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ABSTRACT
Rare event sampling algorithms are essential for understanding processes that occur infrequently on the molecular scale, yet they are impor-
tant for the long-time dynamics of complex molecular systems. One of these algorithms, transition path sampling (TPS), has become a
standard technique to study such rare processes since no prior knowledge on the transition region is required. Most TPS methods generate
new trajectories from old trajectories by selecting a point along the old trajectory, modifying its momentum in some way, and then “shooting”
a new trajectory by integrating forward and backward in time. In some procedures, the shooting point is selected independently for each trial
move, but in others, the shooting point evolves from one path to the next so that successive shooting points are related to each other. To
account for this memory effect, we introduce a theoretical framework based on an extended ensemble that includes both paths and shooting
indices. We derive appropriate acceptance rules for various path sampling algorithms in this extended formalism, ensuring the correct sam-
pling of the transition path ensemble. Our framework reveals the need for amended acceptance criteria in the flexible-length aimless shooting
and spring shooting methods.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0261744

I. INTRODUCTION

Transition path sampling (TPS) is a simulation method that
yields unbiased insights into the mechanisms and kinetics of rare
events occurring in complex molecular systems. It is applicable
to a wide range of processes, including nucleation,1 biomolecular
reorganization,2,3 and chemical reactions.4,5 Unlike many enhanced
sampling techniques, TPS does not require detailed a priori knowl-
edge about the process of interest, other than a definition of the start
and end states of the process.6 TPS samples from a distribution of
unbiased dynamical trajectories with start and end points located
in these predefined (meta)stable states. This ensemble of transition
paths is generated sequentially by employing a Markov chain Monte
Carlo framework.6 At the core of many path sampling schemes is

the so-called shooting move, in which a new path is generated by the
integration of the equations of motion (forward and backward in
time) starting from a preselected configuration taken from an exist-
ing transition path, known as the shooting point. Valid reactive paths
that connect the start and end states are accepted or rejected in a
Metropolis step. Standard TPS has successfully been used on a wide
variety of systems and processes.7,8

Several methods have been proposed to increase the sampling
efficiency of TPS by incorporating prior knowledge of the system
into the selection of the shooting point using collective variables,
such as biased TPS3,6 or shooting range TPS.9 Likewise, artificial
intelligence-assisted sampling can increase the sampling efficiency
significantly10,11 and enable efficient rate calculations.12 While meth-
ods involving prior knowledge about the reaction are useful in many
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cases, such knowledge is often not available. For such cases, aimless
shooting13–15 and spring shooting16 were introduced as system-
agnostic, yet efficient, alternatives.17–20 While the shooting point is
selected freshly from the current path for each trial move in most
other TPS procedures, in the aimless and spring shooting methods,
the new shooting point is chosen based on knowledge of the pre-
vious shooting point. As a result, the shooting point evolves in a
certain way from one path to the next. A key concept in these meth-
ods is that incorporating the memory of the shooting point allows
the algorithm to focus automatically on the barrier region, thereby
increasing the acceptance probability of pathways.

In this study, we revisit several history-based shooting point
Monte Carlo methods, including flexible-length aimless shooting
and spring shooting. We find that the particular procedures to select
shooting points in these methods lead to violations of detailed bal-
ance, resulting in an improperly sampled path ensemble. This issue
arises because the generation of the new shooting point depends on
information on the previous shooting point.

Our objective here is to develop a general formalism that
accounts for the evolving shooting point in order to restore detailed
balance and ensure correct sampling of the desired path distribution.
This formalism makes use of an extended state space that includes
shooting points in addition to trajectories. We develop the general
formalism and apply it to the case of the aimless and spring shoot-
ing algorithms. In particular, we show that the performance of the
fixed-length versions of these methods depends strongly on the total
path length. Furthermore, we find a detailed balance-related issue in
the original spring shooting method,16 which we correct in the new
formalism. Unfortunately, one of the consequences of treating the
algorithms correctly in the extended space formalism is that they are
not behaving as efficiently as concluded in the original papers.

The remainder of this paper is organized as follows: First, we
introduce the extended space of paths and shooting indices, nec-
essary to capture the evolution of the shooting point. Next, we
derive detailed balance relations for Monte Carlo moves in this
extended space and apply them to regular TPS, aimless shooting and
spring shooting. This formalism leads to corrections of the origi-
nal flexible-length aimless and spring shooting algorithms, which we
then validate by performing path sampling in a one-dimensional test
system.

II. THEORY
A. Fixed- and flexible-length path ensembles

Assuming two (meta)stable states A and B, we consider an
ensemble of discretized trajectories X = {x1, x2, . . . xL} that connect
A and B, where each time slice or frame x contains the coordinates
(and possibly momenta) of all particles in the system. We define a
probability density in the ensemble of transition paths as PAB(X).
For instance, a path distribution where all paths are of fixed length L
can be defined as

PAB(X) =
1

ZAB
hA(x1)hB(xL)ρ(x1)

L−1

∏

i=1
p(xi → xi+1), (1)

where hA(x) and hB(x) are the characteristic functions of the states
A and B (unity when x ∈ A, B; zero otherwise), ρ(x1) is the stationary

distribution generated by the underlying dynamics (e.g., the Boltz-
mann distribution), and p(xi → xi+1) is the short time transition
probability from xi to xi+1. The partition function ZAB normalizes
the distribution.

Another commonly used definition is the flexible-length
ensemble, in which pathways have different lengths L(X). These
paths are required to have the start and end points in A and B,
respectively, while all other points in between should lie outside of A
and B,

PAB(X)∝ HAB(X)ρ(x1)

L(X)−1

∏

i=1
p(xi → xi+1). (2)

Here, HAB(X) is unity if the path X fulfills all requirements to be
considered reactive and zero otherwise, as specified below, i.e., x1 ∈

A, xL ∈ B.

B. Extended space of paths and shooting indices
In path sampling methods, such as aimless shooting and spring

shooting, information on the previous shooting point is used to gen-
erate the new shooting point. To take this information into account,
we denote with k the index of a (configuration) point xk on the path
X. Depending on the sampling scheme, this point can either be a
shooting point directly or a point that is used to generate the next
shooting point. The exact interpretation of k will become clear later
when we discuss several path sampling algorithms (see, for exam-
ple, Secs. II E–II H). We refer to k as the shooting index in both cases
since, even in the second case, the move is initiated from k. Common
for both cases is that the index k, in some form or another, evolves
from trial to trial.

To track the evolution of X and k at the same time in a Monte
Carlo procedure while preserving the Markovianity of the process,
we define an extended space that includes both the paths and the
shooting indices. Each point Y in this extended space is composed
of a path X and a shooting index k,

Y = (X, k). (3)

In each step of the Monte Carlo procedure, a new path Xn is
generated together with a new shooting index kn,

(Xo, ko
)→ (Xn, kn

), (4)

with a particular generation probability,

pgen[(Xo, ko
)→ (Xn, kn

)], (5)

that depends on the details of the generation algorithm. The new
path and shooting index are then accepted with acceptance proba-
bility pacc[(Xo, ko

)→ (Xn, kn
)]. If (Xn, kn

) is rejected, the old path
and shooting index are counted again in the path or index ensembles
and the corresponding averages.

To derive an acceptance probability for the Monte Carlo move,
the joint probability density PAB(X, k) must be specified. Since our
goal is to sample the transition path ensemble PAB(X), we require
that marginalizing PAB(X, k) with respect to k yields PAB(X),

∑

k
PAB(X, k) = PAB(X). (6)
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This condition is naturally fulfilled by defining PAB(X, k) via the
conditional probability p(k∣X), which has been described previously
in the context of auxiliary variable methods,21

PAB(X, k) = PAB(X)p(k∣X). (7)

Due to the normalization of the conditional probability, ∑kp(k∣X)
= 1, the sum over all k is guaranteed to lead to PAB(X) as marginal
distribution. Apart from this condition, there is total freedom in
setting the concrete form of p(k∣X), the target distribution for the
shooting index k.

C. Shooting point Monte Carlo
The goal is now to construct a Markov chain Monte

Carlo procedure for sampling the joint probability PAB(X, k)
= PAB(X)p(k∣X). In the subspace of the trajectories X, this proce-
dure then samples the desired transition path ensemble PAB(X).
Imposing detailed balance

PAB(Xo
)p(ko

∣Xo
)pgen[(Xo, ko

)→ (Xn, kn
)]

× pacc[(Xo, ko
)→ (Xn, kn

)]

= PAB(Xn
)p(kn

∣Xn
)pgen[(Xn, kn

)→ (Xo, ko
)]

× pacc[(Xn, kn
)→ (Xo, ko

)] (8)

yields

pacc[(Xo, ko
)→ (Xn, kn

)]

pacc[(Xn, kn
)→ (Xo, ko

)]

=
PAB(Xn

)p(kn
∣Xn
)pgen[(Xn, kn

)→ (Xo, ko
)]

PAB(Xo
)p(ko

∣Xo
)pgen[(Xo, ko

)→ (Xn, kn
)]

, (9)

which can be satisfied with the Metropolis–Hastings criterion. The
generation probability can be further factorized as

pgen[(Xo, ko
)→ (Xn, kn

)] = pgen(Xn
∣Xo, ko

)pgen(kn
∣Xn, Xo, ko

),
(10)

to separate the generation probabilities of the new path from the
generation probabilities of the new shooting index. This factor-
ization implies that first, a new path is generated according to
pgen(X

n
∣Xo, ko

) based on the old path and the old shooting index.
This probability includes all factors resulting from the propagation
rules of the underlying dynamics.6,22 Then, the new shooting index
is generated according to pgen(k

n
∣Xn, Xo, ko

) based on the old shoot-
ing index as well as the old and new paths. This factor describes the
probability to select the new shooting index kn. Another possibil-
ity, corresponding to a different factorization, is to first generate the
new shooting index and then the new path or further factorize the
shooting index generation process.

To further simplify the acceptance probability, we assume
that all pathways are generated using shooting moves based on
the underlying dynamics, which conserves the equilibrium dis-
tribution. Furthermore, we assume that momenta of the shoot-
ing point are either unchanged or independently redrawn from
the Maxwell–Boltzmann distribution.22 This leads to a cancella-
tion of the path probabilities PAB(X) and the respective generation

probabilities, where we factorize pgen as in Eq. (10).22 For the
flexible-length path ensemble, this leads to

pacc[(Xo, ko
)→ (Xn, kn

)]

pacc[(Xn, kn
)→ (Xo, ko

)]

= HAB(Xn
)

p(kn
∣Xn
)pgen(ko

∣Xo, Xn, kn
)

p(ko
∣Xo
)pgen(kn

∣Xn, Xo, ko
)

. (11)

Equation (11) can be satisfied by applying the Metropolis–Hastings
criterion,

pacc[(Xo, ko
)→ (Xn, kn

)]

= HAB(Xn
)min [1,

p(kn
∣Xn
)pgen(ko

∣Xo, Xn, kn
)

p(ko
∣Xo
)pgen(kn

∣Xn, Xo, ko
)

]. (12)

Below, we will use this equation to derive appropriate accep-
tance rules for different TPS-algorithms.

D. Shooting point densities
To assess the convergence of a path sampling scheme and

further understand its inner workings, it is useful to examine the
distribution of points on transition paths, denoted by ρ(x∣TP), and
the distribution of points from which shooting moves are initiated,
denoted by ρ(x∣SP). For pathways distributed according to PAB(X),
ρ(x∣TP) is given by

ρ(x∣TP) = ∫dX PAB(X)∑L(X)
i=1 δ(x − xi)

∫dx ∫dX PAB(X)∑L(X)
i=1 δ(x − xi)

=
∫dX PAB(X)∑L(X)

i=1 δ(x − xi)

∫dX PAB(X)L(X)

=
1

⟨L(X)⟩TP
∫ dX PAB(X)

L(X)
∑

i=1
δ(x − xi), (13)

where the delta function probes the occurrence of x at position
xi on a transition path X. In the above equation, the notation
⟨⋅ ⋅ ⋅⟩TP implies an average over the transition path ensemble PAB(X).
Hence, ⟨L(X)⟩TP is the average length of transition pathways.
Note that shorter paths contribute fewer points to the distribu-
tion ρ(x∣TP) defined in Eq. (13). For low-dimensional systems,
this density can be computed numerically in a TPS simulation
by histogramming points on the sampled transition pathways. In
higher dimensions, it is more practical to consider the distribution
ρ(r∣TP) of a collective variable r(x) for points on transition path-
ways. In either case, the distribution is a key indicator for the correct
convergence of a path sampling scheme.

Another distribution that is important to discuss is the distribu-
tion of attempted shooting points, given that one follows the Monte
Carlo scheme described in Sec. II C. In contrast to ρ(x∣TP), which
is fully defined by specifying the transition path ensemble PAB(X),
this distribution also depends on the specific protocol employed in
the TPS simulation. To obtain a general expression for the distri-
bution of attempted shooting points, we need to take into account
that k does not necessarily need to be the shooting index directly but
may instead be used to generate an index k̂, from which the shooting
move is initiated. Denoting with psel(k̂∣X, k) the probability to select
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k̂ given the current index k, the (protocol-dependent) shooting point
distribution is given by

ρ(x∣SP) = ∫ dX PAB(X)
L(X)
∑

k=1

⎡
⎢
⎢
⎢
⎢
⎣

p(k∣X)
L(X)
∑

k̂=1

psel(k̂∣X, k)δ(x − xk̂)

⎤
⎥
⎥
⎥
⎥
⎦

.

(14)
Note that the shooting point distribution depends both on the
imposed distribution p(k∣X) of shooting indices and on the spe-
cific shooting algorithm as encoded in the selection probability
psel(k̂∣X, k) [and, of course, also on PAB(X)].

For path sampling schemes that do not evolve the shooting
index from trial to trial, each new shooting index can be gener-
ated independently by directly drawing it from p(k∣X), implying that
psel(k̂∣X, k) = p(k̂∣X). In this case, the above expression reduces to

ρ(x∣SP) = ∫ dX PAB(X)
L(X)
∑

k=1

⎡
⎢
⎢
⎢
⎢
⎣

p(k∣X)
L(X)
∑

k̂=1

p(k̂∣X)δ(x − xk̂)

⎤
⎥
⎥
⎥
⎥
⎦

, (15)

where the sum over k cancels and, renaming k̂ as k, we arrive at

ρ(x∣SP) = ∫ dX PAB(X)
L(X)
∑

k=1
p(k∣X)δ(x − xk). (16)

For a uniform shooting index distribution, p(k∣X) = 1/L(X),
with independent drawing of shooting indices, as is done in standard
TPS, we obtain the shooting point distribution

ρ(x∣SP) = ∫ dX PAB(X)
1

L(X)

L(X)
∑

k=1
δ(x − xk). (17)

This distribution is very similar to the distribution ρ(x∣TP) of points
on transition pathways, but it differs from it by a weight factor pro-
portional to L(X). This factor arises because each transition path X
contributes L(X) points to the distribution ρ(x∣TP), but only one
point to the shooting point distribution ρ(x∣SP).

We can then relate the attempted shooting point distribu-
tions in Eqs. (14), (16), and (17) to the extended space ensem-
ble PAB(X, k). For that, we determine the distribution of shoot-
ing points, not attempted, but as obtained from PAB(X, k) by
integrating/summing over pathways X and shooting indices k,

ρens(x) = ∫ dX
L(X)
∑

k=1
PAB(X, k)δ(x − xk)

= ∫ dX
L(X)
∑

k=1
PAB(X)p(k∣X)δ(x − xk)

= ∫ dX PAB(X)
L(X)
∑

k=1
p(k∣X)δ(x − xk). (18)

This means that ρens(x), the distribution of points after summing
over k, is the same as the distribution of attempted shooting points
[Eq. (16)] one would obtain if shooting was performed by freshly
drawing k each trial from p(k∣X). Since ρens(x) is independent of the
specific shooting scheme yet depends on p(k∣X), we use it to assess

the convergence of shooting schemes in the extended space (X, k) as
shown in Figs. 5 and 6.

E. One-way and two-way TPS
We will next cast various TPS algorithms in the extended space

formalism, starting with regular one-way and two-way shooting. In
fixed- or flexible-length regular TPS, one draws the shooting index
k freshly at each round. As a result, there is no dependence of the
picked shooting index on the previous shooting index ko. In fact,
since regular TPS is carried out in trajectory space only, the accep-
tance rules derived for the extended space do not directly apply to
this case. Vice versa, casting the algorithm without modification to
the extended space leads to irreversibility of the move (Fig. 1). How-
ever, we can construct an alternative TPS scheme that is reversible
in the extended space and closely resembles the original two-way
shooting algorithm.

We split the shooting move into three substeps as illustrated in
Fig. 2. In the first part, the index shift, the shooting index is redrawn
shifting the old shooting index ko to the point k̂ o. In the second step,
the shooting move itself is carried out from the point at k̂ o, lead-
ing to the new path Xn. As the shooting move in most cases leads
to a renumbering of points, we then define k̂ n as the index of the
shooting point on the new path. As a last step, the shooting index is
redrawn once again to ensure reversibility of the move. The whole
shooting move results in a new path and shooting index (Xn, kn

).
Since we now work in the extended space, we need to specify

the target shooting index probability p(k∣X) in order to obtain the
full joint probability PAB(X, k). To enforce a uniform shooting index
distribution, we define p(k∣X) as

p(k∣X) =
1

L(X)
for 1 ≤ k ≤ L. (19)

For both index shift moves [steps (2) and (4) in Fig. 2], we draw
the shooting index from the uniform distribution to simplify the

FIG. 1. The standard shooting move is irreversible in the extended space frame-
work. Starting from a path Xo and previous shooting index ko (left), the shooting
move is usually divided into two steps: first, a new index k̂ o is picked and, second,
the new path Xn is generated from the selected point. On the new path, the used
shooting point has the index kn. Although the reverse move (right) can recover the
old path by selecting the same shooting index kn again, it is not possible to recover
the old shooting index (indicated by the red arrow).
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FIG. 2. General scheme of a reversible shooting move in the extended space. The
shooting index is shifted, and the equations of motion are integrated. After that,
the new shooting index is shifted a second time to ensure reversibility.

acceptance and keep the algorithm close to standard TPS such
that

psel(k̂
o
∣Xo
) =

1
L(Xo

)

for 1 ≤ k ≤ L(Xo
),

psel(k
n
∣Xn
) =

1
L(Xn

)

for 1 ≤ k ≤ L(Xn
).

(20)

Combining both selection probabilities leads to a symmetric index
generation probability for the forward and reverse moves, pfw

gen

= prv
gen = psel(k̂ o

∣Xo
)psel(kn

∣Xn
). Therefore, the acceptance probabil-

ity based on Eqs. (12) and (19) is then given by

pacc[(Xo, ko
)→ (Xn, kn

)] = HAB(Xn
)min [1,

p(kn
∣Xn
)

p(ko
∣Xo
)

]

= HAB(Xn
)min [1,

L(Xo
)

L(Xn
)

], (21)

which is identical to the acceptance criterion derived previously.3,22

Note that for this algorithm, the distribution of shooting points
ρ(x∣SP) follows Eq. (17).

In the analogous way, the shooting range algorithm9 can
be formulated in the extended ensemble. In this case, shooting
indices k are accepted according to a weighting function w(r(xk))

along a collective variable r(x), corresponding to a shooting index
distribution,

p(k∣X) =
w(r(xk))

∑i w(r(xi))
. (22)

In this case, the acceptance criterion becomes

pacc[(Xo, ko
)→ (Xn, kn

)] = HAB(Xn
)min [1, ∑i w(r(x

o
i ))

∑i w(r(x
n
i ))
]. (23)

Setting w(r) to unity if a ≤ r(x) ≤ b with user defined bounds a
and b and zero otherwise results in the original shooting range
algorithm.9

F. Fixed-length aimless shooting
Aimless shooting with fixed path lengths is historically the basis

for algorithms that evolve the shooting point from trial to trial.
While there are different formulations of the algorithm in the lit-
erature, we focus here on the two-point variant described in Ref.
15. Here, we start with an initial path Xo of fixed path length L. We
assume an even path length in Sec. II F; for odd path lengths, inte-
gration steps need to be adjusted accordingly. The shooting index
distribution is only nonzero at two points, L/2 − Δk and L/2 + Δk,
where Δk is an adjustable parameter. This choice corresponds to the
following target shooting index distribution:

p(k∣X) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2

if k ∈ {
L
2
− Δk,

L
2
+ Δk},

0, otherwise.
(24)

The two-point aimless shooting algorithm starts by selecting one of
these two indices on the old path as the shooting index k̂ o, which
corresponds to the first index shift for regular TPS (Fig. 2). For a
positive shift, integration is performed in the backward direction by
L/2 + Δk − 1 steps and in the forward direction by L/2 − Δk steps
to obtain the new path Xn (vice versa for a backward shift). This
operation produces a new path on which the index of the common
point, i.e., the index k̂ n of the point where the old and the new path
intersect, can be either at L/2 − Δk or at L/2 + Δk.

In principle, a second shift from k̂ n to kn would now be required
to ensure that the move is reversible in the extended space. How-
ever, it is important to note that, in fixed-length aimless shooting,
the shooting index does not evolve, in contrast to its flexible-length
counterpart. While there is a chance that the next shooting move is
initiated from the same point as in the last trial, the shooting index
is always drawn independently as L/2 − Δk or L/2 + Δk each trial,
effectively erasing the memory of the previous shooting index. In
other words, given a certain path Xo, determining the new shooting
index is always done relative to the center L/2 of the path and does
not require knowledge of the previous shooting index. As a result,
the procedure is Markovian in path space and therefore does not
require an extended space formalism with second shift. We intro-
duce a second shift as for standard TPS, which allows us to apply the
extended space formalism and infer the distribution of the shooting
points from which a shooting is attempted via Eq. (14),

ρ(x∣SP) = ∫ dX PAB(X)
1
2
[δ(xL/2−Δk − x) + δ(xL/2+Δk − x)]. (25)

This is the distribution of points ±Δk away from the path centers.
We validate this result via numerical simulations in Sec. III. As for
standard TPS in the extended space, performing both shifts with
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symmetric probabilities leads to a cancellation in the acceptance
probability,

pacc[(Xo, ko
)→ (Xn, kn

)] = HAB(Xn
)min [1,

p(kn
∣Xn
)

p(ko
∣Xo
)

]

= HAB(Xn
). (26)

G. Flexible-length aimless shooting
Flexible-length aimless shooting, as proposed by Mullen et al.,14

generalizes the aimless shooting move to a flexible-length scenario,
which is particularly useful in systems with diffusive dynamics. Sim-
ilar to fixed-length aimless shooting, the shooting index for the
following trial is chosen from a narrow set of possible indices. Due
to the flexible-length setting, these points are no longer defined to lie
around the path center as in Eq. (24), but they are close to the pre-
vious shooting point. Hence, in aimless shooting with flexible length
pathways, there is true memory of the previous shooting point, mak-
ing the treatment of the algorithm in the extended space formalism
necessary. In the following, we will formulate the flexible-length
aimless shooting in this formalism and will show that the acceptance
probability includes a ratio of path lengths, which was neglected in
the original work.14 As demonstrated below numerically, this factor
is necessary to sample the correct transition path ensemble.

As mentioned above, there is a crucial difference between the
fixed-length and the flexible-length moves. Namely, in the flexible-
length algorithm, the new shooting index kn is selected depending on
the previous index ko (see Fig. 3). In particular, the two-point variant
described in Ref. 14 samples the new shooting index from {ko, ko

+

soΔk}, where so
∈ {−1, 1} defines whether the second shooting point

is on the backward or the forward trajectory segment. Since the
sign s is preserved until a next trial is accepted, we include it in the
extended ensemble (X, k, s) (see the supplementary material for a
detailed balance derivation). To respect reversibility, the generation
probability of kn is divided into two steps. We first choose a shooting
index k̂ o on the old path according to

pgen(k̂ o
∣Xo, ko, so

) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2

if k̂ o
∈ {ko, ko

+ soΔk},

0, else.
(27)

If the opposing point, namely ko
+ soΔk is selected, we flip the direc-

tion so such that the two possible shooting indices in the new state
are preserved (see Fig. 3, step 2). The new path Xn is generated
by shooting from k̂ o and integrating the equations of motion until
a stable state is reached. We then obtain a new sign ŝ n by draw-
ing from {−1, 1} with equal probability. We assume that p(ŝ n

)

= pgen(ŝ n
) =

1
2 . Denoting k̂ n as the index of the shooting point on

Xn, the new shooting index kn is generated according to

pgen(kn
∣Xn, k̂ n, ŝ n

) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2

if kn
∈ {k̂ n, k̂ n

+ ŝ nΔk},

0, else.
(28)

Again, we obtain sn by flipping ŝ n if the opposing point was selected,
or else, we leave it unmodified. In case k̂ o or kn fall outside of the old
or new path, respectively, the move is rejected and the old path and
shooting index are counted again.

FIG. 3. Two-point aimless shooting move in the extended space of paths X and
shooting indices k. (1) The move starts with the current path Xo, shooting index ko,
and direction so that determine the position of the valid shooting indices. (2) The
first index shift is performed by selecting one of the two potential shooting indices
that generate k̂ o. The direction ŝ o is flipped as the alternative shooting index is
selected. (3) An extended space shooting move generates Xn and k̂ n. At the same
time, a new direction ŝ n is drawn that determines if the second potential shooting
point is on the forward or backward segment of the new path. (4) A second index
shift is performed, leading to kn with the corresponding direction sn. This shift is
required to ensure the reverse move is possible (tracing bottom to top).

This two-step procedure ensures that the path Xo and shooting
index ko can be generated from {Xn, kn

} in the reverse move. We
note that generation probabilities in Eqs. (27) and (28) and pgen(s)
are symmetric with probability 1/2 and, as a result, they cancel in the
acceptance criterion [Eq. (11)]. Hence, given the analogous form of
Eq. (11) derived in the supplementary material, we obtain

pacc[(Xo, ko
)→ (Xn, kn

)]

pacc[(Xn, kn
)→ (Xo, ko

)]

= HAB(Xn
)

p(kn
∣Xn
)

p(ko
∣Xo
)

. (29)

Hence, we are left with the ratio of the shooting index distribu-
tions, which are not included in the original algorithm.14 As a result,
accepting a path if HAB(Xn

) = 1 in a flexible-length setting violates
detailed balance, which is also apparent in the results of numeri-
cal simulations (see Sec. III). In the following, we choose a uniform
shooting index distribution p(k∣X) = 1/L(X) as it requires no prior
knowledge of the simulated system, such as an order parameter.
In that case, following the described two-step procedure, a prop-
erly weighted path ensemble can be obtained even a posteriori by
assigning each path a statistical weight of Ω(X) = 1/L(X) in the
case of a uniform shooting index distribution (see the supplementary
material for derivation).

H. Spring shooting
Inspired by the flexible-length aimless shooting scheme, the

spring shooting algorithm of Brotzakis and Bolhuis16 aimed to
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achieve a similar efficiency gain in a one-way shooting framework. In
this scheme, the displacement Δk from the previous shooting index
is chosen according to an exponential distribution, i.e., a Boltzmann
distribution based on a linear potential (constant force); hence, the
scheme is named spring shooting. We next reformulate the algo-
rithm in the shooting point MC framework (Fig. 4), beginning by
selecting the direction of the shooting move and assigning s = −1 for
a forward shooting and s = 1 for a backward shooting. Note that, in
this case, s is drawn freshly at the start of every trial, so it does not
need to be included in the extended space. The displacement Δk is
then sampled according to

π(Δk) =
min [1, exp (sσΔk)]

∑
Δkmax
τ=−Δkmax

min [1, exp (sστ)]
, (30)

where σ is the strength of the spring and Δkmax is the maxi-
mum displacement. Following the notation of flexible-length aimless
shooting, the shooting index k̂ o is set to ko

+ Δk. The generation
probability of the new shooting index becomes

pgen(k̂ o
∣Xo, ko

) =

⎧
⎪⎪
⎨
⎪⎪
⎩

π(k̂ o
− ko
) if ∣k̂ o

− ko
∣ ≤ Δkmax,

0, else.
(31)

Then, the new path Xn is generated starting from the configuration
at k̂ o. The index of the common point of Xn and Xo on the new

FIG. 4. Spring shooting move in the extended space of paths X and shooting
indices k. (1) The move starts with the current path Xo and shooting index ko. (2)
The first index shift generating k̂ o is performed by a weighted selection from neigh-
boring points (illustrated using color gradient). (3) An extended space shooting
move in the forward direction generates Xn and k̂ n. (4) A second index shift is per-
formed, leading to kn. This shift is performed with opposite weights [see Eq. (32)]
and is required to ensure that the reverse move is possible (tracing bottom to top).

path is denoted as k̂ n. As for aimless shooting, we then shift the new
shooting index k̂ n a second time by sampling a shift Δk from

π̃(Δk) =
min [1, exp (−sσΔk)]

∑
Δkmax
τ=−Δkmax

min [1, exp (−sστ)]
, (32)

which corresponds to the following generation probability:

pgen(kn
∣Xn, k̂ n

) =

⎧
⎪⎪
⎨
⎪⎪
⎩

π̃(kn
− k̂ n
) if ∣kn

− k̂ n
∣ ≤ Δkmax,

0, else.
(33)

This implies that, for a forward shot, first, the shooting index is
shifted preferably backward. After generating the new path, the new
shooting index is then generated by shifting, preferably forward.
This ensures that the move is reversible, and generation probabilities
are symmetric (see the supplementary material). Consequently, the
resulting acceptance ratio is identical to Eq. (29) and a distribution
for the shooting index must be defined.

In the original spring shooting algorithm proposed by Brotza-
kis and Bolhuis,16 the new shooting index kn is set implicitly to k̂ n,
the common point of the new and old path, i.e., the second shift-
ing is omitted. While this formulation of spring shooting allows the
reverse move in path space, i.e., regenerating the old path Xo from
the new path Xn, it does not regenerate the old shooting index ko

from kn. As a result, detailed balance is violated in the extended
space framework. As for flexible-length aimless shooting, the ratio of
shooting index distributions is not considered in the original form of
the sampling scheme. For spring shooting, however, a reweighting
factor for paths sampled without a defined shooting index distri-
bution cannot be derived, due to the irreversibility of the shooting
move in the extended space.

III. RESULTS AND DISCUSSION
As a reference for both fixed- and flexible-length path ensem-

bles, we perform long equilibrium simulations from which we
extract the transition path ensemble from spontaneous barrier cross-
ings. All simulations are run employing overdamped Langevin
dynamics in a one-dimensional, asymmetric double-well model
[Fig. 5(a)] with a potential energy defined as (all simulation
parameters in the supplementary material)

U(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

0.2(x − 1)2
[0.01(x − 1)2

− 1] if x < 1,

0.2(x − 1)2
[0.16(x − 1)2

− 4], else.
(34)

This barrier is about 5kBT high. We chose an asymmetric barrier
rather than a symmetric one to highlight differences in the obtained
shooting point distributions.

For the fixed-length path ensemble [Figs. 5(b) and 5(c)], we
compare the density of points on paths ρ(x∣TP) as in Eq. (13) with
the shooting point distribution as defined in Eq. (14). The density
of points in the transition region between states A and B decreases
for longer paths as less time is spent in the barrier region. As a
result, the points at L/2 ± Δk are less constrained to remain at the
barrier top, as the time at which the path leaves state A becomes
increasingly variable [Fig. 5(c)]. For the longest paths in these simu-
lations, there is hardly any difference between the density of points
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FIG. 5. Fixed-length transition path sampling using aimless shooting. (a) Potential energy function of the model system and the corresponding state definitions. (b) Density of
points on transition paths for different fixed path lengths. The dashed lines correspond to the reference from a long equilibrium simulation, and the solid lines correspond to
the density obtained via aimless shooting. (c) Shooting point distributions for aimless shooting (solid line) and the points at L/2 ± Δk on transition paths from the equilibrium
simulation (dashed lines).

at L/2 ± Δk and ρ(x∣TP). Since aimless shooting in a fixed-length
setting samples these points as shooting points, the performance of
the shooting scheme will depend on the chosen path length. For
long paths, both uniform, two-way, and aimless shooting initiate
shooting moves effectively from the same shooting point distribu-
tion. As the shooting index is drawn independently at each trial
and the shooting point distribution follows Eq. (25), the efficiency
of fixed-length aimless shooting arises from shooting close to path
centers, rather than from any restoring force that directs shooting
points toward the barrier top. For long path lengths, the acceptance
probability of the shooting move decreases, as shooting points are
more frequently drawn from the stable states rather than the barrier
region.

Within the flexible-length path ensemble, we observe that uni-
form two-way shooting converges to the reference ensemble, as
indicated by overlapping ρ(x∣TP) distributions and path length dis-
tributions p(L) (Fig. 6). The density of points at k denoted as

ρens(x)matches the reweighted density of points on paths [Eq. (17)]
obtained from the reference trajectory since shooting indices are
selected with a uniform p(k∣X) on each path. In contrast, flexible-
length aimless shooting as proposed by Mullen et al.14 and spring
shooting as proposed by Brotzakis and Bolhuis16 do not converge
to the reference, as shown in panels (a) and (c) of Fig. 6. Panel
(b) shows that the shooting points for spring shooting are much
more focused around the location of the barrier. While this is a
desired feature, it clearly gives rise to the wrong distribution of tran-
sition paths [panels (a) and (c)]. We note that the deviations from
the reference path ensemble are less apparent at higher barriers
(see the supplementary material), where the distribution of shooting
points is more localized for all methods. This is also the reason why
spring shooting appeared to produce seemingly converged results
in Ref. 16.

Including the shooting index distribution p(k∣X) in the accep-
tance probability and, for spring shooting, performing a second shift

FIG. 6. Flexible-length transition path
sampling using aimless shooting as pro-
posed by Mullen et al.14 and spring
shooting as proposed by Brotzakis and
Bolhuis16 (top row) and with the pro-
posed corrections (bottom row). (a) and
(d) Comparison of the density of points
on paths between the equilibrium ref-
erence (dashed line) and path sam-
pling algorithms. (b) and (e) Distribu-
tion of points after integrating out k
in the (X , k) extended ensemble for
the different path sampling algorithms.
The reference distribution was obtained
via reweighting the reference density in
panel A with a factor proportional to
1/L(X). (c) and (f) Distribution of path
lengths obtained using the different path
sampling schemes.
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of the shooting index recovers the convergence to the reference path
ensemble [panels (d)–(f) of Fig. 6). However, even though the meth-
ods differ in the way a new shooting index is drawn in each trial,
shooting moves are now initiated from the same points as in stan-
dard uniform two-way shooting since we impose the same shooting
index distribution. In addition, the small displacements of the shoot-
ing index in aimless and spring shooting introduce correlations
between shooting points that are absent in uniform one- or two-way
shooting. These correlations result in slow exploration of shooting
points away from the barrier top (see the supplementary material).
For flexible length aimless shooting and spring shooting, the shoot-
ing points were also generated disproportionately near the barrier
regions. To maintain this desired focus, small displacements of the
shooting points were performed in successive trials. This behavior is
partially retained in the revised algorithms in the early stages of sam-
pling, as the initial shooting index is often selected near the barrier
top. However, with the imposed uniform shooting index distribu-
tion, the shooting index occasionally drifts away from the barrier
to ensure full sampling of the entire index distribution. This leads
to low acceptance probabilities and extended sequences of rejected
pathways, until the index returns to the barrier top by multiple small
displacements in the right direction. The resulting persistent correla-
tions considerably lower the efficiency of the algorithm. In standard
TPS, on the other hand, the shooting index is redrawn independently
at each trial, allowing it to move away from and return to the barrier
instantaneously without such correlations.

IV. CONCLUSION
We have proposed a theoretical framework to describe tran-

sition path sampling in an extended ensemble that includes paths
and respective shooting indices. Revisiting algorithms that evolve
the shooting point from trial to trial, we derived detailed balance
equations for the extended ensemble, which led to corrections for
aimless and spring shooting in flexible-length settings. While the
deviation of path ensembles sampled via aimless shooting or spring
shooting from the correct path ensemble is system-dependent, our
experiments demonstrate a significant overlap in the distributions,
suggesting that previous studies may be critically assessed and qual-
itative conclusions may remain largely valid. With recent advances
in interface-based sampling schemes, such as stone skipping23 and
wire fencing,24 for transition interface sampling and virtual inter-
face exchange25 for transition path sampling, we anticipate further
development of shooting schemes for TPS that require minimal
information about the system of interest.

SUPPLEMENTARY MATERIAL

See the supplementary material for simulation details, addi-
tional derivations for various algorithms, an analysis of convergence
rates, and pseudo-codes for the TPS algorithms discussed in the
main text.
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