitz et al., 1997; Lütkepohl, 2005). For example, to obtain the ω% CI of a specific LRE Ψ∞ð Þij,
we first retrieve the associated diagonal element of the covariance matrix of the LREs. This gives us
σ̂2Ψ∞ð Þij , an estimate of the asymptotic variance of the LREs Ψ∞ð Þij. Then, the asymptotic CI is given by

the interval between the ω
2 quantile and 1�ω

2 quantile of a normal distribution with mean Ψ̂∞
� �

ij and
variance σ̂2Ψ∞ð Þij . Furthermore, the estimated LRE Ψ̂∞

� �
ij is significantly different from zero at an

asymptotic ω
2 level if the latter CI does not contain the value zero. The proposed asymptotic-based CIs

can be used to assess significance at the level of the small-scale variables, allowing for a more localized
assessment of the effects of a perturbation.

3. Numerical results

We have introduced materials and methods to estimate the sensitivity and LREs in an SAVAR model. In
the next section, we numerically estimate these measures from synthetic data and real-world data while
providing uncertainty ranges.
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3.1. Synthetic data experiments

We designed two experiments with synthetic data summarized in Table 1. In Experiment 1, we carried out
a benchmark analysis of four methods to estimate the sensitivity for varying SAVAR parameters. The
synthetic data are generated from an SAVARmodel. The sensitivity values are calculated from the explicit
formulas with the estimated weights and linear coefficients. We included two methods to estimate the
weights and twomethods to estimate the linear coefficients. This gave us four combinations of methods to
estimate the sensitivity. In Experiment 2, we compared fivemethods to obtain an uncertainty estimation of
the sensitivity with CIs. In Experiment 1, both the aggregation weightsWand the linear coefficient matrix
A are estimated to assess the full estimation pipeline, whereas in Experiment 2, we assume that W is
known in order to isolate the effect of A estimation on the uncertainty quantification.

3.1.1. Methods to estimate the sensitivity and LREs
The goal of Experiment 1 is to evaluate which estimation methods are best for estimating sensitivity and
LREs from data. For this, we compared four methods to estimate sensitivity from SAVAR-generated data
in the case where the weight matrixW is unknown. Eachmethod consists of two distinct steps: the weight
matrix estimation and the linear coefficients estimation. We estimated and evaluated the sensitivity from
these estimated weights and linear coefficient matrices. In the main body of this article, we chose to
evaluate the sensitivity, as the evaluation of this one-dimensional measure is more interpretable. We
conducted separate benchmarks for the LREs, and the results are presented in the Appendix. We included
the following methods in the benchmark analysis:

• PCA followed by a VAR estimation
• PCA followed by Peter and Clark Momentary Conditional Independence (PCMCI) and a Causal
Coefficient Matrix (CCM) estimation

• PCA-Varimax followed by a VAR estimation
• PCA-Varimax followed by PCMCI and a CCM estimation

To estimate the weights, two methods are compared: the PCA and the PCA-Varimax. PCA is a
dimension-reduction technique that aims to maximize the variance of the components (Shaffer, 2002).
Additionally, PCA components must satisfy a constraint of orthogonality. Varimax is another dimension-
reduction technique that builds on PCA. In the Varimaxmethod, the PCA components are first calculated,
and then these components are Varimax-rotated. TheVarimax rotation follows a specific criterion (Kaiser,
1958; Vautard andGhil, 1989), whichmakes the large PCA loadings larger and the small loadings smaller.
This rotation allows the original PCA components to become non-orthogonal and more regionally
confined, thereby generally enhancing the interpretability of the components (Rohe and Zeng, 2023).

Next, we included two methods to estimate the linear coefficients of an SAVARmodel. First, a simple
least-squares VAR estimation, which we refer to as VAR estimation, is performed on the estimated
components’ time series.We use the VAR estimation (Johansen, 1995; Lütkepohl, 2005), implemented in
the statsmodel Python package (Seabold and Perktold, 2010). The second method we include, referred to
as PCMCI–CCM, exploits causality to constrain the linear coefficients to only causal dependencies in a
two-step procedure. In the first step, we use a time series causal discovery algorithm, herePCMCI (Runge

Table 1. Summary of the synthetic data experiments

Experiment Goal Characteristics

Experiment 1 Compare 4 estimation methods of the sensitivity Synthetic data,W andA are estimated
Experiment 2 Compare 5 methods to build confidence intervals

of the sensitivity
Synthetic data, only A is estimated
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et al., 2015; Runge et al., 2019), to estimate the causal parents of each mode from the time series data. By
causal parent, we refer to a direct cause of the specific variable in question. PCMCI is fundamentally
different from PCA, which is used only for dimensionality reduction. PCMCI uses conditional inde-
pendence tests to infer causal relationships between variables. In the second step, calledCCM estimation,
we estimate the linear coefficients solely for the causal dependencies identified in the previous step.
PCMCI is a causal discovery algorithm adapted for time series, which estimates the time-lagged
dependencies from input time series data. The PCMCI is available in the tigramite Python package at
https://github.com/jakobrunge/tigramite. The CCM is estimated by performing a linear regression with
ordinary least squares on the estimated causal parents. Note that the use of PCMCI comes with certain
assumptions such as causal sufficiency, acyclicity, causal stationarity, causal faithfulness, and the causal
Markov condition (Spirtes et al., 1993; Runge et al., 2023). Causal sufficiency requires the absence of
unobserved variables. Causal stationarity assumes that the causal relationships and noise distributions are
invariant in time. The causal faithfulness assumption and the causal Markov condition are necessary to
establish the equivalence between the connectivity of causal graphs (precisely, d-separation) and
conditional independence in the distribution (Runge et al., 2023). PCMCI utilizes this property to perform
statistical tests of independence from observational data. These tests provide insights that refine the
structure of causal graphs. To test the conditional independence, we employ the linear partial correlation
test of PCMCI. Throughout all numerical experiments, including both synthetic and real-world data, the
PCMCI parameter αPC is internally optimized. The reader can refer to (Runge et al., 2019) for an in-depth
explanation of PCMCI.

3.1.2. Methods to quantify uncertainties of the estimates (CIs)
In Experiment 2, we explored various methods for establishing CIs around sensitivity estimates. Several
techniques exist for deriving CIs. In our study, we examined four bootstrap methods, which involved
resampling residuals similar to techniques used in impulse response analysis (Benkwitz et al., 2001;
Lütkepohl, 2005), along with the asymptotic-based CI outlined in Section 2.4.2. This resulted in a total of
five distinct methods, listed below:

• Bootstrapping with resampling of the residuals (Efron and Tibshirani, 1995) and standard percentile
interval (abbreviated to Res-Standard),

• Bootstrapping with resampling of the residuals and with Hall’s percentile interval (Hall, 1992)
(abbreviated to Res-Hall),

• Bootstrapping with sampling from the covariance of the residuals (Efron and Tibshirani, 1995) and
standard percentile interval (abbreviated to Cov-Standard),

• Bootstrapping with sampling from the covariance of the residuals and with Hall’s percentile interval
(Hall, 1992) (abbreviated to Cov-Hall),

• CI based on the asymptotic normal distribution of the estimator we have derived in Section 2.4.2
(abbreviated to Asymp.).

Throughout the rest of this article, we refer to confidence interval as CI. For further information on the
various bootstrap procedures, please refer to Appendix A.4. In this experiment, we assumed that the true
weights, denoted asW, are known. However, only the linear coefficients, represented byA, are estimated.
This estimation is performed using either the PCMCI–CCM method or the VAR estimation.

3.1.3. Setup of Experiment 1
In Experiment 1, we performed a benchmark analysis of the methods introduced in Section 3.1.1 to
estimate the sensitivity from synthetic data. In particular, we considered the global sensitivity (i.e., the
global effects over all small-scale variables) for a uniform and constant unit forcing.

Similar to the numerical experiments in Tibau et al. (2022), the synthetic data are generated from an
SAVAR model (see Equation (2.1)). The weights of the N modes W are generated randomly from
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nonoverlapping boxes in a space of size 20× 30 (called resolution). Their shape is that of a bivariate
Gaussian distribution computed from a random positive-definite covariance matrix. The underlying
causal dependencies among these modes are modeled by the matrixA given in Equation (2.1). All modes
are autocorrelated and have coefficients drawn from a truncated Gaussian distribution with a mean of 0.3
(called auto-coefficient strength) and a variance of 0.2. The coefficients have an absolute value greater
than 0.2 and have a probability of 0.5 to be negative or positive. Furthermore, five (called density of links)
cross-dependencies are randomly chosen with a random time lag of between 1 and 3 and a coefficient
drawn from the same distribution as the autocorrelation coefficients but with a probability of 0.2 to be
negative. By default, the covariance noise strength λ= 0:5. We fixed Dx and Dy as identity matrices and
consider zero means μy = 0. The generated time series have a default time sample size of 500. Only
stationary models are considered.

To compare the different methods, we designed a set of experiments in which we vary one of the
following parameters:

• Time sample size: the number of data samples available. Thiswill reveal the impact of sample size on
the error of the LREs estimated with different dimension-reduction methods and linear coefficient
estimation methods.

• Number of modes: the number of large-scale variables in the SAVAR model. The number of cross-
links is also set to the number ofmodes, such that the average cross-in-degree is 1 for all models. This
ensures consistent sparsity levels across the models.We study the impact of an increasing number of
modes on the performance of the dimension reduction method and the estimation of the linear
coefficients.

• Auto-coefficient strength: the strength of time-lagged dependencies of one mode with itself. Studies
have shown that high auto-dependencies can lead to the detection of spurious links (zero linear
coefficients that are estimated to be statistically different from zero). This experiment unveils if the
method to estimate the linear coefficients can cope with the high auto-dependencies of the modes.

• Density of links: the number of time-lagged dependencies between the different modes. The
methods will be faced with increasing complexity (number of dependencies across the modes).

• Resolution: the number of points on which the modes are defined. These will reveal the performance
of the methods for an increasing number of points.

• Covariance noise strength: the importance of the variability of themodes relative to the variability of
each point. This experiment will highlight the impact of each noise term on the estimation of the
LREs and sensitivity.

All experiments followed the same default parameters setup. The parameter values of the default setup
are given in Table 2. For each experiment, we varied only one of the described parameters of the default
setup. The set of values of the varying parameters of each sub-experiment is shown in Table 3. For each
sub-experiment, we generated and evaluated 250 SAVAR realizations to obtain a CI of the evaluation
metric. To evaluate the estimated sensitivity in each SAVAR realization, the absolute error (AE) is
calculated as the absolute difference between the actual sensitivity (α) and the estimated sensitivity (α̂):
AE α, α̂ð Þ= ∣α� α̂∣. The final evaluation metric is the mean absolute error (MAE) which is obtained by
averaging the AEs across the 250 SAVAR realizations.

3.1.4. Experimental setup for Experiment 2
In Experiment 2, we compared the different CI methods introduced in Section 3.1.2 for the sensitivity. In
addition, to study the effect of the sample size on the different CI methods, we conducted an experiment
that follows the default setup of Experiment 1, described in Table 2, in which the sample size varies from
100 to 20000. We generated the synthetic data using 100 random stationary SAVAR models following
Equation (2.1).We assumed the true weightsW to be known. The linear coefficient matricesAwere fitted
using VAR estimation or PCMCI–CCM. The sensitivity is then estimated. We calculated the 90% CIs for
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the five different CI methods. Hundreds of bootstrap realizations were used for the bootstrap-based
methods. Like in Experiment 1, we considered the global sensitivity (i.e., the global effects over all small-
scale variables) for a uniform and constant unit forcing.

In Experiment 2, we used two evaluation metrics. First, we computed the MAE between the true
sensitivity and the estimated sensitivity. This metric measures the ability of the linear coefficient
estimation methods—VARmodel and PCMCI–CCM—to estimate the sensitivity. Second, we compared
the different CI methods by calculating the average size of their 90% CIs.

3.2. Numerical experiments’ results and discussion

3.2.1. Experiment 1 results: Benchmark of estimation methods
In Figure 2, we present the results of Experiment 1. To begin with, we noticed that the Varimax-PCMCI–
CCMmethod performed the best in terms ofMAE across a majority of sub-experiments in the benchmark
analysis. This superior performance may be attributed to the constraint in Varimax-PCMCI–CCM, where
linear coefficients are limited to only causal dependencies identified by PCMCI. This constraint helps
prevent the inclusion of spurious linear coefficients, which could otherwise propagate when calculating
the sensitivity. Another point to consider is the overlap of the orange and red lines in most sub-
experiments. This indicates that using PCA or Varimax had little effect on the average MAE when
employing VAR estimation. However, when using PCMCI–CCM to estimate the linear coefficients,
Varimax consistently yielded lowerMAE compared to PCA across all sub-experiments. Furthermore, we
examined the influence of various parameters on the MAE, as shown in Figure 2. Across all methods, we
made the following observations:

• Increasing the time sample size reduces the averageMAE. Larger time sample sizes generally lead to
better estimation of linear coefficients, resulting in improved sensitivity estimation.

• Increasing the number of modes tends to increase MAE. This effect becomes more pronounced for
larger numbers of modes (above 7), although it is less clear for smaller numbers of modes.

Table 2. Numerical experiments’ default setup

Experiment Parameter value

Time sample size T 500
Number of modes N 5
Auto-coefficient strength 0.3
Density of links 5
Resolution L 600
Covariant noise strength λ 0.5
Maximum time lag τmax 3

Table 3. Parameters values for Experiment 1

Experiment Set of parameter values

Time sample size T 50, 100, 200, 300, 400, 500, 750, 1000
Number of modes N 2, 5, 7, 9, 12, 15
Auto-coefficient strength 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Density of links 2, 5, 7, 10, 14, 17, 20
Resolution L 300, 600, 900, 1500, 1800, 2400
Covariant noise strength λ 0.01, 0.1, 0.25, 0.5, 0.75, 1.0

Environmental Data Science e33-13

https://doi.org/10.1017/eds.2025.10007 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.10007


• Increasing the number of cross-links increases MAE. As cross-links increase, more dependencies
emerge, leading to greater error in linear coefficient estimation and subsequently increasedAE of the
sensitivity.

• Increasing the autocorrelation strength increases MAE. Higher autocorrelation can complicate the
disentanglement of dependencies and the quantification of linear relationships, resulting in an
increased MAE of the sensitivity.

• Increasing the spatial resolution decreasesMAE. Higher spatial resolution reduces the proportion of
points influencing each other due to a constantmode size, thereby decreasingMAEof the sensitivity.

• Increasing the covariant noise strength decreases MAE. The covariant noise strength quantifies the
contribution of each noise source. Higher covariant noise strength emphasizes the contribution of the
mode-level noise, aiding in the estimation of the weights from PCA and Varimax, and consequently
leading to a smaller MAE of the sensitivity.

The benchmark analysis results for the LREs are depicted in Figure B1 of the Appendix B. Similar
trends to those observed in the sensitivity experiment were noted. Specifically, the Varimax-PCMCI–
CCM method notably outperformed other methods in achieving the lowest mean relative absolute error
for the LREs.

3.2.2. Experiment 2 results: Comparison of CIs
In Figure 3, we present the MAE of the sensitivity estimation using PCMCI–CCM and VAR estimation
across varying time sample sizes (100; 500; 1000; 5000; 10,000; 20,000). The green curve shows the
MAE of PCMCI–CCM, consistently below the red curve of the VAR estimation. Across all time sample
sizes, the MAE is lower with PCMCI–CCM compared to the VAR estimation. This finding supports the

Figure 2. Comparison of four methods to estimate the sensitivity mentioned in Section 3.1.1. The subfigures
illustrate how the evaluation metrics (y-axis) vary for the different methods evaluated based on the
(A) number of time samples available, (B) number of modes, (C) number of links between the modes,
(D) strength of the autocorrelation of each mode, (E) resolution of the spatial grid, and (F) covariant
noise strength. The evaluation metric considered is the absolute error (AE) between the ground truth
and estimated sensitivity. The mean absolute error (MAE) is represented by the solid lines, and the
shaded areas depict the 90% range of the AE metric across the 250 realizations.
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results of the preceding experiment where PCMCI–CCM demonstrated superior performance over the
VARmethod in terms of MAE for sensitivity estimation. We noted a rapid decrease in MAE for PCMCI–
CCM and VAR estimation for time sample sizes below 5000. For larger time sample sizes, the MAE
gradually approached zero.

In Figure 4, we plot the average size of the 90% CIs of the sensitivity across 100 random SAVAR-
generated models, utilizing the four different bootstrap methods and the asymptotic-based method. VAR
estimation is used to estimate the linear coefficient matrix of the SAVAR model in Figure 4A. PCMCI–
CCM is used to estimate the linear coefficient of the SAVARmodel in Figure 4B. As an example, we also
plot the 90% CIs of the sensitivity estimated with PCMCI–CCM and VAR estimation for one of the
100 SAVAR-generated models in Figure 6. In Figure 4A, we found that the average CI size for the VAR
estimation is comparable among the five CI methods, except in the case of a time sample size of

Figure 3.Mean absolute error between true sensitivity and estimated sensitivity. True weights are known
and the linear coefficient matrices are estimated with PCMCI–CCM or a VARmodel. The Mean Absolute
error is averaged over 100 random SAVAR models.

Figure 4. Average CI size of the sensitivity for five different CI methods. Bootstrap-based confidence
intervals are computed over 100 bootstrap realizations. The averageCI sizes are calculated over the same
100 random SAVARmodels of Figure 3. The true weights are known but the linear coefficient matrices are
estimated with (A) a VARmodel or (B) PCMCI–CCM. To provide an estimation of the variability of the CI
size, black error bars indicate the one standard deviation of the CI size over the 100 SAVAR models.
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100, where the COV-Hall and COV-Standard bootstrap methods exhibit larger CI magnitudes In
Figure 4B, we found that the average CI sizes of the asymptotic-based method are larger compared to
those obtained through bootstrap-based methods. When comparing Figure 4A,B, we noticed that the
average CI size for PCMCI–CCM tended to be smaller than that for VAR estimation.

However, it remained unclear to us whether smaller CI sizes were preferable, given that a smaller CI
size might be under-conservative. To address this, we assessed the empirical significance level of the 90%
CIs. Theoretically, the analytical sensitivity should fall within the 90%CI rangewith a probability of 90%.
To verify this in practice, we calculated the empirical significance level as the frequency of analytical
sensitivity falling within the 90% CIs across 100 SAVAR-generated models. The results are depicted in
Figure 5. For the VAR model (see Figure 5A), the empirical significance levels closely aligned with the
expected 90% level when the time sample size was 1000 or larger. However, for time sample sizes of
100 and 500, the RES-Standard, RES-Hall, and asymptotic CI methods produced overly narrow CIs,
resulting in empirical significance levels smaller than expected. For PCMCI–CCM(see Figure 5B), the CI
sizes generally appeared well-calibrated, with empirical significance levels closely approximating the
90% level. Nevertheless, it was observed that for a time sample size of 100, all four bootstrap-based CI
methods yielded under-conservative CIs, leading to empirical significance levels around 75%,well below
the desired 90% level. The asymptotic-based CI exhibited an empirical significance level closer to 90%
for this time sample size of 100. However, for larger time sample sizes, the asymptotic CIs tended to be
over-conservative, as evidenced by their empirical significance levels surpassing the 90% threshold.

In general, all the bootstrap-based methods yielded comparable CI sizes. This observation applied to
PCMCI–CCM and VAR estimation. We attribute the similarity between the CIs of the COV and RES
methods to the synthetic data noise, which is characterized by clean Gaussian noises. Consequently,
resampling of the residuals or sampling from the covariance matrix of the residuals did not substantially
impact the results. Similarly, the Hall and Standard percentile approaches generated similar CIs.

Finally, for PCMCI–CCM, we found that the asymptotic-based approach resulted in wider CIs
compared to the bootstrap-based approaches. We think that a possible explanation for the broader
asymptotic CIs with PCMCI–CCM is that the variance of the LREs is more likely to be zero because
of the constraining of the coefficient by PCMCI. Previous studies byLütkepohl (2005) andBenkwitz et al.
(1997) have shown that zero coefficients in the variance matrix contribute to more conservative CIs for
VAR models. This phenomenon appears to extend to sensitivity CIs as well.

Figure 5.Empirical significance level for the 90%CI shown inFigure 4, for (A) aVARmodel or (B)PCMCI–
CCM. For each CI method, the empirical significance level is calculated as the frequency of the confidence
interval containing the true sensitivity across 100 random SAVARmodels. The gray dashed line indicates the
90% significant level. The colormap used in this plot is the same as the one used in Figure 4.
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In Figure 6, the CIswere calculated for one particular SAVAR-generatedmodel (the 13th seed). Results
for the 12th seed are also shown in Figure B2 of the Appendix B. We found that the estimated sensitivity
was slowly converging to the analytical sensitivity, while the CIs became narrower as the time sample size
increased. For PCMCI–CCM, the asymptotic-based CIs were wider than the bootstrap-based CIs. For a
VAR model, the five CI methods gave very comparable CIs for a time sample size larger than 1000. This
aligns with the findings regarding the average size of CIs of Figure 6.

Finally, one noticeable advantage of the asymptotic-based approach is the shorter computational time.
Based on our observations from this synthetic experiment, we advocate employing two distinct
approaches: a bootstrap-based approach and the asymptotic-based approach to construct CIs with
PCMCI–CCM, facilitating a comparative analysis of their outcomes.

3.3. Real-world application

Ideally, we would like to have a real-world dataset for which we know the ground truth LREs and
sensitivity. However, such a dataset is not available. Thus, we have opted to examine the long-term effects
of two economic variables on NO2 pollution in northern Italy. This is guided by the former study of
Bichler and Bittner (2022), which found that a decrease in economic activities due to economic crises led
to a decrease of NO2 in northern Italy. Our analysis will help to quantify the long-term effects of economic
activities on NO2 pollution at the level of the spatial grid (small-scale variables yi). In the following
section, we introduce the different variables included in our analysis. We then summarize the different
steps of the analysis. Finally, we present the estimated LREs of the two economic variables on NO2. We
also compare statistically significant LREs obtained with the asymptotic-based method and a bootstrap-
based method at the level of the spatial grid.

3.3.1. Data
Tropospheric NO2 satellite observations. NO2 is mainly produced by fossil fuel combustion and
therefore primarily caused by anthropogenic processes such as traffic or heating houses during winter.
In contrast to ground-based measurements, which can only observe the development of pollutants in a
certain area, satellite observations have the advantage of delivering global and self-consistent recordings
of air pollutants. In this case, we use tropospheric vertical column densities that which represent the

Figure 6. Comparison of the CI methods mentioned in Section 3.1.2 to build a confidence interval of the
sensitivity (y-axis) for varying time sample size (x-axis) for one particular realization of an SAVAR model
(seed 13). We plot the 90% CI for five different methods indicated in the legend. The analytical sensitivity
is known and indicated by the gray dashed line. The estimated sensitivity is given by the black solid line. To
estimate the sensitivity, we used the ground truth mode weights and the linear coefficient matrix estimated
with VAR estimation (A) or with PCMCI–CCM (B). The different bootstrap-based confidence intervals
are obtained with 100 bootstrap realizations. We calculated the asymptotic-based 90% CI using 1.645
standard deviations of the asymptotic normal distribution.
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amount of NO2 molecules in a vertical column of air stretching from the ground to the troposphere.
Nevertheless, the satellite observations in this study only present the monthly mean NO2 pollution with
morning observations and do not provide information on pollution levels near the Earth’s surface. We
averaged the monthly time series to obtain a quarterly time series to be consistent with the time-frequency
of the economic time series.

Here, we used satellite observations from four different satellites, including ERS-2/GOME, Envisat/
SCIAMACHY, MetOp-A/GOME-2, as well as MetOp-B/GOME-2. In particular, we used a harmonized
and self-consistent global data product fromGeorgoulias et al. (2019), which covers the period from 1996
to 2017. The listed satellite observations present the NO2 pollution in the early morning between 09:30
Equatorial crossing time (ECT) and 10:30 ECT. Detailed information about the measurement instruments
for GOME can be found in Burrows et al. (1999), for SCIAMACHY in Burrows et al. (1995) and
Bovensmann et al. (1999), and for GOME-2 in Munro et al. (2016). The data product is provided by the
Tropospheric EmissionMonitoring Internet Service (TEMIS) and can be accessed free of charge at www.
temis.nl. Further information on the TEMIS data product can be found in Georgoulias et al. (2019) as well
as Boersma et al. (2004). The data product consists of monthly mean values with a spatial resolution of
0.25° × 0.25° that we quarterly averaged. As described in Boersma (2008), the NO2 product only
considers observations with less than 50% of cloud radiance fraction, which is comparable to a cloud
fraction of approximately <20%.

The area of study is shown in Figure 7. It is delimited in the north and northwest by the Alps and in the
south by the Apennines. Due to the geographic location and the mountain ranges a basin is formed, which
is also known as the Po Valley. The Po is the largest river in northern Italy. It flows into the Adriatic Sea in

Figure 7. Topographic map of the study area in the Po Valley in northern Italy (Latitudes: 44°–46°,
Longitudes: 7°–14°). Sources: EU-DEM (2016), EUROSTAT (2020), Natural Earth (2023), and Open-
StreetMap (2023); EPSG: 4326.
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the east, where the Po Valley opens up. Due to the topography, an accumulation of pollutants such as NO2

is present. During winter, temperatures for Milan, for example, reach on average around 2 °C. Further-
more, the winter months are the driest months with the lowest amount of precipitation. In comparison to
that, the summer months can reach temperatures of around 24 °Cwith an increase in precipitation (https://
de.climate-data.org/).

It should be considered that meteorology can have an impact on pollution levels. Strong winds or
precipitation can, therefore, lead to a reduction in air pollutants, as the pollutants can be, for example,
dispersed or washed out. Subsequently, we used the same data source and area of interest in northern Italy
as in Bichler and Bittner (2022); therefore, the statement that meteorology was not the reason for the
significant decrease in NO2 variability between 2007 and 2013 is still valid. Additionally, heavy cloud
coverage can have an impact on the NO2 observations as well. Further information regarding the cloud
coverage for the area of interest can also be found in Bichler and Bittner (2022).

Quarterly economic time series. As Bichler and Bittner (2022) point out, a majority of the economic
output of Italy is generated in northern Italy (G-Econ Project, 2009). The authors further describe, based
on economic data from the World Bank (2023), that the service sector accounts for a large proportion of
the generated GDP with around 60%. Closely followed by about 40% by the industry and manufacturing
sector, and only a small amount by the agricultural sector. This composition of economic sectors, which
together represent the GDP, changes only slightly over the period from 1996 to 2017. Therefore, in this
study, we assume that a large part of consumption expenditure and the added value by industry are
provided in northern Italy. The economic data are publicly available and thus free of charge at http://
dati.istat.it/. The quarterly aggregated data on consumer spending of resident and nonresident households
as well as data on the value added by industry is used as economic variables. Both data tables cover a
period from 1996 to 2017 for the entire country of Italy.

The consumer spending data can be found in the “National Accounts” table under “Quarterly national
accounts” in the subcategory “Final consumption expenditure of households by expenditure item and
durability.”Here, we used the calendar-adjusted data on “housing, water, electricity, gas and other fuels.”
We shortened the variable name to Final Consumption Expenditure in Housing, Water and Electricity
(FCE-HWE). Additionally, the added value by industry can also be found in the “Quarterly national
accounts” in the subcategory “Value added by industry.”Within this table, the calendar-adjusted data on
“electricity, gas, steam and air conditioning supply, water supply, sewerage, waste management and
remediation activities” was kept for our analysis. We shortened the variable name to Value Added by
Electricity, Gas [VA-EG], etc.). FCE-HWE and VA-EG are both available quarterly and are provided in
millions of Euros with the reference year of 2015. Data within the value added by industry section provide
information on the contribution to economic growth whereas the consumption expenditure data gives
insights on household consumption expenditure classified of individual consumption according to
purpose (COICOP) as well as durability (IstatData, 2023a; 2023b).

3.3.2. Analysis
From the NO2 pollution time series and the two economic time series, we estimated the LREs of the
economics variables (FCE-HWEandVA-EG) onNO2 pollution in northern Italy. Here, the LREs quantify
the impact of a one standard deviation external forcing in a variable on NO2 pollution. To estimate the
LREs, we chose to use the Varimax-PCMCI–CCM method to estimate the LREs as it appeared to be the
best-performing method in the benchmark analysis. The analysis includes the steps in the order listed
below:

• We used the PCA-Varimax method to estimate the weightsW of the NO2 data product. The weights
were calculated using only the spatial time series of air pollution (no economic variables). We kept
the first five components which captured close to 90% of the total variance. The choice of five
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components is based on the criterion of explained variance. Sensitivity analyses with alternative
component numbers produced qualitatively similar results. Figure 8 shows the map of loadings of
these five components.

• We detrended and standardized the variance of all the time series: the time series of the first five
PCA-Varimax components of the NO2 data product and the time series of the two economic
variables. We then tested the stationarity of the time series with an augmented Dickey–Fuller test
(MacKinnon, 1991, 1994). Figure 9 presents the considered time series after de-trending. These
seven processes define the large-scale variable Xi (using the notation of the motivational example).
Only the five NO2 processes are mapped on the spatial grid (small-scale variables yi) shown in
Figure 8.

• To account for the strong seasonality of the time series, we have added centered seasonal dummy
variables in the model. We estimated the causal dependencies with PCMCI+, which allows for
contemporaneous links only from the economic variables to air pollution. In this case, it did not
modify the formulas of the LREs. Next, we estimated the linear coefficients of the causal depend-
encies with the CCMmethod. Table 4 presents the estimated linear coefficients for the regression of
the NO2 components on the two economic variables and three seasonal dummy variables. The linear
coefficients for the regression of the economic variables are not shown in the table.

• We estimated the LREs matrix from the estimated weights and the estimated linear coefficients.
• We derived CIs of the LREs and plotted the significant LREs of economic variables onNO2 with the
asymptotic-based method and a bootstrap-based method. We have to point out that these CIs only
include the uncertainty related to the estimation of the linear coefficients and do not include the
uncertainty associated with the estimation of the weight matrix W.

To avoid the problem of post-selection inference, which arises when the data are used to select the
model and introduces additional uncertainty, it is a common practice to use sample splitting (Kuchibhotla
et al., 2022). However, it was not possible to implement sample splitting for this application due to the
short available sample size (88 samples).

Figure 8. Loadings of the five first PCA-Varimax components of NO2 pollution over northern Italy.
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3.3.3. Results of the real-world application and discussion
Figure 10A,B show the estimated LREs of the two economic variables on NO2 pollution, indicating the
impact of a one standard deviation change in these variables on NO2 pollution levels. Notably, the
sensitivity of VA-EG and FCE-HWE to NO2 pollution is positive, with VA-EG exhibiting a slightly

Figure 9. Time series of included variables after linear de-trending. In black solid lines, the time series of
the first five PCA-Varimax components of NO2 pollution in northern Italy. In orange solid lines, the time
series of the two economic variables (VA-EG and FCE-HWE).

Table 4. Estimated linear coefficients after the two-step procedure PCMCI+ (selection of causal
predictors for each target) and CCM (least squares method to estimate linear dependencies).

T-statistics are shown in parentheses. The other values represent the coefficients. All coefficients which
are not shown in the table have a value of zero

Variables NO2 comp. 1 NO2 comp. 2 NO2 comp. 3 NO2 comp. 4 NO2 comp. 5

VA-EG (lag 0) 0.78* 0 0.64* 0 0
(10.81) (10.47)

FCE-HWE (lag 0) �0.14 0 0 0.49* 1.03*
(�1.66) (7.40) (11.35)

NO2 comp. 5 (lag 1) 0 0 0 0 �0.86*
(�9.43)

Dummy var. Quarter 1 0.41* 0 0 0 0
(2.70)

Dummy var. Quarter 2 0 �0.92* 0 0 0
(�5.60)

Dummy var. Quarter 4 0 0 0.72* 1.36* 0
(6.66) (11.58)

Note: * indicates a p-value≤ 0:01.
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higher sensitivity (0.04) compared to FCE-HWE (0.02). This indicates a positive effect of economic
activity onNO2 pollution in northern Italy, consistent with prior observationsmade byBichler and Bittner
(2022). Moreover, using a bootstrap approach, we obtained CIs for the sensitivity, and for a one-sided
significance level of 10%, the lower bounds are 0.022 for VA-EG and 0.0026 for FCE-HWE, indicating
statistically significant positive values. Our methodology further details the spatial distribution of
economic activity’s impact on NO2 pollution. For example, we can note the more pronounced effects
observed in urban areas, with sporadic small negative LREs attributed to minor negative loadings of

Figure 10. (A) and (B) Long-run effects of economic variables (VA-EGandFCE-HWE) onNO2 pollution.
(C) and (D) Statistically significant long-run effects of economic variables (VA-EG and FCE-HWE) on
NO2 pollution in northern Italy. Here, the confidence interval is obtained using the asymptotic
distribution of the long-run effects andwith a one-sided significance level of 10%. (E) and (F) Statistically
significant long-run effects of economic variables (VA-EG and FCE-HWE) onNO2 pollution in northern
Italy. Here, the confidence intervals are obtained with a bootstrap of the residuals and Hall’s percentile
interval and with a one-sided significance level of 10% and 1000 bootstrap realizations.
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PCA-Varimax components. Figure 10C,D exhibit the asymptotic statistically significant LREs at a
one-sided significance level of 10%.However, only a fraction of these effects reach significance, resulting in
a sparsemap. In Figure 10E,F, we plot the significant LREswith a one-sided significance level of 10%using
the bootstrap-based RES-Standard approach (with 1000 bootstrap realizations). The significance maps
reveal that the bootstrap approach identifiesmore significant effects forVA-EGand FCE-HWEcompared to
the asymptotic approach. These disparities in significance between asymptotic and bootstrap approaches
align with observations from synthetic data experiments (see Section 3.2.2), indicating that asymptotic-
based CIs tend to be more conservative. Selecting the optimal approach for this specific analysis remains
challenging and would require further investigation.

4. Discussion and conclusion

We have tackled the challenge of estimating the effects of perturbations at a small scale within an SAVAR
model (see Tibau et al. (2022)). This model incorporates a VAR framework and maps the VAR processes
onto smaller-scale variables. We proposed two measures for quantifying the impact of an external
perturbation, called forcing, in this model: the LREs, which capture the impact of a unit forcing between
each pair of small-scale variables at equilibrium, and the sensitivity, which measures the average effect of
a unit forcing on the small-scale variables of interest at equilibrium. Both measures provide insight into
the impact of a forcing at the small scale when the system reaches equilibrium, enabling more localized
quantification than a standard VAR model would allow. We derived explicit formulas for these measures
in an SAVAR model and introduced their estimators. Additionally, we provided the asymptotic distribu-
tions of these estimators, which can be used to construct CIs. However, these asymptotic CIs only account
for the uncertainty associated with estimating the linear coefficients of an SAVAR model.

Our first numerical experiment compared several methods for estimating sensitivity and LREs using
synthetic data across varying SAVAR parameters. In all experiments, the Varimax-PCMCI–CCMmethod
demonstrated better performance on average in terms of MAE compared to methods based on VAR
estimation. The superior performance of the Varimax-PCMCI–CCM method likely arises from the
enhanced spatial localization achieved through Varimax rotation combined with the improved identifi-
cation of causally relevant dependencies by PCMCI, which together mitigate the propagation of spurious
coefficients. The second numerical experiment focused on comparing bootstrap-based methods with the
asymptotic-based method for constructing CIs of sensitivity. On synthetic data, bootstrap-based methods
produced narrower CIs than the asymptotic-based method. We applied the estimation of LREs with
uncertainty quantification to real-world data, specifically estimating the LREs of two economic activities
on NO2 pollution in northern Italy at the grid level. Both bootstrap-based and asymptotic-based CIs
allowed us to identify statistically significant LREs on NO2 at the grid level, enabling a more localized
analysis of the effects of economic activities on air pollution.

Our approach does have limitations. First, we assume that all relevant variables are observed and can be
included in an SAVAR model. This assumption may limit the practical applications when unobserved
variables or variables that cannot be effectively modeled as an SAVAR process are present. Additionally,
the methods we used to construct CIs only consider the uncertainty related to the estimation of the linear
coefficients and not the uncertainty associatedwith the estimation of the weights of an SAVARmodel when
they are also estimated. Accounting for this uncertainty is particularly challenging for the asymptotic
distribution of the estimators of the LREs and sensitivity. Future work could involve developing bootstrap
methods to estimate both the aggregation weights and the linear coefficients, thereby quantifying both
sources of uncertainty simultaneously.
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A. Appendix

A.1. Derivation of the sensitivity in an SAVAR model
Two equivalent formulas can be derived for the sensitivity in an SAVAR model. We recall the definition of the sensitivity given in
Equation (2.3a):

α≔
〈yt ≥ t0 〉� 〈yt < t0 〉

f

where 〈y〉 denotes the temporal mean of y and y is the mean of y over the L points.
For t < t0, there is no forcing and yt has the form:

∀t < t0, yt =W
+
Xτmax

τ = 1

A τð ÞWyt�τ + εt

However for t≥ t0, the system is subject to an external forcing f with forcing weights b, such that yt has the form:

∀t≥ t0, yt =W
+
Xτmax

τ = 1

A τð ÞWyt�τ + fb+ εt

Derivation of the first explicit formula
The first formula can be derivedwith the following steps. First, applying the temporalmean 〈〉 and regrouping termswith y on the left
side yields:

∀t < t0, 〈yt〉�W+
Xτmax

τ = 1

A τð ÞW〈yt�τ〉= 〈εt〉

∀t≥ t0, 〈yt〉�W+
Xτmax

τ = 1

A τð ÞW〈yt�τ〉= fb+ 〈εt〉

We now show that the pre-forcing period and the post-forcing equilibrium are stationary periods so that 〈yt〉= 〈yt�τ〉 for t≥ t0
and t < t0. For the pre-forcing period, we assume that the SAVAR model is stable. For the post-forcing equilibrium, the SAVAR
model is stable and the system is in a state of equilibrium. In addition, the process is also stable for nonzero mean noise terms εt and
nonzero forcing f t .
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For a stationary time period, we have 〈yt〉= 〈yt�τ〉, and it follows:

∀t < t0, 〈yt〉 IL�W+
Xτmax

τ = 1

A τð ÞW
 !

= 〈εt〉

∀t≥ t0, 〈yt〉 IL�W+
Xτmax

τ = 1

A τð ÞW
 !

= fb+ 〈εt〉

Under our assumption that yt is a stable SAVAR process, the matrix IL�W+Pτmax
τ = 1A τð ÞW� �

is invertible:

∀t < t0, 〈yt〉= IL�W+
Xτmax

τ = 1

A τð ÞW
 !�1

〈εt〉

∀t≥ t0, 〈yt〉= IL�W+
Xτmax

τ = 1

A τð ÞW
 !�1

fb+ 〈εt〉ð Þ

We can finally substitute the derived 〈yt > t0 〉 and 〈yt < t0 〉 in the definition of the sensitivity to obtain:

α = IL�W+
Xτmax

τ = 1

A τð ÞW
 !�1

b

Yielding the first explicit formula of Equation (2.3b):

α= IL�W+AKWð Þ�1b

Derivation of the second explicit formula
The second formula results from noticing thatW+W is a projection. Hence, yt can be decomposed uniquely as the sum of two terms,
one belonging to Im W+Wð Þ and the other belonging to Ker W+Wð Þ:

yt = IL�W+Wð Þyt +W+Wyt

We can in turn decompose α:

f α= IL�W+Wð Þ 〈yt≥ t0 〉� 〈yt < t0 〉
� �

+W+W 〈yt≥ t0 〉� 〈yt < t0 〉
� �

For the first term, one can find that:

IL�W+Wð Þ 〈yt≥ t0 〉� 〈yt < t0 〉
� �

= IL�W+Wð Þfb
For the second term, we first apply the definition of x:

W+W 〈yt≥ t0 〉� 〈yt < t0 〉
� �

=W+ 〈xt≥ t0 〉� 〈xt < t0 〉ð Þ
Under our assumption that xt is a stable VAR process, the matrix IN �AKð Þ is invertible, we have:

〈xt < t0 〉 = IN �Að Þ�1〈εt〉= 0,

〈xt≥ t0 〉 = IN �Að Þ�1Wbf + IN �Að Þ�1〈εt〉,

〈xt≥ t0 〉� 〈xt < t0 〉 = IN �Að Þ�1Wbf :

This yields the second term:

W+W 〈yt≥ t0 〉� 〈yt < t0 〉
� �

=W+ IN �AKð Þ�1Wbf

Finally, combining the two derived terms yields the second explicit formula given in Equation (2.3c):

α = IL�W+Wð Þb+W+ IN �AKð Þ�1Wb

=W+ IN �AKð Þ�1� IN
� �

Wb+ b

A.2. Notations and useful propositions and rules
We denote with vec the vectorization of a matrix, which converts the matrix into a column vector. Specifically, the vectorization of a
m× nmatrixA, denoted vec Að Þ, is themn × 1 column vector obtained by stacking the columns of the matrixA on top of one another.
The Kronecker product is represented by the symbol⊗. We will derive the asymptotic distributions of the estimators thanks to the
following propositions.

Proposition A.1. (Delta method).

Suppose β is an n× 1ð Þ vector of parameters and β̂ is an estimator such that.
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ffiffiffiffi
T

p
β̂�β
� �

!d N 0,Σβ̂

� �
where T denotes the sample size used for estimation. Denoting by 0 the transpose and for a vector-valued continuously differentiable
function g with ∂g

∂β0 ≠ 0 at β, we have:

ffiffiffiffi
T

p
g β̂
� �

�g βð Þ
h i

!d N 0,
∂g βð Þ
∂β0

Σβ̂

∂g βð Þ0
∂β

	 


□

Proposition A.2. (Derivation rules of vec(.), see Lütkepohl (2005), Appendix A.13).

∂vec AB βð ÞCð Þ
∂β0

= C0 ⊗ Að Þ∂vec Bð Þ
∂β0

(A.1a)

∂vec A�1
� �

∂vec Að Þ0 = � A�1
� �0 ⊗ A�1 (A.1b)

A.3. Asymptotic distributions of the estimators of the LREs and of the sensitivity
We can now apply the propositions given in Appendix A.2 to derive the asymptotic distributions of Ψ̂∞ and α̂.

Proposition A.3. (Asymptotic distribution of Ψ̂∞).

We keep the definition of Ψ∞ given in Equations (2.4a) and (2.4b).

We note β̂ = vec Â
� �

and β = vec Að Þ.
If

ffiffiffiffi
T

p
β̂�β
� �

!d N 0,Σβ̂

� �
Then

ffiffiffiffi
T

p
vec Ψ̂∞
� �� vec Ψ∞ð Þ� �!d N 0,GΣβ̂G

0
� �

(A.2)

with.

G = KW IL�W+AKWð Þ�1
h i0

⊗ IL�W+AKWð Þ�1
W+

h i
from eq: 2:4bð Þ:

= KWΨ∞ð Þ0 ⊗ Ψ∞W
+ð Þ

□

Proof. We apply Proposition A.1 to the function g : β! vec Ψ∞ð Þ.

∂g βð Þ
∂β0

=
∂vec Ψ∞ð Þ

∂β0

=
∂vec Ψ∞ð Þ

∂vec Ψ∞
�1

� �0 ∂vec Ψ∞
�1

� �
∂β0

= � Ψ∞
0 ⊗ Ψ∞ð Þ∂vec Ψ∞

�1
� �
∂β0

by application of  rule A:1b

= � Ψ∞
0 ⊗ Ψ∞ð Þ∂vec IL�W+AKW½ �ð Þ

∂β0

We have
∂vec IL�W+AKW½ �ð Þ

∂β0
= �∂vec W+AKWð Þ

∂β0

= � W0K0 ⊗ W+ð Þ ∂vec Að Þ
∂vec Að Þ0

= � W0K0 ⊗ W+ð Þ
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Thus, G =
∂g βð Þ
∂β0

= Ψ∞
0⊗Ψ∞ð Þ W0K0⊗W+ð Þ

= KWΨ∞ð Þ0⊗ Ψ∞W
+ð Þ

Proposition A.4. (Asymptotic distribution of α̂).

We remind that we derived two explicit formulas of α given in Equations (2.3b) and (2.3c), and we recall that α =Ψ∞b.

We note β̂ = vec Â
� �

and β = vec Að Þ.
If

ffiffiffiffi
T

p
β̂�β
� �

!d N 0,Σβ̂

� �
Then

ffiffiffiffi
T

p
α̂�α½ �!d N 0,FΣβ̂F

0
� �

(A.3)

with

F=
1
L

b0 ⊗ h0ð ÞG where h0 = 1, …, 1ð Þ 1× Lð Þ

□

Proof. Using Proposition A.3, we have

ffiffiffiffi
T

p
vec Ψ̂∞
� �� vec Ψ∞ð Þ� �!d N 0,GΣβ̂G

0
� �

Next, we apply Proposition A.1 to the function g : vec Ψ∞ð Þ!Ψ∞b. We notice that Ψ∞b= 1
Lh

0Ψ∞b.

∂g βð Þ
∂β0

=
∂Ψ∞b

∂vec Ψ∞ð Þ0 =
1
L
∂ h0Ψ∞bð Þ
∂vec Ψ∞ð Þ0

=
1
L
∂vec h’Ψ∞bð Þ
∂vec Ψ∞ð Þ0

=
1
L

b0 ⊗ h0ð Þ ∂vec Ψ∞ð Þ
∂vec Ψ∞ð Þ0 by application of  rule A:1a

=
1
L

b0 ⊗ h0ð Þ

Thus,

ffiffiffiffi
T

p
α̂�α½ �!d N 0,FΣβ̂F

0
� �

with

F=
1
L

b0⊗h0ð ÞG

■

A.4. Bootstrap-based CI
CIs can be obtained by bootstrapping of the residuals. In this study, we used four variations of bootstrapping methods:

• Bootstrapping with resampling of the residuals (Efron and Tibshirani, 1995) and standard percentile interval
• Bootstrapping with resampling of the residuals and with Hall’s percentile interval (Hall, 1992)
• Bootstrapping with sampling from the covariance of the residuals (Efron and Tibshirani, 1995) and standard percentile

interval.
• Bootstrapping with sampling from the covariance of the residuals and with Hall’s percentile interval (Hall, 1992)
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For all these methods, the first step is to sample new residuals from the original fitted model. The methods differ in their way of
sampling new residuals:

• For the methods with resampling of the residuals, a sample of size T is drawn with replacement from the residuals. The
sampled residuals are then centered.

• For the methods with sampling from the covariance, T samples are generated from the estimated covariance matrix of the
residuals.

For all the methods, new data are created using the original model but by adding the sampled residuals instead of the original
residuals. The model is then reestimated, giving new model parameters. From there, the quantity of interest (e.g., the sensitivity, or
the LREs) is estimated for the current bootstrap realization and stored for later use. All these steps are repeated for the number of
chosen bootstrap realizations. For normal bootstrapping, the CI is computed directly as the percentile of the quantity of interest
across all the bootstrap realizations. In contrast, for Hall’s percentile interval bootstrapping, the CIs are corrected following the
procedure given by Hall (1992).

B. Additional results

B.1. Experiment 1: Benchmark of methods for the LREs

Figure B1. Comparison of four methods to estimate the long-run effects mentioned in Section 3.1.1. The
different subfigures represent the change of the evaluation metrics (y-axis) for the different methods
evaluated as a function of the (A) number of time samples available, (B) number of modes, (C) number of
links between the modes, (D) strength of the autocorrelation of each mode, (E) resolution of the spatial
grid, and (F) strength of the covariant noise. The evaluation metric is the relative absolute error (RAE)
between the ground truth and estimated long-run effects. The mean RAE (MRAE) is represented by the
solid lines, and the shaded areas depict the 90% range of the MRAE metric across the 250 realizations.
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B.2. Experiment 2: CIs comparison

Cite this article: Debeire K, Gerhardus A, Bichler R, Runge J and Eyring V (2025). Uncertainty bounds for long-term causal
effects of perturbations in spatiotemporal systems. Environmental Data Science, 4: e33. doi:10.1017/eds.2025.10007

Figure B2. Same as Figure 6 but with a different seed (here seed 12). Comparison of the confidence
interval methods mentioned in Section 3.1.2 to build a 90% confidence interval of the sensitivity (y-axis)
for varying time sample size (x-axis) for one particular realization of an SAVAR model (seed 12). We
estimate the linear coefficient matrix with a VAR model (A) or with PCMCI–CCM (B).
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