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A B S T R A C T

Event reconstruction is a technique that examiners can use to attempt to infer past activities by analyzing digital 
artifacts. Despite its significance, the field suffers from fragmented research, with studies often focusing narrowly 
on aspects like timeline creation or tampering detection. This paper addresses the lack of a unified perspective by 
proposing a comprehensive framework for timeline-based event reconstruction, adapted from traditional forensic 
science models. We begin by harmonizing existing terminology and presenting a cohesive diagram that clarifies 
the relationships between key elements of the reconstruction process. Through a comprehensive literature sur-
vey, we classify and organize the main challenges, extending the discussion beyond common issues like data 
volume. Lastly, we highlight recent advancements and propose directions for future research, including specific 
research gaps. By providing a structured approach, key findings, and a clearer understanding of the underlying 
challenges, this work aims to strengthen the foundation of digital forensics.

1. Introduction

Event reconstruction involves recreating past events by analyzing 
digital artifacts, allowing examiners to determine system activities and 
make informed conclusions about what occurred. While traditional 
forensic science benefits from a well-defined framework summarizing 
the field (Ribaux, 2023), event reconstruction in digital forensics is often 
discussed in fragmented terms focusing on tasks such as super timeline 
creation (Gudhjónsson, 2010; Metz et al., 2024), tampering detection 
(Palmbach and Breitinger, 2020; Studiawan and Sohel, 2021) or envi-
ronmental peculiarities (Schatz et al., 2006). As a result, research has 
centered on these narrow aspects, leaving broader challenges underex-
plored or overlooked. The absence of a unified perspective has led to a 
proliferation of terms, making it difficult to discuss event reconstruction 
comprehensively or find relevant research, e.g., some studies use the 
term artifact (Harichandran et al., 2016), others refer to observable 
facets (Jaquet-Chiffelle and Casey, 2021). Terms such as events (Carrier 
and Spafford, 2004a), user actions, interactions, or clicks (Neasbitt et al., 
2014) are inconsistently used in literature.

The three contributions: First, the article discusses concepts and defi-
nitions in timeline-based event reconstruction and integrates them into a 

new visual model (the timeline-based event reconstruction model or 
TER-Model), divided into four quadrants, integrating digital forensic 
timeline-based terminology and Ribaux (2014)’s model. Second, with 
this delineation, we provide a thorough discussion of the issues associ-
ated with timeline-based event reconstruction. These issues can be used 
to evaluate event reconstructions and identify areas of uncertainty in the 
results. They can also be used to systematically identify weaknesses in 
the timeline generation and analysis techniques and contribute to a 
knowledge base of weaknesses such as SOLVE-IT (Hargreaves et al., 
2025). Third, we provide future research directions needed within each 
quadrant of the event reconstruction process. This paper is predomi-
nantly theoretical, aiming to harmonize timeline-based event recon-
struction terminology, however, a practical illustration of the use of the 
model is available online.1

Not in scope: The identification of relevant devices (computer 
profiling, Marrington et al. (2007)), legal constraints or ethical issues 
(Losavio et al., 2015), technical challenges such as encryption, sophis-
tication of crime (Karie and Venter, 2015), or very general challenges, e. 
g., that “results must be reproducible and verifiable” (Soltani and Seno, 
2019) are not in scope.

Outline: The next section summarizes core works in event 
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reconstruction which serves as a foundation for this work. Subsequently, 
Sec. 3 presents terms and technology in existing literature and outlines 
the terminology used in this article. A contribution of this work is the 
TER-model which is developed and described in Sec. 4. Using the model, 
we identified challenges according to the methodology in Sec. 5 and 
organized the challenges for event reconstruction in the two main sec-
tions: Challenges stemming from environmental and process-related 
factors (Sec. 6) and Challenges stemming from deliberate interference 
(Sec. 7), which are summarized as key findings in Sec. 8. Considering 
these, Sec. 9 provides a discussion and identifies specific research gaps. 
The final section concludes the paper.

2. Event reconstruction

Lee et al. (2001) and many others have discussed event reconstruc-
tion for physical crime scenes. Carrier and Spafford (2004a,b) were the 
first to define it as applied in digital forensics and presented an 
event-based investigation framework. Their work defines the basic ter-
minology and introduces a formal process model that mirrors physical 
crime scene investigations but is tailored to the unique aspects of digital 
evidence. We borrow from this work as discussed in Sec. 3.1.

Casey (2011)’s work includes the practicalities of linking evidence to 
behaviors and motives. Casey emphasizes three core analysis types: (1) 
temporal which helps establish the timeline of events (the focus of this 
article), (2) relational which explores the connections between objects, 
people, and locations, clarifying how different elements of the crime are 
related, and (3) functional which assesses what was possible or impos-
sible, such as determining how a system or tool was used in the crime. 
Chabot et al. (2015a) defines terminology based on existing works, 
outlines challenges, and evaluates existing approaches. However, the 
authors limit their challenges to the volume of data and data hetero-
geneity where this article provides a broader discussion. Our work 
complements these existing works by providing a new visual model and 
a thorough discussion of challenges and future research.

3. Terminology

According to Neale (2023), there is a lack of harmonization in terms 
and definitions. This section briefly revisits (Sec. 3.1) and then high-
lights the terminology we use for this article (Sec. 3.2).

3.1. Terms and terminology in existing literature

Carrier and Spafford (2004a) define an event “as an occurrence that 
changes the state of one or more objects”. Over time, researchers sug-
gested to differentiate between low-level and high-level events 
(human-understandable) (Hargreaves and Patterson, 2012; Vanini et al., 
2024) or introduced terms such as ‘activity’ (Marrington et al., 2007) or 
‘user–browser interaction’ and ‘click’ which are used interchangeably by 
Neasbitt et al. (2014). Chabot et al. (2014) defines an event as “a single 
action occurring at a given time and lasting a certain duration”.

Jaquet-Chiffelle and Casey (2021) define an event as “a complete 
collection of related things that have happened (or are happening) in a 
World within a specific closed interval of time. […] The Event can be 
considered as a whole entity or as a collection of smaller sub-events”. 
Notably, their framework emphasizes the role of traces and introduces 
several key concepts, including trace, facet, and observable facet. While 
these terms are well-established in forensic science (Ribaux, 2023), they 
are less common in digital forensics. Therefore, we adopt a different 
terminology, while drawing conceptual links to their work.

Similarly, the term artifact is used with different meanings. For 
instance, Harichandran et al. (2016) compares various definitions and 
concludes properties an artifact should have such as “artificiali-
ty/external force, antecedent temporal relation, and exceptionality”. 
Horsman (2019) suggests “a digital object containing data which may 
describe the past, present or future use or function of a piece of software, 

application or device for which it is attributable to”. Casey et al. (2022)
differentiates between atomic artifacts (“a singular unit of interpretable 
data that can be extracted from a given data source”) and dependable 
artifacts (“one or more atomic artifacts needed to expose the atomic 
artifact of interest”). Lyle et al. (2022) extends the atomic artifact 
definition by adding “that is useful for addressing questions in forensic 
investigations”, but assessing usefulness is difficult, subjective and may 
change over time.

3.2. Terminology used in this article

3.2.1. Environments/systems
An environment/system is a computational setting or a software/ 

hardware system that reacts to events such as user actions, API calls, or 
sensor inputs. Typically, it is one or more devices such as computers or 
smartphones but it could also be a virtual machine, network device, or 
cloud environment. For readability, the remainder of this paper uses the 
term environments instead of environments/systems. Note we use the 
plural, i.e., environments, considering that changes may be, locally, 
remotely, or both.

3.2.2. Artifact
This article uses Casey et al. (2022) atomic artifact definition: a 

singular unit of interpretable data that can be extracted from a given 
data source. For simplicity, we will only say artifact throughout the 
paper. Examples include log files, registry keys, timestamps, or network 
traffic data.

3.2.3. Event
Based on Jaquet-Chiffelle and Casey (2021), an event is “a complete 

collection of related things that have happened (or are happening) in a 
World within a specific closed interval of time.” These can be treated as a 
singular entity or decomposed into smaller sub-events and cause envi-
ronmental changes. This broad definition provides the flexibility for an 
event to be at the resolution of: ‘file was accessed’, ‘Google search was 
performed’, or ‘user account was used to run a program’ (consisting of at 
least two events: user logged in and user executed binary). Events can be 
triggered internally, e.g., a cron job, or externally such as someone 
clicking the mouse. Note that the distinction between event and 
sub-event is blurred and it is up to the user to define the granularity. For 
instance, 

• an event is sending an email with sub-events such as opening the email 
client, typing, establishing a connection to the SMTP server, and 
sending the message, or

• an event is establishing a connection to the SMTP server with sub-events 
such as performing a DNS lookup, initiating a handshake, and 
authenticating the user credentials.

4. Model for event reconstruction

This work draws inspiration from Vanini et al. (2023), which, in turn, 
is influenced by the work of Ribaux (2023, p226, Fig. 4.4).2 We adjusted 
these models to align with common digital forensics terminology and 
emphasize timeline-based event reconstruction (TER). Our model, 
named TER-Model, is depicted in Fig. 1 and can be separated into a 
Reality space (Sec. 4.2) and a Reconstruction space (Sec. 4.3). Each of 
these spaces can be further separated resulting in four quadrants 
(Q1-Q4). Before describing the model, this section first summarizes the 
goals of temporal event reconstruction which influenced the model. The 
summary of the systematization of knowledge (SoK) in the TER-Model is 
shown in Table 1.

2 Note, this is an updated version from the previous work by Ribaux (2014)
and thus has over a decade of history.
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4.1. Goals of temporal event reconstruction

Temporal event reconstruction aims to accurately recreate the 
sequence of events that occurred which includes finding gaps and in-
consistencies, even if they cannot be accurately filled or corrected. Thus, 
it enables investigators to draw meaningful conclusions about what 
happened.

Event reconstruction involves several interrelated analytical pro-
cesses that together provide a coherent and defensible narrative of what 
transpired. At its core it is temporal sequencing and correlation, where a 
precise order of events is created. It may be necessary to analyze their 
relationships across different timelines to uncover causal links, sequence 
dependencies, or concurrent activities (Adderley and Peterson, 2020). 
Beyond simple chronology, contextual analysis places these events 
within a broader framework, considering factors such as user behavior, 
system settings, or external influences to give the data deeper inter-
pretive meaning (Chabot et al., 2015a). This groundwork supports hy-
pothesis testing and scenario building, where investigators construct 
and refine possible explanations for what occurred, evaluating multiple 
narratives and ruling out those that conflict with the evidence 
(Willassen, 2008a, 2008b; Batten et al., 2012). It is crucial that the 
reconstructed timelines are confirmed through correlation and verifi-
cation of evidence to ensure consistency and reliability. The goal is to 
produce a report to support legal proceedings that not only stands up to 
technical scrutiny, but also serves court proceedings by providing a 
clear, accurate and accessible story for stakeholders such as lawyers or 
jurors (Chabot et al., 2014; Xu and Xu, 2022).

4.2. Reality and its two dimensions (Q1, Q2)

4.2.1. Q1: Timeframe of interest T
This quadrant is an interval that has a start time tS and an end time tE, 

i.e., T = [tS, tE] during which the event (E) and sub-events (e1, e2, …em) 
occurred. Each E or e causes multiple environmental changes, e.g., new 
log entries, modified registry values, files marked as non-allocated, or 
updated timestamps.

The event (E) is what we wish to be able to say something about 
through the event reconstruction process. Carrier (2006) describes that 

an event can be any “an occurrence that changes the state of the system” 
and Hargreaves (2009) continues that “digital events occur on a system 
often as a result of interactions with another digital device, or as a result 
of interactions with the real world”. However, in Jaquet-Chiffelle and 
Casey (2021) event is formalized such that these external triggers are 
integrated into the event itself, defining an event that can capture the 
very broad, or the very detailed. In addition, there are concurrent events 
such as antivirus scanning files resulting in changes not tied to the pri-
mary event.

4.2.2. Q2: Post-event period (Δ)
During this interval Δ, the environment-changes caused by E may 

become intermingled with, altered, or overwritten by an ensemble of 
other data generated by unrelated subsequent events. Jaquet-Chiffelle and 
Casey (2021) categorized these changes as adjunction, suppression, and 
change. This second interval ends at time tP when the data is pre-
served/extracted, i.e., Δ = (tE, tP]. As tE belongs to T, we exclude it here 
from this interval using a half-open interval. It is important to note that 
not all environment-changes can be extracted, such as missing/deleted 
files or new artifacts without a parser. These gaps may stem from many 
causes, for example a lack of knowledge in digital forensics, a tool setup, 
or errors in the timeline generation process. Hence, what can be 
extracted is named extractable artifact, which is therefore context 
specific.

4.2.3. Timeline generation
Combined with preservation and acquisition, timeline generation 

bridges the Reality and Reconstruction spaces. Hargreaves et al. (2024b)
define it as a process within a forensic analysis tool for “extracting 
timestamps from the file system … [and] applying file specific pro-
cessing and extracting timestamps from within files such as the Windows 
Registry, log files, SQLite databases etc., that contain timestamps”. This 
artifact and timestamp extraction is complemented by normalization, 
which is required since timestamps exist in a variety of formats (e.g., 
ASCII in a log vs. little-endian hexadecimal in a proprietary format), and 
resolutions (i.e., hours, minutes, seconds, nanoseconds, etc.) depending 
on their source (Raghavan and Saran, 2013). They may also be stored in 
UTC or local time. Ideally, after normalization, all timestamps should be 

Fig. 1. TER-Model: Model of timeline-based event reconstruction in digital crime scenes. The small squares (3x4) in the upper part of the diagram represent changes 
caused by the primary event E (gray boxes) combined with additional changes from subsequent events (white–gray stripes).
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Table 1 
Summary of systematization of knowledge (SoK) for timeline-based event reconstruction (TER).

Paper Focus area Contribution type/ 
Challenge

TER quadrant Data source category

Q1 Q2 Q3 Q4 Physical File 
system

Multi 
sources

Logs Other Timestamp Analysis Mobile/ 
IoT

Volatile Network

Sec. 2 Event reconstruction
Lee et al. (2001) Foundational event 

reconstruction
Conceptual framework ✓ ​ ​ ✓ • ​ ​ ​ ​ ​ ​ ​ ​ ​

Carrier and Spafford 
(2004a,b)

Event-based 
investigation process

Process model ✓ ✓ ​ ​ ​ • ​ • ​ ​ ​ ​ • •

Casey (2011) Temporal, relational 
analysis

Analytical framework ​ ​ ✓ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Chabot et al. (2015a) Terminology, data 
volume

State-of-the-art review ✓ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Adderley and Peterson 
(2020)

Temporal sequencing Timeline correlation ​ ​ ✓ ​ ​ ​ ​ • ​ • • ○ ○ ○

Willassen (2008a,b) Hypothesis testing Model-based 
reconstruction

​ ​ ​ ✓ ​ ​ ​ • ​ • ​ ​ ​ ○

Batten et al. (2012) Hypothesis development Reasoning 
methodology

​ ​ ​ ✓ ​ ○ ​ • ​ ○ ​ ​ ​ ​

Xu and Xu (2022) Knowledge graph 
reasoning

Visualization and 
reasoning model

​ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Sec. 3 Terminology
Neale (2023) Artifact terminology 

harmonization
Systematic 
terminology review

​ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Carrier and Spafford 
(2004a,b)

Event-based 
investigation process

Process model ✓ ✓ ​ ​ ​ • ​ • ​ ​ ​ ​ • •

Hargreaves and Patterson 
(2012)

Event granularity Event granularity ​ ✓ ✓ ​ ​ • ​ • ​ • ​ ○ ​ ○

Marrington et al. (2007) Computer activity Activity terminology ​ ✓ ✓ ​ ​ • ​ • ​ • ​ ​ ​ ​
Neasbitt et al. (2014) User interaction 

terminology
Interaction 
terminology

​ ​ ✓ ​ ​ ​ ​ ○ ​ ​ ​ ​ ​ •

Chabot et al. (2014) Duration-based event 
definition

Terminology 
refinement

✓ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Jaquet-Chiffelle and Casey 
(2021)

Forensic event structure Forensic event model ✓ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Harichandran et al. (2016) Artifact properties 
analysis

Artifact comparison ​ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Horsman (2019) Artifact as digital object Practical definition ​ ✓ ​ ​ ​ • ​ • ​ ​ ​ ​ ​ ​
Casey et al. (2022) Artifact definition Artifact catalog ​ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​
Lyle et al. (2022) Artifact identification Digital investigation 

techniques
​ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Sec. 4 Model for event reconstruction
Ribaux (2014, 2023) Forensic trace model Trace-based model ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​ ​ ​
Vanini et al. (2023) Event source reliability Reliability modeling ✓ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​
Vanini et al. (2024) Time anchor model Timestamp 

interpretation 
framework

✓ ​ ​ ✓ ​ ​ ​ • ​ • ​ ​ ​ ○

Carrier (2006) Investigation process 
model

Hypothesis-based 
model

​ ​ ​ ✓ ​ • ​ ○ ​ ​ ​ ​ ​ ​

Hargreaves (2009) Evidence reliability 
testing

Reliability criteria ​ ​ ​ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Jaquet-Chiffelle and Casey 
(2021)

Event structure Formal event model ✓ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Hargreaves et al. (2024b) Tool transparency Tool capability model ​ ✓ ✓ ​ ​ ​ • ​ ​ ​ • ​ ​ ​

(continued on next page)
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Table 1 (continued )

Paper Focus area Contribution type/ 
Challenge 

TER quadrant Data source category

Q1 Q2 Q3 Q4 Physical File 
system 

Multi 
sources 

Logs Other Timestamp Analysis Mobile/ 
IoT 

Volatile Network

Raghavan and Saran (2013) Timestamp 
interpretation

Timestamp model ✓ ​ ✓ ​ ​ ​ ​ • ​ • ​ ○ ​ •

Hargreaves and Patterson 
(2012)

Timeline generation 
model

Timeline generation 
model

​ ✓ ✓ ​ ​ • ​ • ​ • ​ ○ ​ ○

Studiawan et al. (2020a); 
Studiawan (2023)

Event abstraction Event abstraction 
model

​ ​ ✓ ✓ ​ ​ ​ • ​ • • ○ ​ ○

Carrier and Spafford 
(2004a,b)

Hypothesis-based 
investigation

Hypothesis model ✓ ​ ​ ✓ ​ • ​ ​ ​ ​ ​ ​ ​ ​

Gladyshev and Patel (2004) Event inference FSM reconstruction ​ ​ ​ ✓ ​ ​ ​ • ​ ○ ​ ​ ​ ○

Amato et al. (2017) Semantic evidence 
correlation

Ontology-based model ​ ✓ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​

Xu and Xu (2022) Knowledge graph 
presentation

Reasoning model ​ ​ ✓ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Sec. 6 Challenges stemming from environmental and process-related factors
Sec. 6.1.1 Incorrect environment time
Stevens (2004) Misconfigured system 

clocks
Clock drift challenge ✓ ​ ​ ​ ​ ​ ​ ​ ​ • ​ ​ ​ ​

Raghavan and Saran (2013) Timestamp 
normalization and 
storage issues

Timestamp 
interpretation 
framework

✓ ​ ​ ​ ​ ​ ​ • ​ • • ○ • •

Vanini et al. (2024) Time anchor abstraction 
model

Time anchor modeling ✓ ​ ​ ✓ ​ ​ ​ • ​ • ​ ​ ​ ○

Kaart and Laraghy (2014) Incorrect timezone data 
handling

Time zone 
configuration

✓ ​ ​ ​ ​ ​ ​ • ​ • • • • •

Schatz et al. (2006); 
Buchholz and Tjaden 
(2007)

Network-induced skew, 
unsync clocks

Distributed system 
time consistency

✓ ​ ​ ​ ​ ​ ​ • ​ • • ○ ​ •

Henderson (2009) Clock skew in shared 
environments

Network delay and 
skew

✓ ​ ​ ​ ​ ​ ​ • ​ • ​ ○ ​ •

Sec. 6.1.2 Configurations and implementations
Adedayo and Olivier (2015) Log suppression, 

redirection
Log misconfiguration ✓ ​ ​ ​ ​ ​ • • ​ ○ ​ ​ ​ ​

Fernández-Fuentes et al. 
(2022)

Absence of traceability 
in apps

Limited logging 
capability

✓ ​ ​ ​ ​ ​ ​ ○ ​ ○ ​ • • ​

Sec. 6.1.3 Environmental anomalies
Studiawan et al. (2019) Unrecoverable system 

restarts
Environmental 
disruption

✓ ​ ​ ​ ​ ​ ​ • ​ • • ○ ○ ○

Oh et al. (2022) Sudden device restarts Restart-induced log 
gaps

✓ ​ ​ ​ ​ • ​ • ​ • ​ ○ ​ ​

Marrington et al. (2011) Program faults, data 
corruption

Software instability ✓ ​ ​ ​ ​ • ​ • ​ • • ​ ​ ​

Sec. 6.1.4 Data fluctuation
Sandvik et al. (2021) Short lifespan of traces Volatile trace loss ✓ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ • ​
Marangos et al. (2016) Evidence affected by 

operational cycles
Temporal instability ✓ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ • ​

Sec. 6.2 Post-event period
Gruber et al. (2023) Evidence altered during 

acquisition
Contamination 
challenge

​ ✓ ​ ​ ​ • ​ • ​ • ​ • • ​

Jaquet-Chiffelle and Casey 
(2021)

Evidence fragility and 
impermanence

Temporal evidence 
integrity

​ ✓ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​ ​

Khan et al. (2007) Overwriting of data, log 
aging

Aging challenge ​ ✓ ​ ​ ​ • ​ • ​ • ​ ​ ○ ​

(continued on next page)
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Table 1 (continued )

Paper Focus area Contribution type/ 
Challenge 

TER quadrant Data source category

Q1 Q2 Q3 Q4 Physical File 
system 

Multi 
sources 

Logs Other Timestamp Analysis Mobile/ 
IoT 

Volatile Network

Soltani et al. (2019); 
Schuster (2007)

Metadata decay, 
inaccuracy

Artifact degradation ​ ✓ ​ ​ ​ • • • ​ • ​ ​ ○ ○

Sec. 6.3 Timeline
Patterson and Hargreaves 

(2012)
Cross-source correlation Source integration 

challenge
​ ​ ✓ ​ ​ • • • ​ • ​ • ​ ​

Mohammed et al. (2016) Data format diversity Data normalization 
challenge

​ ​ ✓ ​ ​ • • • ​ • • • • •

Horsman (2019) Artifact parsing 
complexity

Parser dependency 
challenge

​ ​ ✓ ​ ​ • ​ • ​ ​ ​ ​ ​ ​

Soltani and Seno (2017) Missing/incomplete 
timestamps

Extraction 
incompleteness

​ ​ ✓ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Gómez et al. (2005); Levett 
et al. (2010)

Correlation of 
heterogeneous data

Multi-source 
correlation

​ ​ ✓ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Kälber et al. (2013); 
Hargreaves et al. (2024b)

Tool transparency and 
automation limitations

Human-tool balance 
challenge

​ ​ ✓ ✓ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Bhat et al. (2021) Misconfigured analysis 
environments

Tool setup challenge ​ ​ ✓ ✓ ​ ​ • ​ ​ ​ • ​ ​ ​

Sec. 6.4 Decision making
Chabot et al. (2015a) Data volume for timeline 

analysis
Scalability and 
overload challenge

​ ​ ​ ✓ ​ ​ • • ​ ​ ​ ​ ​ ​

Quick and Choo (2014) Computational resource 
limitations

Resource requirement 
challenge

​ ​ ​ ✓ ​ ​ • • ​ ​ ​ ​ ​ ​

Buchholz and Falk (2005) Event aggregation Event abstraction for 
analysis

​ ​ ​ ✓ ​ ​ • • ​ ​ ​ ​ ​ ​

Kiernan and Terzi (2009) Event summarization Abstraction and 
streamlining

​ ​ ​ ✓ ​ ​ ​ • ​ ​ ​ ​ ​ ​

Osborne and Turnbull 
(2009)

Visualization accuracy Visual representation 
integrity

​ ​ ​ ✓ ​ ​ ​ ​ ​ ​ • ​ ​ ​

Sec. 7 Challenges stemming from deliberate interference
Casey (2020) Strength and scale of 

inference
Evaluative opinion 
framework

​ ​ ​ ✓ ​ ​ ​ ​ • ​ ​ ​ ​ ​

Vanini et al. (2024) Time manipulation, 
clock tampering

Timeframe 
manipulation

✓ ​ ​ ​ ​ ​ ​ • ​ • ​ ​ ​ ○

MITRE (2023) Environment 
manipulation, disabled 
logging

Environment 
tampering

✓ ​ ​ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​

Conlan et al. (2016) Erasure or alteration of 
evidence using tools

Anti-forensics tool 
usage

✓ ​ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Palmbach and Breitinger 
(2020)

File and log 
manipulation using 
malware

Malware-assisted anti- 
forensics

✓ ​ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​ ​

Malhotra et al. (2015) Service manipulation (e. 
g., NTP tampering)

Service compromise ✓ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ •

Choi et al. (2021) Post-event 
manipulation: logs, 
timestamps, files

Artifact modification 
& deletion

​ ✓ ​ ​ ​ ​ ​ • ​ ​ ​ ​ ​ ​

Notes: • Mentioned in the paper ○ Not specifically mentioned, but can be implemented using the data source.
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presented in the same format for better readability and sortability.

4.3. Perception

The lower section of the diagram represents how examiners attempt 
to reconstruct past events using reasoning and available evidence. This 
process involves uncertainty, as the past cannot be revisited, making 
absolute certainty unattainable.

4.3.1. Q3: Timeline
Examiners construct a timeline to facilitate analysis, and the DFPulse 

2024 Practitioner Survey (Hargreaves et al., 2024a) reports 80.3 % are 
using timelines ‘often’ or ‘almost always’. Timelines are composed of a 
series of entries, each derived from individual artifacts that are arranged 
chronologically. Artifacts may originate from multiple independent data 
sources, e.g., a computer and a smartwatch. While specific imple-
mentations store multiple data points per event, fundamentally these 
timeline entries are defined as a 3-tuple (t, S, C): 

• The normalized timestamps (t) are used to order the timeline 
chronologically.

• A source S refers to the specific location from which the timestamp 
and context originate, such as the Master File Table (MFT), Windows 
registry, EPROCESS block in memory, or Chrome browser history 
file. For clarity, S should be as detailed as possible; instead of stating 
the registry, the exact registry key path should be specified.

• A context C defines what the timestamp represents, such as the 
modification timestamp within the Standard Information Attribute 
(SIA) of MFT entry, or a value in a specific row or field within a 
database. Given the wide variety of contexts, a generic term is used to 
encompass the diverse nature of these representations.

These timeline entries should not be conflated with events them-
selves or ‘low-level events’ (Hargreaves and Patterson, 2012). The 
context provided by each entry, such as a value in a ‘modified’ or ‘last 
change’ field within a file system structure, does not inherently repre-
sent a specific event, such as a file modification. Instead, it reflects 
environmental behavior that must be understood before making any 
assumptions about what event occurred. This distinction is critical: 
while timeline entries provide the raw data needed for event recon-
struction, they are not events in and of themselves. Rather, they are 
normalized, sorted compilations of data that result from parsing artifacts 
left by events. Therefore, we argue that the term event should be 
reserved for the inferred actions, while the term timeline entry more 
accurately describes the data points that examiners use to reach those 
inferences.

4.3.2. Timeline analysis
Timeline analysis bridges Q3 and Q4, and describes the process of 

moving from having a timeline to reconstructing events, which uses 
refinement techniques such as: filtering irrelevant entries, highlighting 
key entries, or aggregating entries into more meaningful events 
(Hargreaves and Patterson, 2012). Several other concepts have been 
discussed such as event abstraction (Studiawan et al., 2020a; Studiawan, 
2023), the application of machine learning (Khan and Wakeman, 2006), 
or visualization (Berggren et al., 2024; Debinski et al., 2019). Timeline 
analysis also draws in examiner knowledge to understand potential events 
that are capable of producing the timeline entries and integrating them 
into a reasoning process (Gladyshev and Patel, 2004).

4.3.3. Q4: Hypotheses and event inference
To accurately approach event reconstruction, it is essential to 

distinguish between the event E that occurred in reality and the inferred 
event E′ which is derived from the analysis of timeline entries. In the 
context of hypothesis generation, E′ represents the best approximation 
based on the available evidence. We define an inferred event E′ as a 

reconstructed scenario that may have occurred within a specific time frame, 
based on the interpretation and analysis of timeline entries and associated 
artifacts. This definition acknowledges the uncertainty in reconstructing 
past events.

Consideration of the timeline entries in the context of examiner 
knowledge may result in multiple plausible scenarios (Jaquet-Chiffelle 
and Casey, 2021; Gladyshev and Patel, 2004). Hargreaves (2009) states 
“if there are multiple events that could cause the same state of digital 
data, there is an actual, true event that caused it, and one or more other 
events that did not.” This means that rather than arriving at a single 
definitive inferred event E′, we may generate k alternative events, 
denoted as Eʹ

j where 1 ≤ j ≤ k. Each Eʹ
j represents a distinct interpretation 

of the evidence, each of which could potentially explain the observed 
data. These multiple instances of E′ highlight the complexity and am-
biguity, where different sequences of events could produce similar ar-
tifacts. The process involves not only constructing these alternatives but 
also systematically and repeatedly testing and eliminating hypotheses to 
converge on the most likely scenario while acknowledging that multiple 
interpretations may still be viable based on the available evidence. To 
test and eliminate hypotheses, Casey (2020)’s ‘Strength of evidence 
scale’ (C-Scale) may be used, and it may involve research into artifact 
interpretation and experiments to determine if a set of actions could 
produce the observed system changes.

5. Methodology for challenge identification

To identify and categorize the challenges in event reconstruction, we 
followed a structured literature review process designed to balance 
breadth with relevance. The goal was not to exhaustively capture all 
existing work but to obtain a representative and insightful overview of 
the key challenges discussed in the field. 

Search strategy: We defined a set of core search terms related to the 
topic: event reconstruction, timeline, timestamp analysis, digital 
forensics, correlation, challenges, and problems. These terms were 
combined using Boolean operators and phrasing variations (e.g., 
quotation marks for exact matches). Searches were conducted using 
Google Scholar, which indexes most major academic publishers (e.g., 
IEEE, ACM, Wiley, Springer) and relevant platforms such as DFRWS. 
org and arXiv.
Selection criteria: For each query, we considered the first two pages 
of results (i.e., 20 entries). Articles were initially screened based on 
metadata displayed: title, author(s), publication venue, and two-line 
extract. If no direct reference to digital forensics was evident, the 
article was discarded. This filtering yielded a preliminary pool of 
approximately 200 articles.
Challenge extraction: We extracted mentions of challenges pri-
marily from the abstract and introduction sections, where such 
content is frequently summarized. Targeted keyword searches (e.g., 
challenge, problem, limitation) were also used within full texts to 
uncover implicit references.
Classification: The identified challenges were then mapped onto a 
diagram, categorizing them according to the stage or context in 
which they occur within the event reconstruction process.

We also incorporated our domain expertise to address gaps in the 
literature, recognizing that some relevant challenges may not have been 
explicitly highlighted in existing works.

5.1. Limitations

The article collection and analysis were conducted manually, which 
may have led to the omission or misclassification of relevant articles. By 
restricting searches to Google Scholar and considering only the first two 
pages of results, important sources further down the list or from other 
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databases may have been excluded. The focus on abstracts and in-
troductions might have caused us to overlook challenges discussed 
deeper within the papers. Moreover, the subjective nature of challenge 
classification introduces potential bias based on the researchers’ in-
terpretations. Finally, the absence of automated or statistical tools for 
extraction and categorization limits the objectivity and comprehen-
siveness of the analysis. Despite these limitations, we believe the 
following sections offer a comprehensive and nuanced overview of the 
challenges.

6. Challenges stemming from environmental and process- 
related factors

This section focuses on unintentional challenges and the structure 
follows the diagram’s flow, discussing each quadrant.

Note, that while we have strived to define the challenge categories as 
distinctly as possible, some overlap is inevitable due to the inter-
connected nature of these activities. Certain actions may reasonably fall 
into multiple categories, depending on the context. The categorization is 
designed to provide guidance rather than enforce strict mutual 
exclusivity.

6.1. Q1: Timeframe of interest

Four areas have been identified:

6.1.1. Incorrect environment time
Clock-related challenges originate from the system time which is 

used to derive timestamps. If the clock is incorrect, all timestamps 
originating from this clock are incorrect (Stevens, 2004; Raghavan and 
Saran, 2013; Vanini et al., 2024).

Clock skew: Skew refers to the difference in time readings between 
different systems. One reason for clock skew could be propagation de-
lays which may occur due to network delays (Schatz et al., 2006; Hen-
derson, 2009) or due to synchronization problems, e.g., NTP servers 
providing incorrect times (Buchholz and Tjaden, 2007; Hampton and 
Baig, 2016).

Clock drift: Drift is the gradual deviation of a clock from the correct 
time, often caused by factors such as changes in temperature, voltage 
fluctuations, or inherent defects in the clock circuitry (Sandvik and 
Årnes, 2018). Clock drift may exacerbate over time. As drift accumu-
lates, the discrepancies between different systems’ clocks can grow, 
making it increasingly difficult to correlate events across environments 
(Becker et al., 2008).

Time zone changes: As systems traverse different time zones, 
whether due to travel or daylight-saving time changes, the system time 
may change (Stevens, 2004). This adjustment process can also be 
error-prone, e.g., due to an inaccurate time zone database (Kaart and 
Laraghy, 2014). Compared to skew and drift, the range is significantly 
larger, i.e., hours instead of seconds. Typically this is only relevant 
where local time is stored in a data structure rather than storing UTC.

Note that virtual environments come with their challenges which are 
beyond the scope of this article but have been discussed in VMware 
(2008).

6.1.2. Configurations and implementations
Environments, systems, and application configurations define how/ 

what data is generated, stored, and logged. These configurations 
comprise a wide range of settings, including logging levels, storage 
policies, network settings, and security controls.

Suppression/deletion: Conservative default settings can result in 
insufficient logging, leading to missing artifacts, e.g., database logs 
prioritizing space efficiency over detail (Adedayo and Olivier, 2015). 
Systems may also be configured to suppress artifacts, such as private 
browsing (Fernández-Fuentes et al., 2022), or delete them, such as 
printer jobs removed after completion (Gladyshev and Patel, 2004) or 

when an application is closed.
Inconsistent implementations: Different resolutions lead to in-

consistencies, e.g., timestamps recorded in hh:mm vs. hh:mm:ss format 
(Song et al., 2016). File systems, drivers, and implementations may 
behave differently leading to unpredictable behavior (Bang et al., 2009; 
Nordvik and Axelsson, 2022).

6.1.3. Environmental anomalies
Environments may not behave as expected leading to the destructing 

of evidence or the not-creation of artifacts:
(OS) Crashes: A crash (system, application) can result in the loss or 

corruption of artifacts, potentially leaving logs incomplete and missing 
key events (Studiawan et al., 2019; Oh et al., 2022). Detecting crashes 
can be challenging, particularly if the logging mechanisms themselves 
are compromised during the crash. Crashes may also lead to restart 
anomalies such as services or applications that are supposed to start 
automatically failing to do so potentially altering the way subsequent 
events are logged.

Software bugs: Bugs in software may cause errors in data logging, 
such as incorrect timestamps or missing events (Marrington et al., 2011).

Resource exhaustion and failure: Environments under heavy load 
may fail to log events properly due to resource constraints, leading to 
delayed or missed entries in the event data. Failures, including hardware 
malfunctions, can lead to inadequate data (Marrington et al., 2011).

6.1.4. Data fluctuation
Data may not be accessible due to or only with additional burden:
Data volatility: Volatile data, such as RAM content or network 

traffic, is lost if the Δ is too large. In addition, IoT devices often have 
resource constraints resulting in short-lived data (Sandvik et al., 2021). 
In cloud environments, VMs can be easily deleted including their logs 
(Marangos et al., 2016).

Environment bounds: The changes resulting from an event may be 
distributed across multiple locations, including cloud environments, 
resulting in fragmented evidence that is challenging to collect and 
analyze (Herman et al., 2020; Joseph and Singh, 2019; Manral et al., 
2019).

Even with the cooperation of external service providers, data cannot 
be recovered, particularly when logging is explicitly disabled, as is often 
the case with many VPN services.

6.2. Q2: Post-event Period

This period relates to the influence of time on the changes left behind 
after an event.

6.2.1. Subsequent events impacting changes
Over time the changes generated by the primary event are altered by 

subsequent events (referred to as intrinsic events by Jaquet-Chiffelle and 
Casey (2021), or evidence dynamics by Gruber et al. (2023)).

Deletion: Initial changes may disappear due to subsequent events. 
Examples are rotating logs (Sandvik et al., 2021), temporary files, 
routine cleanup tasks, or reboots.

Alteration/overwriting: Subsequent events can modify or replace 
existing data. For instance, Khan et al. (2007) mention that much of the 
application footprint is rewritten each time the application runs. 
Routine file operations, such as automatic backups or updates, may also 
overwrite metadata, configurations, or timestamps (Soltani et al., 2019).

6.2.2. Aging and degradation
Digital artifacts and physical devices are susceptible to degradation, 

affecting their reliability and accessibility. This degradation can mani-
fest as file corruption, obsolescence of file types, or the deterioration of 
storage media. Furthermore, changes in software, file formats, or log-
ging systems can introduce additional challenges. As schemas evolve, 
inconsistencies in log formats may emerge, complicating the process of 
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reconciling older and newer data entries. Backward compatibility issues 
also arise when outdated systems or logs are incompatible with modern 
tools, requiring extra effort to ensure that historical data remains 
interpretable and consistent across different versions (Schuster, 2007).

6.3. Q3: Timeline

This third quadrant summarizes all timeline-related challenges. We 
decided to include the trans-boundary boxes, i.e., timeline generation 
(Q2-Q3) and timeline analysis (Q3-Q4), in this section as we think they 
are closer related to the timeline.

6.3.1. Timeline generation
Data comes from various systems, including traditional computing 

environments and a growing number of IoT devices, each with distinct 
structures, conventions, and formats (Patterson and Hargreaves, 2012; 
Mohammed et al., 2016). This increasing heterogeneity of both data 
sources and devices causes several challenges.

Artifact/timestamp extraction: Extracting data presents an 
ongoing challenge, as tools must be continuously updated to accom-
modate new and evolving software (Horsman, 2019). The acquisition 
process can introduce alterations, particularly when conducted on live 
systems, such as during memory dumps (Soltani and Seno, 2017; Gruber 
et al., 2023).

Normalization: This involves converting diverse data types, such as 
logs, databases, and sensor outputs, into a standardized structure that 
enables comprehensive analysis (Han et al., 2020). This can be chal-
lenging due to different timestamp formats, timestamp resolutions, and 
timezone settings. Timestamp formats can also change over time, 
meaning timestamp normalization needs to be updated over time and 
handle older and newer formats.

Contamination and process problems: Evidence might be unin-
tentionally modified during collection or handling, e.g., failing to use a 
write blocker (Gruber et al., 2023) or corrupt software, leading to data 
contamination. Similarly, lapses in maintaining a proper chain of cus-
tody can result in evidence being mishandled, misplaced, or questioned 
in terms of authenticity and reliability.

Source combination: Combining data from multiple sources to 
create a unified perception is challenging, especially when sources have 
different levels of reliability or granularity (Gómez et al., 2005; Levett 
et al., 2010).

6.3.2. Tool capabilities and usage
Balancing automated tools with manual analysis is essential yet 

challenging. While automation expedites the process, it may overlook 
nuances that a human analyst would catch (Kälber et al., 2013) and can 
introduce various types of error (Hargreaves et al., 2024b).

Usage challenges: Incorrect settings or carelessness can lead to 
incorrect results. For example, errors in the configuration of the tools 
have been shown to result in inaccurate extractions of digital evidence, 
which can impact the credibility of the findings (Bhat et al., 2021). The 
transition to a new tool may lead to misinterpretation as tools may 
interpret/visualize data differently. Some features of tools also do not 
help in reducing chances of investigator misinterpretation (see Har-
greaves et al. (2024b)), e.g., if a tool provides an automated result of a 
Google search occurring, this is easy to interpret the event occurring as a 
fact rather than Google search data being present. This is an event 
reconstruction process, with all the uncertainty that could be present, as 
discussed in Sec. 6.4. Tools can conflate facts with interpretation within 
their interfaces.

Transparency: Many tools operate as black-boxes making it unclear 
how artifacts are handled. Transparency of functionality is critical, as 
proprietary processes can influence assumptions or conclusions, leading 
to misinterpretation.

Handling volume: Tools may have limits on the amount of data they 
can process or the complexity of queries, leading to unnoticed gaps in 

analysis, e.g., a tool limited to analyzing 5000 files at once. Conse-
quently, validation is essential, but challenging, given the rapid change 
of artifacts (Horsman, 2018; Arshad et al., 2018).

AI-powered examination: AI-powered tools introduce complexities 
regarding explainability and transparency, not just of the models but of 
training data. Recent approaches such as LLMs are also problematic due 
to their non-deterministic nature and in many cases opaque training 
data and processes. These tools can produce inaccurate or misleading 
outputs, such as AI-generated errors or ‘hallucinations’ which can affect 
the analysis (Scanlon et al., 2023).

Developers aiming to create tools should consider the seven criteria 
outlined by Chabot et al. (2015b), which provide a comprehensive 
framework for ensuring an efficient reconstruction tool.

6.4. Q4: Decision making

Q4 involves the generation and testing of hypotheses based on the 
timeline. This is critical and Hargreaves (2009) goes as far as defining a 
digital investigation as “a process that formulates and tests hypothesis 
using digital evidence” with the prior stages facilitating this goal. Some 
areas of this are explored, e.g., timeline analysis, but others, such as 
hypothesis forming and testing are less frequently discussed.

6.4.1. Timeline analysis
Although the processing is mostly done using tools, this section 

highlights challenges originating from the processing of timeline entries.
Volume of data: The extensive amount of information (number of 

entries in the timeline) makes the analysis time-consuming (Chabot 
et al., 2015a) and overloads examiners. Additionally, significant re-
sources are needed to extract, process, and store this data, including 
computational power, storage capacity, and advanced data management 
tools (Quick and Choo, 2014).

Aggregation, organization and visualization: Techniques such as 
combining related events into cohesive units (sometimes called high- 
level events or super events) (Buchholz and Falk, 2005; Kiernan and 
Terzi, 2009; Hargreaves and Patterson, 2012; Inglot and Liu, 2014; Raju 
et al., 2017) can streamline analysis but may result in the loss of gran-
ularity or context. Similarly, visualizations (Osborne and Turnbull, 
2009) require consideration to ensure that they accurately represent the 
data without oversimplifying or distorting the information. The volume 
of the raw data can be a challenge to visualize and reduction of the data 
before visualization is meaningful may be necessary, e.g., Hargreaves 
and Patterson (2012).

Correlation: The process of establishing meaningful relationships 
between disparate timelines entries is fraught with difficulties, espe-
cially when data originates from various sources or formats (Schatz 
et al., 2006) or times across environments are not synchronized 
(Marangos et al., 2016). Detecting and validating these connections 
requires experience and meticulous attention (Amato et al., 2017). For 
example, incorrect handling of local time vs. UTC can disrupt the 
sequencing of events, particularly in global systems where data spans 
multiple time zones (Buchholz and Tjaden, 2007). Verifying data across 
different sources and formats is challenging but necessary to ensure the 
accuracy and completeness of the reconstructed timeline.

6.4.2. Interpretation, trust and integrity
Ensuring that data is accurate and trustworthy is fundamental (Neale 

et al., 2022). Determining which sources to trust and how to weigh them 
can significantly affect the reliability of the reconstruction. This chal-
lenge becomes even more pronounced when different sources report the 
same event but provide inconsistent or conflicting details, leading to 
uncertainty.

Interpretation: Investigators work with a static set of data which 
includes evidence and irrelevant information generated by subsequent 
activities or during investigative processes (Roux et al., 2022). Misin-
terpretation can arise from factors such as incorrect ordering, 
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aggregation, or filtering of entries, leading to distortions in the recon-
structed narrative but also from unawareness of an examiner, i.e., 
insufficient knowledge of an event or timestamp (Boyd and Forster, 
2004).

Untrusted internal sources: The presence of anti-forensic tools 
(Conlan et al., 2016) or tampering indicators, such as manipulated 
timestamps or hidden data, raises suspicion about the authenticity of the 
evidence.3 According to Neale (2023), detecting and addressing such 
tampering is crucial to maintaining trust in the evidence (more in Sec. 
7).

Untrusted external sources: Combining data from external sources, 
such as cloud services, introduces additional challenges. When the 
integrity of these sources cannot be independently verified, especially 
due to possible alterations in transit or at rest, the reliability of the event 
reconstruction may be compromised (Battistoni et al., 2016).

6.4.3. Knowledge and perception bias
Investigators may interpret evidence differently based on their prior 

knowledge, experience, or expectations, which can lead to skewed in-
terpretations of the data. Perception and decision bias may cause certain 
patterns or details to be overlooked.

Artifact interpretation knowledge: Previous knowledge may 
become outdated due to the release of a new operating system, or new 
version of an application (Horsman, 2019). Examiners may be unaware 
of certain behaviors, e.g., Thierry and Müller (2022) identified multiple 
unexpected and non-compliant behaviors of timestamps. Limitations in 
knowledge reduce the investigator’s ability to generate viable alterna-
tive hypotheses that would produce the same artifacts.

Algorithmic bias: Tools operate based on algorithms that might 
make certain assumptions or prioritize specific types of data, which can 
introduce biases into the reconstructed events (Jinad et al., 2024). For 
instance, an AI-powered tool may be biased due to unbalanced training 
data.

Human bias: Analysts may bring their own preconceptions into the 
analysis, influencing how they interpret and prioritize different events 
(Kang et al., 2013). This can lead to confirmation bias, where analysts 
might favor hypotheses that align with their pre-existing beliefs or ex-
pectations, unintentionally skewing the analysis (Kassin et al., 2013).

6.4.4. Complexity in testing hypotheses
Testing hypotheses against a timeline is complex, especially when 

considering all the aforementioned challenges.
Multiple interpretations: Evidence may be open to multiple in-

terpretations, making it difficult to draw definitive conclusions and infer 
events from the past. This ambiguity can lead to varied interpretations of 
the same data, which impacts the ability to test hypotheses with cer-
tainty. Effective hypothesis testing must address temporal inaccuracies 
or manage the inherent uncertainty that arises from imperfect data such 
as log files (Latzo and Freiling, 2019).

Defining error: Hargreaves (2009) discusses that error in event 
reconstruction can be defined as “the difference between the inferred 
history and the true history of the examined digital evidence”. This error 
cannot necessarily be expressed as a definite value, e.g., x ± y, but can 
be expressed as uncertainty (possible error) in the inferred events, i.e., 
alternative possible hypothesized events that explain the current state of 
the examined digital evidence. Communicating these uncertainties 
transparently is vital to ensure that conclusions drawn are appropriately 
qualified and reflect the limitations of the available evidence.

7. Challenges stemming from deliberate interference

To complement the previous section, this one outlines challenges 
stemming from deliberate actions such as backdating, erasing, or 
wiping, to hide activities (Casey, 2020). While it may not always be the 
case, for this work we assume that the investigative body and tool 
vendors are free from insider threats. Therefore, challenges are limited 
to the Reality space.

As already pointed out in Sec. 6, some overlap of challenges is 
inevitable due to the interconnected nature of these activities.

7.1. Q1: Timeframe of interest

Interference with the environment can be conducted before the event 
occurs, with the intent to complicate investigations. Such interference 
often seeks to generate misleading artifacts or prevent their creation 
altogether, e.g., examples under ‘defence evasion’ in the MITRE 
ATT&CK Matrix4.

Time manipulation: An adversary may turn off ’set time and date 
automatically’ and actively manipulate the system time or timezone 
(Vanini et al., 2024). Even when detected, distinguishing between 
accidental misconfigurations and deliberate tampering remains difficult.

Environment manipulation: It is possible to disable or tamper with 
logging mechanisms, preventing activities from being recorded. Simi-
larly, security tools may be compromised or altered (MITRE, 2023). 
Decoys such as fake accounts or planted traps such as cleanup scripts 
may be used to further obscure activities.

Anti-forensics and malware: Adversaries may use software to 
obscure their actions. For instance, anti-forensic tools erase or alter 
evidence (Conlan et al., 2016) or rootkits and malware to cover access 
and manipulations to files and logs (Palmbach and Breitinger, 2020). 
Anonymization services such as VPNs and TOR hide the attacker’s 
origin, making it difficult to trace activities.

Service manipulation: Instead of manipulating an environment 
directly, an adversary may compromise utilized services. For instance, 
by manipulating the NTP service, an attacker can change the system 
time (Malhotra et al., 2015). Another example would be a compromised 
update server.

7.2. Q2: Post-event Period

In the post-event period, one may manipulate or delete metadata 
or content such as altering timestamps, modifying log entries, or de-
leting critical files (e.g., remote wiping of mobile devices). Logs and 
other files are often not protected against alternation or deletion (Choi 
et al., 2021). Active tampering and manipulation of artifacts present 
some of the most challenging obstacles in event reconstruction and the 
risk of misinterpretation increases (Casey, 2020) especially when per-
formed from advanced persistent threads.

8. Key findings

This section summarizes the key findings identified in the founda-
tional sections 2 to 4, and the challenge identification sections 6 and 7: 

1. The terms “event” and “artifact” in digital forensics are defined 
inconsistently across existing studies and it leads to ambiguity in 
their usage.

2. Event reconstruction relies on modeling two critical intervals: the 
timeframe of interest (T) where events occur, and the post-event 
period (Δ) where subsequent changes may overwrite or obscure 
evidence.

3 We decided to include this challenge here and not in Sec. 7 (deliberate 
interference) as the presence of these tools does not necessarily mean that they 
were executed. 4 https://attack.mitre.org/tactics/TA0005/
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3. Event reconstruction is highly affected by unintentional challenges 
such as incorrect system time, insufficient logging, environmental 
anomalies, and data volatility.

4. Subsequent events can delete, overwrite, or degrade digital artifacts; 
so they reduce the availability and reliability of evidence over time.

5. Timeline generation faces challenges from data heterogeneity, soft-
ware updates, extraction errors, normalization issues, and tool 
limitations.

6. Event reconstruction requires careful hypothesis generation and 
testing, but faces challenges from data volume, correlation 
complexity, trust issues, and investigator bias.

7. Deliberate actions such as time manipulation, anti-forensics, and 
post-event tampering can alter or destroy digital evidence and make 
event reconstruction even more challenging.

8. Several research directions have emerged to address challenges in 
event reconstruction, including forensic readiness, improved artifact 
extraction, timeline verification, tamper detection, AI/NLP integra-
tion, and advanced analysis techniques.

9. Discussion and research gaps

From the previous sections, the summary of key findings, and Table 1
(which provides a mapping of the focus areas in Sections 2 to 7, against 
the quadrants in Fig. 1, illustrating the distribution of existing research) 
it is possible to infer general research gaps. However, this section 
highlights selected significant challenges and proposes specific potential 
avenues for future research.

The section is organized by quadrant of the TER-model, demon-
strating the utility of the model as an organizational tool. Given the vast 
body of literature, it is not feasible to reference every relevant article. 
Therefore, we focus on studies from our initial collection as well as 
recent works.

One general point is that throughout the TER-model (Q1-Q4) a broad 
research gap is the understanding and handling of uncertainty, from 
system configuration through to a reliance on examiner knowledge for 
hypothesis generation and testing. This is considered an ongoing limi-
tation to the process that requires addressing. 

Research Gap 1. Uncertainty is potentially introduced throughout the 
model and research into handling it at each stage, and how it could 
propagate is needed.

9.1. Q1: Timeframe of interest

Digital forensic readiness is a proactive approach ensuring systems 
and networks are prepared to efficiently collect, preserve, and analyze 
evidence when a security incident occurs (Sachowski, 2019). Forensic 
readiness for event logging has been researched, as demonstrated by 
Reddy and Venter (2013) and Kebande and Venter (2018). To support 
forensic readiness, administrators should activate extended logging, 
which records additional data and audit trails. Moreover, operating 
system developers could still provide more comprehensive 
system-related logs (Rivera-Ortiz and Pasquale, 2019) but this conflicts 
with privacy-centric approaches expected from consumers.

This also has anti-forensics implications. If an attacker deletes logs 
(one of the primary sources for event reconstruction), investigators must 
first recover them (as discussed in Q2/Q3). To address this, security 
measures such as centralized or encrypted log servers could be imple-
mented in systems where this is feasible, and even advanced techniques 
such as blockchain can be used to mitigate anti-forensic techniques (Kłos 
and El Fray, 2020). 

Research Gap 2. Forensic readiness needs further development, and 
more creative solutions need researching to achieve similar goals on 
‘unmanaged’ systems where forensic readiness solutions cannot be 
deployed.

9.2. Q2: Post-event period

In evidence seizure, timing has an effect during forensic in-
vestigations. This affects if volatile artifacts are captured if not done on 
time, e.g., credentials stored in memory. Secondly, challenges related to 
cloud environments imply any delays in data acquisition may effort-
lessly cause the loss of crucial evidence, e.g., Alqahtany et al. (2016)
discuss evidence that supports the need for timely acquisition. There is 
also the issue of long-term log retention by internet service providers, 
which may be important in some cases (Khan et al., 2016). Mandating 
extended retention ensures information can be accessed after an inci-
dent, but conflicts with privacy regulations. There are also ‘awareness’ 
concerns. For victim systems, communication is crucial to ensure device 
owners minimize interactions with devices containing potential evi-
dence. The same applies to examiners, where changes to the evidence 
should be anticipated and minimized from a data preserva-
tion/acquisition perspective (Gruber et al., 2023). Moreover, recent 
work by Spichiger and Adelstein (2025) highlights that preservation 
should not be narrowly focused on the trace itself but must also consider 
the reference environment in which the trace was produced. As systems 
evolve, e.g., through software updates, operating systems, or third-party 
services, insufficient preservation of reference data can result in a loss of 
contextual meaning and increase the uncertainty of later re-
constructions. Expanding the definition of preservation to include such 
reference data is therefore essential in environments where evidence 
may need to be interpreted long after the fact. 

Research Gap 3. There is little work on the persistence of artifacts, and 
determining if the absence of data is due to configuration, tampering, or 
simply the passing of time. Work in this area could reduce this aspect of 
uncertainty within the model and process, and provide practical advice on 
the temporal boundaries of useful preservation periods.

9.3. Q3: Timeline

This aspect of event reconstruction has received the most attention 
and many articles and concepts have been discussed.

Continuous updates/improvement to timestamp extraction: 
Files and formats containing timestamps are subject to change. Ongoing 
research that tracks these changes and uncovers new timestamp sources 
provides the foundational data necessary. This means ongoing ‘artifact 
research’ (as defined by Breitinger et al. (2024)) is critical.

Integration of non-explicit timing information: Dreier et al. 
(2024) discussed implicit timing (e.g., ordering of log file entries) to 
detect inconsistencies in an automated way. A second possibility is 
digital stratigraphy, as defined by Casey (2018), and further imple-
mented in Schneider et al. (2024), which is a method that takes 
advantage of file systems and the behavior of their allocation algo-
rithms. By analyzing the logical position of files on a disk, investigators 
can infer potential events, provided they understand how the file system 
allocates those files. This knowledge enables the reconstruction of hy-
pothetical sequences of events based on file placement. These are still 
early implementations, and additional work is needed to evaluate more 
variations in environments, file systems, drivers, and behavior patterns.

Timeline representation: Timelines are mostly flat, i.e., textual files 
in chronological order. The community should explore alternatives. For 
instance, an ontology-based approach improves event reconstruction by 
providing a structured and formal representation of data, which helps 
standardize and automate the analysis process (Bhandari and Jusas, 
2020). An ontology captures the semantic relationships between events, 
objects, and subjects, allowing investigators to infer new facts, identify 
correlations between events, and visualize data more effectively (Chabot 
et al., 2015b; Turnbull and Randhawa, 2015). We should also reconsider 
visualizing timelines, moving beyond the frequently used basic bar 
charts counting the number of events within defined timeframes, and 
exploring AR or VR.
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Automated timeline verification: Willassen (2008c) introduced a 
hypothesis-based approach where investigators create clock hypotheses 
to model historical clock values and test their consistency with time-
stamp evidence. Vanini et al. (2024) suggested using time anchors (i.e., 
artifacts that include internal and external timestamps) and looking for 
anomalies. Research efforts need to continue to build verification 
methods that allow us to identify whether the timeline is 
out-of-sequence (irregularities found) or likely correct.

Tamper detection: Galhuber and Luh (2021) found that timestamp 
forgery tools may introduce detectable changes, such as reducing 
timestamp accuracy from nanoseconds to seconds. Among the tools they 
evaluated, only one was capable of modifying the full range of file sys-
tem timestamps on Windows. Andrade (2020) noted that $FN time-
stamps are typically modified only by the Windows kernel and are 
generally unaffected by anti-forensic timestomping tools, offering an 
example of a timestamp that is harder to manipulate during event 
reconstruction. Jang et al. (2016) presented a method to detected time 
manipulation in NTFS file system. More general experiments as con-
ducted by Schneider et al. (2020, 2022); Vanini et al. (2025) show that 
the probability of detecting it is high, especially when it concerns file 
metadata. One reason is that it is difficult to forge a timestamp without 
causing subsequent inconsistencies. While some progress has been made 
in detecting tampering, this area still requires further exploration and 
automation. Ideally, a tool should be capable of analyzing a timeline and 
automatically highlighting all potential tampering events. 

Research Gap 4. Advances in timeline generation research are still 
needed in multiple areas: from artifact research, integration of non- 
timestamp-based timing information, visualization of timelines, and 
detecting inconsistencies and tampering.

9.4. Q4: Analysis and investigative conclusions

This includes the timeline analysis which bridges Q3 and Q4 since it 
may revisited as part of Q4 hypothesis testing.

Timeline analysis: Efforts focus on methods to reduce and manage 
data, including techniques for filtering, labeling, and aggregating data. 
Flagging entries that match certain criteria can be performed, or more 
complex approaches such as discussed by Hargreaves and Patterson 
(2012); Studiawan et al. (2020b) where patterns of events are bundled 
to provide multiple entries that support an event reconstruction. This 
reduces large timelines to more manageable sets of interesting events, 
but as they are inherently a reduced set, switching back to the 
lower-level entry view is an important feature to retain to see inferred 
events in context and show provenance of the reconstructed event. A 
limitation discussed by Hargreaves and Patterson (2012) is the need to 
manually create the patterns that need to be matched based on research 
and experience. Better centralized documentation of the expected 
changes from sets of actions in different environments, similar to Casey 
et al. (2022); Grajeda et al. (2018) and integration into a standard 
timeline analysis tool would make timeline analysis more accessible.

Visualization is also a vital additional layer of abstraction to help 
make sense of the large amounts of data, and can be a valuable tool to 
assist with analysis, e.g., to support timeline-based cross drive analysis 
(Patterson and Hargreaves, 2012).

An increased availability of ground truth data sets with annotation of 
the actions carried out would assist with developing analysis plugins for 
tools (Grajeda et al., 2017). Automated event inference, either using 
machine learning, or through automation in digital forensic experi-
mentation to carry out actions and record the resulting traces may help 
with this.

Artifact reliability: If the timeline contains conflicting information 
i.e., at least two artifacts provide conflicting information, a resolution is 
needed. Automation in identifying accurate artifacts would be advan-
tageous. One possibility is to compare artifacts and assess their reli-
ability, e.g., the ease of manipulating an artifact (Vanini et al., 2025). 

Hargreaves and Patterson (2012) began work on handling conflicting 
artifacts, where each inferred high-level event was assigned a series of 
expected artifacts. On a match, the supporting and contradictory timeline 
entries were stored within the inferred event, highlighting entries that 
were expected but absent, forming the basis for the evaluation of reli-
ability assessment. Casey (2011) discusses the number of independent 
sources and their resistance to tampering as part of the C-Scale, but if 
this were to be more strictly quantified, e.g., with Bayesian networks for 
example (Kwan et al., 2008), in terms of assigning weight to expected 
artifacts, other factors may have an impact. For example ‘artifact 
longevity’, i.e., how long an artifact is known to persist may allow 
appropriate weight to be given to the absence of specific, expected, 
hypothesis-supporting information. It remains unclear how appropriate 
precise numerical assessments in event reconstruction are.

AI integration: The use of AI for digital forensics is becoming more 
common (Du et al., 2020a; Jarrett and Choo, 2021). AI can help analyze 
and identify digital evidence (Henseler and van Beek, 2023; Sreya and 
Wadhwa, 2023) or aid investigators in writing forensic reports (Michelet 
and Breitinger, 2024). As discussed by Scanlon et al. (2023), LLMs may 
help with event analysis, such as suspicious activities or attack identi-
fication. However, they may hallucinate when responding to investi-
gator questions. Others have tried to apply AI techniques to accelerate 
the process, e.g., by searching for anomalies (Studiawan et al., 2017; 
Studiawan and Sohel, 2021) or relevant artifacts (Du et al., 2020b; 
Marková et al., 2022). Future work should focus on evaluating and 
validating this new technology for forensic purposes.

Natural Language Processing (NLP) integration: NLP may sup-
port timeline analysis as each event is represented by a descriptive 
message. These messages contain valuable information that can be 
extracted and analyzed. By applying traditional NLP techniques, such as 
sentiment analysis (Silalahi et al., 2023c; Studiawan et al., 2020b), 
named entity recognition (Silalahi et al., 2023a, 2023b; Studiawan et al., 
2023), and information extraction, researchers can derive insights. For 
future research, there is potential to explore other NLP methods to 
enhance the field. For instance, topic modeling and dependency parsing 
could be employed to gain deeper insights into events and establish 
relationships between them.

Process mining: Event reconstruction is a common task in process 
mining (Weijters and van der Aalst, 2001; Jürgensen, 2021), though it is 
typically applied to business process logs (Nguyen and Comuzzi, 2019). 
However, the domain faces similar challenges. For example, Dixit et al. 
(2018) describe a set of timestamp-based indicators for identifying event 
ordering imperfections in logs and present a method for resolving these 
issues using domain knowledge. Therefore, future research could 
explore various process mining techniques (van der Aalst, 2016) for 
forensic event reconstruction.

Training and education: Specialized training and continuous edu-
cation play a key role in ensuring investigators can handle complex cases 
and maintain the admissibility of evidence in court (Jahankhani & 
Hosseinian-far, 2014). However, cognitive biases and human errors can 
impact the integrity of findings, but some techniques can be used to 
mitigate this, e.g., collaborative approaches, such as the 4-eye principle, 
where at least two individuals review the findings. More research is 
needed to explore how collaborative techniques and advanced 
decision-support systems, including AI-assisted tools, can further mini-
mize human errors and biases, ensuring more reliable and transparent 
event reconstruction processes. 

Research Gap 5. The challenge of performing efficient and effective 
timeline analysis remains. Handling the volume of extracted timestamps 
in an effective way is needed (Q3/4), which could include technological 
solutions such as performance improvements or AI based filtering, but also 
process changes, where the ‘extract everything’ model needs research to 
ensure it is still the most appropriate approach.

Research Gap 6. Automation is likely the only practical way to handle 
the challenge of inferring events at scale (Q4), but how to handle the 
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practical research challenge of automated inference of events from 
timeline entries that are subject to operating system, application, and 
environmental changes earlier on in the process (Q1,Q2) is challenging.

Research Gap 7. Ensuring and communicating a clear delineation be-
tween extracted timestamp values as facts, and inferred events as working 
hypothesis, in both research and in forensic tooling (Q4), requires work 
from digital forensic scientists, and potentially UX experts to clearly 
communicate residual uncertainty.

10. Conclusions

Event reconstruction is a critical part of the digital forensic process, 
yet the process and terminology are vague and inconsistent. This work 
has shown that this mixture of terms can be unified and as a result, a 
systematic organization of issues associated with timeline-based event 
reconstruction w compiled. When an event reconstruction is completed, 
these potential issues can be considered and evaluated as to whether 
they may have influenced the result of the reconstruction. Aside from 
practical uses, it has also allowed clear future directions in event 
reconstruction research to be identified.

While some of these identified challenges will be obvious to seasoned 
investigators, there is a need within digital forensics to formalize defi-
nitions and make currently tacit knowledge explicit. This provides the 
foundation for more formal and potentially future quantitative evalua-
tion of the trustworthiness or indeed reliability of reconstructed events 
in a digital forensic investigation.

Disclosure of AI-assisted writing tools

Some authors utilized ChatGPT-4 to assist in revising, condensing 
text, and correcting grammatical errors, typos, and awkward phrasing. 
All AI-generated suggestions were carefully reviewed and modified as 
necessary to ensure they aligned with the authors’ intended meaning 
before being incorporated into this paper.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

We acknowledge Eoghan Casey for the comments and feedback. The 
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