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Abstract

In the local gluing one glues local neighborhoods around the critical point of the
stable and unstable manifolds to gradient flow lines defined on a finite-time interval
[-T, T] for large T. If the Riemannian metric around the critical point is locally
Euclidean, the local gluing map can be written down explicitly. In the non-Euclidean
case the construction of the local gluing map requires an intricate version of the implicit
function theorem. In this paper we explain a functional analytic approach how the
local gluing map can be defined. For that we are working on infinite dimensional path
spaces and also interpret stable and unstable manifolds as submanifolds of path spaces.
The advantage of this approach is that similar functional analytical techniques can as
well be generalized to infinite dimensional versions of Morse theory, for example
Floer theory. A crucial ingredient is the Newton-Picard map. We work out an abstract
version of it which does not involve troublesome quadratic estimates.

Keywords Morse function - Implicit function theorem - Stable and unstable
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1 Introduction and Main Results
1.1 Local Gluing Map for the Euclidean Metric
Consider a diagonal matrix with monotone decreasing diagonal entries
A = diag(ay, ..., an), a1 > >ay_>0>ay_fy1 = > ay.
Consider the smooth function given by the Euclidean inner product
fiR" >R, z> 1(z Az). (1.1)
This function is Morse and has a unique critical point at the origin of Morse index k.

The gradient of f for the standard metric on R" is Vy(z) = Az. Hence the downward
gradient flow for time s is given by

—vf _ _ -
o5 @ =e = (T2, e g,).
The stable and the unstable manifold of the origin are given by the sets

WS =R"* x {0}, W"=/{0}x Rk
Eachpointzg = (x9,0) € R *x {0} determines an element s — w4 (s) := e *4zpin
the function space W12([0, 00), R"). Each point zg = (0, y9) € {0} x R determines
an element s — w_(s) := e 4z in the function space W'2((—o0, 0], R").
In our functional analytic approach to local gluing it is more convenient for us to
think of the stable and the unstable manifold as function space subsets

W' Wh2([0, 00), R"), WM € W!2((—00, 0], R").
A further advantage of this point of view is that many techniques discussed in this

article can be generalized from R” to the Hardy approach of gluing in the infinite
dimensional case of Floer homology Simcevi¢ (2014).
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Local Gluing Page3of48 44

With the interpretation of stable and unstable manifolds as function spaces we can
easily recover the traditional interpretation as subsets of R” using the evaluation maps

evi: W = R"F {0}, wy > wi(0)
and
ev_: W' — {0} x RY,  w_ > w_(0).
Given T > 0, let M7 C WL2([=T, T1, R") be the subset of all finite-time gradient
flow lines w: [—T, T] — R". Note that since in the Euclidean case the gradient flow
is linear and a gradient flow line is uniquely determined by its initial condition, the
space M is an n-dimensional linear subspace of the infinite dimensional function
space WL2([—-T, T1, R").
In the Euclidean case, that is R” endowed with the standard metric, there are natural
linear isomorphisms
FT: W x W — MT
called the local gluing maps and given at each time s € [T, T] by
D7y, wo)(s) = e~ DA, (0) + e T 94w _(0). (1.2)
Consider the evaluation map defined by

evr: WH2([-T, T1,RY) - R" x R", w > (w(=T), w(T)).

The composition of the local gluing maps I'7 with the evaluation map evr is a linear
map, namely

evr o Tr(wi, w-) = (w4 (0) + e w_(0), w-(0) + e w,.0).
Since w_ is in the unstable manifold and w in the stable, both limits are zero
lim " 4w_(0) =0, lim e >T4w, (0) = 0.
T—o0 T—o0
Therefore it holds that lim7_, o, evy o 't = ev where
ev=(evy,ev_): W x W' > R" xR", (wy,w_) — (w4(0), w_(0)).
1.2 Local Gluing Map for a General Riemannian Metric
Given a general Morse function f on a finite dimensional manifold, by the Morse
Lemma one can always find locally around each critical point coordinates such that f

has the form (1.1) after subtracting the critical value. In fact, it is even possible, after
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W4

Trajectories and
along them

Fig.1 Convergence of local gluing evy o yr (w4, w—) T:>oo ev(w4, w—)

some additional scaling, to assume that all diagonal entries of the matrix A are either
1 or —1. In infinite dimension this is usually not possible and therefore we don’t use
this fact.

Unfortunately, even in finite dimension, it is in general not possible to assume that
in Morse coordinates the Riemannian metric is standard as well. Indeed curvature is
an obstruction.

In this article we explain, based on a special version of Newton-Picard iteration,
a functional analytic construction for local gluing maps yr in the curved case. In
sharp contrast to the Euclidean version I'r, the local gluing maps yr are in general
not linear. However, still some of the major properties of the local gluing maps I'7 in
the flat case are preserved in the general case. More precisely, we have the following
theorem.

Theorem A (Local gluing) There are open neighborhoods Uy and U_ of the origin in
the stable and unstable manifold and gluing maps yr: Uy x U— — M for T > Ty,
where M is the space of downward gradient flow lines on the finite-time interval
[T, T], which have the following properties.

a) Forevery T > Ty the gluing map yr is a diffeomorphism onto its image.

b) In the limit T — o0 in the C* topology the diagram

WX WY O Uy xU. —F— R x R"

NN e a3
Mr

commutes, as illustrated by Fig. I, where ev and evt are the evaluation maps at the
end points.

Remark 1.1 Our construction of local gluing maps yr has the following additional
properties.

1. In the Euclidean case it holds that yr = I'r.
2. In the general Riemannian case this still continues to hold for the differential of yr
at the origin, in symbols dyr (04,0_) = I'r.
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3. In particular, at the infinitesimal level, our construction is independent of any
choices like the one of a cutoff function used to construct a pre-gluing map;
see (2.11). The construction of the gluing map depends on the choice of a comple-
ment of the kernel Er of the linearized gradient flow equation Dr: Wr — Vr;
see (4.39). There are different choices for such a complement. Possible choices are
to take the complement orthogonal with respect to either the L2 or the W!-2 metric.
We make a different choice, so that our complement Kz is not necessarily orthog-
onal, but instead has the property that the infinitesimal gluing map, see (3.26), does
not depend on the choice of the cutoff function.

4. Furthermore, our construction uses a version of the Newton-Picard map which does
not need quadratic estimates. We discuss properties of the Newton-Picard map and
its derivatives in Appendix B.

The results in Appendix B are quite general, so that they should also be applicable
to the infinite dimensional version of the local gluing discussed in this article.
Namely, the general Hardy approach to gluing, as discussed in the special case of
Lagrangian Floer homology by Tatjana Sim¢evi¢ Simcevié (2014).

We expect that the local gluing theorems will be useful for the construction of
flow category theories Cohen et al. (1995) by endowing, for Morse-Smale metrics, the
moduli (solution) spaces of broken gradient flow lines with the structure of a manifold
with boundary and corners Qin (2018); Wehrheim (2012).

1.3 Setup - Path Spaces and Sections

Let f: R" — R be a smooth function such that the origin 0 is a Morse critical point
of Morse index k. Suppose g is a Riemannian metric on R” which is standard at 0,
notation go. Let Hessg f be the Hessian bilinear form of f at 0. The Hessian linear
operator A: R" — R" of f at 0 is defined with the help of the metric go by the
formula Hessg f (21, z2) = go(z1, Azp) for every z1, zo € R". After a linear change
of coordinates we can assume that A is a diagonal matrix with monotone decreasing
diagonal entries

A = diag(ay, ..., an), a1 > >an_>0>ap_fy1 =+ > ay. (1.4)
Consider the gg-orthogonal splitting
R =R'"* xRE S RE (x,y) >y, pa(x,y) i=x. (1.5)

Then the Hessian at 0 is positive definite on ET = R" 7 x {0} and negative definite
on E~ = {0} x R¥. The Hessian operator at 0 is of the form

_(Ay 0
A_<0 _A_> (1.6)

where A, = diag(ay,...,a,—¢) and A_ = diag(—a,—k+1, - .., —ay) are positive
definite diagonal matrices. The spectral gap o = 0(A) > 0 is the smallest distance
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of an eigenvalue to the origin, in symbols

oc=o0(A):= 1r<nei£1n|a4g|. (L.7)

Abbreviate Ry = (0, 00). For T > 0 consider the Sobolev spaces

Wi = Ww'2([0, 00), R"), W_ = W"?((—00, 0], R"), W7 = W"([-T, T],R"),
Vi = L*([0, 00),R"Y), V_ =L*(—00,0],R"), Vp=L*(-T,T],R".

Definition 1.2 (Constant maps to the critical point) Let 0 € W, and 0_ € W_, and
0r € Wr, be the constant maps to the critical point, in symbols

0,:[0,00) > R", s+ 0, 0_: (00,0] > R", > 5 — 0.

Let Or € Wy be the constant map [—T, T] — R”, s — 0, to the critical point.

Fori € {4, —} UR, consider the map defined by
Fi:W; - V;, w»—>3Sw+Vf(w)

The zero sets of these maps are, respectively, the stable and the unstable manifold, and
the set of gradient flow lines along the interval [T, T'], in symbols

W =F. N0 c Wy, W i=F_"N0.) cW_,
and the solution space
1,2
My = Fr0r) = {w: [-T. T]1 5 R" | dw + Vy(w) = 0} € Wr.
The elements of the tangent spaces at the critical point
Ee ET .= T0+1/Vs, nekE™ =Ty W, ¢ € Er :=To, Mr,

are characterized by linear autonomous ODEs f—sé = —A&,see(2.15), or, equivalently,
by forward (backward) exponential decay, see (2.17), of € = (¢, 0) (of n = (0, n7)).

Notation. The Euclidean norm of v € Re, £ € N, is denoted by |v|.

1.4 Idea of Proof

We construct the desired gluing map as a family of diffeomorphisms onto their images,
one diffeomorphism for each T > T}y given by composing two maps

v WSO S Uy x U 2 W A5 My (1.8)
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Here Tp > 3 is a constant and &1 C W® and Y— C W are open neighborhoods
of 04 and 0_, respectively, sufficiently small so that the image g7 (U x U_) of the
pre-gluing map g7 lies in the domain of the Newton-Picard map N7.

Newton-Picard. The Newton-Picard map on X = Wr associates to an approximate
zero of a map, here Fr, a true zero nearby. More precisely, after choosing a suitable
initial point xg, here Or, there are three ingredients needed:

(1) an approximate zero x| of Fr;

(2) a uniformly bounded right inverse Q7 of Dy :=dFr(O0r): Wr — Vr;

(3) a slowly varying operator difference d Fr(-) — D7 near the initial point.

The facts that F7(0r) = 0 and that Dr is surjective suggest to choose as initial
point xo := O7. (1) To provide an approximate zero of Fr will be the task of the
pre-gluing map as described further below. (2) Right inverses of the linear operator
D7r: Wr — Vr correspond to the topological complements of ker Dr. A natural
choice would be the orthogonal complement, but we shall choose another complement,
notation K7, which represents the impossible paths for a downward gradient and
makes the infinitesimal gluing map I'r = dyr (04, 0_) independent of the choice of
cutoff function used to define the pre-gluing map. The corresponding right inverse
Q7 indeed admits a uniform bound c. (3) The operator difference dFr(-) — D7 is
usually controlled by calculating troublesome quadratic estimates. In Appendix B.1
we prove continuous differentiability of a version of the Newton-Picard map which
does not require quadratic estimates.

Remark 1.3 (Higher smoothness of Newton-Picard map) To obtain higher smoothness
we use, roughly speaking, the fact that the supremum of the operator norm ||dFr () —
Dr|| along smaller and smaller balls about the initial point xo admits bounds closer
and closer to zero. Indeed there is a monotonically decreasing function §: [2, co0) —
(0, 00), independent of T, such that along the §(it)-ball about x¢ the map ||[d Fr(-) —
Dr|| is bounded by 1/uc. See Corollary 4.5 for the case of Fr and Remark B.8 for
the abstract theory.

For iteration arguments, such as to prove higher smoothness, tangent maps are much
more suitable than differentials. Thus we prove in Appendix B.2 an estimate for the
tangent map difference TN — Id and we show that TA¥ = N7, roughly speaking,
where N7 is the Newton-Picard map for a map F.

Pre-gluing — approximate zero. Given a real 7 > 3, called gluing parame-
ter, Floer’s gluing construction associates to a pair (w4, w—) € W* x W" of an
(incoming, outgoing) flow trajectory the pre-glued path wr : [—T, T] — R defined
as follows. One decomposes the time interval [—T', T] into five subintervals. Along
[T, —3] follow the backward shifted forward flow trajectory w4 (T + -), then along
[—3, —1] interpolate with the help of a cutoff function to the constant flow trajectory
s > 0 sitting at the critical point at which wr then rests along time [—1, 1]. Next
along time [1, 3] interpolate from the constant map s +— O to the forward shifted
backward flow trajectory w_(—T + -) which then represents wr along the final time
interval [3, T].

The behavior of the pre-glued path wr: [—T, T] — R" along the five time inter-
vals is detailed by formula (2.12) and illustrated by Fig.2. Observe that wr takes
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on the boundary of its domain [—T7, T] values that do not depend on 7, namely
w4 (0) and w—(0). Most importantly, the pre-glued path satisfies the gradient equa-
tion except, possibly, along the subinterval [—3, —1] (and [1, 3]) of [T, T] along
which it coincides, up to a cutoff function factor, with the forward flow trajectory w-
along [T — 3, T — 1]. But wy|[r—3,7—1] is very close to the critical point for large
T. Consequently uniform exponential decay of d;w takes care of the L? norm of
Fr(wr) = dswr + Vy(wr) along [—3, —1]; same along [1, 3] where w_ appears.
With this understood it follows that w7 is an approximate zero of Fr in the sense that

I1Fr (wr)lly, < Ce™*T (19)
whenever T > 3. The constant C serves all elements w4 of any chosen pair of compact
neighborhoods K+ of O+ in the stable/unstable manifold.

Gluing — Smooth Convergence. With Newton-Picard and pre-gluing in place the
gluing map yr, given by composition (1.8), is well defined. Appendix A revisits the
proof of the usual IFT explained in (McDuff and Salamon (2004), App. A.3) to extract
a quantitative version. It is applied in Sect.5.1 to prove that y7 is a diffeomorphism
onto its image along a sufficiently small domain, uniformly in 7.

In the limit 7 — oo the diagram (1.3) commutes even after application of the
m-fold tangent functor 7™ . The proof uses techniques described by Remark 1.3 and
is carried out in Sect.5.2.

Outline of Article

Section 2 “Pre-gluing map Pr and its restriction g7 introduces for each parameter
value 7 > 3 the pre-gluing map as the linear map Pr: W x W_ — Wr defined
by (2.11), equivalently by (2.12), and illustrated by Fig. 2.

For 04+ € W and 0_ € W" the pre-glued path is a true zero, more precisely
Pr04+,0-) =07 € ]-?1(0) C Wr. This motivates the expectation that pre-gluing
pairs near (05, 0_) € W° x W* should produce approximate zeroes. Thus we consider
the restriction of the pre-gluing map Pr, notation

or = PT'VV’xVV‘J:WXWJ_)WT~ (110)

This map is smooth by linearity of Pr. Whereas the elements of the tangent spaces
to W8, WP, and M7 at the origins 04, O_, and Or (notation E* and E7) are the
solutions of autonomous linear ODEs, see (2.15), at general points w4, w—, and wr
the characterizing linear ODE’s %S = — A& are non-autonomous, see (2.18).!
The linear identifications 6y, : Ty, WS s Ei, defined via asymptotic limits, are
used to prove Theorem 5.3 (gluing map yr is diffeomorphism onto its image).
Section 3 “Infinitesimal gluing” consists of two subsections. Subsection 3.1 intro-
duces a complement K7 of the n-dimensional subspace E7 := To, M7 of Wr and

! Whenever the Hessian operators Ay, (s) along a flow trajectory w depend on time s.
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the corresponding projection Pk, k, onto Er along K7, notation
Iy .= P]ET,]KTZ Wr =Kr @ Er — Er.

Lemma 3.3 provides a formula for Il and asserts that the operator norm of
II7: Wr — Wr is bounded by a constant d = d(ay, a,), depending on the eigenval-
ues a1 and a, of the Hessian A in (1.4), but independent of 7 > 1. To prove this we
establish the uniform-in-7" Sobolev estimate ||v||=[—7,77 < 2|vlly1.2(_7 7} Later
on the estimate also enters the proof of Corollary 4.5 on existence of the monotone
function 8 () mentioned in Remark 1.3 on higher smoothness of the Newton-Picard
map.
Section 3.2 introduces the infinitesimal gluing map, namely the linear map

I'r =TIl Od&OT(O+,07)Z Et xE™ — Wr — Er.

For I'r we obtain formula (3.29) which, firstly, by choice of K7, does not depend on
the choice of cutoff function § in the pre-gluing map (2.11) and, secondly, reproduces
the gluing map (1.2) in the Euclidean model case. Lemma 3.5 asserts that I'7 is an
isomorphism with inverse bounded by the constant k := 1/(1 — e~ !2?), independent
of T, where o is the spectral gap (1.7) of the Hessian A.

Section 4 “Newton-Picard map” consists of three subsections in which we verify
the three ingredients 1), 2), 3) described earlier.

Section 4.1 shows 1) the pre-gluing provides an approximate zero wr :=
or(wy, w_) of Fr in the sense of (1.9). This hinges on Appendix C where we
provide suitable exponential decay uniformly in 7.

Section 4.2 shows that the linearization Dy := dFr(0r): Wr — V7 is surjective
and 2) provides a bound ¢ = c(aj, a,) uniformly in 7 for the right inverse Qr
associated to the complement K7 of Er. Actually E7 = ker Dr.

Section 4.3 establishes 3) a bound on the difference d Fr () — Dr. Based on Propo-
sition B.1 we define the Newton-Picard map N7 : Wy — Wy along a neighborhood
Up(84) of the initial point xp := Or. Then it is shown that for 7 > 3 pre-gluing map
g7 takes values in the domain of N7.

Section 5 “Gluing map” provides an open neighborhood Uy x U_ C W x W
of the origin (04, 0_) which serves as domain for all gluing maps yr with gluing
parameter 7 > Tp, see (5.50), and defined by pre-gluing g7 followed by Newton-
Picard zero detection N7, see (1.8). By Lemma 5.2 the linearized gluing map at the
origin coincides with the infinitesimal gluing map I'7.

Section 5.1 “Diffeomorphism onto image” proves this property of the gluing maps
along anopensubset Oy x O_ C U; xU_, uniformly in 7. This is an application of the
quantitative inverse function Theorem A.1. Verification of (A.65) uses thatdyr|(o,.,0_)
is the infinitesimal gluing map I'7 (Lemma 5.2) and that I'7 has an inverse bounded
uniformly in 7" (Lemma 3.5). Verification of (A.66) uses Remark B.5 and B.8 on the
linearized Newton-Picard map.

Section 5.2 “Evaluation maps and convergence in C™” shows that in the limit
T — oo the diagram (1.3) commutes as illustrated by Fig. 1.

The appendices provide abstract results which might be of general interest.
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Appendix A is on the “Quantitative inverse function theorem”.

Appendix B provides the “Newton-Picard map without quadratic estimates”.

Appendix C “Exponential decay” proves such, uniformly in 7', and for all time
derivatives. We use again the tangent map formalism for ease of induction. The proof
is based on Lemma C.4 in which the exponential decay rate of 7 is inherited by &, as
opposed to the original (Robbin and Salamon (2001), Le. 3.1).

2 Pre-Gluing Map Pr and its Restriction pr
Fix a cut-off function 8: R — [0, 1], that is a smooth function such that 8(s) = 0

fors < —1and B(s) = 1 for s > 1. For any real T > 3, the gluing parameter, the
pre-gluing map is the linear bounded Hilbert space map defined by

7DT: W+ x W_ — WT
(we,w) > (L=BC+2Dw(T+)+BC=2Dw_(=T+-). (2.11)

=wr

Lemma 2.1 (Uniform bound) There is a constant b > 0, depending on the cut-off
function B but not on T, such that ||Pr|| < b for every T > 3.

Proof The shift map is an isometry in W12(R) and the cut-off function 8 is indepen-
dentof T O

The pre-gluing map has the two properties that, firstly, for times s on the boundary
of [T, T] we have

Prwi, w)(=T) =w4(0), Pr(ws, w_)(T) =w-_(0),
and, secondly, during the time interval [—1, 1] the map rests in the critical point
Pr(wy, w-)|-1,11 =0.

More precisely, for fixed w4, the pre-glued path wr is of the form

w4+ (T +5) ,s €[-T, -3]

1 =BG+2)we(T +s) ,se[-3,—1]
Pr(wy, w_)(s) =130 ,s € [—1,1] (2.12)
T e B —2wo (=T +5) s e(l,3]

w_ (=T +s) ,s €3, T]

fors € [T, T]. The pre-glued path wr for wy is illustrated by Fig.2.

Example 2.2 (Constant maps to the critical point) It holds that

Pr(04+,0-) =0r. (2.13)
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w4 (0)

input_path wy

: T _1
shifted by +T brwy( )

0-w_(—=T F1)

interpolation
1-w_(—T+ 3)

input path w__

shifted by —T w_ (0)

Fig.2 Pre-glued path wy (s) := Pr(w+, w-)(s) fors € [-T,T]

Note that 04 € WP, 0_ € W', and 07 € M.

Restricted Pre-Gluing Map

We denote the restriction of the pre-gluing map Py to the stable and unstable manifolds
W C Wy and W' € W_ by

o1 = Priyssnr: W x W' — Wy (2.14)

where T > 3. This map is smooth by linearity of Pr.

Differential of o7 at (04, 0_). Consider the tangent spaces to the trajectory spaces
W, WM, and M, at the critical point, namely

ET = To, W' = (£ € W, | ;& + A& = 0} C C™([0, 00), R" ¥ x {0})
E- =Ty W' ={neW_|dn+ An =0} C C®((—o0, 0], {0} x R¥) (2.15)
Er :=To, M7 ={¢ € Wr | 3¢ + A¢ =0} C C°([-T, T],R").

By the theorem of Picard-Lindelo6f the dimensions are given by
dmE" =n—k, dimE” =k,  dimE; =n.
Then the linearization of o7 at (04, 0_) is a map
dpr(04,0-): ET xE™ — Wp.
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For ¢ e EY,E~, Er we abbreviate

£7(9) = p+ (), ¢7(s) == p-(L(s)),  s0¢ =T, (7). (2.16)

Since A is diagonal, see (1.6), and by decay of the elements of W, given maps
£ € C*([0, 00), R™) and n € C*®°((—00, 0], R"), there are the equivalences

EcET & E=(ET,00 A ET(s) =e AT (0) Vs > 0,

(2.17)
neE™ & n=0,1) A n(s)=e4n7(0) Vs <0.

Differential of o7 at (wo, w_) € W* x W". The tangent spaces to the trajectory

spaces W*, WM, and M, at points w, w_, and wr, are

T, W = {6 € Wy | 96 + Ay, § =0} C C([0, 00), R")
Tw W' ={neW_|dn+ Ay_n=0} C C®((—o0,0],R") (2.18)
Ty, Mr = {5 € Wr | 8¢ + Ay, ¢ =0} C C¥(-T, T1, R).

Here, for w € {w4, w_, wr}, the family of Hessian operators
Ay ={Ap(9)]s

is defined by the identities (Hessw(s) f ) (-, ) = 8u(s) (-, Ay (s)-), one identity for each
s. There are canonical, continuous and linear, identifications®

Ow,: Wy DTy W —E*, 6, :W—>T, W —E", (2.19)
given by asymptotic limits where 8y, = Idg+ =: Id+ and the linear operators 6,,,
depend continuously on w4 ; see (Robbin and Salamon (2001), §3). Since g7 =

Pr s« is defined by restricting a linear map, the linearization is the linear map’s
restriction

dor(wy, w-) =d (Pr|) (wy, w-) = Prl: Ty, W x T, W' — Wr.  (2.20)
Thus, given (w4, w—) € W’ x W, the map defined by

Or(ws, w_): Et xE~ - Wy

2.21
€ = Pr (s —0,e.m—0,"n) =2y

2 Observe that the elements
EeEt=Tg W C T, Wy =Wy, Oy, §€Tu W CTp, Wi =Wy,

lie in the same ambient vector space W, hence they can be added. Similarly n € E™ and 6,,_ 7 both lie
in W_.
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is, by (2.20), equal to the difference

Or(ws, w-) = Pr ((1ds, 1d-) - 0,1,6;1))

=dprlo.,0) —doTlw,,w) ° (9,;+1, o).

Lemma 2.3 Forany ¢ > 0 there are neighborhoods OF of 04 in W* and O} of 0_ in
WM such that for every T > 3 and every (w, w—) € OF x OF the operator norm of
Or(wy, w_): EY x E= — Wr is less or equal ¢.

Proof Lemma 2.1 and continuous dependence of 6,,, on w4+ and 6y, = Id. O

3 Infinitesimal Gluing
3.1 Projection Associated to a Particular Complement
Complement K7 of n-Dimensional Linear Solution Space Er

For T > 0 we choose a Hilbert space complement K7 of Er in Wt of the form
Kr:={¢ =" ¢7)eWr [¢(T(=T)=0, ¢ (T) =0} (3.22)

Note that the elements ¢ of Kr start at points {(—T7') in the negative definite space
{0} x R and end at points ¢ (T) in the positive definite space R x {0}. Roughly
speaking, the linear subspace K7 of W7 represents impossible paths for a downward
gradient flow. The following lemma tells that codim K7 = n.

The complement K7 of Er is not necessarily orthogonal. But it has the useful
property that the infinitesimal gluing map I'7 in (3.26) will not depend on the cutoff
function B that was used to define the pre-gluing map Pr in (2.11).

Lemma 3.1 (Complement) a) Kr NEr = {0} and b) Wr = Ky + Er.

Proof a) Pick ¢ = (¢+,¢7) € Er. Then A(0,¢7) = (0, —A_¢ ) and A(ZT,0) =
(A c,0). Hence 0,0~ = A_¢~ and 3, = —A, ¢ ™, and therefore

() =TT, (T =TT,

for every s € [-T,T]. Let ¢ = (¢7,¢7) € KrNEyg. Then ¢*(—T) = 0 and
{7(T) = 0,s0¢T = 0and ¢~ = 0 since each one solves a first order ODE.
Hence ¢ = (¢+,¢7) = 0. b) Let ¢ € Wy. Then the map defined by Z(s) :=
(e~ DA pLe(=T), e~ 1A= p_¢(T)) is element of Er and the difference ¢ — Z
lies in K7 since p+ (¢ — Z)(—=T) =0and p_(¢ — Z)(T) = 0. O
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Uniform Sobolev Estimate
Lemma3.2 Let T > 1. Then any v: [—T, T1 — R of class W12 satisfies’

Ivlleo < 2lvlI1,2 (3.23)

where the norms are over the domain [—T, T].

Estimate (3.23) continues to hold for vector-valued maps v: [-T,T] — R of
class W2 since

1@ v oo = max lvilloo <2 max Joilli2 < 20vlyiagor. ey

.....

Proof of Lemma 3.2 The proof has 4 steps.

Step1.Let7 > 0.Suppose ||v][12 < landatsg € [T, T]wehavek := |v(sp)| > O.
Then for s € [—T, T1N [so — k2/4, so + 2 /4] it holds |v(s)| > « /2.
Pointwise at s we have

lv(s)| =

v(so) + fs V(o) ldo

0

> Ju(so)| — \/ / T (W(0))? do\/ f ldo
S0 S0

T 1/2
>k — (/ (v/(o))2 da) -Vls — so]
-T

<[vll} <1

>k —+/|s — so
>k — /K24 =«k/2.

This proves Step 1.

Step 2. Under the assumption of Step 1 suppose, in addition, the inclusion [sg, so+1] C
[T, T1N [so — k2/4, so + 2 /4], then |v(so)| = 2.
To prove Step 2 use Step 1 to obtain that

2 5 inclusion so+1 ) 2
L>vllf, = llvll; = v(0)” do >k~ /4.
5 S——

0
St.1

> «k2/4

Therefore 2 > k. In view of the inclusion this implies 2 = k := |v(sp)|.

Step 3. Under the assumption of Step 1 suppose, in addition, the inclusion [so—1, s9] C
[—T,T1N [s0 — k2/4, so + x> /4], then |v(so)| = 2.

31n (Frauenfelder and Weber (2022), (4.57)) we proved the case T = oo with constant 1, not 2.
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The same argument as in Step 2 proves Step 3.

Step4.Let T > 1. If |Jv[l12 < 1, then |v(so)| < 2 forevery so € [T, T].

The assumption 7' > 1 guarantees [so—1, so] C [T, T]or [so, so+1] C [T, T].
We argue by contradiction and assume that ¥ := |v(sg)| > 2. Then [sop — 1, sp] or
[s0, So+ 1]is contained in the intersection [— T, T1N[so — k2 /4, 5o 42 /4]. Therefore
by Step 2 or Step 3 we have « = 2. Contradiction.

By homogeneity of the norm Step 4 implies Lemma 3.2. O

Projection Iy onto Er Along K7

We denote the linear projection in the path space W7 := W1’2([—T, T1,R™) onto
the n dimensional subspace E7r along the (not necessarily orthogonal) complement
KT by

3.25
Pr, kr ( = ) [y : Wy =Er @ Ky — Er. (3.24)

Lemma 3.3 The projection Pg, Kk, is given by the map Il : { +— (g where
Ce(s) 1= (DA H (T, 07D (7)) (3.25)

fors € [T, T). There is a constant d = d(ay, a,), depending on the eigenvalues a;
and a, of A in (1.4), but independent of T > 1, such that |I1r| <d.

Proof Let { € Wr. The map ¢ + ¢ is linear. Moreover (¢g)r(s) = Cr(s) since
;E(—T) =¢T(—T) and ¢g (T) = ¢~ (T). This proves identity 1 in the following

HT o HT é HT, im HT é ET, ker HT ; KT.

Identity 2: One readily checks that 0;{r = — A¢E, therefore {g € Er. Hence im [1r C
E7. Vice versa, given ¢ € Er, the two components ¢* := p.¢ satisfy for s €
[T, T], and using (1.4), the ODE 3¢ = —A ¢ with initial value ¢+ (—T) at
s = —T and the ODE 9;¢~ = A_¢~ with initial value ¢ ~(T) ats = T. The solutions
are givenby s > e~ 6T DA+ e+ (—T)and by s > e~ A-¢=(T), respectively. Their
direct sum is {g, hence E7 C im I17.

Identity 3: Pointwise in s vanishing of the vector valued map (IlIr¢)(s) =
(e DA+ (=T), e6=DA-¢=(T)) = (0, 0) happens iff both components vanish,
that is iff ¢ € Kr.

To find a bound for P, pick { € Wr. Straightforward calculation shows that

2 2 d 2
leeldy, = N3, + 14},

T
(3225) / ‘(6_(S+T)A+§+(—T), e(S—T)A,C—(T)>‘2 ds
-T

T 2
+f ‘(—A+e_(S+T)A+§+(—T),A_e(s_T)A*;“_(T))’ ds
-T
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o7 2 2
(125)/ ‘67SA+€+(_T)‘ 4 ‘A+67SA+$+(—T)‘ ds
0

0
g
—2T

(16) n [T 2 dsar >
= Z/ (I4a)e =% (=T) ds
i1 0

e“‘—;*(T)’2 + ‘A_e“‘—;*(T)’2 ds

+ Z / (1 +ahe > ¢;(T)* ds

j=n—k+1
n—k ar Ta;
= Y (U+a)u(-T) ="+ Z (1+a2);,<T>“,2“'
i=1 j=n—k+1
—k n
(14) 1442 | 1
< AN hen+Ee Y gay
i=1 Jj=n—k+1
2 a2 max{l+ 2.I+(,3[
< © (DR +IpgmP) 4 = e

d 2
< T”f“LOO([fT,T])
(3.23)
< d*1¢ Iy, -

Here equality two is by definition (3.25) of ¢g. Equality three is by the gg-orthogonal
splitting (1.5) which makes the mixed inner products zero. Equality four uses that
A = diag(A;, —A_), by (1.6), and the ¢; > 0 > a; are ordered by (1.4). Equality
five is by integration. The first inequality uses the order (1.4) of the matrix entries a,
and definition (1.7) of the spectral gap o. The third inequality uses that the projections
p+ are orthogonal, hence of norm < 1. The final inequality four is by the, uniform in
T, Sobolev estimate (3.23). This concludes the proof of Lemma 3.3. O

3.2 Infinitesimal Gluing Map 't

Definition 3.4 For T > 3 we call the linear map defined by the composition
I'r :=Tr odpr04+,0-): EtxE™ > W; > Ep (3.26)
the infinitesimal gluing map. It acts as shown in (3.29) and Fig. 3.
To obtain a formula for I'r we proceed in three steps I-III. Fix elements & =

(1,00 eETandn = (0, p7) € E7; see (2.17).
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€T(0) £7(27) 0
T (=2T)
Tr(€,m)
-1 (0)

Fig.3 Infinitesimal gluing isomorphism I'y € L(ET x E~, Ep); cf. (3.29)
I. Time s = —T': By definition (2.14 of o7 and (2.11) of the pre-gluing map Pr
(using that 1 — B(—T +2) = l and B(—T —2) = 0 for T > 3) we obtain

dpr(01,0-)E, ) (=T) “2Y (4|, Pr(et, em) (=T)

CLD | (T —T) 4 0-9(=T = T) = (6*(0), 0).

In view of the direct sum Wy = Ky @ Er and since I'r7(§,n) = Pg, k; ©
depr(04,0-)(&, ) is the projection to E7 there is an element ¢ in the projection
kernel K7 such that dpr(04,0-)(&,n) = ¢ + I'r (£, ). So we get identity | in

p+(Pr& M=) = ps (dpr(04,00)E (-T) = ¢(=T)) 2 £¥(0). (3:27)

Identity 2 holds as p(¢(—T)) = 0 by condition one in definition (3.22) of K7.
II. Time s = T': Similarly as in I. we obtain that

dpr (04, 0_)(E n)(T) "2 0(0) = (0.7~ (0)).

Now use condition two in definition (3.22) of K7 to conclude that

p— T, m(T)) =n (0). (3.28)
II. Time s € [T, T]: Since 't (&, n) lies in E7 it satisfies the ODE given by
osI'r(&,n) + AT'7 (€, n) = 0 and so, by (3.27) and (3.28), we get the formula

L () = (DA 6%0), e~ (0)) (3.29)

In particular, due to the choice of the complement K7 which just involves the ends
—T and T, the infinitesimal gluing map does not depend on the choice of the cutoff
function B used to define the pre-gluing map (2.11).

Lemma 3.5 (Norm) Let T > 3. The linear map I'r: ET x E= — Er is an isomor-
phism of norm ||| < 1 and the norm of the inverse is bounded, uniformly in T, by
k:=1/(1 — e '29) where o is the spectral gap (1.7) of A.
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Proof We saw that dimE™ = n — k, dimE~ = k, and dim Er = n. Hence it suffices
to show injectivity, i.e. that the kernel of 't is trivial. Given (&, n) € ker I'r, then
by (3.29) we have £7(0) = 0and = (0) = 0. So T = 0 and n~ = 0, since £ and
n~ are solutions of a linear first order ODE; see (2.17). Therefore £ = (¢7,0) =0
and n = (0, n7) = 0. This shows that ' is an isomorphism whenever 7' > 3.

To see that I'7 and FT’I are bounded, uniformly in 7', consider the identities

ITrE Wy, = ITrE Y, + 1ETrE IS,

T
(29)/ ‘(ef(erT)AJrer(o),e(sz)A,n7(0)>‘2 ds
-T

) /; ‘(_AJre(*S*T)A*EJr(O)’ A_e(sanfrf(O))‘z ds

0
o
—2T

n—k

(1;6) = 2y —2sa; 2
=y i (1 +af)e & (0)* ds

esA‘rf(O)‘2 + ‘A_e”“7f(0)‘2 ds

> / (1+ade >, (0) ds

4Ta;

Z(Ha)s,(O)“ ik Z (1 + a2, (0)2 1=

j=n—k+1

where equality two is by formula (3.29) for I'7. Equality three is by the go-orthogonal
splitting (1.5). Equality four uses that A = diag(A4+, —A_), by (1.6), and the @; >
0 > a; are ordered by (1.4). Equality five is by integration.

The W, norm of £ = (¢1,0) € ET, see (2.17), is given by

2 2 d 2
6%, = 1§13, +1Ls1?,

@I [ AL et 2 At 2
D [T aigt )2ds + [ |Are A g O)2 ds
0 0

n—k o0

= / (1 +aP)e % 5(0)* ds (3-30)
: 0
=

n—k

= Y g02

i=1

and analogously for the W_ normof n = (0,n7) e E™.
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To see that FT’l is bounded, uniformly in 7', we estimate I'7 from below

n—k
4Ta[ 4Ta
IT7 &y, = > (1 +a)&0)* =5+ Z (1 +aj)n;(0)*1=5;
i=1 j=n—k+1
n k1+ n a2
— a: i
> (1-e7) (Z IO _2a;n,-(0)2)
i=l i=n—k+1

= (1= (18 1By, + iRy )

To obtain the inequality we use the assumption 7 > 3 and the spectral gap o of A
defined by (1.7) of A. The last equality is explained right above.
To see that I'r is bounded, uniformly in 7', we estimate I'7 from above

ITr & iy, = Z(1+a2>s,(0>21 T Z (1 + a3 07157

i=1 Jj=n—k+1

Z LAYV I_ZZE 7;(0)

Jj=n—k+1

= €Iy, + Inlisy_

where the inequality holds since 1 — e~#7% < 1 and 1 — ¢*74% < 1. m]

4 Newton-Picard Map

Given two elements wy € W* and w_ € W" near the critical point, we view the
pre-glued path

wr = [{JT(er, w,) S WT

as an approximate flow trajectory, equivalently an approximate zero xj of the sec-
tion Fr, and then detect a nearby solution using the implicit function theorem with
initial point xp := O, see Appendix B. Thus we need that Fr(wr) is suitably close
to zero. We also need a uniformly in 7 bounded right inverse Q7 of the linearization
Dt := dF7(0r). These are the next two subsections.

4.1 Approximate Zero
Proposition 4.1 (Pre-glued path is approximate zero) Pick ¢ € (0,0) where 0 =

o (A) is the spectral gap (1.7). Let m € Ny and choose compact neighborhoods
Ky =Ky(m)ofOr e WinT"Wand K_ = K_(m) of 0_ € W" in T"W". Then
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the following is true. Given two elements
WieKiCcT™"W, W_eK_cT" W,
pre-glue them with the m-fold tangent map of o7, see (2.14), to get
Wr i=T"pr(Wy, W_).
Then there is a constant C(K 1, K_), independent of T, such that
| 7" Fr W) | gy, < C(Ks, K-)-e™" (4.31)

whenever T > 3.

Proof Let m € Ny. An element W4 € T™W? is a map satisfying the equation
Wi:[0,00) > T"R", Wi +T"Ve(Wy) =0. (4.32)
An element W_ € T" is a map that satisfies the equation
W_:(=00,0] = T"R",  dW_+T"Vs(W_)=0. (4.33)

Since 0 is a non-degenerate critical point of f the solutions W and W_ decay with
all their derivatives exponentially. In particular, by Theorem C.1 and compactness of
K, there is a constant ¢ = ¢(K 4, K_) with

W4 ()] + 19 Wi ()] < ce™,  [W_(9)] + [d W_(s)] < ce™, (4.34)

for every s > 0, respectively s < 0. Since f has a critical point at the origin, we get
TV (0) =0 where 0 € T™R" * Hence there is a constant u,, > 0 with

TV (W)] < s W] (4.35)

whenever |W| < c.
By linearity of the pre-gluing map Pr, the m—fold tangent map is given by

Wy = T"Pr (W W_) P20 (1 2 B(s 4 2) Wa(T +9) + B(s = 2) W (=T +5)

pointwise at s € [—T, T]. Similarly, in analogy to (2.12), we have

Wi (T +5) ,s € [T, =3]
(1 =B +2)Wi(T +s) ,s€[-3,—1]
Wr(s) =40 ,s €[—1,1] (4.36)
Bls —2)W_(=T +s) ,s €[1,3]
W_(=T + ) ,s €[3,T]

4 Ttholds 7'V, (0,0) = (V;(0), DV;(0)0) = (0, 0), similarly 7"V (0, . .., 0)=(,..., 0).
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fors € [-T, T]. The tangent map of Fr(w) := dyw + Vy(w) at Wr is given by
T"Fr(Wr) = 3, Wr + T" Ve (Wr). (4.37)
Now there are three cases.
) Fors e [-T, -3]U[—1,1]1U[3, T] the map T Fr(W7) vanishes:
4.36)

432
" Fr(Wr)(s) “27 0 W (T + ) + T" Ve lwyras) 20 0, Vs € [T, —3].

436 433
T Fr(Wr)(s) “27 0 W_ (=T + ) + T"Vilw_ (145 270, Vs €[3,T.

™ Fr(Wr)(s) =0 since Wr(s) 4290, Vs e [—1.1].

2) For s € [—3, —1], using (4.37) for T™ Fr (W) and (4.36) for Wr, we obtain

T"Fr(Wr)(s) = =B'(s + )W (T +5) + (1 = B(s +2)a W4 (T +5)
+ T Vi)W (T+s)-
Now, by (4.35) and (4.32), we estimate the pointwise length by
7" Fr (Wr)(s)]

< 1B oo W (T + )| + 19 W (T + )| + [TV £l1-ps42 Wy (7-5)
< (1B'llso + 1+ ) ¢ - €56+,

3) For s € [1, 3] we obtain analogously the formula

T"Fr(Wr)(s) = —B'(s — DW_(=T +5) + B(s — 203 W_(~T +5)
+ T Vrlg(s—2)W_(~T+s)

and the estimate | 7" Fr (Wr)(s)| < (18" loo + 1 + ftm) ce? T+,
Thus for the L norm we get, by integration, the estimate

m 2 / 2 2% =¥ g
HT fT(WT)HTmVT = 2(”13 ”OO + 1 +H«m) c Te

=:C(K4,K_)?
where ¢ = ¢(K4+, K_) and K4 depend on m. This proves Proposition 4.1. O

4.2 Surjectivity and Right Inverse

SURJECTIVE LINEARIZATION AT O7.LetT > 0. The linearization at general w € Wy
is given by

dFr(w): Wr — Vr, ¢+ 0, + Ayt, Ay (s) := VVi(w(s)), (4.38)
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where VV¢(w(s)) is the Jacobian of the vector field Vy: R" — R" at w(s). The
linearization at the origin O7, namely the operator

Dr :=dFr(07): Wr =Er ®Kr — Vr, ¢+ 9¢ + Ag, (4.39)

where Ao, = A = diag(A, —A_) is the diagonal block matrix (1.6), is surjective:
Given n € V7, then the element defined by

C(s) = e %4 <;0 +/ e"An(a)d(;) , Lo €RY, (4.40)
0

fors € [T, T], lies in Wt and satisfies d F7 (07)¢ = 7].5

For Mt := f;l (0) there is the natural inclusion E7 := Ty, Mt C ker dFr(Or).
On the other hand, both spaces are determined by the initial conditions which are given
by R”, thus dim E7 = n = dim ker D7. Therefore the two spaces coincide

ker D = Er. (4.41)

Since K7 is a complement of [E7, the restriction

Ff 0 4 4 A 0
1 _ Jy— — [ ds +
( 0 F7‘> =Fr :=dFrOp)|k; = < 0 4 _ 4

ds

: KT — VT (4.42)

K7

is injective, hence a continuous linear bijection. Hence, by the open mapping theorem,
the inverse

0r 0\ _, _p-1_(FHT 0
(0 QT>_QT = Fr —( 0 (F»;)fl Vr - Kr (4.43)

is also continuous. Thus the map Fr: Ky — V7 is a Hilbert space isomorphism.
RIGHT INVERSE Q7 OF Dr.

Remark 4.2 (Qr isarightinverse of D7) Givenn € Vr,then¢ := Qrn € Kz, hence
dFr(07)¢ = Fr¢. Therefore

dFr0r) o Qrn= FroQrn=n.
Lemma 4.3 There is a constant c, independent of T > 0, such that || Qr| < c.
Proof In the proof we distinguish three cases.
I. A POSITIVE DEFINITE: In this case k = 0 and p_ = 0, see (1.5), in particular

ap>--->a, >0.Thus Ky ={£ €e Wr | £&(—T) = 0}; see (3.22). Given n € Vr,
let ¢ := Qrn, equivalently n = Fr¢. Since { € Kr, we know that {(—7T) = 0.

5 Since the interval [T, T1] is finite, the Morse condition is not needed here.
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By (4.40), where we changed the start of the integration from 0 to —7, we get the
formula

s

L(s) = e ({(—T) + /S EGAT]((T)d(T> $=D=0 / e_(S_G)AT](O’)dO’
-T

:f $(s — oO)n(o) do = (¢ % 1)(s)
[-T,s]U(s,T]

whenever s € [—T, T] and where the function ¢ is defined by ¢ (r) := e™" A for
r > 0, and by O for r < 0. Hence, by Young’s inequality, we have

1
gtz = elivlinllz = —=linll2

n

where the L2 and L! norms are over [—=T, T] and since

T T
HMh=fTM®WawMS=A e o dis

r anT
— _e—An
=/€Sa"d5=—1e <4
0 An an

Note that a, > 0 is the smallest eigenvalue of the positive definite operator A. Since
d0s¢ = n — A¢, and by the triangle inequality and || ]2 < aln||n||2, we get

1QrnlT, = lIglT 2 = 195215 + 113
= |ln — AZI3 + 1113
< (Inll2 + 1AZI2)% + 1213

2
< (1+9) i3+ 3.

2
This proves Step 1 for ¢? = (aﬁ;l#

n

II. A NEGATIVE DEFINITE: Sok =nand p— = 1 and Ky = {¢§ € W7 | £&(T) = 0}.
Given n € Vr,let ¢ := Qrn, equivalently n = Fr¢. Since { € K7, we know that
¢(T) = 0. By (4.40), where we changed the start of the integration from 0 to T', we
obtain the formula

N T
g(s) :eSA <§(T)+/ e—O'An(O,)dO_> {(220 _/ e(S—O')An(O,)dO,
T

N

:_/ $(s — o)) do = —( * n)(s)
[—T,s)U[s,T]

whenever s € [T, T] and where ¢ was defined in Step 1. Continue as in Step 1.
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III. GENERAL CASE: Given n = (n*,n™) € Vr. Let ¢ := Qrn, then
=%, tt=0m. T=0mm.

From Step I and Step II there exists a constant ¢ > 0 such that [|Z 7|12 < c|[n™ 2
and ||£ 7 |l1,2 < c|ln” ||l2. Since the splitting R** x R is orthogonal, we have

€ _ _ €
IE15 5 = e 1T, + g7 155 < At I3 + Alln 15 = Alinli3.
This proves Step III and Lemma 4.3. O

4.3 Definition of /7

Let ¢ be the right inverse bound from Lemma 4.3. In order to use later on Remark B.8
to satisfy hypothesis (B.82), as opposed to only (B.70), we define, for > 2, a nested
family of open neighborhoods of 0 in R” as the pre-image of [0, 1/uc) under the
continuous map [|dVy(-) — Al|: R" — [0, c0), in symbols

-1
B" :=[dVs()—A| 710, ), B C B
For T > 0 define an open neighborhood B’; of Or in W7 by
BY = {weWr | w(s) € B* Vs e [-T, T} C B7.

Lemma4.4 Let T > Oand p > 2. If w € BY, then ||dFr(w) — Dr|| < i

Proof Given w € B';, there is the estimate

1dFrw) — Dl 22 1@V w) — A)ell < Licla < Llichia

— uc — uc
forevery ¢ € Wr. O

Corollary 4.5 (to Lemma 3.2) There is a monotone decreasing function §: [2, 0c0) —
(0, 00), > 8(u) =: 8, independent of T, such that for p € [2, 00) the §,-ball
about Or in Wy is contained in Bl in symbols Bs, (07; Wr) C B’;.

Proof By Lemma 3.2 for w € B, (07; Wr) we have [[wlloo < 23,,. O
Definition 4.6 (Newton-Picard map) Let ¢ > 0 be the right inverse bound of
Lemma 4.3 and let

§:=384>0 (4.44)
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be the value in Corollary 4.5 for u = 4.5For T > 1 we can now, in view of Lemma 4.4
with u = 4 and the McDuff-Salamon Proposition B.1 with xo = 07, define a Newton-
Picard map

Nyt Wy > B 5 Ups) 27 (Bs@r: W) n {1771 < £}) — Wr. (445)

Here the inclusion Up(8) C B‘} holds by Corollary 4.5.

By (B.72) the Newton-Picard map N7 enjoys the following properties:
FroNr(w)=0, Nrw)—weimQr, Nr(w) e Bs(Or; Wr),
and, moreover, one has the estimate
INT —id) W) lw, < 2 Fr W)l (4.46)

Furthermore, by Corollary B.7, respectively identity (5.53)), we have

5.53
Nr(07) =07, dN7lo, 2 Ty, (4.47)

where the projection I17, see (3.24), is uniformly bounded in 7', by Lemma 3.3.

Pre-Gluing Takes Values in Domain of Newton-Picard Map

The next lemma and Proposition 4.1 show that, for T > 3 large enough, the pre-gluing
map Pr takes values in the domain of the Newton-Picard map N7.

Lemma 4.7 (The neighborhoods L{i.) Let §: [2,00) — (0,00), it > 8y, be the
monotone decreasing function in Corollary 4.5. We abbreviate § := 64. Then there
exists a nested family of open and bounded neighborhoods Z/{i C W of Oy andU" C
W of 0_ such that | Pr(ws, w_)|l12 < min{%, Su} whenever p > 2, wy € u,
w_ el and T > 3.

While the estimate by % serves in (4.45), the estimate by §,, for some u > 5 will
be used in the proof of Theorem 5.3 further below.

Proof For §' > 0 let By (04+) C W be the open radius & ball about 0., analogously
for By (0_). Pick wy € By (04) N WF and w_ € By (0_) N WM and, for T > 3,
abbreviate wy := Pr(wy,w_): [—T,T] — R". Since by (2.12) at each time s at

6 To define the Newton-Picard map via the McDuff-Salamon Proposition B.1 and obtain C 0-convergence
(Theorem 5.6 with m = 0) for the gluing map it is sufficient to pick 8, for u = 2. However, to obtain

c! -convergence (Theorem 5.6 with m = 1) we need to choose & = 4 in order to satisfy assumption (B.82)
(4—16 as opposed to %) in the tangent map Theorem B.10.
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most one of w (T + s) and w—(—T + s) comes with a nonzero factor, we obtain
inequality one in the following estimate

2
lwrll 2

= lwrl3 + [13swrli2

< w3+ lw- 13+ 20812 (w1 + lw-13) +2 (1w 13 + Novw-13)
<201+ 18120 (I I 5 + w13 ,)

<40+ 18126,

Choose & = &(n) = }‘min{%, 8u3v/ 1+ 11813 and define the open &'-
neighborhoods in the stable, respectively unstable, manifolds as follows

Ut = (By(0) N W) Uy =12, U := (By(0_) N W) CU_ =l

Then the lemma holds by the previous displayed estimate. O

5 Gluing

Pick ¢ € (0, o) where 0 = o (A) is the spectral gap (1.7). Let ¢ > 0 be the constant in
the right inverse estimate, Lemma 4.3. Let § = §4 > 0 be the constant in Corollary 4.5
and let

Uy =Ur, W, K= clls, (5.48)

be the open sets in Lemma 4.7 and, respectively, the compact sets given by the closure
of U+ in the (finite dimensional) stable/unstable manifold. Thus, by Proposition 4.1
form = 0, we get a constant C = C(K4, K_) > 0. Pick Tp > 3 such that

8
Ce 10 « — (5.49)
4c
see (4.31). By Proposition 4.1 for m = 0 and Lemma 4.7 it holds that
@31 5
1Froprwe, w)ll < 7z, llorwy, wo)l <y, (5.50)

whenever T > Ty and wy € Us and were 1 := Pripscpe: W x W — W,
see (2.14), is the restriction of the (linear) pre-gluing map Pr: W, x W_ — Wy,
see (2.11). In other words, the pre-gluing map g7 maps /. x U_ into the domain of
the Newton-Picard map A, see (4.45), whenever T > Ty.

Definition 5.1 (Gluing map) For T > Tj the gluing map is the composition of smooth

maps
yr i =Nrogpr: Uy xU_ —> Uy(§) — Wr. (5.51)
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The linearized gluing map is the composition
dyrlwew) = dANT|prwe wo) 0 doT (Wi w ) s Tw, W x Ty W' — Wy,

Lemma 5.2 It holds yr (04, 0_) = Or. Furthermore, the differential of the gluing map
yr at (04, 0_) is the infinitesimal gluing map U'r, in symbols

(3.26) PR
d)/T|(0+,07) = HT Od&ﬁ)T|(0+,07) =: FT: E"xE — ET.

Proof We get that 7 (0, 0_) "= N7 (97 (04, 0_)) “2” N7 (07) = 07.
By definition of yr and the chain rule we get the first equality

dyrlo,,00) = dNTI@T (04,0_) °d&rl0,.00)
————_—

=07 by (2.13)
= (Id — Q7 D7) odprl0,.0.) (5.52)
=Ilr odgprl0,,0.)

=:I'r

and the second equality holds since dN7(07) = Id — Q7 D7, by Corollary B.7 with
xo =0rand P = Q7 Dr.

Now I17: Wz — Wr is the projection onto E7 along K7, by definition (3.24), in
symbols I17 = Pg, k.. Thus, to see that

dN7(0r) =1d — QrDr = Pr, x, =: 17, (5.53)
it remains to show that the composition
QT DT = PKT,]ET

is the projection onto K7 along E7. This follows since

443) -1
0rpy “2) FldFrlo, = (dFrloylxy)” dFrloy: Wr — Vi — Ky

and Er = kerdFrlo, = ker Dy and Q7 = FT_I: Vr — K7 where Fr is the
restriction of D7 to Ky, see (4.42). ]

5.1 Diffeomorphism onto Image

Theorem 5.3 There are open neighborhoods Oy C Uy C WP of O and O— Cc U— C
W of 0_ such that for every T > Ty the restricted gluing map

yr: 0y x O = Mrp, (wy,w_) > Nropr(wy,w-)
is a diffeomorphism onto its image Or.
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Note that the domain O x O_ of yr does not depend on T'.

Proof Given Ty > 3 as prior to (5.50), pick T > Tjy. The theorem is a consequence
of the quantitative inverse function Theorem A.1 (IFT), where F is given by a repre-
sentative of yr in local coordinate charts; see (2.19). In order to apply the quantitative
IFT, two conditions, (A.65) and (A.66), are to be checked.

We verify (A.65): Recall that the inverse of the infinitesimal gluing map I'r is
uniformly bounded by a constant k = 1/(1 — e~!2°) > 1, see Lemma 3.5. So, by
Lemma 5.2, the inverse of dyrl0,,0_) = dF|o is bounded by k, uniformly in T'.

We verity (A.66): To check this condition we choose

Os =0 g NULT | e=gg, n=4k+1>5, (5.54)

where d is the (T-independent) bound of IT7 from Lemma 3.3 and where the open
origin neighborhoods OF and U in W¥" were defined in Lemmas 2.3 and 4.7,
respectively. Since k > 1, Lemma 4.7 tells that Z[f“ C Z/Ii =: U+, hence O+ C Ux.
Pick (wy, w_) €e O x O_ CU; x U-_.

Recalling (2.19) we shall investigate the operator norm of the difference

dyrlwe,wy o Oyl 0, —dyrlo, 0 EY x ET — Wy,

w4’ Tw—

Abbreviate x| := gr (w4, w_). By definition of yr and of O (w4, w_) we get

dyr|wy,w_ )0(9w+, o )—dVT|(0+0 )

551
2D ANT1xy 0 Pro(051.05") — dNlo, o Pr —dN7 Ly, o Pr + dN7 .y, 0 Pr

2.21
€20 ANty 0 O7 (i wo) + (N7 L, — dN7loy) o Pr.

(5.55)
By Remark B.5 for Q := Qr and P := Q7 Dr and since the projection [d — P = I17,
see (5.53), has a (T'-independent) bound d by Lemma 3.3 we get that

B (B.81)

ldNT|x, || II(Id +Qrdf(x)—P) 7' ld—P|| < 2d. (5.56)
Since (w4, w-) € OT/SM X OI_/Skd’ by Lemma 2.3, we have that

1©7 (wy, w)ll < gig- (5.57)

Furthermore, abbreviating xo := Or, then dNT|OT = Id — P by (B.79) with x;
replaced by xg and using that Q7 df (xo) = Qr Dt = P. Thus we get that

(dNT e, — dNrloy) o Pr P27 ((Id +Qrdfl, —P) - Id) (d — P) o Pr.

(5.58)
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Observe that

2.20 5.52
(d — PyoPr “2” (1d — QrDr) o dprlo, o) "2 Iy (5.59)

Since (w4, w-) € Lff“ x U it follows from Lemma 4.7 that Ixillh2 =
IPr(we, wo)ll12 < min{%, 84k+1}. Hence x1 lies in If;k‘H by Corollary 4.5. There-

fore, by Lemma 4.4, it follows that ||d Fr(x1) — Dr| < m.
In view of Remark B.8 with Uy given by U we obtain

I(d + Qrdfly, — P)”' —1d|| < %. (5.60)

By Lemma 3.5 we have ||[I'7|| < 1. Combining this fact with (5.58), (5.59), and (5.60)
we conclude

I(dNT |5, —dNTlo;) o Prll < (Id+ Q7 dfx, —P)_1 —1d||-|IT7|| < 4. (5.61)
By (5.55), (5.56), (5.57), and (5.61) we conclude
1

ldyrlwew_y o Op'. 05" —dyrlo.ooll < &G + 2% = 2%

This verifies (A.66). Corollary A.2 concludes the proof of Theorem 5.3. O

5.2 Evaluation Maps and Convergence in C™

Definition 5.4 Consider the evaluation maps defined by
ev: WH x W™ = R" xR, (wg, w_) — (wy(0), w_(0))
and, for T > 0, by

evi: Wy - R" xR", wr (w(=T),w(T)).
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Observe that both evaluation maps are linear. Furthermore, for T > 3 we have
evy o Pr(w, w_) = (w4 (0), w_(0) = ev(w, w_).” So there is the identity

evioPr=ev: W x W~ — R" x R" (5.62)
whenever T > 3. Therefore, for tangent maps, we get the identity
T"evy o T"Pr = T™ev: T"W x T"W™ — T"R" x T"R" (5.63)
whenever m € Nand T > 3.

Lemma5.5 |levr| < 2v2.

Proof |evrw|2, [w(=T)]> + [w(T)* < 2w, < 8lwlf, by 3.23). O

xR =
To motivate Theorem 5.6 below we first check the infinitesimal version in case
m = 0, see (1.3). The linearized evaluation maps are given by

dev]o, 0.y =ev: Et x E~ — R" x R*(&, ) — (£(0), n(0))

and
devrlo, =evr: Er — R" x R+ (¢(=T), ¢(T)).

By Lemma 5.2 we get that
d(evr oyr) |(0+,0_) =evr o d)/T|(()+,()_) =evrolr: Et xE™ — Er.

Thus, for (£, n) € ET x E~ and by (3.29), we obtain
d (evr o yr) 0,0 €. = (Cr (& m(=T). Tr (&, n)(T)
= (@ + 72 4-7(0), TR £(0) + 1(0))

2% (£(0). n(0)) = devlo, .0y E. ).

This confirms the infinitesimal version of Theorem 5.6 in case m = 0.

7 By definition (2.11) of w7 and the cut-off function 8, we get the identities

wr (=T) —w4+(0) =1 = (=T +2) w4 () + B(=T = 2) w—(-2T) — w4 (0)
=BT +2w4+(0) + (=T —2) w—(-2T)
=0 forT >3
wr(T) —w-(0) = (1 = B(T +2) w4 27T) + B(T —2) w-(0) — w—(0)
=1-BT+2)ws+2T) -1 - B(T -2) w-(0)
=0 forT > 3.

Thus, by definition of the evaluation maps, for 7 > 3 we get that

evr(wr) —ev(w4, w-) = (wr (=T) — w4 (0), wr (T) — w-(0)) = (0, 0).
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Theorem 5.6 (Local gluing — C™) Let m € Ny. Consider the gluing map yr: Uy X
U_ — Wt from (5.51). In the limit T — oo the tangent map diagram

TU, x T"U- — T2y TMR? x TMR"

Tm VTZTmNTOTm,PT\ /Tm;VT

T" Mp

commutes. More precisely, it holds that

lim T"evy o T"yp = T"ev
T—o00

in COT™Uy x T"U_, T"R" x T™R").
Proof Let Wy € T"Uy. For Wy := T"Pr (W4, W_) € T"Wr we obtain

THV“;\H T/H“PH
r—}\q
(V_,Vy) = (T’"evT o Tmyr) (Wi, W) — T"ev(Wy, W)
=T"evr o T" Ny (Wr) — T"ev(W,4, W_)
=T"evy (T" N7 (Wr) — Wr) 4+ T"evy (Wr) — T"ev(W, W_)
= 0 by (5.63)

where equality one is definition (5.51) of y7 and equality two by adding zero.
In view of Lemmas 5.7 and 5.8 below, by Theorem B.12 there exists a constant c,
independent of 7', such that

(T Nt = id) WD) || oy,

(B.85)
= e T Fr WD) g, (14 1T Fr W) |y, )
(4§1) cCe™ T (1 + Ce_£T>

where the second inequality is by exponential decay (4.31) with constant C =
C(K4, K_) and K4 depending on m. In particular, there exists a constant 7, =
T,(K4+, K_) > Osuchthatif T > T, then

14+ Ce™*T < 2.
Therefore, by the uniform—-in—7" Sobolev estimate (3.23) we get

”(TmNT —1id)(Wr) ”L([)ET,TJ <2 ”(Tm./\/'T —id)(Wr) ” "Wy (5.64)
< 4cCe™*T |
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for every T > T,,. Putting things together, using that evr o Pr = ev by (5.62), we
obtain exponential decay
(T evr o T™yr) (Wi, Wo) — T"ev(Wa, Wo)| o
= V- Fmgn + Vi Fngen
<2(4cC)?e™ 2T

x TmR"

whenever T > T,,. But in finite dimensions pointwise convergence implies conver-
gence of the operators.® By the uniformity of exponential decay in Proposition 4.1 we
have uniform convergence in CO(T"U; x T"U_, T"R" x T"R"). O

In the following, by iterated identification of the space with the zero section of its
tangent space, we can interpret Oy € Wr as an element of 7" Wr. Since N7(07) =
07, see (4.47), we have T™ N7 (07) = Or and therefore

dT" Nt (O07): To, T"Wr — To, T"Wr.

Since Wy itself is a vector space, we have a canonical isomorphism of T, " Wr
with (W7)>2".

Lemma 5.7 Givenm € Noand T > 1, letd be the T -independent constant provided by
Lemma 3.3, then ||dT™ N7 (07)| < d*".In particular, the norm is uniformly bounded
independent of T.

Proof With respect to the splitting 7o, T" W7y = (W) *2" we have the block decom-
position dT™ N7 (07) = diag (dN7(07), ...,dN7(0r)). By formula (4.47) we have
dN7(07) = II7. Hence the estimate follows from Lemma 3.3. O

Lemma 5.8 Given Wy € T"Uy, the norm of Wy := T"Pr (W4, W_) is uniformly
bounded in terms of the norms of W and W_, independent of T .

Proof By (4.36) the same estimate as in the proof of Lemma 4.7 for wr yields

IWrI3my < 200+ 181 (W By, + W= 1y ) -

A Quantitative Inverse Function Theorem

Let F: X — Y be a map between Banach spaces. Suppose that at a point x € X the
derivative d F|, : X — Y exists. If this bounded linear map is bijective then its inverse
dF|,~! is not only linear but, by the open mapping theorem, also bounded.

8 In finite dimension, given a sequence of matrizes, then weak (and strong) convergence means that each
matrix entry converges. In particular, the two notions of convergence are equivalent.
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The quantitative version of the inverse function theorem (IFT) follows from the
proof of the usual IFT explained in (McDuff and Salamon (2004), App. A.3), although
McDuff-Salamon never state explicitly the quantitative version. Therefore, for the
reader’s convenience, we state the quantitative version of the IFT and explain how it
follows from the arguments in (McDuff and Salamon (2004), App. A.3).

We denote by B, (x; X) the open ball of radius r centered at x in the Banach space
X. We often abbreviate B,(x) := B,(x; X) and B, := B,(0; X).

Theorem A.1 (Quantitative inverse function theorem) Let k, § > O be constants. Let
F: X — Y be amap between Banach spaces, continuously differentiable on the open
ball Bs about 0 € X, such that d F |y is bijective and

ldFlo~" | <k (A.65)

and
ldFly —dFloll < 5z, Vx € Bs. (A.66)

In this case the following is true. The restriction of F to Bs is injective, the image
F(Bs) is open and contains the ball Bs;o (F(0)), the inverse F~L': F(Bs) = Bsis
of class C! and

d(F D]y = @F|p10)"" (A67)

for every y € F(By).

Corollary A.2 Ifin Theorem A.1 in addition F: Bs — Y is of class C* for some £ € N,

then so is F~'. In particular, in case £ = oo the restriction F|: B — F(Bs) is a

diffeomorphism onto its image.

Proof Induction, using the chain and Leibniz rules, together with (A.67). O
The proof of Theorem A.1 is based on the following lemma.

Lemma A.3 (McDuff and Salamon (2004), Le. A.3.2) Lety < 1and R be positive real

numbers. Let X be a Banach space, xy € X, and ¥ : Br(xo) — X be a continuously
differentiable map such that

1 —dy)ll <y

for every x € Bg(xq). Then the following holds. The map  is injective and  maps
BRr(x0) into an open set in X such that

Bra—y)(¥(x0)) C ¥ (Br(x0)) C BRr(1+y)(x0). (A.68)

The inverse lﬂ_l 2 ¥ (Bgr(x0)) = Br(xq) is continuously differentiable and
dW Nl = @d¥ly-15)) 7" (A.69)
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Proof of Theorem A.1 This is basically the proof of the usual IFT given in (McDuff
and Salamon (2004), App. A.3). We assume without loss of generality F(0) = 0. We
consider the map ¥ : Bs — X defined by

¥ (x) == D' F(x)
where D := dF|o. For x € Bs we estimate

Il —dyl = D7D —dFI)I < IID7'| - ID —dF || < k-5 = 3.

It follows from Lemma A.3 with R = 8 and y = 1 that ¢ has a continuously
differentiable inverse on Bs(0; X) and that ¥ (Bs(0; X)) is an open set containing
Bs/2(0; X). Since F = D o  and IdFlo~ Y < k we get, respectively, inclusion one
and two

F(B5(0; X)) = D o ¥(Bs(0; X)) D DBs;2(0; X) D Bsyox(0; Y).
The inverse of F = D1 is given by
F 'y =y~ (0.

The inverse F~! is continuously differentiable, since 1//_1 is, and the formula
d(F~ |y = (dF|p-1(,))~" follows by differentiating F o F~! = idy. o

B Newton-Picard Map Without Quadratic Estimates

The Newton-Picard map is usually defined via the Newton-Picard iteration method. To
show that Newton-Picard iteration is a contraction one needs to calculate troublesome
quadratic estimates. Based on (McDuff and Salamon (2004), App. A.3) we explain
how the Newton-Picard map can as well be defined even if there are no quadratic esti-
mates available. The Newton-Picard map A obtained in this way is still continuously
differentiable. This fact is not mentioned in (McDuff and Salamon (2004), App. A.3)
and therefore we prove this fact in the present article; see Appendix B.1.

For induction arguments, e.g. the one in Sect.5.2, tangent maps are much more
suitable than differentials. Therefore we estimate, in Appendix B.2, the tangent map
difference TN — 1d.

Notation. Throughout Appendix B the letter f denotes a map between Banach spaces,
not a Morse function as in the principal part of this article.

B.1 Newton-Picard Map

The definition of the Newton-Picard map requires the following proposition from
(McDuff and Salamon (2004), App.A.3). The proof can actually be interpreted in
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terms of the Newton-Picard iteration as is explained in (McDuff and Salamon (2004),
Rmk. A.3.5) in case x¢p = x;.

Proposition B.1 (McDuff and Salamon (2004), Prop. A.3.4) Let X and Y be Banach
spaces, U C X be an open set, and f: U — Y be a continuously differentiable map.
Let xo € U be a suitable initial point in the sense that D := df (xo): X — Y is surjec-
tive and has a (bounded linear) right inverse Q: Y — X. Choose positive constants
8 and c such that | Q|| < c, the open radius-6 ball about x satisfies Bs(xo; X) C U,
and

1
lx —=xoll <6 = |df(x)—D| < 3 (B.70)

Suppose that x1 € X is an approximate zero of f near xg in the sense that

8 8
lx1 —xoll < 5, NIfGDI < —. (B.71)
8 4c

Then there exists a unique zero x € X near the initial point xo such that
f(x)=0, x—x3€imQ, lx — xoll <. (B.72)

Moreover, the distance between the detected zero x and the chosen approximate zero
x1 is controlled by f(x1), more precisely

lx —xill < 2ell fxoll (B.73)

Definition B.2 Based on the proposition we define the Newton-Picard map N as
follows. Define an open subset of U by

Up = Up(®) : = (B3 (xo: ) 0 {ILFOlly < 2:})

B.70) (B.74)
C

{Ildf () = Dllgixyy < )

and a map

N=N ,:XDUDUy— X, x1+>x (B.75)

which maps a point x1, thought of as an approximate zero of f, to the unique zero x
in the §-ball about xo whose difference x — x1 lies in the image of the right inverse Q.
Note that the domain Uy of definition of the Newton-Picard map N depends on the
choice of equivalent norms on X and Y.

Remark B.3 The uniqueness statement implies that V] 1.9y ¢y, = id.
Theorem B.4 The Newton-Picard map N is continuously differentiable.

Proof We first recall how the zero x in Proposition B.1 is found from a given approx-
imate zero x| € Up. One considers the map defined by

Vet X DU D Bs(xg) > X, x> x+0(f(x) — D (x —x1)). (B.76)
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The map vy, is continuously differentiable, because f is, and by (B.70) the differential
atany x € Bs(xq) satisfies

1
Hd = dyr, ()| = clldf (x) = DI = 5. (B.77)

Moreover, according to (McDuff and Salamon (2004), Proof of Prop. A.3.4) the map
Yy, 1 Bs(xo) — X is injective and the Newton-Picard map is given by NM(x) :=
v )?

To show that Nis differentiable we consider the map
W: Bs(xp) x Up = X x Uy, (x,x1) > (Y, (x), x1).

The differential of W at a point (x, x1) € Bs(xgp) x Up is the linear map

AV |, @)\ BI6) (dyy | P .
d\y|(x’x1)_( o R 0 1 X xX > XxX

P=0D: X —> X

is a projection.'” Since the bound in (B.77) is < 1, the linear map dyy(x): X - X
is invertible, therefore so is d \-IJ| x) with inverse

—1 —1
1 _ [ (di, ‘ ) — ((/l’//»\ ‘ ) P
(dly|(x,x|)) o ( b’\ I]d\ ’

Therefore, by the inverse function theorem (McDuff and Salamon (2004), Thm. A.3.1),
the map W is injective in a neighborhood of (x, x1) € Bs(xp) x Uy with continuously
differentiable inverse.

It follows that the Newton-Picard map N is differentiable as well with differential
dN(x1): X — X given by the formula

Id+ Qdf(x)) — P>_1 (1d — P). (B.79)

dN(x1) = (d,, ‘V\I) : (Id — P) (B.76) (

The differential dNV(x1) depends continuously on x; since df (x;) does. O

9 In (McDuff and Salamon (2004), Proof of Prop.A.3.4) it is shown that x; € Bs/2(¥x, (x0)) C
Yx (Bs(x0))-
10 gince D Q = Id, the map

P:=QD, P’=P, imP=imQ, ker P =kerD, (B.78)
is the projection P = Pjmy g ker p Onto the image of Q along the kernel of D. Indeed P2 =QDQD =
OD = P.Itholds im P = im Q: ’C’ true by definition of P. D>’ If £ = Qn, then P§ = PQn =

ODQOn=QOn=E&.Itholdsker P =ker D: *C’ If P§€ =0, then DE = DQD& = DPE = 0. D’ true by
definition of P.
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RemarkB.5 (The inverse in (B.79)) Let A := Q (D —dfly,) = P — Qdf|y,, then
|A] < % since || Q]| < ¢ and by (B.70). The inverse for Id — A is given by

YAar=ad-a)t = (Id+ Qdfly, — P)_l (B.80)

n=0

where the sum, called Neumann series, converges in £(X) whenever A has operator
norm less than 1; for details see e.g. (Reed and Simon (1980), (VL.2) p.191) with
A = 1. Thus there is the estimate

]

I([d+ Qdfly, — P) ||<Z||A||" Z

l
= 2

=2 (B.81)

and therefore

I(ld+ Qdfly, — P)' —1d| =

> 1
<Y lAlI"=2- 5 =1
n=1

Remark B.6 (Smoothness) If f in Proposition B.1 is assumed to be not only continu-
ously differentiable, but smooth, then it follows from (B.79) that the Newton-Picard
map N is smooth as well.

Corollary B.7 By (B.79), it holds dN(x¢) = 1d — P. If additionally f(xo) = 0 in
Proposition B.1, then N(xg) = xg by uniqueness.

Remark B.8 Given y1 > 2, the restriction of the Newton-Picard map N: X D Uy — X
in (B.75) to the subset

(B 74)

Uy :=Uon lldf() = DI7'0, ), Ug Vo,
satisfies, just as above, an estimate of the form
| > > 1 1 1
- 1
I(ld + Qdf |, — P) —Id”fZ"A””er=; =1
n=1 mn

n=1

for every x1 € UéL and where we used that
IAl = 1QD = df L) < 121 - 1D = df |y |l < -

B.2 Tangent Map
Hypothesis B.9 Consider the situation of Proposition B.1. In this section we assume,

in addition, that the map f: X D U — Y is two times continuously differentiable.
Recall that xg € U is a suitable initial point and § and ¢ are positive constants, the
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three of them related by assumption (B.70). Choose § > 0 smaller, if necessary, such
that

1
lx —=xoll <6 = |df(x) = DI < o (B.82)

Suppose that there is a constant ¢, > 0 such that ||d? f (x)|| < ¢ forall x € Bs(xo).
Define

~

8= min{S, Toe } C (0, 1).

Theorem B.10 Under Hypothesis B.9 suppose that x1 € Uy(3); see (B.74). Abbreviate
N:= /\ffo 0 Then for each &1 € X which is small in the sense that

)
61l < c—7——>  ldflséilly < —, (B.83)
8(1 +[1dMx, 1) " 4c
there is the estimate
[N 61 = Elx < 2emax {21F GOy, ldfLa&illy . B84

Corollary B.11 For (x1, &) € TUy(5), see (B.74), there is the estimate

IdN1x &1 — &1l x

< 2cmax{w

1F Gty B ol N Ly |-

Proof of Corollary B.11 Let x; € Uy(3); see (B.74). For & € X we define

S 8
A= A £) = mi ’ .
(x1,81) m‘“{9(1+||d/\/|xoll)||$1ll 5¢ ||df|xlé‘1||}

Observe that

8 ' 8

Then A&; meets condition (B.83), so there is the estimate

1 {9(1 H1dMx DIEL Sclldf &1l }
X = max .

ldMx &1 — &Erllx
1
= Xll(d/\/]xl —Id)A& | x

—

< 2¢ max [é%uf(xl)ny, Idf 1l |
i (

x [ 2D ey, By p )y, i f Ll
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We can summarize the result of this section more compactly in tangent map notation
by the following theorem.

Theorem B.12 Under Hypothesis B.9, given Wi = (x1,&1) € TUy(5), see (B.74),
there is a constant C depending on &1 ||x and ||d Ny, || such that

ITN(Wy) — Wilrx < C||Tf(W1)||TY(1 + ||Tf(W1)||TY>- (B.85)
Proof of Theorem B.12 Write W| = (x1, &) and observe that
TNW1) — Wi = (Mx1) — x1, N, 61 — &1) .

To the first component apply estimate (B.73) in the McDuff-Salamon Proposition B.1
and to the second component apply Corollary B.11. O

Proof of Theorem B.10 We first consider the Newton-Picard map N7/ * for the tangent
map Tf and then compare it with the tangent map TN of N7 .

OnX:=TX=X®X> (x, &) andY :=TY =Y®Y > (v, n) We define norms
for (x,€) e TX = X @ X, respectively (y,n) e TY =Y @Y by

G, ) == max{[lx|, gll%ll}, 1y, Ml == max{[Iy|l, gllnll}-

In the following we study the tangent map f := T f which is defined by Tf (x, &) =
(f(x), df|+&). The task at hand is to choose the corresponding quantities X, 13, Q,
¢, 8, and Up in order to apply Proposition B.1 to f .

As initial point for f onU:=TU =U x X we pick X := (xg, 0). The operator
D= df|(x(,,0) = D & D is onto. A right inverse is given by the sum Q =060
with bound ¢ = ¢.'! Observe that Bs(Xo; TX) C U x X = U. Suppose that x, & € X
satisfy the estimate

ll(x, &) — (x0, 0)[| = max{lx — xoll, §||§||} < 8.

1T Use the bound ||l < c to obtain the inequality in what follows
I0® Qlicry.rxy:= sup QB QG Dlrx
1G.Mlry=1

= sup max{| Q3. SI1Qill}
1@.Dlry=1

<c sup  max{|IFIl. $1All} =c.

NGy =1 —————
. Dlry
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In particular, we have x € Bj(xp), hence Id2f ()| < ¢z and ||df|x — D|| < 4—0,

by (B.82). For elements x and S of X consider the operator difference

|(¢fice- D)5,

=[5 an o
L@ fle@E ) dfl - D] &
= max {|@f1x = DYFI §1@f 1 = D)E +df1o 6. D)

TY

B.82) iy 3
< max |z 1%, 54C||€|| s8lld” fol - I1xll

= £ NG O+ 811> £ - 17

Take the supremum over all ||(x, ) =1to get the operator norm estimate
1

Id gy = DIl < 2 +81d> FO < 4= + go502 = 52

Thus we have verified condition (B.70) in Proposition B.1 with f and § in place of f
and §. We next check condition (B.71) for f and § and any

= (x1,&1) € X® X, where x; € Up(8) and & satisfies (B.83).

By x1 € Up(8) itholds | f(x)]l < 2 and [lx; — xoll < 2. By (B.83) we get (B.71)

A A a ~ 5
I DI = max{|| f Dl $lldf 1w &} < max{L, £} = — (B.86)
C

and

N n H 5 8
X1 — xoll = max{[lx1 —xoll, 56111} < max{g, g} = 3

Then Proposition B.1 for f and § yields a unique zero X = (x, &) of f such that

fx)=0,df|x§ =0, x—x;,§-§ €imQ, max{[lx—xof, élléll} <38. (B.87)

In particular, since ||[x — xg|| < & the element x is the same as the one uniquely

determined by (B.72) and baptized ./\/)J:O’Q(xl) in (B.75). Moreover, Proposition B.1
for f and 8 yields that
$IE — &1y < 2cmax(|| £ Dl §1df 1 &1l (B.88)

max{[lx —xi|l, §

To conclude the proof of Theorem B.10 we need
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Proposition B.13 There is the identity T./\/){O 0= J\/(Y;fo 0).0@0 that is
x =Nx1), &=dNyéi. (B.89)

where we abbreviated N' = ./\/){0’ o

Proof of Proposition B.13 After (B.87) we already proved x = AN(x1). By uniqueness
it suffices to verify the (three) properties in (B.87) for d V|, &) in place of §.

PROPERTY 1: dNly, &1 € kerdf|y. Since x = N(x}) and since x; lies in the open
domain Uy(8) of the Newton-Picard map N in (B.75), hence so does x| + t&; for any
sufficiently small ¢ > 0, we obtain that

dflx 0o dNy& = 4|, f o Nlxi +t&1) = 0.
N —’
ef~10)

PROPERTY 2: d N, & — & € im Q. Observe that

-1
— (@M — &) "Z (44 Qdfl, - 0D)  Qodfluti = On.

That the last equality indeed holds for some n € Y is equivalent to

Qodflné = (Id+ Qdfly — QD) 0y = Qdfl:, O
for some 1 € Y. Since Q is injective it remains to find an n € Y such that

df|JC|§1 = df|x1 On.

But the operator df|y, Q is invertible since it is of the form Id — B where B :=
(D —df]x,)Q hasnorm || B| < le due to | Q]| < c¢ and by (B.82); cf. Remark B.5.
PROPERTY 3: ||dN|y, &1l < 8. AsId — QD = dN]y,, see Corollary B.7, we get

IdN & P2 1 (1d + Qdfl,, — 0D) ™' (1d — QD)% |
<I(ld+ Qdfly, — @D) 1| - 1AM, Il - &1
(B.81)

B.83
( < ) 2%.

This proves the identities (B.89) and Proposition B.13 O

We continue and conclude the proof of Theorem B.10. Since & = dNMN|y &,
by (B.89), the estimate (B.88) multiplied by g leads to

|@Ny, — 181 1x < 2emax {217 Gl ldf Ll ] -

This concludes the proof of Theorem B.10. O
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C Exponential Decay
Theorem C.1 (Linear uniform exponential decay) Pick ¢ € (0, o) where 0 = o (A) is
the spectral gap (1.7). Let m € Ny. Suppose W is a map of Sobolev class W12 such

that
W: [0, 00) > T"R", WW +T"Vi(W)=0. (C.90)

Then there is a positive constant c(W), depending continuously on W, such that
W)+ [0 W(s)| < c(W) -e™ (C.91)
forevery s > 0,

Preparation of Proof

By P*(N) we denote the collection of all finite non-empty subsets of N. The evaluation
map is defined by

e: PPNy >N, D~ 22171

jeb
and its inverse is the digit map
D:=e¢': N— P*N).
It can be described as follows. Write k£ € N in binary representation and map it to the
subset of N consisting of all positions of the binary representation of k at which you
can find a 1, for example 9 = 1001 — {1, 4}.

Given a finite non-empty subset D C N, in symbols D € P*(N), we consider all
partitions of D into £ € N non-empty subsets, namely

Party(D) = {{A1..... A¢} C P(D) | U_ A; = D, AN A; 'Z 9. vi: A; #0).

Given £ € Ny, the ODE (C.90) for the map W : [0, 0c0) — T*R" is equivalent to a
system of 2¢ ODE:s for 2¢ maps Wo, Wi, ..., Wye_;: [0, 00) — R", namely

3, Wo + Vi (Wp) =0 (C.92)

and the 2¢ — 1 equations

0= aku+Z< Z Der|Wo[We(A1),~~’ We(Ag)]) (C.93)
£eN MAj,..., AgtePart, D(k)

where k =1,...,2¢ — 1.
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Remark C.2 (Reformulation of (C.93)) Given k € N, let G(k) be the digit sum of
the binary representation of k, also referred to as the Hamming weight. Observe that
G (k) is the cardinality of D(k). Note that for £ > G (k) the partition set Part,D(k) =
) is empty. Note also that Part;D(k) = {{D(k)}}. Therefore we can write (C.93)
equivalently as the finite sum

0 = 05 Wi + DVr|w,[Wi]

&(k)
+ Z( > DV lwy [Weays - - - Wew)]) (C.94)

=2 MAy,..., Ag}eParty D(k)

In the special case where k = 2" we have &(k) = 1, hence (C.94) simplifies to
0 = 33Wam 4+ DVy|w,[Won]. (C.95)

The following table illustrates (C.94) fork = 0, ..., 7. Itis written in binary notation,
so the structure of the system becomes visible

0) 0=0;Wo+ Vr(Wp)
1) 0=09;W; + DVy|w, W1
10) 0= 9;Wio+ DVylw,Wio
1) 0= 3;Wii + D*Vylwy[Wi, Wiol + DVy|w, Wiy
100) 0 = 9;Wi0o + DVylwy,Wioo
101) 0 =9,Wio1 + DZVf|W0[W1, Wiool + DVy|w, Wio1
110) 0=9;Wyi0 + DZVfIWo[Wlo, Wiool + DVrlw, Wiio
111) 0= 3Wii1 + D>Vylwo[Wi, Wio, Wioo] + D*Vylw,[Wio, Wioi]
+ DszIWO[Wl, Wito] + Dsz|WO[W11» Wiool + DV¢lw, Wii1.

Lemma C.3 Given m € Ny, consider maps Wy, Wi, ..., Wom_1 € Wl'z([O, o0), R™)
that satisfy the ODE system (C.92) and (C.93) for every k = 1,...,2" — 1. Then
the tuple W := (W, ..., Wan_1) € WH2([0, 00), ]R"'zm) lies in the m-fold tangent
space T™ W' which means that

W + T"Vp(W) = 0.

Proof The proof is by induction on m € N.

Case m = 0. True by assumption.

Induction step m = m + 1. There are three cases I-IIL. I. For k € {1,...,2" — 1}
equation (C.93) holds directly by induction hypothesis. II. Fork € {2"+1, ..., 2"+ —
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1} we linearize (C.93) with respect to Wy_om. This yields

0=0dWe+y Y

LeN  {Ayq,...,Ap}
ePart,D(k—2")

¢
<Z DZVf|WO[We(A1)s oo Weea; ) Weap+2ms Weeajinys - Wegap)]
j=1

+ DH]VleO[Wzm, Weap)s - -+ We(Ag)])

=3AYW1<+Z< Z DZVf|Wo[We(A1),~-~, We(Ag)])

LeN MAy,..., Ay¢}ePart;D(k)
(C.96)
To see why the second equation in (C.96) holds note the identity of digit sets

Dk) =Dk —2")U {m + 1}.
Moreover, consider the injections defined for j = 1, ..., £ by

tj: Partg(D(k — 2™)) < Party(D(k)) = Part,(D(k —2™) U {m + 1})
{Al,..., A} > {Al,...,Aj_l,Aj U {m + 1}, Aj.;,_l,...,Ag}

and the injection defined by

I: Party_1 (D(k — 2™)) < Part(D(k))
{Ar, ..., A1} > {{m+ 1}, A, ..., Ap—1}.

Using this notion we can write Part,D(k) as the union of pairwise disjoint subsets,
namely

¢
Part;D(k) = (U tj(Party(D(k — 2’")))) U I(Party_1 (D(k —2™))). (C.97)
j=1
Now the second equation in (C.96) follows from (C.97).

III. It remains to consider the case k = 2. Linearizing (C.92) with respect to Wy
in direction Wp» we obtain

0 = 0;Wom + DVy|w,Wom
and this equation coincides with (C.95). This proves Lemma C.3. O
Proof of Exponential Decay
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Proof of Theorem C.1 - Exponential decay The proof is by induction on m.
Case m = 0. This follows for instance from the action-energy inequality; see e.g.
Frauenfelder and Weber (2022).

Induction step m = m+1. Suppose (C.91) is true for m. Then we want to show (C.91)
for m + 1. By induction hypothesis W and its derivative d; Wy decay exponentially
fork = 0,...2" — 1. It remains to show that as well Wy, and its derivative d; Wy decay
exponentially for k = 2, ..., 2*+! —1_ This follows from Lemma C.4 below in view
of (C.94) combined with the induction hypothesis. More precisely, we prove this by
induction on . In the notation A, &, n of Lemma C.4 we have W, =&, DVy|y, = A
and 7 is the sum indicated in (C.94).

Observe that if £ > 2 and {Ay, ..., A¢} € Party(D(k)) then e(A;) < k for j =
1, ..., £. Therefore by induction hypothesis W,(4;) decays exponentially so that n
decays exponentially. Now the exponential decay of Wy follows from Lemma C.4. O

Lemma C.4 Consider a continuously differentiable family of quadratic matrizes
A: [0, 00) — R™" and an invertible symmetric matrix A € R**" with

lim [A(s) — Al =0= lim [A'G), A'(s):= LA).
§—> 00 §—> 00

Let 0 = 0 (A) > 0 be the spectral gap, see (1.7). Let &, n: [0, 0c0) — R" be continu-
ously differentiable maps such that & is of Sobolev class W12 and

£'(s) + A($)E(s) = n(s) (C.98)
for every s > 0. Suppose that there are constants C > 0 and ¢ € (0, o) such that
[n(s)I +1n'(s)| < Ce™ (C.99)

for every s > 0. Then there is a positive constant ¢, depending continuously on the
W2 norm of & and the constant C, such that

[E(s)| < ce™®

forevery s > 0.

Observe that the exponential decay rate of 7 is inherited by &, as opposed to (Robbin
and Salamon (2001), Le.3.1).

Proof We follow the proof of (Robbin and Salamon (2001), Le. 3.1). We shall employ
the following facts and assumptions. The norms of a quadratic real matrix B and its
transpose B’ are equal. By definition of the spectral gap o > 0 it holds that

|Av] = o|v]
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for every v € R". Given § > 0 and ¢ € (0, o), by assumption there is a large time
so = s0(; 0, ) > 0 such that

(||A’<s>|| + (2 + 16214 — A||2) < (C.100)

pointwise for s > so. The function defined for s > 0 by

als) = &)

has derivatives

and

o = (. n—(A+ANE)+ (5.0 — AE).
Substitute &’ according to (C.98), then add —A + A various times, to obtain

= A&+ [n]* —2(A&, n) — (n, A'E) + (£, 0/ — A'E) + (A%, A'E)

= (A — A+ AEP+ 11> — 2((A — A&, n) — 2 (A&, n) — (n, (A" — A)E)
— (0, AE) + (6.0 — A'&)+ (A — A+ A)E, (A" — A + A)§)

= |(A — A)E* + |AE|* + 2 ((A — A)E, AE)
+* = 2((A — A, 1) — 3(AE, n) — (n, (A — A)'E) + (5, 7) — (£, A'E)
+{(A— A&, (A — A)'E)+ (AL, (A — A)'E) + (A — AE, AE) + |AE|*

Observe that |A£|? appears twice and, in the following, we write this coefficient in the
2

form 2 = # + === ’g . By Cauchy-Schwarz and Peter-Paul'? we obtain

"

2_ .2
TS NAEP + nl* = 3IA — Al - €] - Il — 3|A&| - |n]
— &L 1| = 1A - 161 — A — A% - 61> — 4|AE| - |A — Al - |&]
_ 2_ .2 2.2 2.2
> 0+ NP+ T (AP + (5 — ot — oo ) IAEP — il I

Zozlél2

=0
2
= (11 + (145 + #5214 — AR) 1P + (-1 = F2p)inl?

< 2= by (C.100)
2 21612 2_g2 1 1 2 2 72
> (o7 4+ &9)|€| +%(1—§—§)|E| Jz 82|’7| P 52|’7|

— 2
> (28)%a —coe ¥, 287 =0 4%, o= BELCP

o2_g2

2.2
12 4p < % whenever a, b > 0.
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pointwise for s > s¢. Inequality two and three is by |A&| > o |&|, the final inequality
by the 1, n’ decay assumption (C.99). Observe the estimate

25 =222 =2,[e2 4 252 5 2

The function defined by

606—253

=0T G = ae

satisfies

26)2 288
B(s) = o' (s) + B

2 co2e)?e?s  _des (26)2—(28)%
Z (20 a+ 55 mmyr — 0T Gorm sy

= (28)°B(s)
for s > sp. This implies, exactly as in the proof of (Robbin and Salamon (2001),
Le.3.1), the following. Firstly %ez‘ssﬂ(s) <O0Ofors > s0,13 so secondly 62550,3(s0) >
€255 B(s), and therefore thirdly B(s) < e 26(s=50) B (50) decays even faster than e 288,
Thus

2

als) = B(s) — % < (e—(28—28)s€2650ﬂ(s0) + —(28)26—0(25)2) o288

and therefore

£ = v2a(s) < \[2e= @262 (50 + 20y o708

for s > s9. O
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