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∙ We analyze the effect of renewables on volatility spillovers in electricity markets.

∙ France and Germany are the main net transmitters in European electricity markets.

∙ Solar power reduces spillover risks to domestic markets.

∙ Other renewables, especially wind and hydro power, enhance market connectedness.
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S U M M A R Y

To address climate change, the EU is rapidly increasing renewable energy in its electricity mix. While supporting 

decarbonization, this transition raises concerns about market stability, particularly regarding price volatility and 

price jumps. This study investigates how renewable energy integration impacts volatility spillovers in European 

electricity markets using the Diebold-Yilmaz spillover index and a dynamic rolling window analysis.

The results reveal a sharp decline in volatility spillovers during the COVID-19 pandemic, followed by a peak 

during the geopolitical tensions surrounding the Ukraine crisis in early 2022. Regionally, France and Germany 

emerge as net transmitters of risk, whereas Spain, Italy, and Nordic countries primarily act as net receivers. 

Regression analyses yield robust evidence that increased total load and shares of other renewables, such as 

biomass, geothermal, and hydro, heighten market connectedness, while wind and solar power have limited effects 

on overall spillovers. These findings challenge the conventional belief that renewable energy generally increases 

market volatility. Instead, our results indicate that solar power can mitigate risk transmission across markets, 

suggesting that increased solar power integration has the potential to reduce volatility spillovers. The study pro-

vides critical insights for policymakers seeking to balance renewable energy expansion with electricity market 

stability.

1. Introduction

Addressing climate change necessitates the decarbonization of the 

energy sector, which accounts for a significant portion of the EU’s green-

house gas emissions, see [22]. Consequently, there has been a significant 

increase in the share of renewable energy sources within the total elec-

tricity production mix in recent years, a trend expected to persist in the 

coming decades.

However, integrating a substantial proportion of renewable energy 

sources raises concerns about market stability, notably the potential for 

increased price jumps and greater price volatility, according to [5]. 

The intermittent nature of renewable energy sources, in contrast to 

the more consistent output from conventional sources like nuclear or

fossil fuels, is a source of uncertainty on the intermittent and volatile 

production of renewable assets that could cause supply–demand im-

balances, instability in the electricity grid, and more volatile pricing 

behavior, see [8]. This inconsistency, coupled with the challenges of 

electricity storage, may lead to heightened market uncertainty, thereby 

escalating price volatility and risk. Moreover, through cross-border 

electricity trading, changes in the share of renewable energy in one 

country can induce volatility in its market, potentially spilling over into 

neighboring markets – even those that rely on more stable generation 

technologies. Despite these observations, the extent to which the rise in 

renewable energy sources influences volatility spillovers in integrated 

electricity markets remains uncertain. This study aims to elucidate the 

dynamics between renewable energy integration and market volatility
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spillovers, providing insights into the broader implications of Europe’s 

green transition.

While the existing literature predominantly explores the direct im-

pact of weather and renewable energy on electricity prices or on elec-

tricity price volatility, few studies address the determinants of spillover 

effects across countries, which is an increasingly relevant topic given 

the substantial differences in how nations deploy renewable energy. 

For instance, France relies heavily on nuclear energy, Norway on hy-

dropower with storage, and Denmark primarily on wind energy, see 

Fig. 1. Despite these differences, the integration of European electric-

ity markets and the expansion of cross-border electricity trading allow 

countries to balance local surpluses and deficits in electricity supply. 

However, this very interconnectedness also implies that volatility driven 

by the intermittency of renewable energy in one country may spill 

over into others, potentially amplifying fluctuations across the broader 

market.

A number of studies have explored related aspects in the literature; 

however, the majority focus on country-specific dynamics, analyzing the 

impact of renewable energy or weather conditions on domestic electric-

ity prices or volatility. In particular, [41,42,49] highlight the impact of 

weather on electricity prices, whereas [5,8,20,37,38,40] detect that re-

newable energy significantly reduces energy prices. Moreover, [5,6,12, 

23,24,31,33,45–47] focus on the relationship between renewable energy 

and price volatility. Regarding the connectedness of electricity markets, 

[36,48,51] analyze the volatility spillover effects in European markets, 

whereby only [36] investigate potential determinants of spillover ef-

fects, focusing on the impact of economic policy uncertainty on total 

market connectedness.

However, none of these studies directly addresses how renewable 

energy sources contribute to the spillover effects across electricity mar-

kets. This gap underscores the novelty of the present research, which 

aims to specifically analyze the impact of increasing renewable energy 

shares on volatility spillovers across European electricity markets – an 

aspect that has yet to be thoroughly explored. Hereby, we explicitly dif-

ferentiate between various types of renewable energy, including solar, 

wind, and other sources such as hydropower, biomass, and geothermal 

energy, to capture their potentially distinct effects on spillover dynam-

ics. In particular, this study contributes to the literature by examining 

volatility spillovers in European electricity prices across nine markets 

using the Diebold-Yilmaz spillover index, as outlined by [16], following 

a methodology similar to that applied by [36].

The overall total volatility spillover index is found to be 60.50 %, 

indicating that more than half of the future volatility in European 

electricity systems can be attributed to volatility shocks spreading 

across different markets. The dynamic analysis using a rolling window 

technique uncovers a decrease in the total spillover during the onset 

of the COVID-19 pandemic, whereas the total spillover peaked in early 

2022, coinciding with the onset of military actions in Ukraine, under-

scoring the impact of geopolitical events on market volatility. In terms of 

regional contributions, France and Germany are identified as major con-

tributors to spillover, consistently acting as net transmitters of volatility 

throughout the period considered, whereas Italy, Spain and the Nordic 

countries primarily receive risks. Hereby, Denmark became a net trans-

mitter around 2020, indicating an increasing role in spreading risks. In 

contrast, Estonia, Finland, and Sweden, previously net transmitters, have 

recently turned into net receivers. This shift highlights the impact of ma-

jor economic events on electricity demand and market interconnections

over time.

To the best of our knowledge, this is the first study to examine the 

impact of renewable energy sources on spillover effects in electricity 

markets. Using regression techniques similar to [36], we investigate the 

factors influencing volatility spillovers across European electricity mar-

kets. While considering the potential effects of energy prices and total 

electricity load, the study primarily focuses on the role of renewable 

energy proportions in shaping these dynamics. The findings reveal that 

total spillover tends to increase during periods of higher total load or 

when the share of other renewable technologies – including biomass, 

geothermal, and hydro – rises, whereas energy prices have a limited 

impact on market connectedness.

The panel regression results further clarify the impact of renewables 

on spillover effects – both transmitted (“to others”), received (“from 

others”), and net spillovers – while controlling for country-specific ef-

fects. Consistent with the findings for the total spillover index, higher 

system load increases the risk transmitted to other markets, with ris-

ing oil prices amplifying these effects. Similarly, volatility spillovers 

from other countries intensify with higher gas prices, economic growth, 

and a larger share of other renewable technologies. In contrast, higher 

emission allowance prices and an increasing share of solar power demon-

strate stabilizing effects by reducing risks received from other markets. 

These findings challenge the common perception that greater renewable 

energy integration inevitably heightens market volatility. This study 

contributes to the literature by analyzing the impact of renewable en-

ergy sources on volatility spillover effects across European countries,

Fig. 1. Overview of technology mix in Switzerland (CH), Germany (DE), Denmark (DK), Spain (ES), Estonia (EE), France (FR), Greece (Gr), Hungary (HU), Italy (IT), 

Norway (NO), Poland (PL) and Sweden (SE).
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shifting the focus from country-specific volatility to cross-border dynam-

ics. Notably, it highlights the risk-mitigating potential of solar power in 

reducing these spillover effects.

The remainder of this paper is organized as follows: Section 2 reviews 

the relevant literature on determinants of electricity market dynamics, 

while Section 3 briefly introduces the methodological concepts used. 

Sections 4 and 5 present the empirical analysis and findings, respectively 

and finally, Section 6 concludes.

2. Literature review

An important aspect in understanding market dynamics amidst the 

EU’s green transition is the impact of renewable energy on electricity 

markets. Existing literature predominantly explores the direct impact of 

weather and renewable energy on electricity prices, however, the major-

ity focus on country-specific aspects, whereas only few studies address 

the determinants of spillover effects across countries.

Beginning with the literature on the direct impact of renewable 

energy on electricity prices, analyses such as those by [41,42,49] un-

derscore the influence of weather on electricity market dynamics in the 

Netherlands, Nord Pool market and Germany, respectively, highlighting 

renewable energy’s role in price setting within country-specific markets, 

as weather conditions affect not only the demand but also the supply of 

electricity.

Cevik and Ninomiya [8] extend this to demonstrate how renew-

able energy influences prices in Europe, using a panel of 24 European 

countries over the period 2014 to 2021. Hereby, they underline that re-

newable energy is associated with a significant reduction in wholesale 

electricity prices across Europe. In addition, [5] focus on the impact of 

renewable energy on price jumps and volatility in Spain from 2001 to 

2013. Hereby, they find a statistically significant negative relationship 

between the share of renewable generation and the day-ahead market 

marginal prices. Similarly, [38,40] report that wind power and photo-

voltaics (PV) exert a negative impact on price levels in Germany during 

the periods 2015 to 2018 and 2010 to 2017, respectively. Additionally, 

[37] confirm the negative impact of wind power in the Swedish bid-

ding zone, supporting the Merit-Order Effect for the period 2016 

to 2019.

In contrast, [7] detect that the strong expansion of photovoltaics in 

Germany was not the primary driver of the decline in German wholesale 

electricity prices during the period from 2011 to 2015. In this line, [27] 

observe only a mild price dampening effect of renewable energy sources 

on the formation of day-ahead electricity prices in the German market 

from 2010 to 2014, while [43] detect modest spill-over effects of the 

German Energiewende on the Dutch electricity market. Furthermore, 

using a parsimonious fundamental model, [32] demonstrate in their 

case study for Germany that emission prices have a larger impact on 

power prices than renewable energy penetration. However, [20] em-

ploy a quantile regression model and demonstrate that forecasted wind 

production significantly influences both high and low electricity prices 

in Germany during the period from 2015 to 2018. Hosius et al. [30] 

analyze the distinct effects of onshore and offshore wind power on 

wholesale electricity prices in Germany, Western Denmark, and Great 

Britain from 2015 to 2018. They conclude that offshore wind energy 

generally has a stronger tendency to reduce both price levels and price 

volatility compared to onshore wind feed-in.

While the aforementioned studies primarily examine the country-

specific effects of renewable energy on electricity prices, a more limited 

strand of the literature investigates its impact on price volatility, also 

predominantly within national contexts. Hereby, [5] identify a positive 

relationship between renewable energy and price volatility in Spain. 

Similarly, [6,24] confirm the volatility-enhancing effect of wind power 

in the UK market, while [33,45] report similar associations for the 

Iberian region and Germany, respectively. Conversely, [46] present a 

more nuanced view, finding that while wind power increases price

volatility in Germany, it reduces volatility in Denmark. Their analysis 

also highlights that solar power tends to stabilize prices. In contrast, 

[39] provide evidence that nuclear power acts as a hedging asset against 

electricity price volatility.

Expanding to a broader perspective, [31] conduct a panel analysis 

of 19 countries and identify an overall positive impact of wind and 

solar power on electricity price volatility. This finding is supported by 

[12,47] for Italy, as well as [23] for the Iberian region. However, these 

studies primarily concentrate on the effects within individual electricity 

markets, rather than on cross-border volatility spillovers.

While numerous studies examine spillover effects across electricity 

markets, they often focus solely on quantifying the spillovers them-

selves, with little attention given to the underlying drivers. As a result, 

the determinants of changes in volatility spillovers remain largely unex-

plored. Research such as [2,28,44] focuses on volatility spillovers within 

Australian markets, while [29] explores connectedness in Asian utility 

sectors. Similarly, [18,25] analyze spillovers in Great Britain and be-

tween German and French markets, respectively, and [35,50] examine 

the Nordic electricity wholesale markets. In addition, [11] investigate 

spillovers from the natural gas market to European electricity markets, 

and [52] analyze how climate risks propagate into European electricity 

markets.

Building on these regional and sector-specific analyses, several stud-

ies directly investigate the connectedness and spillover effects within 

the broader European electricity markets. Notably, [19,36,48,51] focus 

on examining the dynamics of interconnected electricity markets across 

Europe. Building on a quantile connectedness framework, [19] explore 

return interlinkages across eleven major European electricity markets, 

along with natural gas and carbon markets. Their analysis highlights 

that systemic events affect interconnectedness differently: the COVID-19 

pandemic led to a decline in return linkages, whereas the Russia-Ukraine 

conflict amplified shock transmission across markets. Moreover, [48] 

focus on 26 European electricity markets. Using a time-varying param-

eter vector autoregressive model (TVP-VAR), they detect an increase in 

volatility spillovers over the period from 2007 to 2022, highlighting the 

strong interconnectedness of European electricity markets. Moreover, 

the markets of Germany, France, and the Netherlands are the main net 

transmitters, while the Spanish and Portuguese markets are the main 

net receivers. In contrast, analyzing ten European electricity markets 

over the period from 2011 to 2017 via the time-varying Diebold-Yilmaz 

connectedness measure, [51] conclude the Spanish and German electric-

ity markets are the main transmitters, whereas the French and Italian 

markets are the main receivers. The study most closely related to ours 

is that of [36], which confirms the results of [48] in their analysis of 

spillover effects among 12 European electricity markets over the period 

from 2009 to 2020. Specifically, Germany and France are identified as 

the main net transmitters of volatility, while Denmark is found to be the 

largest net receiver of risk.

While the aforementioned studies primarily focus on describing 

spillover patterns, [36] take a step further by examining the impact of 

economic policy uncertainty on volatility spillovers in European mar-

kets, finding that policy uncertainty significantly amplifies volatility 

spillovers. However, their analysis is limited to regressing the total 

spillover index on the uncertainty index and does not consider the in-

fluence of renewable energy shares, nor does it explore country-specific 

spillovers.

Overall, the existing literature confirms that volatility spillovers 

occur across multiple electricity markets and that renewable energy 

plays a significant role in shaping electricity prices and their volatility. 

However, while the price effects of renewables have been extensively 

studied, the specific question of how renewable energy sources con-

tribute to spillovers across electricity markets remains unexplored. 

This important gap in the literature underscores the novelty and rele-

vance of the present study, which aims to systematically analyze how
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increasing shares of renewable energy influence volatility spillovers 

across interconnected electricity markets.

3. Methodology

In this study, we investigate how renewable energy integration 

affects volatility spillovers in European electricity markets. Therefore, 

we first apply the Diebold-Yilmaz spillover index [16] to measure 

volatility spillovers across these markets. Subsequently, we employ re-

gression models to examine the impact of renewable energy on the 

spillover index.

3.1. Volatility spillovers in European electricity markets

The Diebold-Yilmaz (DY) spillover index is employed to analyze 

volatility spillovers within European electricity markets. Initially intro-

duced in [15] and subsequently refined in [16,17], this index employs 

variance decomposition techniques from vector autoregression models 

to quantify the interconnectedness of markets. In particular, the Diebold-

Yilmaz index quantitatively assesses the proportion of forecast error 

variance in a given variable 𝑖 that can be attributed to shocks in an-

other variable 𝑗. This approach not only measures total spillovers across 

the entire system but also directional spillovers from one variable to 

another, providing a comprehensive tool for understanding dynamic 

interrelationships and the transmission of volatility.

As the focus of this study is on volatility spillovers within European 

electricity markets, we model the vector of volatility series for 𝑁 

′European electricity markets, 𝐕 𝑡 

= (𝑉1 ,𝑡 

, 𝑉 2 ,,𝑡  

 

,… , 𝑉𝑁,𝑡 

)  

  using an 𝑁-
variable covariance stationary vector autoregression (VAR) of order 𝑃 

(VAR(𝑃 )), which can be formulated as follows:

𝐕 𝑡 

= 

𝑃
∑ 

𝑝=1
𝚽 𝑝 

𝐕 𝑡−𝑝 

+ 𝜺 𝑡, (1) 

where 𝚽 are𝑝  the coefficient matrices for 𝐕𝑡 − of𝑝  lag 𝑝 = 1, 2, … , 𝑃 and 

𝜺 denotes the vector of innovations. These innovations are assumed to𝑡           

 

be independently and identically distributed (iid) with a mean of zero 

and a covariance matrix 𝚺, thus 𝜺 𝑡 

∼ 𝑖𝑖𝑑(𝟎, 𝚺). Hereby, we follow [36] 

and estimate the relatively large numbers of parameters by the LASSO 

approach, see [14]. According to the Wold representation theorem, the 

moving average representation of the VAR model can be expressed as:

𝐕 𝑡 

= 

∞
∑ 

𝑝=0
𝐀 𝑝 

𝜺 𝑡−𝑝, (2)

where the 𝑁 × 𝑁 coefficient matrices 𝐀 𝑝 

are determined recursively by:

𝐀 𝑝 

= 𝚽 1 

𝐀 𝑝−1 

+ 𝚽 2 

𝐀 𝑝−2 + ⋯ + 𝚽 𝑃 

𝐀 𝑝−𝑃 

(3)

with 𝐀 0 being an 𝑁 × 𝑁 identity matrix and 𝐀 𝑝 = 𝟎 for 𝑝 < 0.
The Diebold-Yilmaz index utilizes these coefficient matrices in its 

forecast error variance decomposition, which quantifies the proportion 

of the 𝐻 -step-ahead error variance in forecasting the variable 𝐕 𝑖 at-

tributable to shocks to variable 𝐕 𝑗 

, where 𝑗 ≠ 𝑖 and 𝑖, 𝑗 = 1, 2, … , 𝑁 . 

To circumvent problems of variable ordering, we follow [16] and use 

the generalized forecast error variance decompositions of [34]. For a 

specified forecast horizon 𝐻 , the contribution of shocks from variable 𝑗 

to the generalized forecast error variance of variable 𝑖, denoted as 𝜃 

𝑔 

𝑖𝑗 (𝐻),
is calculated using the formula:

𝜃 

𝑔
𝑖𝑗 (𝐻) =

𝜎 

−1
𝑗𝑗

∑𝐻−1
ℎ=0 (𝐞′𝑖𝐀 ℎ𝚺𝐞 𝑗 

) 

2

∑𝐻−1
ℎ=0 (𝐞′𝑖𝐀 ℎ𝚺𝐀 

′
ℎ𝐞 𝑖 

) 

, (4)

where 𝚺 represents the covariance matrix of the error vector 𝜺, 𝜎 𝑗𝑗 

de-

notes the standard deviation of the error term for the 𝑗th equation, and 

𝐞 𝑖 

is a selection vector that is one at the 𝑖th position and zero elsewhere.

The sum of contributions to the generalized forecast error variance does 

not necessarily equal one within the generalized VAR framework due to 

the assumption that shocks are not orthogonal. To normalize these con-

tributions and compute the Diebold-Yilmaz spillover index as defined 

in [16], we adjust the forecast error variances by their respective row 

sums:

̃ 𝜃 

𝑔
𝑖𝑗 (𝐻) =

𝜃 

𝑔
𝑖𝑗 (𝐻)

∑ 𝑁
𝑗=1 𝜃 

𝑔
𝑖𝑗 (𝐻) 

, (5)

∑

ensuring 

𝑁that 𝜃 

𝑔 ∑

 (𝐻) = 1 𝑁and  

𝑔
  𝜃 (𝐻) = 𝑁 . So the measure𝑗=1 𝑖𝑗 𝑖,𝑗=1 𝑖𝑗   

𝜃 

𝑔
 (𝑖𝑗 𝐻) with 𝑖 ≠ 𝑗 quantifies the pairwise directional volatility spillovers

from electricity market 𝑗 to market 𝑖 over a forecast horizon 𝐻 . This 

metric effectively captures how shocks in one market influence the fore-

cast error variance in another, highlighting the interconnectedness and 

impact across different European electricity markets within the specified 

period.

Following the methodology outlined in [17], we define the total di-

rectional volatility spillovers to market 𝑖, termed as “from others,” using 

the row sums of off-diagonal entries in the generalized forecast error 

variance decomposition (GFEVD) matrix. This calculation aggregates 

the contributions of shocks from all other markets to the forecast error 

variance of market 𝑖. Specifically, it can be computed as:

𝑆 𝑖←(𝐻) =
𝑁
∑

𝑗=1,𝑗≠𝑖

̃ 𝜃 

𝑔
𝑖𝑗 (𝐻) (6)

where 𝑁 represents the total number of markets analyzed, and 𝐻 is 

the forecast horizon. This measure effectively captures the cumulative 

impact of all other markets on market 𝑖, highlighting its susceptibility to 

external influences within the analyzed period. Moreover, the column 

sums represent the total directional volatility spillovers from market 𝑖 

to the other markets, i.e., “to others,” given by:

𝑆 ←𝑖(𝐻) =
𝑁
∑

𝑗=1,𝑗≠𝑖

̃ 𝜃 

𝑔
𝑗𝑖(𝐻). (7)

In addition, the net directional volatility spillovers identify the elec-

tricity markets as net receivers or net transmitters in the volatility 

spillover system. This metric represents the difference between the 

total directional volatility spillovers transmitted by and received by 

individual electricity market 𝑖:

𝑆 𝑖(𝐻) = 𝑆 ←𝑖(𝐻) − 𝑆 𝑖←(𝐻). (8)

Finally, the total spillover index quantifies the percentage of forecast 

error variance in each variable that can be attributed to shocks to all 

other variables in the system. Specifically, the total spillover index is 

defined as:

𝑆 𝑔 

(𝐻) = 

∑ 

𝑖≠𝑗
̃ 𝜃 

𝑔
𝑖𝑗 (𝐻)

∑ 

𝑖,𝑗 𝜃 

𝑔
𝑖𝑗 (𝐻)

× 100, (9)

where 𝜃 𝑖𝑗 (𝐻) represents the portion of the 𝐻-step ahead forecast error 

variance of variable 𝑖 due to shocks in variable 𝑗, and 𝐻 denotes the 

forecast horizon. Overall, the total spillover index serves as an indicator 

of the extent of integration among European electricity markets at a 

system-wide level, see [36].

3.2. The impact of renewable energy share on volatility spillovers

To examine the impact of renewable energy share on volatility 

spillovers across European electricity markets, this study employs both 

linear and panel regression analyses. The linear regression model as-

sesses the average effects on the overall market connectedness, while
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the panel regression allows for controlling both time-invariant and 

individual-specific heterogeneity, improving efficiency and reducing 

omitted variable bias.

The key explanatory variable is the share of renewable energy, 

which is hypothesized to affect not only domestic electricity prices and 

volatility but also those in neighboring markets through cross-border 

electricity trade, and therefore the spillovers between the markets. 

This study also considers several control variables, reflecting the eco-

nomic growth and energy prices, recognizing their potential influence 

on electricity market dynamics.

The linear regression model is specified as follows: 

𝑆 𝑡 

= 𝛽 0 

+ 𝛽 1 

𝑥 1,𝑡 

+ 𝛽 2 

𝑥 2,𝑡 

+ ⋯ + 𝛽 𝐾 

𝑥 𝐾,𝑡 + 𝜀 𝑡 (10)

where 𝑆 𝑡 

represents the total volatility spillover index at time

𝑡 = 1, 2, … , 𝑇 , calculated using the Diebold-Yilmaz methodology, see 

Section 3.1. The 𝐾 independent variables 𝑥1 ,𝑡 

, 𝑥 2,𝑡 

,… , 𝑥 𝐾,𝑡 

include the

share of renewable energy, macroeconomic factors, and energy prices 

at time 𝑡, see Section 4. The parameters 𝛽 1 

, 𝛽 2 

,… , 𝛽 𝐾 

capture the corre

sponding impact of these variables on the spillover index, while 𝜀 is the𝑡   

 

error term, assumed to be independent and identically distributed with 

zero mean and 

2 2variance 𝜎  

  , thus 𝜀 .𝑡 ∼ 𝑖𝑖𝑑(0, 𝜎  

 

 

)

-

To control for time-invariant as well as country-specific heterogene-

ity, we use a panel regression with random effects 

1 to examine the 

impact of renewables on the net spillover indices as well as the spillovers 

from others and to others. Hereby, the panel regression model is defined 

as:

𝑆 𝑖,𝑡 

= 𝛽 0 

+ 𝛽 1 

𝑥 1,𝑖,𝑡 

+ 𝛽 2 

𝑥 2,𝑖,𝑡 

+ ⋯ + 𝛽 𝐾 

𝑥 𝐾,𝑖,𝑡 + 𝑢 𝑖 

+ 𝜀 𝑖,𝑡 

, (11)

where 𝑆 𝑖,𝑡 

represents either the net spillover index or the spillover index 

from others or to others for country 𝑖 = 1, 2, … , 𝑁 , the independent 

variables 𝑥 1,𝑖,𝑡 

, 𝑥 2,𝑖,𝑡 

,… , 𝑥 𝐾,𝑖,𝑡 

might be country-specific indicated by the 

country-specific index, and 𝑢 𝑖 

denotes the random individual specific 

effect which is uncorrelated with the country-specific regressors.

4. Data

This study first examines volatility spillover effects across European 

wholesale spot electricity markets. An hourly price dataset cover-

ing 9 European day-ahead electricity markets is used to obtain the 

daily volatility series spanning from January 1, 2015, to December 

31, 2023, provided by [21]. 2 We focus on the electricity markets 

of Northern, Western, and Southern Europe, 3 specifically examining 

Germany, Denmark, Spain, Estonia, Finland, France, Italy, Norway, 

and Sweden, operated by four power exchanges, EPEX, Nord Pool, 

OMEL, and GME. 4 These countries are part of a highly interconnected

1 The Hausman test prefers in each case the panel regression with random 

effects over the model with fixed effects, therefore, we only report the results of 

the random effects model in this study.
2 We exclude the price data of weekends, following [36], due to relatively low 

and inactive electricity usage and to allow the inclusion of financial variables in 

the subsequent regression analysis.
3 We exclude countries from Eastern Southern Europe from our analysis be-

cause they are less integrated into the European Internal Electricity Market due 

to limited interconnections with Western Europe. Additionally, these countries 

often operate energy systems that are more regional or national in scope, with 

varying levels of integration into the broader European grid. Hereby, they rely 

more heavily on regional exchanges, such as the South-East European Power 

Exchange (SEEPEX), or on bilateral agreements. Moreover, Iceland, Ireland, and 

the UK are less integrated into the European Internal Electricity Market. Iceland, 

in particular, has a unique energy system that relies almost entirely on renew-

able sources, primarily hydropower and geothermal energy. Overall, the limited 

integration and divergence in market characteristics make their inclusion in our 

study infeasible.
4 It was not feasible to include additional countries from Northern, Western, 

and Western Southern Europe in our analysis due to the high interconnectiv-

ity and shared market structures among certain regions. Specifically, Estonia,

European electricity system, featuring extensive cross-border transmis-

sion infrastructure that enables substantial electricity trading between 

them. Although each country follows a distinct national strategy for 

its electricity mix, see Fig. 1, the high degree of market integra-

tion means that they are not insulated from one another; volatil-

ity or imbalances in one market can spill over into others through 

cross-border flows. This interconnectedness makes the selected coun-

tries particularly relevant for analyzing renewable-driven volatility 

spillovers in an integrated market context. All the electricity spot prices 

are standardized to be in EUR/MWh and aligned in terms of time 

zone.

Ma et al. [36] state that electricity cannot be treated as a financial 

asset due to the non-storability. Therefore, they propose to calculate the 

variance as the intraday range of prices, which is also used by [48] in 

the context of electricity prices. Hereby, the volatility measure for each 

country 𝑖 = 1, 2, … , 𝑁 and day 𝑡 = 1, 2, … , 𝑇 is defined as the daily price 

range, calculated as the difference between the maximum and minimum 

prices observed on that day:

𝑉 𝑖,𝑡 = max 

h
𝑝𝑟𝑖𝑐𝑒 𝑖,𝑡,h − min 

h 

𝑝𝑟𝑖𝑐𝑒 𝑖,𝑡,h 

(12)

where 𝑝𝑟𝑖𝑐𝑒 𝑖,𝑡,h 

with h = 1, 2, … , 24, are hourly electricity spot prices 

5 

on day 𝑡 in country 𝑖 = 1, 2, … , 𝑁 . 6 Following [18], we avoid the 

non-negativity condition in volatility modeling by taking the natural log-

arithm of volatility. The corresponding descriptive statistics are given in 

Table 1. Interestingly, we observe a higher volatility in the electricity 

prices of the Nord Pool market, which are highly interrelated, com-

pared to less connected markets, such as Italy. Overall, the results of the 

Augmented Dickey–Fuller (ADF) test indicate that all volatility series are 

stationary.

The objective of this study is to analyze the impact of renewable 

energy shares on volatility spillovers in European electricity markets. To 

achieve this, we employ regression methods on the spillover measures.

The primary explanatory variables include the share of electricity 

generation by technology. Daily generation data for various technolo-

gies across countries from January 1, 2015, to December 31, 2023, 

are sourced from [21]. The technologies are classified into nuclear, so-

lar, wind, other renewables (including biomass, geothermal, hydro, and 

other renewables), and fossil fuels (comprising gas, oil, coal, waste, and 

other fossil fuels). The shares are calculated as the proportion of each 

technology’s generation relative to the total electricity generated. For 

the analysis of the influence of renewables on the total spillover index, 

we use the aggregated share of electricity generation technologies which 

is calculated by weighting each country’s share of electricity by its to-

tal load. To control for electricity demand, the total load per country is 

also included, using data provided by [21]. Since both the technology 

shares and total load exhibit non-stationary behavior, we compute log-

arithmic returns to ensure robust regression results and avoid spurious 

relationships.

To account for fundamental price drivers and other influencing fac-

tors, we incorporate key variables provided by [13]. Specifically, we

Latvia, and Lithuania are part of the Baltic electricity market, while Spain and 

Portugal operate within the MIBEL (Mercado Ibérico de Electricidade). Similarly, 

Belgium, Switzerland, Germany, Luxembourg, Austria, and the Netherlands uti-

lize EPEX SPOT as their primary trading platform. These shared market systems 

result in electricity volatility correlations exceeding 90 %, rendering any statisti-

cal analysis involving all these countries impractical. In contrast, the correlation 

in electricity price volatility among the included countries remains below 75 %, 

ensuring the feasibility of a statistical analysis.
5 As we observe negative prices in the electricity markets, we follow [3], 

and [36] and calculate variances based on the original prices rather than their 

logarithms.
6 For a robustness check, we used the realized volatility, similar to [2,9,18,35, 

50], and obtained similar results. In particular, we observed the same patterns 

in the Diebold-Yilmaz indices and the regression results mainly remained valid 

as well.
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Table 1 

Descriptive statistics for the log volatility per country.

Min. Median Mean Max. St.Dev. Skewness Kurtosis ADF

Germany 2.26 3.53 3.77 6.95 0.84 0.96 3.30 −2.69***

Denmark 0.06 3.44 3.57 6.15 0.96 0.23 3.04 −4.21***

Spain 0.77 3.12 3.24 5.62 0.79 0.28 2.80 −3.19***

Estonia 0.91 3.69 3.86 6.75 0.94 0.45 2.77 −3.05***

Finland 0.91 3.57 3.71 6.75 0.93 0.51 3.17 −4.08***

France 1.91 3.53 3.72 6.27 0.76 0.82 3.09 −2.33**

Italy 2.19 3.57 3.72 5.99 0.70 0.76 3.14 −2.16**

Norway −2.04 2.13 2.27 5.86 1.19 0.14 3.28 −5.89***

Sweden 0.06 3.08 3.26 6.45 1.06 0.44 2.84 −4.63***

This table displays the minimum, median, mean, maximum, standard deviation, skewness and kur-

tosis of the logarithmized volatility per country. Moreover, the test statistics of the Augmented 

Dickey–Fuller (ADF) test are reported, whereby *** (**) indicate significance at the 1 % (5 %) level.

control for the prices of essential fuel sources – oil, natural gas, and coal 

– which influence electricity prices through the Merit Order effect. For 

European energy prices, we use Brent oil futures, TTF Natural Gas fu-

tures and API2 Rotterdam Coal futures as proxies for oil, natural gas and 

coal prices, respectively. To address the term structure effect when fu-

tures contracts roll over, we construct artificial constant maturity futures 

prices for all fuel sources.

In addition, we include the EU Allowance (EUA) price, which reflects 

the marginal cost of coal-based electricity production, similar to [26]. 

Due to the lower liquidity of contracts maturing in other months, we 

hereby use the 365-day constant maturity price based exclusively on 

December futures contracts. Furthermore, we account for the broader 

economic environment, by including the Stoxx Europe 600 index. This 

index serves as a proxy for overall economic conditions and investor 

sentiment in Europe while also capturing the performance of companies 

directly or indirectly involved in energy production, transmission, and 

consumption.

By incorporating these factors, our dataset establishes a robust foun-

dation for analyzing the impact of renewable technologies and other 

economic determinants on volatility spillovers in European electric-

ity markets. Given the non-stationarity of all variables, we compute 

their logarithmic returns. The corresponding descriptive statistics are 

presented in Table A.5. Overall, most variables display high kurto-

sis, suggesting the presence of fat tails in their distributions. Notably, 

the share of solar power in Sweden and Finland exhibits extreme 

kurtosis, as both countries reported a constant zero share until 2022

and 2023, respectively. Additionally, the high standard deviations of 

the country-specific technology share variables reflect their inherently 

volatile behavior over time.

5. Empirical results

This study aims to examine the impact of increasing renewable 

energy shares on volatility spillovers across European electricity 

markets. Hereby, we use first-order VARs (p = 1) according to the 

Bayesian information criterion, which are estimated using LASSO tech-

niques, with a forecast horizon of 10-steps, following [2,18,35,51]. First, 

the static and dynamic connectedness within the European markets is in-

vestigated, followed by an analysis of how renewable energy integration 

influences volatility spillovers.

5.1. Static analysis

The volatility spillover effects across the nine European wholesale 

spot electricity markets, approximated by the static Diebold-Yilmaz 

volatility spillover indices, are displayed in Table 2. Hereby, we report 

the pairwise directional volatility spillovers from market 𝑗 to market 𝑖, 
according to Eq. (5), whereby the elements in row 𝑖 and column 𝑗 in 

the table indicate the contributions of volatility shocks in market 𝑗 to 

the price volatility of market 𝑖. Furthermore, the aggregated measures 

“from others” and “to others” indicate the contributions of shocks from 

all other markets to a specific market and the contribution from a spe-

cific market to all other markets, respectively. Moreover, we identify the

Table 2 

Static volatility spillovers.

DE DK ES EE FI FR IT NO SE From others

Germany 32.44 10.76 7.26 5.97 3.10 19.34 13.61 3.82 3.70 67.56

Denmark 14.97 32.45 2.55 9.52 6.17 9.24 5.65 4.85 14.61 67.55

Spain 10.99 4.32 52.12 1.96 1.12 12.37 10.68 4.44 2.00 47.88

Estonia 8.95 9.33 2.02 37.56 18.35 6.15 5.01 3.75 8.88 62.44

Finland 5.10 7.45 1.08 22.80 36.81 4.30 3.38 4.58 14.52 63.19

France 19.33 6.45 8.06 3.07 1.93 38.75 16.21 3.98 2.23 61.25

Italy 15.00 5.28 8.16 3.31 2.08 19.69 40.71 3.53 2.24 59.29

Norway 7.13 7.10 4.21 4.03 4.81 8.39 5.67 50.16 8.49 49.84

Sweden 7.60 16.60 1.92 10.02 12.07 6.37 4.13 6.78 34.51 65.49

To others 89.06 67.30 35.24 60.67 49.62 85.84 64.34 35.74 56.68 544.49

Net 21.50 −0.26 −12.64 −1.77 −13.57 24.59 5.05 −14.10 −8.81 60.50

Trans Rec Rec Rec Rec Trans Trans Rec Rec

This table displays the volatility spillovers among the electricity markets of Denmark (DK), Estonia (EE), Finland (FI), France (FR), 

Germany (DE), Italy (IT), Norway (NO), Spain (ES), and Sweden (SE). The values in the table indicate the pairwise directional 

spillover from the country listed in the column to the country listed in the row. Values in the row, indicated by “to others,” 

represent the total directional volatility spillovers from a specific market to other markets, whereas the values in the column 

“from others” indicate total directional volatility spillovers from other markets to a specific market. The net directional volatility 

spillovers are displayed in the row “net,” where the last row indicates whether a market is a net transmitter (Trans) or a net 

receiver (Rec). The bold value in the row “net” and column “from others” indicates the total volatility spillover.
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Fig. 2. Volatility spillover network between the European electricity markets. 

This figure depicts the network graphs of the pairwise directional volatility 

connectedness across the European electricity markets under consideration com-

puted using the approach of [16] over the full sample period. The blue nodes 

represent net transmitters, while the yellow nodes indicate net receivers of risk.

net receivers and transmitters in the European electricity markets, using 

the net directional volatility spillovers.

The total spillover index of 60.50 % indicates that more than half 

of the future volatility in European electricity systems originates from 

shocks transmitted across interconnected markets. Hereby, our findings 

support [36], demonstrating the strong interdependence of European 

electricity markets and the efficiency of the European electricity network 

in pricing and dispatch.

Germany and France are the largest contributors to volatility 

spillovers within the transmission system, as indicated by their “to oth-

ers” Diebold-Yilmaz index values, which exceed 80 %. Additionally, 

Denmark, Italy, Estonia, and Finland also contribute substantial volatil-

ity spillovers. However, over half of the price volatility in these major 

markets originates from spillovers received from other markets, under-

scoring their strong integration within the system. In contrast, Spain and 

Norway exhibit weaker connections with the other markets, as they both 

receive and transmit less than half of their total volatility.

The net directional volatility connectedness measures the difference 

between the total directional volatility spillovers transmitted and re-

ceived by each electricity market, whereby a positive value indicates 

a “net-transmitter” of volatility spillovers, while a market with a neg-

ative value is defined as a “net-receiver”. Our results indicate France, 

Germany, and Italy as net-transmitter, whereby Germany and France 

have the highest net directional volatility spillovers, indicating these 

countries dominate the other markets. In line with the findings of 

[36], we detect that volatility shocks in Germany and France not only 

contribute to the price volatility in EEX-regulated electricity markets

Fig. 3. Dynamic total and net volatility spillovers. These figures show the total volatility spillover index and net spillover indices by country over time, calculated 

using a 260-day rolling window technique based on the approach of [16].

but also spread to the markets beyond them, such as the Nordic mar-

kets, see Fig. 2. Notably, our findings, which encompass the turbulent 

period from 2020 to 2023 – marked by the COVID-19 pandemic and the 

Ukraine crisis – confirm these patterns, demonstrating that the observed 

spillover effects persist even amidst these significant disruptions to the 

global and regional energy markets.

Overall, the Nordic markets predominantly receive volatility 

spillovers. Directional spillover patterns suggest that Finland and Estonia 

are highly interconnected, likely because Estonia’s only studied con-

nection to the broader system runs through Finland. Similarly, strong 

interconnections are observed between Finland and Sweden, as well 

as Sweden and Denmark, which can be attributed to their existing 

transmission channels.

Interestingly, despite the presence of transmission links between 

Norway and its neighboring countries – Sweden, Denmark, and Finland 

– as well as a transmission channel with Germany via the North Sea ca-

ble, Norway exhibits minimal integration with the other markets. This 

disconnection may be attributed to Norway’s significant reliance on 

hydropower and its substantial storage capacity, which reduce its ex-

posure to external volatility. In contrast, the transmission link between 

Denmark and Germany facilitates considerable directional spillovers be-

tween these markets. Similarly, Germany maintains strong connections 

with France and Italy, likely due to shared transmission networks that 

span France, Switzerland, Austria, Germany, and Italy. In comparison, 

Spain transmits little volatility to other markets but absorbs consider-

able risk, particularly from France and Italy. These findings align with 

the observations of [48].

5.2. Dynamic analysis

One major limitation of the static total volatility spillover measure 

is the assumption that the volatility interactions between electricity 

markets remain constant over time, as stated for example by [36,51]. 

To address potential changes in volatility connectedness, which can be 

caused by short-term events or long-term shifts in market fundamen-

tals, we consider dynamic volatility spillovers, using a rolling window 

technique with a 260-day window, corresponding to one year.

The dynamics of the total volatility spillover index for European elec-

tricity markets from January 2016 to December 2023 are illustrated in 

Fig. 3(a). The total spillover fluctuates between 34 % and 68 %, reflect-

ing temporal variations in the interconnectedness of European electricity 

markets. A notable decline in the total spillover index occurred at 

the onset of the COVID-19 pandemic. This reduction suggests that 

shocks barely propagated across European electricity markets during
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that period, likely due to widespread economic shutdowns and the re-

sulting decline in industrial electricity demand. In contrast, the total 

spillover index peaked in early 2022, reaching nearly 70 %, reflecting 

the heightened volatility triggered by the outbreak of the Russia-Ukraine 

war and the associated surge in gas prices. These findings are consistent 

with those of [19], who also report a decrease in market interconnect-

edness during the pandemic and a sharp increase following the onset of 

the geopolitical conflict.

Regarding regional contributions, the electricity markets in France, 

Germany, and Denmark, emerge as the primary contributors to volatil-

ity spillovers, consistently acting as net transmitters of risks throughout 

the analyzed period. Hereby, Germany and France exhibit the highest 

net directional volatility spillovers, underscoring their status as well-

connected hubs within European electricity markets, confirming the 

results of [10,36]. In contrast, the markets in Norway, Spain, and Italy 

predominantly act as net receivers of volatility, as illustrated in Fig. 3(b).

The dynamic analysis further reinforces the findings of the static 

analysis while highlighting temporal shifts in market roles. Notably, 

Denmark transitions into a net transmitter around 2020, suggesting that 

the Danish electricity market has increasingly spread risks in recent 

years. Conversely, Estonia, Finland, and Sweden, which functioned as 

net transmitters prior to 2020, have become net receivers of volatility 

more recently. These findings suggest that significant economic events 

influence electricity demand and reshape the interconnections between 

European electricity markets over time.

5.3. Impact of renewables

Integrating a significant share of renewable energy sources raises 

concerns about market stability, particularly the risk of price spikes and 

increased volatility, as highlighted by [5]. Cross-border electricity trad-

ing can amplify these effects, as shifts in renewable energy proportions 

in one country may trigger volatility that spills over into other markets. 

This section explores the extent to which the growing share of renewable 

energy influences volatility spillovers across electricity markets, explic-

itly distinguishing between solar, wind, and other renewable sources to 

account for their differing impacts on market dynamics. It is important 

to emphasize that the focus is not on the absolute level of volatility, but 

rather on the spillover of volatility across electricity markets and how 

these spillovers are influenced by the underlying determinants.

In this analysis, regression techniques are employed to examine 

the factors influencing volatility spillovers, with a particular focus on 

the share of renewable energy sources. Hereby, electricity generation 

technologies are classified into nuclear, solar, wind, other renewables 

(including “Biomass”, “Geothermal”, “Other Renewable”, and “Hydro”), 

and fossil fuels (such as “Gas”, “Oil”, “Coal”, “Other”, and “Waste”). 7 

Additionally, the model accounts for the total load across the consid-

ered European countries, alongside key price drivers and fundamental 

factors that may impact volatility spillovers. These include the prices of 

essential fuel sources for electricity production – Brent oil, natural gas, 

and coal – along with the carbon emission price, which supplements the 

coal price, as highlighted by [26]. In addition, we control for the overall 

economic activity, investor sentiment, and macroeconomic conditions 

in Europe by including the Stoxx Europe 660 index, which serves as 

reference index in Europe.

To begin, we analyze the determinants of market integration across 

European electricity markets. Therefore, we estimate a linear regression 

model on the total spillover index, 8 similar to [36], using Ordinary Least

7 For the analysis of the influence of renewables on the total spillover in-

dex, we use the aggregated share of electricity generation technologies which is 

calculated by weighting each country’s share of electricity by its total load.
8 As the total spillover index is non-stationary according to the Augmented 

Dickey–Fuller test, we use the log returns to avoid spurious regressions.

Table 3 

Determinants of total spillover in European electricity 

markets.

Variable Estimate Std. Error

(Intercept) 0.0000 (0.0002)

STOXX 600 0.0081 (0.0167)

Oil price 0.0117 (0.0093)

Gas price 0.0043 (0.0057)

Coal price −0.0022 (0.0072)

EUA −0.0088 (0.0062)

Total load 0.0156*** (0.0057)

Fossil fuels −0.0001 (0.0022)

Nuclear −0.0057 (0.0055)

Renew 0.0231*** (0.0052)

Solar −0.0001 (0.0010)

Wind 0.0000 (0.0010)

This table reports results from the OLS regressions on 

the aggregated total spillover index with Newey-West 

standard errors to correct for heteroscedasticity and auto-

correlation. The standard errors are reported in brackets. 

Statistical significance is indicated by ***𝑝 < 0.01, **𝑝 < 

0.05, and *𝑝 < 0.1.

Squares (OLS) with Newey-West standard errors to account for potential 

heteroscedasticity and autocorrelation and report the results in Table 3.

Overall, the results indicate that both total load and the share of 

other renewables, such as biomass, geothermal, and hydro, significantly 

influence total spillovers in the market. Specifically, higher total load 

is associated with increased spillovers, suggesting that rising electricity 

demand amplifies risk transmission across markets. This finding aligns 

with the dynamic analysis, which revealed a notable decline in to-

tal spillovers during the COVID-19 pandemic and associated economic 

shutdowns. Furthermore, a larger share of other renewables intensifies 

spillover effects, highlighting their contribution to market interconnect-

edness. In contrast, changes in the shares of solar and wind power do not 

significantly influence the overall connectedness of European electricity 

markets.

We then examine the impact of renewable energy technologies 

on transmitted, received, and net spillovers across electricity mar-

kets, employing the spillover measures “from others,” “to others,” and 

“net” to capture these dynamics. 9 To this end, we use a panel re-

gression model with random effects. 10 Heteroscedasticity- and serial 

correlation-consistent standard errors, as proposed by [4], are applied 

for within-group estimators. The results are presented in Table 4.

Unlike the linear regression model for the total spillover index, 

which includes aggregated technology shares, we incorporate country-

specific shares of renewable technologies. Additionally, to control for 

overall electricity demand in Europe, we include the aggregated load 

as an independent variable rather than country-specific loads. This ap-

proach reflects the assumption that higher overall demand can drive 

increased cross-border electricity transmissions, thereby influencing 

spillover dynamics between markets.

The results highlight significant differences across the various 

spillover indices. The “to others” spillover index, which captures the 

risk transmitted from one country to others, increases notably with 

higher total load, underscoring the role of overall European electricity 

demand in enhancing market interconnectedness. Additionally, higher 

oil prices contribute to increased transmitted risk, likely due to the rise 

in electricity prices driven by higher energy costs.

9 To ensure stationary time series, we calculate the log returns of the spillover 

indices “from others” and “to others”.
10 The Hausman test favors the random effects model over the fixed effects 

model, so we report only the results for the random effects specification.
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Table 4 

Determinants of spillover indices “from others”, “to others” and “net”.

Variable To others From others Net

Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0001) 0.0000 (0.0000) −0.0001 (0.0024)

STOXX 600 0.0010 (0.0186) 0.0264** (0.0133) −1.4627 (1.5567)

Oil price 0.0262*** (0.0088) 0.0134 (0.0097) 0.7517 (0.7514)

Gas price 0.0012 (0.0237) 0.0078* (0.0044) −0.5590 (1.3375)

Coal price 0.0016 (0.0184) 0.0080 (0.0098) −0.4848 (1.5170)

EUA −0.0081 (0.0118) −0.0182** (0.0090) 0.2627 (0.5363)

Total load 0.0223*** (0.0047) 0.0077 (0.0082) 0.7625* (0.4308)

Fossil fuels 0.0003 (0.0012) 0.0000 (0.0012) 0.0068 (0.0555)

Nuclear −0.0017 (0.0063) −0.0014 (0.0030) 0.0266 (0.4902)

Renew 0.0078 (0.0070) 0.0077*** (0.0022) −0.1117 (0.3527)

Solar −0.0008 (0.0018) −0.0011*** (0.0004) −0.0030 (0.0996)

Wind 0.0015 (0.0019) 0.0009* (0.0005) 0.0138 (0.0465)

This table reports results from a panel regression on the spillover index “to others”, “from other” 

and “net” with heteroscedasticity and serial correlation consistent standard errors (Std. E.) by [4]. 

Statistical significance is indicated by ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

In contrast, the “from others” spillover index is more responsive to 

changes in economic conditions, input prices, and technology shares. 

While previous studies, such as [5], detect a significant impact of re-

newables on volatility, we focus on the effect of renewables on spillover 

dynamics. Our findings show that a higher share of other renewable 

sources – such as biomass, geothermal, and hydro – leads to increased 

volatility spillovers from other countries, suggesting that these tech-

nologies absorb more risk. Conversely, a rising share of solar power 

reduces spillover risks, indicating its stabilizing effect on domestic elec-

tricity markets, which aligns with the findings of [46], who observe a 

stabilizing effect of solar power on volatility. Similarly, higher emis-

sion prices dampen spillovers, while rising gas prices amplify risk due 

to elevated production costs. Interestingly, while the total load sig-

nificantly influences overall spillovers within the system, the spillover 

index “from others” remains unaffected by changes in aggregated load. 

However, increases in the Stoxx Europe 600 index – indicative of eco-

nomic growth – are associated with higher spillovers, likely driven by 

increased electricity demand.

Energy prices, electricity demand, and generation technologies influ-

ence spillovers both to and from other countries, but the net spillover 

remains largely unexplained. This may be due to the net spillover bal-

ancing out transmitted and received risks, thereby masking individual 

contributions.

To summarize our results challenge the prevailing view that a greater 

share of renewable energy sources invariably leads to heightened mar-

ket volatility, as solar power has the potential to stabilize the domestic 

electricity market.

5.4. Robustness and sensitivity analyses

We conduct several additional analyses to evaluate the robustness 

of our results, see Appendix B with Tables B.6–B.13 and Figs. B.4–B.8. 

First, we conduct a series of robustness checks by applying alternative 

specifications of the Diebold-Yilmaz spillover index to assess the sensitiv-

ity of our results to different methodological assumptions. Specifically, 

we increase the lag order to two and the forecasting horizon to 20, 

and additionally estimate both a standard VAR model and the Time-

Varying Parameter VAR (TVP-VAR) model proposed by [1], following 

the approach of [48].

Overall, the main findings remain robust, although some variations 

emerge across specifications. Increasing the lag order tends to slightly 

reduce the estimated spillovers across European electricity markets and 

results in fewer statistically significant effects; in particular, the previ-

ously observed significance of STOXX Europe 600 index and solar power

vanishes under this specification. In contrast, increasing the forecast-

ing horizon or employing the standard VAR or TVP-VAR models results 

in higher overall connectedness and more significant spillover effects, 

particularly in the time-varying setting. However, we observe that the 

net spillover indices derived from the TVP-VAR model exhibit greater 

volatility and frequent spikes, see Fig. B.5(c), suggesting that this speci-

fication may be less stable and more sensitive to short-term fluctuations 

than the rolling window approach used in the main analysis.

Second, following the approach of [2,9,18,35,50], we employ re-

alized volatility instead of the daily price range to estimate volatility 

in European electricity markets. The static total spillover is calculated 

as 54.86, which is slightly lower than the spillover derived from daily 

price ranges. Notably, Germany and France are identified as net trans-

mitters of spillovers, while the Nordic countries, Italy, and Spain are net 

receivers, further supporting our main findings.

The dynamic analysis underlines our main findings as it reveals a 

clear decline in total spillovers at the onset of the COVID-19 pandemic, 

reflecting reduced market integration during this period, followed by 

increased integration in early 2022. The regression analyses underscore 

the significant influence of total load and renewable energy generation 

on the total spillover index. However, the key determinants vary across 

spillover indices, specifically those transmitted to others, received from 

others, and net spillover changes.

Third, while our primary analysis includes the overall STOXX Europe 

600 index as proxy for economic activity, we assess whether a narrower 

focus on the performance of the industrial sector within the broader 

European market influences the results by including the STOXX Europe 

600 Industrial Goods & Services (SXNP) index. The results remain 

unchanged, highlighting the robustness of our conclusions.

Fourth, we explore whether a more disaggregated approach to gen-

eration technologies yields different results. In the main analysis, we 

aggregate the shares of biomass, geothermal, hydro, and other renew-

ables into a single variable. However, since countries like Spain, Italy, 

Norway and Sweden rely on hydro power in their electricity markets, 

we test whether isolating hydro power as a standalone variable influ-

ences the results. Our findings reveal that hydro power has a positive 

impact on both the total spillover and the spillover originating from 

other renewables. This suggests that the strong influence of renewables 

on spillovers is primarily driven by the share of hydro power, which is 

highly flexible and can be effectively controlled. Furthermore, the dis-

aggregated share of renewables now affects the net spillover, while all 

other results remain consistent with our main analysis.
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Similarly, we refine the treatment of fossil fuels. While the primary 

analysis combines all fossil fuels into a single category, we disaggre-

gate them into gas power, coal power, and other fossil fuels (including 

oil, waste, and related sources). Overall, the results remain largely 

unchanged. This indicates that the share of fossil fuels has a negligible 

effect on spillover dynamics across European electricity markets.

Finally, we replace the overall load with country-specific load values 

in our panel regressions to investigate whether country-specific infor-

mation offers greater explanatory power for spillovers. The results show 

that country-specific load values significantly influence risks transmit-

ted to other countries, similar to the impact observed for the overall 

total load on outward spillovers. However, neither net spillovers nor 

spillovers received from other markets exhibit any sensitivity to changes 

in country-specific load values, further underlining our main findings.

To conclude, our robustness analyses confirm the reliability of the 

main findings. By testing alternative specifications, including a narrower 

focus on the industrial sector, disaggregating generation technologies, 

and refining the treatment of fossil fuels, we find that the results remain 

largely consistent. Notably, the significant influence of renewables on 

spillovers is primarily driven by hydro power, while fossil fuels exhibit 

minimal impact. Additionally, replacing the overall load with country-

specific load values demonstrates that load-driven spillovers are robust, 

particularly for risks transmitted to other markets. Overall, these tests 

underscore the robustness and stability of our results, reinforcing the 

validity of our conclusions.

6. Conclusion

This study critically examines the influence of renewable energy in-

tegration on volatility spillovers across European electricity markets, a 

vital aspect in understanding market dynamics amidst the EU’s green 

transition. Hereby, we apply the Diebold-Yilmaz methodology to inves-

tigate the spillovers between nine European electricity markets, namely, 

Germany, Denmark, Estonia, Spain, Finland, France, Italy, Norway, and 

Sweden, using hourly price data from 2015 to 2023.

The results reveal that more than half of the future volatility in 

European electricity systems can be attributed to volatility shocks 

spreading across different markets. Hereby, the dynamic analysis us-

ing a rolling window technique uncovers a decline in total spillovers 

during the onset of the COVID-19 pandemic and a sharp peak in 

early 2022, underscoring the influence of geopolitical events on market 

volatility. These results align with the findings of [19], who similarly ob-

serve reduced interconnectedness during the pandemic and heightened 

spillovers following the Russia-Ukraine conflict. France and Germany 

are identified as net transmitters of risk, in line with [10,36], whereas 

the other countries primarily receive risks.

In addition, our analysis of the factors driving volatility spillovers 

in European electricity markets yields relevant and policy-relevant in-

sights. While [36] only investigate the impact of economic policy 

uncertainty on total volatility spillovers in European electricity markets, 

our focus is particularly on the influence of different renewable energy 

technologies. Hereby, we extend the approach of [36] and also analyze 

the effect on directional and net spillover indices. Our findings reveal

that overall market connectedness tends to increase during periods of 

higher total system load or when the share of other renewable technolo-

gies, such as biomass, geothermal, and hydro, rises. In contrast, total 

volatility spillovers exhibit a relatively limited effect on overall spillover 

dynamics.

The risk transmitted to other countries also rises with increasing sys-

tem load, while higher oil prices further amplify the spillovers to other 

markets. Similarly, volatility spillovers from other countries intensify 

with increasing gas prices, economic growth, and a greater share of other 

renewable technologies. Notably, higher emission allowance prices and 

an increasing share of solar power exhibit stabilizing effects on domestic 

markets by reducing the risks received from other countries.

Ultimately, these findings suggest that the strategic expansion of re-

newable energy not only aligns with climate policy objectives but also 

might enhance stability in electricity markets by mitigating cross-border 

volatility spillovers. This study contributes to the broader discourse on 

energy policy, emphasizing the need for continued investment in renew-

able technologies to ensure a resilient and sustainable energy future for 

Europe.
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Appendix A. Data description

Table A.5 

Descriptive statistics for the exogenous variables.

Min. Median Mean Max. St.Dev. Skewness Kurtosis ADF

EUA −0.19 0.00 0.00 0.17 0.03 −0.42 7.31 −49.54***

Oil price −0.26 0.00 0.00 0.13 0.02 −0.90 14.56 −50.59***

Gas price −0.35 −0.00 0.00 0.38 0.04 0.28 17.71 −44.86***

Coal price −0.24 0.00 0.00 0.40 0.03 1.01 28.95 −41.90***

STOXX 600 −0.13 0.00 0.00 0.08 0.01 −0.96 14.94 −46.91***

Total load DE −0.28 0.00 −0.00 0.29 0.05 −0.10 15.69 −61.31***

Total load DK −0.23 0.00 0.00 0.21 0.04 0.26 7.24 −57.61***

Total load ES −0.25 −0.00 −0.00 0.25 0.04 0.07 11.50 −56.32***

Total load EE −0.37 0.00 −0.00 0.37 0.04 0.01 14.30 −58.61***

Total load FI −0.25 0.00 −0.00 0.27 0.03 −0.10 9.84 −50.43***

Total load FR −0.32 0.00 −0.00 0.35 0.05 0.05 9.11 −52.50***

Total load IT −0.49 −0.00 −0.00 0.43 0.07 −0.12 17.42 −61.06***

Total load NO −0.15 0.00 0.00 0.21 0.03 0.22 6.73 −48.16***

Total load SE −0.21 −0.00 −0.00 0.24 0.04 0.39 6.73 −54.84***

Total load −0.24 0.00 0.00 0.34 0.04 0.50 16.89 −55.93***

DE Fossil fuels −1.05 0.00 −0.00 0.97 0.23 −0.32 5.30 −56.15***

DE Wind −2.65 −0.02 0.00 2.65 0.65 0.02 3.54 −56.23***

DE Nuclear −0.62 0.00 −0.00 0.56 0.09 −0.13 7.89 −57.40***

DE Renew −0.37 −0.00 0.00 0.39 0.08 0.01 4.14 −65.34***

DE Solar −2.14 0.01 0.00 1.63 0.42 −0.19 4.50 −65.72***

DK Wind −2.49 −0.00 0.00 2.47 0.61 0.10 4.58 −61.86***

DK Fossil fuels −1.58 0.00 −0.00 1.78 0.45 −0.06 3.37 −62.24***

DK Renew −3.87 0.01 0.00 4.10 0.58 −0.09 10.80 −57.96***

DK Solar −2.87 0.03 0.00 2.90 0.75 −0.09 3.81 −68.81***

ES Fossil fuels −0.91 0.01 −0.00 1.15 0.21 −0.00 5.24 −53.61***

ES Nuclear −0.39 0.00 0.00 0.36 0.07 −0.27 6.51 −51.97***

ES Renew −0.49 −0.00 0.00 0.52 0.14 0.03 3.68 −63.04***

ES Wind −2.07 −0.00 0.00 2.08 0.50 −0.03 3.96 −56.57***

ES Solar −1.94 0.00 0.00 1.89 0.38 −0.10 5.98 −59.04***

EE Fossil fuels −0.84 0.00 −0.00 0.92 0.12 −0.12 14.04 −61.01***

EE Wind −2.69 −0.01 0.00 3.88 0.81 0.17 3.77 −61.87***

EE Renew −0.84 0.00 0.00 0.85 0.16 0.16 6.26 −54.90***

EE Solar −3.52 0.00 0.00 3.74 0.52 −0.04 11.08 −69.29***

FI Nuclear −0.37 0.00 0.00 0.40 0.08 −0.04 6.42 −55.35***

FI Fossil fuels −1.16 0.00 −0.00 1.19 0.18 0.01 9.56 −55.05***

FI Renew −0.60 −0.00 −0.00 0.62 0.11 0.04 6.72 −59.47***

FI Wind −2.64 −0.00 0.00 3.32 0.71 0.14 3.80 −60.02***

FI Solar −1.15 0.00 −0.00 1.10 0.12 −0.95 32.95 −67.98***

FR Nuclear −0.18 −0.00 −0.00 0.19 0.03 0.03 6.40 −58.69***

FR Renew −0.43 −0.00 0.00 0.52 0.09 0.19 5.21 −56.99***

FR Fossil fuels −1.88 0.00 −0.00 1.43 0.26 −0.38 8.87 −56.39***

FR Wind −1.87 −0.01 0.00 2.03 0.56 0.15 3.25 −58.49***

FR Solar −1.09 0.00 0.00 1.12 0.28 −0.20 3.92 −68.31***

IT Fossil fuels −0.50 0.00 0.00 0.32 0.08 −0.45 5.69 −57.66***

IT Renew −0.52 −0.00 −0.00 0.54 0.08 0.20 6.98 −60.16***

IT Wind −2.43 −0.01 −0.00 2.87 0.71 0.11 3.42 −57.18***

IT Solar −1.96 −0.00 −0.00 1.53 0.32 −0.18 6.25 −65.29***

NO Renew −0.18 0.00 −0.00 0.26 0.03 0.18 10.15 −57.37***

NO Wind −2.51 −0.00 0.00 2.14 0.56 −0.05 3.98 −58.89***

NO Fossil fuels −0.81 0.00 0.00 0.65 0.13 −0.07 6.51 −56.69***

SE Renew −0.80 0.00 −0.00 1.03 0.15 0.03 6.91 −58.41***

SE Nuclear −0.37 0.00 0.00 0.28 0.06 −0.45 6.50 −51.90***

SE Fossil fuels −0.55 0.00 −0.00 0.68 0.11 0.16 6.20 −51.99***

SE Wind −2.50 −0.00 0.00 1.92 0.52 −0.00 3.99 −56.67***

SE Solar −2.33 0.00 0.00 1.83 0.27 0.07 19.86 −73.28***

Nuclear −0.21 −0.00 −0.00 0.23 0.04 0.08 7.54 −55.03***

Fossil fuels −0.63 0.00 −0.00 0.70 0.13 −0.23 5.39 −54.10***

Renew −0.25 0.00 0.00 0.18 0.05 −0.05 4.37 −56.05***

Solar −1.10 0.00 0.00 0.88 0.21 −0.26 4.65 −60.26***

Wind −1.24 −0.00 0.00 1.34 0.36 0.12 3.33 −53.41***

This table displays the minimum (Min.), median, mean, maximum (Max.), standard deviation (St. Dev.), skewness 

(Skew.) and kurtosis (Kurt.) of the logarithmic returns for the exogenous variables. Additionally, the test statistics of 

the Augmented Dickey–Fuller (ADF) test are reported, with *** indicating significance at the 0.1 % level. The reported 

variables include the shares of nuclear, solar, wind, other renewables (biomass, geothermal, hydro, and other), and fossil 

fuels (gas, oil, coal, waste, and other fossil fuels) for the countries Germany (DE), Denmark (DK), Spain (ES), Estonia 

(EE), Finland (FI), France (FR), Italy (IT), Norway (NO), and Sweden (SE), as well as the aggregated shares weighted 

by each country’s electricity load. The table also includes the total load per country and aggregated across countries. 

Furthermore, the control variables such as the prices of essential fuel sources (Brent oil futures (Oil price), TTF Natural 

Gas futures (Gas price), and API2 Rotterdam Coal futures (Coal price)), the EU Allowance (EUA) price, and the Stoxx 

Europe 600 index (STOXX) are also reported.
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Appendix B. Robustness and sensitivity analyses 

B.1. Robustness with focus on the Diebold-Yilmaz spillover methodology

Fig. B.4. Dynamic total and net volatility spillovers. These figures show the network graph for the entire sample period as well as the dynamic total volatility spillover 

index and net spillover indices by country, when the number of lags in the VAR model is increased to two.

Fig. B.5. Dynamic total and net volatility spillovers. These figures show the network graph for the entire sample period as well as the dynamic total volatility spillover 

index and net spillover indices by country, when the the time-varying parameter VAR of [1] is used.

Fig. B.6. Dynamic total and net volatility spillovers. These figures show the network graph for the entire sample period as well as the dynamic total volatility spillover 

index and net spillover indices by country, when the standard VAR model is used.
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Fig. B.7. Dynamic total and net volatility spillovers. These figures show the network graph for the entire sample period as well as the dynamic total volatility spillover 

index and net spillover indices by country, the forecast horizon is set to 20.

Table B.6 

Robustness analysis of total spillover index.

Variable Original Lags TVP-VAR VAR Horizon

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0002) 0.0000 (0.0002) 0.0001 (0.0003) −0.0001 (0.0002) 0.0000 (0.0002)

STOXX 600 0.0081 (0.0167) 0.0008 (0.0158) −0.0178 (0.0252) −0.0032 (0.0138) 0.0086 (0.0168)

Oil price 0.0117 (0.0093) 0.0102 (0.0084) 0.0152 (0.0132) 0.0153** (0.0072) 0.0115 (0.0093)

Gas price 0.0043 (0.0057) 0.0011 (0.0057) 0.0006 (0.0101) 0.0060 (0.0049) 0.0047 (0.0058)

Coal price −0.0022 (0.0072) −0.0012 (0.0067) −0.0043 (0.0101) −0.0026 (0.0066) −0.0024 (0.0072)

EUA −0.0088 (0.0062) −0.0061 (0.0064) −0.0130 (0.0106) −0.0030 (0.0047) −0.0090 (0.0062)

Total load 0.0156*** (0.0057) 0.0114* (0.0061) −0.0068 (0.0196) 0.0147*** (0.0046) 0.0156*** (0.0057)

Fossil fuels −0.0001 (0.0022) −0.0007 (0.0027) 0.0060 (0.0045) −0.0005 (0.0018) −0.0001 (0.0022)

Nuclear −0.0057 (0.0055) −0.0089 (0.0062) 0.0132 (0.0088) −0.0001 (0.0049) −0.0057 (0.0055)

Renew 0.0231*** (0.0052) 0.0174*** (0.0052) 0.0091 (0.0112) 0.0179*** (0.0042) 0.0233*** (0.0052)

Solar −0.0001 (0.0010) 0.0013 (0.0010) 0.0016 (0.0017) 0.0007 (0.0007) −0.0001 (0.0010)

Wind 0.0000 (0.0010) −0.0012 (0.0013) 0.0022 (0.0019) 0.0001 (0.0009) 0.0000 (0.0010)

The table reports robustness results from the regression on the total spillover index with Newey-West standard errors (Std. E.). The first set of results corresponds 

to the original findings presented in the main analysis. The subsequent columns, labeled “Lags”, show the results when the number of lags in the VAR model is 

increased to two. Next, the columns titled “TVP-VAR” and “VAR” display the outcomes when the time-varying parameter VAR of [1] or the standard VAR model are 

used instead of the VAR model with LASSO regularization. Finally, we present the results if the forecast horizon is doubled. Statistical significance is indicated by 

***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

Table B.7 

Robustness analysis of spillover index “to others”.

Variable Original Lags TVP-VAR VAR Horizon

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0001) 0.0000 (0.0001) 0.0000 (0.0002) 0.0000 (0.0001) 0.0000 (0.0001)

STOXX 600 0.0010 (0.0186) 0.0080 (0.0259) 0.0539 (0.0549) −0.0018 (0.0182) 0.0018 (0.0187)

Oil price 0.0262*** (0.0088) 0.0214*** (0.0057) −0.0199 (0.0300) 0.0143** (0.0071) 0.0262** (0.0088)

Gas price 0.0012 (0.0237) −0.0191 (0.0244) −0.0164 (0.0339) −0.0032 (0.0074) 0.0017 (0.0240)

Coal price 0.0016 (0.0184) −0.0024 (0.0096) 0.0590 (0.0390) 0.0287 (0.0226) 0.0013 (0.0185)

EUA −0.0081 (0.0118) 0.0087 (0.0059) 0.0110 (0.0219) −0.0071 (0.0062) −0.0083 (0.0119)

Total load 0.0223*** (0.0047) 0.0177 (0.0197) −0.0028 (0.0280) 0.0096** (0.0039) 0.0223*** (0.0047)

Fossil fuels 0.0003 (0.0012) 0.0068** (0.0029) 0.0046 (0.0043) −0.0026 (0.0021) 0.0003 (0.0012)

Nuclear −0.0017 (0.0063) −0.0118* (0.0064) −0.0341** (0.0172) −0.0072 (0.0086) −0.0017 (0.0063)

Renew 0.0078 (0.0070) 0.0108** (0.0036) −0.0028 (0.0070) 0.0003 (0.0018) 0.0079 (0.0070)

Solar −0.0008 (0.0018) 0.0018 (0.0026) −0.0052*** (0.0014) −0.0010 (0.0006) −0.0008 (0.0018)

Wind 0.0015 (0.0019) 0.0010 (0.0013) −0.0027** (0.0010) −0.0012* (0.0006) 0.0015 (0.0019)

The table reports robustness results from the regression on the spillover index “to others” with heteroscedasticity and serial correlation consistent standard errors (Std. 

E.) by [4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Lags”, show the results when 

the number of lags in the VAR model is increased to two. Next, the columns titled “TVP-VAR” and “VAR” display the outcomes when the time-varying parameter VAR 

of [1] or the standard VAR model are used instead of the VAR model with LASSO regularization. Finally, we present the results if the forecast horizon is doubled. 

Statistical significance is indicated by ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.
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Table B.8 

Robustness analysis of spillover index “from others”.

Variable Original Lags TVP-VAR VAR Horizon

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0000) 0.0000 (0.0000) 0.0001* (0.0000) −0.0001** (0.0000) 0.0000 (0.0000)

STOXX 600 0.0264** (0.0133) 0.0122 (0.0195) −0.0320 (0.0309) 0.0065* (0.0036) 0.0270** (0.0134)

Oil price 0.0134 (0.0097) 0.0211** (0.0105) 0.0281* (0.0171) 0.0154 (0.0094) 0.0133 (0.0097)

Gas price 0.0078* (0.0044) −0.0080* (0.0043) −0.0056* (0.0033) 0.0077** (0.0028) 0.0083* (0.0043)

Coal price 0.0080 (0.0098) 0.0150 (0.0115) −0.0009 (0.0029) 0.0003 (0.0038) 0.0076 (0.0097)

EUA −0.0182** (0.0090) 0.0008 (0.0074) −0.0014 (0.0096) −0.0019 (0.0018) −0.0184** (0.0091)

Total load 0.0077 (0.0082) −0.0013 (0.0093) −0.0020 (0.0097) 0.0074* (0.0041) 0.0076 (0.0082)

Fossil fuels 0.0000 (0.0012) −0.0010 (0.0011) 0.0015 (0.0017) 0.0005 (0.0007) 0.0000 (0.0012)

Nuclear −0.0014 (0.0030) −0.0065 (0.0047) 0.0187** (0.0057) 0.0029 (0.0041) −0.0014 (0.0030)

Renew 0.0077*** (0.0022) 0.0075 (0.0060) 0.0062* (0.0037) 0.0080** (0.0033) 0.0077*** (0.0023)

Solar −0.0011*** (0.0004) −0.0002 (0.0006) 0.0012* (0.0006) −0.0006* (0.0004) −0.0011** (0.0004)

Wind 0.0009* (0.0005) −0.0001 (0.0007) 0.0012 (0.0008) 0.0010 (0.0010) 0.0009* (0.0005)

The table reports robustness results from the regression on the spillover index “from others” with heteroscedasticity and serial correlation consistent standard errors 

(Std. E.) by [4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Lags”, show the results 

when the number of lags in the VAR model is increased to two. Next, the columns titled “TVP-VAR” and “VAR” display the outcomes when the time-varying parameter 

VAR of [1] or the standard VAR model are used instead of the VAR model with LASSO regularization. Finally, we present the results if the forecast horizon is doubled. 

Statistical significance is indicated by ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

Table B.9 

Robustness analysis of net spillover index.

Variable Original Lags TVP-VAR VAR Horizon

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) −0.0001 (0.0024) 0.0012 (0.0010) 0.0023 (0.0118) 0.0030 (0.0023) −0.0001 (0.0024)

STOXX 600 −1.4627 (−1.5567) 0.3916 (1.1535) 2.3061 (3.8937) −0.6740 (1.2535) −1.4513 (1.5509)

Oil price 0.7517 (0.7514) −0.0311 (0.5054) −0.8979 (2.1616) 0.1436 (0.4238) 0.7509 (0.7512)

Gas price −0.5590 (−1.3375) 0.1407 (0.8249) −0.1184 (2.3045) −0.3116 (0.5037) −0.5585 (1.3477)

Coal price −0.4848 (−1.5170) −0.9850 (0.6087) 1.6984 (1.4593) 0.4086 (0.4538) −0.4839 (1.5291)

EUA 0.2627 (0.5363) 0.1378 (0.2014) −0.3495 (1.6027) −0.2529 (0.4139) 0.2603 (0.5409)

Total load 0.7625* (0.4308) 0.0417 (0.6082) −0.7736 (2.5623) 0.1230 (0.2089) 0.7671* (0.4314)

Fossil fuels 0.0068 (0.0555) 0.2429** (0.1053) 0.2391 (0.3921) −0.0475 (0.0343) 0.0077 (0.0556)

Nuclear 0.0266 (0.4902) −0.4143 (0.4399) −3.1543** (1.2744) −0.0558 (0.3527) 0.0268 (0.4903)

Renew −0.1117 (0.3527) 0.1773 (0.1977) −0.864 (0.7034) −0.3977*** (0.0910) −0.1074 (0.3511)

Solar −0.0030 (0.0996) 0.0077 (0.0344) −0.3594*** (0.0708) −0.0454 (0.0392) −0.0031 (0.0999)

Wind 0.0138 (0.0465) 0.0135 (0.0335) −0.2311** (0.1029) −0.0655* (0.0367) 0.0143 (0.0466)

The table reports robustness results from the regression on the net spillover index with heteroscedasticity and serial correlation consistent standard errors (Std. E.) 

by [4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Lags”, show the results when the 

number of lags in the VAR model is increased to two. Next, the columns titled “TVP-VAR” and “VAR” display the outcomes when the time-varying parameter VAR 

of [1] or the standard VAR model are used instead of the VAR model with LASSO regularization. Finally, we present the results if the forecast horizon is doubled. 

Statistical significance is indicated by ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

B.2. Robustness with focus on the regression results

Fig. B.8. Dynamic total and net volatility spillovers. These figures show the network graph for the entire sample period as well as the dynamic total volatility spillover 

index and net spillover indices by country, when realized volatility is used instead of daily price ranges.
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Table B.10 

Robustness analysis of total spillover index.

Variable Original Realized vola STOXX industrials Fossil fuels Hydro

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0002) −0.0001 (0.0002) 0.0000 (0.0002) 0.0000 (0.0002) 0.0000 (0.0002)

STOXX 600 0.0081 (0.0167) −0.0036 (0.0189) 0.0084 (0.0170) 0.0081 (0.0166)

STOXX Ind. 0.0013 (0.0142)

Oil price 0.0117 (0.0093) 0.0078 (0.0095) 0.0124 (0.0092) 0.0115 (0.0095) 0.0118 (0.0091)

Gas price 0.0043 (0.0057) −0.0056 (0.0065) 0.0042 (0.0057) 0.0041 (0.0055) 0.0042 (0.0058)

Coal price −0.0022 (0.0072) −0.0022 (0.0094) −0.0024 (0.0072) −0.0019 (0.0068) −0.0022 (0.0073)

EUA −0.0088 (0.0062) −0.0116 (0.0080) −0.0081 (0.0062) −0.0088 (0.0062) −0.0089 (0.0063)

Total load 0.0156*** (0.0057) 0.0167** (0.0077) 0.0157*** (0.0057) 0.0152*** (0.0058) 0.0176*** (0.0068)

Fossil fuels −0.0001 (0.0022) −0.0010 (0.0033) −0.0001 (0.0022) −0.0032 (0.0029) −0.0007 (0.0024)

Gas 0.0006 (0.0019)

Coal −0.0005 (0.0013)

Nuclear −0.0057 (0.0055) 0.0061 (0.0079) −0.0057 (0.0055) −0.0067 (0.0056) −0.0055 (0.0055)

Renew 0.0231*** (0.0052) 0.0162** (0.0065) 0.0232*** (0.0052) 0.0241*** (0.0052) 0.0070 (0.0047)

Hydro 0.0173*** (0.0045)

Solar −0.0001 (0.0010) 0.0003 (0.0012) −0.0001 (0.0010) −0.0002 (0.0010) −0.0001 (0.0010)

Wind 0.0000 (0.0010) −0.0007 (0.0014) 0.0000 (0.0010) −0.0002 (0.0010) 0.0000 (0.0010)

The table reports robustness results from the regression on the total spillover index with Newey-West standard errors (Std. E.). The first set of results corresponds to 

the original findings presented in the main analysis. The subsequent columns, labeled “Realized Vola”, show the results when realized volatility is used instead of 

daily price ranges. Next, the columns titled “STOXX Industrials” display the outcomes when the STOXX Europe 600 Industrial Goods & Services index replaces the 

overall STOXX Europe 600 index. Finally, we present the results for the disaggregation of generation technologies, with “Fossil Fuels” referring to the breakdown 

of fossil fuel sources into the share of gas, coal and others and “Hydro” representing hydro power as a standalone variable. Statistical significance is indicated by 

***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

Table B.11 

Robustness analysis of spillover index “to others”.

Variable Original Realized vola STOXX industrials Country-specific load Fossil fuels Hydro

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0001) −0.0001 (0.0001) 0.0000 (0.0001) 0.0000 (0.0001) 0.0000 (0.0001) 0.0000 (0.0001)

STOXX 600 0.0010 (0.0186) −0.0646 (0.0642) 0.0023 (0.0191) 0.0022 (0.0234) 0.0014 (0.0233)

STOXX Ind. 0.0009 (0.0168)

Oil price 0.0262*** (0.0088) 0.0438*** (0.0130) 0.0262*** (0.0096) 0.0260*** (0.0089) 0.0282*** (0.0109) 0.0281** (0.0110)

Gas price 0.0012 (0.0237) −0.0216** (0.0096) 0.0012 (0.0237) 0.0024 (0.0239) 0.0176 (0.0232) 0.0174 (0.0232)

Coal price 0.0016 (0.0184) −0.0052 (0.0288) 0.0016 (0.0183) 0.0004 (0.0186) −0.0150 (0.0135) −0.0148 (0.0136)

EUA −0.0081 (0.0118) 0.0099 (0.0074) −0.0081 (0.0115) −0.0084 (0.0118) −0.0170 (0.0106) −0.0170 (0.0108)

Total load 0.0223*** (0.0047) 0.0156 (0.0179) 0.0223*** (0.0047) 0.0254*** (0.0043) 0.0289*** (0.0033)

Country-load 0.01480*** (0.0038)

Fossil fuels 0.0003 (0.0012) −0.0020 (0.0021) 0.0003 (0.0012) 0.0004 (0.0013) 0.0014 (0.0017) −0.0002 (0.0015)

Gas 0.0008 (0.0006)

Coal 0.0001 (0.0003)

Nuclear −0.0017 (0.0063) −0.0102 (0.0093) −0.0017 (0.0063) −0.0013 (0.0067) −0.0034 (0.0064) −0.0059 (0.0068)

Renew 0.0078 (0.0070) 0.0200* (0.0114) 0.0078 (0.0070) 0.0075 (0.0071) 0.0049 (0.0100) 0.0078*** (0.0018)

Hydro 0.0014 (0.0082)

Solar −0.0008 (0.0018) 0.0005 (0.0027) −0.0008 (0.0018) −0.0008 (0.0017) −0.0007 (0.0022) −0.0009 (0.0022)

Wind 0.0015 (0.0019) −0.0005 (0.0005) 0.0015 (0.0019) 0.0015 (0.0019) 0.0017 (0.0023) 0.0013 (0.0022)

The table reports robustness results from the regression on the spillover index “to others” with heteroscedasticity and serial correlation consistent standard errors 

(Std. E.) by [4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Realized Vola”, show the 

results when realized volatility is used instead of daily price ranges. Next, the columns titled “STOXX Industrials” display the outcomes when the STOXX Europe 600 

Industrial Goods & Services index replaces the overall STOXX Europe 600 index. Additionally, we include results where country-specific load values (Country-load) 

are used in place of the total load. Finally, we present the results for the disaggregation of generation technologies, with “Fossil Fuels” referring to the breakdown 

of fossil fuel sources into the share of gas, coal and others and “Hydro” representing hydro power as a standalone variable. Statistical significance is indicated by 

***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.
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Table B.12 

Robustness analysis of spillover index “from others”.

Variable Original Realized vola STOXX industrials Country-specific load Fossil fuels Hydro

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) 0.0000 (0.0000) 0.0000 (0.0001) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0001) 0.0000 (0.0001)

STOXX 600 0.0264** (0.0133) 0.0063 (0.0280) 0.0270* (0.0138) 0.0292* (0.0161) 0.0293* (0.0165)

STOXX Ind. 0.0110 (0.0081)

Oil price 0.0134 (0.0097) 0.0119 (0.0121) 0.0150 (0.0105) 0.0134 (0.0097) 0.0145 (0.0124) 0.0146 (0.0122)

Gas price 0.0078* (0.0044) −0.0004 (0.0048) 0.0075* (0.0044) 0.0085** (0.0041) 0.0067 (0.0052) 0.0069 (0.0053)

Coal price 0.0080 (0.0098) 0.0216* (0.0113) 0.0076 (0.0096) 0.0073 (0.0092) 0.0140 (0.0101) 0.0139 (0.0100)

EUA −0.0182** (0.0090) −0.0341* (0.0196) −0.0167** (0.0083) −0.0184** (0.0091) −0.0218** (0.0104) −0.0219** (0.0105)

Total load 0.0077 (0.0082) 0.0089 (0.0057) 0.0078 (0.0082) 0.0113 (0.0091) 0.0087 (0.0094)

Country-load 0.0001 (0.0018)

Fossil fuels 0.0000 (0.0012) 0.0032 (0.0024) 0.0000 (0.0012) 0.0003 (0.0009) 0.0011 (0.0007) 0.0002 (0.0011)

Gas 0.0000 (0.0004)

Coal −0.0001 (0.0001)

Nuclear −0.0014 (0.0030) 0.0125 (0.0087) −0.0013 (0.0030) −0.0024 (0.0035) −0.0033 (0.0032) −0.0009 (0.0037)

Renew 0.0077*** (0.0022) 0.0005 (0.0026) 0.0077*** (0.0022) 0.0075*** (0.0021) 0.0093*** (0.0020) −0.0028* (0.0016)

Hydro 0.0078*** (0.0021)

Solar −0.0011*** (0.0004) −0.0002 (0.0007) −0.0011*** (0.0004) −0.0012*** (0.0004) −0.0011*** (0.0004) −0.0011*** (0.0004)

Wind 0.0009* (0.0005) 0.0025 (0.0023) 0.0009* (0.0005) 0.0009* (0.0005) 0.0011 (0.0007) 0.0009 (0.0006)

The table reports robustness results from the regression on the spillover index “from others” with heteroscedasticity and serial correlation consistent standard errors 

(Std. E.) by [4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Realized Vola”, show the 

results when realized volatility is used instead of daily price ranges. Next, the columns titled “STOXX Industrials” display the outcomes when the STOXX Europe 600 

Industrial Goods & Services index replaces the overall STOXX Europe 600 index. Additionally, we include results where country-specific load values (Country-load) 

are used in place of the total load. Finally, we present the results for the disaggregation of generation technologies, with “Fossil Fuels” referring to the breakdown 

of fossil fuel sources into the share of gas, coal and others and “Hydro” representing hydro power as a standalone variable. Statistical significance is indicated by 

***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10.

Table B.13 

Robustness analysis of net spillover index.

Variable Original Realized vola STOXX industrials Country-specific load Fossil fuels Hydro

Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E. Estimate Std. E.

(Intercept) −0.0001 (0.0024) −0.0043** (0.0017) 0.0000 (0.0025) 0.0001 (0.0024) 0.0011 (0.0028) 0.0010 (0.0028)

STOXX 600 −1.4627 (−1.5567) −1.7433 (2.5541) −1.4201 (1.5941) −1.5713 (1.9872) −1.6264 (1.9891)

STOXX Ind. −0.5704 (1.4331)

Oil price 0.7517 (0.7514) 1.4867 (1.0807) 0.6610 (0.7696) 0.7446 (0.7647) 0.8408 (0.9506) 0.8293 (0.9600)

Gas price −0.5590 (−1.3375) −0.7821 (0.5790) −0.5447 (1.3403) −0.5248 (1.3152) 0.5029 (1.1683) 0.4753 (1.1684)

Coal price −0.4848 (−1.5170) −1.9787** (0.9723) −0.4601 (1.5127) −0.5202 (1.5025) −1.9312* (0.9870) −1.9090* (0.9895)

EUA 0.2627 (0.5363) 1.4244*** (0.5136) 0.1733 (0.5277) 0.2515 (0.5304) −0.1817 (0.4348) −0.1732 (0.4405)

Total load 0.7625* (0.4308) 0.9425 (0.9655) 0.7573* (0.4295) 0.6460 (0.6062) 0.9637* (0.5553)

Country-load 0.6136 (0.4242)

Fossil fuels 0.0068 (0.0555) −0.1876*** (0.0656) 0.0067 (0.0554) 0.0034 (0.0625) 0.0652 (0.0708) −0.0365 (0.0767)

Gas 0.0186 (0.0502)

Coal 0.0023 (0.0144)

Nuclear 0.0266 (0.4902) −0.2290 (0.3065) 0.0251 (0.4904) 0.0667 (0.5369) 0.0422 (0.5646) −0.2352 (0.6035)

Renew −0.1117 (0.3527) 0.4335** (0.2027) −0.1128 (0.3530) −0.1185 (0.3526) −0.4172 (0.4911) 0.5618*** (0.1427)

Hydro −0.4828 (0.3728)

Solar −0.0030 (0.0996) −0.0815 (0.0853) −0.0034 (0.0993) −0.0005 (0.1014) 0.0069 (0.1189) −0.0015 (0.1191)

Wind 0.0138 (0.0465) −0.0537* (0.0309) 0.0139 (0.0465) 0.0159 (0.0483) 0.0087 (0.0560) −0.0043 (0.0570)

The table reports robustness results from the regression on the net spillover index with heteroscedasticity and serial correlation consistent standard errors (Std. E.) by 

[4]. The first set of results corresponds to the original findings presented in the main analysis. The subsequent columns, labeled “Realized Vola”, show the results when 

realized volatility is used instead of daily price ranges. Next, the columns titled “STOXX Industrials” display the outcomes when the STOXX Europe 600 Industrial 

Goods & Services index replaces the overall STOXX Europe 600 index. Additionally, we include results where country-specific load values (Country-load) are used 

in place of the total load. Finally, we present the results for the disaggregation of generation technologies, with “Fossil Fuels” referring to the breakdown of fossil 

fuel sources into the share of gas, coal and others and “Hydro” representing hydro power as a standalone variable. Statistical significance is indicated by ***𝑝 < 0.01, 
**𝑝 < 0.05, and *𝑝 < 0.10.
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Data availability

Data will be made available upon request. 
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