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Filtering Specialized Change in a Few-Shot Setting

Martin Hermann ¥, Sudipan Saha

Abstract—The aim of change detection in remote sensing usu-
ally is not to find all differences between the observations, but
rather only specific types of change, such as urban development,
deforestation, or even more specialized categories like roadwork.
However, often there are no large public datasets available for
very fine-grained tasks, and to collect the amount of training data
needed for most supervised learning methods is very costly and
often prohibitive. For this reason, we formulate the problem of
Jfew-shot filtering, where we are provided with a relatively large
change detection dataset and, at test time, a few instances of one
particular change type that we try to “filter out” of the learned
changes. For example, we might train on data of general urban
change, and, given some samples of building construction, aim to
only predict instances of these on the test set, all without any explicit
labels for buildings in the training data. We further investigate a
fine-tuning approach to this problem and assess its performance
on a public dataset that we adapt to be used in this novel setting.

Index Terms—Change detection, deep learning, few-shot
filtering, few-shot learning.

1. INTRODUCTION

HANGE detection, that is, segmenting a pair of images of
C the same region but taken at two different points in time
into changed and unchanged pixels, is a well-known task in
remote sensing, with many applications in disaster assessment,
urban planning, forest monitoring, and other remote sensing
domains [1]. Usually, for these applications we are not interested
in every change that occurred between the images, but limit our
attention to certain categories, such as building construction or
destruction [2], deforestation [3] or flooding [4], and occasion-
ally even finer subcategories like road construction [5], mining
activities [6], or ship movement [7].

For this reason, supervised learning, where we can exactly
specify our interests via annotated samples, is a natural choice
for these specialized change detection tasks. However, the down-
side of this approach is that these methods usually require large
amounts of training data, which is expensive or even prohibitive
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to produce. Even though there are a number of large datasets
publicly available, these often are annotated with rather general
categories, such as urban change [8].

If we want to use these existing resources for more specialized
tasks, such as the ones mentioned above, the resulting models
detect a lot of unwanted changes in addition to those that are
relevant, so filtering out the important information becomes a
key step. In principle, it is possible to do so with a lot of additional
data, or by manually adapting the training labels (one recent ex-
ample for this can be found in the work of Li et al. [9]). However,
this again requires a large amount of resources, the lack of which
often is the reason for using a preexisting dataset in the first place.
Hence, a solution that adapts to a specialized usecase with only
a handful of annotated samples of this particular type of changes
would be very desirable.

Pushing this idea even further, research often is an iterative
process, and in many situations we might not have a clear
definition of the change we are interested in from the beginning.
For example, when investigating deforestation, we could realize
after some time that in fact the most relevant type for our
scenario is caused by wildfires, and we want to ignore, e.g.,
logging. On the other hand, we might decide to focus on human
influences, and now look for newly built infrastructure close to
the rain forest. To enable a flexible workflow and avoid long
interruptions caused by retraining the network from scratch, it
is useful to allow the specification of the change of interest only
after training on the full dataset.

Therefore, we propose an approach to detect specialized
changes that works top—down: First, we learn to classify a
broader type of change in a binary classification task, for which
ample training data are available, and then, try to filter out one
particular subcategory via only a few examples, thereby entering
the realm of few-shot learning [10], [11]. As few-shot learning
deals with novel classes that the machine learning model has
never seen before, whereas we in contrast try to specialize and
split known classes, we propose the term few-shot filtering for
this task, that we will describe in detail in Section III. To provide
some background, we will shortly present few-shot learning,
data efficient approaches to change detection and other related
work in Section II, before we describe the methods we investi-
gate in Section IV, detail our experimental setup and dataset in
Section V and finally present the results in Section VI and discuss
them in Section VII. Finally, Section VIII concludes this article.

In particular, our contributions are the following.

1) We formulate the problem of few-shot filtering for change
detection, which differs from standard few-shot learning
in that the query classes are not disjoint from the base
classes during training. Instead, we focus on refinements
of previously seen change.

For more information, see https://creativecommons.org/licenses/by/4.0/
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2) We investigate a fine-tuning approach to this problem,
together with two simple baselines, and compare their
performance on several different few-shot tasks.

3) To evaluate these methods, we suggest a way to suitably
adapt a semantic change detection dataset to this new
setting of few-shot filtering and discuss its advantages and
limitations.

4) We conduct a hyperparameter study to gain some insight
into the effects on different types of specialized change,
which is important as the conventional approach of opti-
mizing on a validation set is not possible in the data scarce
setting.

II. RELATED WORK

In the following, we will give a brief overview over the dif-
ferent areas of research we touch upon and highlight important
related work. The four main areas are few-shot learning, spe-
cialization and subcategorization, semantic change detection,
and methods to deal with data scarcity.

A. Few-Shot Learning and Few-Shot Segmentation

Few-shot learning is a very active area in machine learning
in general and computer vision in particular. Similar to how a
human can learn novel objects from only a few instances, it is
interested in adapting a network to previously unseen classes
from a small number of training examples (which are known as
“shots™) [10].

There are several different popular approaches to this
task [11], including meta-learning techniques, such as
MAML [12] and metric-based ones, most notably matching- [13]
and prototypical networks [14]. These methods generally use
episodic learning. They simulate the few-shot setting already
during training, optimizing the performance on a guery set given
a small amount of labeled data (the support set).

However, there is evidence that episodic learning might not be
necessary for good performance [10], [15] and several methods
only use support and query sets after training on the full dataset.
Examples for this are the works of Gidaris and Komodakis [16]
and Qi et al. [17]. There, the last layer classifies the embeddings
produced by the rest of the network via cosine similarity and,
during inference, the embeddings of the support set serve as
a prototype for the new class in the query set. Closely related
approaches are also investigated by Chen et al. [10] and Dhillon
et al. [18] as competitive baselines, and like them, we also use
fine-tuning on the support set as our main approach.

In general, most research focuses on few-shot classification;
however, there also exists a considerable amount of literature
on few-shot segmentation, both of images [19], [20], [21], [22]
and of videos [23], [24]. This task is more challenging, but
also closer to our problem of change detection, where labels
have to be assigned to individual pixels instead of the whole
image.

In summary, our setting is closely related to existing work on
few-shot learning and segmentation, but we do not propose to
solve it via the very common episodic training and aim for a
simpler fine-tuning-based approach instead.
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Fig. 1. Few-shot filtering task: Starting from a base model, trained on a broad
set of changes, such as urban development, we want to quickly adapt to new,
specialized categories, such as roadwork or deforestation. Examples are from
the OSCD dataset [8], the filtered annotations are own work.

B. Specialization and Subcategorization in Computer Vision

Hierarchical information, such as subcategories and general
“coarse-to-fine” relations can be a valuable resource in computer
vision for a range of different tasks. Learning on fine labels
induces features relevant for coarse classification, as well as vice
versa [25]. One subclass specific task in semantic segmentation
is, e.g., hierarchical segmentation [26] [27], where multiple
levels of the hierarchy are predicted simultaneously.

Going from a broad class to a specialized subcategory in
transfer learning has been explored, e.g., for object category
detection [28], and recent works formalized this in a few-shot
manner [29], [30]. Bukchin et al. [29] call this setting coarse-
to-fine few-shot, and this is essentially the classification variant
of few-shot filtering. However, they do assume a set of mutually
exclusive fine-grained classes, whereas we allow pixels to be
relevant for different possible change types (cf. Fig. 1, where
some pixels are relevant both for deforestation and roadwork).
Ni et al. [31] explore the coarse-to-fine few-shot setting under
the name cross-granularity few-shot with a medical application
in mind, Xiang et al. [32] develop an incremental variant and,
concurrently to the present work, Gong et al. [33] investigate
taxonomy adaptive cross-domain semantic segmentation (e.g.,
also incorporating subclasses of known classes) also with only
a few labeled shots. To the best of our knowledge, however, this
is the first work exploring similar ideas specifically adapted to
the context of change detection.

C. Semantic and Multiclass Change Detection

Whereas binary change detection is just interested in whether
some change occurs in the given time frame or not, the goal
of semantic change detection (also known as multiclass change
detection) [34], [35] is to further break this change down into
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several classes. Often, these are identified by the land cover
categories of both images, and the task is then to detect change
as well as label it, e.g., as “from low vegetation to building.”
As Yang et al. [36] point out, there are also changes that do
not affect the land cover categories (such as the replacement of
one building by another), which are ignored without additional
change/nonchange information. Other works also consider much
more fine-grained change types, such as the construction of
residential or industrial buildings or mega projects [37]. Unsu-
pervised approaches to this task can also work without defining
change classes in advance and discover different types of change,
for example via deep change vector analysis [38].

While we are also concerned with different change categories,
unlike supervised semantic change detection methods we do not
consider them fixed a priori, and instead want to allow a flexible
specification after training. Similar to the unsupervised methods,
we also do not have any labels on the change categories, but we
do have access to binary change information. Nevertheless, un-
supervised semantic change detection is the task closest related
to our problem of few-shot filtering.

D. Data Scarcity in Change Detection

The problem of limited training data in change detection is
not new. Commonly, this is approached by semi- [39], self- [40],
or unsupervised methods [38], where no or only a small amount
of annotated training data is needed. In contrast to few-shot
learning, the focus lies on the information contained in many
unlabeled images and not so much on quick adaptability to a
few labeled ones.

Additionally, other techniques, such as transfer [41] or active
learning [42] are employed to deal with data scarcity. Also, how
a small amount of data can affect the performance of change
detection algorithms has been investigated by Saha et al. [43].
Recently, there is also work exploring few-shot learning ap-
proaches to change detection [44], [45], showing that this is
indeed a promising approach, which we hope to further expand
by introducing the few-shot filtering setting. Tang et al. [46] use
methods from few-shot segmentation—prototypes and masked
average pooling—but apply them to a standard binary setting
where a larger amount of data is available.

Finally, we also want to highlight recent work by Lenczner
et al. [47], who add new classes to the segmentation of remote
sensing images in a continual learning setting, resulting in what
can loosely be described as the inverse of our task: although in the
context of semantic segmentation instead of change detection.

All in all, while there have been various attempts to deal with
data scarcity, our proposed setting is novel in its flexibility and
differs from existing tasks that are designed with alternative
applications in mind. We will now describe it in detail in the
following section.

III. FEW-SHOT FILTERING AS A SETTING IN CHANGE
DETECTION

A. Binary Change Detection and Few-Shot Filtering

The aim of few-shot filtering for change detection is to train
a model on a dataset that is annotated with a general category of
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change, and then adapt it to a more fine-grained task with only a
few new examples (the support set). This problem is illustrated
in Fig. 1, and we will now formalize this setting.

The (binary) change detection task is concerned with a pair
of images

117 12 c RHXWXC

where H x W are the spatial dimensions and C' denotes the
number of channels (which might be higher than the usual 3 in
standard computer vision and can also include, e.g., near infrared
bands). It is assumed that I; and I, depict the same region, but
are taken at different points in time, often multiple months, or
(suchas, e.g., for applications in urban development) years apart.
Our aim then is to derive a change map

011712 S {0, 1}HXW

i.e., a segmentation of the input images into pixels that have
changed in some meaningful way between I; and I, (denoted
by a value of 1) and those that remain unchanged.

Note that this notation conceals the nature of the change: while
for certain applications, a pixel belonging to a newly constructed
building might be considered relevant, in other cases (such as for
deforestation or agricultural domains) we might not be interested
in this particular instance. Therefore, we additionally index the
change map by a change type 7 and try to produce Ct, 1,,7.
This is different from semantic change detection, where we are
given K > 1 different categories of change and the aim is to find

Cri, €{0,1,..., K}V,

In our setting, we still are interested only in binary classification,
albeit restricted to one particular category of changes 7.
In supervised learning, we assume a train set

D%T’ain — {(Ili) :[21'7 CIuIzz‘T)}fi\Ll

of image pairs and their corresponding change map. This train
set is usually limited to one change type 7, such as urban de-
velopment or the impact of natural disasters. A standard change
detection task would now be to evaluate a model trained on
D‘}ai“ on some test set D' that is sufficiently similar to the train
set. For the few-shot filtering problem however, we assume an
additional support set D>7” that is small (five 256 x 256 patches
in our experiments, but in other scenarios, a moderate amount
of data—that can still be labeled with low cost—might also
be adequate) and contains examples of a change type 7' C T,
meaning

=1 = Chnr=1

This is, e.g., the case for 7 denoting general urban change,
and 7~ then signifying building demolition. The evaluation then
happens on a query set D,"”, where we are now only interested

in finding change of the new, restricted type 7.

B. Relation to Other Settings

One way to compare this definition to the standard few-shot
learning setting is to look at 7 as the base class, and 7" as the
novel class. However, instead of the empty intersection between
base and novel classes that is normally assumed, we in contrast
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are interested in a subset relation. We could also consider our
formulation as a form of weakly supervised learning [48] with
the broad annotations of the train set acting as weak labels for the
more specialized labels of the support and query sets. However,
this view does not adequately highlight the few-shot nature of
the task, where the support set in practice is only available
after the training and consists just of a small amount of change
instances. Another interpretation is to see it as a form of transfer
learning [49], where we have a very strong relation between
source and target task and we already know quite well about
this connection.

One might also think that semantic change detection should
solve the same problem: by breaking the binary change class
into multiple subcategories, we can then simply select the one
we are interested in. However, while the amount of such datasets
is growing, a big part of existing resources is annotated with
binary labels. More importantly, this only shifts the problem: the
amount of different change types in semantic change detection
problems is limited and set in advance, therefore in realistic
applications, they might still not fit our needs exactly. In fact,
we can even think of both approaches going hand in hand: using
a semantic change detection dataset, we first choose the category
that fits best our needs (such as buildings) and then use a few
examples to further filter out exactly what we want (e.g., high
rise construction). Also, categories in semantic change detection
are usually assumed to be mutually exclusive, while this does
not have to be the case for filtered specializations. Looking at
Fig. 1, we can see that there are regions where deforestation
happened in order to enable roadwork, so the changed pixels are
relevant for both adapted models. Achieving this with semantic
categories would need much more fine-grained categories than
are currently common in semantic change detection or hierar-
chical or nonexclusive labels.

To avoid confusion, we should note that we use a semantic
change detection dataset in this work to simulate a few-shot
scenario, as described in Section V-A. The aim here is to use
the high quality annotations of the dataset as a precise ground
truth for the experiments in this work. In that section, we also
shortly discuss the limitations of using the semantic categories as
few-shot tasks, and the points raised there (independent pixels,
no spatial structure, and limited granularity) also strengthen the
argument above that semantic change detection alone cannot
solve the problem that few-shot filtering addresses. The cre-
ation of a benchmark dataset designed specifically for few-shot
filtering is a logical next step for further research.

C. Discussion of the Setting

Few-shot filtering is a relevant setting in cases where we have
access to an annotated binary dataset, but the annotations do not
exactly fit our needs, as we are only interested in a particular
subset of the change that is marked. One such scenario is the use
of public benchmark datasets, where we often find, e.g., urban
change. If we are investigating roadwork, it will be difficult to
focus on the relevant instances, as most of the detected change
probably consists of constructed buildings, which distracts
from the events we want to study. Here, the few-shot filtering
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framework applies as we want to get to the relevant information
with only a limited amount of additional labeling effort.

A big advantage of the setting is the flexibility that is enabled
by the separation of base training and adaption to the few-shot
samples. Typically the former will take much longer than the
latter, so we can perform the adaption quickly and repeatedly,
allowing for an interactive and adaptive workflow. One such
scenario was described in the introduction.

The clear limitation of the approach is that by design, the
specialized change type is expected to be fully part of the orig-
inal annotations used for base training, restricting the possible
specialization depending on what data are available. We could
extend the original formulation to allow for other relations be-
tween T and 77, such as just requiring a nonempty intersection,
moving closer to the standard few-shot setting. However, we
consider these tasks to be complementary: few-shot learning
helps us find new change, few-shot filtering splits known change
further. We will mainly focus on the latter in this work,! but in
practice a combination of both tasks should be very beneficial.

IV. METHODS

After defining the few-shot filtering setting, we will now
investigate several methods to tackle it, that also give some
insight on how the combination of different resources can be
beneficial. In addition, we will discuss the practical issue of
hyperparamters in this setting.

A. Learning From a Single Data Source

Base Training Only: The most straightforward approach is to
just use a standard change detection model that has been trained
on the base training set and apply it on the query set without any
kind of adaptations and without using the support set at all. Of
course, we do not expect this to be a competitive approach, as
the very idea of the few-shot filtering task is to specialize, and
to limit the full output to only the interesting classes.

However, including these results in our experiments, we can
gain an understanding of how much the additional information
adds. In addition, it allows us to gauge the difficulty of the
individual few-shot tasks and how much they vary. In general,
we expect this approach to have a rather high rate of false
positives, as we do not filter out the change that was relevant
during training, but is not for the few-shot tasks.

Support Set Only: As the exact opposite of the previous
method, we can also ignore the base training data (that has
all changes annotated, not just the specialized type), and just
train a change detection model on the (very small) support set.
In general, this will likely overfit very heavily, and for better
comparability, we are also using the same architecture as for the
other tasks, which will only exacerbate this problem. A smaller
model that is more tailored to this situation might achieve better
results if we intend to use this method in practice, but for our
experiments, this setup is well suited.

'We can see in the experiments that there are cases where we detect more of
the desired change after fine-tuning. However, this is just a correction of mistakes
of the base model: it should already find these, as they were part of the ground
truth annotations, in contrast to completely new change types.
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We will call these approaches Baseline A for the base training
and Baseline B for using only the support set in our experiments.
Together, both baselines can give an idea of how much informa-
tion is already contained in the large, but general base training
set (Baseline A), as well as in the small, but specific support set
(Baseline B), and how much we can gain by combining both,
i.e., by fully making use of the few-shot setting.

B. Fine-Tuning

Fine-tuning amounts to combining both of the above baselines
to learn a specialized model. For this, we first train the model
on the base training set to learn a general notion of change, and
then run additional epochs on the support set, to filter out the
specialized type that we are interested in. Note that as the support
set is small, this fine-tuning is comparably short, and we can use
the same model that has been trained once on the full dataset to
adapt to different few-shot tasks separately and quickly.

When learning on the support set, we retrain all layers;
however, another common approach would be to freeze all but
the last layer (which makes the final decision about whether an
individual pixel has changed). This is known as linear probing,
and some research suggests that it can for example be beneficial
for out-of-distribution cases [50]. Based on initial experiments,
we decided against it, but further research into the best training
strategy during this phase might prove to be valuable.

We decide to investigate a fine-tuning approach instead of
more sophisticated episodic techniques for several reasons: for
one, it makes sense to first establish a basic performance level
for this new setting, and to use a conceptually simple method to
do so. Whether and what other methods might improve on this,
and in particular whether episodic learning can be of advantage
here is only the next step: in particular as the question how much
can be gained from episodic learning is under discussion in the
general few-shot literature [15]. Also, from a practical point of
view, we assume that we use some existing binary data source,
so episodic training would require additional filtered data, which
defeats the purpose to have a data efficient method available. We
could avoid this with a semantic change detection dataset, the
same way that we also do this for testing in this article, but this
limits the usability to domains where such data exist. Therefore,
we propose to tackle our problem with a fine-tuning approach.

C. Effect of Hyperparameters and Lack of Validation Data

Part of the training strategy during fine-tuning is the decision
on a set of hyperparameters. The importance of these for the
performance of a deep learning model is well known, and that
optimizing them also for fine-tuning can be vital has been shown
by Li et al. [51]. However, in our setting we only have a few
annotated images for a new task, so we cannot simply use a
validation set to determine the best values for these parameters.
In addition, we also cannot expect that there is one set of
parameters that will work well across all possible few-shot tasks,
as they may differ in key aspects, such as how frequent the type
of change is. The problem of no available validation set is also
discussed, e.g., by Gulrajani and Lopez-Paz [52], however, in
the context of domain generalization. Suggested solutions in
literature include data augmentation on the support set [53].
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It is desirable to gain some understanding on how different
choices affect different scenarios, so that in practice we can,
e.g., choose a suitable setting based on some heuristics, (similar
to BiT-HyperRule [54]), such as how frequent we expect the
specialized change to be or how difficult the task is. We will
investigate the effects of parameters by varying the parameters
on the actual few-shot tasks. In the terms introduced by [52],
this would amount to using a test-domain validation set, which
they do not view as suited for benchmarking. However, our goal
is not to decide on a particular set of parameters, but rather to
investigate their effect across different tasks, and the size of their
effect in general. Still, there is some information leaking, as of
course we also choose the ranges of the different parameters
that we investigate based on initial experiments on both the
test and validation sets, and there is no guarantee that this will
transfer identically to different tasks or datasets. However, for the
present study, this approach still gives valuable insights, and we
consider more robust selection of parameters the goal of further
research. We will discuss which hyperparameters are varied in
Section V-B and give the exact parameters used in Section V-C.

V. EXPERIMENTS
A. Dataset and Few-Shot Tasks

The semantic change detection dataset (SECOND) [36] con-
sists of 29682 image pairs of size 512 x 512, obtained from
several Chinese cities. As it has been designed for semantic
change detection, it also includes pixel-level annotations for
land-cover classes of the changed areas in both images, with the
categories nonvegetated ground surface, tree, low vegetation,
water, buildings, and playgrounds.® As these annotations are
provided for both time steps and include an additional non-
change label, this enables also the description of change where
the land-cover class stays the same, e.g., changes from one
building to another.

As mentioned, we are not interested in semantic change
detection as such. However, the structure of the dataset is very
well suited to our task as well: during training, all change
categories are grouped together, and we perform full binary
change detection. Then, for the few-shot tasks, we can select
individual change categories (e.g., from any class to buildings)
and treat all others as unchanged. Fig. 2 shows an illustration
of this process. A similar approach is also described by Liu
et al. [55], who use the labels of the semantic change detection
dataset HRSCD [34] to only select cropland changes as their
binary labels.

This definition of few-shot tasks, while providing an easy
way to adapt an existing dataset and make use of its high
quality labels also for the few-shot setting, nevertheless has some
shortcomings: first of all, we treat every pixel independently, and
therefore have no way to determine if aremoved “tree” pixel was
part of a large forest, or an isolated roadside tree. Similarly, as
there is no notion of spatial structure, we cannot, for example,

2The full dataset consists of 4662 pairs, however, we only had access to the
train set. We then divided the data available to us into a new train-validation-test
split with roughly an 8:1:1 ratio, making an effort to avoid overlap between the
different sets.

3The last category mostly refers to sports fields.
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Tree

Building

N.v.g. Surface

Low Vegetation
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Any Change

Full Change Deforestation
Map

Building
Construction
Fig. 2. Illustration of the process for dataset preparation: Starting from the
semantic annotations from SECOND, we can create both the full binary change

map, as well as different few-shot tasks by combining different sorts of transi-
tions.

easily define road construction as a task in this way. Also, we
are limited in granularity by the decisions of the original dataset,
which means that we cannot determine which type of “building”
we see, as it can be a skyscraper, a factory hall, a residential
building, or anything else.

We choose four different of these tasks for our experiments:
surface change, which is defined by either “from n.v.g. surface to
low vegetation or from low vegetation to n.v.g. surface,” defor-
estation (“from tree to any class”), building demolition (“from
building to any class”), and building construction (“from any
class to building”). In each case, the support set was manually
selected from the validation data to be representative of this
change type and has a size of five 256 x 256 patches. We show
the first two support images for every task in Fig. 3. The choice
and quality of the support images likely has a considerable im-
pact on the performance of the few-shot methods, and exploring
this might be a valuable target for further research.

The four tasks differ quite a lot, both in their difficulty and
frequency of change: while it might be relatively easy to deter-
mine if a new building was constructed, the changes between
nonvegetated and vegetated surface can be hard to assess even
for a human. In addition, deforestation is very rare in the test
set, with only 0.49% (0.86% on the validation set and 1.60% in
the train set) of pixels from the images undergoing this change,
compared to 1.71% (3.34% / 3.31%) for building demolition,
10.78% (6.79% [ 8.52%) for building construction, and 6.26%
(5.18% 1 5.67%) for surface change. For reference, the amount
of all changed pixels together is 20.70%, very similar to the
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value of 20.19% on the train set, and slightly higher than the
16.91% on the validation set.

Therefore, we hope to have a somewhat broad representation
of different scenarios one might want to use few-shot filtering
in, and to be able to compare what works well in what circum-
stances.

B. Hyperparameters Under Investigation

We will now shortly introduce the parameters for the fine-
tuning phase that we investigate more closely (cf. Section IV-C).
The concrete values used are given in Section V-C.

Change Weight: Change detection is an inherently imbal-
anced task, as there are always less changed pixels compared
to unchanged ones, even for the more general base training set.
Usually, we can solve this problem relatively easily by weighted
cross entropy, where we use a weight term (that we call change
weight) to give more importance to the rarer change instances
and to avoid learning a network that simply predicts “no change”
for every pixel.

In the typical change detection setting, and therefore also for
the base training, we can take the frequency of change in the
train set as a reference point to set this weight. However, in the
fine-tuning phase, the support set will usually have a much higher
amount of changed pixels. If we are interested in deforestation,
for example, we will usually select images of forests or parks
where some logging happened, to guide the few-shot process.
This will not reflect the distribution in the actual test set, where
also other scenes might be present. Therefore, we commonly
have a mismatch between training and test data in terms of
frequency of change during the few-shot phase.

Another issue is that we want to learn is specialized change,
which is by definition not as frequent as the general change
in the base training data. This implies that learning unchanged
pixels (that is, “forgetting” change) is the most important part of
fine-tuning, which will lead us to bias the training more toward
unchanged pixels in this phase (or at least less strongly toward
changed ones).

Both of these aspects suggest using a lower change weight
in the fine-tuning phase. It also seems reasonable to assume
that for few-shot tasks where change is very rare (in our case,
deforestation is such a task), a lower weight might be sensible
than for a relatively common type of change (such as building
construction). Therefore, we investigate the impact of two dif-
ferent change weights, both lower than the one used during base
training.

Number of Fine-tuning Epochs: How long we train during
fine-tuning should determine the influence of the (specialized)
support set compared to the (general) base training data. Initially,
the information the model has learned from the full dataset
should dominate, but over time, it will fit more and more to
the specialized and narrow category from the few new images.
Balancing this is therefore very important, and in addition, this
also has a direct impact on performance. Using, e.g., 100 instead
of 10 epochs will also increase the duration of fine-tuning around
ten times. As with the change weight, we will investigate a
shorter and a longer number of epochs in our experiments.

Learning Rate: The learning rate decides how much the
model adapts in each step. Choosing a suitable value for this
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Fig. 3.
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First two image pairs from the support set of all four few-shot tasks. One thing we can notice, for example, is how the second image for building demolition

shows a change from one building to another, as this also fits the definition for this task. (a) Surface Change. (b) Deforestation. (c) Building Demolition. (d) Building

Construction.

is necessary for the information in the support set to improve
the overall performance. However, in order to keep the scope of
the investigations in this this study reasonable and to not impede
the analysis by too many variables, we decided on keeping this
at a fixed value across all experiments.

Dropout: We do not use dropout during base training, as initial
experiments suggested a slightly worse performance on the
validation set when considering all change as relevant. However,
during fine-tuning, dropout might be very valuable to avoid
overfitting to the very small support set. We found that the effect
is different for different tasks, which is why we include it in
the parameters we investigate separately. Note that this is not
the same as using dropout during test time, as it is often done
in order to asses the uncertainties of the model [56]. During
inference, it is turned OFFas usual.

C. Setup

Backbone: We use a standard change detection backbone,
namely, the F'C-Siam-Conc by Daudt et al. [57], as implemented
by the TorchGeo Python package [58]. We adapted it slightly
from this implementation, removing the final block (which
consists of a3 x 3 transposed convolution, batch normalization,
an ReLU activation and a dropout layer), the dropout from
the second to last block, and replacing all that by a 1 x 1
convolutional layer. Also, we disabled dropout during training,
as initial experiments showed slightly better results for the base

change detection task. Dropout during fine-tuning is part of the
hyperparameters investigated.

Base Training: The model is trained with Adam (using stan-
dard parameters), an initial learning rate of 5 - 10~ that decays
exponentially with a v of 0.95 and a weight decay factor of
1 - 10~%. The maximum number of epochs is 100, but we choose
the one with the lowest validation loss. Each 512 x 512 image
is split into 9 patches of size 256 x 256, with overlap to reduce
edge effects due to padding, and the batch size is B = 32.
For the change weight, we choose 0.5 - (1/pchange — 1), Where
Dehange = 0.2019 is the fraction of changed pixels in the train set
images.

Fine-tuning: For fine-tuning, we also use Adam, a learning
rate of 5- 1074, and a weight decay factor of 1-10~*. How-
ever, as the epochs are much shorter, we do not use learning
rate scheduling. The number of fine-tuning epochs, the change
weight, and whether to use dropout are varied as part of the
parameter studies, and we use values 25 and 75 for the epochs,
1 and 0.1 for the weight and a dropout probability of 0.2 where
it is applied.

Training of Baseline B: In the case of Baseline B (i.e.,
training directly on the support set), we decided on individual
hyperparameters by tuning on the validation set. Of course, the
discussion of Section IV-C remains true, and we cannot do this
in practice. However, the goal of this baseline is to see how
much information is contained in the small support set and
can be recovered with the backbone, so it serves more as a
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TABLE I
MAIN RESULTS
Method ‘ IoU Precision Recall F1
Base Task (Full Change)
Backbone ‘ 50.3 (0.5) 59.4 (1.1) 76.6 (1.0) 66.9 (0.4)
Few-Shot Task 1 (Surface Change)
Baseline A (Base model only) 13.0 (0.2) 14.1 (0.2) 62.7 (1.9) 23.1 (0.4)
Baseline B (Support set only) 12.8 (1.7) 16.3 (2.7) 40.9 (14.0) 22.6 (2.8)
Fine-tuning 18.2 (0.9) 26.7 (1.7) 36.7 (3.9) 30.7 (1.3)
Few-Shot Task 2 (Deforestation)
Baseline A (Base model only) 0.7 (0.0) 0.7 (0.0) 42.8 (2.5) 1.5 (0.1)
Baseline B (Support set only) 4.1 (0.5) 4.7 (0.9) 30.0 (10.6) 7.9 (0.9)
Fine-tuning 5.9 (0.9) 6.5 (1.2) 40.9 (4.2) 11.1 (1.6)
Few-Shot Task 3 (Building Demolition)
Baseline A (Base model only) 4.4 (0.1) 4.4 (0.1) 71.0 24) 8.3 (0.3)
Baseline B (Support set only) 5.8 (1.4) 6.7 (1.8) 33.9 9.2) 11.0 (2.5)
Fine-tuning 11.3 (1.9) 159 4.2) 30.4 (5.1) 20.3 (3.2)
Few-Shot Task 4 (Building Construction)
Baseline A (Base model only) 35.6 (0.9) 37.3 (1.0) 89.1 (0.8) 52.5 (1.0)
Baseline B (Support set only) 33.1 (3.5) 45.3 (5.7) 56.0 (6.5) 49.7 (4.0)
Fine-tuning 49.3 (1.9) 62.9 (3.6) 69.7 (3.8) 66.0 (1.7)

Best results are given in bold.

lower boundary than a real practical suggestion. In addition,
experiments suggest that this baseline is much less sensitive to
hyperparameter changes, and indeed using the same settings for
all tasks yields results that are almost identical. The values used
are a change weight of 0.1, a learning rate of 3 - 10~%, trained
for 3000 epochs* in the case of surface change, a weight of
2, learning rate of 2 - 10~ and 5000 epochs for deforestation,
a change weight of 5, learning rate of 4-10~* trained for
7500 epochs for building demolition and a change weight of
1, learning rate of 5 - 10~* trained for 7500 epochs for building
construction. Dropout with probability 0.2 was used for all tasks
except surface change. All other aspects of the training are done
as in the fine-tuning case.

Number of runs: In order to account for the stochastic nature of
training in deep learning, we perform ten training runs with dif-
ferent random seeds. In addition, when performing fine-tuning,
we run each of these models two times to account for variance
there. Similarly, for Baseline B, we also train 20 models, to have
the same number of evaluations in the end.

Metrics: For qualitative comparison, we use the standard
metrics in change detection and semantic segmentation: Infer-
section over Union (IoU) and Precision (Prec), Recall (Rec) and
F1-Score (F1), computed from the binary annotation masks and
ground truth, both of the full task and the reduced ones.

VI. RESULTS

The main results are shown in Table I (with standard devia-
tions in brackets) and example outputs can be found in Fig. 4.
Additional parameter variations are recorded in Table II. For the
main results, in each task we use the parameters that give the
highest F1-score (which should be taken with a bit of care, since,

4These numbers might seem very high, but one epoch consists of only the
five samples in the support set, which are treated as a single batch. Also, we can
achieve quite good results already with a much lower number of epochs.

as mentioned above, we cannot choose these parameters based
on a validation set in practice).

The first thing we can notice is the considerable difference
between individual tasks, with a very low precision and overall
performance on the deforestation task being the most noticeable.
The most straight forward explanation for this is the fact that
this change type is very rare, which more easily leads to a
higher number of false positives. Indeed, we find that ranking the
tasks by their F1 scores, their precision values and the percent
of changed pixels (cf. Section V-A) all yield the same order,
suggesting a clear connection there.

Putting aside the intertask variability, we can see that in every
case, fine-tuning can considerably improve the performance
compared to both baselines, showing that the few-shot filtering
setting does indeed provide significant benefit for the detection
of specialized change. However, regarding the comparison with
the Baseline B, we have to note that while we optimize the
hyperparameters for this on the validation set, for the fine-tuning
approach, we choose the best performance on the test set (albeit
over a much less extensive parameter range), so this has to be
taken into account. Still, if we look at the worst hyperparamter
choice for fine-tuning (which we are unlikely to pick when using
the validation set in a comparable experiment), then we still beat
Baseline B on three out of four tasks, albeit only by a slight
margin on two of them, and for “reasonably adapted” choices
(e.g., only choosing whether to use dropout during fine-tuning
or not), the advantage is clear for all tasks.

Regarding hyperparameters, we notice that the best perform-
ing values are different for all four tasks, even in our restricted set
of eight different combinations. This suggests that indeed some
decision needs to be done based on the (expected) characteristics
of each specialized change. Further, the effect of dropout is
mixed. Generally, it increases precision and lowers recall, how-
ever, for the task of building demolition, it hurts both measures.
Also, it shows a tendency to increase the variance between
model runs. Considering the other parameters, increasing the
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Fig. 4. Example results. For every task, from top to bottom, we have prechange images, then postchange, the output of the full model, and the filtered ones. True
positives are colored white, false positives red, and false negatives blue. (a) Surface Change. (b) Deforestation. (c) Building Demolition. (d) Building Construction.
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TABLE II
ADDITIONAL PARAMETER STUDIES
Epochs Weight Dropout ToU Precision Recall F1
Few-Shot Task 1 (Surface Change)
25 0.1 0.0 15.9 (0.6) 27.8 (2.4) 272 (2.4) 27.4 (0.9)
75 0.1 0.0 17.5 (0.9) 29.1 (2.3) 30.8 (2.4) 29.8 (1.2)
25 1.0 0.0 18.2 (0.9) 26.7 (1.7) 36.7 (3.9) 30.7 (1.3)
75 1.0 0.0 18.1 (1.0) 25.6 (2.0) 38.7 4.3) 30.6 (1.4)
25 0.1 0.2 132 (2.7) 34.7 (4.7) 18.5 (5.9) 23.2 (4.3)
75 0.1 0.2 13.4 (3.4) 373 (5.1) 18.3 (6.8) 23.5(5.3)
25 1.0 0.2 155 (2.2) 30.5 (3.1) 25.0 (6.1) 26.8 (3.3)
75 1.0 0.2 159 (2.4) 27.7 (3.3) 28.0 (6.2) 27.4 (3.6)
Few-Shot Task 2 (Deforestation)
25 0.1 0.0 2.9 (0.3) 3.0 (0.3) 58.6 (3.7) 5.7 (0.5)
75 0.1 0.0 4.3 (0.4) 4.5 (0.5) 49.4 (2.6) 8.3 (0.8)
25 1.0 0.0 2.5(0.3) 2.5(0.3) 72.7 (4.0) 4.9 (0.6)
75 1.0 0.0 3.8 (0.3) 3.9 (0.4) 58.2 (4.2) 7.3 (0.6)
25 0.1 0.2 5.9 (0.9) 6.5 (1.2) 40.9 (4.2) 11.1 (1.6)
75 0.1 0.2 5.4 (1.7) 8.2 (1.7) 16.2 (8.0) 10.3 (3.1)
25 1.0 0.2 4.8 (0.8) 5.1 (L.1) 459 (7.7) 9.1 (1.5)
75 1.0 0.2 5.0 (1.3) 7.2 (2.2) 19.5 (10.6) 9.6 (2.4)
Few-Shot Task 3 (Building Demolition)
25 0.1 0.0 11.3 (1.9) 15.9 4.2) 304 (5.1 20.3 (3.2)
75 0.1 0.0 11.2 (1.9) 15.3 (3.3) 30.6 (4.5) 20.0 (3.0)
25 1.0 0.0 10.5 (1.9) 12.2 (2.5) 45.0 (5.2) 19.0 (3.1)
75 1.0 0.0 10.6 (2.4) 13.2 (3.6) 373 (3.9 19.2 (3.8)
25 0.1 0.2 10.5 (2.0) 15.0 (3.9) 27.5 (4.4) 18.9 (3.4)
75 0.1 0.2 9.8 (2.3) 13.0 (3.9) 29.8 (4.1) 17.7 (3.7)
25 1.0 0.2 8.8 (2.0) 10.2 (2.6) 42.1 (4.6) 16.2 (3.3)
75 1.0 0.2 7.5 (1.9) 8.7 (3.0) 37.4 (3.5) 13.9 (3.3)
Few-Shot Task 4 (Building Construction)
25 0.1 0.0 44.1 (3.0) 59.8 (6.0) 63.2 (3.9) 61.2 (2.9)
75 0.1 0.0 43.3 (3.9) 63.1 (5.3) 58.3 (5.9) 60.4 (3.9)
25 1.0 0.0 40.8 (2.9) 46.1 (3.8) 78.3 (3.8) 57.9 (2.9)
75 1.0 0.0 42.7 (3.4) 51.1 (4.9) 72.4 (2.0) 59.8 (3.4)
25 0.1 0.2 45.6 (3.9) 74.9 (3.8) 54.1 (6.1) 62.5 (3.8)
75 0.1 0.2 39.4 (7.5) 75.6 (5.7) 45.9 (10.0) 56.2 (8.3)
25 1.0 0.2 49.3 (1.9) 62.9 (3.6) 69.7 (3.8) 66.0 (1.7)
75 1.0 0.2 46.2 (3.5) 69.3 (4.8) 58.2 (4.6) 63.1 (3.3)

Best results are given in bold.

amount of fine-tuning epochs, as well as lowering the change
weight both also have the effect of increasing precision and
lowering recall, with some exceptions and differing size of the
effect. In the case of training for more epochs, this confirms
the hypothesis that we start with high recall and low precision
on the base model, and training for longer adapts better to the
support set, gaining precision but losing some change instances
in the process. However, as noted, there are some exceptions (all
in the surface change and building demolition tasks), and a larger
number of epochs can even yield the opposite result. The effect
of the change weight is more consistent and can also be easily
explained, as a higher value gives relatively less importance to
falsely identified change instances, therefore allowing for more
false positives and a higher recall, but lower precision.

VII. DISCUSSION

Considering the results described in the previous section, we
see that combining two different data sources indeed performs
better than each one on their own, showing that the basic assump-
tion is reasonable. The large differences between the individual

tasks, however, show that—at least for the simple fine-tuning
approach investigated in this article—change categories that are
very rare in the base dataset do perform worse than relatively
common ones. While these low performances might be an
issue for some practical applications, we should also add that
pixelwise statistics are not always the only relevant metrics. For
example, when deciding on whether to update maps in certain
regions, only a general measure of the amount of change is
needed, and there the boost in precision might be very beneficial
already.

Also, we restate the impact of a smart choice of parameters
for every task, as for some settings, fine-tuning even performs
worse than Baseline B. As a first observation, we have already
seen that rare changes naturally have a low precision in the
unadapted base model, therefore we should generally use a lower
change weight, dropout, or more fine-tuning epochs in these
cases. However, this is not the full picture, and, e.g., we find for
all tasks that the best results are achieved with a lower number
of epochs and that dropout hurts performance for the relatively
rare building demolition. Investigating the interaction of the



HERMANN et al.: FILTERING SPECIALIZED CHANGE IN A FEW-SHOT SETTING

individual hyperparameters, finding reasons for heterogeneous
effects, such as that of the number of epochs, and exploring
methods to find good values in a low data setting therefore are
interesting lanes for further research.

We also see that Baseline B can perform surprisingly well,
given that it only ever uses the five support images and has
no access to the base training set. We cannot even exclude
the possibility that, in particular with a very good choice of
hyperparameters, a well-designed training strategy or a better
suited network architecture, Baseline B can be competitive to
fine-tuning, and this might be worth investigating in future work.
However, we believe that even for such approaches, there might
still be value in using the base training set as an additional
information source in some way, and that by this, the few-shot
filtering setting still is the right lens for these approaches.

VIII. CONCLUSION

In this article, we have presented a new task for specialized
change detection in low data regimes, investigated a fine-tuning
approach to tackle it, compared it to two simple baselines, and
studied the effect of hyperparameters that are difficult to assess
in lack of validation data. In addition, we described a way to
adapt existing semantic change detection datasets to act as a
proxy for the few-shot tasks, enabling the use of trusted data
sources for this new setting. While there is still some room
for improvement regarding the overall quality of the results,
the ideas here should be seen as a first concrete step into the
direction of adaptive change detection using only a few samples,
and we hope that our approach of filtering out change will lead
to new applications in less explored domains or geographic
regions for which currently no large public training corpora
are available, helping uncommon usecases and underrepresented
communities.
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