
Bull Braz Math Soc, New Series           (2025) 56:44 
https://doi.org/10.1007/s00574-025-00464-5

Local Gluing

Urs Frauenfelder1 · Joa Weber2

Received: 23 January 2024 / Accepted: 14 June 2025
© The Author(s) 2025

Abstract
In the local gluing one glues local neighborhoods around the critical point of the
stable and unstable manifolds to gradient flow lines defined on a finite-time interval
[−T , T ] for large T . If the Riemannian metric around the critical point is locally
Euclidean, the local gluing map can be written down explicitly. In the non-Euclidean
case the construction of the local gluingmap requires an intricate version of the implicit
function theorem. In this paper we explain a functional analytic approach how the
local gluing map can be defined. For that we are working on infinite dimensional path
spaces and also interpret stable and unstablemanifolds as submanifolds of path spaces.
The advantage of this approach is that similar functional analytical techniques can as
well be generalized to infinite dimensional versions of Morse theory, for example
Floer theory. A crucial ingredient is the Newton-Picard map. We work out an abstract
version of it which does not involve troublesome quadratic estimates.

Keywords Morse function · Implicit function theorem · Stable and unstable
manifolds
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1 Introduction andMain Results

1.1 Local GluingMap for the EuclideanMetric

Consider a diagonal matrix with monotone decreasing diagonal entries

A = diag(a1, . . . , an), a1 ≥ · · · ≥ an−k > 0 > an−k+1 ≥ · · · ≥ an .

Consider the smooth function given by the Euclidean inner product

f : Rn → R, z �→ 1
2 〈z, Az〉 . (1.1)

This function is Morse and has a unique critical point at the origin of Morse index k.
The gradient of f for the standard metric on Rn is ∇f (z) = Az. Hence the downward
gradient flow for time s is given by

ϕ
−∇f
s (z) = e−s Az = (

e−sa1 z1, . . . , e
−san zn

)
.

The stable and the unstable manifold of the origin are given by the sets

W s = R
n−k × {0}, W u = {0} × R

k .

Eachpoint z0 = (x0, 0) ∈ R
n−k×{0}determines an element s �→ w+(s) := e−s Az0 in

the function space W 1,2([0,∞),Rn). Each point z0 = (0, y0) ∈ {0} ×R
k determines

an element s �→ w−(s) := e−s Az0 in the function space W 1,2((−∞, 0],Rn).
In our functional analytic approach to local gluing it is more convenient for us to

think of the stable and the unstable manifold as function space subsets

Ws ⊂ W 1,2([0,∞),Rn), Wu ⊂ W 1,2((−∞, 0],Rn).

A further advantage of this point of view is that many techniques discussed in this
article can be generalized from R

n to the Hardy approach of gluing in the infinite
dimensional case of Floer homology Simčević (2014).
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With the interpretation of stable and unstable manifolds as function spaces we can
easily recover the traditional interpretation as subsets ofRn using the evaluation maps

ev+ : Ws → R
n−k × {0}, w+ �→ w+(0)

and

ev− : Wu → {0} × R
k, w− �→ w−(0).

Given T > 0, let MT ⊂ W 1,2([−T , T ],Rn) be the subset of all finite-time gradient
flow lines w : [−T , T ] → R

n . Note that since in the Euclidean case the gradient flow
is linear and a gradient flow line is uniquely determined by its initial condition, the
space MT is an n-dimensional linear subspace of the infinite dimensional function
space W 1,2([−T , T ],Rn).

In theEuclidean case, that isRn endowedwith the standardmetric, there are natural
linear isomorphisms

�T : Ws × Wu → MT

called the local gluing maps and given at each time s ∈ [−T , T ] by

�T (w+, w−)(s) = e−(s+T )Aw+(0) + e(T−s)Aw−(0). (1.2)

Consider the evaluation map defined by

evT : W 1,2([−T , T ],Rn) → R
n × R

n, w �→ (w(−T ), w(T )) .

The composition of the local gluing maps �T with the evaluation map evT is a linear
map, namely

evT ◦ �T (w+, w−) =
(
w+(0) + e2T Aw−(0), w−(0) + e−2T Aw+(0)

)
.

Since w− is in the unstable manifold and w+ in the stable, both limits are zero

lim
T→∞ e2T Aw−(0) = 0, lim

T→∞ e−2T Aw+(0) = 0.

Therefore it holds that limT→∞ evT ◦ �T = ev where

ev = (ev+, ev−) : Ws × Wu → R
n × R

n, (w+, w−) �→ (w+(0), w−(0)) .

1.2 Local GluingMap for a General RiemannianMetric

Given a general Morse function f on a finite dimensional manifold, by the Morse
Lemma one can always find locally around each critical point coordinates such that f
has the form (1.1) after subtracting the critical value. In fact, it is even possible, after
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some additional scaling, to assume that all diagonal entries of the matrix A are either
1 or −1. In infinite dimension this is usually not possible and therefore we don’t use
this fact.

Unfortunately, even in finite dimension, it is in general not possible to assume that
in Morse coordinates the Riemannian metric is standard as well. Indeed curvature is
an obstruction.

In this article we explain, based on a special version of Newton-Picard iteration,
a functional analytic construction for local gluing maps γT in the curved case. In
sharp contrast to the Euclidean version �T , the local gluing maps γT are in general
not linear. However, still some of the major properties of the local gluing maps �T in
the flat case are preserved in the general case. More precisely, we have the following
theorem.

Theorem A (Local gluing) There are open neighborhoods U+ and U− of the origin in
the stable and unstable manifold and gluing maps γT : U+ ×U− → MT for T ≥ T0,
where MT is the space of downward gradient flow lines on the finite-time interval
[−T , T ], which have the following properties.

a) For every T ≥ T0 the gluing map γT is a diffeomorphism onto its image.
b) In the limit T → ∞ in the C∞ topology the diagram

Ws × Wu ⊃ U+ × U− R
n × R

n

MT

ev

γT evT
(1.3)

commutes, as illustrated by Fig.1, where ev and evT are the evaluation maps at the
end points.

Remark 1.1 Our construction of local gluing maps γT has the following additional
properties.

1. In the Euclidean case it holds that γT = �T .
2. In the general Riemannian case this still continues to hold for the differential of γT

at the origin, in symbols dγT (0+, 0−) = �T .
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3. In particular, at the infinitesimal level, our construction is independent of any
choices like the one of a cutoff function used to construct a pre-gluing map;
see (2.11). The construction of the gluing map depends on the choice of a comple-
ment of the kernel ET of the linearized gradient flow equation DT : WT → VT ;
see (4.39). There are different choices for such a complement. Possible choices are
to take the complement orthogonal with respect to either the L2 or theW 1,2 metric.
We make a different choice, so that our complement KT is not necessarily orthog-
onal, but instead has the property that the infinitesimal gluing map, see (3.26), does
not depend on the choice of the cutoff function.

4. Furthermore, our construction uses a version of the Newton-Picardmapwhich does
not need quadratic estimates. We discuss properties of the Newton-Picard map and
its derivatives in Appendix B.

The results inAppendixB are quite general, so that they should also be applicable
to the infinite dimensional version of the local gluing discussed in this article.
Namely, the general Hardy approach to gluing, as discussed in the special case of
Lagrangian Floer homology by Tatjana Simčević Simčević (2014).

We expect that the local gluing theorems will be useful for the construction of
flow category theories Cohen et al. (1995) by endowing, for Morse-Smale metrics, the
moduli (solution) spaces of broken gradient flow lines with the structure of a manifold
with boundary and corners Qin (2018); Wehrheim (2012).

1.3 Setup – Path Spaces and Sections

Let f : Rn → R be a smooth function such that the origin 0 is a Morse critical point
of Morse index k. Suppose g is a Riemannian metric on R

n which is standard at 0,
notation g0. Let Hess0 f be the Hessian bilinear form of f at 0. The Hessian linear
operator A : Rn → R

n of f at 0 is defined with the help of the metric g0 by the
formula Hess0 f (z1, z2) = g0(z1, Az2) for every z1, z2 ∈ R

n . After a linear change
of coordinates we can assume that A is a diagonal matrix with monotone decreasing
diagonal entries

A = diag(a1, . . . , an), a1 ≥ · · · ≥ an−k > 0 > an−k+1 ≥ · · · ≥ an . (1.4)

Consider the g0-orthogonal splitting

R
n = R

n−k × R
k p−−→ R

k, (x, y) �→ y, p+(x, y) := x . (1.5)

Then the Hessian at 0 is positive definite on E+ = R
n−k × {0} and negative definite

on E− = {0} × R
k . The Hessian operator at 0 is of the form

A =
(
A+ 0
0 −A−

)
(1.6)

where A+ = diag(a1, . . . , an−k) and A− = diag(−an−k+1, . . . ,−an) are positive
definite diagonal matrices. The spectral gap σ = σ(A) > 0 is the smallest distance
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of an eigenvalue to the origin, in symbols

σ = σ(A) := min
1≤�≤n

|a�|. (1.7)

Abbreviate R+ = (0,∞). For T > 0 consider the Sobolev spaces

W+ = W 1,2([0,∞),Rn), W− = W 1,2((−∞, 0],Rn), WT = W 1,2([−T , T ],Rn),

V+ = L2([0,∞),Rn), V− = L2((−∞, 0],Rn), VT = L2([−T , T ],Rn).

Definition 1.2 (Constant maps to the critical point) Let 0+ ∈ W+ and 0− ∈ W−, and
0T ∈ WT , be the constant maps to the critical point, in symbols

0+ : [0,∞) → R
n, s �→ 0, 0− : (∞, 0] → R

n, �→ s �→ 0.

Let 0T ∈ WT be the constant map [−T , T ] → R
n , s �→ 0, to the critical point.

For i ∈ {+,−} ∪ R+ consider the map defined by

Fi : Wi → Vi , w �→ ∂sw + ∇f (w).

The zero sets of these maps are, respectively, the stable and the unstable manifold, and
the set of gradient flow lines along the interval [−T , T ], in symbols

Ws := F+−1(0+) ⊂ W+, Wu := F−−1(0−) ⊂ W−,

and the solution space

MT := FT
−1(0T ) = {w : [−T , T ] W 1,2→ R

n | ∂sw + ∇f (w) = 0} ⊂ WT .

The elements of the tangent spaces at the critical point

ξ ∈ E
+ := T0+Ws, η ∈ E

− := T0−Wu, ζ ∈ ET := T0TMT ,

are characterized by linear autonomousODEs d
ds ξ = −Aξ , see (2.15), or, equivalently,

by forward (backward) exponential decay, see (2.17), of ξ = (ξ+, 0) (of η = (0, η−)).

Notation. The Euclidean norm of v ∈ R
�, � ∈ N, is denoted by |v|.

1.4 Idea of Proof

We construct the desired gluingmap as a family of diffeomorphisms onto their images,
one diffeomorphism for each T ≥ T0 given by composing two maps

γT : Ws × Wu ⊃ U+ × U−
℘T−→ WT

NT−→ MT . (1.8)
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Here T0 ≥ 3 is a constant and U+ ⊂ Ws and U− ⊂ Wu are open neighborhoods
of 0+ and 0−, respectively, sufficiently small so that the image ℘T (U+ × U−) of the
pre-gluing map ℘T lies in the domain of the Newton-Picard map NT .

Newton-Picard. The Newton-Picard map on X = WT associates to an approximate
zero of a map, here FT , a true zero nearby. More precisely, after choosing a suitable
initial point x0, here 0T , there are three ingredients needed:
(1) an approximate zero x1 of FT ;
(2) a uniformly bounded right inverse QT of DT := dFT (0T ) : WT → VT ;
(3) a slowly varying operator difference dFT (·) − DT near the initial point.
The facts that FT (0T ) = 0 and that DT is surjective suggest to choose as initial
point x0 := 0T . (1) To provide an approximate zero of FT will be the task of the
pre-gluing map as described further below. (2) Right inverses of the linear operator
DT : WT → VT correspond to the topological complements of ker DT . A natural
choicewould be the orthogonal complement, butwe shall choose another complement,
notation KT , which represents the impossible paths for a downward gradient and
makes the infinitesimal gluing map �T = dγT (0+, 0−) independent of the choice of
cutoff function used to define the pre-gluing map. The corresponding right inverse
QT indeed admits a uniform bound c. (3) The operator difference dFT (·) − DT is
usually controlled by calculating troublesome quadratic estimates. In Appendix B.1
we prove continuous differentiability of a version of the Newton-Picard map which
does not require quadratic estimates.

Remark 1.3 (Higher smoothness of Newton-Picard map) To obtain higher smoothness
we use, roughly speaking, the fact that the supremum of the operator norm ‖dFT (·)−
DT ‖ along smaller and smaller balls about the initial point x0 admits bounds closer
and closer to zero. Indeed there is a monotonically decreasing function δ : [2,∞) →
(0,∞), independent of T , such that along the δ(μ)-ball about x0 the map ‖dFT (·) −
DT ‖ is bounded by 1/μc. See Corollary 4.5 for the case of FT and Remark B.8 for
the abstract theory.

For iteration arguments, such as to prove higher smoothness, tangentmaps aremuch
more suitable than differentials. Thus we prove in Appendix B.2 an estimate for the
tangent map difference TN − Id and we show that TNF = NT F , roughly speaking,
where NF is the Newton-Picard map for a map F .

Pre-gluing – approximate zero. Given a real T ≥ 3, called gluing parame-
ter, Floer’s gluing construction associates to a pair (w+, w−) ∈ Ws × Wu of an
(incoming, outgoing) flow trajectory the pre-glued path wT : [−T , T ] → R

m defined
as follows. One decomposes the time interval [−T , T ] into five subintervals. Along
[−T ,−3] follow the backward shifted forward flow trajectory w+(T + ·), then along
[−3,−1] interpolate with the help of a cutoff function to the constant flow trajectory
s �→ 0 sitting at the critical point at which wT then rests along time [−1, 1]. Next
along time [1, 3] interpolate from the constant map s �→ 0 to the forward shifted
backward flow trajectory w−(−T + ·) which then represents wT along the final time
interval [3, T ].

The behavior of the pre-glued path wT : [−T , T ] → R
n along the five time inter-

vals is detailed by formula (2.12) and illustrated by Fig. 2. Observe that wT takes

123



   44 Page 8 of 48 U. Frauenfelder, J. Weber

on the boundary of its domain [−T , T ] values that do not depend on T , namely
w+(0) and w−(0). Most importantly, the pre-glued path satisfies the gradient equa-
tion except, possibly, along the subinterval [−3,−1] (and [1, 3]) of [−T , T ] along
which it coincides, up to a cutoff function factor, with the forward flow trajectory w+
along [T − 3, T − 1]. But w+|[T−3,T−1] is very close to the critical point for large
T . Consequently uniform exponential decay of ∂sw+ takes care of the L2 norm of
FT (wT ) = ∂swT + ∇f (wT ) along [−3,−1]; same along [1, 3] where w− appears.
With this understood it follows that wT is an approximate zero of FT in the sense that

‖FT (wT )‖VT ≤ Ce−εT (1.9)

whenever T ≥ 3. The constantC serves all elementsw± of any chosen pair of compact
neighborhoods K± of 0± in the stable/unstable manifold.

Gluing – Smooth Convergence. With Newton-Picard and pre-gluing in place the
gluing map γT , given by composition (1.8), is well defined. Appendix A revisits the
proof of the usual IFT explained in (McDuff and Salamon (2004), App.A.3) to extract
a quantitative version. It is applied in Sect. 5.1 to prove that γT is a diffeomorphism
onto its image along a sufficiently small domain, uniformly in T .

In the limit T → ∞ the diagram (1.3) commutes even after application of the
m-fold tangent functor Tm . The proof uses techniques described by Remark 1.3 and
is carried out in Sect. 5.2.

Outline of Article

Section 2 “Pre-gluing map PT and its restriction ℘T ” introduces for each parameter
value T ≥ 3 the pre-gluing map as the linear map PT : W+ × W− → WT defined
by (2.11), equivalently by (2.12), and illustrated by Fig. 2.

For 0+ ∈ Ws and 0− ∈ Wu the pre-glued path is a true zero, more precisely
PT (0+, 0−) = 0T ∈ F−1

T (0) ⊂ WT . This motivates the expectation that pre-gluing
pairs near (0+, 0−) ∈ Ws×Wu should produce approximate zeroes. Thuswe consider
the restriction of the pre-gluing map PT , notation

℘T := PT |Ws×Wu : Ws × Wu → WT . (1.10)

This map is smooth by linearity of PT . Whereas the elements of the tangent spaces
to Ws, Wu, and MT at the origins 0+, 0−, and 0T (notation E

± and ET ) are the
solutions of autonomous linear ODEs, see (2.15), at general points w+, w−, and wT

the characterizing linear ODE’s d
ds ξ = −Awξ are non-autonomous, see (2.18).1

The linear identifications θw± : Tw±Ws/u → E
±, defined via asymptotic limits, are

used to prove Theorem 5.3 (gluing map γT is diffeomorphism onto its image).
Section 3 “Infinitesimal gluing” consists of two subsections. Subsection 3.1 intro-

duces a complement KT of the n-dimensional subspace ET := T0TMT of WT and

1 Whenever the Hessian operators Aw(s) along a flow trajectory w depend on time s.
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the corresponding projection PET ,KT onto ET along KT , notation

�T := PET ,KT : WT = KT ⊕ ET → ET .

Lemma 3.3 provides a formula for �T and asserts that the operator norm of
�T : WT → WT is bounded by a constant d = d(a1, an), depending on the eigenval-
ues a1 and an of the Hessian A in (1.4), but independent of T ≥ 1. To prove this we
establish the uniform-in-T Sobolev estimate ‖v‖L∞[−T ,T ] ≤ 2‖v‖W 1,2[−T ,T ]. Later
on the estimate also enters the proof of Corollary 4.5 on existence of the monotone
function δ(μ) mentioned in Remark 1.3 on higher smoothness of the Newton-Picard
map.

Section 3.2 introduces the infinitesimal gluing map, namely the linear map

�T := �T ◦ d℘T (0+, 0−) : E+ × E
− → WT → ET .

For �T we obtain formula (3.29) which, firstly, by choice of KT , does not depend on
the choice of cutoff function β in the pre-gluing map (2.11) and, secondly, reproduces
the gluing map (1.2) in the Euclidean model case. Lemma 3.5 asserts that �T is an
isomorphism with inverse bounded by the constant k := 1/(1 − e−12σ ), independent
of T , where σ is the spectral gap (1.7) of the Hessian A.

Section 4 “Newton-Picard map” consists of three subsections in which we verify
the three ingredients 1), 2), 3) described earlier.

Section 4.1 shows 1) the pre-gluing provides an approximate zero wT :=
℘T (w+, w−) of FT in the sense of (1.9). This hinges on Appendix C where we
provide suitable exponential decay uniformly in T .

Section 4.2 shows that the linearization DT := dFT (0T ) : WT → VT is surjective
and 2) provides a bound c = c(a1, an) uniformly in T for the right inverse QT

associated to the complement KT of ET . Actually ET = ker DT .
Section 4.3 establishes 3) a bound on the difference dFT (·)−DT . Based on Propo-

sition B.1 we define the Newton-Picard mapNT : WT → WT along a neighborhood
U0(δ4) of the initial point x0 := 0T . Then it is shown that for T ≥ 3 pre-gluing map
℘T takes values in the domain of NT .

Section 5 “Gluing map” provides an open neighborhood U+ × U− ⊂ Ws × Wu

of the origin (0+, 0−) which serves as domain for all gluing maps γT with gluing
parameter T ≥ T0, see (5.50), and defined by pre-gluing ℘T followed by Newton-
Picard zero detection NT , see (1.8). By Lemma 5.2 the linearized gluing map at the
origin coincides with the infinitesimal gluing map �T .

Section 5.1 “Diffeomorphism onto image” proves this property of the gluing maps
along an open subsetO+×O− ⊂ U+×U−, uniformly in T . This is an application of the
quantitative inverse function TheoremA.1. Verification of (A.65) uses that dγT |(0+,0−)

is the infinitesimal gluing map �T (Lemma 5.2) and that �T has an inverse bounded
uniformly in T (Lemma 3.5). Verification of (A.66) uses Remark B.5 and B.8 on the
linearized Newton-Picard map.

Section 5.2 “Evaluation maps and convergence in Cm” shows that in the limit
T → ∞ the diagram (1.3) commutes as illustrated by Fig. 1.

The appendices provide abstract results which might be of general interest.
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Appendix A is on the “Quantitative inverse function theorem”.
Appendix B provides the “Newton-Picard map without quadratic estimates”.
Appendix C “Exponential decay” proves such, uniformly in T , and for all time

derivatives. We use again the tangent map formalism for ease of induction. The proof
is based on Lemma C.4 in which the exponential decay rate of η is inherited by ξ , as
opposed to the original (Robbin and Salamon (2001), Le. 3.1).

2 Pre-GluingMapPT and its Restriction℘T

Fix a cut-off function β : R → [0, 1], that is a smooth function such that β(s) = 0
for s ≤ −1 and β(s) = 1 for s ≥ 1. For any real T ≥ 3, the gluing parameter, the
pre-gluing map is the linear bounded Hilbert space map defined by

PT : W+ × W− → WT

(w+, w−) �→ (1 − β(· + 2)) w+(T + ·) + β(· − 2) w−(−T + ·)
︸ ︷︷ ︸

=:wT

. (2.11)

Lemma 2.1 (Uniform bound) There is a constant b > 0, depending on the cut-off
function β but not on T , such that ‖PT ‖ ≤ b for every T ≥ 3.

Proof The shift map is an isometry in W 1,2(R) and the cut-off function β is indepen-
dent of T . ��

The pre-gluing map has the two properties that, firstly, for times s on the boundary
of [−T , T ] we have

PT (w+, w−)(−T ) = w+(0), PT (w+, w−)(T ) = w−(0),

and, secondly, during the time interval [−1, 1] the map rests in the critical point

PT (w+, w−)|[−1,1] ≡ 0.

More precisely, for fixed w±, the pre-glued path wT is of the form

PT (w+, w−)(s)
︸ ︷︷ ︸

=:wT (s)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w+(T + s) , s ∈ [−T ,−3]
(1 − β(s + 2)) w+(T + s) , s ∈ [−3,−1]
0 , s ∈ [−1, 1]
β(s − 2)w−(−T + s) , s ∈ [1, 3]
w−(−T + s) , s ∈ [3, T ]

(2.12)

for s ∈ [−T , T ]. The pre-glued path wT for w± is illustrated by Fig. 2.

Example 2.2 (Constant maps to the critical point) It holds that

PT (0+, 0−) = 0T . (2.13)
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w+(T + ·)
w+(0)

1 · w+(T − 3)
0 · w+(T − 1)
00 · w−(−T + 1)

1 · w−(−T + 3)

w−(−T + ·)

w−(0)

−T

−3

−1

1

3

s

R
n−k

R
k

T

input path w+

input path w−

shifted by +T

shifted by −T

interpolation

R
n

p−
p+

Fig. 2 Pre-glued path wT (s) := PT (w+, w−)(s) for s ∈ [−T , T ]

Note that 0+ ∈ Ws, 0− ∈ Wu, and 0T ∈ MT .

Restricted Pre-GluingMap

Wedenote the restriction of the pre-gluingmapPT to the stable and unstablemanifolds
Ws ⊂ W+ and Wu ⊂ W− by

℘T := PT |Ws×Wu : Ws × Wu → WT (2.14)

where T ≥ 3. This map is smooth by linearity of PT .

Differential of ℘T at (0+, 0−). Consider the tangent spaces to the trajectory spaces
Ws,Wu, and MT , at the critical point, namely

E
+ := T0+Ws = {ξ ∈ W+ | ∂sξ + Aξ = 0} ⊂ C∞([0,∞),Rn−k × {0})

E
− := T0−Wu = {η ∈ W− | ∂sη + Aη = 0} ⊂ C∞((−∞, 0], {0} × R

k)

ET := T0TMT = {ζ ∈ WT | ∂sζ + Aζ = 0} ⊂ C∞([−T , T ],Rn).

(2.15)

By the theorem of Picard-Lindelöf the dimensions are given by

dimE
+ = n − k, dimE

− = k, dimET = n.

Then the linearization of ℘T at (0+, 0−) is a map

d℘T (0+, 0−) : E+ × E
− → WT .
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For ζ ∈ E
+,E−,ET we abbreviate

ζ+(s) := p+(ζ(s)), ζ−(s) := p−(ζ(s)), so ζ = (ζ+, ζ−). (2.16)

Since A is diagonal, see (1.6), and by decay of the elements of W±, given maps
ξ ∈ C∞([0,∞),Rn) and η ∈ C∞((−∞, 0],Rn), there are the equivalences

ξ ∈ E
+ ⇔ ξ = (ξ+, 0) ∧ ξ+(s) = e−s A+ξ+(0) ∀s ≥ 0,

η ∈ E
− ⇔ η = (0, η−) ∧ η−(s) = e+s A−η−(0) ∀s ≤ 0.

(2.17)

Differential of ℘T at (w+, w−) ∈ Ws × Wu. The tangent spaces to the trajectory
spaces Ws,Wu, and MT , at points w+, w−, and wT , are

Tw+Ws = {ξ ∈ W+ | ∂sξ + Aw+ξ = 0} ⊂ C∞([0,∞),Rn)

Tw−Wu = {η ∈ W− | ∂sη + Aw−η = 0} ⊂ C∞((−∞, 0],Rn)

TwTMT = {ζ ∈ WT | ∂sζ + AwT ζ = 0} ⊂ C∞([−T , T ],Rn).

(2.18)

Here, for w ∈ {w+, w−, wT }, the family of Hessian operators

Aw = {Aw(s)}s
is defined by the identities

(
Hessw(s) f

)
(·, ·) = gw(s) (·, Aw(s)·), one identity for each

s. There are canonical, continuous and linear, identifications2

θw+ : W+ ⊃ Tw+Ws �−→ E
+, θw− : W− ⊃ Tw−Wu �−→ E

−, (2.19)

given by asymptotic limits where θ0± = Id
E

± =: Id± and the linear operators θw±
depend continuously on w±; see (Robbin and Salamon (2001), §3). Since ℘T :=
PT |Ws×Wu is defined by restricting a linear map, the linearization is the linear map’s
restriction

d℘T (w+, w−) = d (PT |) (w+, w−) = PT | : Tw+Ws × Tw−Wu → WT . (2.20)

Thus, given (w+, w−) ∈ Ws × Wu, the map defined by

�T (w+, w−) : E+ × E
− → WT

(ξ, η) �→ PT

(
ξ − θ−1

w+ξ, η − θ−1
w−η

) (2.21)

2 Observe that the elements

ξ ∈ E
+ = T0+Ws ⊂ T0+W+ = W+, θw+ξ ∈ Tw+Ws ⊂ Tw+W+ = W+,

lie in the same ambient vector space W+, hence they can be added. Similarly η ∈ E
− and θw−η both lie

inW−.
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is, by (2.20), equal to the difference

�T (w+, w−) = PT

(
(Id+, Id−) − (θ−1

w+ , θ−1
w−)

)

= d℘T |(0+,0−) − d℘T |(w+,w−) ◦ (θ−1
w+ , θ−1

w−).

Lemma 2.3 For any ε > 0 there are neighborhoodsO+
ε of 0+ inWs andO−

ε of 0− in
Wu such that for every T ≥ 3 and every (w+, w−) ∈ O+

ε ×O−
ε the operator norm of

�T (w+, w−) : E+ × E
− → WT is less or equal ε.

Proof Lemma 2.1 and continuous dependence of θw± on w± and θ0± = Id±. ��

3 Infinitesimal Gluing

3.1 Projection Associated to a Particular Complement

ComplementKT of n-Dimensional Linear Solution SpaceET

For T > 0 we choose a Hilbert space complement KT of ET inWT of the form

KT := {ζ = (ζ+, ζ−) ∈ WT | ζ+(−T ) = 0, ζ−(T ) = 0}. (3.22)

Note that the elements ζ of KT start at points ζ(−T ) in the negative definite space
{0} × R

k and end at points ζ(T ) in the positive definite space Rn−k × {0}. Roughly
speaking, the linear subspace KT ofWT represents impossible paths for a downward
gradient flow. The following lemma tells that codimKT = n.

The complement KT of ET is not necessarily orthogonal. But it has the useful
property that the infinitesimal gluing map �T in (3.26) will not depend on the cutoff
function β that was used to define the pre-gluing map PT in (2.11).

Lemma 3.1 (Complement) a) KT ∩ET = {0} and b) WT = KT + ET .

Proof a) Pick ζ = (ζ+, ζ−) ∈ ET . Then A(0, ζ−) = (0,−A−ζ−) and A(ζ+, 0) =
(A+ζ+, 0). Hence ∂sζ

− = A−ζ− and ∂sζ
+ = −A+ζ+, and therefore

ζ−(s) = e(s−T )A−ζ−(T ), ζ+(s) = e(−s−T )A+ζ+(−T ),

for every s ∈ [−T , T ]. Let ζ = (ζ+, ζ−) ∈ KT ∩ET . Then ζ+(−T ) = 0 and
ζ−(T ) = 0, so ζ+ ≡ 0 and ζ− ≡ 0 since each one solves a first order ODE.
Hence ζ = (ζ+, ζ−) ≡ 0. b) Let ζ ∈ WT . Then the map defined by Z(s) :=(
e(−s−T )A+ p+ζ(−T ), e(s−T )A− p−ζ(T )

)
is element of ET and the difference ζ − Z

lies in KT since p+(ζ − Z)(−T ) = 0 and p−(ζ − Z)(T ) = 0. ��
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Uniform Sobolev Estimate

Lemma 3.2 Let T ≥ 1. Then any v : [−T , T ] → R of class W 1,2 satisfies3

‖v‖∞ ≤ 2‖v‖1,2 (3.23)

where the norms are over the domain [−T , T ].
Estimate (3.23) continues to hold for vector-valued maps v : [−T , T ] → R

� of
class W 1,2 since

‖(v1, . . . , v�)‖∞ = max
i=1,...,�

‖vi‖∞ ≤ 2 max
i=1,...,�

‖vi‖1,2 ≤ 2‖v‖W 1,2([−T ,T ],R�).

Proof of Lemma 3.2 The proof has 4 steps.

Step 1.Let T > 0. Suppose ‖v‖1,2 ≤ 1 and at s0 ∈ [−T , T ]wehave κ := |v(s0)| > 0.
Then for s ∈ [−T , T ] ∩ [s0 − κ2/4, s0 + κ2/4] it holds |v(s)| ≥ κ/2.
Pointwise at s we have

|v(s)| =
∣∣∣
∣v(s0) +

∫ s

s0
v′(σ ) · 1 dσ

∣∣∣
∣

≥ |v(s0)| −
√∫ s

s0
(v′(σ ))2 dσ

√∫ s

s0
1 dσ

≥ κ −
(∫ T

−T

(
v′(σ )

)2
dσ

︸ ︷︷ ︸
≤‖v‖21,2≤1

)1/2

· √|s − s0|

≥ κ − √|s − s0|
≥ κ −

√
κ2/4 = κ/2.

This proves Step 1.

Step 2.Under the assumption of Step 1 suppose, in addition, the inclusion [s0, s0+1] ⊂
[−T , T ] ∩ [s0 − κ2/4, s0 + κ2/4], then |v(s0)| = 2.

To prove Step 2 use Step 1 to obtain that

1 ≥ ‖v‖21,2 ≥ ‖v‖22
inclusion≥

∫ s0+1

s0
v(σ )2︸ ︷︷ ︸
St.1≥ κ2/4

dσ ≥ κ2/4.

Therefore 2 ≥ κ . In view of the inclusion this implies 2 = κ := |v(s0)|.
Step 3.Under the assumption of Step 1 suppose, in addition, the inclusion [s0−1, s0] ⊂
[−T , T ] ∩ [s0 − κ2/4, s0 + κ2/4], then |v(s0)| = 2.

3 In (Frauenfelder and Weber (2022), (4.57)) we proved the case T = ∞ with constant 1, not 2.
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The same argument as in Step 2 proves Step 3.

Step 4. Let T ≥ 1. If ‖v‖1,2 ≤ 1, then |v(s0)| ≤ 2 for every s0 ∈ [−T , T ].
The assumption T ≥ 1 guarantees [s0−1, s0] ⊂ [−T , T ] or [s0, s0+1] ⊂ [−T , T ].

We argue by contradiction and assume that κ := |v(s0)| > 2. Then [s0 − 1, s0] or
[s0, s0+1] is contained in the intersection [−T , T ]∩[s0−κ2/4, s0+κ2/4]. Therefore
by Step 2 or Step 3 we have κ = 2. Contradiction.

By homogeneity of the norm Step 4 implies Lemma 3.2. ��

Projection5T ontoET AlongKT

We denote the linear projection in the path space WT := W 1,2([−T , T ],Rn) onto
the n dimensional subspace ET along the (not necessarily orthogonal) complement
KT by

PET ,KT

(3.25)= �T : WT = ET ⊕ KT → ET . (3.24)

Lemma 3.3 The projection PET ,KT is given by the map �T : ζ �→ ζE where

ζE(s) :=
(
e−(s+T )A+ζ+(−T ), e(s−T )A−ζ−(T )

)
(3.25)

for s ∈ [−T , T ]. There is a constant d = d(a1, an), depending on the eigenvalues a1
and an of A in (1.4), but independent of T ≥ 1, such that ‖�T ‖ ≤ d.

Proof Let ζ ∈ WT . The map ζ �→ ζE is linear. Moreover (ζE)E(s) = ζE(s) since
ζ+
E

(−T ) = ζ+(−T ) and ζ−
E

(T ) = ζ−(T ). This proves identity 1 in the following

�T ◦ �T
1= �T , im�T

2= ET , ker�T
3= KT .

Identity 2: One readily checks that ∂sζE = −AζE, therefore ζE ∈ ET . Hence im�T ⊂
ET . Vice versa, given ζ ∈ ET , the two components ζ± := p±ζ satisfy for s ∈
[−T , T ], and using (1.4), the ODE ∂sζ

+ = −A+ζ+ with initial value ζ+(−T ) at
s = −T and the ODE ∂sζ

− = A−ζ− with initial value ζ−(T ) at s = T . The solutions
are given by s �→ e−(s+T )A+ζ+(−T ) and by s �→ e(s−T )A−ζ−(T ), respectively. Their
direct sum is ζE, hence ET ⊂ im�T .
Identity 3: Pointwise in s vanishing of the vector valued map (�T ζ )(s) =(
e−(s+T )A+ζ+(−T ), e(s−T )A−ζ−(T )

) = (0, 0) happens iff both components vanish,
that is iff ζ ∈ KT .

To find a bound for P , pick ζ ∈ WT . Straightforward calculation shows that

‖ζE‖2
WT

(3.11)= ‖ζE‖2
VT

+ ‖ d
ds ζE‖2

VT

(3.25)=
∫ T

−T

∣∣
∣
(
e−(s+T )A+ζ+(−T ), e(s−T )A−ζ−(T )

)∣∣
∣
2
ds

+
∫ T

−T

∣∣∣
(
−A+e−(s+T )A+ζ+(−T ), A−e(s−T )A−ζ−(T )

)∣∣∣
2
ds
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(1.5)=
∫ 2T

0

∣∣∣e−s A+ξ+(−T )

∣∣∣
2 +

∣∣∣A+e−s A+ξ+(−T )

∣∣∣
2
ds

+
∫ 0

−2T

∣
∣∣esA−ζ−(T )

∣
∣∣
2 +

∣
∣∣A−esA−ζ−(T )

∣
∣∣
2
ds

(1.6)=
n−k∑

i=1

∫ 2T

0
(1 + a2i )e

−2sai ζi (−T )2 ds

+
n∑

j=n−k+1

∫ 0

−2T
(1 + a2j )e

−2sa j ζ j (T )2 ds

(3.1)=
n−k∑

i=1

(1 + a2i )ζi (−T )2 1−e−4Tai

2ai
+

n∑

j=n−k+1

(1 + a2j )ζ j (T )2 1−e4Ta j
−2a j

(1.4)≤ 1+a21
2σ

n−k∑

i=1

ζi (−T )2 + 1+a2n
2σ

n∑

j=n−k+1

ζ j (T )2

(3.1)≤ d2
8

(
|p+ζ(−T )|2 + |p−ζ(T )|2

)
, d2

8 := max{1+a21 ,1+a2n }
2σ

(3.1)≤ d2
4 ‖ζ‖2L∞([−T ,T ])

(3.23)≤ d2‖ζ‖2
WT

.

Here equality two is by definition (3.25) of ζE. Equality three is by the g0-orthogonal
splitting (1.5) which makes the mixed inner products zero. Equality four uses that
A = diag(A+,−A−), by (1.6), and the ai > 0 > a j are ordered by (1.4). Equality
five is by integration. The first inequality uses the order (1.4) of the matrix entries a�

and definition (1.7) of the spectral gap σ . The third inequality uses that the projections
p± are orthogonal, hence of norm ≤ 1. The final inequality four is by the, uniform in
T , Sobolev estimate (3.23). This concludes the proof of Lemma 3.3. ��

3.2 Infinitesimal GluingMap 0T

Definition 3.4 For T ≥ 3 we call the linear map defined by the composition

�T := �T ◦ d℘T (0+, 0−) : E+ × E
− → WT → ET (3.26)

the infinitesimal gluing map. It acts as shown in (3.29) and Fig. 3.

To obtain a formula for �T we proceed in three steps I–III. Fix elements ξ =
(ξ+, 0) ∈ E

+ and η = (0, η−) ∈ E
−; see (2.17).

123



Local Gluing Page 17 of 48    44 

s = −T

R
n−k

R
k R

n
p− p+

0ξ+(0) =

η−(−2T )

η−(0)
s = T

ΓT (ξ, η)

e−2TA+ξ+(0)

= e−2TA−η−(0)

ξ+(2T )

Fig. 3 Infinitesimal gluing isomorphism �T ∈ L(E+ × E
−,ET ); cf. (3.29)

I. Time s = −T : By definition (2.14 of ℘T and (2.11) of the pre-gluing map PT

(using that 1 − β(−T + 2) = 1 and β(−T − 2) = 0 for T ≥ 3) we obtain

d℘T (0+, 0−)(ξ, η)(−T )
(2.14)= ( d

dτ

∣∣
0 PT (εξ, εη)

)
(−T )

(2.11)= 1 · ξ(T − T ) + 0 · η(−T − T ) = (ξ+(0), 0).

In view of the direct sum WT = KT ⊕ ET and since �T (ξ, η) := PET ,KT ◦
d℘T (0+, 0−)(ξ, η) is the projection to ET there is an element ζ in the projection
kernel KT such that d℘T (0+, 0−)(ξ, η) = ζ + �T (ξ, η). So we get identity 1 in

p+
(
�T (ξ, η)(−T )

)
1= p+

(
d℘T (0+, 0−)(ξ, η)(−T ) − ζ(−T )

)
2= ξ+(0). (3.27)

Identity 2 holds as p+(ζ(−T )) = 0 by condition one in definition (3.22) of KT .
II. Time s = T : Similarly as in I. we obtain that

d℘T (0+, 0−)(ξ, η)(T )
(2.11)= η(0) = (0, η−(0)).

Now use condition two in definition (3.22) of KT to conclude that

p− (�T (ξ, η)(T )) = η−(0). (3.28)

III. Time s ∈ [−T , T ]: Since �T (ξ, η) lies in ET it satisfies the ODE given by
∂s�T (ξ, η) + A�T (ξ, η) = 0 and so, by (3.27) and (3.28), we get the formula

�T (ξ, η)(s) =
(
e−(s+T )A+ξ+(0), e(s−T )A−η−(0)

)
. (3.29)

In particular, due to the choice of the complement KT which just involves the ends
−T and T , the infinitesimal gluing map does not depend on the choice of the cutoff
function β used to define the pre-gluing map (2.11).

Lemma 3.5 (Norm) Let T ≥ 3. The linear map �T : E+ × E
− → ET is an isomor-

phism of norm ‖�T ‖ ≤ 1 and the norm of the inverse is bounded, uniformly in T , by
k := 1/(1 − e−12σ ) where σ is the spectral gap (1.7) of A.
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Proof We saw that dimE
+ = n − k, dimE

− = k, and dimET = n. Hence it suffices
to show injectivity, i.e. that the kernel of �T is trivial. Given (ξ, η) ∈ ker �T , then
by (3.29) we have ξ+(0) = 0 and η−(0) = 0. So ξ+ ≡ 0 and η− ≡ 0, since ξ+ and
η− are solutions of a linear first order ODE; see (2.17). Therefore ξ = (ξ+, 0) ≡ 0
and η = (0, η−) ≡ 0. This shows that �T is an isomorphism whenever T ≥ 3.

To see that �T and �T
−1 are bounded, uniformly in T , consider the identities

‖�T (ξ, η)‖2
WT

(3.11)= ‖�T (ξ, η)‖2
VT

+ ‖ d
ds�T (ξ, η)‖2

VT

(3.29)=
∫ T

−T

∣∣∣
(
e−(s+T )A+ξ+(0), e(s−T )A−η−(0)

)∣∣∣
2
ds

+
∫ T

−T

∣∣∣
(
−A+e(−s−T )A+ξ+(0), A−e(s−T )A−η−(0)

)∣∣∣
2
ds

(1.5)=
∫ 2T

0

∣
∣∣e−s A+ξ+(0)

∣
∣∣
2 +

∣
∣∣A+e−s A+ξ+(0)

∣
∣∣
2
ds

+
∫ 0

−2T

∣∣∣esA−η−(0)
∣∣∣
2 +

∣∣∣A−esA−η−(0)
∣∣∣
2
ds

(1.6)=
n−k∑

i=1

∫ 2T

0
(1 + a2i )e

−2sai ξi (0)
2 ds

+
n∑

j=n−k+1

∫ 0

−2T
(1 + a2j )e

−2sa j η j (0)
2 ds

(3.11)=
n−k∑

i=1

(1 + a2i )ξi (0)
2 1−e−4Tai

2ai
+

n∑

j=n−k+1

(1 + a2j )η j (0)
2 1−e4Ta j

−2a j

where equality two is by formula (3.29) for �T . Equality three is by the g0-orthogonal
splitting (1.5). Equality four uses that A = diag(A+,−A−), by (1.6), and the ai >

0 > a j are ordered by (1.4). Equality five is by integration.
The W+ norm of ξ = (ξ+, 0) ∈ E

+, see (2.17), is given by

‖ξ‖2
W+

(3.11)= ‖ξ‖2
V+ + ‖ d

ds ξ‖2
V+

(2.17)=
∫ ∞

0
|e−s A+ξ+(0)|2 ds +

∫ ∞

0
|A+e−s A+ξ+(0)|2 ds

(1.4)=
n−k∑

i=1

∫ ∞

0
(1 + a2i )e

−2sai ξi (0)
2 ds

(3.11)=
n−k∑

i=1

1+a2i
2ai

ξi (0)
2

(3.30)

and analogously for the W− norm of η = (0, η−) ∈ E
−.
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To see that �T
−1 is bounded, uniformly in T , we estimate �T from below

‖�T (ξ, η)‖2
WT

=
n−k∑

i=1

(1 + a2i )ξi (0)
2 1−e−4Tai

2ai
+

n∑

j=n−k+1

(1 + a2j )η j (0)
2 1−e4Ta j

−2a j

≥
(
1 − e−12σ

)
(
n−k∑

i=1

1+a2i
2ai

ξi (0)
2 +

n∑

i=n−k+1

1+a2j
−2a j

η j (0)
2

)

=
(
1 − e−12σ

) (
‖ξ‖2

W+ + ‖η‖2
W−

)
.

To obtain the inequality we use the assumption T ≥ 3 and the spectral gap σ of A
defined by (1.7) of A. The last equality is explained right above.

To see that �T is bounded, uniformly in T , we estimate �T from above

‖�T (ξ, η)‖2
WT

=
n−k∑

i=1

(1 + a2i )ξi (0)
2 1−e−4Tai

2ai
+

n∑

j=n−k+1

(1 + a2j )η j (0)
2 1−e4Ta j

−2a j

≤
n−k∑

i=1

1+a2i
2ai

ξi (0)
2 +

n∑

j=n−k+1

1+a2j
−2a j

η j (0)
2

= ‖ξ‖2
W+ + ‖η‖2

W−

where the inequality holds since 1 − e−4Tai ≤ 1 and 1 − e4Ta j ≤ 1. ��

4 Newton-PicardMap

Given two elements w+ ∈ Ws and w− ∈ Wu near the critical point, we view the
pre-glued path

wT := ℘T (w+, w−) ∈ WT

as an approximate flow trajectory, equivalently an approximate zero x1 of the sec-
tion FT , and then detect a nearby solution using the implicit function theorem with
initial point x0 := 0T , see Appendix B. Thus we need that FT (wT ) is suitably close
to zero. We also need a uniformly in T bounded right inverse QT of the linearization
DT := dFT (0T ). These are the next two subsections.

4.1 Approximate Zero

Proposition 4.1 (Pre-glued path is approximate zero) Pick ε ∈ (0, σ ) where σ =
σ(A) is the spectral gap (1.7). Let m ∈ N0 and choose compact neighborhoods
K+ = K+(m) of 0+ ∈ Ws in TmWs and K− = K−(m) of 0− ∈ Wu in TmWu. Then
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the following is true. Given two elements

W+ ∈ K+ ⊂ TmWs, W− ∈ K− ⊂ TmWu,

pre-glue them with the m-fold tangent map of ℘T , see (2.14), to get

WT := Tm℘T (W+,W−).

Then there is a constant C(K+, K−), independent of T , such that

∥∥TmFT (WT )
∥∥
TmVT

≤ C(K+, K−) · e−εT (4.31)

whenever T ≥ 3.

Proof Let m ∈ N0. An element W+ ∈ TmWs is a map satisfying the equation

W+ : [0,∞) → Tm
R
n, ∂sW+ + Tm∇f (W+) = 0. (4.32)

An element W− ∈ TmWs is a map that satisfies the equation

W− : (−∞, 0] → Tm
R
n, ∂sW− + Tm∇f (W−) = 0. (4.33)

Since 0 is a non-degenerate critical point of f the solutions W+ and W− decay with
all their derivatives exponentially. In particular, by Theorem C.1 and compactness of
K±, there is a constant c = c(K+, K−) with

|W+(s)| + |∂sW+(s)| ≤ ce−εs, |W−(s)| + |∂sW−(s)| ≤ ceεs, (4.34)

for every s ≥ 0, respectively s ≤ 0. Since f has a critical point at the origin, we get
Tm∇f (0) = 0 where 0 ∈ Tm

R
n .4 Hence there is a constant μm > 0 with

∣∣Tm∇f (W )
∣∣ ≤ μm |W | (4.35)

whenever |W | ≤ c.
By linearity of the pre-gluing map PT , the m−fold tangent map is given by

WT := TmPT (W+,W−)
(2.11)= (1 − β(s + 2))W+(T + s) + β(s − 2)W−(−T + s)

pointwise at s ∈ [−T , T ]. Similarly, in analogy to (2.12), we have

WT (s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W+(T + s) , s ∈ [−T ,−3]
(1 − β(s + 2))W+(T + s) , s ∈ [−3,−1]
0 , s ∈ [−1, 1]
β(s − 2)W−(−T + s) , s ∈ [1, 3]
W−(−T + s) , s ∈ [3, T ]

(4.36)

4 It holds T 1∇f (0, 0) = (∇f (0), D∇f (0)0
) = (0, 0), similarly Tm∇f (0, . . . , 0) = (0, . . . , 0).
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for s ∈ [−T , T ]. The tangent map of FT (w) := ∂sw + ∇f (w) at WT is given by

TmFT (WT ) = ∂sWT + Tm∇f (WT ). (4.37)

Now there are three cases.
1) For s ∈ [−T ,−3] ∪ [−1, 1] ∪ [3, T ] the map TmFT (WT ) vanishes:

TmFT (WT )(s)
(4.36)= ∂sW+(T + s) + Tm∇f |WT (T+s)

(4.32)= 0, ∀s ∈ [−T ,−3].
TmFT (WT )(s)

(4.36)= ∂sW−(−T + s) + Tm∇f |W−(−T+s)
(4.33)= 0, ∀s ∈ [3, T ].

TmFT (WT )(s) = 0 since WT (s)
(4.36)= 0, ∀s ∈ [−1, 1].

2) For s ∈ [−3,−1], using (4.37) for TmFT (WT ) and (4.36) for WT , we obtain

TmFT (WT )(s) = −β ′(s + 2)W+(T + s) + (1 − β(s + 2))∂sW+(T + s)

+ Tm∇f |(1−β(s+2))W+(T+s).

Now, by (4.35) and (4.32), we estimate the pointwise length by

∣∣TmFT (WT )(s)
∣∣

≤ ‖β ′‖∞|W+(T + s)| + |∂sW+(T + s)| + ∣∣Tm∇ f |(1−β(s+2))W+(T+s)
∣∣

≤ (‖β ′‖∞ + 1 + μm
)
c · e−ε(s+T ).

3) For s ∈ [1, 3] we obtain analogously the formula

TmFT (WT )(s) = −β ′(s − 2)W−(−T + s) + β(s − 2)∂sW−(−T + s)

+ Tm∇f |β(s−2)W−(−T+s)

and the estimate |TmFT (WT )(s)| ≤ (‖β ′‖∞ + 1 + μm
)
ceε(−T+s).

Thus for the L2 norm we get, by integration, the estimate

∥∥TmFT (WT )
∥∥2
TmVT

≤ 2
(‖β ′‖∞ + 1 + μm

)2
c2

e6ε − e2ε

ε︸ ︷︷ ︸
=:C(K+,K−)2

e−2εT

where c = c(K+, K−) and K± depend on m. This proves Proposition 4.1. ��

4.2 Surjectivity and Right Inverse

Surjective linearization at 0T . Let T > 0. The linearization at generalw ∈ WT

is given by

dFT (w) : WT → VT , ζ �→ ∂sζ + Awζ, Aw(s) := ∇∇f (w(s)), (4.38)
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where ∇∇f (w(s)) is the Jacobian of the vector field ∇f : Rn → R
n at w(s). The

linearization at the origin 0T , namely the operator

DT := dFT (0T ) : WT = ET ⊕ KT → VT , ζ �→ ∂sζ + Aζ, (4.39)

where A0T = A = diag(A+,−A−) is the diagonal block matrix (1.6), is surjective:
Given η ∈ VT , then the element defined by

ζ(s) := e−s A
(

ζ0 +
∫ s

0
eσ Aη(σ ) dσ

)
, ζ0 ∈ R

n, (4.40)

for s ∈ [−T , T ], lies inWT and satisfies dFT (0T )ζ = η.5

ForMT := F−1
T (0) there is the natural inclusion ET := T0TMT ⊂ ker dFT (0T ).

On the other hand, both spaces are determined by the initial conditions which are given
by Rn , thus dimET = n = dim ker DT . Therefore the two spaces coincide

ker DT = ET . (4.41)

Since KT is a complement of ET , the restriction

(
F+
T 0
0 F−

T

)
= FT := dFT (0T )|KT =

( d
ds + A+ 0

0 d
ds − A−

)∣∣∣
∣
KT

: KT → VT (4.42)

is injective, hence a continuous linear bijection. Hence, by the open mapping theorem,
the inverse

(
Q+

T 0
0 Q−

T

)
= QT := FT

−1 =
(

(F+
T )−1 0
0 (F−

T )−1

)
: VT → KT (4.43)

is also continuous. Thus the map FT : KT → VT is a Hilbert space isomorphism.
Right inverse QT of DT .

Remark 4.2 (QT is a right inverse of DT ) Given η ∈ VT , then ζ := QT η ∈ KT , hence
dFT (0T )ζ = FT ζ . Therefore

dFT (0T ) ◦ QT η = FT ◦ QT η = η.

Lemma 4.3 There is a constant c, independent of T > 0, such that ‖QT ‖ ≤ c.

Proof In the proof we distinguish three cases.
I. A positive definite: In this case k = 0 and p− = 0, see (1.5), in particular
a1 ≥ · · · ≥ an > 0. Thus KT = {ξ ∈ WT | ξ(−T ) = 0}; see (3.22). Given η ∈ VT ,
let ζ := QT η, equivalently η = FT ζ . Since ζ ∈ KT , we know that ζ(−T ) = 0.

5 Since the interval [−T , T ] is finite, the Morse condition is not needed here.
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By (4.40), where we changed the start of the integration from 0 to −T , we get the
formula

ζ(s) = e−s A
(

ζ(−T ) +
∫ s

−T
eσ Aη(σ ) dσ

)
ζ(−T )=0=

∫ s

−T
e−(s−σ)Aη(σ ) dσ

=
∫

[−T ,s]∪(s,T ]
φ(s − σ)η(σ ) dσ = (φ ∗ η)(s)

whenever s ∈ [−T , T ] and where the function φ is defined by φ(r) := e−r A for
r ≥ 0, and by 0 for r < 0. Hence, by Young’s inequality, we have

‖ζ‖2 ≤ ‖φ‖1‖η‖2 ≤ 1

an
‖η‖2

where the L2 and L1 norms are over [−T , T ] and since

‖φ‖1 =
∫ T

−T
‖φ(s)‖L(Rn) ds =

∫ T

0
‖e−s A‖L(Rn) ds

=
∫ T

0
e−san ds = 1−e−anT

an
≤ 1

an
.

Note that an > 0 is the smallest eigenvalue of the positive definite operator A. Since
∂sζ = η − Aζ , and by the triangle inequality and ‖ζ‖2 ≤ 1

an
‖η‖2, we get

‖QT η‖21,2 = ‖ζ‖21,2 = ‖∂sζ‖22 + ‖ζ‖22
= ‖η − Aζ‖22 + ‖ζ‖22
≤ (‖η‖2 + ‖Aζ‖2)2 + ‖ζ‖22
≤
(
1 + a1

an

)2 ‖η‖22 + 1
a2n

‖η‖22.

This proves Step 1 for c2 = (a1+an)2+1
a2n

.

II. A negative definite: So k = n and p− = 1 and KT = {ξ ∈ WT | ξ(T ) = 0}.
Given η ∈ VT , let ζ := QT η, equivalently η = FT ζ . Since ζ ∈ KT , we know that
ζ(T ) = 0. By (4.40), where we changed the start of the integration from 0 to T , we
obtain the formula

ζ(s) = esA
(

ζ(T ) +
∫ s

T
e−σ Aη(σ ) dσ

)
ζ(T )=0= −

∫ T

s
e(s−σ)Aη(σ ) dσ

= −
∫

[−T ,s)∪[s,T ]
φ(s − σ)η(σ ) dσ = −(φ ∗ η)(s)

whenever s ∈ [−T , T ] and where φ was defined in Step 1. Continue as in Step 1.

123



   44 Page 24 of 48 U. Frauenfelder, J. Weber

III. General case: Given η = (η+, η−) ∈ VT . Let ζ := QT η, then

ζ = (ζ+, ζ−), ζ+ = Q+
T η+, ζ− = Q−

T η−.

From Step I and Step II there exists a constant c > 0 such that ‖ζ+‖1,2 ≤ c‖η+‖2
and ‖ζ−‖1,2 ≤ c‖η−‖2. Since the splitting Rn−k × R

k is orthogonal, we have

‖ζ‖21,2 ⊥= ‖ζ+‖21,2 + ‖ζ−‖21,2 ≤ c2‖η+‖22 + c2‖η−‖22 ⊥= c2‖η‖22.

This proves Step III and Lemma 4.3. ��

4.3 Definition ofNT

Let c be the right inverse bound from Lemma 4.3. In order to use later on Remark B.8
to satisfy hypothesis (B.82), as opposed to only (B.70), we define, for μ ≥ 2, a nested
family of open neighborhoods of 0 in R

n as the pre-image of [0, 1/μc) under the
continuous map ‖d∇f (·) − A‖: Rn → [0,∞), in symbols

Bμ := ∥∥d∇f (·) − A
∥∥−1 [0, 1

μc ), Bμ ⊂ B2.

For T > 0 define an open neighborhood Bμ
T of 0T inWT by

Bμ
T := {w ∈ WT | w(s) ∈ Bμ ∀s ∈ [−T , T ]} ⊂ B2

T .

Lemma 4.4 Let T > 0 and μ ≥ 2. If w ∈ Bμ
T , then ‖dFT (w) − DT ‖ ≤ 1

μc .

Proof Given w ∈ Bμ
T , there is the estimate

‖(dFT (w) − DT )ζ‖2 (4.38)= ‖(d∇f (w) − A)ζ‖2 ≤ 1
μc‖ζ‖2 ≤ 1

μc‖ζ‖1,2

for every ζ ∈ WT . ��

Corollary 4.5 (to Lemma 3.2) There is a monotone decreasing function δ : [2,∞) →
(0,∞), μ �→ δ(μ) =: δμ, independent of T , such that for μ ∈ [2,∞) the δμ-ball
about 0T inWT is contained in Bμ

T , in symbols Bδμ(0T ;WT ) ⊂ Bμ
T .

Proof By Lemma 3.2 for w ∈ Bδμ(0T ;WT ) we have ‖w‖∞ ≤ 2δμ. ��

Definition 4.6 (Newton-Picard map) Let c > 0 be the right inverse bound of
Lemma 4.3 and let

δ := δ4 > 0 (4.44)
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be the value in Corollary 4.5 forμ = 4.6 For T ≥ 1 we can now, in view of Lemma 4.4
withμ = 4 and theMcDuff-Salamon Proposition B.1with x0 = 0T , define a Newton-
Picard map

NT : WT ⊃ B4
T ⊃ U0(δ)

(B.74):=
(
B δ

8
(0T ;WT ) ∩ {‖FT ‖ < δ

4c

}) → WT . (4.45)

Here the inclusion U0(δ) ⊂ B4
T holds by Corollary 4.5.

By (B.72) the Newton-Picard map NT enjoys the following properties:

FT ◦ NT (w) = 0, NT (w) − w ∈ im QT , NT (w) ∈ Bδ(0T ;WT ),

and, moreover, one has the estimate

‖(NT − id)(w)‖WT ≤ 2c‖FT (w)‖VT . (4.46)

Furthermore, by Corollary B.7, respectively identity (5.53)), we have

NT (0T ) = 0T , dNT |0T (5.53)= �T , (4.47)

where the projection �T , see (3.24), is uniformly bounded in T , by Lemma 3.3.

Pre-Gluing Takes Values in Domain of Newton-Picard Map

The next lemma and Proposition 4.1 show that, for T ≥ 3 large enough, the pre-gluing
map PT takes values in the domain of the Newton-Picard map NT .

Lemma 4.7 (The neighborhoods Uμ
±.) Let δ : [2,∞) → (0,∞), μ �→ δμ, be the

monotone decreasing function in Corollary 4.5. We abbreviate δ := δ4. Then there
exists a nested family of open and bounded neighborhoods Uμ

+ ⊂ Ws of 0+ and Uμ
− ⊂

Wu of 0− such that ‖PT (w+, w−)‖1,2 < min{ δ
8 , δμ} whenever μ ≥ 2, w+ ∈ Uμ

+,
w− ∈ Uμ

−, and T ≥ 3.

While the estimate by δ
8 serves in (4.45), the estimate by δμ for some μ ≥ 5 will

be used in the proof of Theorem 5.3 further below.

Proof For δ′ > 0 let Bδ′(0+) ⊂ W+ be the open radius δ′ ball about 0+, analogously
for Bδ′(0−). Pick w+ ∈ Bδ′(0+) ∩ Ws and w− ∈ Bδ′(0−) ∩ Wu and, for T ≥ 3,
abbreviate wT := PT (w+, w−) : [−T , T ] → R

n . Since by (2.12) at each time s at

6 To define the Newton-Picard map via the McDuff-Salamon Proposition B.1 and obtain C0-convergence
(Theorem 5.6 with m = 0) for the gluing map it is sufficient to pick δμ for μ = 2. However, to obtain
C1-convergence (Theorem 5.6 with m = 1) we need to choose μ = 4 in order to satisfy assumption (B.82)
( 1
4c as opposed to 1

2c ) in the tangent map Theorem B.10.
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most one of w+(T + s) and w−(−T + s) comes with a nonzero factor, we obtain
inequality one in the following estimate

‖wT ‖21,2
= ‖wT ‖22 + ‖∂swT ‖22
≤ ‖w+‖22 + ‖w−‖22 + 2‖β ′‖2∞

(
‖w+‖22 + ‖w−‖22

)
+ 2

(
‖∂sw+‖22 + ‖∂sw−‖22

)

≤ 2(1 + ‖β ′‖2∞)
(
‖w+‖21,2 + ‖w−‖21,2

)

≤ 4(1 + ‖β ′‖2∞)(δ′)2.

Choose δ′ = δ′(μ) := 1
4 min{ δ

8 , δμ}√1 + ‖β ′‖2∞ and define the open δ′-
neighborhoods in the stable, respectively unstable, manifolds as follows

Uμ
+ := (

Bδ′(0+) ∩ Ws) ⊂ U+ := U2+, Uμ
− := (

Bδ′(0−) ∩ Wu) ⊂ U− := U2−.

Then the lemma holds by the previous displayed estimate. ��

5 Gluing

Pick ε ∈ (0, σ )where σ = σ(A) is the spectral gap (1.7). Let c > 0 be the constant in
the right inverse estimate, Lemma 4.3. Let δ = δ4 > 0 be the constant in Corollary 4.5
and let

U+/− := U2+/− ⊂ Ws/u, K± := clU±, (5.48)

be the open sets in Lemma 4.7 and, respectively, the compact sets given by the closure
of U± in the (finite dimensional) stable/unstable manifold. Thus, by Proposition 4.1
for m = 0, we get a constant C = C(K+, K−) > 0. Pick T0 ≥ 3 such that

Ce−εT0 <
δ

4c
(5.49)

see (4.31). By Proposition 4.1 for m = 0 and Lemma 4.7 it holds that

‖FT ◦ ℘T (w+, w−)‖ (4.31)
< δ

4c , ‖℘T (w+, w−)‖ < δ
8 , (5.50)

whenever T ≥ T0 and w± ∈ U± and were ℘T := PT |Ws×Wu : Ws × Wu → WT ,
see (2.14), is the restriction of the (linear) pre-gluing map PT : W+ × W− → WT ,
see (2.11). In other words, the pre-gluing map ℘T maps U+ × U− into the domain of
the Newton-Picard map NT , see (4.45), whenever T ≥ T0.

Definition 5.1 (Gluing map) For T ≥ T0 the gluing map is the composition of smooth
maps

γT := NT ◦ ℘T : U+ × U− −→ U0(δ) −→ WT . (5.51)
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The linearized gluing map is the composition

dγT |(w+,w−) = dNT |℘T (w+,w−) ◦ d℘T |(w+,w−) : Tw+Ws × Tw−Wu → WT .

Lemma 5.2 It holds γT (0+, 0−) = 0T . Furthermore, the differential of the gluingmap
γT at (0+, 0−) is the infinitesimal gluing map �T , in symbols

dγT |(0+,0−) = �T ◦ d℘T |(0+,0−)

(3.26)=: �T : E+ × E
− → ET .

Proof We get that γT (0+, 0−)
(2.13)= NT (℘T (0+, 0−))

(4.47)= NT (0T ) = 0T .
By definition of γT and the chain rule we get the first equality

dγT |(0+,0−) = dNT |℘T (0+, 0−)
︸ ︷︷ ︸

=0T by (2.13)

◦ d℘T |(0+,0−)

= (Id − QT DT ) ◦ d℘T |(0+,0−)

= �T ◦ d℘T |(0+,0−)

=: �T

(5.52)

and the second equality holds since dNT (0T ) = Id − QT DT , by Corollary B.7 with
x0 = 0T and P = QT DT .

Now �T : WT → WT is the projection onto ET alongKT , by definition (3.24), in
symbols �T = PET ,KT . Thus, to see that

dNT (0T ) = Id − QT DT = PET ,KT =: �T , (5.53)

it remains to show that the composition

QT DT = PKT ,ET

is the projection onto KT along ET . This follows since

QT DT
(4.43)= F−1

T dFT |0T = (
dFT |0T |KT

)−1
dFT |0T : WT → VT → KT

and ET = ker dFT |0T = ker DT and QT = F−1
T : VT → KT where FT is the

restriction of DT to KT , see (4.42). ��

5.1 Diffeomorphism onto Image

Theorem 5.3 There are open neighborhoodsO+ ⊂ U+ ⊂ Ws of 0+ andO− ⊂ U− ⊂
Wu of 0− such that for every T ≥ T0 the restricted gluing map

γT : O+ × O− → MT , (w+, w−) �→ NT ◦ ℘T (w+, w−)

is a diffeomorphism onto its image OT .
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Note that the domain O+ × O− of γT does not depend on T .

Proof Given T0 ≥ 3 as prior to (5.50), pick T ≥ T0. The theorem is a consequence
of the quantitative inverse function Theorem A.1 (IFT), where F is given by a repre-
sentative of γT in local coordinate charts; see (2.19). In order to apply the quantitative
IFT, two conditions, (A.65) and (A.66), are to be checked.

We verify (A.65): Recall that the inverse of the infinitesimal gluing map �T is
uniformly bounded by a constant k = 1/(1 − e−12σ ) > 1, see Lemma 3.5. So, by
Lemma 5.2, the inverse of dγT |(0+,0−) = dF |0 is bounded by k, uniformly in T .

We verify (A.66): To check this condition we choose

O± := O±
1/8kd ∩ U4k+1± , ε = 1

8kd , μ = 4k + 1 ≥ 5, (5.54)

where d is the (T -independent) bound of �T from Lemma 3.3 and where the open
origin neighborhoods O±

ε and Uμ
± in Ws/u were defined in Lemmas 2.3 and 4.7,

respectively. Since k ≥ 1, Lemma 4.7 tells that U4k+1± ⊂ U2± =: U±, henceO± ⊂ U±.
Pick (w+, w−) ∈ O+ × O− ⊂ U+ × U−.

Recalling (2.19) we shall investigate the operator norm of the difference

dγT |(w+,w−) ◦ (θ−1
w+ , θ−1

w−) − dγT |(0+,0−) : E+ × E
− → WT .

Abbreviate x1 := ℘T (w+, w−). By definition of γT and of �T (w+, w−) we get

dγT |(w+,w−) ◦ (θ−1
w+ , θ−1

w−) − dγT |(0+,0−)

(5.51)= dNT |x1 ◦ PT ◦ (θ−1
w+ , θ−1

w−) − dNT |0T ◦ PT −dNT |x1 ◦ PT + dNT |x1 ◦ PT

(2.21)= −dNT |x1 ◦ �T (w+, w−) + (
dNT |x1 − dNT |0T

) ◦ PT .

(5.55)
By Remark B.5 for Q := QT and P := QT DT and since the projection Id−P = �T ,
see (5.53), has a (T -independent) bound d by Lemma 3.3 we get that

‖dNT |x1‖
(B.79)≤ ‖(Id + QT d f (x1) − P)−1‖ · ‖Id − P‖ (B.81)≤ 2d. (5.56)

Since (w+, w−) ∈ O+
1/8kd × O−

1/8kd , by Lemma 2.3, we have that

‖�T (w+, w−)‖ ≤ 1
8kd . (5.57)

Furthermore, abbreviating x0 := 0T , then dNT |0T = Id − P by (B.79) with x1
replaced by x0 and using that QT d f (x0) = QT DT = P . Thus we get that

(
dNT |x1 − dNT |0T

) ◦ PT
(B.79)=

((
Id + QT d f |x1 − P

)−1 − Id
)

(Id − P) ◦ PT .

(5.58)
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Observe that

(Id − P) ◦ PT
(2.20)= (Id − QT DT ) ◦ d℘T |(0+,0−)

(5.52)= �T . (5.59)

Since (w+, w−) ∈ U4k+1+ × U4k+1− , it follows from Lemma 4.7 that ‖x1‖1,2 =
‖PT (w+, w−)‖1,2 < min{ δ

8 , δ4k+1}. Hence x1 lies in U4k+1
T by Corollary 4.5. There-

fore, by Lemma 4.4, it follows that ‖dFT (x1) − DT ‖ ≤ 1
(4k+1)c .

In view of Remark B.8 with U0 given by U0 we obtain

‖(Id + QT d f |x1 − P
)−1 − Id‖ ≤ 1

4k . (5.60)

By Lemma 3.5 we have ‖�T ‖ ≤ 1. Combining this fact with (5.58), (5.59), and (5.60)
we conclude

‖(dNT |x1 − dNT |0T
)◦PT ‖ ≤ ‖(Id+ QT d f |x1 − P

)−1 − Id‖ · ‖�T ‖ ≤ 1
4k . (5.61)

By (5.55), (5.56), (5.57), and (5.61) we conclude

‖dγT |(w+,w−) ◦ (θ−1
w+ , θ−1

w−) − dγT |(0+,0−)‖ ≤ 2d
8kd + 1

4k = 1
2k .

This verifies (A.66). Corollary A.2 concludes the proof of Theorem 5.3. ��

5.2 EvaluationMaps and Convergence in Cm

Definition 5.4 Consider the evaluation maps defined by

ev : W+ × W
− → R

n × R
n, (w+, w−) �→ (w+(0), w−(0))

and, for T > 0, by

evT : WT → R
n × R

n, w �→ (w(−T ), w(T )) .

123



   44 Page 30 of 48 U. Frauenfelder, J. Weber

Observe that both evaluation maps are linear. Furthermore, for T ≥ 3 we have
evT ◦ PT (w+, w−) = (w+(0), w−(0) = ev(w+, w−).7 So there is the identity

evT ◦ PT = ev : W+ × W
− → R

n × R
n (5.62)

whenever T ≥ 3. Therefore, for tangent maps, we get the identity

TmevT ◦ TmPT = Tmev : Tm
W

+ × Tm
W

− → Tm
R
n × Tm

R
n (5.63)

whenever m ∈ N and T ≥ 3.

Lemma 5.5 ‖evT ‖ ≤ 2
√
2.

Proof |evTw|2
R
n×R

n = |w(−T )|2 + |w(T )|2 ≤ 2‖w‖2∞ ≤ 8‖w‖2
WT

by (3.23). ��
To motivate Theorem 5.6 below we first check the infinitesimal version in case

m = 0, see (1.3). The linearized evaluation maps are given by

dev|(0+,0−) = ev : E+ × E
− → R

n × R
n(ξ, η) �→ (ξ(0), η(0))

and
devT |0T = evT : ET → R

n × R
nζ �→ (ζ(−T ), ζ(T )) .

By Lemma 5.2 we get that

d (evT ◦ γT ) |(0+,0−) = evT ◦ dγT |(0+,0−) = evT ◦ �T : E+ × E
− → ET .

Thus, for (ξ, η) ∈ E
+ × E

− and by (3.29), we obtain

d (evT ◦ γT ) |(0+,0−) (ξ, η) = (�T (ξ, η)(−T ), �T (ξ, η)(T ))

=
(
ξ(0) + e−2T A−η(0), e−2T A+ξ(0) + η(0)

)

T→∞→ (ξ(0), η(0)) = dev|(0+,0−)(ξ, η).

This confirms the infinitesimal version of Theorem 5.6 in case m = 0.

7 By definition (2.11) of wT and the cut-off function β, we get the identities

wT (−T ) − w+(0) = (1 − β(−T + 2)) w+(0) + β(−T − 2) w−(−2T ) − w+(0)

= −β(−T + 2)w+(0) + β(−T − 2) w−(−2T )

= 0 for T ≥ 3

wT (T ) − w−(0) = (1 − β(T + 2)) w+(2T ) + β(T − 2) w−(0) − w−(0)

= (1 − β(T + 2)) w+(2T ) − (1 − β(T − 2)) w−(0)

= 0 for T ≥ 3.

Thus, by definition of the evaluation maps, for T ≥ 3 we get that

evT (wT ) − ev(w+, w−) = (wT (−T ) − w+(0), wT (T ) − w−(0)) = (0, 0).
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Theorem 5.6 (Local gluing – Cm) Let m ∈ N0. Consider the gluing map γT : U+ ×
U− → WT from (5.51). In the limit T → ∞ the tangent map diagram

TmU+ × TmU− Tm
R
n × Tm

R
n

TmMT

Tmev

TmγT =TmNT ◦TmPT TmevT

commutes. More precisely, it holds that

lim
T→∞ TmevT ◦ TmγT = Tmev

in C0(TmU+ × TmU−, Tm
R
n × Tm

R
n).

Proof Let W± ∈ TmU±. For WT := TmPT (W+,W−) ∈ Tm
WT we obtain

Tm
R
n×Tm

R
n

︷ ︸︸ ︷
(V−, V+) : = (

TmevT ◦ TmγT
)
(W+,W−) − Tmev(W+,W−)

= TmevT ◦ TmNT (WT ) − Tmev(W+,W−)

= TmevT
(
TmNT (WT ) − WT

) + TmevT (WT ) − Tmev(W+,W−)
︸ ︷︷ ︸

= 0 by (5.63)

where equality one is definition (5.51) of γT and equality two by adding zero.
In view of Lemmas 5.7 and 5.8 below, by Theorem B.12 there exists a constant c,

independent of T , such that

∥∥(TmNT − id)(WT )
∥∥
TmWT

(B.85)≤ c
∥∥TmFT (WT )

∥∥
TmVT

(
1 + ∥∥TmFT (WT )

∥∥
TmVT

)

(4.31)≤ cCe−εT
(
1 + Ce−εT

)

where the second inequality is by exponential decay (4.31) with constant C =
C(K+, K−) and K± depending on m. In particular, there exists a constant Tm =
Tm(K+, K−) > 0 such that if T > Tm , then

1 + Ce−εT ≤ 2.

Therefore, by the uniform–in–T Sobolev estimate (3.23) we get

∥∥(TmNT − id)(WT )
∥∥
L∞[−T ,T ]

≤ 2
∥∥(TmNT − id)(WT )

∥∥
TmWT

≤ 4cCe−εT
(5.64)
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for every T > Tm . Putting things together, using that evT ◦ PT = ev by (5.62), we
obtain exponential decay

∣∣(TmevT ◦ TmγT
)
(W+,W−) − Tmev(W+,W−)

∣∣2
TmRn×TmRn

= |V−|2TmRn + |V+|2TmRn

≤ 2(4cC)2e−2εT

whenever T > Tm . But in finite dimensions pointwise convergence implies conver-
gence of the operators.8 By the uniformity of exponential decay in Proposition 4.1 we
have uniform convergence in C0(TmU+ × TmU−, Tm

R
n × Tm

R
n). ��

In the following, by iterated identification of the space with the zero section of its
tangent space, we can interpret 0T ∈ WT as an element of Tm

WT . Since NT (0T ) =
0T , see (4.47), we have TmNT (0T ) = 0T and therefore

dTmNT (0T ) : T0T T m
WT → T0T T

m
WT .

Since WT itself is a vector space, we have a canonical isomorphism of T0T T
m
WT

with (WT )×2m .

Lemma 5.7 Givenm ∈ N0 and T ≥ 1, let d be the T -independent constant provided by
Lemma 3.3, then ‖dTmNT (0T )‖ ≤ d2

m
. In particular, the norm is uniformly bounded

independent of T .

Proof With respect to the splitting T0T T
m
WT = (WT )×2m we have the block decom-

position dTmNT (0T ) = diag (dNT (0T ), . . . , dNT (0T )). By formula (4.47) we have
dNT (0T ) = �T . Hence the estimate follows from Lemma 3.3. ��
Lemma 5.8 Given W± ∈ TmU±, the norm of WT := TmPT (W+,W−) is uniformly
bounded in terms of the norms of W+ and W−, independent of T .

Proof By (4.36) the same estimate as in the proof of Lemma 4.7 for wT yields

‖WT ‖2TmWT
≤ 2(1 + ‖β ′‖2∞)

(
‖W+‖2TmW+ + ‖W−‖2TmW−

)
.

��

AQuantitative Inverse Function Theorem

Let F : X → Y be a map between Banach spaces. Suppose that at a point x ∈ X the
derivative dF |x : X → Y exists. If this bounded linear map is bijective then its inverse
dF |x−1 is not only linear but, by the open mapping theorem, also bounded.

8 In finite dimension, given a sequence of matrizes, then weak (and strong) convergence means that each
matrix entry converges. In particular, the two notions of convergence are equivalent.
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The quantitative version of the inverse function theorem (IFT) follows from the
proof of the usual IFT explained in (McDuff and Salamon (2004), App.A.3), although
McDuff-Salamon never state explicitly the quantitative version. Therefore, for the
reader’s convenience, we state the quantitative version of the IFT and explain how it
follows from the arguments in (McDuff and Salamon (2004), App.A.3).

We denote by Br (x; X) the open ball of radius r centered at x in the Banach space
X . We often abbreviate Br (x) := Br (x; X) and Br := Br (0; X).

Theorem A.1 (Quantitative inverse function theorem) Let k, δ > 0 be constants. Let
F : X → Y be a map between Banach spaces, continuously differentiable on the open
ball Bδ about 0 ∈ X, such that dF |0 is bijective and

‖dF |0−1‖ ≤ k (A.65)

and
‖dF |x − dF |0‖ ≤ 1

2k , ∀x ∈ Bδ. (A.66)

In this case the following is true. The restriction of F to Bδ is injective, the image
F(Bδ) is open and contains the ball Bδ/2k(F(0)), the inverse F−1 : F(Bδ) → Bδ is
of class C1, and

d(F−1)|y = (dF |F−1(y))
−1 (A.67)

for every y ∈ F(Bδ).

Corollary A.2 If in Theorem A.1 in addition F : Bδ → Y is of class C� for some � ∈ N,
then so is F−1. In particular, in case � = ∞ the restriction F | : Bδ → F(Bδ) is a
diffeomorphism onto its image.

Proof Induction, using the chain and Leibniz rules, together with (A.67). ��
The proof of Theorem A.1 is based on the following lemma.

Lemma A.3 (McDuff andSalamon (2004), Le.A.3.2) Let γ < 1 and R be positive real
numbers. Let X be a Banach space, x0 ∈ X, and ψ : BR(x0) → X be a continuously
differentiable map such that

‖1 − dψ(x)‖ ≤ γ

for every x ∈ BR(x0). Then the following holds. The map ψ is injective and ψ maps
BR(x0) into an open set in X such that

BR(1−γ )(ψ(x0)) ⊂ ψ(BR(x0)) ⊂ BR(1+γ )(x0). (A.68)

The inverse ψ−1 : ψ(BR(x0)) → BR(x0) is continuously differentiable and

d(ψ−1)|y = (dψ |ψ−1(y))
−1. (A.69)
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Proof of TheoremA.1 This is basically the proof of the usual IFT given in (McDuff
and Salamon (2004), App.A.3). We assume without loss of generality F(0) = 0. We
consider the map ψ : Bδ → X defined by

ψ(x) := D−1F(x)

where D := dF |0. For x ∈ Bδ we estimate

‖1 − dψ |x‖ = ‖D−1(D − dF |x )‖ ≤ ‖D−1‖ · ‖D − dF |x‖ ≤ k · 1
2k = 1

2 .

It follows from Lemma A.3 with R = δ and γ = 1
2 that ψ has a continuously

differentiable inverse on Bδ(0; X) and that ψ(Bδ(0; X)) is an open set containing
Bδ/2(0; X). Since F = D ◦ ψ and ‖dF |0−1‖ ≤ k we get, respectively, inclusion one
and two

F(Bδ(0; X)) = D ◦ ψ(Bδ(0; X)) ⊃ DBδ/2(0; X) ⊃ Bδ/2k(0; Y ).

The inverse of F = Dψ is given by

F−1(y) = ψ−1(D−1y).

The inverse F−1 is continuously differentiable, since ψ−1 is, and the formula
d(F−1)|y = (dF |F−1(y))

−1 follows by differentiating F ◦ F−1 = idY . ��

B Newton-PicardMapWithout Quadratic Estimates

TheNewton-Picardmap is usually defined via the Newton-Picard iterationmethod. To
show that Newton-Picard iteration is a contraction one needs to calculate troublesome
quadratic estimates. Based on (McDuff and Salamon (2004), App.A.3) we explain
how the Newton-Picard map can as well be defined even if there are no quadratic esti-
mates available. The Newton-Picard mapN obtained in this way is still continuously
differentiable. This fact is not mentioned in (McDuff and Salamon (2004), App.A.3)
and therefore we prove this fact in the present article; see Appendix B.1.

For induction arguments, e.g. the one in Sect. 5.2, tangent maps are much more
suitable than differentials. Therefore we estimate, in Appendix B.2, the tangent map
difference TN − Id.

Notation.Throughout Appendix B the letter f denotes amap between Banach spaces,
not a Morse function as in the principal part of this article.

B.1 Newton-Picard Map

The definition of the Newton-Picard map requires the following proposition from
(McDuff and Salamon (2004), App.A.3). The proof can actually be interpreted in
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terms of the Newton-Picard iteration as is explained in (McDuff and Salamon (2004),
Rmk.A.3.5) in case x0 = x1.

Proposition B.1 (McDuff and Salamon (2004), Prop.A.3.4) Let X and Y be Banach
spaces, U ⊂ X be an open set, and f : U → Y be a continuously differentiable map.
Let x0 ∈ U be a suitable initial point in the sense that D := d f (x0) : X → Y is surjec-
tive and has a (bounded linear) right inverse Q : Y → X. Choose positive constants
δ and c such that ‖Q‖ ≤ c, the open radius-δ ball about x0 satisfies Bδ(x0; X) ⊂ U,
and

‖x − x0‖ < δ ⇒ ‖d f (x) − D‖ ≤ 1

2c
. (B.70)

Suppose that x1 ∈ X is an approximate zero of f near x0 in the sense that

‖x1 − x0‖ <
δ

8
, ‖ f (x1)‖ <

δ

4c
. (B.71)

Then there exists a unique zero x ∈ X near the initial point x0 such that

f (x) = 0, x − x1 ∈ im Q, ‖x − x0‖ < δ. (B.72)

Moreover, the distance between the detected zero x and the chosen approximate zero
x1 is controlled by f (x1), more precisely

‖x − x1‖ ≤ 2c‖ f (x1)‖. (B.73)

Definition B.2 Based on the proposition we define the Newton-Picard map N as
follows. Define an open subset of U by

U0 = U0(δ) : =
(
B δ

8
(x0; X) ∩ {‖ f (·)‖Y < δ

4c

})

(B.70)⊂ {‖d f (·) − D‖L(X ,Y ) < 1
2c

} (B.74)

and a map
N = N f

x0,Q
: X ⊃ U ⊃ U0 → X , x1 �→ x (B.75)

which maps a point x1, thought of as an approximate zero of f , to the unique zero x
in the δ-ball about x0 whose difference x − x1 lies in the image of the right inverse Q.
Note that the domain U0 of definition of the Newton-Picard map N depends on the
choice of equivalent norms on X and Y .

Remark B.3 The uniqueness statement implies that N| f −1(0) ∩U0
= id.

Theorem B.4 The Newton-Picard map N is continuously differentiable.

Proof We first recall how the zero x in Proposition B.1 is found from a given approx-
imate zero x1 ∈ U0. One considers the map defined by

ψx1 : X ⊃ U ⊃ Bδ(x0) → X , x �→ x + Q
(
f (x) − D (x − x1)

)
. (B.76)
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Themapψx1 is continuously differentiable, because f is, and by (B.70) the differential
at any x ∈ Bδ(x0) satisfies

‖Id − dψx1(x)‖ ≤ c‖d f (x) − D‖ ≤ 1

2
. (B.77)

Moreover, according to (McDuff and Salamon (2004), Proof of Prop.A.3.4) the map
ψx1 : Bδ(x0) → X is injective and the Newton-Picard map is given by N(x1) :=
ψ−1
x1 (x1).9

To show that N is differentiable we consider the map

� : Bδ(x0) ×U0 → X ×U0, (x, x1) �→ (
ψx1(x), x1

)
.

The differential of � at a point (x, x1) ∈ Bδ(x0) ×U0 is the linear map

d�
∣
∣
(x,x1)

=
(
dψx1

∣∣
x (∂x1ψx1)

∣∣
x

0 Id

)
(B.76)=

(
dψx1

∣∣
x P

0 Id

)
: X × X → X × X

where

P := QD : X → X

is a projection.10 Since the bound in (B.77) is < 1, the linear map dψx1(x) : X → X
is invertible, therefore so is d�

∣
∣
(x,x1)

with inverse

(d�
∣∣
(x,x1)

)−1 =
((

dψx1

∣∣
x

)−1 − (
dψx1

∣∣
x

)−1
P

0 Id

)
.

Therefore, by the inverse function theorem (McDuff andSalamon (2004), Thm.A.3.1),
the map � is injective in a neighborhood of (x, x1) ∈ Bδ(x0) ×U0 with continuously
differentiable inverse.

It follows that the Newton-Picard map N is differentiable as well with differential
dN(x1) : X → X given by the formula

dN(x1) = (
dψx1

∣∣
x1

)−1
(Id − P)

(B.76)=
(
Id + Q d f (x1) − P

)−1
(Id − P) . (B.79)

The differential dN(x1) depends continuously on x1 since d f (x1) does. ��
9 In (McDuff and Salamon (2004), Proof of Prop.A.3.4) it is shown that x1 ∈ Bδ/2(ψx1 (x0)) ⊂
ψx1 (Bδ(x0)).
10 Since DQ = Id, the map

P := QD, P2 = P, im P = im Q, ker P = ker D, (B.78)

is the projection P = Pim Q,ker D onto the image of Q along the kernel of D. Indeed P2 = QDQD =
QD = P . It holds im P = im Q: ’⊂’ true by definition of P . ’⊃’ If ξ = Qη, then Pξ = PQη =
QDQη = Qη = ξ . It holds ker P = ker D: ’⊂’ If Pξ = 0, then Dξ = DQDξ = DPξ = 0. ’⊃’ true by
definition of P .
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Remark B.5 (The inverse in (B.79)) Let A := Q
(
D − d f |x1

) = P − Q d f |x1 , then
‖A‖ ≤ 1

2 since ‖Q‖ ≤ c and by (B.70). The inverse for Id − A is given by

∞∑

n=0

An = (Id − A)−1 =
(
Id + Q d f |x1 − P

)−1
(B.80)

where the sum, called Neumann series, converges in L(X) whenever A has operator
norm less than 1; for details see e.g. (Reed and Simon (1980), (VI.2) p. 191) with
λ = 1. Thus there is the estimate

‖(Id + Q d f |x1 − P
)−1‖ ≤

∞∑

n=0

‖A‖n ≤
∞∑

n=0

1

2n
= 1

1 − 1
2

= 2 (B.81)

and therefore

‖(Id + Q d f |x1 − P
)−1 − Id‖ =

∥∥∥∥
∥

∞∑

n=1

An

∥∥∥∥
∥

≤
∞∑

n=1

‖A‖n = 2 − 1

20
= 1.

Remark B.6 (Smoothness) If f in Proposition B.1 is assumed to be not only continu-
ously differentiable, but smooth, then it follows from (B.79) that the Newton-Picard
map N is smooth as well.

Corollary B.7 By (B.79), it holds dN(x0) = Id − P. If additionally f (x0) = 0 in
Proposition B.1, then N(x0) = x0 by uniqueness.

Remark B.8 Givenμ ≥ 2, the restriction of theNewton-PicardmapN : X ⊃ U0 → X
in (B.75) to the subset

Uμ
0 := U0 ∩ ‖d f (·) − D‖−1[0, 1

μc ), U 2
0

(B.74)= U0,

satisfies, just as above, an estimate of the form

‖(Id + Q d f |x1 − P
)−1 − Id‖ ≤

∞∑

n=1

‖A‖n ≤
∞∑

n=1

1
μn = 1

μ
· 1

1 − 1
μ

= 1

μ − 1

for every x1 ∈ Uμ
0 and where we used that

‖A‖ = ‖Q(D − d f |x1)‖ ≤ ‖Q‖ · ‖D − d f |x1‖ ≤ 1
μ
.

B.2 Tangent Map

Hypothesis B.9 Consider the situation of Proposition B.1. In this section we assume,
in addition, that the map f : X ⊃ U → Y is two times continuously differentiable.
Recall that x0 ∈ U is a suitable initial point and δ and c are positive constants, the
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three of them related by assumption (B.70). Choose δ > 0 smaller, if necessary, such
that

‖x − x0‖ < δ ⇒ ‖d f (x) − D‖ ≤ 1

4c
. (B.82)

Suppose that there is a constant c2 > 0 such that ‖d2 f (x)‖ ≤ c2 for all x ∈ Bδ(x0).
Define

δ̂ := min
{
δ, 1

4cc2

} ⊂ (0, 1).

Theorem B.10 Under Hypothesis B.9 suppose that x1 ∈ U0(δ); see (B.74). Abbreviate
N := N f

x0,Q
. Then for each ξ1 ∈ X which is small in the sense that

‖ξ1‖ <
δ

8(1+‖dN|x0‖)
, ‖d f |x1ξ1‖Y <

δ

4c
, (B.83)

there is the estimate

‖dN|x1ξ1 − ξ1‖X ≤ 2cmax
{

δ

δ̂
‖ f (x1)‖Y , ‖d f |x1ξ1‖Y

}
. (B.84)

Corollary B.11 For (x1, ξ1) ∈ TU0(δ), see (B.74), there is the estimate

‖dN|x1ξ1 − ξ1‖X
≤ 2cmax

{
9(1+‖dN|x0‖)‖ξ1‖

δ̂
‖ f (x1)‖Y ,

5c ‖d f |x1 ξ1‖
δ̂

‖ f (x1)‖Y , ‖d f |x1ξ1‖Y
}

.

Proof of Corollary B.11 Let x1 ∈ U0(δ); see (B.74). For ξ1 ∈ X we define

λ = λ(x1, ξ1) := min

{
δ

9(1+‖dN|x0‖)‖ξ1‖
,

δ

5c ‖d f |x1ξ1‖
}

.

Observe that
1

λ
= max

{
9(1+‖dN|x0‖)‖ξ1‖

δ
,
5c ‖d f |x1ξ1‖

δ

}
.

Then λξ1 meets condition (B.83), so there is the estimate

‖dN|x1ξ1 − ξ1‖X
= 1

λ
‖(dN|x1 − Id)λξ1‖X

≤ 2c

λ
max

{
δ

δ̂
‖ f (x1)‖Y , ‖d f |x1λξ1‖Y

}

≤ 2cmax
{

δ

δ̂

1
λ
‖ f (x1)‖Y , ‖d f |x1ξ1‖Y

}

= 2cmax
{
9(1+‖dN|x0‖)‖ξ1‖

δ̂
‖ f (x1)‖Y ,

5c ‖d f |x1 ξ1‖
δ̂

‖ f (x1)‖Y , ‖d f |x1ξ1‖Y
}

.

��
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Wecan summarize the result of this sectionmore compactly in tangentmap notation
by the following theorem.

Theorem B.12 Under Hypothesis B.9, given W1 = (x1, ξ1) ∈ TU0(δ), see (B.74),
there is a constant C depending on ‖ξ1‖X and ‖dN|x0‖ such that

‖TN(W1) − W1‖T X ≤ C‖T f (W1)‖TY
(
1 + ‖T f (W1)‖TY

)
. (B.85)

Proof of Theorem B.12 Write W1 = (x1, ξ1) and observe that

TN(W1) − W1 = (N(x1) − x1, dN|x1ξ1 − ξ1
)
.

To the first component apply estimate (B.73) in the McDuff-Salamon Proposition B.1
and to the second component apply Corollary B.11. ��

Proof of Theorem B.10 We first consider the Newton-Picard map NT f for the tangent
map T f and then compare it with the tangent map TN f of N f .

On X̂ := T X = X ⊕ X � (x, ξ) and Ŷ := TY = Y ⊕Y � (y, η) We define norms
for (x, ξ) ∈ T X = X ⊕ X , respectively (y, η) ∈ TY = Y ⊕ Y by

‖(x, ξ)‖ := max{‖x‖, δ̂
δ
‖ξ‖}, ‖(y, η)‖ := max{‖y‖, δ̂

δ
‖η‖}.

In the following we study the tangent map f̂ := T f which is defined by T f (x, ξ) =
( f (x), d f |xξ). The task at hand is to choose the corresponding quantities x̂0, D̂, Q̂,
ĉ, δ̂, and Û0 in order to apply Proposition B.1 to f̂ .

As initial point for f̂ on Û := TU = U × X we pick x̂0 := (x0, 0). The operator
D̂ := d f̂ |(x0,0) = D ⊕ D is onto. A right inverse is given by the sum Q̂ := Q ⊕ Q
with bound ĉ = c.11 Observe that Bδ(x̂0; T X) ⊂ U × X = Û . Suppose that x, ξ ∈ X
satisfy the estimate

‖(x, ξ) − (x0, 0)‖ = max{‖x − x0‖, δ̂
δ
‖ξ‖} < δ.

11 Use the bound ‖Q‖ ≤ c to obtain the inequality in what follows

‖Q ⊕ Q‖L(TY ,T X) : = sup
‖(ŷ,η̂)‖TY =1

‖(Q ⊕ Q)(ŷ, η̂)‖T X

= sup
‖(ŷ,η̂)‖TY =1

max{‖Qŷ‖, δ̂
δ ‖Qη̂‖}

≤ c sup
‖(ŷ,η̂)‖TY =1

max{‖ŷ‖, δ̂
δ ‖η̂‖}

︸ ︷︷ ︸
‖(ŷ,η̂)‖TY

= c.
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In particular, we have x ∈ Bδ(x0), hence ‖d2 f (x)‖ ≤ c2 and ‖d f |x − D‖ ≤ 1
4c ,

by (B.82). For elements x̃ and ξ̃ of X consider the operator difference

∥∥∥
(
d f̂ |(x,ξ) − D̂

)
(x̃, ξ̃ )

∥∥∥
TY

=
∥
∥∥∥

[
d f |x − D 0
d2 f |x (ξ, ·) d f |x − D

] [
x̃
ξ̃

]∥∥∥∥
TY

= max
{
‖(d f |x − D)x̃‖, δ̂

δ
‖(d f |x − D)ξ̃ + d2 f |x (ξ , x̃)‖

}

(B.82)≤ max
{

1
4c‖x̃‖, δ̂

δ
1
4c‖ξ̃‖

}
+ δ̂

δ
δ‖d2 f (x)‖ · ‖x̃‖

= 1
4c‖(x̃, ξ̃ )‖ + δ̂‖d2 f (x)‖ · ‖x̃‖.

Take the supremum over all ‖(x̃, ξ̃ )‖ = 1 to get the operator norm estimate

‖d f̂ |(x,ξ) − D̂‖ ≤ 1
4c + δ̂‖d2 f (x)‖ ≤ 1

4c + 1
4cc2

c2 = 1
2c .

Thus we have verified condition (B.70) in Proposition B.1 with f̂ and δ̂ in place of f
and δ. We next check condition (B.71) for f̂ and δ̂ and any

x̂1 := (x1, ξ1) ∈ X ⊕ X , where x1 ∈ U0(δ) and ξ1 satisfies (B.83).

By x1 ∈ U0(δ) it holds ‖ f (x1)‖ < δ
4c and ‖x1 − x0‖ < δ

8 . By (B.83) we get (B.71)

‖ f̂ (x̂1)‖ = max{‖ f (x1)‖, δ̂
δ
‖d f |x1ξ1‖} < max{ δ

4c ,
δ̂
4c } = δ

4c
(B.86)

and

‖x̂1 − x̂0‖ = max{‖x1 − x0‖, δ̂
δ
‖ξ1‖} < max{ δ

8 ,
δ̂
8 } = δ

8
.

Then Proposition B.1 for f̂ and δ yields a unique zero x̂ = (x, ξ) of f̂ such that

f (x) = 0, d f |xξ = 0, x−x1, ξ−ξ1 ∈ im Q, max{‖x−x0‖, δ̂
δ
‖ξ‖} < δ. (B.87)

In particular, since ‖x − x0‖ < δ the element x is the same as the one uniquely

determined by (B.72) and baptized N f
x0,Q

(x1) in (B.75). Moreover, Proposition B.1

for f̂ and δ yields that

max{‖x − x1‖, δ̂
δ
‖ξ − ξ1‖} ≤ 2cmax{‖ f (x1)‖, δ̂

δ
‖d f |x1ξ1‖}. (B.88)

To conclude the proof of Theorem B.10 we need
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Proposition B.13 There is the identity TN f
x0,Q

= NT f
(x0,0),Q⊕Q, that is

x = N(x1), ξ = dN|x1ξ1. (B.89)

where we abbreviated N = N f
x0,Q

.

Proof of Proposition B.13 After (B.87) we already proved x = N(x1). By uniqueness
it suffices to verify the (three) properties in (B.87) for dN|x1ξ1 in place of ξ .

Property 1: dN|x1ξ1 ∈ ker d f |x . Since x = N(x1) and since x1 lies in the open
domainU0(δ) of the Newton-Picard mapN in (B.75), hence so does x1 + τξ1 for any
sufficiently small τ > 0, we obtain that

d f |x ◦ dN|x1ξ1 = d
dτ

∣
∣
0 f ◦ N(x1 + τξ1)︸ ︷︷ ︸

∈ f −1(0)

= 0.

Property 2: dN|x1ξ1 − ξ1 ∈ im Q. Observe that

− (
dN|x1ξ1 − ξ1

) (B.79)=
(
Id + Q d f |x1 − QD

)−1
Q ◦ d f |x1ξ1 = Qη.

That the last equality indeed holds for some η ∈ Y is equivalent to

Q ◦ d f |x1ξ1 =
(
Id + Q d f |x1 − QD

)
Qη = Q d f |x1Qη

for some η ∈ Y . Since Q is injective it remains to find an η ∈ Y such that

d f |x1ξ1 = d f |x1Qη.

But the operator d f |x1Q is invertible since it is of the form Id − B where B :=
(D − d f |x1)Q has norm ‖B‖ ≤ 1

4 due to ‖Q‖ ≤ c and by (B.82); cf. Remark B.5.
Property 3: ‖dN|x1ξ1‖ < δ. As Id − QD = dN|x0 , see Corollary B.7, we get

‖dN|x1ξ1‖ (B.79)= ‖(Id + Q d f |x1 − QD
)−1

(Id − QD)ξ1‖
≤‖(Id + Q d f |x1 − QD

)−1‖ · ‖dN|x0‖ · ‖ξ1‖
(B.81)
(B.83)
< 2 δ

8 .

This proves the identities (B.89) and Proposition B.13 ��
We continue and conclude the proof of Theorem B.10. Since ξ = dN|x1ξ1,

by (B.89), the estimate (B.88) multiplied by δ

δ̂
leads to

‖(dN|x1 − Id)ξ1‖X ≤ 2cmax
{

δ

δ̂
‖ f (x1)‖Y , ‖d f |x1ξ1‖Y

}
.

This concludes the proof of Theorem B.10. ��
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C Exponential Decay

Theorem C.1 (Linear uniform exponential decay) Pick ε ∈ (0, σ ) where σ = σ(A) is
the spectral gap (1.7). Let m ∈ N0. Suppose W is a map of Sobolev class W 1,2 such
that

W : [0,∞) → Tm
R
n, ∂sW + Tm∇f (W ) = 0. (C.90)

Then there is a positive constant c(W ), depending continuously on W, such that

|W (s)| + |∂sW (s)| ≤ c(W ) · e−εs (C.91)

for every s ≥ 0,

Preparation of Proof

ByP∗(N)we denote the collection of all finite non-empty subsets ofN. The evaluation
map is defined by

e : P∗(N) → N, D �→
∑

j∈D
2 j−1

and its inverse is the digit map

D := e−1 : N → P∗(N).

It can be described as follows. Write k ∈ N in binary representation and map it to the
subset of N consisting of all positions of the binary representation of k at which you
can find a 1, for example 9 = 1001 �→ {1, 4}.

Given a finite non-empty subset D ⊂ N, in symbols D ∈ P∗(N), we consider all
partitions of D into � ∈ N non-empty subsets, namely

Part�(D) := {{A1, . . . , A�} ⊂ P(D) | ∪�
i=1Ai = D, Ai ∩ A j

i != j= ∅,∀i : Ai != ∅}.

Given � ∈ N0, the ODE (C.90) for the map W : [0,∞) → T �
R
n is equivalent to a

system of 2� ODEs for 2� maps W0,W1, . . . ,W2�−1 : [0,∞) → R
n , namely

∂sW0 + ∇f (W0) = 0 (C.92)

and the 2� − 1 equations

0 = ∂sWk +
∑

�∈N

( ∑

{A1,...,A�}∈Part�D(k)

D�∇f |W0 [We(A1), . . . ,We(A�)]
)

(C.93)

where k = 1, . . . , 2� − 1.
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Remark C.2 (Reformulation of (C.93)) Given k ∈ N, let S(k) be the digit sum of
the binary representation of k, also referred to as the Hamming weight. Observe that
S(k) is the cardinality of D(k). Note that for � > S(k) the partition set Part�D(k) =
∅ is empty. Note also that Part1D(k) = {{D(k)}}. Therefore we can write (C.93)
equivalently as the finite sum

0 = ∂sWk + D∇f |W0 [Wk]

+
S(k)∑

�=2

( ∑

{A1,...,A�}∈Part�D(k)

D�∇f |W0 [We(A1), . . . ,We(A�)]
)

︸ ︷︷ ︸
=:η

. (C.94)

In the special case where k = 2m we have S(k) = 1, hence (C.94) simplifies to

0 = ∂sW2m + D∇f |W0 [W2m ]. (C.95)

The following table illustrates (C.94) for k = 0, . . . , 7. It is written in binary notation,
so the structure of the system becomes visible

0) 0 = ∂sW0 + ∇f (W0)

1) 0 = ∂sW1 + D∇f |W0W1

10) 0 = ∂sW10 + D∇f |W0W10

11) 0 = ∂sW11 + D2∇f |W0 [W1,W10] + D∇f |W0W11

100) 0 = ∂sW100 + D∇f |W0W100

101) 0 = ∂sW101 + D2∇f |W0 [W1,W100] + D∇f |W0W101

110) 0 = ∂sW110 + D2∇f |W0 [W10,W100] + D∇f |W0W110

111) 0 = ∂sW111 + D3∇f |W0 [W1,W10,W100] + D2∇f |W0 [W10,W101]
+ D2∇f |W0 [W1,W110] + D2∇f |W0 [W11,W100] + D∇f |W0W111.

Lemma C.3 Given m ∈ N0, consider maps W0,W1, . . . ,W2m−1 ∈ W 1,2([0,∞),Rn)

that satisfy the ODE system (C.92) and (C.93) for every k = 1, . . . , 2m − 1. Then
the tuple W := (W0, . . . ,W2m−1) ∈ W 1,2([0,∞),Rn·2m ) lies in the m-fold tangent
space TmWs which means that

∂sW + Tm∇f (W ) = 0.

Proof The proof is by induction on m ∈ N.
Case m = 0. True by assumption.
Induction step m ⇒ m + 1. There are three cases I-III. I. For k ∈ {1, . . . , 2m − 1}

equation (C.93) holds directly by inductionhypothesis. II. For k ∈ {2m+1, . . . , 2m+1−
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1} we linearize (C.93) with respect to Wk−2m . This yields

0 = ∂sWk +
∑

�∈N

∑

{A1,...,A�}∈Part�D(k−2m )

( �∑

j=1

D�∇f |W0 [We(A1), . . . ,We(A j−1),We(A j )+2m ,We(A j+1), . . . ,We(A�)]

+ D�+1∇f |W0 [W2m ,We(A1), . . . ,We(A�)]
)

= ∂sWk +
∑

�∈N

( ∑

{A1,...,A�}∈Part�D(k)

D�∇f |W0 [We(A1), . . . ,We(A�)]
)

(C.96)
To see why the second equation in (C.96) holds note the identity of digit sets

D(k) = D(k − 2m) ∪ {m + 1}.

Moreover, consider the injections defined for j = 1, . . . , � by

ι j : Part�(D(k − 2m)) ↪→ Part�(D(k)) = Part�(D(k − 2m) ∪ {m + 1})
{A1, . . . , A�} �→ {A1, . . . , A j−1, A j ∪ {m + 1}, A j+1, . . . , A�}

and the injection defined by

I : Part�−1(D(k − 2m)) ↪→ Part�(D(k))

{A1, . . . , A�−1} �→ {{m + 1}, A1, . . . , A�−1}.

Using this notion we can write Part�D(k) as the union of pairwise disjoint subsets,
namely

Part�D(k) =
( �⋃

j=1

ι j (Part�(D(k − 2m)))

)
∪ I (Part�−1(D(k − 2m))). (C.97)

Now the second equation in (C.96) follows from (C.97).
III. It remains to consider the case k = 2m . Linearizing (C.92) with respect to W0

in direction W2m we obtain

0 = ∂sW2m + D∇f |W0W2m

and this equation coincides with (C.95). This proves Lemma C.3. ��

Proof of Exponential Decay
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Proof of Theorem C.1 – Exponential decay The proof is by induction on m.
Case m = 0. This follows for instance from the action-energy inequality; see e.g.

Frauenfelder and Weber (2022).

Induction stepm ⇒ m+1. Suppose (C.91) is true form. Thenwewant to show (C.91)
for m + 1. By induction hypothesis Wk and its derivative ∂sWk decay exponentially
for k = 0, . . . 2m −1. It remains to show that as wellWk and its derivative ∂sWk decay
exponentially for k = 2m, . . . , 2m+1−1. This follows from LemmaC.4 below in view
of (C.94) combined with the induction hypothesis. More precisely, we prove this by
induction on k. In the notation A, ξ , η of Lemma C.4 we have Wk = ξ , D∇f |W0 = A
and η is the sum indicated in (C.94).

Observe that if � ≥ 2 and {A1, . . . , A�} ∈ Part�(D(k)) then e(A j ) < k for j =
1, . . . , �. Therefore by induction hypothesis We(A j ) decays exponentially so that η

decays exponentially. Now the exponential decay of Wk follows from Lemma C.4. ��

Lemma C.4 Consider a continuously differentiable family of quadratic matrizes
A : [0,∞) → R

n×n and an invertible symmetric matrix A ∈ R
n×n with

lim
s→∞‖A(s) − A‖ = 0 = lim

s→∞‖A′(s)‖, A
′(s) := d

dsA(s).

Let σ = σ(A) > 0 be the spectral gap, see (1.7). Let ξ, η : [0,∞) → R
n be continu-

ously differentiable maps such that ξ is of Sobolev class W 1,2 and

ξ ′(s) + A(s)ξ(s) = η(s) (C.98)

for every s ≥ 0. Suppose that there are constants C > 0 and ε ∈ (0, σ ) such that

|η(s)| + |η′(s)| ≤ Ce−εs (C.99)

for every s ≥ 0. Then there is a positive constant c, depending continuously on the
W 1,2 norm of ξ and the constant C, such that

|ξ(s)| ≤ ce−εs

for every s ≥ 0.

Observe that the exponential decay rate of η is inherited by ξ , as opposed to (Robbin
and Salamon (2001), Le. 3.1).

Proof We follow the proof of (Robbin and Salamon (2001), Le. 3.1). We shall employ
the following facts and assumptions. The norms of a quadratic real matrix B and its
transpose Bt are equal. By definition of the spectral gap σ > 0 it holds that

|Av| ≥ σ |v|
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for every v ∈ R
n . Given δ > 0 and ε ∈ (0, σ ), by assumption there is a large time

s0 = s0(δ; σ, ε) > 0 such that

(
‖A′(s)‖ + ( 13

4 + 16 σ 2

(σ 2−ε2)

)‖A(s) − A‖2
)

≤ σ 2 − ε2

4
(C.100)

pointwise for s ≥ s0. The function defined for s ≥ 0 by

α(s) := 1
2 |ξ(s)|2

has derivatives

α′ = 〈
ξ, ξ ′〉 = 〈ξ, η − Aξ 〉

and

α′′ = 〈
ξ ′, η − (A + A

t )ξ
〉 + 〈

ξ, η′ − A
′ξ
〉
.

Substitute ξ ′ according to (C.98), then add −A + A various times, to obtain

α′′ = |Aξ |2 + |η|2 − 2 〈Aξ, η〉 − 〈
η,Atξ

〉 + 〈
ξ, η′ − A

′ξ
〉 + 〈

Aξ,Atξ
〉

= |(A − A + A)ξ |2 + |η|2 − 2 〈(A − A)ξ, η〉 − 2 〈Aξ, η〉 − 〈
η, (At − A)ξ

〉

− 〈η, Aξ 〉 + 〈
ξ, η′ − A

′ξ
〉 + 〈

(A − A + A)ξ, (At − A + A)ξ
〉

= |(A − A)ξ |2 + |Aξ |2 + 2 〈(A − A)ξ, Aξ 〉
+ |η|2 − 2 〈(A − A)ξ, η〉 − 3 〈Aξ, η〉 − 〈

η, (A − A)tξ
〉 + 〈

ξ, η′〉 − 〈
ξ,A′ξ

〉

+ 〈
(A − A)ξ, (A − A)tξ

〉 + 〈
Aξ, (A − A)tξ

〉 + 〈(A − A)ξ, Aξ 〉 + |Aξ |2.

Observe that |Aξ |2 appears twice and, in the following, we write this coefficient in the
form 2 = σ 2+ε2

σ 2 + σ 2−ε2

σ 2 . By Cauchy-Schwarz and Peter-Paul12 we obtain

α′′ ≥ σ 2+ε2

σ 2 |Aξ |2 + σ 2−ε2

σ 2 |Aξ |2 + |η|2 − 3‖A − A‖ · |ξ | · |η| − 3|Aξ | · |η|
− |ξ | · |η′| − ‖A′‖ · |ξ |2 − ‖A − A‖2 · |ξ |2 − 4|Aξ | · ‖A − A‖ · |ξ |

≥ (σ 2 + ε2)|ξ |2 + σ 2−ε2

2σ 2 |Aξ |2
︸ ︷︷ ︸
≥σ 2|ξ |2

+
(

σ 2−ε2

2σ 2 − σ 2−ε2

4σ 2 − σ 2−ε2

4σ 2

)

︸ ︷︷ ︸
=0

|Aξ |2 − |ξ | · |η′|

−
(
‖A′‖ + (

1+ 9
4 + 42 σ 2

(σ 2−ε2)

)‖A − A‖2
)

︸ ︷︷ ︸
≤ σ 2−ε2

4 by (C.100)

|ξ |2 + (1−1 − 32σ 2

(σ 2−ε2)
)|η|2

≥ (σ 2 + ε2)|ξ |2 + σ 2−ε2

2 (1 − 1
2 − 1

2 )|ξ |2 − 32σ 2

σ 2−ε2
|η|2 − 1

σ 2−ε2
|η′|2

≥ (2δ)2α − c0e
−2εs, 2δ2 := σ 2 + ε2, c0 := 9σ 2+1

σ 2−ε2
C2,

12 ab ≤ a2+b2
2 whenever a, b ≥ 0.
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pointwise for s ≥ s0. Inequality two and three is by |Aξ | ≥ σ |ξ |, the final inequality
by the η, η′ decay assumption (C.99). Observe the estimate

2δ = 2
√

σ 2+ε2

2 = 2
√

ε2 + σ 2−ε2

2 > 2ε.

The function defined by

β(s) := α(s) + c0e−2εs

(2ε)2 − (2δ)2

satisfies
β ′′(s) = α′′(s) + c0(2ε)2e−2εs

(2ε)2−(2δ)2

≥ (2δ)2α + c0(2ε)2e−2εs

(2ε)2−(2δ)2
− c0e

−2εs (2ε)2−(2δ)2

(2ε)2−(2δ)2

= (2δ)2β(s)

for s ≥ s0. This implies, exactly as in the proof of (Robbin and Salamon (2001),
Le. 3.1), the following. Firstly d

ds e
2δsβ(s) ≤ 0 for s ≥ s0,13 so secondly e2δs0β(s0) ≥

e2δsβ(s), and therefore thirdly β(s) ≤ e−2δ(s−s0)β(s0) decays even faster than e−2εs .
Thus

α(s) = β(s) − c0e−2εs

(2ε)2−(2δ)2
<
(
e−(2δ−2ε)se2δs0β(s0) + c0

(2δ)2−(2ε)2

)
e−2εs

and therefore

|ξ(s)| = √
2α(s) <

√
2e−(2δ−2ε)se2δs0β(s0) + 2c0

(2δ)2−(2ε)2
e−εs

for s ≥ s0. ��
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