
R E S E A R CH A R T I C L E

Applying automated object detection in archaeological
practice: A case study from the southern Netherlands

Wouter B. Verschoof-van der Vaart1,2 | Karsten Lambers1

1Faculty of Archaeology, Leiden University,

Leiden, South Holland, 2300 RA, Netherlands

2Data Science Research Programme (Leiden

Centre of Data Science), Leiden University,

Leiden, South Holland, 2300 RA, Netherlands

Correspondence

Wouter B. Verschoof-van der Vaart, Faculty of

Archaeology, Leiden University, P.O. Box

9514, Leiden, South Holland 2300 RA,

Netherlands.

Email: w.b.verschoof@arch.leidenuniv.nl

Funding information

Data Science Research Programme

Abstract

Within archaeological prospection, Deep Learning algorithms are developed to detect

objects within large remotely sensed datasets. These approaches are generally tested

in an (ideal) experimental setting but have not been applied in different contexts or

‘in the wild’, that is, incorporated in archaeological prospection. This research

explores the applicability, knowledge discovery—on both a quantitative and qualita-

tive level—and efficiency gain resulting from employing an automated detection tool

called WODAN within (Dutch) archaeological practice. WODAN has been used to

detect barrows and Celtic fields in LiDAR data from the Dutch Midden-Limburg area,

which differs in archaeology, geo-(morpho)logy and land-use from the Veluwe in

which it was developed. The results show that WODAN was able to detect potential

barrows and Celtic fields, including previously unknown examples, and provided

information about the structuring of the landscape in the past. Based on the results,

combined human-computer strategies are argued, in which automated detection has

a complementary, rather than a substitute role, to manual analysis. This can offset

the inherent biases in manual analysis and deal with the problem that current auto-

mated detection methods only detect objects similar to the pre-defined target

class(es). The incorporation of automated detection into archaeological prospection,

in which the results of automated detection are used to highlight areas of interest

and to enhance and add detail to existing archaeological predictive maps, seems logi-

cal and feasible.
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1 | INTRODUCTION

In the Netherlands, archaeological prospection—sometimes called

archaeological evaluation in other countries—generally follows a

stepped scheme of (1) a desk-based assessment, followed by (2) a field

survey, that is, borehole surveys and/or field walking and, finally,

(3) test trenches (Lauwerier et al., 2017). Only sporadically this

strategy is supplemented with geophysical surveys (Rensink, 2019),

although attempts are made to further incorporate geophysics in

Dutch archaeological practice (Jelsma & Verschoof-van der

Vaart, 2021). Although remote sensing normally plays an important

role within archaeological prospection, in the Netherlands, the focus

has always been on using coring and field walking. This limited

application of remote sensing techniques is mainly due to the
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geo-(morph)ology of the Netherlands (where archaeological traces

are frequently covered by thick layers of subsoil; see

Berendsen, (2004)) and the complex development and long-term,

dynamic land-use (Risbøl, 2013), although practical and financial fac-

tors also have played a role (Waldus, 2006). This changed with the

release of the Actueel Hoogtebestand Nederland or AHN—a LiDAR

(Light Detecting And Ranging; Crutchley & Crow, 2018) dataset cov-

ering the entire Netherlands—in 2003. Nowadays, consulting the

AHN is common practice within desk-based assessments. However,

this LiDAR data are generally only superficially analysed on a site

level, whereas the full potential of this data source for large-scale

landscape analyses has been underutilized. This is mainly due to the

complications surrounding manually documenting and analysing the

overwhelming amount of potential archaeological objects within

these large, continually improving and expanding datasets (Bennett

et al., 2014; Bevan, 2015).

The last decade has seen an increase in the development of

research strategies that either rely on crowd-sourced and expert-

led manual brute force methods or on computational approaches

to (semi-)automatically detect archaeological objects in remotely

sensed data (Casana, 2014; 2020). Recent applications of the for-

mer mainly involve the use of citizen science for the classification

of remotely sensed data (Forest et al., 2020; Lambers et al., 2019;

Stewart et al., 2020). Within the latter, a trend towards Deep

Learning (Goodfellow et al., 2016; LeCun et al., 2015) can be

observed (Fiorucci et al., 2020). This subfield of Machine Learning

predominantly utilizes Convolutional Neural Networks (CNNs), hier-

archically structured algorithms that generally consist of a (image)

feature extractor and classifier and are loosely inspired by the ani-

mal visual cortex (Ball et al., 2017; Guo, 2017). These algorithms

learn to generalize from given examples, that is, a large set of

labelled images, rather than relying on a human operator to set

parameters or formulate rules. A major advantage of CNNs is the

possibility to use transfer-learning (Razavian et al., 2014), where a

CNN is pre-trained on a large, generic dataset and subsequently is

fine-tuned on a small, specific dataset. In archaeology, transfer-

learning has been successfully implemented on different types of

remotely sensed data from Europe (Bonhage et al., 2021; Gallwey

et al., 2019; Guyot et al., 2021; Kazimi et al., 2019; Trier et al.,

2019; Verschoof-van der Vaart & Lambers, 2019; Verschoof-van

der Vaart et al., 2020; Verschoof-van der Vaart & Landauer, 2021;

Zingman, 2016; Zingman et al., 2016) and further abroad (Bundzel

et al., 2020; Caspari & Crespo, 2019; Somrak et al., 2020; Soroush

et al., 2020; Trier et al., 2018, 2021). To date these approaches

are generally tested in an (ideal) experimental setting but have not

been applied in different contexts or ‘in the wild’, that is, incorpo-

rated in archaeological prospection, although the latter is the main

aim of most initiatives (see Trier et al., 2019). However, research

has shown that when these approaches are used beyond an ideal

experimental setting, the performance decreases (Verschoof-van

der Vaart et al., 2020). Furthermore, one of the main questions

that remains is the transferability of these methods (Cowley et al.,

2020; Kermit et al., 2018). Therefore, studies ‘in the wild’ and in

different environments are important to investigate the true poten-

tial of automated approaches for archaeological practice.

1.1 | Aim

In this paper, the application of a Deep Learning tool within archaeo-

logical practice will be addressed. Furthermore, the knowledge

discovery—on both a quantitative and qualitative level—and efficiency

gain resulting from applying an object detection model will be

explored. The object detection model WODAN (Workflow for Object

Detection of Archaeology in the Netherlands; Verschoof-van der

Vaart & Lambers, 2019; Verschoof-van der Vaart et al., 2020), devel-

oped in one area of the Netherlands (the Veluwe) will be used to

detect two classes of archaeology (barrows and Celtic fields) in the

Dutch Midden-Limburg area (Figure 1). This area has been chosen

because it has different archaeological, geo(morpho)logical and land-

use conditions (Section 2). The results of the automated detection

(Section 3) will be compared to two reference datasets: an inventory

of documented archaeological sites and a manual analysis of the

LiDAR data, conducted in the framework of this research. The knowl-

edge discovery and efficiency gain will be analysed (Section 3) and dis-

cussed (Section 4).

F IGURE 1 The Midden-Limburg (outlined in black) and Veluwe
(outlined in red) areas on a height model of the Netherlands (source of
the height model: Nationaal Georegister, 2021; coordinates in
Amersfoort/RD New, EPSG: 28992) [Colour figure can be viewed at
wileyonlinelibrary.com]
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2 | MATERIALS AND METHODS

2.1 | Research areas

The Veluwe area (Table 1) comprises the western part of the province

of Gelderland in the Netherlands (Figure 1, red). It consists of ice-

pushed ridges formed in the Saale glacial period (ca. 350,000 to

130,000 BP), which were subsequently partially covered with cover-

sand during the Weichselian glacial period (ca. 115,000 to 11,500 BP;

Berendsen, 2004). Nowadays, this area, �1,100 km2, is predominantly

covered by forest and heath, interspersed with villages and towns of

various size and agricultural fields (for a detailed overview of the area,

see Lambers et al., 2019). The Midden-Limburg area (�265 km2;

Table 1) covers the municipalities Echt-Susteren, Roerdalen and

Roermond in the province of Limburg in the southern part of the

Netherlands (Figure 1, black). The western boundary of the area con-

sists of the Meuse river, whereas the area is demarcated in the east

by the Dutch-German border (Figure 1).

The Midden-Limburg area comprises a highly diverse landscape,

which results from eolian, fluvial and tectonic processes (Figure 2). In

the north, the area is dissected by a northwest-southeast orientated

geological fault line, the Peelrandbreuk. Immediately to the south of

the research area lies another fault line, the Feldbissbreuk. Therefore,

the majority of the region is part of the subsiding Roerdalslenk or Roer

Valley Graben, whereas the northeastern part lies on the Peelhorst,

which experiences tectonic uplift (Berendsen, 2004). The subsoil and

landscape in the research area mainly formed by repeated deposition

and incision of the Meuse river, starting in the Holstein interglacial

(ca. 400,000 till 380,000 BP) up till the present (Figure 2). This has

resulted in a series of river terraces and escarpments: the higher ter-

race consists of coarse river deposits from the Middle Pleistocene

(ca. 400,000 till 130,000 BP). This terrace mainly follows the Dutch-

German border and is only found in the extreme northeastern and

eastern part, the Meinweg nature reserve, of the research area. A

steep escarpment, spanning a height difference of up to 23 m, sepa-

rates the higher terrace from the middle terrace. The latter can be

divided into a higher part, formed in the Middle and Late Pleistocene

(ca. 380,000 till 15,000 BP), and a (few metres) lower part which was

formed during the warmer period at the end of the Weichselian

(ca. 15,000 till 11,500 BP). The middle terrace consists of Meuse river

deposits (coarse sand and gravel). During the Late Pleistocene

(ca. 130,000 till 11,500 BP), the higher part of the middle terrace and

the higher terrace were subjected to eolian processes and became

partly covered with coversand and loess. Finally, the lower terrace

contains the active stream valley of the Meuse river and mostly

consists of clay (Ellenkamp & Tichelman, 2008). In the Holocene

(ca. 11,500 BP till the present), stream valleys were formed by smaller

river courses such as the Roer or the Swalm, which deposited loam

and sand. To a lesser extent, the area was covered by peat formations

(Berendsen, 2004). Today, the research area is predominately covered

by agricultural fields, urbanized areas of various size and to a lesser

extent with forest (Figure 2).

2.2 | Datasets

2.2.1 | LiDAR data

LiDAR data of both research areas are freely available as an interpo-

lated Digital Terrain Model (DTM) from the online repository PDOK

(Nationaal Georegister, 2021). The data have an average ground point

density of 6–10 per m2, a spatial resolution of 50 cm and a vertical

and planimetric accuracy of 5 cm (Van Der Zon, 2013). In this

research, the second generation of Dutch LiDAR data (AHN2,

released in 2012) is used. The third generation (AHN3), with equal

resolution but with a higher accuracy compared to prior generations

(Van Meijeren, 2017), is currently being made available on a nation-

wide level. For the training of our object detection model (see Sec-

tion 2.3), a dataset of 1,152 LiDAR images (600 by 600 pixels) was

used. This is a selection of images that contain archaeological objects,

from various parts of the Veluwe (spread over an area of �375 km2).

Images without archaeological objects from this area were excluded

from the training dataset. The total Midden-Limburg area (�265 km2)

was used to form a test dataset of 4,405 LiDAR images (600 by

600 pixels).

2.2.2 | Archaeological Inventory

The Midden-Limburg area is rich in archaeology from many time

periods. The following overview is limited to the Neolithic period until

the start of the Roman period (ca. 4900–12 BC; Louwe Kooijmans

et al., 2005), focusing on three types of archaeological sites: settle-

ments, burial sites and Celtic fields (Figure 3). These types were

selected as they are either objects detected by WODAN (barrows,

urnfields and Celtic fields) or are related to detected objects (settle-

ments, other burials sites). Therefore, comparing this overview with

the results of the object detection can provide information about

the knowledge gain (see Section 3.4). The overview was

assembled by consulting the two principal Dutch archaeological

TABLE 1 Main characteristics of the Veluwe and Midden-Limburg research areas

Area Area (km2) Images General terrain Main land-use

Veluwe 375 1,152 Ice-pushed ridges, partly covered with coversand Forest and heath

Midden-Limburg 265 4,405 River terraces, partly covered with coversand, loess and river

deposits

Agricultural fields
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databases (ArchIS and the AMK; Rijksdienst voor het Cultureel

Erfgoed, 2021b), the archaeological predictive maps of the three

municipalities (Ellenkamp and Tichelman, 2008, 2010a; Verhoeven

et al., 2010b) and recent archaeological grey literature

(Arnoldussen, 2013; Arnoldussen et al., 2014; Meurkens & Tol, 2016;

Verhart & Janssen, 2010). Every site in the overview has a different

confidence level, based on the source (or step in the Dutch archaeo-

logical prospection scheme; see Section 1) from which the information

about the site derives: (3) from indirect sources, such as (historical) lit-

erature; (2) minimal destructive (archaeological) research, such as cor-

ing and field-walking or (1) archaeological test-trenches or

excavations. As expected, the accuracy of the interpretation of these

sites varies between these methods: through excavations (1) the site

type and date can be specifically determined, whereas an interpreta-

tion based on field-walking (2) or indirect sources (3) is much less

certain. Tables 2–4 show the known settlements, burial sites and

Celtic fields in the research area divided per time period: Neolithic

(4900–2000 BC), Bronze Age (2000-800 BC), Late Bronze Age-Early

Iron Age (Niederrheinische Grabhügelkultur or NGK; 1100-500 BC) and

Iron Age (800-12 BC). Furthermore, the tables show whether the

archaeological sites are visible in the LiDAR data (see also Figure 3). In

the case of settlement sites, none are discernible, whereas only

23 of the burial sites and one of the Celtic fields (�0.24 km2) show up

in the LiDAR data. In the results of the automated detection, only

these visible archaeological sites will be used. Besides, settlements,

burial sites and Celtic fields are generally hard to discern in the field

but are sometimes visible in other remotely-sensed data, for example,

aerial imagery (see, e.g., Brongers, 1976).

As can be seen in Table 2, an abundance of settlement sites

(170 in total) are known from the research area. Upon excavation,

F IGURE 2 Overview of the geology
(left) and current land-use (right) of the
Midden-Limburg research area, amended
from Ellenkamp and Tichelman (2008)
[Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 The distribution of burial sites
(circles), Celtic fields (triangles) and settlement
sites (rectangles) in the research area (red outline)
on a recent aerial photograph (source

photograph: Nationaal Georegister, 2021); sites
visible in LiDAR data are outlined in black
(coordinates in Amersfoort/RD New, EPSG:
28992) [Colour figure can be viewed at
wileyonlinelibrary.com]
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these areas of habitation generally contain traces of houses or other

buildings, additional pits and postholes and domestic refuse (Louwe

Kooijmans et al., 2005). Most of these sites are located within agri-

cultural areas (Figure 3). The table shows an uneven distribution

with a higher number of settlements dated in the Neolithic and Iron

Age, as compared to the Bronze Age. However, most of these sites

have only been roughly dated, as the majority are known from field-

walking (�60%), whereas only about a quarter of these sites have

been excavated. On the other hand, most of the burial sites (72 in

total) in the research area (Table 3) are known from indirect sources

(�38%) and excavations (�45%). The majority of these sites concern

urnfields (�37%) or barrows (�35%), although isolated burials

(�24%) without clear above-ground features are also known. The

high number of urnfields, or barrow cemeteries, is related to the

fact that these are one of the most characteristic archaeological

phenomena in this region and thus have a rich research history

(Theuws & Roymans, 1999). Most burial sites can be dated to

the Late Bronze Age or Iron Age. Interestingly, although there is an

abundance of settlement and burial sites from late prehistory, only

two (potential) Celtic fields are known from the research area

(Table 4; Figure 3). One of these concerns the well-investigated

Celtic field near the village of Herkenbosch (Arnoldussen, 2013;

Verhart & Janssen, 2010). The other site, near the village of

Nieuwstadt, is based on anthropogenic soil layers and small pottery

fragments in corings. The scarcity of Celtic fields in this region, as

compared to other Dutch regions such as the Veluwe, has been

attributed to the abundance of natural boundaries—making formal

boundaries redundant (van Beek, 2011)—and the predominant

TABLE 3 Documented burial sites in the Midden-Limburg research area

Confidence level

Archaeological period 3 2 1 Number of archaeological objects Objects visible in LiDAR data

Neolithic 9 4

Barrow 0 0 7

Unknown 2 0 0

Bronze Age 10 7

Barrow 0 0 7

Burial 2 0 1

NGK 23 2

Burial 2 0 0

Urnfield 8 4 9

Iron Age 17 2

Barrow 0 0 1

Burial 6 3 1

Urnfield 3 2 1

Unknown 13 8

Barrow 3 2 6

Burial 0 1 0

Unknown 1 0 0

Total 27 12 33 72 23

Percentage 38% 17% 45% 100% 32%

TABLE 2 Documented settlement sites in the Midden-Limburg research area

Confidence level

Archaeological period 3 2 1 Number of archaeological objects Objects visible in LiDAR data

Neolithic 13 40 9 62 0

Bronze Age 2 15 8 25 0

NGK 1 4 1 6 0

Iron Age 14 44 19 77 0

Total 30 103 37 170 0

Percentage 18% 60% 22% 100% 0%

VERSCHOOF-VAN DER VAART AND LAMBERS 19
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geology, subsoil and hydrology (Spek, 2004), although a lack of

research and intensive, degrading agricultural practices also seems

to have been of influence (Arnoldussen, 2013).

2.2.3 | Manual analysis

In the framework of this research, the LiDAR data from the Midden-

Limburg area were manually investigated by a researcher with abun-

dant experience in analysing remotely sensed data and considerable

knowledge of the archaeology of the research area. This analysis

enables the comparison between the performance and efficiency of

automated detection versus manual analysis. During the analysis, the

LiDAR data were loaded into QGIS 3.4 Madeira (QGIS Development

Team, 2017) and visualized with the Local Relief Model visualization

(Hesse, 2010) from the Relief Visualisation Toolbox 2.0 (Kokalj &

Hesse, 2017), and all settlement sites, burial sites and Celtic fields

were annotated (Figure 4). The data were evaluated in combination

with aerial imagery (25 cm resolution) and geo-(morph)logical maps of

the research area (source: Nationaal Georegister, 2021).

The manual analysis took 6.75 h (405 min) and resulted in

135 potential barrows. Interestingly, only 16 of the 23 visible barrows

on record (see Table 3) were recognized as such during the manual

analysis. Furthermore, 31 new, demarcated areas of Celtic fields,

totaling 3.37 km2, have been annotated. No settlement sites were

annotated during the manual analysis.

2.3 | WODAN

In this research, the object detection model WODAN—the result of a

PhD in the Data Science Research Programme at the Faculty of

Archaeology, Leiden University (Verschoof-van der Vaart &

Lambers, 2019; Verschoof-van der Vaart et al., 2020)—was used to

detect archaeological objects in the Midden-Limburg area. The latest

version, WODAN2.5 (Verschoof-van der Vaart, in prep.), consists of

four parts (Figure 5): (1) a preprocessing part that converts LiDAR data

into input images; (2) an object detection part; (3) a post-processing

part that turns the results of the prior step into geospatial vectors,

directly usable in a GIS; and (4) an additional post-processing step

called Location-Based Ranking (LBR; see Section 2.3.1) that incorpo-

rates domain knowledge into the workflow, to reduce false positives

caused by specific zones within the research area (Verschoof-van der

Vaart et al., 2020).

TABLE 4 Documented Celtic fields in the Midden-Limburg research area

Confidence level

Archaeological period 3 2 1 Number of archaeological objects Objects visible in LiDAR data

NGK 0 0 1 1 1

Iron Age 0 1 0 1 0

Total 0 1 1 2 1

Percentage 0% 50% 50% 100% 50%

F IGURE 4 The results of the manual analysis
with barrows (green) and Celtic fields (blue) in the
research area (red outline) on a recent aerial
photograph (source: Nationaal Georegister, 2021);
registered archaeological objects are outlined in
black (coordinates in Amersfoort/RD New, EPSG:
28992) [Colour figure can be viewed at
wileyonlinelibrary.com]
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The object detection part of the WODAN workflow consists of

an adapted version of the Faster R-CNN architecture (Ren et al.,

2017). This so-called Region-based CNN or R-CNN (Girshick et al.,

2014) is able to localize and classify multiple, adjacent or even over-

lapping objects within a single image—as opposed to general CNNs

that give a single classification for the entire input image (Guo et al.,

2016). Faster R-CNN consists of two parts: a fully connected convolu-

tion Region Proposal Network (RPN) and the Fast R-CNN model

(Girshick, 2015). The former generates object proposals; that is, it

selects regions within the image that potentially contain an object of

interest. The latter model is used for feature extraction and classifica-

tion of these candidate regions. Both the RPN and Fast R-CNN are

trained simultaneously during the training of Faster R-CNN (for an

detailed overview of Faster R-CNN, see Ren et al., 2017).

2.3.1 | Location-based ranking

In order to use WODAN in large-scale archaeological mapping over

different types of complex terrain, Location-Based Ranking (LBR) was

developed to reduce false positives caused by ‘objects of confusion’
with morphology comparable to the archaeological objects of interest

(Verschoof-van der Vaart et al., 2020). LBR involves determining,

ranking and mapping of (present-day) landscape characteristics, such

as subsoil and current land-use, which have had an impact on the

preservation and/or visibility of archaeological objects of interest.

These characteristics can be determined based on prior research in

the formation of the archaeological landscape and/or by a broad-

brush landscape characterization (Cowley, 2011) of the research area.

The subsequently assigned ranks, from 3 (low) to 1 (high), correspond

to the potential for the occurrence of specific types of archaeological

objects within that zone (for a detailed overview of LBR, see

Verschoof-van der Vaart et al., 2020). For the Midden-Limburg area,

five landscape features were identified: disturbed areas (quarries,

etc.), agricultural fields, urbanized or built-up areas, areas with (late)

Holocene deposits (stream valleys, driftsand) and modern roads

(Table 5; Figure 6). The most detrimental are disturbed areas and agri-

cultural fields. Built-up areas, areas with Holocene deposits and roads

have had a less negative impact. Although Celtic fields are generally

intersected by roads, this has had a limited negative impact on the

preservation of the overall objects. The best chance for survival of

archaeological objects can be found in the remaining areas (Table 5,

other), such as forest.

Based on the above, a ranked map of the Midden-Limburg area

was created based on open-source geo(morph)ological and topo-

graphical data from the online spatial data repository PDOK

(Nationaal Georegister, 2021). The assigned ranks correspond to the

potential for the occurrence of archaeological objects within that

zone. Subsequently, all detections from WODAN were compared to

this map and assigned to one of the ranks. Detections in high-ranking

zones (Rank 1) are more likely to be archaeological objects, whereas

detections in low-ranking zones (Rank 2 or 3) have a much higher like-

lihood of being false positives. Therefore, LBR can be used to reduce

the number of false positives by ignoring detections in low-ranking

zones (Verschoof-van der Vaart et al., 2020).

3 | RESULTS

3.1 | Implementation details

To investigate the application of WODAN, the workflow was trained

on data from the Veluwe and used to detect barrows and Celtic fields

in the Midden-Limburg area, which has different archaeological,

geo(morpho)logical and land-use conditions as compared to the

Veluwe (Table 1). In recent research, a difference in the performance

of CNNs was observed when trained and tested on particular LiDAR

visualizations (Kazimi et al., 2020; Somrak et al., 2020; Verschoof-van

der Vaart & Landauer, 2021). In prior research with WODAN, data

F IGURE 5 Schematic representation of the WODAN2.5 workflow, after Verschoof-van der Vaart et al. (2020) [Colour figure can be viewed
at wileyonlinelibrary.com]

TABLE 5 Different landscape
features and their rank in the location-
based ranking map for Midden-Limburg
research area

Landscape features Rank

Type Area (km2) Ratio of research area (%) Barrow Celtic fields

Disturbed areas 2.49 0.94 3 3

Agricultural fields 122.96 46.38 3 2

Built-up areas 34.95 13.18 2 2

Holocene deposits 18.77 7.08 2 2

Roads 8.73 3.29 2 1

Other 77.24 29.13 1 1

Total 265.14 100%
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visualized with Local Relief Model (Hesse, 2010) was successfully

used, whereas recent research showed promising results using un-

visualized Digital Terrain Model data (Verschoof-van der Vaart &

Landauer, 2021). Therefore, two versions of WODAN were used: one

model was trained and tested on the un-visualized Digital Terrain

Model (WODAN_DTM) and one on data visualized with Local Relief

Model (WODAN_LRM). For both versions, the LiDAR data were

turned into input images following the same pre-processing approach

as in Verschoof-van der Vaart et al. (2020). In addition, the input

images were normalized by subtraction of the central pixel value so

that each snippet has pixel (or greyscale) values between 0 and

255 (following Verschoof-van der Vaart & Landauer, 2021). For the

object detection, the Faster R-CNN architecture (Ren et al., 2017) was

used with VGG16 (Simonyan & Zisserman, 2015), pretrained on the

ImageNet dataset (Russakovsky et al., 2015), as the backbone net-

work. Faster R-CNN was transfer-learned using Stochastic Gradient

Descent with the Adam optimizer (Kingma & Ba, 2015), implemented

in Keras (Chollet, 2015). Additionally, Focal Loss (Lin et al., 2020; Chen

et al., 2018) was implemented in the RPN (see Verschoof-van der

Vaart, in prep.). Empirically, the learning rate was adjusted to 1�10�5

and the number of epochs to 18 (see Goodfellow et al., 2016). In the

training process, the sizes of the anchor boxes were adjusted follow-

ing Verschoof-van der Vaart et al. (2020). During training, the input

images were randomly flipped horizontally and vertically, as well as

rotated to augment the data. In the post-processing step, the detec-

tions were turned into geospatial vectors and subsequently ranked

with LBR, based on their location (for a detailed overview, see

Verschoof-van der Vaart et al., 2020).

3.2 | General results

After training, both versions of WODAN were tested on the entire

Midden-Limburg area (see Figure 7). On average, it took only 50 min

to run the model on the test dataset (on a single GPU per version of

WODAN), to post-process the results into geospatial vectors and to

implement LBR. Tables 6 and 7 show a comparison of the results of

the automated detection in the Midden-Limburg area and the two ref-

erence datasets (the archaeological inventory and the manual analysis;

see Section 2.2). Contrary to other research, the performance of

WODAN is not evaluated through metrics such as F1-score or Accu-

racy as we lack a (field) validated baseline to determine performance.

Furthermore, the scope of this research is not to evaluate perfor-

mance, but to investigate the application, efficiency and knowledge

discovery of using automated detection. Therefore, the ratio of

F IGURE 6 Location-based ranking map for the Midden-Limburg
research area showing the ranks of the zones for barrows in shades of
blue (see legend; coordinates in Amersfoort/RD New, EPSG: 28992)
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 The results of the automated detection (top:
WODAN_LRM; bottom: WODAN_DTM) showing all Rank
1 detections of barrows in green and Celtic fields in blue in the
research area (red outline) on a recent aerial photograph (source
photograph: Nationaal Georegister, 2021; coordinates in Amersfoort/
RD New, EPSG: 28992) [Colour figure can be viewed at
wileyonlinelibrary.com]
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overlap between the results of the automated detection and the two

reference datasets is given. For instance, WODAN_DTM detected

40.9% of the barrows on record and visible in the LiDAR data, and

30.7% (35) of the barrows annotated during the manual analysis.

These results indicate that WODAN is able to detect barrows and

Celtic fields in the Midden-Limburg area, when trained on data from a

different area in the Netherlands, that is, the Veluwe. However, the

performance of WODAN still has room for improvement, especially

when compared to the overlap between the results and the reference

datasets (Tables 6 and 7). This level of performance can partly be

explained by the fact that WODAN was tested on the entire

Midden-Limburg area, which generally causes a decrease in perfor-

mance (see Verschoof-van der Vaart et al., 2020). Furthermore, other

research in which the transferability of comparable methods was

tested also observed a decrease in performance when object detec-

tion model was tested on an unrelated area (Verschoof-van der

Vaart & Landauer, submitted). The different versions of WODAN,

using either DTM or LRM data, seem to have a different performance.

Using DTM data, instead of data visualized with LRM, improves the

detection of barrows (compare Tables 6 and 8). However, for Celtic

fields, the use of DTM data seems detrimental to the performance

(compare Tables 7 and 8). This is contrary to the results of prior

research on the detection of hollow roads (Verschoof-van der Vaart &

Landauer, 2021), but in line with research on the effectiveness of dif-

ferent visualizations (Kazimi et al., 2020). These results indicate that

the performance of CNNs, using different visualizations, is not only

related to the visualization itself but also to the type of archaeological

object that is detected (see also Verschoof-van der Vaart, in prep.).

3.3 | Efficiency gain

In this research, the duration of the manual analysis (405 min) and the

two versions of WODAN (on average 50 min) was recorded. For

the latter, the time includes testing, post-processing and implementing

LBR. It does not include the preprocessing—as for both the automated

detection and the manual analysis the LiDAR data needed to be pre-

processed, for example, visualized—or the training time of WODAN,

as the latter could be compared to the training of an operator to ana-

lyse LiDAR data. As shown, WODAN (on average 50 min) is approxi-

mately eight times faster than the manual analysis (405 min).

Moreover, during the actual running of WODAN on the test dataset,

the operator does not need to be actively involved, which makes the

automated detection even more time efficient. This shows the major

potential of automated object detection as a tool to assist in the rapid

mapping of archaeological objects over extensive areas (see Soroush

et al., 2020). It can reduce the time invested in actually mapping

objects, so that the operator's time can be reallocated to analysis, vali-

dation and interpretation of the results.

3.4 | Knowledge discovery

In the following, the knowledge discovery, that is, the extraction of

implicit, previously unknown and potentially useful information

(McCoy, 2017), resulting from using automated detection in the

TABLE 6 The results of the
automated detection of barrows in the
Midden-Limburg area

Rank Overlap

Method Total 1 2 3 Archaeological inventory Manual analysis

Arch. inventory 23 21 1 1 100% —

Manual analysis 135 114 20 1 69.6% 100%

WODAN_LRM 696 323 325 41 30.4% 28.9%

WODAN_DTM 780 267 374 139 43.5% 30.7%

TABLE 7 The results of the automated detection of Celtic fields (in m2) in the Midden-Limburg area

Rank Overlap

Method Total 1 2 3 Archaeological inventory Manual analysis

Arch. inventory 235,881 235,881 0 0 100% —

Manual analysis 3,372,470 3,277,094 95,376 0 100% 100%

WODAN_LRM 4,290,724 2,780,730 1,503,210 6,784 66.2% 24.4%

WODAN_DTM 12,638,926 3,325,880 9,210,820 102,226 58.4% 13.6%

TABLE 8 Quantitative knowledge gain of using automated
detection on the Midden-Limburg area, showing the number of new
potential archaeological objects

Model Potential barrows Potential Celtic field areas

WODAN_LRM 38 (8) 36 (11)

WODAN_DTM 35 (7) 32 (8)

Note: In brackets are the number of objects not annotated during the

manual analysis.
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Midden-Limburg area is presented. Knowledge discovery can be

either of a quantitative or a qualitative nature (Huggett, 2020a). The

former concerns the locating of hitherto undocumented archaeologi-

cal objects. The latter concerns a better understanding of the patterns

and relations between the uncovered archaeological objects and

between these objects and the surrounding landscape, through the

interpretation of the gained data (Cowley, 2011).

3.4.1 | Quantitative knowledge gain

Obviously, employing automated detection leads to new information

on the location of previously unknown archaeological objects, espe-

cially if new data sources, for example, LiDAR, and/or unexplored

regions within the research area, for instance forest, are analysed

(see Kenzler & Lambers, 2015). For this analysis, all Rank 1 detections

(see Tables 6 and 7) were manually investigated and compared to the

reference datasets. In Table 8, the amount of new potential archaeo-

logical objects found through the use of automated detection in the

Midden-Limburg area is shown. Instead of square metres, Table 8

shows the number of demarcated Celtic field areas. This unit is used

because in general WODAN locates a number of individual plots

within a demarcated Celtic field but does not detect the entire area.

In that sense, using the coverage gives a skewed image of the perfor-

mance of WODAN. For instance, WODAN_LRM (Table 7) only had

24.4% overlap between the detected Celtic field areas and the manu-

ally annotated areas. However, it did detect a number of plots within

26 of the 32 manually mapped Celtic fields. Thereby, WODAN ade-

quately indicates the location of Celtic fields in the research area,

although the full extent and coverage of these areas is not well pres-

ented. Furthermore, Table 8 shows (in brackets) how many of poten-

tial archaeological objects were not found during the manual analysis.

These objects—that are neither in the archaeological inventory nor

annotated during the manual analysis—are of special interest, as these

show the added benefit of simultaneously using manual and computa-

tional methods (see Section 4).

Prior to this research, 72 burial sites were known in the

Midden-Limburg area, of which 63 sites were either barrows or

urnfields (see Table 3). Using automated detection resulted in 35–38

new potential barrows (either individual mounds or mounds within an

urnfield), of which 7–8 were not mapped during the manual analysis

(Table 8), an increase of more than 50% of the known burial mounds

in the area. In general, the detected burial mounds appear clearly in

the LiDAR data (Figure 8a,b). However, some of the detected mounds

F IGURE 8 Excerpts of LiDAR data, visualized
with Local Relief Model (Hesse, 2010), showing
barrows (a–c) and Celtic fields (d–f) detections by
WODAN (blue) and Celtic fields annotated during
the manual analysis (green; source of the height
model: Nationaal Georegister, 2021) [Colour
figure can be viewed at wileyonlinelibrary.com]
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proved almost indiscernible in the visualized LiDAR maps and were

only recognized in vertical profiles of the LiDAR data (see Figure 8c).

Using automated detection resulted in a large increase of the

number and extent of potential Celtic fields in the research area

(Figure 8d–f). Prior to this research, only two Celtic field areas were

known of which only one, near Herckenbosch (Arnoldussen, 2013;

Verhart & Janssen, 2010), was well documented (see Table 4). Based

on the automated detection, 32–36 new potential Celtic field areas

were detected, of which 8–11 were not mapped during the manual

analysis. About half of these potential Celtic fields are located in the

vicinity of the known Celtic field at Herckenbosch (Figure 7), which

could indicate that this was once a single, much larger system, span-

ning over 3 km2. Another concentration of potential Celtic fields has

been found between the villages of Maria Hoop, Montfort and

Posterholt.

Most of the potential archaeological objects are found on the

higher middle terrace in the eastern and southern part of the area

(Figure 7) although some objects can also be found in the central part

of the research area: some of the potential barrows seem to be

located along the edge of stream valleys, whereas some of the poten-

tial Celtic fields extend onto the riverdunes in the centre of the area.

However, the question remains to what extent this distribution is the

result from the (current) land-use in the area (see Section 3.4.2). For

instance, within the part of the research area covered by loess, only

one potential barrow was found. Presumably, the absence of archaeo-

logical objects within this part is due to intensive agriculture.

3.4.2 | Qualitative knowledge gain

As shown, the use of automated detection results in the discovery of

previously unknown archaeological objects and contributes to a more

complete view (of the distribution) of archaeological objects in the

landscape. This data can be used to investigate patterns between

these archaeological objects and/or the landscape. It also offers

opportunities to investigate the structuring of landscape in the past,

especially when archaeological objects such as Celtic fields or hollow

roads are mapped. Moreover, it offers insight into the current archae-

ological research practice and possible biases that result from certain

methods and/or interpretations. In the following, this is highlighted by

two examples.

An example of a more complete view of the patterns and rela-

tions between archaeological objects and the surrounding landscape,

based on the results of automated detection, is the barrow cluster

near the town of Swalmen in the northeastern part of the

Midden-Limburg area (Figure 9). Prior to this research 22 burial sites

(20 barrows and 2 urnfields), dating between the Late Neolithic and

Iron Age, were known from this region. These sites were clustered

into several distinct groups. The automated detection and manual

analysis yielded eight and six potential barrows in this region respec-

tively. When the region was subsequently manually reexamined, an

additional seven potential barrows were discovered, missed during

both the manual analysis and the automated detection. The resulting

distribution of barrows appears not to be random but concentrated in

a narrow, southwest-northeast orientated zone (Figure 9). Similar for-

mations of barrows, called barrow alignments or barrow lines, are

known in the Netherlands, especially from the Veluwe

(Bourgeois, 2013). They originate from the Late Neolithic A

(2800-2500 cal. BC), and in later periods, barrows are added upon it

albeit in a more dispersed manner. The different alignments on the

Veluwe are comparable in terms of length (a minimum distance of 1–

1.5 km) and exhibit a similar placement of barrows, at a fairly regular

interval and along a single axis (Bourgeois, 2013). The Swalmen bar-

row cluster displays several of these characteristics, such as the length

(minimum of 2.2 km and maximum of 3.9 km) and placement along a

general axis (�240�). However, a regular interval between barrows

cannot be observed. Also, it is uncertain which of these barrows date

from the Late Neolithic A and form the origin of the potential align-

ment, as many of the sites are unvalidated, undated and/or of debat-

able date (see Lanting & Van der Waals, 1974). Therefore, it remains

F IGURE 9 Excerpt of LiDAR data, visualized
with Local Relief Model (Hesse, 2010), blended
with a recent aerial photograph, showing the
recorded barrows (hemispheres) and potential
new barrows (circles) near Swalmen and a binary
viewshed (blue) from the most southwestern
potential barrow (observer height: 1.6 m, target
height 0.3 m). Note the Roman road running
southwest-northeast through the right of the
centre of the image (source of the height model
and photograph: Nationaal Georegister, 2021)
[Colour figure can be viewed at wileyonlinelibrary.
com]
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unclear whether the Swalmen barrow cluster concerns a true barrow

alignment. Even though, several notions about the cluster might point

to a general concern with movement and a predetermined placement

of the barrows in the landscape (Løvschal, 2013). For instance, when a

simple viewshed analysis (Gillings & Wheatley, 2020) is calculated,

using the Visibility Analysis plugin (observer height: 1.6 m, target

heigth 0.3 m) in QGIS, a person standing on top of the most

southwestern potential barrow, situated on the lower terrace of the

Meuse river (see Section 2.1), would be able to see the group of bar-

rows on the middle terrace and on the group on the high terrace,

whereas the rest of the area is obscured. Furthermore, the line of bar-

rows crosses the Swalm stream (valley) at the point where, up until

the 1930s, one of the only crossing points of this stream was situated.

A similar observation was made for the barrow alignment between

Niersen and Epe on the Veluwe, which also led to one and possibly

two crossing points (Bourgeois, 2013).

Certainly one of the major outcomes of this research is the many

new potential Celtic fields discovered in the Midden-Limburg area. It

shows that, at least in the way areas were parcellated, a comparable

agricultural use-strategy was employed in the sand and loess covered

Midden-Limburg area as in the sandy regions of the central and north-

ern Netherlands (Arnoldussen, 2018). This significantly changes our

view of the Midden-Limburg landscape in later prehistory, as it was

assumed that none or a few Celtic fields were present in the area due

to the different geology, subsoil and hydrology (Spek, 2004) and the

occurrence of many natural boundaries (van Beek, 2011). If present at

all, the Celtic fields were assumed to have been destroyed by (sub)

modern agriculture (Arnoldussen, 2013). Although the latter has cer-

tainly been the case, as can be seen by the sharp transitions in the

presence of Celtic fields in forest and adjacent agricultural fields, it

appears that the suggested paucity of research is the main contribut-

ing factor (Arnoldussen, 2013).

The discovery of the many potential Celtic fields emphasizes a

deficiency in the current, local archaeological research practice, which

has a primary reliance on field-walking, resulting in an uneven distri-

bution in both site type and site location (see Section 2.2.2), with a

clear overrepresentation of settlement sites in modern agricultural

areas (see Figure 3). This research, which instead relies on remotely

sensed data, shows an abundance of underrepresented archaeological

sites, for example, Celtic fields, in landscape types, such as forest, that

have had little research attention. However, no settlement sites were

discovered in the LiDAR data, which shows that a reliance on a single

type of archaeological method is detrimental for the knowledge about

the archaeology in a particular region. Furthermore, the location of

the Celtic fields in relation to modern agricultural fields necessi-

tates the reconsideration of earlier archaeological interpretations

done on the basis of field-walking (Figure 10). For instance, pottery

fragments found in the ploughed topsoil of agricultural fields in the

vicinity of the detected Celtic fields should not a priori be inter-

preted as settlements, but alternatively as part of debris found in

the banks of Celtic field, which were in later periods levelled by

agricultural practices. This could especially be the case if only a

small amount and/or (strongly) fragmented pieces of pottery are

found. Even though, habitation within a Celtic field, such as is

attested at other locations in the Netherlands (Arnoldussen & De

Vries, 2014), cannot be excluded due to the long period of use of

Celtic fields (Arnoldussen, 2018).

4 | DISCUSSION

In this research the transferability and usability of a Deep Learning

object detection tool within archaeological practice was explored by

using the WODAN workflow (Verschoof-van der Vaart &

Lambers, 2019; Verschoof-van der Vaart et al., 2020), developed in

one area of the Netherlands (the Veluwe), on an unrelated area

(Midden-Limburg; Figure 1) with a different archaeological record and

research history, topography, geo-(morpho)logy and land-use. The

results show that WODAN is able to detect barrows and Celtic fields

in LiDAR data from the Midden-Limburg area, showing that the

workflow can adequately generalize to the new situation.

However, the performance of WODAN still has room for

improvement, especially when compared to the overlap between the

results and the reference datasets (Tables 6 and 7). This difference

between a human and computer in the ability to detect archaeological

objects in remotely sensed data, as shown by the difference between

the manual analysis and the results of WODAN, has been noted in

earlier research (Verschoof-van der Vaart et al., 2020) and can partly

be explained by the fact that a human interpreter, aside from relying

on a certain amount of prior experience, archaeological- and geologi-

cal knowledge, can observe the vicinity of potential objects and has

the opportunity to consult additional data sources, for example, aerial

imagery (Verschoof-van der Vaart et al., 2020). Contrary, WODAN

has access to a single data source, that is, LiDAR data. It is therefore

hardly surprising that it struggles with certain landscape elements,

such as sand dunes and modern field boundaries, that have a

F IGURE 10 Excerpt of LiDAR data, visualized with Local Relief
Model (Hesse, 2010), blended with a recent aerial photograph,
showing the location of potential Celtic field areas (green) and

settlement sites (black; source of the height model and aerial
photograph: Nationaal Georegister, 2021) [Colour figure can be
viewed at wileyonlinelibrary.com]
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comparable appearance in the LiDAR data as barrows and Celtic

fields, respectively.

4.1 | Performance and completeness

Based on the difference between human and computer performance,

the question arises what level of performance is acceptable from an

object detection tool (see Verschoof-van der Vaart et al., 2020; Cow-

ley et al., 2020). Although this is obviously dependent on the

(envisioned) users (see Opitz & Herrmann, 2018; Verschoof-van der

Vaart et al., 2020), the intended task of the tool and the incorporation

of the tool (and its results) within the wider archaeological research

framework are also of importance (see for instance Banaszek et al.,

2018; Cowley et al., 2020; Lambers et al., 2019). Related to this is the

question of the level of completeness—how accurately the results

reflect the extent of the archaeological objects—that is required. As

shown, WODAN is able to detect the majority of demarcated areas of

Celtic fields within the Midden-Limburg area but generally does not

detect the full extent, that is, all the plots within the Celtic field. The

same occurs with urnfields, where only several of all barrows within

the group are detected. This exclusion of nearby objects might have a

technical cause, related to the functioning of the RPN within the

Faster R-CNN architecture, for example, the stride or non-maximum

suppression (see Ren et al., 2017). Either way, the exclusion of these

objects means a lower level of completeness, which results in low(er)

performance when calculating metrics based on the number of objects

or the square metres of coverage, even though the method did point

to the location of archaeological objects. If automated detection is

used independently as the sole source of information, high levels of

performance (and completeness) are required, especially when land-

scape patterns, such as field systems or roads, are detected. On the

other hand, if the method is used to help target limited manual inspec-

tion of the data or is used in conjunction with a manual analysis, to

enhance the results, a certain degree of exclusion can be afforded.

4.2 | Combined human-computer strategies for
large-scale mapping

This research has shown the potential of automated detection in a

complementary, rather than a substitute role, to manual analysis. For

instance, WODAN detected additional archaeological objects that

were missed during the manual analysis (see Table 8). Furthermore,

when the northeastern part of the area was reexamined, based on the

results of the automated detection, even more potential archaeologi-

cal objects were discovered, overlooked during both the manual anal-

ysis and the automated detection (see for instance Section 3.4.2). This

shows that combining these two strategies for large-scale mapping

has an added benefit. Furthermore, the feasibility of combined

Human-Computer strategies becomes even more apparent when the

variability in human detection accuracy (Risbøl et al., 2013) is consid-

ered. This variability can lead to a multiplicity of interpretations

between different interpreters of the same data (Quintus et al., 2017).

Inevitably, manual analysis is biased towards the expectations, experi-

ence, knowledge and observational abilities of the interpreter(s), with

the risk of missing or dismissing objects (Halliday, 2013). Contrary, an

automated approach, which detects all objects with specific criteria,

can offset the aforementioned bias (Bennett et al., 2014), although

the pre-defined criteria of the automated detection also come with an

inherent bias (see below). Considering the fast run-time of WODAN,

it is even possible and efficient to run multiple automated detection

models that can detect different archaeological classes, or multiple

versions of the same model (see Verschoof-van der Vaart et al., 2020)

during the same time as the manual analysis. Besides, a certain degree

of involvement from an archaeological expert is and should remain

necessary, in the least to interpret the automated detection results, as

the goal of these methods is not to entirely replace the archaeological

expert or ‘automate archaeology’ (Traviglia et al., 2016).
Another benefit of these combined Human-Computer strategies

is that it deals with one of the caveats of current automated detection

methods: these tools can only detect objects similar to the pre-

defined target class(es) while other objects are ignored (Lambers et al.,

2019). Although automated detection can extend our knowledge on

known archaeological classes, it is unable to find potential new and/or

unique types of archaeology. This process might unintentionally rein-

force the dominance of the objects of interest in the archaeological

record, by vastly multiplying the number of examples, while further

marginalizing archaeological objects that are not detected (Nuninger

et al., 2020), especially when automated detection is the sole source

of information. For instance, the LiDAR data of the Midden-Limburg

area are littered with archaeology from many periods, including mod-

ern traces of conflict, for example, gun emplacements, tank traps and

trenches. These objects belong to a major defense line, the Maas-Rur-

Steilhang-Elmpter-Wald-Stellung that was constructed in the last part

of the Second World War to halt the allied advance into Germany

(van der Schriek & Beex, 2017). These traces are not detected by the

current model, at least not intentionally, and remain undocumented.

The detection of all archaeological objects of interest within an certain

area would require either many different models, a model detecting a

multitude of classes or a model that detects a more general class of

‘archaeological anomalies’. Recently, attempts at developing the latter

have been made (Guyot et al., 2021). However, questions remain how

applicable these models are in complex terrain, for example, the

Veluwe, where many objects of confusion are present, and how useful

such a catch-all category would be in terms of both archaeological

research and heritage management (see Trier et al., 2019).

4.3 | Incorporating automated detection into
archaeological practice

The incorporation of automated detection in the first step of the

archaeological prospection scheme, that is, the desk-based assess-

ment, seems logical. The results of automated detection can be reg-

arded as showing highlighted areas of interest—containing potential
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archaeological objects that require (field) verification. When used in

this way, the results are very comparable, in type and value, to archae-

ological predictive maps. These maps, used commonly in Dutch

archaeological practice (Lauwerier et al., 2017), are based on a quanti-

tative analysis and prior knowledge of the archaeological record and

give a change—low, middle-high or high—on the occurrence of archae-

ology within certain, often geomorphological zones (Rijksdienst voor

het Cultureel Erfgoed, 2021a). The results of automated detection

could be used to add further detail to these maps. When used in this

way, the level of competence and especially completeness of an auto-

mated detection tool does not have to be extremely high (also see

Opitz & Cowley, 2013) as the results are merely one of multiple con-

sulted data sources, that form the basis for subsequent fieldwork.

This research has shown that the employment of automated

detection can lead to both quantitative and qualitative knowledge

gain of the archaeological record of a certain region. Undeniably, the

ability to rapidly map (multiple classes of) archaeological objects in

large remote sensing datasets can radically transform archaeological

practice and has broadly positive implications for both research and

cultural heritage management (Gattiglia, 2015; Opitz &

Herrmann, 2018). Although we should not lose sight of the problems

surrounding this shift to a data-intensive approach to science

(Huggett, 2020b), from a research standpoint, it offers opportunities

for spatial analysis and landscape archaeology (Gillings et al., 2020).

Through the efficient detecting and mapping of the presence and

location of archaeological objects, it facilitates the investigating of

trends within the distribution and interrelationship of these objects in

the landscape, the emerging of large-scale patterns between different

types of objects and the structuring of the landscape in the past.

Understanding this spatial relation between archaeological objects

and their surroundings, that is, the landscape, lies at the core of land-

scape archaeology (Verhoeven, 2017). The possibility to effectively

investigate ‘Big’ datasets not only means that a phenomenon can be

investigated on a wider scale, but also that all available data can

be used, instead of a sample, which will let us see details we never

could when we were limited to smaller quantities (Gattiglia, 2015).

Such a knowledge base is fundamental to effective archaeological

research and cultural heritage management (Cowley &

Sigurdard�ottir, 2011). The obvious benefit for the latter is the possibil-

ity to rapidly evaluate a certain region. It can also highlight biases in

the existing archaeological record (see Risbøl, 2013), by adding infor-

mation about underrepresented areas, leading to more appropriate

conservation and heritage policy.

5 | CONCLUSION

This paper presents the results, efficiency gain and knowledge discov-

ery of employing a Deep Learning automated detection tool within

archaeological practice. The WODAN workflow (Verschoof-van der

Vaart & Lambers, 2019; Verschoof-van der Vaart et al., 2020) that has

been developed in one area of the Netherlands (the Veluwe) was used

to detect two classes of archaeology (barrows and Celtic fields) in the

Dutch Midden-Limburg area, which differs in archaeological record

and research history, topography, geo(morpho)logy and land-use from

the Veluwe. The results of the automated detection were compared

to an inventory of documented archaeological sites and a manual

analysis, conducted in the framework of this research, of the same

area. The results show that WODAN is able to detect barrows and

Celtic fields in LiDAR data from the Midden-Limburg area and can

therefore generalize to this new situation, while being about eighth

times faster than the manual analysis. Furthermore, using WODAN

led to both a quantitative and qualitative archaeological knowledge

gain, by mapping previously unknown potential archaeological objects

and by contributing to a more complete view (of the distribution) of

archaeological objects in the landscape. The latter can be used to

investigate patterns between these archaeological objects and/or the

landscape and the structuring of the landscape in the past. Moreover,

it offered insight into potential biases within the current archaeologi-

cal research practice. Future research will focus on improving the per-

formance of WODAN, for instance by combining citizen science and

automated detection (Lambers et al., 2019).

This research has shown the potential of combining Human-

Computer mapping strategies—with automated detection in a comple-

mentary, rather than a substitute role, to manual analysis—for the effi-

cient and effective analysis of remotely sensed datasets of large-scale,

complex landscapes. Within current archaeological practice the imple-

mentation of automated detection within desk-based assessments

seems logical. The results of these methods offer opportunities to

enhance and refine existing archaeological predictive maps, which are

commonly used in Dutch archaeological practice.
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