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Franziska Kühlhorn1., Matthias Rath1., Katrin Schmoeckel1, Katharina Cziupka2, Huu Hung Nguyen1,

Petra Hildebrandt3, Thomas Hünig4, Tim Sparwasser5, Jochen Huehn6, Christian Pötschke1",
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Abstract

The role of regulatory T cells (Tregs) in bacterial sepsis remains controversial because antibody-mediated depletion
experiments gave conflicting results. We employed DEREG mice (DEpletion of REGulatory T cells) and a caecal ligation and
puncture model to elucidate the role of CD4+Foxp3+ Tregs in sepsis. In DEREG mice natural Tregs can be visualized easily
and selectively depleted by diphtheria toxin because the animals express the diphtheria toxin receptor and enhanced green
fluorescent protein as a fusion protein under the control of the foxp3 locus. We confirmed rapid Treg-activation and an
increased ratio of Tregs to Teffs in sepsis. Nevertheless, 24 h after sepsis induction, Treg-depleted and control mice showed
equally strong inflammation, immune cell immigration into the peritoneum and bacterial dissemination. During the first
36 h of disease survival was not influenced by Treg-depletion. Later, however, only Treg-competent animals recovered from
the insult. We conclude that the suppressive capacity of Tregs is not sufficient to control overwhelming inflammation and
early mortality, but is a prerequisite for the recovery from severe sepsis.
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Introduction

Sepsis remains a major cause of death in intensive care units

worldwide [1]. Especially postoperatively acquired abdominal

sepsis due to intestinal leakage is still associated with a very high

lethality of about 60% [2].

During the last years, increasing attention has been directed at

the role of the adaptive immune system, since it became apparent

that T cells can strongly influence the course of the disease even in

the first days of sepsis [3–6]. One T cell subpopulation became a

major focus of interest: natural regulatory T cells (Tregs). These

cells have been shown to be of central importance for the

maintenance of immune homeostasis and self-tolerance. Their

ablation leads to catastrophic autoimmune disease in mice and

humans [7–10]. During infection Tregs can prevent excessive

immunopathology and increase survival under some conditions

[11–13], whereas in other circumstances the dampening effects of

natural Tregs may interfere with protective immune responses

[14–17]. Thus Tregs are a double-edged sword in infection,

limiting inflammation and collateral tissue damage at the price of

interference with bacterial clearance [15,17]. Therefore, as a

prerequisite for possible therapeutic intervention, it is important to

understand whether Tregs have a beneficial or deleterious impact

on the outcome of abdominal sepsis.

Yet, studies on Treg function in sepsis using CD25 to

characterize Tregs yield conflicting results. In the caecal ligation

and puncture (CLP) model of murine sepsis, Heuer et al. reported

improved survival after adoptive transfer of small numbers of ex

vivo activated CD4+CD25+ Tregs [18]. Following Treg depletion

with anti-CD25 mAbs, other groups observed no effect [19,20] or

even improved survival in murine sepsis [21]. One has to bear in

mind that CD25 is not exclusively expressed on Tregs but is

rapidly induced on naı̈ve T cells and T effector cells (Teffs) upon

activation. On the other hand, a significant proportion of Foxp3+

Tregs does not express CD25 [22–24]. The anti-CD25 antibody

(PC61), which has been used in many studies on Tregs, will not

deplete this Foxp3+CD252 subpopulation and is only partially

efficient in depleting CD25+ Tregs [25]. Furthermore, the

antibodies remain in the system for several days and could then

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e65109



affect Teffs, which become activated within hours upon sepsis

induction [3,26].

To overcome these experimental constraints, researchers have

recommended using the transcription factor Foxp3 as a marker for

Tregs when exploring how these cells shape the immune response

in sepsis [17,27]. It has been well documented, that Foxp3 is

selectively expressed by CD4+ regulatory T cells in the murine

system [28–33] as well as by a small subpopulation of CD8+ cells.

The latter have been attributed with a role in autoimmune

disorders [31–35], graft-versus-host disease [36–38] and they

suppressed immune responses against malignancies [39,40].

Foxp3+ cells are defined as bona fide Tregs in this manuscript.

We have taken advantage of DEREG mice (DEpletion of

REGulatory T cells), which express a primate diphtheria toxin

receptor fused to enhanced green fluorescent protein (eGFP) under

the control of the foxp3 promoter [9]. This enabled us to visualize

Foxp3+ Tregs ex vivo and to selectively deplete them in vivo. We

employed the caecal ligation and puncture (CLP) model of sepsis

to examine changes in Treg phenotype and function in

generalized bacterial infection. Similar to the human disease,

CLP causes rapid systemic inflammation as a consequence of the

continuous dissemination of endogenous gut bacteria [41].

After sepsis induction, Tregs were rapidly activated systemically

and showed enhanced suppressive capacity in vitro. However,

depletion of Foxp3+ Tregs did not change early mortality, but

decreased survival in late disease. Adoptive transfer of pre-

activated Tregs before sepsis induction did not improve the

outcome.

Materials and Methods

Animal experiments and ethics statement
DEREG mice were on a C57BL/6 genetic background. These

mice are heterozygous for a diphtheria toxin receptor-eGFP

construct under the control of the foxp3 promoter [9]. C57BL/6

wild type (WT) mice served as controls. The mice were housed in a

conventional, temperature-controlled animal facility with a 12-

hour light/12-hour dark cycle and provided with food and water

ad libitum. All experiments were performed according to the

German animal safety regulations and approved by the animal

ethics committee of the local animal protection authority (LALLF,

Landesamt für Landwirtschaft, Lebensmittelsicherheit und

Fischerei Mecklenburg-Vorpommern). During experimental pro-

cedures, the animals were provided with food and water ad

libitum. All efforts were made to minimize suffering.

Peritoneal sepsis model – caecal ligation and puncture
(CLP)

Female mice, 8–12 weeks old, were anaesthetized with

Ketamin/Xylazin (100 mg/10 mg per kg bodyweight). The

caecum was ligated 1.3 cm above the distal ending and punctured

once at the anti-mesenteric side with an 18 G needle. The mice

received 0.3 ml 0.9% NaCl i.p. for volume substitution.

Survival and disease severity were monitored every 3 h for 72 h

by an observer who was blinded for the treatments applied.

Disease severity was scored on the basis of (1) general appearance,

(2) breathing frequency, (3) spontaneous and (4) provoked

behaviour. Scoring points from 0 = healthy to 3 = severe

alteration were given for each item and then summed up [42].

If the mice reached a severity score that indicated a disease point

of no return, these mice were euthanized by cervical dislocation

under deep anaesthesia.

Depletion of regulatory T cells
For in vivo Treg depletion, 1 mg diphtheria toxin (DT; Merck,

Darmstadt, Germany) dissolved in 100 ml phosphate buffered

saline (PBS) was administered intravenously to DEREG mice on

days 22 and 21 before the CLP operation. Depletion of the Treg

cell population was confirmed by flow cytometry and histology

and reached an efficiency of about 95% in the spleen, mesenteric

lymph node, thymus, and blood (Figure S1).

Determination of the bacterial load
24 h after CLP, the mice were put into deep anaesthesia and

sacrificed by cervical dislocation. Spleen and liver were obtained.

The homogenized organ suspensions were incubated on Columbia

blood agar (Becton Dickinson, Heidelberg, Germany) for 22 h at

37uC. Bacterial colonies were enumerated and related to organ

weight.

Antibodies for flow cytometry
Peritoneal lavage and spleen cell suspensions were obtained as

described before [3]. The following fluorochrome-labelled or

unlabelled antibodies were purchased from BD Biosciences

(Heidelberg, Germany): aCD4 (RM4–5), aCD69 (H1.2F3),

hamster aCTLA-4 (UC10-4F10-11), aLy6G (1A8), aCD11b

(M1/70), a biotinylated cocktail of mAbs against Armenian and

Syrian hamster IgG, and aCD11c (HL3). Antibodies directed

against MHC-II (M5/114.15.2), CD3 (145-2C11), F4/80 (BM8),

CD25 (PC61.5) and CD19 were from eBioscience (Hatfield, UK).

For intracellular Foxp3 staining, we used Foxp3-mAb (3G3) and

the FoxP3-Staining Buffer Set from MiltenyiBiotec (Bergisch

Gladbach, Germany). Streptavidin-Alexa647 was obtained from

Invitrogen.

Cytokine expression
To determine serum concentrations of IL-6, TNFa, MCP-1,

IFN-c, IL12p70, and IL-10, a mouse inflammation cytometric

bead array kit (BD, San Diego, USA) was used according to the

manufacturer’s instructions.

Isolation of Tregs, Teffs and antigen presenting cells
Splenic CD4+ T cells from DEREG mice were negatively

selected by magnetic cell sorting (MACS) with the CD4+ T cell

isolation Kit II, MACS MiltenyiBiotec. Afterwards the eGFP-

expressing Tregs and the eGFP-negative Teffs were sorted with a

fluorescence-activated cell sorter (FACS), FACSAria. In general

we obtained Tregs of about 98% purity and .70% viability. Teff

purity was about 95% and viability was 94% (Figure S2 A and B).

CD11c+ antigen-presenting cells (APC) with a purity of 93%

(Figure S2C) were isolated with the CD11c-Microbeads-Kit,

MiltenyiBiotec. Before seeding the APC onto culture plates, they

were irradiated with 30 Gray.

Adoptive transfer of activated Tregs
DEREG mice received 250 mg of a superagonistic anti-CD28

monoclonal antibody (aCD28 SA, clone D665) in the lateral tail

vein three days before they were sacrificed under deep anaesthesia

by cervical dislocation and their spleens explanted. aCD28 SA has

been shown to increase Treg numbers and activation status [43].

In vivo pre-activated Tregs as well as Tregs and Teffs from

untreated animals were isolated as described above. 36105 cells

were transferred into the lateral tail vein of female C57BL/6 mice

directly before CLP.

Role of Tregs in Murine Abdominal Sepsis
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Proliferation assay
56104 isolated Teffs were co-incubated for 72 h with 16104

irradiated APC, varying numbers of Tregs and 1 mg/ml soluble

anti-CD3 antibody (eBioscience). 3H-Thymidine was added for

the last 17 h of culture, and incorporation was measured in counts

per minute (cpm).

Statistical analysis
Statistical analyses were performed using GraphPad Prism 5 for

Windows (GraphPad software, San Diego, CA, USA). Survival

was analysed with Kaplan-Meier survival curves and compared

with the log rank test. Bacterial loads, cytokine concentrations and

expression of activation markers were assessed for significant

differences using ANOVA with Bonferroni posttest for selected

pairs. Differences in the suppressive capacity of Tregs isolated

from septic vs non-septic animals were compared with a non-

parametric t-test. P-values ,0.05 were considered to be signifi-

cant.

Results

Activation of Foxp3+ Tregs and Foxp32 Teffs in sepsis
To address the impact of sepsis on natural Tregs, we subjected

DEREG mice to CLP and measured the proportion of Foxp3+

cells in the CD4+ T cell population. Twenty-four hours after sepsis

induction, the percentage of CD4+Foxp3+ splenocytes was

significantly increased (Figure 1A). As previously observed in

Figure 1. CLP rapidly activated CD4+T cells and increased the percentage of the Foxp3+ Treg subpopulation. DEREG mice were
subjected to 18G CLP or left untreated. Twenty-four hours later the percentage of Foxp3+ cells in the CD4+ T cell subpopulation and the absolute
numbers of CD4+Foxp3+ and CD4+Foxp32 cells of the spleen were determined (A). In addition, the expression of the activation markers CTLA4, CD69,
and CD25 on Foxp3+ Tregs (B) and Foxp32 Teffs (C) was assessed (GMFI, geometric mean fluorescence intensity). The means are indicated. n = 5 mice/
group. * p,0.05; ** p,0.01.
doi:10.1371/journal.pone.0065109.g001

Role of Tregs in Murine Abdominal Sepsis
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human and murine sepsis [44,45], this shift in the Treg/Teff ratio

was probably due to the relative resistance of Tregs to apoptosis

[44,46] rather than to Treg expansion because the total number of

CD4+Foxp3+ Tregs in the spleen was not significantly altered (data

not shown). In addition, Tregs strongly upregulated the markers

CTLA-4, CD69 and CD25, indicating that they were activated

within hours after sepsis induction (Figure 1B). The Foxp32 Teffs

were also rapidly activated (Figure 1C).

Tregs increased their suppressive potential in sepsis
Some groups have reported enhanced suppressor activity of

Tregs 24 h after sepsis induction [19], while other groups did not

find changes in suppressive Treg activity earlier than three days

after sepsis [20,47]. We observed significantly enhanced suppres-

sor activity in in vitro co-culture assays already 24 h after CLP.

Foxp3+ Tregs from septic mice potently suppressed the activation

of Teffs from both untreated and septic animals. The relative

increase of suppressor activity was most pronounced when Teffs

from septic mice were targeted (Figure 2) clearly showing that

during sepsis Teffs did not become inherently resistant to the

inhibitory effects of Tregs.

Treg depletion reduced sepsis survival
To test how these activated suppressive Foxp3+ Tregs influence

the outcome of sepsis, we depleted Tregs from the system before

sepsis induction. In contrast to other studies worldwide, we did not

use a depleting antibody, but treated DEREG mice with DT to

selectively deplete Tregs. DT-treated C57BL/6 WT mice served

as controls.

Both groups showed similar survival kinetics until 36 h post-

CLP (Figure 3A). Thereafter, the curves split. 25% of Treg-

competent but only 5% of Treg-depleted animals survived. This

was mirrored by the disease severity. After 36 h Treg-competent

animals began to recover, while Treg-depleted animals continued

to deteriorate (Figure 3B).

Treg depletion did not alter peritoneal leukocyte
migration, bacterial clearance or serum cytokine
production

Twenty-four hours after CLP we measured an increase of

peritoneal cell content (Figure 4A). This was mainly due to an

increase of absolute neutrophil and inflammatory monocyte

counts, while flow cytometric analysis revealed a decrease of B

cells and resident peritoneal macrophages. There was no

difference between Treg-depleted and non-depleted mice

(Figure 4B–E). The bacterial loads in spleen and liver (Figure 5)

as well as the proinflammatory serum cytokine concentrations,

which strongly increased following CLP, were also indistinguish-

able between Treg-depleted and non-depleted mice (Figure 6).

Adoptive transfer of pre-activated Tregs did not alter
survival after sepsis

In sepsis Tregs became activated and showed enhanced

suppressive capacity. However, in vivo they were not able to

improve mortality at early time points. We wondered whether an

adoptive transfer of pre-activated Tregs could support endogenous

Tregs in suppressing hyperinflammtion in the early phase. Since

activation of purified Tregs in vitro led to pronounced apoptosis

([48] and not shown), we pre-activated Tregs in vivo by

administering 250 mg of a CD28 superagonistic antibody to

DEREG mice. Within three days, this treatment increased the

number of splenic Foxp3+ Tregs threefold and strongly activated

the cells (Figure S3A, B). In a two-step isolation procedure (see

materials and methods), the eGFP+ splenic Tregs were enriched to

.95% purity. They were .70% viable and had increased

suppressive potential when co-cultured with Foxp32 Teffs from

untreated animals (Figure S3C). In vivo pre-activated Tregs (36105)

were adoptively transferred (i.v.) into WT mice immediately after

purification and directly before CLP-surgery. Control mice

received untreated Tregs or Teffs. The adoptively transferred

pre-activated Tregs did not significantly alter CLP survival

(Figure 7).

Figure 2. Foxp3+ Tregs maintained their suppressive capacity after CLP. CD4+Foxp32 Teffs (56104) were isolated 24 h after 18G CLP (A) or
from untreated C57BL/6 mice (B) and co-incubated at the given ratios with CD4+Foxp3+ Treg isolated from CLP-treated (filled bars) or untreated
DEREG mice (open bars). They were cultured for 72 h in the presence of 16104 irradiated APCs and 1 mg/ml soluble anti-CD3 antibody. 3H-Thymidine
was added for the last 17 h of culture, and incorporation was measured as counts per minute (cpm). Cpm of Teff without Treg was set to 100%.
Means +/2 SEM are indicated. One of two independent experiments with similar results is shown. Differences between the suppressor activity of
Tregs from septic and non-septic mice were tested for significance at each effector-suppressor ratio (t-test). * p,0,5; *** p,0.001.
doi:10.1371/journal.pone.0065109.g002
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Discussion and Conclusion

Experiments with CD25-specific antibodies for depleting

Foxp3+ Tregs have yielded conflicting results in sepsis studies

[19–21]. Conclusions from these studies are limited because, on

one hand activated Teffs also express CD25, and on the other

hand many Tregs do not express CD25. Therefore, we opted for

DEREG-mice who at present are the best available experimental

system to visualize Foxp3+ Tregs and deplete them selectively

without the need for antibodies.

In DEREG animals, depletion of Foxp3+ Tregs by DT was

almost complete (92–98%). Not surprisingly it has been shown that

Figure 3. Treg-depletion augmented disease severity and decreased survival in CLP-treated mice. DEREG and C57BL/6 mice pre-treated
with DT (1 mg in 100 ml PBS i.v. on days 22 and 21) were subjected to CLP. Survival was monitored for 5 days (A) and disease severity was scored for
3 days (B) by an observer blinded for the group assignment. Data from four independent experiments with similar results are summarized (each
experiment involved 8–11 mice/group). Median and interquartile range of the disease severity score are shown in panel B; ** p,0.01.
doi:10.1371/journal.pone.0065109.g003
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Figure 4. Depletion of Tregs did not alter cell migration into the peritoneum. DEREG and C57BL/6 mice pre-treated with DT (1 mg in 100 ml
PBS i.v. on days 22 and 21) were subjected to CLP (n = 7–9 mice/group) or left untreated (n = 5 mice/group). Cells from the peritoneal cavity were
harvested by peritoneal lavage 24 h after CLP. The total number of cells was enumerated and related to volume of recovered lavage fluid (A). The
numbers of B cells (CD19+) (B), neutrophils (Ly6G+) (C), peritoneal macrophages (F4/80+CD11b+MHCII+) (D) and inflammatory monocytes (F4/
80-CD11b+MHCIIlo) (E) was assessed via flow cytometry. Means are shown.
doi:10.1371/journal.pone.0065109.g004

Figure 5. No influence of Treg depletion on bacterial dissemination in CLP-treated mice. DEREG and C57BL/6 mice pre-treated with DT
(1 mg in 100 ml PBS i.v. on days 22 and 21) were subjected to CLP (n = 3–7 mice/group) or left untreated (n = 3–5 mice/group). Liver and spleen were
recovered from Treg-depleted and non-depleted mice 24 h after CLP. Tissue homogenates were incubated on Columbia blood agar for 22 h at 37uC.
Colony-forming units (CFUs) were related to organ weight. Means are shown.
doi:10.1371/journal.pone.0065109.g005
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Foxp32 Tregs are unaffected [9,49,50], which limits the scope of

this study. Control WT mice were not affected by DT treatment.

Using a similar sepsis model, the colon ascendens stent peritonitis

[42], we have compared two types of controls, WT mice receiving

DT and DEREG mice treated with saline only, and did not

observe differences regarding immune cell immigration into the

peritoneum, bacterial dissemination nor serum cytokine concen-

trations (unpublished observation).

The vast majority of the depleted Foxp3+ cells are CD4+ bona

fide Tregs. A contribution of Foxp3+ CD8+ T cells to the resolution

of sepsis symptoms cannot be excluded but is probably minor, as

they make up 0.1–0.4% of the CD8+ T cell pool and only 2% of

the total Foxp3+ population [51]. Furthermore, Foxp3+ CD8+ T

cells apparently lack potent suppressive capacity in vitro, even

though they share phenotypic features with classical CD4+ Tregs

[51].

An additional concern was the potential influence of cell death.

Although the clinical picture of diphtheria is associated with

necrosis, DT acts by inhibiting protein biosynthesis and, as a

result, apoptotic cell death without inflammation [26,52].

Hotchkiss et al. showed that apoptotic cells have a mild negative

influence on sepsis outcome, which was accompanied by a

reduction of IFNc secretion following ex vivo stimulation of

splenocytes and also by severely impaired bacterial eradication

[53]. None of this was observed in our system following Treg

depletion. Bacterial dissemination was not affected during the first

24 h of sepsis, and serum concentrations of inflammatory

cytokines, including IFNc, either did not change, or they were

in tendency increased in Treg-depleted septic animals.

In our CLP model of severe abdominal sepsis (75% lethality at

day 5), Foxp3+ Tregs became activated within 24 hours and

displayed enhanced in vitro-suppressive function, which corrobo-

rated our previous findings and those of Scumpia et al. [3,19].

Moreover, Teffs from septic animals did not become inherently

resistant to the inhibitory effects of Tregs as they were even more

readily suppressed ex vivo than Teffs from untreated controls. In

agreement with the observations of other groups, the ratio between

Foxp3+ Tregs and Foxp32 Teff cells was significantly shifted

towards Tregs [19,27,44,54], but the absolute numbers of splenic

Tregs did not change. Apparently, the increase in the Treg

proportion in sepsis is mainly due to their relative resistance to

lymphocyte apoptosis as has been well documented in humans and

mice [44,45,55–58]. In contrast, many Teffs underwent cell death.

It may be speculated that the increased responsiveness to Treg

inhibition ex vivo characterizing Teffs from septic animals could be

the result of Teff selection by cell death. Peripheral conversion of

Teffs into induced Tregs may also increase the relative Treg

numbers. Under our conditions, however, this appears less likely

because in vitro experiments have shown that Treg induction takes

more than 48 h [59–61]. Also, Foxp3 expression in induced CD8+

Tregs is reported to be rather unstable [51].

Thus one day after sepsis induction Foxp3+ Tregs were strongly

activated, increased in proportion relative to Teffs and their in

vitro-suppressive capacity was enhanced. Nevertheless, Treg

depletion did not alter the early course of the disease in our

severe CLP model. Later, however, Foxp3+ Tregs were protective

and improved survival from only 5% in depleted animals to 25%

in Treg-competent mice. Between one and two days after CLP,

Figure 6. Serum cytokines in CLP-treated mice. DEREG and C57BL/6 mice pre-treated with DT (1 mg in 100 ml PBS i.v. on days 22 and 21) were
subjected to CLP or left untreated. Twenty-four hours later serum cytokine concentrations (IL6, IL10, MCP-1, IFNc, TNFa and IL12p70) increased in
septic animals, but there were no differences between Treg-depleted and non-depleted septic mice. Means are indicated; n = 5–9 mice/group.
doi:10.1371/journal.pone.0065109.g006

Figure 7. Adoptive transfer of in vivo activated Tregs did not improve survival after CLP. DEREG mice received 250 mg CD28 SA i.v. three
days before their spleens were explanted and in vivo pre-activated CD4+Foxp3+ Tregs were isolated. 36105 of those cells were adoptively transferred
into female C57BL/6 recipients (i.v.). (i) Untreated CD4+Foxp3+ and (ii) untreated CD4+Foxp32 cells were transferred as controls. 18G CLP was
performed immediately after the cell transfer and survival was monitored every three hours for three days. The Kaplan-Meier survival curves are
shown. n = 10–11 mice/group.
doi:10.1371/journal.pone.0065109.g007
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Treg-competent survivors began to recover, whereas disease

symptoms continued in the Treg-depleted animals.

Why did Tregs not alter survival on the first day after CLP or

dampen the proinflammatory cytokine response in this study,

although, after removal from the septic microenvironment and

three days in cell culture, they displayed enhanced suppressor

activity? In sepsis the organism is flooded with large amounts of

bacterial compounds that function as microorganism-associated

molecular patterns (MAMPs). Such ligands of pattern recognition

receptors on immune cells may modulate immune suppression

either directly or indirectly. Regarding direct effects, there is

controversy about how TLR ligation affects Treg function [62–

65]. This can be (partially) explained by the kinetics of events. For

example, TLR2 triggering transiently reduced the suppressive

capacity of Tregs, but after the signal had declined, the cells

regained suppressor activity [66,67]. Even more important for

Treg function could be indirect effects of inflammatory cytokines,

such as TNFa and IL6, which are released by immune cells

following MAMP stimulation [68]. In combination these cytokines

impair the suppressive function of Tregs [69–71]. Upon removal

of the microbial compounds and cytokines, the suppressor activity

of Tregs is restored or even enhanced [69]. On the other hand,

activated Tregs might face overwhelming inflammation in sepsis

rendering immune cells refractory to suppression, or the activated

Tregs are simply outnumbered by activated (innate) immune cells.

We therefore adoptively transferred activated Tregs similar to

Heuer et al. [18], who used in vitro-activated Tregs. Since in our

hands isolated Foxp3+ Tregs rapidly died in cell culture

corroborating the reports of Zeng and co-workers [48], we

decided to activate the Tregs in vivo using a CD28 superagonistic

monoclonal antibody [43]. In this manner we avoided the well-

documented effects of necrotic and/or apoptotic cells on the

course of the disease [53,72,73]. After pre-activation in DEREG

mice, the brightly fluorescent Foxp3+ cells could be enriched to

very high purity and immediately transferred into the experimen-

tal animals at good viability. The transferred cells had a

remarkable suppressive potential in cell culture (Figure S3), but

they did not alter the fate of animals subjected to CLP. Whereas

Heuer and co-workers reported a protective effect with as few as

36104 in vitro activated CD4+CD25+ Tregs [18], in our

experiments even the transfer of 36105 in vivo pre-activated

Foxp3+ Tregs did not improve survival. This could be due to a loss

of the pre-activated state of exogenous Tregs upon adoptive

transfer into septic animals or a refractory state of endogenous

immune cells.

It appears that in severe sepsis, activated Foxp3+ Tregs were

initially overwhelmed by inflammatory stimuli. Later in the

disease, however, Tregs had a significant protective effect. These

findings support the model of ‘‘tuned suppression’’, namely the

idea that in a highly inflammatory microenvironment even

activated Tregs transiently lose their suppressive influence, thus

enabling a powerful antimicrobial defence [69,74]. Later, when

the initial cytokine storm has significantly decreased, Tregs regain

their suppressive influence and dampen inflammatory effector

mechanisms thereby minimizing host tissue damage [75–79]. Our

results show that this is important for the recovery from severe

sepsis.

In summary, Treg-depletion worsened late survival, hence

implying a beneficial role for Foxp3+ Tregs in severe sepsis.

Supporting Information

Figure S1 Efficiency of in vivo Treg depletion. Female

DEREG mice received 1 mg DT solute i.v. on two consecutive

days before readout or CLP. Control mice received PBS.

Splenocytes (A) and blood leukocytes (B) were analysed by flow

cytometry for Foxp3 expression in CD4+ T cells. Cryosections

from mesenteric lymph node (C) and thymus (D) were analysed for

CD4 (red) and Foxp3 (green) expression with a fluorescence

microscope. The DT treatment ablated around 95% of the

Foxp3+ T cells. Results from one representative animal are shown.

(PPTX)

Figure S2 Purity of the isolated Tregs, Teffs and APCs.
The increased purity of Tregs and Teffs after MACS column-

based negative CD4+ T cell enrichment and flow cytometric

sorting is shown in A. Foxp3+ Treg preparations were about 98%

pure, 70% of the cells were viable (B). Foxp32 Teffs had a purity

of 95% with a viability of 94% (B). APCs were sorted with MACS

columns based on CD11c. Preparations were 90% CD11c+ cells

(C). For purity and viability staining, the following reagents were

used: CD4-Alexafluor647 (Gk1.5), CD11c-FITC (HL3) and an

AnnexinV-PE apoptosis detection kit from BD Biosciences.

(PPTX)

Figure S3 CD28 SA-mediated activation of Tregs in
vivo. DEREG mice received 250 mg CD28 SA i.v. three days

before their spleens were explanted and CD4+Foxp3+ Tregs

isolated. Control mice were left untreated or received an isotype

control antibody (MOPC-31C). CD28 SA treatment increased the

numbers of splenic Tregs and Teffs (A) and increased CTLA-4

expression by Tregs (B). To test for functional activity (C), 56104

untreated CD4+Foxp32 Teffs were co-incubated at the given ratio

with CD4+Foxp3+ Tregs that were either untreated (open bars) or

pre-activated with CD28SA in vivo (filled bars). They were co-

cultured for 72 h with 16104 irradiated APC and 1 mg/ml soluble

anti-CD3 antibody. 3H-Thymidine was added for the last

17 hours of culture. 3H-Thymidine incorporation (cpm) of Teffs

without Tregs was set to 100%. In vivo CD28 SA treatment

markedly increased the suppressive potential of the Tregs. One out

of two experiments with similar results is depicted. Means +/2

SEM are shown.

(PPTX)
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