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ABSTRACT
Objective: Despite high stand-alone performance, studies demonstrate that artificial intelligence (AI)-supported endoscopic
diagnostics often fall short in clinical applications due to human-AI interaction factors. This video-based trial on Barrett’s
esophagus aimed to investigate how examiner behavior, their levels of confidence, and system usability influence the diagnostic
outcomes of AI-assisted endoscopy.
Methods: The present analysis employed data from a multicenter randomized controlled tandem video trial involving 22
endoscopists with varying degrees of expertise. Participants were tasked with evaluating a set of 96 endoscopic videos of Barrett’s
esophagus in two distinct rounds, with and without AI assistance. Diagnostic confidence levels were recorded, and decision
changes were categorized according to the AI prediction. Additional surveys assessed user experience and system usability ratings.
Results: AI assistance significantly increased examiner confidence levels (p < 0.001) and accuracy. Withdrawing AI assistance
decreased confidence (p < 0.001), but not accuracy. Experts consistently reported higher confidence than non-experts (p < 0.001),
regardless of performance. Despite improved confidence, correct AI guidancewas disregarded in 16% of all cases, and 9% of initially
correct diagnoses were changed to incorrect ones. Overreliance on AI, algorithm aversion, and uncertainty in AI predictions
were identified as key factors influencing outcomes. The System Usability Scale questionnaire scores indicated good to excellent
usability, with non-experts scoring 73.5 and experts 85.6.
Conclusions: Our findings highlight the pivotal function of examiner behavior in AI-assisted endoscopy. To fully realize the
benefits of AI, implementing explainable AI, improving user interfaces, and providing targeted training are essential. Addressing
these factors could enhance diagnostic accuracy and confidence in clinical practice.
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1 Introduction

In recent years, the integration of artificial intelligence (AI) into
medical practice has brought about transformative changes in
various medical fields [1–4], with endoscopy being no exception
[5]. Specifically, the potential application of AI in the evaluation
of Barrett’s esophagus (BE) holds immense promise in improving
diagnostic accuracy [6–9], by analyzing endoscopic images in
real-time [10] and aiding in early detection. BE-related neoplasia
(BERN) poses a particularly challenging condition for novice
and expert endoscopists alike. Traditional endoscopic evaluation,
while effective if carried out by expert endoscopists, is inherently
subjective andprone to interobserver variability. This underscores
the necessity for more objective and reliable diagnostic tools.

A critical aspect that has emerged in the discussion surrounding
the integration of AI in endoscopy is human-AI interaction
(HAII). Research has demonstrated that endoscopists, even with
the utilization of AI systems, do not attain the stand-alone
performance level of AI [11–16]. The reasons for this shortcoming
are still poorly understood, but they are essential for optimizing
the integration of AI into endoscopic practice and maximizing its
clinical utility in the future.

In this analysis, we sought to understand why human-AI col-
laborations fail to achieve the stand-alone performance of AI
algorithms when operated in isolation. The analysis evaluated
the effects of overreliance and complacency, algorithm aversion,
algorithm uncertainty, and system usability on the diagnostic
performance and confidence of endoscopists.

2 Methods

2.1 Study Design and Participants

This analysis utilized data from a previously conducted mul-
ticenter randomized controlled tandem video trial [8], which
examined the impact of the underlying AI system (Verit-AI) on
the performance of endoscopists in the assessment of BE. In the
current analysis, we focused on evaluating the confidence levels
of expert and non-expert examiners, depending on the correct-
ness of AI predictions. In the preceding study, 22 endoscopists

from 12 centers and four different countries with varying levels
of experience in BE evaluation were included. Participants were
divided into an expert (n = 4) and non-expert group (n = 18),
on the basis of years of experience in Barrett’s assessment and
expertise in the treatment of BERN. Endoscopic videos (n = 96)
were block randomized into two blocks utilizing non-dysplastic
BE (NDBE) and BERN using a custom R script. Examiners were
then tasked to assess each video block (n = 48) in two rounds
of a different order: first without AI and subsequently, with AI
support—defined as Arm A and vice versa—defined as Arm B.
The study design is shown in Figure 1. We analyzed the recorded
confidence levels on a scale from 0 to 9 after each assessment.
Examiners were permitted to re-watch the video and amend their
prediction during one round at will. After the second round,
participants were asked to fill out a Likert scale survey designed
to identify factors potentially influencing their confidence levels,
including experience, familiarity with AI, and perceived accuracy
of AI and the SystemUsability Scale questionnaire (SUS; Data S1).
Each item in the SUS is scored on a scale from 0 to 4, resulting
in a grading between excellent (score 85 or above), good (70–
84), acceptable (50–69), and poor usability (below 50). Finally,
we assessed the mode of output presentation (i.e., the stability
of the AI output during lesion presentation) and linked this to
the diagnostic confidence and performance of the participating
endoscopists.

2.2 Video Dataset

The video dataset comprised 96 endoscopic videos from 72
patients evaluated for BE and BERN at the University Hospital of
Augsburg. The dataset comprised overview and close-up videos
of varying lengths (15 s to 1 min and 30 s) to simulate real-life
conditions. The endoscopic videos were selected to represent all
stages of Barrett’s cascade, with a high proportion of NDBE (n
= 45) according to the higher general prevalence. To adequately
evaluate the assessment of dysplasia, the BERN lesions were
divided into LGD (n = 5), HGD (n = 7), T1a (n = 36), and T1b
(n = 3) tumors. Videos were also selected based on the feasibility
of external evaluation and incorporation of virtual chromoen-
doscopy (VCE) or near-focus mode. Videos with insufficient
visibility or less than 30 s were excluded from the study. All cases
had histological confirmation by specialized pathologists.

FIGURE 1 Study design. Examiners assessed the 96 standardized endoscopic videos of Barrett’s Esophagus in two separate arms, without artificial
intelligence (AI) assistance first, followed by a review with AI assistance (Arm A), and vice versa in Arm B.
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FIGURE 2 Confidence changes without and with artificial intelligence (AI) in Arm A (A) and B (B), (p < 0.001 ***, mean with 95% confidence
interval).

2.3 Data Analysis

We analyzed the changes in diagnostic confidence levels between
the two rounds (without and with AI). The present study
examined the associations between confidence levels and the
accuracy of AI predictions, stratifying by correct and incorrect
AI advice. AI predictions were categorized into the following
groups, depending on the defined ground truth of the lesion:
“True positive” (TP), “False positive” (FP), “True negative” (TN),
and “False negative” (FN). The positive predictions were further
categorized into stable (SP) and non-stable (NSP) predictions,
depending on the duration of the AI output visible on the user
interface (Data S2 and S3). SP was defined as a segmentation
heatmap displayed for more than 3 s (150 consecutive frames).
NSP implied cases where the segmentation map repeatedly
appeared at a consistent location for a cumulative duration
exceeding 3 s (150 frames) but not continuously [8].

2.4 Statistical Methods

Changes in confidence levels were analyzed using the Wilcoxon
signed-rank test for dependent samples and theMann-Whitney-U
test for comparisons between independent groups. The choice of
non-parametric tests was based on non-normal data distribution.
A two-sided significance level of <0.05 was employed for all
statistical analyses. If not stated otherwise, results are presented
as mean ± standard deviation (SD). For statistical analyses, SPSS
version 28.0 andMicrosoft Excel version 16.86 were utilized.

3 Results

3.1 Confidence Levels With andWithout AI

The integration of AI (Arm A) significantly boosted examiner
confidence levels across both expert and non-expert groups (p
< 0.001), as demonstrated in Figure 2. Experts consistently
demonstrated higher levels of confidence in comparison to non-
experts, regardless of AI presence (p < 0.001). Notably, when
AI support was withdrawn (Arm B), a significant reduction in
confidence was observed (p < 0.001).

TABLE 1 Confidence levels before and after decision changes,
stratified by participant group and direction of change.

Confidence

Decision
change Group without AI with AI p-value

False to
true
n = 91

All 3.44 4.23 0.028
Non-expert 3.37 4.07 0.073
Expert 3.77 4.94 0.152

True to
false
n = 31

All 2.80 3.77 0.10
Non-expert 2.65 3.10 0.483
Expert 3.10 5.10 0.095

3.2 Decision Changes

3.2.1 Frequency and Accuracy of Cecision Changes

AI support led to a notable increase in the frequency of decision
changes among participants. Of these changes, 75.2% resulted
in a transition from incorrect to correct outcome. Confidence
levels in cases where participants corrected their initial incorrect
predictions rose significantly (p = 0.028). The stability of AI
recommendations was an associated factor, with SP accounting
for 82.2% of successful corrections. Conversely, in instances
of erroneous corrections, only 37.5% SP were observed. Over-
all, the utilization of AI-driven recommendations resulted in
significantly more successful than wrongful corrections (p <

0.001).

3.2.2 Impact on Confidence

Changes from incorrect to correct diagnoses were associated
with an average confidence increase from 3.44 to 4.23 (p =
0.028). Conversely, changes from correct to incorrect diagnoses,
while less frequent, showed no statistically significant confidence
difference, as shown in Table 1.
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TABLE 2 Analysis of overall decisions relative to all predictions (%) divided by subgroup, most probable contributing factor, and potential action
point.

Potential action
point Bias/factor

Decision type
(with AI) Non-experts Experts Overall

Correct outcome
– Examiner

experience
True to true

(with correct AI)
43.62% (n = 451) 17.21% (n = 178) 60.83% (n = 629)

True to true
(with incorrect AI)

3.58% (n = 37) 1.26% (n = 13) 4.84% (n = 50)

– Benefit of AI False to true
(with correct AI)

6.77% (n = 70) 1.55% (n = 16) 8.32% (n = 86)

(Benefit of AI) False to true
(with incorrect AI)

0.39% (n = 4) 0.10% (n = 1) 0.48%
(n = 5)

Incorrect outcome
Targeted training Algorithm

aversion
True to false

(with correct AI)
0.58% (n = 6) 0.48% (n = 5) 1.06% (n = 11)

False to false
(with correct AI)

10.93% (n = 113) 3.97% (n = 41) 14.89% (n = 154)

Overreliance True to false
(with incorrect AI)

1.45% (n = 15) 0.48% (n = 5) 1.93% (n = 20)

Improving AI
performance

Lack of AI
accuracy

False to false
(with incorrect AI)

5.42% (n = 56) 2.22% (n = 23) 7.64% (n = 79)

TABLE 3 Analysis of decision changes relative to all changes made (%) divided by subgroup and most probable contributing factor.

Bias/factor Decision change (with AI) Non-experts Experts Overall

Benefit of AI False to true
(with correct AI)

57.38% (n = 70) 13.11% (n = 16) 70.49% (n = 86)

(Benefit of AI) False to true
(with incorrect AI)

3.28% (n = 4) 0.82% (n = 1) 4.10% (n = 5)

Algorithm aversion True to false
(with correct AI)

4.92% (n = 6) 4.10% (n = 5) 9.02% (n = 11)

Overreliance True to false
(with incorrect AI)

12.30% (n = 15) 4.10% (n = 5) 16.39% (n = 20)

3.3 Disregarding AI Recommendations

In 16% of cases, the examiners disregarded correct AI suggestions,
resulting in incorrect diagnoses. Subgroup analysis revealed that
experts were significantly more likely than non-experts to change
a correct initial decision to an incorrect one with the correct AI
suggestion (p= 0.042). In contrast, non-experts exhibited a signif-
icantly higher probability of transitioning from an incorrect to a
correct decision when provided with a correct AI suggestion (p =
0.042). The absolute and relative proportions of decision types and
decision changes for each scenario are shown in Tables 2 and 3.

3.4 Case-Level Error Analysis and Difficult
Videos

To identify the most common sources of error, we conducted a
case-level analysis of all videos. “Difficult” cases were defined

as those in which more than 50% of examiners made incorrect
classifications. Out of the 96 videos evaluated, 10 met this
criterion (six NDBE and four BERN). Most FP occurred in NDBE
cases with surface irregularities and within Barrett’s “tongues”
or islands, which may have mimicked dysplasia. In BERN cases,
frequent errors were linked to heatmap instability or NSP, long-
segment BE, or inconspicuous features leading to localization
mismatches.

3.5 System Usability Score

The SUS revealed notable differences in perceived usability
between non-experts and experts. Non-experts recorded a mean
score of 73.54 ± 12.77, classified as “good” usability, whereas
experts assigned a markedly higher mean score of 85.63 ± 13.75,
categorized as “excellent.”
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FIGURE 3 Survey results illustrating user experience ratings stratified by participant expertise.

3.6 Survey and User Experience

3.6.1 User Characteristics

Non-experts reported an average of 10 years of clinical practice,
during which they assessed approximately 60 BE cases annually,
leading to a cumulative total of 19 treated BE cases over their
careers. Conversely, experts had an average of 15 years of expe-
rience, with an annual caseload of 71 BE cases and a total of 33
treated cases.

3.6.2 Survey Results

Of the 22 participants, 16 completed the survey, including all
experts and 12 non-experts. The survey evaluatedmultiple dimen-
sions of user experience through a 5-point Likert scale, where 1
represented “never” or “very difficult,” and 5 indicated “always”
or “very easy.” Participants generally reported limited prior expo-
sure to AI-assisted endoscopy, with an average score of 2.06 ± 1.0.
The video trial and the clinical caseswere perceived asmoderately
challenging, with mean scores of 3.06 ± 0.68 and 2.69 ± 0.6,
respectively. Despite the perceived complexity, the AI interface
was deemedminimally intrusive, receiving a low disruption score
of 1.87 ± 0.89. Additionally, AI predictions were rated positively
for their trustworthiness in both NDBE and BERN cases, with
mean scores of 3.81 ± 0.54 and 3.44 ± 0.81, respectively.

No statistically significant differences were observed between the
two groups regarding their overall user experience, as shown in
Figure 3.

3.7 Recommendability

Participants were also queried about the recommendability of AI
systems in different clinical environments. The results showed
that 87.5% endorsedAI use for inexperienced examiners and 81.3%
for experienced examiners in hospitals. 75% supported AI use for
experienced examiners in private practices, and only 56.3% for
Barrett’s experts.

4 Discussion

As AI systems continue to improve—potentially achieving sensi-
tivities and specificities unattainable even by highly specialized

experts—the necessity of scrutinizing AI decisions might need
reconsideration. Our study seeks to understand why—as evi-
denced by numerous other studies [11, 13–17] - AI systems do
not live up to their experimental performance in clinical real-
life settings, or proxies like our video trial. While the use of
AI did increase accuracy [8] and confidence in this setting
and led to a significant increase in correct decision changes,
examiners or endoscopists frequently made incorrect decisions
despite adequate AI guidance (15.95% of decisions disregarded
correct AI guidance). Withdrawing the AI overlay, however, did
not decrease accuracy but confidence. As recently summarized
[18–20], we need to account for numerous possible pitfalls and
cognitive biases in the interaction between endoscopists/human
examiners and the mechanical AI system, as shown in Figure 4.

4.1 Discrepancy Between Human Performance
With AI and the Stand-alone Performance of AI

One of the most notable findings of this study is that, despite the
increase in the number of correct choices made with AI guidance
(an 8.3% increase in correct decision changes, which was signif-
icantly higher in non-experts), correct AI indications were still
disregarded in nearly 16% of all cases displayed. Moreover, 9% of
the decision changes were from an initially correct choice to an
incorrect one, despite correct AI indications. These results are
consistent with previous studies describing this discrepancy [8,
11–16] and highlight critical issues in the integration of AI into
clinical practice.

4.2 Algorithm Aversion

Especially experienced examiners showed reluctance to trust
AI recommendations, as evidenced by the significantly higher
change rate to incorrect decisions. This behavior, possibly
explained by algorithm aversion, may stem from a preference
for personal expertise over AI input [21]. Our data further
showed that experts maintained higher confidence than non-
experts, regardless of AI accuracy. This higher confidence may
have influenced their decision-making and overreliance on per-
sonal judgment rather than AI recommendations. To reduce
algorithm aversion and the “black box” issue of deep learning
algorithms, developing explainable AI (XAI) systems that clarify
their decision-making processes or offer real-time confidence
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FIGURE 4 Psychological factors influencing human-artificial intelligence interaction.

scores could improve trust and adherence to AI suggestions
[22–24].

4.3 Algorithm Uncertainty

Caseswhere examiners incorrectly changed their decisions due to
wrong AI guidance were associated with lower confidence levels.
When correlated with the stability of the assessment, it was evi-
dent that the AI also faced difficulties, displaying a high propor-
tion (45.8%) of NSP, suggesting “alignment of uncertainty” [25].

Improving interaction might involve the AI providing a prob-
abilistic prediction, thereby expressing its own uncertainty.
Although our study did not specifically test probabilistic outputs,
future research could explore whether presenting AI confidence
levels influences examiner adherence and decision-making. AI
systems should aim to include a quality indicator, possibly includ-
ing movement speed and inspection time, in order to provide
sufficient suggestions. Trust in AI could also be enhanced by
clarifying the database it was trained on (‘model cards’) [26], or by
providing pre-use instructional modules or case-based tutorials.

4.4 Overreliance, Complacency, and Automation
Bias

Another aspect hindering optimal AI use is an overreliance
on AI-generated predictions, thereby diminishing their critical
evaluation of diagnostic probability [27–29]. This was noticeable
in the 16.4% of incorrect decision changes according to respective
incorrect AI indications. This phenomenon applies equally to
both FP- and FN outcomes. Furthermore, the data obtained
revealed no statistically significant differences between experts
and non-experts in this regard. The use of AI within this context
could potentially prevent novices from refining their assessment
techniques, thus limiting their performance in unassisted exam-
inations (known as “deskilling”) [27, 30]. Notably, there is a lack
of longitudinal data examining the long-term impact of AI on
endoscopic training and performance.

Moreover, there is a tendency for examiners to override their
own clinical judgment due to overconfidence in the system’s
capabilities (complacency), as described in the setting of AI-
assisted mammography or histopathological assessment [31, 32].
Despite this, AI assistance increased examiner confidence levels,
but this did not always consistently translate into improved
diagnostic accuracy, suggesting that automation bias [27, 28]
may have enhanced confidence without necessarily enhancing
outcomes.

Prospective clinical trials, however, indicate that “blind trust” in
AI systems could potentially enhance overall examiner perfor-

mance, for example in differentiating hyperplastic polyps from
adenomas in the distal colon [33]. When translated to our data,
around 16%more cases would be assessed correctly. This is in line
with the high stand-alone diagnostic accuracy demonstrated by
current AI technologies. To maximize the benefits of AI-assisted
endoscopy, targeted training is essential. We propose a modu-
lar approach combining basic AI literacy (e.g., understanding
algorithmic limitations and output), exposure to common failure
scenarios through annotated case reviews, and simulation-based
training with real-time feedback [34], as summarized in Figure 5.

4.5 System Usability and User Interface

The SUS scores indicated good to excellent usability, with no
objectively significant reasons for these shortcomings. Moreover,
the survey revealed that the acceptance and credibility of AI
among examiners were satisfactorily high. The only notable
criticismwas the partially incomprehensible interface (e.g., traffic
lights and bars). In subsequent individual interviews, examiners
often could not pinpoint specific reasons for disregarding the AI,
citing that it “did not feel right.” Occasionally, the presentation
of lesions did not match the personal examination style of the
endoscopist (e.g., dwell time on the lesion or magnification
level). We still recommend designing the interface to be more
user-friendly and intuitive. Overall, the AI system was primarily
recommended for less experienced examiners.

4.6 Limitations of the Study

Due to current healthcare regulations in Germany, conducting
a real-world clinical trial of the AI system used in this study
was not possible. Consequently, we employed a video-based,
randomized trial design, which has inherent limitations. These
include the passive nature of video review, the inability to account
for individual examination techniques or duration, and the lack
of real-time use of advanced imaging technologies (VCE) or
acetowhitening. To partially mitigate these limitations, narrow-
band imaging and texture and color enhancement imaging
sequences were included where applicable, and an adequate
dwell time was provided during the video review process. The
same set of videos was utilized in both study arms without a
washout phase, whichmay have contributed to higher confidence
levels in Arm B, indicating a potential training effect. However,
this approach ensured consistency and uniform difficulty across
both arms. To further elucidate the relationship between unstable
AI predictions and examiner uncertainty, a larger sample size
would be required. Moreover, in real-life settings, technical issues
such as slow processor speeds, lagging, frozen screens, or “alarm
fatigue” can create an aversion to using the software and increase
the cognitive burden on endoscopists [35]. These effects, however,
were not tested for in this controlled video-trial setting.
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FIGURE 5 The authors’ recommendations for improvement of human-artificial intelligence interaction in artificial intelligence in medicine.

Ultimately, we are convinced that AI will permanently integrate
intomedicine, particularly in endoscopy. However, we should not
only focus on ever-improving sensitivities and larger datasets but
also consider the impact of AI on the human factor and vice versa.
We need to explore options to enhance our collaboration with our
new colleague, AI.
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DATAS1Post-intervention survey.
DATAS2Video examples of Stable Prediction inBERNandNDBE.
VIDEOS1Examples of video cases presented to the examinerswith a
stable predictionof theAI overlay. Stable predictionswere defined as
a segmentationheatmapdisplayed formore than 3 s (150 consecutive
frames).
DATAS3Video examples ofNonstable Prediction inBERNandNDBE.
VIDEOS2Examples of video cases presented to the examinerswith a
non-stable predictionof theAI overlay.Non-stable prediction implied
caseswhere the segmentationmap repeatedly appeared at the same
spot for anoverall cumulative timeofmore than 3 s (150 frames) but not
continuously.
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