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I Experimental Research

Background: Machine Learning (ML) is increasingly being adopted in biomedical research, however, its potential for outcorrh
prediction in visceral surgery remains uncertain. This study compares the potential of ML methods for preoperative 90-day
mortality (90DM) prediction of an aggregated multi-organ approach to conventional scoring systems and individual organ models.
Methods: This retrospective cohort study enrolled patients undergoing major elective visceral surgery between 2014 and 2022 across
two tertiary centers. Multiple ML models for preoperative 90DM prediction were trained, externally validated and benchmarked against
the American Society of Anesthesiologists (ASA) score and revised Charlson Comorbidity Index (rCCl). Areas under the receiver operating
characteristic (AUROC) and precision recall curves (AUPRC) including standard deviations were calculated. Additionally, individual
models for esophageal, gastric, intestinal, liver, and pancreatic surgery were developed and compared to an aggregated approach.
Results: 7711 cases encompassing 78 features were included. Overall 90DM was 4% (n = 309). An XBoost classifier demonstrated
the best performance and high robustness following external validation (AUROC: 0.86 [0.01]; AUPRC: 0.2 [0.04]). All models out-
performed the ASA score (AUROC: 0.72; AUPRC: 0.08) and rCCl (AUROC: 0.81; AUPRC: 0.11). rCCl, patient age and C-reactive
protein emerged as most decisive model weights. Models for gastric (AUROC: 0.88 [0.13]; AUPRC: 0.24 [0.26]) and intestinal surgery
(AUROC: 0.87 [0.05]; AUPRC: 0.17 [0.09]) revealed the highest organ-specific performances, while pancreatic surgery yielded the
lowest results (AUROC: 0.66 [0.08]; AUPRC: 0.22 [0.12]). A combined multi-organ approach (AUROC: 0.84 [0.04]; AUPRC: 0.21 [0.06])
demonstrated superiority over the weighted average across all organ-specific models (AUROC: 0.82 [0.07]; AUPRC: 0.2 [0.13]).
Conclusion: ML offers robust preoperative risk stratification for 90DM in elective visceral surgery. Leveraging training across multi-
organ cohorts may improve accuracy and robustness compared to organ-specific models. Prospective studies are needed to
confirm the potential of ML in surgical outcome prediction.
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o The revised Charlson Comorbidity Index (rCCI), patient age
and C-reactive protein are the most influential model weights.

e ML models can outperform conventional risk scores,
including the American Society of Anesthesiologists
(ASA) score (AUROC: 0.72; AUPRC: 0.08) and the
rCCI (AUROC: 0.81; AUPRC: 0.11).

e ML prediction performance benefits from an aggregated
multi-organ approach compared to organ-specific mod-
els. This may enable limited sample sizes to be overcome
in the future.
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surgery during their lifespan!'!. Although perioperative care has
continuously improved over the past decades,?! major proce-
dures are still associated with perioperative morbidity as high as
37.8% and mortality rates reaching up to 11.7%.17!

Improving risk stratification prior to surgery stands out as
a pivotal strategy for reducing morbidity and mortality, as high-
risk patients may opt for alternative strategies or intensified
postoperative monitoring settings!®!. Various approaches are
available, ranging from rather experience-based methods such
as the American Society of Anesthesiologists (ASA) score to
more objective tools like the Preoperative Score to Predict
Postoperative Mortality (POSPOM) or the American College
of Surgeons (ACS) risk calculator.”!!

However, a more holistic characterization of cumulative sur-
gical risk needs to account for higher-dimensional relationships
and modulating interactions rather than mere linear dependen-
cies of individual risk parameters'?!. Machine Learning (ML) as
a subfield of Artificial Intelligence (AI) provides a promising
approach for surgical risk stratification since it enables multi-
dimensional pattern recognition>!*,

Yet, the development and application of robust ML models
in surgery is particularly challenging: First, mortality prediction
is usually associated with highly imbalanced data, requiring
special considerations regarding model assessment metrics!**l,
Additionally, ML results can be distorted by overfitting, making
external validation essential. However, most studies to date fol-
lowed a single-center design, leaving the potential of ML in
visceral surgery uncertain.!'>'¢2% Furthermore, 90-day mortality
(90DM) is increasingly recognized as a more favorable bench-
mark for perioperative outcome assessment!”?%! whereas pre-
vious research has predominantly investigated in-house (IHM) or
30-day mortality (30DM).['%!8:20222529] Finally, model develop-
ment requires a considerable amount of data for training. Most
pilot studies encounter this challenge, as they typically focus on
individual procedures, thereby naturally limiting the available
amount of training samples!'”*1"232426:3% The aggregation of
multiple different procedures or even organ systems could there-
fore provide a novel approach to considerably amplify model
training, although potentially at the expense of dataset specificity.

Given these persisting constraints, this study aims to evaluate
the potential of ML for preoperative 90DM prediction in major
elective visceral surgery across multiple organ systems. Various
ML models are trained and results are validated externally as
well as compared to conventional risk scores. Additionally,
a comparison between a combined multi-organ approach
against organ-specific models for esophageal, gastric, intestinal,
liver, and pancreatic surgery is conducted. The results may
provide novel insights regarding the aforementioned limitations
of previous research and considerably improve perioperative
care of visceral surgical patients.

Methods

This study was approved by the Institutional Ethics Committee
on 26 July 2023 and conducted in accordance with the
Declaration of Helsinki. An additional data protection consulta-
tion was performed by the supervising institution (DSO\_888)
and the study adheres to the TRIPOD+AI statement: updated
guidance for reporting clinical prediction models that use regres-
sion or machine learning methods®*21,

Setting

This retrospective cohort study enrolled patients of legal age under-
going major elective visceral surgery at two independent, high-
volume, tertiary, university affiliated surgical centers between
January 2014 and December 2022. Center 1 (C1) served as the
internal training cohort while Center 2 (C2) was used to perform
independent validation. Major visceral surgery encompassed pro-
cedures of the esophagus, stomach, (large and small) intestine,
liver, and pancreas defined based on the German adaptation of
the International Classification of Procedures in Medicine (OPS;
Supplementary Table 1, available at: http://links.lww.com/JS9/
E42)B3334 Surgery involving the esophagus, stomach, liver and
pancreas was performed by surgeons who subspecialized in these
respective organ systems, whereas intestinal surgery was handled
by general surgeons. 90DM was selected as the primary and 30DM
as the secondary study endpoint. Exclusion criteria were specified
as missing information regarding an endpoint or data completeness
below 75% across all features (Supplementary Figure 1, available
at: http:/links.lww.com/JS9/E42).

Data

A total of 94 preoperatively available features were selected for
analysis, encompassing binary, numerical, and categorical data refer-
ring to patient characteristics, pre-existing conditions, intervention
characteristics, and laboratory values. Pre-existing conditions and the
revised Charlson Comorbidity Index (rCCI)"*>*¢! were obtained ret-
rospectively as outlined by Quan et all*”l. Data preprocessing
included the elimination of features with completeness below 50%
(Supplementary Table 2, available at: http:/links.lww.com/JS9/E42)
and the definition of upper and lower boundaries for numerical
features. Categorical parameters were ordinally or one-hot encoded,
based on the presence of an intrinsic order. Prior to ML analysis,
missing values were imputed using the k-Nearest Neighbors (KINN)
imputer, and numerical parameters were normalized. Finally, binary
features were added to indicate missing values. Data processing and
analysis were performed using Python (v3.10, Python Software
Foundation)®®®!, including various libraries (Supplementary Table 3,
available at: http:/links.lww.com/JS9/E42).

Patient data was compared between the two included centers.
Continuous variables are presented as mean values with standard
deviation (SD) and were analyzed using Student’s t-test'**! or Mann-
Whitney U-test!*’!, depending on the distribution determined using
the Anderson-Darling test!*!]. Binary and categorical features are
shown as class frequencies and were juxtaposed using the Chi-
Square test!*?], Statistical significance was defined at P < 0.05. The
discriminatory performance of all models was assessed using the
area under the receiver operating characteristic (AUROC), the area
under the precision-recall curve (AUPRC), the Matthews correla-
tion coefficient (MCC), and the F;-Score. Where different folds or
seeds led to several results, these are given as an average with
standard deviation. A schematic illustration of the methodology is
presented in Fig. 1.

Prediction models

Conventional scoring systems

The ASA score and rCCI were used as conventional indicators of
perioperative risk. To calculate the prediction performance, all
score samples of C1, including imputed values, were used to
determine their respective mortality rates by class. These were
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Figure 1. Schematic illustration of the study concept divided into four different phases: data extraction (), data preparation (Il), primary ML analysis (lll), and
subgroup analysis (IV). EHR = Electronic Health Record, ML = Machine Learning, SHAP = SHapley Additive exPlanations.

subsequently applied to the outcome data of C2 as an external
validation to calculate the described evaluation metrics and
assess the predictive performance in an independent cohort.

Primary ML analysis

Internal testing utilized a repeated nested cross-validation setup
to split the data of C1 into a training and test subset at a ratio of
80:201*!. This approach nests the hyperparameter optimization
cross-validation (k = 5) inside a second cross-validation (k = 5)
loop, thereby reducing the risk of overfitting!**!. The optimal
hyperparameters, including those related to cost-sensitive learn-
ing for handling class imbalance, were subsequently selected

from a predefined range based on the average performance
across 30 iterations. The best-performing model on this inner
training data was then evaluated on the left-out test fold. The
process was repeated 5 times for each fold and the entire experi-
ment was repeated for 5 random seeds to prevent bias from
initial fold-splitting. The following classifiers were trained:
eXtreme Gradient Boosting (XGBoost), Logistic Regression
(LR), and Balanced Random Forest (BRF). Finally, it was tested
whether the Synthetic Minority Over-sampling Technique
(SMOTE)**! could further increase performance.

External validation used the complete C1 cohort for model
training across 5 random seeds to ensure the maximum amount
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of available training data. Subsequently, the model was assessed
across all C2 samples. The code is publicly available at https://
github.com/rvandewater/CASS-PROPEL.

Additionally, feature importance analysis was performed during
external validation using SHapley Additive exPlanations (SHAP)
values!l, At its core, this approach investigates the alteration in
model performance by deleting each feature individually, thus
allowing the calculation of the outcome contribution of features
separately within the final model***!, Feature weights were aver-
aged across 10 random seeds and normalized for final reporting.

Subgroup analysis

To evaluate the potential of a combined large-scale model against
individual organ-specific approaches, the data from both centers
was merged. Using the XGBoost classifier, individual models for
esophageal, gastric, intestinal, liver, and pancreatic surgery as well
as a joint multi-organ model were trained and validated analo-
gously to preceding internal testing. The organ-specific perfor-
mance results were then weighted according to the proportion of
their respective organ system to obtain a separately trained
weighted average across all individual models. This ensures the
same organ distribution as in the combined multi-organ approach,
against which the weighted result was then compared. The
weighted average of the standard deviation was derived mathema-
tically from the calculated weighted average of the variance.

Results

A total of 11 140 cases met the inclusion criteria. Following
the application of the exclusion criteria, 7711 (n¢y = 5813; nc,
=1898) cases remained eligible and were enrolled in the analysis.

The overall completeness across the 78 included features was
93.2% (C1: 93.3%; C2: 93%).

Baseline characteristics

Statistical key figures between the two centers are given in Table 1
(Supplementary Tables 4-8, available at: http:/links.lww.com/]S9/
E42). Most patients in both cohorts were male (C1: 54.2%
[n=3153]; C2: 56.9% [n = 1079]) without significant distribution
differences (P = 0.27). Patients in the internal training cohort were
significantly older (C1: 58.8 [SD = 14.8]; C2: 55.2 [SD =17.8]; P <
0.01). Consistently in all organ systems, most cases were oncologic
patients (esophagus: 96.1% [n = 366]; stomach: 49% [n = 474];
intestine: 54.6% [n = 2041]; liver: 79% [n = 1338]; pancreas:
85.5% [n = 795]), yet the overall proportion was significantly
higher in the internal (71% [n = 4128]) than the external cohort
(46.7% [n = 886]; P < 0.01). The predominant comorbidities in the
internal training cohort were arterial hypertension (45.6%
[n = 2651]), followed by metastasis of a solid tumor (36.7%
[n = 2135]) and diabetes without chronic complications (21.4%
[n = 1241]). The rCCI differed significantly with a median of 5 and
an interquartile range (IQR) of 6 in the internal training cohort,
compared to a median of 3 (IQR = 6) in the external validation
cohort (P < 0.01). ASA 2 was the predominant category in both
cohorts (C1: 42%; C2: 55.1%).

The distribution of organ systems diverged significantly between
the two cohorts (P < 0.01). The internal training cohort showcased
higher proportions for gastric (C1: 14.8% [n = 862]; C2: 5.6%
[n = 106]), pancreatic (C1: 14.1% [n = 822]; C2: 5.7% [n = 108])
and particularly liver surgery (C1: 26.8% [n = 1560]; C2: 7%

Statistical analysis of selected features and statistical comparison between the two included centers (numerical features are given as

an average with a standard deviation)

# Feature Completeness (%) Combined (C1 + C2) Internal (C1) External (C2) P
1 Gender 94.71 0.27
Male 54.88% (n = 4232) 54.24% (n = 3153) 56.85% (n = 1079)

Female 39.83% (n = 3071) 38.74% (n = 2252) 43.15% (n = 819)

2 Age () 100 57.93 (SD = 15.69) 58.82 (SD = 14.83) 55.21 (SD =17.79) <0.01
3 Height (m) 85.25 172.91 (SD = 10.09) 172.91 (SD = 10.17) 172.89 (SD = 9.86) 0.39
4 Weight (kg) 85.44 79.85 (SD = 25.09) 81.97 (SD = 26.9) 7352 (SD=17.2) <0.01
5 BMI (kg / ) 85.25 26.62 (SD = 7.71) 27.32 (SD =8.3) 24.52 (SD = 5.04) <0.01
6 ASA score 88.33 <0.01

1 4.92% (n = 379) 4.27% (n = 248) 6.90% (n = 131)

2 45.18% (n = 3484) 41.96% (n = 2439) 55.06% (n = 1045)

3 36.77% (n = 2835) 40.63% (n = 2362) 24.92% (n = 473)

4 1.45% (n=112) 1.60% (n = 93) 1.00% (n =19)

5 0.01% (n=1) 0.02% (n=1) 0.00% (n = 0)
23 Malignancy 100 65.02% (n = 5014) 71.01% (n = 4128) 46.68% (n = 886) <0.01
46 Primary system 100 <0.01

Esophagus 4.94% (n = 381) 4.94% (n = 287) 4.95% (n = 94)

Stomach 12.55% (n = 968) 14.83% (n = 862) 5.58% (n = 106)

Intestine 48.49% (n = 3739) 39.26% (n = 2282) 76.77% (n = 1457)

Liver 21.96% (n = 1693) 26.84% (n = 1560) 7.01% (n = 133)

Pancreas 12.06% (n = 930) 14.14% (n = 822) 5.69% (n = 108)
69 CRP (mg /L) 63.05 19.19 (SD = 40.67) 17.15(SD = 38.3) 27.73 (SD = 48.46) <0.01
70 Hemoglobin (g / dL) 99.47 12.53 (SD = 2.09) 12.60 (SD = 2.05) 12.29 (SD =2.2) <0.01
76 Erythrocytes 99.31 4.39 (SD = 0.66) 4.40 (SD = 0.65) 4.35 (SD = 0.69) 0.03
79 90-day mortality 100 4.01% (n = 309) 4.04% (n = 235) 3.90% (n = 74) 0.83
80 30-day mortality 100 2.02% (n = 156) 1.96% (n = 114) 2.21% (n = 42) 0.56
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[n = 133]). Surgery on the intestine, including colorectal surgery,
made up the majority of operations in both cohorts. However, they
were particularly prevalent in the external validation cohort (C1:
39.3% [n =2282]; C2: 76.8% [n = 1457]).

Overall, 30DM reached 2% (n=156; C1: 2%; C2: 2.2%) and
almost doubled to 4% regarding 90DM (n = 309; C1: 4%; C2:
3.9%). No significant differences were found between the two
cohorts (Psopm = 0.835 P3opm = 056)

Prediction results
Conventional scoring systems

The ASA score achieved an AUROC of 0.72 and AUPRC of 0.08
for 90DM as well as 0.75 and 0.05 for 30DM, respectively. In
comparison, the rCCI demonstrated higher discriminatory per-
formance in terms of both AUROC (90DM: 0.81; 30DM: 0.78)
and AUPRC (90DM: 0.11; 30DM: 0.05). Due to the low mor-
tality prevalence of less than 50% across all categories, the
default MCC and F;-Score defined at a decision boundary of
0.5 equaled 0 in all cases. To bypass this, the maximum F;-Score
was employed, resulting in 0.15 for the ASA score and 0.2 for
the rCCI, both with a threshold of 0.06 for 90DM. Regarding
30DM, 0.1 with a threshold of 0.03 was achieved for the ASA
score, while the rCCI reached 0.11 for a 0.02 threshold.

Primary ML analysis

During internal testing, all classifiers yielded comparable results
for 90DM with an AUROC of 0.85 across all models and
AUPRC results ranging from 0.23 (0.04; XGBoost, BRF) to
0.24 (0.05; LR). The MCC varied between 0.28 (0.03; BRF)
and 0.31 (0.05; LR), whereas the highest F;-Score was 0.34
(0.05, LR). Prediction models for 30DM showed higher
AUROC values (0.87 [0.03]; LR), though lower AUPRC results
(0.17 [0.06]; LR). The SMOTE technique did not further
increase performance. Overall, LR demonstrated the best
model performance during internal testing (Supplementary
Table 9, available at: http://links.lww.com/JS9/E42).

Results of external validation demonstrated high reliability
and robustness with only minor performance decreases com-
pared to preceding internal testing. For 90DM, the XGBoost
classifier performed best across all metrics with an AUROC of

0.86 (0.01), AUPRC of 0.2 (0.04), MCC of 0.28 (0.01) and

International Journal of Surgery

F;-Score of 0.3 (0.01). For 30DM, the discriminatory power
was lower, reaching a maximum AUROC of 0.83 (0.01;
BRF) and AUPRC of 0.11 (0.01; XGBoost). Detailed results
are given in Table 2 and corresponding ROC and PR curves
are shown in Fig. 2.

Feature importance analysis identified the rCCI as the highest
impact parameter for 90DM prediction (SHAP = 0.17).
Thereafter, patient age (SHAP = 0.14), C-reactive protein
(CRP; SHAP = 0.14), hemoglobin (SHAP = 0.11) and erythro-
cytes (SHAP = 0.09) showed high feature weights. Pancreatic
surgery was identified as the most relevant organ-related feature
(SHAP = 0.06). A complete overview of the 20 most important
features according to SHAP values is presented in Fig. 3.

Subgroup analysis

Organ-specific ML performance varied substantially across the
investigated subdomains. Gastric surgery achieved the best
result for 90DM (AUROC: 0.88 [0.13]; AUPRC: 0.24 [0.26]),
although the particularly high SD must be considered. Contrary,
90DM prediction for pancreatic surgery yielded the lowest
model performance (AUROC: 0.66 [0.08]; AUPRC: 0.22
[0.12]). Considering 30DM, the organ-specific model for sur-
gery of the intestine performed best, as indicated by the highest
AUROC of 0.85 (0.07) and good AUPRC of 0.18 (0.11), espe-
cially considering the low mortality rate. Conversely, surgery on
the liver (AUROC: 0.72 [0.13]; AUPRC: 0.09 [0.11]) and pan-
creas (AUROC: 0.62 [0.13]; AUPRC: 0.17 [0.12]) demonstrated
a rather weak prediction performance. Finally, the weighted
average across the five organ-specific models yielded an
AUROC of 0.82 (0.07) and AUPRC of 0.2 (0.13) for 90DM as
well as 0.79 (0.12) and 0.17 (0.17) for 30DM, respectively.

In contrast to organ-specific training, an aggregated multi-
organ approach using all samples achieved an AUROC of 0.84
(0.04) and an AUPRC of 0.21 (0.06) for 90DM as well as 0.83
(0.04) and 0.14 (0.08) for 30DM, respectively. Hence, all per-
formance metrics for 90DM and the AUROC for 30DM of the
aggregated approach are superior compared to the weighted
organ-specific average. Moreover, the combined approach demon-
strated a considerably lower SD compared to organ-specific
training across all metrics. Detailed results of the subgroup analysis
are presented in Table 3.

Model performance for both endpoints following external validation, shown as mean and standard deviation across all seeds, and

comparison with the conventional scoring systems ASA and rCClI

Endpoint Classifier/score AUROC AUPRC MCC F,-score

90DM XGBoost 0.86 (0.01) 0.20 (0.04) 0.28 (0.01) 0.30 (0.01)
Logistic regression 0.84 (<0.01) 0.19 (<0.01) 0.27 (<0.01) 0.29 (<0.01)
Balanced random forest 0.84 (0.01) 0.18 (0.01) 0.26 (0.01) 0.28 (0.01)
ASA score 0.72 0.08 0.00 0.00
rCCl 0.81 0.11 0.00 0.00
Chance level 0.50 0.04 0.00 0.04

30DM XGBoost 0.81 (0.01) 0.11 (0.01) 0.18 (0.02) 0.18 (0.02)
Logistic regression 0.78 (0.02) 0.10 (<0.01) 0.16 (0.01) 0.17 (<0.01)
Balanced random forest 0.83 (0.01) 0.09 (0.01) 0.17 (0.01) 0.17 (0.01)
ASA score 0.75 0.05 0.00 0.00
rCCl 0.78 0.05 0.00 0.00
Chance level 0.50 0.02 0.00 0.02
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Figure 2. Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves for 90-day and 30-day mortality during external validation using the eXtreme
Gradient Boosting classifier, for a single fold, in comparison with the chance level defined as random guessing.

Discussion

This study aimed to evaluate, validate, and compare the poten-
tial of ML in preoperative risk stratification for major elective
visceral surgery across all as well as for five individual organ
systems. To date, 90DM was rarely considered for prediction
tasks,!1218:20-22:25:291 4|though it is increasingly recognized as
a more accurate benchmark for perioperative risk assessment
compared to IHM or 30DM.?728: Moreover, the lack of exter-
nal validation still presents a major shortcoming of many surgi-
cal ML studies.!'>"¢2¢!

ML analysis for 90DM achieved AUROC results of 0.85 for
internal testing and 0.86 during external validation, indicating

high robustness and generalizability of the trained models.
Although it is still the most frequently reported metric for
ML model performance, AUROC assessment is critically
limited in discrimination tasks of highly imbalanced data™*l.
Consequently, the AUPRC provides a more elaborate evaluation
since it ignores the large proportion of true negative
predictions'™’!. Notably, the AUPRC reached 0.2 during exter-
nal validation, demonstrating a discriminatory performance five
times higher than baseline chance level of 0.04 (mortality rate).
The XGBoost classifier achieved the best results, supporting
recent findings that gradient-boosted decision trees are particu-
larly suitable for this use case!*”). Model performance for 30DM
was considerably lower across all metrics, despite its shorter
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Figure 3. Results of SHapley Additive exPlanations (SHAP) analysis with the 20 most important features for 90-day mortality prediction during external validation
(eXtreme Gradient Boosting classifier), shown as a Beeswarm plot with corresponding mean SHAP values. rCCl = revised Charlson Comorbidity Index, CRP = C-
Reactive Protein, aPTT = activated Partial Thromboplastin Time, gGT = gamma-Glutamyl Transpeptidase, INR = International Normalized Ratio, ASA = American

Society of Anesthesiologists, WBC = White Blood Count.

prediction time frame. This finding might be attributable to the
naturally lower proportion of positive samples compared to
90DM, which has negative effects on model training and thus
may outweigh the shorter prediction horizon. Remarkably, all
ML models surpassed the ASA score and rCCI as conventional
risk stratification methods for both endpoints. This observation
is in accordance with previous studies suggesting that ML can
indeed outperform conventional risk scores like the ASA
score,[121822291 pOSPOMI!%21 ACS risk calculator'%22,
and rCCI'®'82! for mortality prediction.

Large-scale ML models for outcome prediction in the domain
of surgery are still scarce. An analysis including almost 500 000
patients after non-cardiac surgery yielded a higher AUROC of
0.94 for 30DM.°! However, this study also enrolled minor
surgeries, resulting in a very low mortality rate of below
one percent!?’]] which is unfavorably in terms of AUROC assess-
ment. Contrary, the reported AUPRC of 0.16 was lower than in
this study’s model®®!, though the lower mortality rate must be

considered for comparison. Furthermore, two studies investigat-
ing IHM with cohorts exceeding 50 000 cases also achieved
AUROC results over 0.9''%%], However, they did not differenti-
ate between major and minor procedures, thus yielding
a considerable class imbalance. While GraefSner et al reported
a model AUPRC of 0.11!%]] this metric is not given by Hill
et al™® making the evaluation of results based on this unba-
lanced data challenging. Moreover, both studies did not con-
sider external validation!'®2%],

Interestingly, organ-specific training showed considerable
performance differences across individual organ systems, yet
different cohort sizes and mortality rates must be noted. The
best model was achieved for gastric surgery, outperforming the
results of two large coherent multicenter ML studies for 90DM
after oncologic gastrectomy in terms of AUROCP®*! and
AUPRC!!, Likewise, the individual model for 30DM prediction
in patients undergoing surgery of the intestine demonstrated
a high AUROC of 0.85, surpassing the performance of a large
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Results of the subgroup analysis for both endpoints analogous to internal testing using the eXtreme Gradient Boosting classifier,
presented as mean and standard deviation across all folds and seeds

Endpoint Organ system Weight Positive AUROC AUPRC MCC F;-score
90DM Esophagus 0.05 (n = 381) 0.05 0.83 (0.04) 0.20 (0.05) 0.24 (0.07) 0.27 (0.06)
Stomach 0.13 (n = 968) 0.02 0.88 (0.13) 0.24 (0.26) 0.29 (0.30) 0.30 (0.28)

Intestine 0.48 (n = 3739) 0.03 0.87 (0.05) 0.17 (0.09) 0.24 (0.14) 0.25(0.12)

Liver 0.22 (n = 1693) 0.05 0.78 (0.07) 0.24 (0.10) 0.31(0.10) 0.30 (0.10)

Pancreas 0.12 (n = 930) 0.09 0.66 (0.08) 022 (0.12) 0.25 (0.14) 0.32 (0.11)

Weighted result 1(=7711) 0.04 0.82 (0.07) 0.20 (0.13) 0.26 (0.16) 0.28 (0.14)

Combined result 1(=7711) 0.04 0.84 (0.04) 0.21 (0.06) 0.28 (0.06) 0.29 (0.05)

30DM Esophagus 0.05 (n = 381) 0.02 0.84 (0.04) 0.16 (0.1) 0.24 (0.14) 0.22 (0.13)
Stomach 0.13 (n = 968) 0.01 0.84 (0.21) 0.30 (0.38) 0.18 (0.33) 0.19(0.32)

Intestine 0.48 (n = 3739) 0.01 0.85 (0.07) 0.18 (0.11) 0.26 (0.17) 0.25 (0.14)

Liver 0.22 (n = 1693) 0.02 0.72 (0.13) 0.09 (0.11) 0.09 (0.13) 0.10 (0.10)

Pancreas 0.12 (n = 930) 0.05 0.62 (0.13) 0.17 (0.12) 023 (0.22) 0.26 (0.17)

Weighted result 1(n=7711) 0.02 0.79 (0.12) 017 (0.17) 0.21 (0.20) 0.21 (0.17)

Combined result 1(n=7711) 0.02 0.83 (0.04) 0.14 (0.08) 0.20 (0.11) 0.19 (0.09)

nationwide ML study in colorectal cancer surgery?!!. Yet, been associated with increased perioperative morbidity.

a more elaborate comparison is again challenging as no
AUPRC is given?!!. In contrast, organ-specific models for
patients undergoing liver and pancreatic surgery showed rather
weak discriminatory power for both endpoints. A study apply-
ing a multilayer perceptron (MLP) network for surgical outcome
prediction after hepatocellular carcinoma resections reported
a higher AUROC of 0.84, however, comparison is difficult as
the study is only limited to IHM*,

Importantly, however, the combined multi-organ training
approach conducted in this study surpassed the weighted aver-
age of organ-specific training across all metrics for 90DM and
the AUROC for 30DM. Although the benefit is minor, it sug-
gests that it may be advantageous to aggregate several hetero-
geneous groups into one large cohort for the sake of training
sample size. More importantly, the combined approach also
showed a substantially lower SD compared to the weighted
average of organ-specific training. This demonstrates the
increased reliability and robustness following this strategy. To
optimize combined approaches more effectively toward indivi-
dual organ systems in the future, the concept of transfer learning
(TL) might be a particularly promising approach. Here, a source
model can be derived from training based on a large though less
specific cohort with subsequent organ tailored fine tuning for
each subdomain. Additionally, collaborative techniques such as
federated learning (FL) could be employed to establish even
larger cohorts in a privacy-sensitive environment in the future.

To date, decision support tools are considered by less than
a quarter of surgeons to aid their decision-making process!®*°l.
Low confidence in accuracy as well as a lack of transparency
regarding internal result calculation have been identified as major
barriers to a wider acceptance and clinical implementation!®!,
Therefore, it is crucial to provide medical professionals with more
detailed model insights to increase confidence.

In this study, the rCCI was identified as the most decisive
model factor, which aligns with previous clinical studies using
conventional statistics®'*?). Additionally, advanced age, being
the second most important feature, is a well-recognized risk
factor for postoperative mortality®>**. Notably, hemoglobin
and erythrocytes both ranked among the top five model weights.
This is particularly interesting, as preoperative anemia has

Implementing optimized perioperative blood management has
been shown to improve patient outcomes'>!. Finally, pancreatic
surgery was identified as a feature of major importance, which is
consistent with the well-documented high morbidity and mor-
tality rates associated with these procedures both in this study
and previous research!'!, Comparing the identified predictors
with established clinical evidence reveals a high level of concor-
dance between the respective risk factors. This may increase
confidence in these models and promote integration into clinical
practice.

This study encountered several limitations. The retrospective
study design may have had quantitative and qualitative effects on
the data. However, automated data extraction methods were
employed to minimize human error and ensure a dataset of high
quality and completeness. Additionally, only patients providing
follow-up data for at least 90 days were considered for analysis.
As patients with uncomplicated courses are more likely not to
attend follow-up appointments after discharge, the true 90DM
rate may be lower than apparent in our cohorts. Moreover,
corresponding ASA values were not available for all cases, result-
ing in missing values to be imputed, therefore no longer reflecting
actual medical assessments performed by a physician. Finally, this
study does not differentiate between different socioeconomic sub-
groups, as advocated by the TRIPOD+AI guideline. However,
given the low-threshold access to healthcare in Germany due to
generalized public health insurance, we assume that the local
population structure is well represented in the data.

Conclusion

ML presents a promising preoperative risk stratification
approach for the prediction of 90DM in patients undergoing
major elective visceral surgery, surpassing conventional risk
stratification approaches. Leveraging training across multiple
organ cohorts may increase ML performance and especially
model robustness, holding potential for advancing both further
research and clinical applications. However, future research and
particularly prospective clinical application studies are needed to
fully assess the potential of such models.
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