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P H Y S I C S

Measurement-induced photonic topological insulators

Quancheng Liu1†, Weijie Liu1†, Yuechen Jia1, Klaus Ziegler2, Andrea Alù3,4*, Feng Chen1*

Topological order in photonics, de�ned by pseudo-spin degrees of freedom, is traditionally static. By contrast, 
a unique quantum e�ect is that measurements alter system states. The convergence of these foundational 
concepts—measurement and topology—remains unexplored. Here, we demonstrate that topological order can 
be dynamically modi�ed by repeated measurements. By fabricating a photonic lattice composed of an array of 
contiguous waveguides and incorporating 16,800 appended waveguide segments as discrete, nonindependent 
units, we established a classical-wave platform simulating the backaction from measurements and observed 
measurement-induced topological order in photonic lattices. Beyond topology, we further demonstrate that mea-
surements can universally control the lattice by tailoring its Hilbert space and validate experimentally. Our study 
not only o�ers a quantum approach to dynamically tailor topological order but also unveils measurements as a 
powerful universal control tool, paving the way to on-chip topological materials and measurement-induced con-
trol over photonic systems.

INTRODUCTION

Topological insulators are a phase of matter that supports robust 
transport along boundaries, yet it forbids propagation in the bulk (1). 
�ey have sparked an active �eld of research, spanning multiple dis-
ciplines, with applications going from robust spintronic devices to 
fault-tolerant quantum computing. In this context, the quantum Hall 
e�ect, induced by an external magnetic �eld, has showcased a �rst 
popular example of how topological transport can be induced in 
practical physical systems (2). Subsequently, the quantum spin Hall 
e�ect has revealed that topology can arise without external magnetic 
bias, driven by spin-orbit coupling (3–5). Experimental veri�cation of 
these phenomena has been achieved across various platforms (6–11). 
Speci�cally, the realization of topological phenomena in photonics 
has been extensively investigated (12–18), leading to exotic �ndings, 
such as topological lasers (19, 20), non-Hermitian topological physics 
(21), and nonlinearity-induced topology (22). Recently, Floquet engi-
neering, involving time-dependent coupling elements, has emerged 
as a powerful tool for manipulating the topological order, both theo-
retically and experimentally, unveiling additional degrees of freedom 
for the generation of topological insulators (23–31) and demonstrat-
ing enhanced robustness (32).

Measurements are at the basis of the observation of natural phe-
nomena in any physical system. In the realm of quantum physics, the 
measurement of a quantum system inevitably alters its state, a phe-
nomenon known as measurement backaction (33, 34). Such features 
are harnessed, for example, in quantum information science, where 
measurements are crucial for entanglement phase transitions, quan-
tum error correction, and measurement-based computation (35–42). 
Notably, conducting rapid, stroboscopic measurements on a system 
can induce the quantum Zeno e�ect, whereby the evolution of a sys-
tem is suppressed by the backaction of the measurements, maintaining 
its initial state (43). �is e�ect is the quantum analog of Zeno’s para-
dox, which claims that an arrow in �ight may be deemed motionless 

when observed at any speci�c instant in time (44, 45). Notably, the 
physical observable measured here is the particle density within spe-
ci�c states. However, the primary objective of these measurements is 
not to obtain values of the observables themselves but rather to use the 
measurement-induced backaction to modify the evolution of the sys-
tem (46, 47). Intriguingly, recent studies have shown that the quantum 
Zeno e�ect does not simply halt the system evolution; rather, the Zeno 
dynamics con�ne this evolution to a speci�c subspace of the entire 
Hilbert space, with frequent measurements delineating the boundaries 
of the evolution space (48). Experimental observations of the quantum 
Zeno e�ect have been reported across various physical platforms, in-
cluding atomic (49, 50), optical (51–56), and acoustic (57, 58) systems. 
In an experimental validation, the crucial issue remains to realize the 
measurement’s backaction on the system. In such a feat, the observer-
system quantum entanglement is unnecessary, because the ultimate 
e�ect of measurements is to induce a change in the state of the system. 
�is methodological approach is well established in the existing litera-
ture for the investigation of the quantum Zeno e�ect (49–58). Notably, 
by leveraging the quantum-optical analogy, i.e., the mapping be-
tween the Schrödinger equation for quantum waves and the paraxial 
Helmholtz equation for classical light waves—an e�ective framework 
for exploring various quantum phenomena (59, 60)—the optical Zeno 
e�ect has been observed in classical photonic lattices (51, 53–56).

�ese studies have demonstrated that measurements can alter 
the evolution of a system. However, merely freezing the evolution or 
con�ning it to a speci�c subspace can di�cultly yield meaningful 
physical insights or practically useful phenomena. Here, we explore 
whether the backaction of measurements can modify the topologi-
cal order of a photonic structure and induce a topological transition. 
�is study not only examines the phenomenon of the measurement-
induced Zeno e�ect, but it is also relevant to the design of dynamic 
topological insulators, where the topological order is generated 
through external operations. Developing di�erent mechanisms for 
generating topological phases of matter—such as external magnetic 
�elds, spin-orbit coupling, or nonlinearity—is a central challenge in 
topological physics. �us, could a series of measurements enable 
such a mechanism?

In the following, we theoretically and experimentally demonstrate 
a measurement-induced photonic topological insulator, establishing 
a direct connection between measurement and the topology of 
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matter. Speci�cally, by emulating the backaction of measurements in 
the Zeno regime using a classical photonic platform, we drive a topo-
logically trivial Lieb lattice into a topological phase, demonstrating 
unidirectional edge transport and an insulating bulk. Unlike conven-
tional Zeno phenomena, in which the measured states are static, we 
design di�erent measurement projectors in a time-dependent fash-
ion, which dynamically slice the Hilbert space of the lattice (see theo-
retical derivations with standard quantum projective measurements 
in Supplementary Text S1 and table  S1), resulting in a modi�ed 
anomalous Floquet topological insulator platform (23). In photonics, 
measurement-induced quantum phenomena can be investigated 
classically by leveraging quantum-optical analogy experiments, 
where optical modes correspond to distinct quantum states and their 
temporal evolution is mapped into spatial propagation (51, 53–56). 
Typically, a measurement involves coupling a measurement appara-
tus to the monitored system, resulting in measurement backaction. A 
primary experimental challenge is designing the system-measurement 
interaction to achieve the desired outcomes within a photonic frame-
work, particularly when dealing with a large number of measure-
ments. In our experiments, we do not implement genuine quantum 
measurements featuring observer-system entanglement; instead, the 
measurements are executed using built-in, on-demand segmented 
waveguide sections that induce periodic modi�cations to the guided 
light �elds, e�ectively mimicking the backaction of repeated quan-
tum measurements and realizing the optical analog of the Zeno e�ect 
on the photonic lattice. Notably, despite the inherent loss associated 
with each individual measurement, light propagation within the pho-
tonic lattice remains unitary, protected by the optical Zeno e�ect. We 
further demonstrate that by engineering noncommutative Zeno sub-
spaces, the evolution of light across the photonic lattice can be pre-
cisely controlled in an on-demand fashion. As a further proof of the 
opportunities enabled by this concept, we experimentally implement 
three-level Zeno subspaces, e�ectively creating in-lattice beam split-
ters within the Lieb lattice.

RESULTS

Generating the backaction of stroboscopic measurements 
in photonics
In the tight-binding approximation, the evolution of light in a two-
dimensional photonic lattice is described by the discrete paraxial 
Helmholtz equation

where ψ
n(z) is the electric �eld amplitude at lattice node n; κm,n(z) is 

the hopping strength between waveguides m and n; βn(z) is the 
propagation constant, which is the same for all sites; and the sum-
mation is taken over neighboring waveguides. �is equation for-
mally resembles the Schrödinger equation, with light propagation 
along z playing the role of time. Hence, a longitudinal modulation of 
the waveguide emulates the temporal evolution of the associated 
Hamiltonian, enabling the implementation of measurement backac-
tion to the lattice using a prefabricated photonic system that varies 
along z. In our experiments, we use femtosecond laser direct writing 
(61) on glass wafers to fabricate single-mode waveguide structures 
(see Materials and Methods). We arrange straight waveguides to 
construct a photonic Lieb lattice (62): �e lattice geometry is formed 

by arranging evanescently coupled straight waveguides of length 
L into unit cells with one central site and two peripheral sites of 
11 μm in distance, aligned along orthogonal axes (Fig. 1, A and B). 
�e Lieb lattice is topologically trivial and features a �at band. �e 
key challenge lies in implementing the analog of Zeno measure-
ments to introduce tailored broken symmetries that induce a topo-
logical transition.

In our experimental protocol, measurements at speci�c lattice 
nodes are mapped onto waveguide connections appended to these 
nodes (illustrated in Fig. 1, A and B). Here, the physical observ-
able is the light intensity at the nodes. However, as mentioned, the 
goal of the measurements is not to obtain the light intensity itself 
but rather to induce the optical Zeno e�ect through measurement 
backaction. Each waveguide connection segment acts as a mea-
surement apparatus  coupled to the nearest straight waveguide 
(see further details and a non-Hermitian model in Supplementary 
Text S2). As shown in Fig. 1A, the system-measurement interaction 
time is determined by the segment length l, which can be adjusted. 
In the gap between the segments of length g, the coupling vanishes. 
Light can propagate out of the system from the gap between the 
segments, and photons are emitted, corresponding to the readout 
process. Hence, the waveguide segment, together with the gap, em-
ulates a complete measurement process on the adjacent straight 
waveguide. A similar protocol to realize the backaction of measure-
ments and the Zeno e�ect was used in 87Rb (46), where the wave-
guide segments represent distinct energy levels, and the laser pulse 
duration is analogous to the segment length l. �e optical Zeno ef-
fect emerges in long interaction times between the segments and 
the monitored node with l = 170 μm and g = 30 μm (see additional 
experiments in Supplementary Text S3 and S4). In the Zeno limit, 
the couplings between measured and surrounding nodes are re-
stricted to speci�c values that prevent light from hopping to the 
measured node.

�is construct implements the optical Zeno e�ect for a single 
node in the lattice. More generally, the backaction of measurements 
can restrict the evolution of the system to a subspace of the system’s 
Hilbert space (42, 45–47). �is subspace is called the Zeno subspace. 
As a simple example, consider a �ve-site chain where the middle site 
(site 3) is measured. �is measurement decouples site 3 from the 
system and leads to the formation of two Zeno subspaces, each con-
sisting of two sites (sites 1 and 2, and sites 4 and 5, respectively.) (see 
Supplementary Text S1 for more details). Returning to our lattice 
model, by selectively measuring di�erent nodes in the Lieb lattice 
(represented as blue sites in Fig. 1C), we can modify the lattice sym-
metry ad hoc. For instance, we can purposely inhibit inter- and in-
tracell couplings using the Zeno e�ect and only allow exclusive 
hopping between the two yellow nodes in the unit cell. �ese yellow 
nodes represent the Zeno subspace formed on the Lieb lattice be-
cause of the Zeno e�ect, which con�nes the particle’s evolution to 
this subspace rather than the full Hilbert space. For instance, in step 1, 
Zeno measurements on nodes C, D, E, and F inhibit all other cou-
plings in the unit cell; as a result, particle hopping is restricted solely 
between nodes A and B (Fig. 1, B and C). �is happens because the 
backaction of measurements on nodes C to F e�ectively suppresses 
the transitions to these nodes; consequently, we get a Zeno subspace 
formed only by nodes A and B. Physically, the ensemble of mea-
sured states ∣d⟩ de�nes the projection operator P = I −

∑
d
∣d⟩ ⟨d∣ , 

where I is the identity matrix of order six. Consequently, the backac-
tion of these measurements restricts the evolution of the system into 

i
d

dz
ψn(z) = βn(z)ψn(z) +

�

⟨n,m⟩
κm,n(z)ψm(z) ≡ H(z)ψn(z) (1)
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a particular Zeno subspace and the corresponding Zeno subspace 
Hamiltonian reads Hp(k) = PH(k)P . Hence, the original lattice 

Hamiltonian H(k) is transformed into a modi�ed Hamiltonian, 
Hp(k) (further theoretical derivations in Supplementary Text S1 and 

table S1). In the theoretical framework, each measurement can ei-
ther succeed (measuring the system within the Zeno subspace) or 
fail (projecting it into the orthogonal subspace). In the Zeno limit, 
where measurements are performed frequently, the probability of 
any failed measurements vanishes, and all the measurements are 
successful with certainty (see Supplementary Text S1 for details). 
�erefore, the Zeno e�ect is a deterministic phenomenon that natu-
rally emerges under frequent measurements (42,  45). Hp(k) de-

scribes the Zeno subspace for the measured Lieb lattice in the 
momentum space, and the evolution inside this subspace is the 
Zeno dynamics, as dim

[

Hp(k)
]

> 1 . In step 1, the measurement 

projection operator P1 = I −
∑

d=C,D,E,F ∣d⟩ ⟨d∣ , which describes 
Zeno measurements on nodes C to F. Consequently, the Zeno sub-
space for step 1 is H1

P
(k) = P

1
H(k)P1 =∣A⟩ ⟨B ∣ + ∣B⟩ ⟨A ∣ . In this 

case, when injecting a laser beam from site A, the light no longer 
spreads across the entire photonic Lieb lattice; instead, it exhibits 
Rabi oscillations (63, 64) between nodes A and B, characterized by 
the periodic and coherent transfer of light between the two coupled 
waveguides, resulting in an oscillatory exchange of optical intensity 
between the sites.

Floquet Zeno subspaces
Our measurement-induced topological photonic insulator uses a 
cyclically arranged Floquet eight-step driving protocol (Fig.  1C). 
�e complete Floquet cycle spans a total duration L, with each step 
being L∕8 . �e timing of these steps is controlled by the number of 

Fig. 1. Photonic implementation of a measurement-induced topological insulator. (A) Schematic illustration showing how the backaction of measurements and 

Floquet driving protocol are implemented using 3D waveguide arrays with waveguide segments and gaps. Here, only part of the lattice structure is presented, and the 

full lattice image is shown in (B). (B) Experimental cross-sectional image of Floquet step 1, fabricated using femtosecond laser writing. We fabricate a total of 65 straight 

waveguides (WGs) and 16,800 segmented waveguide portions to experimentally realize the measurement-induced topological insulator. (C) Measurement-induced 

eight-step Floquet driving protocol. The measured sites are marked in blue, and the nonmeasured sites are marked in yellow, which constitute the Zeno subspace gener-

ated by measurements for each step. (D and E) Quasi-energy ε spectrum as a function of the quasimomenta k
x
 for the perfect Zeno switching (experimentally realized) 

and o�-perfect Zeno switching scenarios. The spectrum of the measurement-induced topological insulator features a zero net Chern number for each bulk band and 

anomalous edge modes characterized by a nonvanishing winding number.
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measurements N in our experiment, i.e., L∕8 = N
(

l+g
)

 . At each 
distinct propagation step X, we design the measured states to realize 
a unique Zeno subspace HX

p
(k) (explicit expressions in Supplemen-

tary Text S1 and table S1). �is setup guarantees exclusive routing of 
light from each waveguide to its designated nearest neighbor. By 
systematically inducing eight distinct Zeno subspaces in sequence, 
we realize an anomalous Floquet topological insulator. Notably, the 
Floquet topological insulator induced by such measurements exhib-
its a higher degree of sparsity compared to the conventional sce-
nario, necessitating additional nodes for the measurement process. 
�e overall dynamics of the system through one complete cycle are 
governed by the Floquet operator

where   denotes the time ordering, and HX
p
(k) represents the 

measurement-induced Zeno subspace. �e quasi-energy ε is de�ned 
through the eigenvalue equation of the Floquet operator U(L) , 
which satis�es ϕ(L) = U(L)ϕ(0) = e−iεLϕ(0) , with ϕ being the Flo-
quet eigenstate (29). Hence, the quasi-energy ε exhibits periodicity 
of 2π∕L . We analyze the bulk band structure as a function of the 
quasi-momentum kx for di�erent driving periods L by changing the 
measurement durations. �e scenario wherein light completely 
transitions between waveguides in each Zeno subspace within one 
cycle forms the “perfect Zeno switch.” �is case involves 50 mea-
surements at each node per cycle. �e “o�-perfect Zeno switch” sce-
nario, where only partial light transition occurs, involves 40 
measurements at each node. �e quasi-energy ε spectrum, illustrated 
in Fig. 1 (D and E), reveals the emergence of topological edge states, 
characterized by a nontrivial winding number  = 1 . Notably, the 
absence of a Chern number (  = 0 ) suggests an unconventional to-
pological response. Instead, the presence of a nonvanishing winding 
number, counting the edge states that cross a particular bandgap, 
indicates that the system topological properties stem from its dy-
namic evolution, which is induced by the Zeno measurement pro-
cess. Consequently, the measurement-induced lattice does not exhibit 
Chern-type topological insulator features but rather realizes an 
anomalous topological insulator with edge modes, driven by our 
measurement-induced Floquet protocol.

To experimentally observe the measurement-induced topologi-
cal insulator, we fabricated a photonic Lieb lattice featuring 65 
straight waveguides arranged to form a 4 by 4 square con�guration, 
as shown in the cross-sectional micrograph in Fig. 1B. Following the 
creation of this lattice, we proceed with conducting measurements. 
To enable Zeno measurements, we introduce segmented waveguide 
sections into the system. We perform 50 measurements for each 
straight waveguide in a single step. In each step, 42 waveguides are 
measured, establishing the necessary Zeno subspaces to control 
light propagation within the lattice. �e complete Floquet driving 
sequence consists of eight steps, resulting in the fabrication of 16,800 
segmented waveguides, which correspond to the same number of 
measurements on the photonic Lieb lattice.

In the �rst set of experiments, a laser beam at a 532-nm wave-
length was used to excite an internal site within the monitored lat-
tice, as illustrated in Fig. 2A. Following four-step Zeno measurements, 
light propagation across the lattice was experimentally monitored. 
During each measurement step, the optical Zeno e�ect con�nes 

light within a two-level Zeno subspace, causing it to deterministi-
cally transition to the adjacent site. �is resulted in a well-de�ned 
propagation path A→ B→ D→ F→ A , where the later sites D, F, 
and A belong to the next unit cell. A�er four steps, the light beam 
was entirely localized at the diagonally opposite site from the initial 
injection point, as shown by our experimental measurements 
in Fig. 2B. Subsequently, light was allowed to propagate for another 
four steps, moving from A to E and then to D and C and returning 
to A, as shown in Fig. 2C. �e experimentally observed light distri-
bution a�er eight steps is shown in Fig. 2D, where the light beam 
returns to its initial injection site, consistent with our theoretical 
predictions. �ese experiments illustrate that the backaction of 
measurements con�nes light propagation within the lattice within 
chiral loops, with an insulating response in bulk. For comparison, 
experiments without Zeno measurements correspond to a straight 
waveguide array lacking segmented sections. �e laser is directed to 
the same site, allowing the light to disperse freely over a 4-cm dis-
tance. �e resulting light distribution, shown in  Fig.  2F, demon-
strates the spread of light across the entire lattice. �e distinct 
contrast in light distribution patterns between Fig. 2 (B, D, and F) 
highlights that the insulating properties of the lattice are induced by 
the Zeno measurement process.

Measurement-induced topological chiral edge transport and 
its robustness
We further investigate measurement-induced topological edge 
transport by directing a laser beam from the edge of the lattice, as 
illustrated in Fig. 3A. Initially, light travels from le� to right along the 
edge in steps 1 and 2. According to the driving protocol, light is ex-
pected to move downward; however, its propagation is obstructed by 
the lattice edge, and upward coupling is suppressed by Zeno mea-
surements. Consequently, light remains at this node until step 6. �is 
behavior is con�ned within a unique edge Zeno subspace of unitary 
dimension, in contrast to the bulk Zeno subspaces HX

P
(k) , which 

have a dimension greater than one, e�ectively halting the system 
evolution (Zeno freezing). In step 6, the pathway for rightward hop-
ping opens, allowing the light to progress to the next node along the 
edge. It stays at this location until step 5 of the subsequent period 
when the rightward pathway reopens, enabling further propagation 
along the edge. Across two periods, the light moves unidirectionally 
through four nodes. In our experiment, we fabricated an edge Zeno 
subspace for one step to represent the waiting process. �e observed 
topological edge transport, illustrated in  Fig.  3 (B and C), entails 
one-way transport of light along the lattice edge, in agreement with 
theoretical predictions. Upon reaching the corner, the light contin-
ues its upward journey along the right edge, where the corner (es-
sentially a strong defect) does not scatter light backward. �e opening 
steps are 5 for the ��h and seventh periods and 3, 7, and 8 for the 
sixth and eighth periods. Experimental results shown in Fig. 3 (D 
and E) demonstrate tight con�nement along the edge with no scat-
tering at the corner or into the bulk of the array, providing strong 
evidence for topological protection of the edge state.

�e topological nature of this phenomenon is re�ected in the in-
herent robustness of measurement-induced topological edge trans-
port in the presence of structural defects and dynamic disorder, as 
demonstrated in Supplementary Text S5 and movies S1 to S7. We ex-
amine the e�ects of (i) a single missing edge site, (ii) multiple missing 
edge sites, and (iii) random onsite energy variations introducing both 
spatial and temporal disorder for both perfect and o�-perfect Zeno 

U(L) =  exp

⎡
⎢⎢⎣
−i

L

�
0

dtH(k, t)

⎤
⎥⎥⎦
=

8�
X=1

exp

�
− iHX

p
(k)L

8

�
(2) D
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Fig. 2. Experimental observation of the measurement-induced insulating bulk inside the Lieb lattice. (A) Initial excitation of the lattice and predicted light trajec-

tory for the �rst four-step Zeno measurements on the Lieb lattice. The lattice nodes A to F in the unit cell are marked in the �gure. (B) Observed light distribution showing 

that the light is fully localized at the site diagonally opposite the injection point, consistent with the theoretical prediction. (C) Predicted light trajectory for the �nal four-

step Zeno measurements in the Floquet driving protocol. (D) Corresponding experimental results, where light returns to the injection site, demonstrating the 

measurement-induced insulating bulk inside the Lieb lattice. (E) Schematic representation of the Lieb lattice without the measurement process, consisting solely of 

straight waveguides. (F) Experimental light distribution for the Lieb lattice without measurements. Comparison of (B), (D), and (F) illustrates that the insulating bulk in the 

Lieb lattice is induced by the Zeno measurements.

Fig. 3. Experimental results of measurement-induced unidirectional edge transport. (A) Light propagation trajectory along the edge of the Lieb lattice driven by 

Zeno measurements. The whole process encompasses eight Floquet driving periods, with the opening steps for each period illustrated. Lattice sites A to F within the unit 

cell are identi�ed in the �gure. (B to E) Experimentally observed unidirectional edge transport induced by the measurements on the photonic lattices. At each stage, light 

localizes entirely on a single lattice node. The trajectory begins along the lattice’s bottom edge, navigates the corner, and ascends along the right edge, aligning with 

theoretical expectations. (F) Schematic of a standard Lieb lattice in the absence of measurements. (G) Experimental light distribution on a normal Lieb lattice with a laser 

beam introduced at the edge. The comparison between (B) through (E) and (G) demonstrates that the chiral edge transport is induced by the Zeno measurements gener-

ated by the segmented waveguide portions.
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switches. When a single edge site is removed, the transport bypasses 
the defect without scattering into the bulk, preserving boundary 
propagation. Even when multiple missing edge sites are considered, 
light continues to propagate along the edge. Random onsite energy, 
induced by modifying the refractive index of the straight waveguides 
(including in the z direction), also does not disrupt edge transport. In 
the o�-perfect Zeno switch, the particle di�uses to the whole lattice 
edge from a single-site injection. We characterize the topological 
transport using the edge population ratio (probability on the edge di-
vided by total lattice probability), which remains high (~80%; �g. S12) 
under defects and disorder, a�er long propagation times (1000T, dur-
ing which the particle has circled the entire edge more than 50 times). 
�ese results highlight the robustness of topologically protected edge 
transport, with light remaining con�ned to the edge despite defects 
and disorder, even over long propagation times. Last, for comparison, 
we eliminated the segmented waveguide sections, i.e., without mea-
surements, and retain only the straight waveguides. When the lattice 
is excited from the same edge site, the measured light distribution, as 
shown in  Fig.  3G, spreads throughout the entire lattice. Compar-
ing Fig. 3 (B to E and G), it is clear that the topological edge transport 
is induced by Zeno measurements.

Universal lattice control using measurements
�ese results univocally demonstrate measurement-induced topologi-
cal order through a Floquet driving protocol. �e demonstrated con-
trol achieved by measurements can extend beyond the Floquet process, 
and the Zeno subspace can be tailored by selectively measuring spe-
ci�c states. Building on these insights, we propose a general formalism 
for achieving universal control over the lattice by precisely engineering 
and organizing the Zeno subspaces to meet speci�c requirements. Our 

strategy involves creating a sequence of noncommutative Zeno sub-
spaces across the lattice. �e operators governing this process can be 

formally expressed as U =
∏

s

exp
[

− iHs
p
(k)τs

]

 , where H s
p
(k) repre-

sents the s-th Zeno subspace and τ
s
 denotes the evolution time within 

this subspace. �is approach substantially increases the complexity of 
the dynamics on the lattice, surpassing the original evolution control 
by H(k) or the Floquet driving protocol, enabling complete control 
over the monitored lattice. Light now evolves unitarily along the lattice 
under arbitrary transformations, controlled by the exponential map 
eΘ , where Θ is an anti-Hermitian operator constructed from elements 
of the Lie group �Zeno = LieZeno { iH(k), iH

1

p
(k), ⋯ , iHs

p
(k), ⋯ } . 

�is ensures that all required transformations on the lattice can be ac-
complished through a sequence of Zeno measurements, allowing full 
control via the tailored Zeno subspaces.

As a proof of concept, we conducted a third series of experiments. 
Initially, three-level Zeno subspaces (yellow sites in Fig. 4A) were es-
tablished by performing Zeno measurements on adjacent sites (blue 
sites). �ese subspaces are distinct from the two-level subspaces used 
in Floquet driving. Subsequently, a laser beam was directed into the 
central site of the three-level Zeno subspace. We performed 29 mea-
surements on each measured site, corresponding to a propagation 
time τ1 = 29

(

l+g
)

= 0.58 cm . During this process, the single laser 
beam is split into two parts because of the optical Zeno effect, align-
ing with the experimental results shown in Fig. 4B. �e split laser 
beam propagates upward through a double two-level Zeno sub-
space, as depicted in Fig. 4C. Both parts of the laser beam move si-
multaneously upward along the double two-level Zeno subspace 
without spreading to other nodes because of Zeno control, as illus-
trated in Fig. 4D. �is setup e�ectively realizes a measurement-induced 

Fig. 4. Experimental observation of the beam splitter in the Lieb lattice generated by measurements. (A) Illustration of the measured nodes (blue) and unmeasured 

nodes for the generation of three-level Zeno subspaces in the Lieb lattice. (B) Experimental light distribution for splitting the laser beam using the Zeno subspace. The in-

jected laser beam is split into two parts, consistent with the theoretical predictions. (C) Upward propagation of the split laser beam using double two-level Zeno subspaces. 

(D) Experimental light output after two steps of upward propagation operations. This demonstrates the measurement-induced beam splitter inside the Lieb lattice.
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in-lattice beam splitter, demonstrating the potential for precise and 
universal lattice control through the strategic use of measurement 
processes. Our results generally demonstrate that we can generate 
complex dynamics on a lattice by designing Zeno subspaces on de-
mand, inducing topological transitions, modifying photon transport, 
and designing ad hoc scattering features.

DISCUSSION

In this work, we have introduced and experimentally demonstrated 
measurement-induced topological transitions in photonic lattices, il-
lustrating how measurements can serve as a powerful tool to drive a 
topologically trivial lattice into a topological phase. Our work estab-
lishes measurement backaction as a general external mechanism to 
dynamically engineer topological matter—an avenue that has not 
been explored in any prior studies of topology. �e experiments, al-
though realized in a photonic platform with classic light excitations, 
when mapped back onto a quantum measurement system, demon-
strate that our protocol provides a way to induce topological order 
through a sequence of quantum measurements, establishing mea-
surements as unique tools for generating topology in quantum mat-
ter. Consequently, our results suggest implications for both photonics 
and quantum physics. From a technological perspective, the seg-
mented waveguide we design can e�ectively pause light for program-
mable durations and thus can act as an optical “memory” element. In 
addition, although we use the Lieb lattice for our demonstration, the 
proposed protocol can be adapted to other lattice geometries. Nota-
bly, our approach enables exquisite dynamic control of topological 
order without perturbing the lattice geometry, but simply by intro-
ducing broken symmetry and Floquet phases through the measure-
ment protocol itself, in a precise and dynamic fashion. �is concept 
paves the way for exploring the rich interplay between the lattice 
structure, measurements, and topology in integrated photonics.

Beyond inducing topological transitions, our work also shows 
that the measurement process can perform complex operations on a 
photonic lattice, another concept that we proposed and validated ex-
perimentally in this work. By generating di�erent noncommutative 
Zeno subspaces, we can achieve dynamic and universal control over 
the lattice. �is capability allows exploring a variety of measurement-
induced phenomena in photonics and designing compact, function-
al devices within photonic lattices. For example, we can �rst perform 
a topological edge transport on the lattice and then precisely control 
its pathway to a speci�c target or split it into pieces (as our third ex-
periment showed) using this universal control on the lattice.

Even though our experiments were conducted within a photonic 
framework, the underlying measurement protocol is extendable to 
other platforms, such as acoustics, electronic circuits, or cold atoms, 
and to quantum platforms. Consequently, our work not only introduc-
es a distinct strategy for designing topological insulators but also paves 
the way for designing tunable on-chip devices, leveraging on-demand 
measurement-based control both for classical and quantum platforms.

MATERIALS AND METHODS

Experimental design
Fabrication of the 3D waveguide array
�e photonic waveguide structures used in this work are fabricated 
in commercially available borosilicate glass (Eagle XG) using the 
well-developed technique of direct femtosecond laser writing. �e 

glass is mounted on a computer-controlled three-dimensional (3D) 
x-y-z translation stage (Hybrid Hexapod, ALIO). A femtosecond la-
ser (Femto YL-25, YSL Photonics) at the wavelength of 1030 nm, the 
pulse duration of 400 fs, and the repetition rate of 2.5 MHz is used 
as the light source. A microscope objective [50×/0.45 numerical ap-
erture (NA)] is used to focus the laser beam below the substrate sur-
face of the sample. �e pulse energy is adjusted to ~152 nJ, and the 
writing speed is set to 1 mm s−1. Laser writing produces typical type 
I waveguides with a width of ~4 μm, and the refractive index di�er-
ence Δn between waveguide cores and cladding is ~10−3.
End-face coupling system
�e characterization of the waveguide system is performed by an 
end-face coupling system, illustrated in �g. S1. �e laser with the 
wavelength of 532 nm is injected into the selected waveguide of the 
system by a microscope objective (20×/0.4 NA) to excite waveguide 
modes. �e output intensity distribution (beam evolution) is mea-
sured (monitored) at the output facet using a charge-coupled device 
camera by another microscope objective (20×/0.4 NA). In addition, 
the morphology of the structural end facets is assessed using a 
metalloscope (Axio Imager, Carl Zeiss).
Characterization of coupling strength in waveguide arrays
Before conducting the main experiment, we �rst quantify the cou-
pling strength as a function of the distance between two aligned 
waveguides using the fabricated waveguide structures. We initiated 
the excitation of two coupled waveguides from WG1 with a 532-nm 
laser beam and varied the distance d between them (see �g. S2A). 
�e light intensity along the waveguide, described by I = I

0
sin

2(κl) , 
where κ represents the coupling magnitude and � the propagation 
length in the z direction, was measured. �e coupling magnitude κ 
was experimentally determined for various distances d, as shown in 
�g. S2B. We then �t the data to an exponential function to establish 
the relationship between the distance � and the coupling magnitude, 
which informed subsequent experiments.

We further investigated whether the writing depth in�uences the 
waveguides’ coupling properties. �e initial experiments were per-
formed at a fabrication depth of 112.5 μm in the y direction. We 
then repeated the procedure at a depth of 225 μm. �e experimen-
tally derived coupling magnitudes, also presented in �g. S2B, indi-
cate that the writing depth does not a�ect the coupling properties. 
�is �nding allowed us to proceed with fabricating 3D waveguide 
structures for further experiments.

Supplementary Materials
The PDF �le includes:

Supplementary Text

Figs. S1 to S12

Table S1

Legends for movies S1 to S7
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Movies S1 to S7
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