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1. Introduction

Additive manufacturing (AM) is utilized in
industries such as aerospace and medicine,
serving design freedom, eco-nomical pro-
duction for small batches, and function
integration, as exemplary shown in
Figure 1 with a multimaterial. Addressing
lean production, enhanced material proper-
ties, and traceability of manufactured
goods necessitates the analysis of a broad
dataset encompassing the manufacturing
process and its environment. A primary
challenge of such analysis is that data from
various sensors, machines, and vendors are
dispersed across multiple sources, such as
files, databases, and cloud storages, each in
differing formats.

Each storage type and format requires
specific access methods and contextual
human knowledge to transform data into
usable information. For example, correlat-
ing the manufacturing direction with
material properties requires accessing the
machine job file, which contains the part
orientation linked to a machine-specific
part ID. This part ID is often different from

the IDs used for the manufactured part or testing results. When a
domain expert, such as a machinist, leaves the institution, the
contextual knowledge needed to interpret the data, either manu-
ally or through algorithms, is often lost. Over time, many links
between materials and processes may no longer be established,
leading to the loss of valuable knowledge. Additionally, the vast
number of potentially relevant factors, the generation of several
hundreds of gigabytes of data in a powder bed fusion (PBF)
process, and the involvement of multiple domains complicate
data analysis methods aimed at achieving optimization
objectives.[1,2] Consequently, data scientists spend about 80%
of their time finding, filtering, reformatting, and integrating
data.[3,4]

Recently, there has been growing interest in the FAIR princi-
ples, which demand findable, accessible, interoperable, and
reusable data to overcome the gap between information require-
ments and heterogeneous data sources.[5] The present study
investigates how ontologies, which offer human understandabil-
ity through their semantics, while their formalized syntax
enables machine processability, can be applied in AM to adhere
to FAIR principles. The primary goal is to formalize data from
heterogeneous sources. This is done by describing it with
domain-specific terms and integrating it into existing models,
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namely the Basic Formal Ontology (BFO) and Common Core
Ontologies (CCO). The result is a comprehensive process and
material library that enhances part design and enables part
traceability. Using data from PBF processing of metals, represen-
tative for AM, a prototypical ontology-based data management
system is created. The implementation details, advantages,
disadvantages, application hurdles, and perspectives to use
ontologies for FAIR data generation are discussed by answering
subsequent research questions: 1) F: Which aspects must be
considered for data and physical objects like printed parts to
be identifiable using ontologies? 2) A: How can the workflow
to access heterogeneous data sources be implemented using
ontologies? 3) I: What are the advantages and disadvantages of
using the BFO as a widely used top-level ontology (TLO) for
enforcing interoperability? 4) R: How can the FAIR structured
data be reused for applications like process parameter selection,
part design, and a digital part record?

2. Theory and Literature Review

2.1. Ontologies: Overview

Combining popular definitions by Gruber (1993) and Borst
(1997), Studer et al. defined an ontology as a “[…] formal,
explicit specification of a shared conceptualization […]”.[6–8]

Here, conceptualization refers to “[.] an abstract, simplified view
of the world that we wish to represent for some purpose […]”.[9,10]

This indicates that an ontology represents entities from a specific
domain and is created to serve a particular purpose. The outcome
of the conceptualization is a set of concepts, also known as classes
or universals, arranged in a hierarchy, called a taxonomy.[10,11]

Each class is defined by “[…] entities in reality that are responsible
for the structure, order, and regularity […]”.[11] Thus, a class is
defined based on the common characteristics of its specific
individuals.

For example, in the context of materials science, the taxonomy
could include Entity–Material–Steel–Stainless Steel. A specific
plate of stainless steel in a company’s production line would
be an individual then. In addition to classes, relationships
between classes and individuals need to be defined to describe
their interactions.[10] The term shared in the definition indicates
that the defined concepts must follow a consensus among

multiple parties, rather than representing an isolated view.[10]

This is especially important when concepts and data need to
be shared across multiple domains, as in the present approach
to link heterogeneous data sources for sharing both within
institutions and with the wider materials science community.

The phrase explicit specification emphasizes that a set of
vocabularies is used to represent each class, and axioms are
employed to constrain the interpretation of these vocabularies.[10]

Formal means that all expressions must be in a machine-
readable format, distinguishing them from natural language.[10]

A widely adopted modeling language for ontology formulation,
used in this study, is the W3C-standardized web ontology
language (OWL).[12] All expressions are formulated as triples,
consisting of a subject, predicate, and object. For instance, a
triple stating a hierarchical arrangement is NonCorrosiveSteel
subClassOf Steel. The complete ontology is then built as the
sum of all such triples.

For further clarification the terms data, information, knowl-
edge, and wisdom need to be distinguished. Following widely
accepted work of Ackoff, data are “[…] symbols that represent
properties of objects, events, and their environment […]”.[13]

Information makes data useful through analysis in various
aspects, addressing questions like “[…] who, what, where, when
and how many […]”.[13] Knowledge is the “[…] transformation
of information into instructions […]” and wisdom “[…] is the
ability to increase effectiveness […]”.[13] Ontologies, in turn,
provide semantics and relationships between data to form infor-
mation, create knowledge by classifying this information, and
enable wisdom through the use of knowledge and reasoning
mechanisms.[14]

2.2. BFO and CCO

The objective of using ontologies in this work is to formalize and
structure heterogeneous data sources to make them FAIR. FAIR
principles demand interoperability, which can be addressed
using a vocabulary for class definition that is shared across
multiple domains, as described by Studer et al. and by reusing
existing classes.[8,11] This seeks to avoid the development of
isolated ontologies, which shifts the problem of information
exchange to a formalized level. One approach is to build upon
an existing TLO, which serves abstract classes that are further

Figure 1. a) The laser in the powder bed fusion process locally melts the powder to successively build the part. b) Additively manufactured aerospike
engine made from tool steel and copper alloy. Reproduced with permission.[52]
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detailed during the development process with the classes needed
for the specific application. If multiple institutions use the same
TLO, separately developed ontologies can be easily merged.
Following the same principles, midlevel ontologies provide more
detailed classes based on an existing TLO.

The present approach reuses BFO as a TLO for three reasons:
first, BFO is ISO standardized according to ISO/IEC 21838-
2:202. Second, it is used by more than 350 research projects,
which enhances interoperability.[15] Third, the underlying
research project is part of the MaterialDigital initiative, which
seeks to harmonize data and information exchange across
the entire materials science community.[16] The initiative’s
midlevel ontology, currently under development, will be based
on BFO, making future integration easier. A preceding evalua-
tion showed that due to the high reusability of existing classes
for the present use case and the available documentation,
the CCO is considered to be suitable to serve as mid-level ontol-
ogy (MLO).[17,18]

The BFO currently contains 36 classes at an abstract level.[15]

Exemplary classes include Process, Object, and Quality. Reusing
the classes from BFO, CCOs further detail concepts like
ActOfManufacturing or PortionOfMaterial, which can be reused
for the current approach. For a detailed description of the class
structures of BFO and CCO readers are referred to litera-
ture.[11,18] The beneficial and disadvantageous aspects of both
decisions are discussed in Section 4.2.

2.3. FAIR Principles

The FAIR principles, proposed by Wilkinson et al. initially
addressed data management in academia to enhance long-term
reusability, but have since been adopted and demanded for data
management in industry-related fields.[4,5] They require that data
be findable, accessible, interoperable, and reusable.

To be findable, data must have a globally unique and persis-
tent identifier, be described with a relevant set of metadata
containing the identifier itself, and be registered in a searchable
index.[5] Examples of addressing findability include the Digital
Object Identifier, commonly used to identify scientific papers,
or HTTP URLs, as used in platforms such as FAIRDOM, a
platform for systems biology.[19,20] Accessibility can be achieved
if the data can be retrieved using a standardized communications
protocol that is open, free, and universally implementable. Each
protocol must also provide authentication and authorization
procedures.[5] Again HTTP is an example, as a widely used
protocol that fulfills accessibility requirements and is commonly
used for web browsing.[21] To fulfill interoperability, data must
use a formal, accessible, shared, and broadly applicable language
for knowledge representation. The vocabularies must follow
FAIR principles, and metadata must clearly reference the main
data object.[5] Languages supporting interoperability include
resource description framework (RDF), OWL as used in this
work, and JavaScript Object Notation for Linked Data (JSON-
LD).[21] As mentioned in the previous section, interoperability
can be enhanced by reusing existing classes, that is, vocabularies
from TLOs, as done in the current work by reusing BFO and
CCO. To be reusable, data must be described with relevant
attributes, an accessible usage license must be provided, detailed

provenance must be given, and domain-relevant community
standards must be met.[5] Examples of meeting these criteria
include clearly describing the scope of the data, providing labels,
using licenses like MIT or Creative Commons, and adhering to
common file formats.[21]

In summary, data should be findable using rich identifiers and
metadata, accessible via standardized protocols, interoperable
through semantics, and reusable with accurate attributes.
Discussions on meeting the FAIR principles with an ontology-
based approach for AM are provided in Section 4.

2.4. Ontologies and Data Management in AM

In a literature review, recent relevant works dealing with
ontologies and data management in the context of AM have
been analyzed and categorized by the year, main application,
used modeling language, if they developed a workflow or tool,
incorporated a substantial amount of material or process data,
and whether they reused a TLO. The results are given in
Table 1. Addressed process domains include AM, PBF, electron
beam melting (EBM), fused filament fabrication (FFF), material
extrusion (MEX ), direct energy deposition (DED), and lithogra-
phy (LIT ) and therewith a wide band of applications. Used
languages for data and information modeling are predominantly
OWL, but further include extensible markup language (XML),
relational databases (DB), semantic application design language
(SADL), and business process model and notation (BPMN).

For AM, several data models have been developed in recent
years. Mohd et al. are the only ones to develop an AM ontology
reusing BFO and CCO.[22] They modeled several processing
steps and process factors but applied them to only a small set
of experimental data for demonstration purposes. The ontology
itself has not been found to be publicly available. Therefore,
in the current work, only a small set of generic terms is reused
and further detailed for the PBF process and material character-
izations.[22] Another data model was developed by Liu et al.
comprising a comprehensive set of product qualities, postpro-
cessing parameters, process signatures, process parameters,
and design parameters to capture experimental data, but lacking
in reusing a TLO.[23] Several of their concepts have been adopted
for the current work and mapped to BFO. In collaboration
with more than 100 AM experts, Kuan et al. developed a common
data model, from which 395 terms have been ASTM standard-
ized in an AM common data dictionary. Additionally they
evaluated the mapping of exemplary processing data using
XML- and graph-based approaches.[24] Li et al. proposed a data
model for describing information related to material, process,
simulation, and measurement data, which are linked by IDs,
and created 55 classes.[25] Except for the publication by Mohd
et al. none of the data models reused an existing TLO, which
is essential for enhancing interoperability according to FAIR
principles. Furthermore, a detailed discussion of the benefits
and disadvantages of using BFO and CCO in the context of
AM data management is considered to be missing.

Categorizing by main applications shows multiple perspec-
tives. One application of the created data models includes defect
detection. For detecting new qualitative correlations between
processing factors and occurring defect types, Wang et al.
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used an ontology in conjunction with a relational enhanced
graph convolutional network, for example, for detecting a
potential correlation between the staircase effect and porosity.[26]

Roh et al. provided an ontology-based system supporting the
selection of appropriate sensors for defect detections.[27,28] By
formulating design guidelines and applying them to several part
geometries, Formentini et al. optimized their part design for
several AM technologies using an ontology-based approach.[29]

Haruna et al. modeled a comprehensive set of design guidelines

for FFF, such as minimum wall thickness, and implemented a
prototypical software tool to evaluate the manufacturability of a
given designs.[30] Mayerhofer et al. developed a tool where an
ontology captures the capabilities of processes and printers to
evaluate the manufacturability of a given part.[31] Ko et al. created
design rules using artificial intelligence to evaluate the manufac-
turability of parts.[32] By modeling the capabilities of 3D printers
and 3D-part properties, Han et al. presented an approach for
selecting suitable machines.[33] Modeling manufacturing steps

Table 1. Overview of recent publications using ontologies in the context of AM.

References Year Domain Main application Language Workflow Mat. Proc. TLO

Li et al.[25] 2024 PBF Data models for AM projects XML – ✓ ✓ –

Kuan et al.[24] 2024 AM Development of a shared common data
dictionary & model

XML/OWL – – – –

Wang et al.[26] 2023 AM Detecting relationships between process factors
and defect types

OWL – – – –

Huang et al.[36] 2023 AM Evaluating AM machines by cost, strength, etc. OWL – – – –

Grandvallet et al.[53] 2023 EBM Formulation of processing steps and action rules – – – – –

Bonello et al.[54] 2023 PBF Defect forecasting – – – ✓ –

Formentini et al.[29] 2022 AM Evaluation of the suitability of AM technologies using
design guidelines

OWL – – – –

Huang et al.[37] 2022 FFF Optimization of part orientation OWL – – – –

Liu et al.[23] 2022 PBF Data management, defect detection, digital twins,
correlation analysis

DB ✓ ✓ ✓ –

Jarrar et al.[34] 2022 PBF Cost calculation for part manufacturing OWL ✓ ✓ ✓ –

Kulchin et al.[38] 2022 DED Database for equipment and materials OWL ✓ – – –

Haruna et al.[30] 2022 FFF Support for part design OWL ✓ – – –

Gmeiner et al.[55] 2022 LIT Retrieving qualitative material properties OWL – – – –

Ahn et al.[56] 2022 MEX Influencing factors on surface roughness and
support reduction

OWL – ✓ ✓ –

Roh et al.[27] 2022 AM Selection of sensors for defect detection OWL – – – –

Mayerhofer et al.[31] 2021 AM Evaluation of part manufacturability OWL ✓ – – –

Guo et al.[39] 2021 FFF Proposal for data linking via cloud application DB ✓ – – –

Rojek et al.[40] 2021 AM Correlation of parameters and material properties DB ✓ ✓ ✓ –

Ko et al.[32] 2021 PBF Derivation of design rules with ML OWL ✓ – – –

Jarrar et al.[35] 2021 PBF Cost calculation for manufacturing OWL – – – DOLCE

Chen et al.[57] 2021 PBF Detection of relationships between parameters
and mech. properties

OWL – ✓ ✓ –

Roh et al.[58] 2021 AM Combination of process parameters and physics models OWL – – – –

Roh et al.[28] 2021 PBF Selection of sensors for defect detection OWL – – – –

Belkadi et al.[59] 2020 PBF Process model for overview BPMN – – – –

Kumar et al.[41] 2019 AM Data correlation with Machine Learning SADL ✓ ✓ ✓ –

Aggour et al.[2] 2019 PBF Ontology-based data management SADL ✓ ✓ ✓ –

Leuschitz et al.[60] 2019 FFF Architecture for cloud-based manufacturing OWL ✓ – ✓ –

Qian et al.[61] 2019 FFF Architecture for cloud-based manufacturing XML – – ✓ –

Han et al.[33] 2019 FFF Support for machine selection OWL – – – –

Xiong et al.[62] 2019 DED Evaluation of part manufacturability – ✓ – – –

Lepuschitz et al.[63] 2019 AM Evaluation of part manufacturability OWL – – – –

Mohd et al.[22] 2019 AM Process model for overview OWL – – – BFO

Moges et al.[64] 2019 PBF Uncertainties in model predictions OWL – – – –
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and cost factors, Jarrar et al. created a workflow and tool to
estimate the costs for part production in PBF, reusing the
TLO DOLCE.[34,35] Huang et al. proposed a multiattribute
three-way decision-based approach in conjunction with an
ontology containing information about machine types, such as
build times and costs, to select an appropriate machine for a
given task.[36] Huang et al. also successfully optimized part
orientations to improve characteristics like volumetric errors
for FFF using ontology-based reasoning approaches.[37] None
of the publications address the use of an ontology-based data
management in AM to provide a digital part record, which
tracks the history of the manufactured part along the process
chain. Outlining the necessary requirements to achieve this,
an application scenario highlights the benefits of FAIR data
management in the present work.

Several approaches to data management in AM have been
investigated. Liu et al. introduced a cloud digital twin system
designed to collect product lifecycle data from distributed edge
devices, that focus on a product or process at a specific lifecycle
stage on the shop floor.[23] The two systems communicate
effectively, enhancing data availability throughout the product
lifecycle. The developed software uses commercial software
MaterialCenter from MSC Software, providing data visualization
along with file upload and download capabilities, but which
might be seen as unFAIR due to missing open-source solutions.
The platform utilizes DB to store, structure, and access
distributed sensor data, such as the current machine status
and monitoring data. It also incorporates a variety of material
properties, which enables defect detection as a result. Due to
the nature of databases, a comprehensive data model describing
the relations between the individual factors is missing, but some
factors of Liu et al. have been incorporated in currents work.
Kulchin et al. designed a framework and knowledge database
that consolidates information about equipment used for
DED, incorporating consumable materials and technological
operations.[38] Guo et al. outlined a multilayered cloud-based
system for FFF, enabling monitoring of an FFFmachine through
a prototype cloud application.[39] Rojek et al. developed software
for training artificial neural networks using a database
containing process and material data to assist in material
selection and predict, for example, the tensile strength.[40]

However, a FAIR data model was not provided, as they used
single databases. Kumar et al. developed a software abstraction
called NodeGroup at GE to map existing databases containing
sensor and processing information to nodes, which were then
used with machine learning algorithms to establish correlations
between time series data and resulting part properties.[41]

Described more in detail by Aggour et al. a knowledge graph,
written in SADL, connects CT scans with manufacturing
parameters and monitoring data. This approach facilitated the
correlation of fatigue properties and process parameters through
feature and label selection, with machine learning algorithms
running in the background.[2] Current work partially adopts parts
of the main architecture, as using a user interface for data
ingestion and querying and a knowledge layer, linking the het-
erogenous data sources, but incorporating reasoning capabilities
and usage of BFO and CCO to address aspects of FAIR
principles.

2.5. Research Gap and Paper Structure

Although publications have beneficially utilized ontologies in
narrowly defined application scenarios, there is a noted lack
of comprehensive incorporation and examination of applying
FAIR principles in practice, as recently emphasized by the
NIST Institute.[1,4] A critical review of the entire process, from
implementation to the usage of ontologies for the practical appli-
cation of FAIR principles in AM, is missing. Therefore, the paper
structure is oriented according to the full process from develop-
ment to usage to address this gap. Before discussing the results,
Section 3 initially introduces the methods of data collection and
the materials used.

Findability, as outlined by the FAIR principles, needs
to be addressed for the data itself, but for the use case of a digital
part record provided in this work, findability requires identifica-
tion at both the digital and physical levels. The application
of a digital part record using ontologies and the theoretical
background has not been explored in depth for this scenario.
This is elaborated upon in Section 4.1.

Interoperability at a high level and across domains requires
the reuse of classes and vocabularies from existing top- and
midlevel ontologies, as mentioned in Section 2.2. As shown in
Section 2.4, available data models, except for the work of
Mohd et al. have been developed without incorporating a
suitable TLO, thereby hindering interoperability in achieving
FAIR principles. Therefore, the current work’s data model is
built upon BFO and CCO, with their practical advantages and
disadvantages presented in Section 4.2.

Drawing from the heterogeneity of data demonstrated by
Liu et al. and Aggour et al. elements from the data management
structure of Aggour et al. and the data model by Liu et al. have
been reused in the implemented ontology-based data manage-
ment system.[2,16,23] Theoretical and practical perspectives on
the requirements, strengths, and limitations for data linkage
within such a system are highlighted in Section 4.3.

Methods to enhance efficiency in FAIR data generation
using reasoning and Python-based inference for data manage-
ment in AM are lacking in current publications and are
therefore presented in Section 4.4. Finally, the exemplary
reuse of FAIR data through a material process dashboard and
the provision of a digital part record for AM, which has not
been addressed in current publications using ontologies, are
covered in Section 4.5.

3. Methodology

3.1. Data Acquisition and System Boundary Definitions

Applying FAIR principles to data structuring prompts the
initial question: Which data should be structured? Figure 2
outlines the main steps to answer this, beginning with the
selection and prioritization of relevant data. Since structuring
data according to FAIR principles incurs initial costs and
ongoing maintenance effort, relevance is contextual, leading to
the critical question: What is the question or problem for which
FAIR data provide the answer? From this starting point, two
approaches emerge. First, if specific problems to be solved
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can be clearly formulated, so-called competency questions are
used in ontology development.[42] These questions serve as a
basis for validation. If the ontology can answer the questions,
its purpose is fulfilled. The second approach arises when the
questions are not clear a priori. In this case, FAIR data can be
considered a foundation for addressing future unknown
questions or for employing data analysis methods like unsuper-
vised machine learning to discover answers. In this case
potentially all data in a desired domain could be relevant.
After problem statements are formulated, the next step involves
defining system boundaries at a spatial level, such as considering
all machines in a particular room or the entire company.
Additionally, temporal system boundaries determine the scope
of data to be considered, which could include data from the past
ten years or only data currently being generated.

Trying to incorporate a reasonable amount of heterogeneous
data sources to analyze the applicability of ontologies to generate
FAIR data in the present work, three competency questions
are formulated addressing typical use cases from engineering
and production in industrial practice, as shown in Table 1.
They represent a substantial part of the entire AM workflow,
starting from part design, continuing through processing with
the associated selection of machine parameters, and concluding
with the logistics for tracking the manufactured part.

By interviewing domain experts and researching literature,
relevant data and their sources for answering the competency
questions are summarized in Table 3.[23] The relevance of the
captured data is derived from the competency questions in this
case. For structural design in first competency question,
material properties are essential. A broad set of mechanical
properties required for the static and dynamic design of compo-
nents was chosen based on expert knowledge, incorporating ten-
sile, compressive, and fatigue characteristics. Additionally,
thermal properties necessary for part design in environments
with significant temperature fluctuations, such as thermal
expansion behavior and specific heat capacity, have been
included. Based on the second competency question, machine

and processing factors that must be specified during
manufacturing planning, such as laser power used during
processing, are selected. Additionally, factors potentially affect-
ing individual material properties, as identified by expert knowl-
edge, are captured, such as the part’s orientation during
manufacturing.

The spatial domain for manufacturing is the AM laboratory of
the research institute. Limiting the scope to the research institute
allows for proper evaluation of data management practices before
extending to distributed facilities. Material characterizations are
carried out at the research institute and by external project
partners. Currently, only data generated during the research
project are considered. This approach allows for greater control
over data quality and ensures consistency in data collection
methodologies, with the provenance of data being clearly identi-
fiable. For historically available data, the necessary context is
often missing, which is an argument for using FAIR principles,
as addressed in Section 4.1.

3.2. Processing and Materials

PBF is an “[…] additive manufacturing process in which
thermal energy selectively fuses regions of a powder bed
[…]”.[43] For PBF-LB/M, the energy source is a laser beam
(-LB) in a metallic material (/M).[43] The recoater creates a thin
layer of powder taken from the powder supply. An optical system
controls a laser, locally melting the powder to create a 2D
contour. After each layer is fused, the build platform lowers,
and the process repeats until completion. Once finished, the
built part is cleaned of surrounding powder. Material types
and product requirements determine post-processing, such
as surface finishing or heat treatments. Used PBF-LB/M
machine is an EOS M280 from Electro Optical Systems GmbH,
where 290 specimens are manufactured from steel powder
m4p 316L0.3 and 150 specimens from aluminum powder m4p
PureAl0.1.

Define relevantdata to
be structured1 Identify data sources

generating relevantdata2 Define temporal system
boundary3

Fnwincqbjf bzhf bef wuiqheuuhf uqiwheuif heqiuhf ewuihf
uiwqhf iuewhf iuhwiuheibccoz8wqlf nkf bqwebf oeof zgwe
zidquqiuwgedzewqdoiuwef zwgewzegf zqwef uwezgf zu
qwf inweioxuneiuixbqibeixbqFnwincqbjf bzhf bef wuiqhe
uuhf uqiwheuif heqiuhf ewuihf uiwqhf iuewhf iuhwiuheibc
coz8wqlf nkf bqwebf oeof zgwezidquqiuwgedzewqdoiuw
ef zwgewzegf zqwef uwezgf zuqwf inweioxuneiuixbqibeix
bqdddqewoijof oniwuef qiuwehoiuqf hwjeqndqjksiunicu
nweiuf nqiwuencqiuwrnqiunricllqkjncdqkjnrkjqbirbibqiu
rbcuibquiwecbiwuqbcriubqcwiurqcbiuqwbuiwqiubriub

qwirucwiuqbcqwuicbwriubcriuwbiubribebuibreiubc

data format

data sources

data

1 11 1

2 2

3 3

Figure 2. Steps for choosing data to be FAIR: Evaluate relevance, choose data sources, and define temporal system boundaries.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2025, 27, 2401528 2401528 (6 of 19) © 2025 The Author(s). Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 2025, 8, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adem

.202401528 by U
niversitätsbibliothek A

ugsburg, W
iley O

nline Library on [25/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://www.advancedsciencenews.com
http://www.aem-journal.com


4. Results and Discussion

The architecture for the ontology-based data management
system, designed to generate and use FAIR data by combining,
implementing, and expanding existing works from Aggour et al.
and Liu et al. is illustrated in Figure 3.[2,23]

The object layer, which includes physical objects such as
machines, raw materials, and manufactured parts, is covered
in detail with a focus on the findability of data and part identifi-
cation in Section 4.1. Data generated during PBF-LB/M
processing is stored in the data source layer. The linkage layer,
described in Section 4.3, maps this data to the ontology, which is
explained in Section 4.2. The rules engine, discussed in
Section 4.4, uses expert-formulated rules to add links and
instances, thereby reducing implementation effort. Queries to
the ontology and underlying data sources are formulated and
executed by the query layer. The front end in the application
layer is demonstrated in Section 4.5 and visualizes the part’s
manufacturing history and process-material correlations,
addressing the competency questions presented in Table 2.

4.1. Object Layer: Findability

Findability demands that data “[…] are assigned a globally unique
and persistent identifier […][,] are described with rich metadata
[…] [and] are registered or indexed in a searchable resource.”[5] As
introduced, present work uses OWL for ontology development.
Herein, each instance has its unique International Resource
Identifier (IRI), which is enriched with metadata by properties
linking it to other instances and being part of a triplestore makes

it part of a searchable resource. Using FAIR data in productive
environments like AM requires not only that the data is findable
but also that the physical entities the data represent are identifi-
able. This work distinguishes three mechanisms of identification
by incorporating the physical domain, as shown in Figure 4.

For unique digital and physical identification (UDPI), the
physical entity, such as a printed part, can be uniquely identified
using queryable information from the ontology and inspecting
them on a physical level (e.g., observing an ID on the object
or measuring properties). Inspecting characteristics of the
physical object and querying them from ontology result in exactly
one instance. For nonunique digital identification (NUDI), query-
ing inspected characteristics, such as shapes or an ID written on
the object, results in multiple instances found in the ontology.
This implies that either more distinguishing properties must
be used in the query, or the ontology needs to be checked for
containing duplicated instances. Nonunique physical identification
(NUPI) implies that the number of queryable characteristics

Figure 3. Implemented and analyzed system architecture to enable FAIR data generation and usage.[2,23] The digital object record is implemented for
printed parts but expandable to all physical objects along the process chain.

Table 2. Competency questions and application scenarios for this work.

Competency Question Application Scenario

What are the material properties (tensile strength,
density,…) of parts manufactured with PBF-LB/M?

Structural design

How does a specific machine parameter (e.g., laser
speed) affect specific material properties?

Machine parameter
selection

What’s the manufacturing history of a specific
manufactured part, for example, powder charge
or machine parameters?

Traceability and logistics
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is not sufficient to uniquely identify a physical object, as the
characteristics match multiple objects.

Two criteria might induce the necessity forUDPI of a physical
entity. 1) If the application querying and writing FAIR data
requires the data exchange between the physical object and its
instance representing it, as defined for a digital twin according
to Kritzinger et al. this requires UDPI.[44] This is particularly
relevant for the digital part record addressed by the third
competency question; 2) If the question to be solved and the
use case is unknown, a decision must be made based on the
expected effort to ensure UDPI and the anticipated future
necessity for UDPI. Coming from NUDI or NUPI might not
enable UDPI after physical processing. For example, printed
parts with identical shapes and materials may not be distinguish-
able after they are removed from the build platform.

In other cases, UDPI can be omitted in favor of NUDI or
NUPI. For instance, for most applications, it might suffice to
know the properties of a specific material class instead of the
exact processing history of the specimenmade from this material
class. When the decision is made to ensure UDPI for a physical
object and its corresponding instance in the ontology, the
necessary steps are outlined in Figure 5.

Initially, sets of characteristics (SC) that allow for unique
identification of a physical object and their systems of validity
(SV) stating the validity space of each SCi must be defined.
For example, a printed part may be uniquely identifiable by
its shape (SC1), but only when considered alongside all other
parts of a build job and if the shape is unique within this build
job (SV1). Another example is a universally unique ID (UUID)
(SC2), which is globally unique (SV2). Subsequently, the SCi

Non unique digital identification (NUDI) Non unique physical identification (NUPI) 

Unique digital & physical identification (UDPI)

Inspect Query

Inspect Query InspectQuery

Figure 4. Three mechanisms of identification on a digital and physical level.

Physical Object

instance_xAttach
characteristics

SV1: Buildjob

SV2 : Company

SV3: …

Ontology

Char1: Color

Char2: Shape
…

Char1

Char2
Create

instances

System of validity SVSet of characteristics SC

SV1Partrelatableto build job &
shapeunique in build job

Shape ofpartSC1

SV2GlobalUniversallyunique IDSC2

………

Chari

Define

Figure 5. Main steps to ensure UDPI, currently implemented for printed parts.
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must be applied to the physical object (e.g., using a marker,
sticker, or engravings for the UUID) and replicated in the ontol-
ogy, either by creating new instances or appending to existing
instances.

In productive environments SCi must be processed efficiently.
For example, describing an object by stating “the shape is X, color
is Y and it has a scratch of 2 mm at position Z” is complex to
inspect on both physical and digital level. Reducing SCi to the
minimum results in exactly one characteristic for the object
within its SVi. As it’s challenging to find a characteristic that
is globally unique for a physical object, the characteristic is
simplified as being a unique string identifier.[24]

Three steps are necessary if SCi is a UUID and SVi is global:
The UUID must be created, physically attached to the object,
and added to the instance representing the physical object in
the ontology. The detailed steps involved, both generally and
specifically in this work for printed part identification, are
illustrated in Figure 6.

4.1.1. General View

After creating the UUID, the SCi and SVi are queried to check
if an instance in the ontology already exists, matching the criteria.
If so, the UUID is linked to the instance. The SCi and SVi are
inspected for the physical object, and the UUID is physically
applied. If no instance is found, a new instance with the
UUID is created, and the physical UUID can be arbitrarily
applied to an object of the instances class (e.g., to any printed

part if the instance is a “part”), as no SCi on the digital or
physical level restricts the assignment. Optionally, further
characteristics along with the SCi and SVi can be created digitally,
potentially necessitating inspection before physical attachment.

4.1.2. Implementation for Printed Part Identification

The right side demonstrates the current implementation aimed
at achieving UDPI for printed parts. Uploading the build job
file generates a new instance for each part in the ontology, each
assigned a UUID generated according to RFC 4122 (e.g.,
6948DF80-14BD-4E04-8842-7668D9C001F5), along with the
build job ID, parameter set name, part coordinates, and an
integer ID (SCi) unique within each build job (SVi). A printable
QR-Code encoding the UUID and the integer ID is generated in
the backend. After PBF-LB/M processing, each part is manually
marked with the integer ID, uniquely identifying it within
each build job. Following erosion from the build platform, the
integer variable written on the part, along with the printed
QR code, is used to attach the 128-bit UUID to the part. The
utilized 128-bit UUID minimizes the likelihood of duplicate
identifiers almost to 0, making it robust across global contexts.
Practically, only the first eight digits are assumed to be unique
within the current scope and queries, simplifying identification
tasks like noting part numbers on a test sheet. This truncated
form is sufficient for smaller contexts, such as a single
company, whereas the entire UUID may be necessary for global
data sharing.

Generate UUID

QuerySCi & SVi

no instancefound

SC i & SVi

Add ID to existing instance Create new instance

Arbitrarily attach ID to
physical object

InspectSC i &SVi

Add SCi & Svi

instancefound

Attach ID to physical
object

Web-app

UUID

QR-Code

en
co

de
s

ID ID

UUID

Buildjob ID

optional

Parameter set

Integer ID

Integer ID

1 2 …

Integer ID

S
C 1

= 
In

te
ge

r I
D

S
V 1

= 
B

ui
ld

jo
b

2

2

generates

Generate instances
UUID UUID

UUID

SCi

Figure 6. General steps necessary to ensure UDPI with a UUID. Right: Specific implementation using a web app to ensure UDPI for printed parts.
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4.2. Ontology Design: Interoperability

Interoperability necessitates that “[…] data use a formal,
accessible, shared, and broadly applicable language for
knowledge representation […][,] use vocabularies that follow
FAIR principles […] [and] include qualified references to other
(meta)data.”[5] Addressing the first issue, widely used and
W3C-compliant OWL is proposed.[12] OWL’s formal syntax
uses triples of subject, predicate, and object to describe classes,
instances, their relationships (object properties), and data values
(data properties). The working principles are detailed in the
specifications.[12]

For vocabularies, FAIR-compliant OWL ontologies are
achievable using a publicly available IRI for each instance
and class (e.g., as used for this work: https://w3id.org/
ODE_AM), which ensures findability (via human-readable
definitions and labels), accessibility (public access), and reusabil-
ity. The requirement to “[…] include qualified references to
other (meta)data […]” translates in OWL ontologies to adopt
existing TLOs and MLOs, which offer abstract-level classes
and comprehensive documentation. The selection of a TLO is
influenced by use-case requirements, personal experience, and
its applications across other fields. As introduced in Section 2.2
the ISO-standardized BFO asTLO and CCO as MLO are
considered.[17,45]

In terms of FAIR data, the ontology classifies each data point
(e.g., :instance_x rdf:type :Density) and uses object properties to
represent relationships between entities in the physical world
(e.g., :density_x obo:quality_of :part_x). As they are set in context
now and questions such as “[…] who, what, where, when and how
many […]” are enabled, data are transformed to information,
following the definition of Ackoff.[13]

Reusing a TLO and MLO requires the instantiation of an
existing class in the TLO or MLO, the creation of subclasses,
and the definition of which object and data properties to use
between instances and data values. The steps for modeling
planning applied and discussed in this work are in Figure 7.

For relevant data previously summarized in Table 3, a glossary
is developed based on workshops and expert interviews to define
terms describing the entities. The definitions of modeling
patterns, that is, how terms from the glossary can be represented
with triples of instances, object and data properties and data values,
are documented graphically, serving as a blueprint to implement
importers and query generators.[46] BFO and CCO documenta-
tion, discussion groups, existing labels, and examples provided
in BFO and CCO guide the definition of modeling patterns.[47]

The limitations of this approach include several key issues.
One challenge is the isolation of the glossary, where terms
in the glossary are duplicated as entities in the ontology.
Sustainable expandability requires a collaborative approach
that supports versioning and validation. Another challenge
is the manual transfer of graphical diagrams of modeling
patterns to importers, which results in duplicated entities
and complicates maintenance while being time-consuming.
More sophisticated, automatic transfer mechanisms, such
as Chowlk, are needed for industrial-scale applications.
Additionally, complex diagrams without effective filter mecha-
nisms make it difficult to handle and understand the
content, as they may contain hundreds of instances and require
in-depth knowledge of the underlying modeling structure.
Furthermore, the learning curve for understanding modeling
patterns proposed by BFO and CCO is steep, demanding
significant effort and expertise, which poses difficulties
for domain experts unfamiliar with knowledge modeling.

Y

Data

X

Y

DefinitionEntity

is a entity that …

is the Z of X and …

Glossary / Documentation

Documentation

Discussion Groups

Labels

class

Documented Modeling Patterns

object property 1

data property 1 …

class 1

TLO / MLO

X
Y

Class 1

X y

Class 2

Figure 7. Steps involved to create modeling patterns reusing existing classes from MLO and TLO.
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There is also variability in interpreting modeling guidelines,
as there is no universally “correct” way to ensure BFO and
CCO compliance, shifting the problem of nonshareable seman-
tics from natural language to a formalized level. Finally, rigid
modeling patterns, while reducing the effort needed to
formulate queries and enhancing shareability, create overhead
by potentially requiring the creation of instances that do not carry
valuable information.

While it is beyond the scope of this article to discuss each
modeling pattern used to represent data from Table 3,
Figure 8 highlights the patterns that are extensively and benefi-
cially used, with object and data properties omitted for clarity.

Identified advantages of modeling patterns following
CCO and BFO for entities from Table 3 include the following.[18]

1) Specified behavior: cco:PerformanceSpecification allows to
differentiate between prescribed and actual occurrences. For
example the parameter “laser speed” defines the intended
speed of the laser, its actual speed might vary; 2) Object identifi-
cation: cco:CodeIdentifier in conjunction with OWL functional
cco:designates and nonfunctional cco:is_about allows automatic
identification per defined SCi. For example, linking two
instances to the same UUID with cco:designates infers with the
reasoner that both instances are the same (owl:same_as).
Modeling a nonunique ID using cco:is_about (e.g., “2”)
doesn’t allow this inference; 3) Temporal assignment: obo:

Table 3. Excerpt of relevant data to answer competency questions for this
work.

Category Entities Data Source Format

Machine
parameters

e.g., laser speed Build job-file openjz

Part qualities Build orientation Human knowledge –

Geometry STL-file stl

Build platform
coordinates

Build job-file openjz

Powder
characteristics

Material type, chemical
composition, Hall flowrate

Product data sheet pdf

Particle size
distribution

Testing machine xlsx

Postprocessing
method

Turning, milling, etc. Human knowledge,
UWB system

sql

Material
properties

Compressive strength Defined spreadsheet xlsx

Tensile strength Defined spreadsheet xlsx

Specific heat capacity Testing machine xlsx

Thermal expansion Testing machine xlsx

Impact energy Testing machine xlsx

Density Testing machine xlsx

Fatigue properties Testing machine xlsx

:actOfPowderBedFusionLaserBeamMelting_1

:ActOfPowderedFusionLaserBeamMelting

cco:ActOfManufacturing

:laserSpeedParameter_1

:LaserSpeedParameter

cco :PerformanceSpecification

:informationBearingEntity_1

cco:InformationBearingEntity

„300“^^ xsd:decimal

cco:WattMeasurementUnit

:part_1

:uuid_1 :id_1

:GeneratedID :SpecimenID

cco:MeasurementUnit

“ 694880”^^ xsd:string “1”^^ xsd:integer

:portionOfSteel316L_1

:density_1

:informationContentEntity_1 :informationContentEntity_2

:informationLine_1 : informationLine _2

„7.86“^^ xsd:decimal „7.81“^^ xsd:decimal

cco:GramPerCubicCentimeterMeasurementUnit

:excelFile_1

„ https://gitlab....“^^xsd:string

:afternoon_1

cco:Afternoon

:dateTimeIdentifier_1

:informationBearingEntity_3

"2024 -06-01T15:30:00Z"^^ xsd:datetime

Class

instance

data value

ClassReusage

Object Identification

Data Provenance

InstanceReusage

larp
meT

tne
mng iss

A

Information Handling

SpecifiedBehavour

… …

Figure 8. Beneficial aspects for extensively used modeling patterns from BFO and CCO for domain AM.
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OneDimensionalTemporalRegion in conjunction with cco:has_star-
ting_instant and cco:has_ending_instant allows the description
of timespans, start and end times for processes, and facilitates
sequence modeling; 4) Entity and information distinction:
Differentiating between an entity (e.g., :density_1) and
information about this entity allows multiple measurements
of the same quality from various sources, potentially yielding
different results. For example, a density might be measured
twice with different results; 5) Information content and
bearer distinction: Distinguishing between information
(cco:InformationContentEntity) and the bearer of this information
(cco:InformationBearingEntity) allows to comprehend the source
of an information (e.g., a excel file stored in the cloud),
supporting findability and accessibility.

4.3. Linkage and Data Source Layer

The linkage layer mapped the data from their sources and
generated un-FAIR data using created modeling patterns
from the blueprint discussed in Section 4.2, following the steps
and architecture outlined in Figure 9. An alpha version web
application is hosted on the institute’s computing cluster.
It features an Angular frontend, Python backend, GraphDB
triplestore, utilizing Gitlab for versioning and as a cloud
repository for demonstration purposes.

Creating FAIR data using ontologies requires the import of
data, so the import mechanisms must be automatized as far
as possible to reduce necessary user interaction and lower
application hurdles.

Externaldata
sources

Triplestore

Extract / parse

Transform to triples

Upload

Col A = …
Col B = UUID

:inst_a rdf:type cco:Density
:inst_aobo:quality_of :part_a

User

Triples Data sources

Identify existing instances

Q
ue

ry
in

st
an

ce
sS

C i
&

S
V i

E
xi

st
in

gi
ns

ta
nc

es

on demand

User

Frontendd

Cloudd

B
ac

ke
nd

Figure 9. Architecture of linkage layer, implemented as a web application for enabling data import and data access.
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The implemented and discussed import mechanisms include
three main approaches: user-initiated uploads, user-inputted
information, and external data access. User-initiated uploads
allow users to upload files with a predefined structure, as
captured in the modeling patterns blueprint. Examples include
tabular files from density measurements or a build job file.
User-inputted information involves users filling in missing
information at predefined fields in the digital part record, as
discussed in Section 4.5. External data access is enabled by
accessing external data sources, such as an SQL database
containing a part’s current position tracked via an ultrawide-band
(UWB) system, which are accessed on demand when data
queries are made.

The import procedures can be segmented into Extract,
Identify, Transform, Load (EITL), adapted from traditional
Extract, Transform, Load (ETL) approach for databases.

During the extraction phase, the data source is accessed,
which may involve parsing a spreadsheet or establishing a
connection to an SQL database. A key limitation at this stage
is the requirement for a fixed data structure, such as the structure
of the build job file. Increasing flexibility to accommodate build
job files from different slicer versions directly is linked to coding
and maintenance effort. Incorporating thousands of different
file types, which are dynamically changing in industrial fields,
requires more efficient strategies.

In the identification phase, existing instances in the triplestore
referenced in the extracted data are queried using their sets
of criteria for unique identification SC and SV to ensure
flexibility in the upload sequence. For example, the powder
instance used in a specific PBF-LB/M process might already
exist with its charge number when the user uploads a build
job file.

In the transformation stage, triples are generated according
to the discussed modeling patterns, incorporating existing

instances and creating new instances and data values
linked with object and data properties. Historically, Python’s
owlready2 library has been used to create instances and triples,
but this resulted in duplicated triples when combined with
an external triplestore.[49] A more efficient method used subse-
quently involves directly creating triples using Python string
variables.

Finally, during the loading phase, a SPARQL insert command
uploads the triples to the triplestore. User-uploaded files are
managed through GitLab in the current demonstrator imple-
mentation, ensuring they are versionable and accessible for
verification, while time-series data are added to an SQL database.

Figure 10 illustrates the triples to be created in transform step
for one row of three columns of a spreadsheet.

Assuming one line of code per triple and excluding inverse
relations, this small example requires nine lines of code for
the pure formulation of the triples. Before a new instance is
created with a triple like :instance rdf:type :Class, its existence
must be verified in the triplestore to prevent duplication in
identification step. Additionally, the type for both newly
created and existing instances must be defined. Following the
blueprint, containing hundreds of triples to be stated and
requiring instances to be identified result in high coding
effort. To streamline the coding process and improve maintain-
ability, two approaches are employed. With first approach
reoccurring modeling patterns are encapsulated in semantic
templates. These are separate functions designed for either
creating or querying triples for specific instances based on their
SC and SV. For example, a function might search for a part
based on a UUID, and if no existing part instance is found,
it will automatically create the necessary triples for its definition.
The second approach uses reasoning mechanisms to further
simplify the process and ensure data integrity, which is discussed
in Section 4.4.

Part UUIDUnitDensity

23dxz48n4gcm-37.8

:part_x cco:is_made_of:material_y.
:material_y rdf:type cco:PortionOfMaterial.
:material_y obo:has_quality:density_1 .
:density_1 rdf:typecco:Density.
:density_1 cco:is_measured_by: informationContentEntity_1.
:informationContentEntity_1 obo:inheres_in : informationBearingEntity_1.
: informationBearingEntity_1rdf :type cco:InformationBearingEntity.
:informationBearingEntity_1 cco:has_decimal_value„7.8“^^ xsd:decimal
:informationBearingEntity_1cco :uses_measurement_unitcomm:CubicCentimeterPerGramMeasurementUnit

def search_part_by_uuid(uuid:str):
query = „…“
do_query (query)
result = „…“

IRI tobe searched, created if not exists

class to be defined

def create_part_with_uuid(uuid:str):
insert_triples= „…“
insert_query= „…“
do_insert_query(query)

Triples to be extracted

semantic template semantic template

Figure 10. Triples to be created in transform step and instances to be searched in identification step for three columns in a spreadsheet.
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4.4. Logic Engine and Reasoning

OWL reasoning utilizes object properties derived from defined
rules and axioms. OWL includes predefined rules and axioms
such as transitive, symmetric, and inverse properties, as well
as class and property equivalence, extensively detailed in the
language specification.[12]

Similar to selecting the appropriate data sources and data
in Section 3.1, the purpose of each rule must be clearly
defined. For the current application, rules are established to infer
information for the digital part records and enhancing reusability
by increasing the number of relationships defined. Depending
on the complexity of the logics to be integrated, three methods
are employed. The first method uses the integrated reasoner
in GraphDB with an OWL2-RL profile along with standard
OWL axioms.[50] This covers automatic inference, such as deriv-
ing inverse and symmetric properties, without the need to
formulate explicit rules. The second method employs custom
rules, which are tailored to meet specific application needs.
The third approach utilizes a custom Python-based solution,
where queried information is processed using Python scripts
for inference and arithmetic operations. Examples of inferred
statements from the three different reasoning approaches are
shown in Figure 11.

The reasoner in GraphDB is used for declarative rules, requir-
ing the creation of properties only. Predefined OWL axioms such
as transitivity (“if :A :has_output :B, then :B :is_output_of :C”),
property hierarchies (“if :A :has_output :B, then :A :has_partici-
pant_at_all_times :B”), and class hierarchy inference (“if :A rdf:
type :Steel316L, then :A rdf:type :Steel”) reduce the amount of
explicitly stating these triples. Using BFO and CCO axioms,
logical inconsistencies are identifiable, for example if the pattern

for a quality, the information about a quality, and the actual
values are mishandled.

Domain-specific rules are incorporated via a PIE file, serving
as the rule specification for GraphDB. These rules are primarily
aimed at reclassifying existing instances, such as ensuring
manufactured parts’ material instances match the raw material
used or that parts share the same orientation when utilizing the
same geometry.

For more complex logic and arithmetic tasks, a Python-based
approach is adopted. This involves executing SPARQL queries
at low-second intervals to retrieve and process information,
generate new triples, and upload them. For example all powder
instances and their mass fractions of chemical elements are
queried and triples depicting the material type are generated
and uploaded.

Using reasoning to support the generation of FAIR data has
been found to provide several key benefits. First, it enhances
efficiency by significantly reducing the number of triples
that need to be explicitly defined in the linkage layer, thereby
decreasing implementation and maintenance efforts. In the
current model, out of 1.1 million triples, only 100 000 are
explicitly defined while one million are inferred, resulting in a
90% reduction in direct triple formulation. Additionally, reason-
ing minimizes the necessary user input by propagating informa-
tion across multiple instances. For example, it can transfer the
material type and orientation from a specific manufactured part
to all parts meeting certain criteria. Furthermore, reasoning
ensures logical consistency within the model by applying axioms
from BFO and CCO, which help maintain the coherence of the
system. Finally, it enhances the reusability of data by automati-
cally adding properties that transform data into actionable
information, thereby making the data more usable for future use.

:actOfPPBFLBM_1 :part_1

:uuid_1

:GeneratedID

:portionOfMaterial_1

cco:has_output

cco:is_output_of

obo:has_participant_at_all_times

cco:designates :part_2cco:designates

:PortionOfSteel316L

:PortionOfSteel

:PortionOfMetal

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type

rdf:type

:stl_1

:actOfPPBFLBM_3 :part_3

:orientation_3

:orientation_1

:ice_3

:powder_1

… …

If chrome < X % and Y
% and … -> Steel 316L

:powder_material_1

owl:same_as

…

Inferred from OWL 2 default axioms Inferred from custom rules Inferred from Python based rules

Figure 11. Exemplarily inferred statements from reasoning mechanisms for OWL default axioms, custom rules, and the Python-based approach.
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The studies conducted in this research have been limited
to approximately one million triples. As the volume of data
typically encountered in semantic technologies can vastly exceed
this number, the scalability of the approach when handling
significantly larger datasets requires further investigation.
Advancements in reasoning technologies, which represent a
distinct research field, have led to substantial improvements,
with tasks that previously took hours now being solvable in
seconds due to enhanced reasoner performance.[51] Studies have
shown that current methodologies are capable of managing
reasoning processes efficiently even with billions of triples.[51]

Future strategies to address the challenges posed by large-
scale data might include the parallelization of reasoning tasks, a
reduction in expressivity to streamline processing, or distribut-
ing the data in different partitions.

4.5. Query Layer and Use-Case Demonstration

Once data are structured in the proposed system, use cases
derived from the competency questions in Table 1 simplify
formulating and executing queries and setting up methods
for visualizing results. For identifying material properties and
selecting machine parameters, a dashboard that plots process–
material relationships is implemented, based on the architecture
depicted in Figure 12.

Based on expert interviews, processing factors crucial for part
design and parameter selection are identified and integrated into
query templates in the backend. When a user selects a material
type and characteristic on the dashboard, the corresponding
query template is populated and submitted to the triplestore.
If the triplestore retrieves the requested properties directly, they
are sent to frontend for visualization. For external data sources,
such as SQL databases containing time series of thermal
measurements and position information from the UWB system

used in the current work, the triplestore provides the schema and
access details necessary to query the properties from the external
source.

Figure 13 displays one of several plots generated when a user
selects aluminum and fatigue properties. It shows the number of
cycles until breakage for different stress amplitudes and types of
mechanical processing. From this information, upper and lower
fatigue strength limits can be determined for part design, and
turning might be selected as the mechanical process if the goal
is to optimize fatigue strength. By deriving such instructions,
information is transformed to knowledge according to Ackoff.[13]

For process parameter selection, the objective is to optimize a
material property by selecting appropriate values for manipulat-
able factors along the processing chain. To facilitate this, material
properties are plotted based on FAIR-captured information,
such as postprocessing methods, build-platform coordinates,
part orientations, part volumes, and machine parameters. For
example, Figure 14 shows a plot of steel density as a function
of used laser power.

From the FAIR data currently available, it is suggested to set
the laser power between 240 and 270W for steel to minimize the
probability of reduced density. The impact of this decision
should be evaluated by analyzing additional material properties,
such as impact strength, within this parameter range.

For each instance in the ontology that provides UDPI,
being uniquely identifiable according to their SC and SV,
the ontology automatically serves as the data source for a digital
object record, containing information about the object’s
processing and qualities. In the current use case, this is
manifested as a digital part record. The specific content and
visualization of such a record are dictated by the use case require-
ments, such as the ability to trace a part’s manufacturing
history or meet regulatory requirements for information on
manufactured goods.

Access Source

User

Backend

Density

Select X WHERE {
X obo:has_quality
…
}

Material
Quality

Triplestore

Postprocessing

ExternalData Source

Mapping Scheme

Postprocessing

Process &
Material Data

Processing FactorM
at

er
ia

l P
ro

pe
rt

y

Query Generator

Col A = …
Col B = …

Frontend

Figure 12. Main architecture and workflow in query layer.
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A snippet of the digital part record of a specimen as visualized
in the frontend, showing its 3D geometry, powder charge
number, build orientation, machine parameters, and its current
location based on the UWB tracking, is given in Figure 15.
Access to this record is facilitated by searching the part’s
UUID in the web app, scanning the QR code on the part, or
clicking on a data point in the material process dashboard.

Identified conclusions from reusing OWL-based FAIR data
include the following. 1) Centralizing Data Storage: Keeping all
data values within a single triplestore, including time series data,
eliminates the need to access external data sources, reducing the
effort required to query information and potentially enhancing
FAIR compliance. However, this is impractical for very large
datasets like monitoring data, as it can degrade the performance

Figure 13. Exemplary generated plot showing stress amplitude versus the number of cycles until fracture for aluminum under different mechanical
postprocessing conditions.

Figure 14. Exemplary generated plot for steel 316L with density over laser power parameter.
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of the triplestore and significantly increase query execution
times; 2) Efficient Information Retrieval: Retrieving required
information for use cases in this project is reduced to formulate
a query once data are structured FAIR. While this demands
familiarity with the inherent modeling patterns, it is considered
more economical and can enable the retrieval of information
from different sources that was not manually possible before.
Quantitative studies are needed to evaluate this benefit;
3) Dynamic Knowledge Generation: Generating knowledge by
deriving instructions, such as selecting laser power based on
specific parameters, relies on the set of currently available
FAIR data. Over time, as more data points are added (e.g., an
additional 1000 data points for density and laser speed), the
derived instructions may change, underscoring the importance
of having expansive FAIR data; 4) Automation of instructions:
Currently, instructions are manually derived but could
potentially be generated automatically using statistical methods
applied to the structured data. This extends beyond the pure gen-
eration of FAIR data, suggesting that the OWL ontology itself
could be modeled to encapsulate derived instructions;
5) Taxonomy and data specificity: The inherent taxonomy offers
a mechanism to determine the generality of facts, providing
labels for each data point. For example, it allows for specific con-
clusions like “the parabolic correlation between energy density
and mass density is valid for steel, but not for all metals.”

5. Summary and Conclusion

Based on three competency questions addressing part design,
parameter selection, and part processing history aspects to
consider, advantages and limitations of an OWL-based approach

for FAIR data generation in the PBF-LB/M, representative for
AM, have been identified.

UDPI of physical objects and instances representing them
in the ontology is required for data assignment, providing a
digital object record, extending findability for practical reuse of
generated FAIR data in productive environments, and is the pre-
requisite for enabling a digital twin. It requires formulating sets of
criteria SC and their SV for objects involved, such as powders,
machines, and manufactured parts. Assigning a UUID to each
part states one possibility and requires its physical attachment
and instantiation in the ontology, exemplarily discussed using
QR codes.

Interoperability implies the reuse of top- and midlevel
ontologies for shareable vocabularies. The approach used with
glossaries and graphical diagrams lacks efficiency due to dupl
icated entities, lacking synchronization methods, and the
complexity of discussions with domain experts. Hurdles for
practical work with BFO and CCOs include the necessary
expertise to understand modeling philosophy, ambiguities in
conforming modeling, and potential overhead due to rigid
modeling patterns. In addition to enhanced findability, advan-
tages from practical work include domain expandability along
the processing chains, differentiation between specifications
and real occurrences, differentiated name levels for objects,
sequence modeling, differentiation between qualities and
information about them, and data source allocation.

Data integration is discussed using Python modules for
parsing structurally predefined exchange formats. Drawbacks
include inflexibility in data format changes and high coding
efforts for triple formulation and querying existing instances.
Semantic templates incorporating repeatedly occurring model-
ing patterns for triple generation and querying reduce the coding
and maintenance effort. Reasoning reduces the effort of pure
triple formulation by 90% by inferring transitive and inverse
relations and allows the transition of object information to
a higher level of generality, reducing necessary user input
and enhancing reusability. More complex inferences, such as
material type classifications, require an externalized reasoning
approach, discussed using Python.

Reuse of FAIR data was demonstrated based on a material
data dashboard. Plotting the processing and material character-
istics allows the selection of processing windows, whereas the
taxonomic labeling enables conclusions about the generality of
visually found correlations to material types. Keeping all data
values in the triplestore itself enhances accessibility but reduces
performance, whereas time series data are externalized. Retrieval
of required information is assumed to be more efficient, as the
step of combining heterogeneous data sources is carried out once
at the step of creating the FAIR data. Generating knowledge by
deriving instructions, for example, for parameter selections,
might change if the underlying amount of FAIR data changes,
motivating their generation in the long term and addressing
more automated ways for instruction identification. For each
object enabled with UDPI, a digital object record can be provided,
whereas the information to be contained must be specified by
use case or legally. The demonstrated digital part record, carrying
information about the processing history, showed the capability
of OWL-based FAIR data in AM to be reused. Adapting the
procedure for further objects along the process chain, such as

Figure 15. Exemplary excerpt from the digital part record, showcasing
processing and material information for each part, adaptable for further
objects along the process chain.
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raw materials and product structures, yields the potential to
create a connected source of digital twins.

6. Future Work

Transitioning the results to production readiness involves several
tasks. Standards for criteria SC and SV must be defined on
different levels, that is, company wide and at the level of manu-
facturer alliances. Methods to physically attach and digitally apply
UUIDs must be further automated, for example, using printed
labels, for faster processing and reducing error proneness.UDPI
must be successively expanded to objects involved in the process
chain, like powders and machines, to further ease data allocation
and enhance reusability. Using BFO and CCO has shown to be
capable of harmonizing different data sources into a consistent
model. Further applicability may be achieved by applying it to
different domains and harmonizing the modeling patterns as
done in the material science domain in the MaterialDigital
initiative. For scalable and more efficient data source integration,
methods dealing with changing and new data formats like
supervised large language model-based approaches need to
be researched and integrated, incorporating data source version-
ing and synchronization methods. A standardized, iterative,
versionable method for ontology-based FAIR data generation
is required. Currently, manually identified correlations and root
cause analysis need to be automated to further ease the process of
identifying root cause correlations, for example, by incorporating
statistical approaches and applying graph neural networks,
while the structured material and process information in
the ontology provides a comprehensive basis to be traversed.
Using the defined sets of criteria for unique identification,
further legal standards that dictate the information to be provided
by product manufacturers might drive digital object record
development and require standardized authorization and
authentication methods.
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