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Abstract

We consider the two-phase design optimization problem for a linear scalar second-
order elliptic equation with complex-valued material parameters modeling dielectric
and conductive properties in time-harmonic electrostatics as they arise, e.g., in sensor
design optimization. Owing to the complex-valued material parameters, application
of well-established topology optimization theory is not directly possible. We discuss
obstacles and limitations of the relaxation via homogenization method in this context
and derive a gradient descent method based on restriction of admissible designs to
simple laminates. Numerical simulations showcase the functioning of the method for
optimizing the design of an electric field sensor.

Keywords Homogenization - Relaxation - Sensor optimization - Time-harmonic
electrostatics - Topology optimization
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1 Introduction

In the early stage of design, when all aspects such as sizing, shape, and topology of a
structure are of general interest and can significantly affect its performance, topology
optimization approaches are popular for design optimization [1, 2]. If the design to
be optimized is that of a sensor for electromagnetic waves, e.g., its optimal position,
shape, and size, the underlying field equations are those describing electromagnetic
wave propagation, which, when considered in the time-harmonic setting, are complex-
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valued, and so are the material parameters. In contrast to well-known design problems
based on materials with real-valued material parameters, the case of materials with
complex-valued material parameters seems to have remained undeveloped thus far.

In general, topology optimization problems can be formulated as two-phase opti-
mization problems in which a fixed proportion of two different materials (for example,
air and copper) is distributed in a given domain in such a way that a given objective
functional (for example, the energy captured by the sensor made of copper) is maxi-
mized. The objective functional depends on the solution of an underlying state equation
modeling the physics in the considered domain (for example the equations of elec-
trostatics). The so-called O—1-formulation of the optimization problem determines for
every point in the physical design domain if there is material (1) or not (0) or, alter-
natively, if there is material A (1) or B (0). In absence of any additional constraints
such as perimeter constraints limiting the perimeter of the derived shape, a minimal
length scale, or a maximum number of components, optimization problems in this for-
mulation usually do not admit solutions in the set of desired admissible O—1-designs
[3]. For example, a structure with many tiny inclusions of one material often has bet-
ter properties than a structure with few larger inclusions of the same total volume.
A proposed design can therefore be improved by making further variations of the
phase arrangement, i.e., an increasingly finer mixture of the two materials leading to a
composite material. This illustrates that optimal design problems in 0—1-formulation
are not inherently well posed and in general do not admit classical design solutions
(0—1-solutions) [3].

There are different options to overcome this issue leading to a well-posed opti-
mization problem, which involve the introduction of a material density instead of
dealing with discrete values 0 and 1 (see, for example, [4]). In so-called relaxation
approaches, which are considered in what follows, the set of admissible designs in
the 0—1-formulation, containing the two pure materials A and B, is extended (relaxed)
to an appropriate closure of the space of admissible designs, allowing for the above-
mentioned composite materials consisting of materials A and B with their effective
material properties as admissible design materials.

In the context of physics based on scalar second-order elliptic equations with
real-valued material parameters, the theory of homogenization and, particularly,
H-convergence [5] forms the basis for this relaxation procedure, as it allows to char-
acterize the composite materials obtained by the closure of the space of admissible
designs. This enables the derivation of necessary optimality conditions, once the well-
posed relaxed problem setting is derived. If necessary, a penalization process to regain
a 0—1-formulation can be applied once the optimal design in the relaxed admissible
set is found. In [3], Allaire gives a comprehensive exposition of the theory of shape
optimization via homogenization for real-valued material parameters.

The present paper extends this theory to design optimization in the context of
single-frequency time-harmonic electromagnetic wave propagation. In what follows,
we show that the generic optimal sensor shape optimization problem can in fact be
modeled based on a scalar second-order elliptic equation expressing electrostatics
in the frequency domain. However, the mathematical formulation of the described
problem as an optimal design problem in O—1-formulation reveals that the theory of
shape optimization via homogenization must be extended to allow for complex-valued
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material parameters. We discuss how this can be done based on the assumption that the
closure of the space of admissible designs is characterized in an analogous way as in
the real-valued case and we point to the open mathematical questions in this context.
Moreover, it turns out that, for complex-valued material parameters, the derivation of
optimality criteria following the relaxation procedure is not straightforward and we
overcome this problem using Wirtinger calculus. As a result, under certain restrictions
and assumptions, discussed and outlined below, we derive an optimization method
successfully optimizing the design of the electromagnetic sensor, which we illustrate
by means of a numerical example.

This article is organized as follows. In Sect. 2, we derive a formulation of the under-
lying partial differential equation modeling time-harmonic electrostatics in dielectric
and conductive media, in which the design materials are completely represented by
(complex-valued) material parameters. Based on this, Sect. 3 contains the formulation
of the optimal design problem of shape optimization with complex-valued material
parameters. In Sect. 4, we aim for a relaxation approach as described by Allaire in [3]
and point out the obstacles and limitations when dealing with complex-valued mate-
rial parameters. Making certain assumptions on the relaxed admissible design set, we
then derive the Gateaux differential of the objective functional and a gradient descent
method based on the restriction of the admissible design set to simple laminates. Sec-
tion5 demonstrates the functionality of this approach. A short conclusion is given in
Sect. 6.

2 Electrostatics in materials with both dielectric and conductive
properties

In order to state the problem in a way amenable to optimization via homogenization,
we require a formulation such that the design materials are completely represented in
terms of material parameters in the state equation. Therefore, we begin by deriving a
formulation of time-harmonic electrostatics in a material where all effects (including
conduction) are condensed in a single complex material parameter, which may be
useful in other contexts as well.

Following the argumentation in [6], the macroscopic Gauf} law is given by

div(eo€) = pext + pc + Pb, (D

where & is the (real-valued) electric field, € is the electric constant, py is the charge
density arising from charge carriers bound in the material, and p. and pex; are densities
contributed by free charge carriers of the material and charge carriers introduced into
the system from external sources, respectively. In the context of what follows, a typical
example for an external source is the source to be detected by the sensor.

In Sects.2.1 and 2.2, we briefly show how to encode the effect of p, and p. in a
combined (frequency-dependent) material parameter in front of £ in Eq. (1) in the
time-harmonic setting.
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2.1 Dielectric effects

An external electric field applied to a dielectric material shifts bound charges on the
atomic or molecular scale, forming electric dipoles. Polarization P, the average dipole
charge density, takes these effects into account on the macroscopic level via

pp = —divP.

Assuming homogeneous isotropic linear dielectric materials, polarization is propor-
tional to the electric field with factor of proportionality x., which is known as the
electrical susceptibility of the material. Taking into account that the response of the
medium to the applied electric field is not instantaneous, this leads to

t
P(1) =€ / Xe(t —tHEW) dr',

—00

or, in the frequency domain, i.e., £ = Re{Ee !} and P = Re{Pe !} with
complex-valued spatial parts of the potential, E, and polarization, P, respectively,
to

P =¢pxe(w)E.
Accordingly, Eq. (1) becomes
div(eo(1 + xe(@)E) = pext + pe- 2

The function 1 + x.(w) describing the properties of the material due to bound charges
is often subsumed as relative electric permittivity €, (w) := 1 4+ xe(w), so that (2) is
typically written as

div(eper (@) E) = Pext + Pc- 3)

In general, €, is complex-valued, i.e., €, = 61/3 + ieg , accounting for refraction (real
part) and absorption (imaginary part) of the propagating electromagnetic wave in the
dielectric material due to polarization effects [7]. In order to examine the behavior
of the material parameter €, more concretely, a simplified model of the motion of
bound electrons in the presence of an applied field (see for example [6—8]) can be
considered. Considering harmonically oscillating electric fields with frequency o in
materials with bound electrons, it is possible to deduce from this simple model the
relative permittivity as

“p
@) =1+ —5———
wy — w° — 1wy
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with wp = ]Zg;lz, the so-called plasma frequency, wg the resonance frequency and y
the collision rate of the material. In the definition of wy,, the quantities Ny, e and m are
the volume density of electrons, electric charge and mass of an electron, respectively.

This model describing the relative permittivity is usually called Lorentz-oscillator

model (cf. [6]) or Lorentz dielectric (cf. [7]).

2.2 Conduction effects
Free charge carriers of conductive materials subjected to an external electric field

contribute to the free charge density via pc. The time-varying charge density pc(¢) is
the source for a related current 7. Considering the associated conservation equation

d .
gy Pe®) = —divJe(n)

leads to
(—iw)p. = —div J.

in the frequency domain (with obvious notations for the time-harmonic quantities).
Applying Ohm’s law, J;. = o E, in the deduced equation gives

pe = div(—o (@) E) @)
1w

with complex-valued frequency-dependent conductivity o (w).
Considering again harmonic oscillating fields with frequency w, it is possible to
deduce the conductivity as

ou?
o(w) = .
y —iw
Nbe2

with plasma frequency wp = 2 as before, which is known as the Drude model [7].
Substituting (4) in (3), we obtain Gauf’s law in general media with bound and
unbound charge carriers,

1
divieo + €oxe(®) = =0 (W) E) = pext- (&)

Combining further the polarization and conductive effects of materials in one gen-
eralized complex-valued material parameter ¢ = €’ + i€”, called the total effective
permittivity [7],

1
€(w) = €0 + € xe(w) — go(w),
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leads to
div(e(w)E) = pexi. (6)

Equations (5) and (6) describe the propagation of the electric field in general media
with bound and unbound charge carriers. The real part of the total effective permittivity
leads to refraction, the imaginary part to absorption of the electromagnetic wave in
the material. As described above, the material parameter € combines properties of the
material due to bound and unbound charge carriers in the material. For frequencies
o # 0, the real and imaginary parts account for refraction and absorption of the
electromagnetic waves, but since both, real and imaginary part, generally consist of
the two components arising from bound and unbound charge carriers they do not allow
a direct interpretation as dielectric properties or conductivity of the material. A direct
connection between conductivity of the material and the imaginary part of the material
parameter can only be established for the low-frequency limit w — O.

2.3 Equations of electrostatics in general media

In what follows, the time-harmonic case for low frequencies w is considered and
inductive effects are neglected in the model. Thus, the electric field (in a simply
connected domain) can be expressed as the gradient of a scalar electric potential V,

E(x)=-VV(x).

Together with Eq. (6), this leads to the following complex-valued single equation to
be solved for V for given frequency w:

—div(e(@)VV (X)) = pext- (N

As described above, the parameter € summarizes the contributions due to bound and
unbound charge carriers in the material. Any external source enters the equation via
Pext- These equations of electrostatics in general media represent the state equation and
provide the basis for consideration of the described optimal design problem as a two-
phase optimization problem in the context of the homogenization method. The effects
of dielectric and conductive properties of the materials are included by a complex-
valued material constant without any additional boundary conditions.

3 The shape optimization problem

Based on the derived formulation of the underlying partial differential Eq. (7) modeling
the physics, the problem formulation with real-valued material parameters presented
in [3] is adapted. In what follows, the well-known case with material parameters in R
is termed real-valued parameter case, the case relevant here with material parameters
in C as complex-valued parameter case. In the design problem, the optimal distribution
of two isotropic materials A and B of fixed volume in a given open bounded Lipschitz
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domain € C R¥ is sought, such that a given criterion, which depends on the solution
of the deduced underlying state equation in €2, is minimized, i.e., the distribution of
the two materials A and B with constant isotropic material parameters €, (w) = o =
ar +iaj and eg(w) = B = Br +iBi, o, B € Cin Q for fixed (low) frequency w is to
be found. We assume «;, B; > 0 and «j, B; > 0 in order to set up a physically natural
problem (avoiding the need for metamaterials).

The characteristic function

) 1 if phase A is present at point x,
X) =
X 0 if phase B is present at point x,

defines the part of Q2 occupied by phase A and the overall material parameter is
accordingly formulated as

ay =ax+ B0 - x).

In view of (7), the state equation of the optimization problem models the electric
potential u, in the domain 2 and is given by

{ —div(ay (x)Vu, (x)) = f(x), x € Q, )
uy(x) =0, x € 092,
where u,, is the unknown complex-valued potential, f a given source term in £2, scalar
and independent of y, and the materials A and B are perfectly electrically bonding.
Provided that the source term f belongs to H~'(2), the dual space of the Sobolev
space HO1 (R2) of square-integrable functions with square-integrable weak derivatives
and vanishing boundary trace, the standard weak form of (8) admits a unique (weak)
solution u, in H(} (€2). Itis assumed further that the amount of material A is limited by
a prescribed volume V,, of A, 0 < V,, < |2|, where |2| denotes the measure (volume)
of 2. An admissible design is therefore a function x such that

x € L=(2; {0, 1}) and /Qx(x) dx = V,.
Denoting the set of admissible configurations by U,g,
Ua={re @] [ xwa =}, ©)
the objective functional is universally formulated as

JO0 = /Q X ()8 (X, 1y (x), 1ty (X)) + (1 — x (X)) gp(x, uy (x), ity (x)) dx,
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where the overbar denotes complex conjugation and g, and gg satisfy certain condi-
tions, namely Carathéodory conditions and growth conditions:

8a,p(x, A) is measurable in x for each fixed A € C,
8a,p(x, A) is continuous in A for a.e. x € Q,
|8, 8(x, A)| < k(x) + CIA|™ withk € L'(Q),1<m< %

Careful consideration of the proof of continuity of Nemytskii operators in [9], using
Lebesgue’s dominated convergence theorem, which is formulated in C in [10], con-
firms that the properties of g4, g described in [3] as required in the real-valued parameter
case are required in the same way for the complex-valued parameter case to ensure
the well posedness of the subsequently derived relaxed optimization problem. Fur-
thermore, it has to be noted that g, and gg do not only depend on the solution u, of
the state equation but also on its complex conjugate u, . As the objective functional
J is commonly a real-valued function depending on the complex-valued u, it is also
implicitly dependent on i. For example, the objective functional considered in the
application in Sect.5,

J(x) =/Qx(x)|ux(x)l2dx,

a proxy for the energy captured at a sensor made of material A, must be understood
as follows: the function gg is interpreted depending on x, u, and additionally on i
with

8o (X, u(x)) = [uy (X)* = u(x)it(x) = go(x, tty (x), ity (x)).

Following the general procedure of eliminating constraints in the calculus of vari-
ations [11], a Lagrange multiplier / € R is introduced in the objective functional
instead of enforcing the volume constraint fQ x (x)dx = V, in the set of admissible
designs. For any value of [, there is a corresponding volume constraint such that the
optimization problems are equivalent. Even if the converse statement is generally not
clear, the optimization routine can be coupled with a bisection method to update the
Lagrange multiplier to ensure the compliance with the volume constraint in practice
[3]. The complete formulation of the optimal design problem is then stated as follows.
Find x such that

x = arginf J(x), (10a)
X €Uud

where the real-valued objective functional J is defined by

J(x) =Ax(x)ga(x,ux(x),ﬁx(x))

+(1 = x(x))gp(x, uy(x), iy (x))dx + I/QG(x)dx (10b)
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and u, is the (weak) solution of the state equation

{—div(ax (D)Vuy (x) = f(x), x € Q, (10¢)

uy(x) =0, x € 092.

4 Relaxation via homogenization for complex-valued material
parameters

Having the model formulation at hand, we now turn to the problem of finding the
optimal material distribution expressed in terms of the characteristic function x. Our
approach is based on relaxation via homogenization, the general concept of which we
briefly summarize first (e.g., see the monograph [3]).

Considering the optimization problem (10) for material parameters in R or C,
minimizing sequences of designs described by characteristic functions x may converge
to non-classical designs, i.e., the described optimization problem is ill-posed and does
not admit a solution in the set of admissible designs (9). To overcome this problem,
the idea of relaxation by homogenization is to enlarge the set of admissible designs by
allowing for composite materials with their effective macroscopic material parameters
deduced by the homogenization process. The mathematical principle of this process
is to study the behavior of admissible minimizing sequences and to define so-called
generalized or composite admissible designs that include their possible limits. By
means of the theory of H-convergence (see [12]), the pairs (6, A*) are identified as
composite admissible designs relaxing the strict partition induced by x. The density
6 € L°°(%2; [0, 1]) describes the local volume ratio between the two phases and A* is
the homogenized tensor of a two-phase composite material obtained by mixing phases
A and B in proportions 6 and 1 — 6 with a microstructure defined by the minimizing
sequence. In order to proceed with deriving optimality criteria, it is necessary to
characterize the set of all possible homogenized tensors associated with the density 6,
which is denoted by Gy and is defined as the closure of {A, B} under H-convergence
(or G-convergence, which corresponds to H-convergence for symmetric operators).

In general, there are only few examples for which this G-closure problem is solved
explicitly. In the case of real-valued material parameters and a scalar second-order
elliptic equation, an explicit characterization of Gy and, thus, of the set of generalized
designs is available (see for example [13]). In 2d, the optimal geometries, i.e., the com-
posite materials with effective tensors on the boundary of Gy, are those of sequential
laminates, see the monograph [14]. The derivation of optimality criteria from the cor-
responding directional derivative of the relaxed objective functional, which is based
on the density 6 instead of the characteristic function y, in this case reveals that it is
possible to restrict the class of tensors of interest for the optimization to that of rank-1
laminates, which are explicitly characterized by the density 6 and lamination direc-
tion e (see [3] for a comprehensive summary of the relevant aspects). In what follows,
this fact is referred to as optimality of simple laminates. An optimization routine via
optimality criteria as well as a gradient descent method can then be formulated based
on the design variables 6 and e.
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In the case of complex-valued material parameters, the general characterization of
the G-closure is unknown. Nevertheless, some partial results are available and assum-
ing similar results as in the real-valued case still hold allows to derive a corresponding
optimization routine.

4.1 Relaxed admissible design set, adapted problem formulation

The starting point for an application to the complex-valued parameter case along
the lines of the argumentation above would be an explicit characterization of the set
of admissible homogenized tensors, i.e., the set of composite designs, which boils
down to solving the G-closure problem, i.e., to characterize the set Gy in terms of
coupled bounds. This is linked with characterization of the micro-geometries, which
correspond to the optimal bounds of Gy for complex-valued material parameters. In
[15], it is argued that these microstructures are most probably the best candidates for
use in structural design. As stated above, this problem has not been comprehensively
solved in general but partial results exist.

In [16], it is pointed out that the G-closure problem for complex conductivity is
similar to the problem of coupled bounds for two conductivities with the difference
that the initial equations are coupled. Furthermore, it is stated that the problem is very
similar to the problem addressed in [17, 18] and a derivation can most probably be
made along the lines of this work. Apart from improvement of aforementioned bounds,
to the best of the authors’ knowledge, no one has obtained an explicit characterization
of the G-closure of two isotropic phases «, 8 € C — even in 2d. It seems that, in 2d,
the optimal geometries are those of sequential laminates, which are created through
successive lamination, i.e., by adding layers of the pure phases, as these solve the
deeper problem of completely characterizing all possible matrix-valued conductivity
functions [19], but far less is known in 3d [20].

In summary, it is unknown in general whether the essential conclusion of optimality
of simple laminates can be applied in the case of complex-valued material parameters.
Nevertheless, we proceed by assuming the existence of a relaxed admissible design
set of composite designs

CD:=CD¢ = {(9, A%y € L®(; [0, 11 x CV*N) | A*(x) in Gy ) ace. in Q} ,

together with an appropriate relaxed objective functional J* := J{ (6, A*), which
make the relaxed problem well posed and enable application of the direct method of
the calculus of variations in order to derive optimality criteria. In the real-valued case,
Gp and the optimality of simple laminates are derived from the sequential laminates
as optimal microstructures [3]. Taking into account the parallel above motivates us to
assume simple rank-1 laminates as the materials of interest even in the complex-valued
material parameter case.

In three dimensions, a rank-1 laminate consisting of two isotropic materials with
material parameters «, 8 € C in proportion # and 1 — 6 with lamination direction
e = (1,0,0)7 is described by eigenvalues equal to the harmonic and arithmetic mean
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(see [14]):
Ay 00
A*=102xr 0], (11a)
0 0 Af
(o 1—0\"! N
with A, = ——{-T and Ay = 6o + (1 — 0)B. (11b)
o

Simple laminates with arbitrary lamination direction e are accordingly described
by rotation angles ¢, ¥ and density 6. Restriction of the design set to simple laminates
and formulation of the derived directional derivative with regard to the admissible
increments 86, §¢ and 81 forms the basis for application of a gradient descent method
below.

The adapted problem formulation then reads as follows: Find (9, A*) such that

(6, A*) = argmin J*(0, A¥), (12a)
0,A*)eCD

J*O, A") = /QG(X)ga(x, u(x), u(x)) + (1 —6(x)gpx, u(x), u(x))dx

—i—l/ 0(x)dx, (12b)
Q

where u is the (weak) solution of

(12¢)

—div(A*(x)Vu(x)) = f(x), x € Q,
u(x) =0, x € 092,

where the density 6 and homogenized tensor A* are the design variables, the relaxed
objective functional depends on the density 6 and the state equation is the so-called
homogenized problem involving the homogenized tensor A*. Based on this relaxed
problem formulation, optimality criteria are now to be derived. For this purpose, we
compute the directional derivative of the objective functional next.

4.2 Gateaux differential of the objective functional

Computation of the directional derivative is not straightforward for objective func-
tionals which are not only dependent on a complex variable z but also explicitly or
implicitly dependent on its complex conjugate z. Objective functionals of this type
occur frequently in the context of signal processing (see for example [21]).

In general, the derivative with respect to a complex-valued variable cannot be evalu-
ated directly when the function depends on the variable’s conjugate, these functions are
called non-analytic functions and are not complex differentiable [22]. One possibility
to overcome this problem is to define the formal partial derivatives, first introduced by
W. Wirtinger in [23], and to treat the variable and its complex conjugate as indepen-
dent, each considered to be constant with respect to the other. A compact and clearly
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arranged summary of the important aspects concerning differentials of real-valued
functions having complex-valued arguments can be found in [24]. Besides the valid-
ity of common real-valued differentiation rules for sum, product, and composition of
functions, a very useful property of the Wirtinger derivative is

which allows to treat z as constant when differentiating with respect to z and vice
versa.

On the basis of this formal definition, one obtains for any real-valued function f
with complex-valued argument z the differential d f as

df=21Re{8f(Z) }_211{{”(1) } (13)
0z d

Z

where Re{ - } denotes the real part. Based on this, it is possible to derive the directional
derivative of the objective functional. This includes introduction of the appropriately
adapted adjoint problem in order to eliminate the dependence of the derivative on the
state increment.

Initially, the objective functional and thus the corresponding directional derivative
is, besides the dependence on the increments of the design variables §6 and §A*,
still dependent on the state increment u and Su. Introduction of the corresponding
adjoint problem enables elimination of this dependency of the directional derivative
on Su, respectively, du. This result can be achieved by using the formal Lagrange
technique, as is commonly done in optimal control of partial differential equations
[11]. The necessary optimality conditions are then derived by formally equating to
zero the derivatives with respect to the optimization variables of the appropriately
formulated Lagrangian in the complex case, see for example [25-27] for Lagrange
functions with complex-valued state variables. Nevertheless, by proper definition of
the adjoint problem and application of the Wirtinger calculus, determination of the
Gateaux differential of the objective functional follows the argumentation of [3] in the
real-valued parameter setting. It turns out (see Appendix) that the adjoint problem is
given by

{ —div(A* ())V p(x)) = 0(x) %2 98 e (x,u, i) + (1= 6(x)) 3/3 (x,u,u), x € Q,
px) =0, x € 092,
(14)

where A*H is the conjugate transpose (Hermitian transpose) of A* and the deriva-
d‘g" 2= (x, u, u) must be understood as derivatives in the sense
of ertmger calculus by dlfferentlatmg with respect to the complex conjugate of u,
treating u as constant.
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The conditions

3gaﬁ

(x, u, i) is measurable in x for each fixed u, u € C,
dga B

(x, u, u) is continuous in u, u for each ﬁxed x € Q,
|3g‘*ﬂ(x D) <K x) + C'la" for 1 < m < 2 with k' (x) € LI(Q), ¢ > 25,

ensure differentiability of the objective functional as well as that the source term of
the adjoint Eq. (14) is in H ().

The objective functional J* (8, A*) is Gateaux differentiable on the space of admis-
sible composite designs and the directional derivative is finally given by

8J*(0, A%) =/ 86 (x) (8o (x, u(x), u(x)) +1 — gp(x, u(x), i(x))) dx
Q

—2Re {/ (8A*(x)Vu(x), Vp(x)) dx} .
Q

Here, §6 and § A* are admissible increments in C D, u is the (weak) solution of the state
Eq. (12c¢) and p is the (weak) solution of the adjoint state Eq. (14). Moreover, (-, -)
denotes the standard inner product of C¥. For the full derivation of the formulation,
see Appendix. We conclude this Section with formulating an optimization algorithm
based on the gradient method.

4.3 Optimization algorithm based on simple laminates

The design parameters for an optimization routine based on the gradient method are
given by the density 6 and the lamination direction e of the composite, which cor-
responds to the two rotation angles ¢ and ¥ of the rank-1 laminate tensor in three
dimensions, see (11). An optimal tensor is thus given by

Ay 00
A*O.9.9) = RiWR2(9) | 0 2F 0 | By (@R ().
0 0 Af
with rotation matrices
cos(y) —sin(yr) O cos(¢) O sin(e)
Ri(¢) = | sin(yy) cos(yr) O and Rx(p) = 0 1 0
0 0 1 —sin(¢) 0 cos(p)

In what follows, we use the so-called Z—Y—X Euler angles (see [28] for details), where
the position of a body-fixed frame B in space is determined by the three angles ¥, 0
and ¢g. Starting with the frame B, which coincides with the spatial frame with axes
x, y and z, B is first rotated about z by the angle {g which transforms the frame to
x', y" and 7/ = z. In a next step, B is rotated about y’ by the angle 6g providing x”,
y” =y’ and 7" and, in a last step, about x” by the angle g, leading to x"”" = x", y"”
and z”. In order to avoid confusion and since only two rotation angles are sufficient to
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7  Page 14 of 25 U. Weiss, M. A. Peter

describe the lamination direction e, the two angles describing the lamination direction
are defined by ¥ = g and ¢ = 0.

The directional derivative 8 J* of the objective functional J*(0, ¥, ) with respect
to an admissible increment (66, §y, §¢) is computed as

0A*
8O, ¥, ) = / ( 2 ()Vu(x) - VP(X)) S (x)dx
o \ Y

+ / <3A (x)w(x>-Vp(x>) 5(x) dx
o\ d¢p

+ / 0(x)80 dx
Q

with

*

a
Q(x) = ga(x, u(x)) — gplx, u(x)) +1 — (

29 (X)VM(X)~VP(X))- 5)

Thus, an optimization algorithm based on the gradient method for the iterative approx-
imation of the solution to the given minimization problem is defined as follows.

Optimization algorithm

Initialization: Initialize 6, 1o, and ¢y and compute Ag.

(For simplicity, choose constant 8y and constant angles ¥ and ¢y.)
Compute ug and pg as weak solutions of (12c) and (14).

Compute J (6y, Yo, ¢0)-

Iteration for £ > 0 until convergence:
Set J (Ok+1, Yi+1, 9k+1) = J Ok, Vi, @i)-

Until J (Ok41, Vi1, @k+1) < J G, Vi, gr):
Adjust stepsize t.

Until volume constraint fulfilled:
Adjust [, via bisection method.
Update parameters as

*

DAY
Yir1 = Yk — i m Ok, Vi, o) Vug - Vi |,

*

dAY
Pk+1 = Yk — Ik
dp

Or+1 = max(0, min(1, 6 — 1 Oy)),

Ok, Vi, i) Vuy - Vpk) ,

with Qy defined by (15) with corresponding input values

lk, Az, Uk and Pk-
Compute A} 41 and ugyy and pr41 as weak solutions of (12¢) and (14)
with design parameters 641, @x+1 and Vi 1.

Compute J Ok+1, Yi+1, Pet1)-
Update k to k + 1.
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In order to ensure the compliance with the volume constraint, the algorithm includes
adaptation of the Lagrange multiplier performed by the inner loop adjusting /; for every
step size ;. Following the argumentation of Allaire in [3], the bisection method is used
since the volume of phase A is a non-increasing function of /.

As result of this optimization algorithm, parameters of simple laminates consisting
of phases A and B in each material point, i.e., the ratio of both phases 6 and the direction
of the laminate layers described by the two angles v and ¢, are provided. In order to
obtain an optimal 0—1 design consisting of only pure phases A and B, the process can
be combined with a penalization process that penalizes local mixtures of two materials
(see [3, Chap. 5]). However, in the examples considered in the application below, the
method already converges to a O—1 design even without this penalization so that the
algorithm output provides the information of the shape and position of the optimal
sensor in terms of spatial points in which 6 ~ 1.

The described optimization method based on assumptions on existence of a relaxed
design set and restriction of the design set to simple laminates is validated by a com-
parison to known results for the (real-valued) so-called worst conductor model next
and then successfully applied to the question of optimizing the design of a capacitive
sensor in connection with electromagnetic emission during fracture of brittle dielectric
materials.

5 Numerical examples

In what follows, the method is tested and validated in the sense that its results are shown
to tend to published ones for a well-known real-valued example as the imaginary part of
one material constant approaches zero. Moreover, results for an optimal sensor design
problem are presented showcasing the functioning of the method. For both exam-
ples, the gradient method for complex-valued material parameters is implemented in
MATLAB, while the numerical approximation of the state u; and adjoint state py is
implemented within the finite element method software COMSOL Multiphysics®.

5.1 Validation of the implemented method

The implementation and functionality of the presented method with complex-valued
material parameters is validated by application to the so-called worst conductor model,
for which results can be found e.g., in [3, Chap. 5.1] for the two-dimensional case. In
standard formulation, this self-adjoint optimization problem seeks the worst conduct-
ing/best isolating design of the two phases A and B with equal volume fractions of
50% and real-valued material parameters subjected to a uniform source term. In the
published results we compare to, « = 1 and 8 = 2 are chosen on a square domain
Q=(0,1)%

We rewrite the formulation in [3, Chap. 5.1] in order to address the problem with
material parameters taking values in R or C in the same way. For given o = oy + iy
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Fig. 1 Result of the optimization routine after 200 iteration steps for «; = 0.001. Left: Density 6. Right:
Difference to the result for «; = 0, i.e., [0 — 0|, where 6 is the result for o; = 0

and 8 = B; +1B; with oy, i, Br, Bi € R, we seek to minimize

1
min  J*(@, A*) = min —f —(u+ﬁ)dx+l/ 0(x)dx,  (16)
(0,A%)eCD (0.A"eCD  Jq 2 Q

subject to u being the solution of

ux) =0, x € 0Q2. a7

{—div(A*(x)Vu(x)) =1, xeQ,

In order to validate our method and implementation, we consider a sequence of
optimization problems with 8 = 2 and « = 1 + io; with decreasing imaginary part,
ie, o = 0.1, ¢ = 0.01 and o; = 0.001, and compare the results to those of the
published results for o; = 0 in order to analyze the behavior of the design results as
the problem approaches the purely real-valued case.

The optimization routine is initialized with constant density # = 0.5 and con-
stant lamination direction e = (1,0)”. The use of quadratic Lagrange elements on
a triangular mesh resulting in 12 765 DOF proved to be sufficient. In contrast to the
optimization method based on optimality conditions conducted in [3], where 50 iter-
ation steps are sufficient to obtain a converged value of the objective functional, the
gradient method required 200 steps.

Figure 1 shows the optimized design in terms of the design parameter 6 for ¢ =
1 + 0.001i (left) and the difference to the result for @ = 1, i.e., |0 — 6y|, where 6 is
the result for « = 1. The optimized design looks virtually identical to that given by
[3, Chap. 5.1], which validates our implementation in this sense.

Figure 2 compares designs 6 to the real-valued result 6y for decreasing imaginary
parts «; of the material parameter, i.e., it shows the L%-Norm of the difference of
the optimized designs to 6p. For successively smaller imaginary parts, the optimized
designs converge to the design for the real-valued case, i.e., & = 0.

On the basis of this validation, the method is now applied to the problem of opti-
mizing the design of an electromagnetic sensor.
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Fig. 2 L2-Norm of the difference to the real-valued case for simulations with different imaginary parts of
the material parameter o

Fig.3 Geometric arrangement
of the model. Domain 2
(sphere) with single-edge
notched specimen in the middle
and grounded sensor part to the
left of the specimen. The
optimization domain, where the
measuring sensor part is to be
placed, (£21) is shown in blue

5.2 Application to optimal sensor design

The application example presented in what follows is based on an experiment designed
to investigate electromagnetic emission during mode-I fracture of brittle dielectric
materials in three-point bending tests of single-edge notched specimen (see [29] for
further details). In the original experimental setup, the geometric arrangement of which
is shown in Fig. 3 neglecting the universal testing machine exerting a vertical force on
the top surface of the specimen, the electric potential emerging during fracture of the
specimen is measured by a capacitive sensor which consists of two copper plates: one
plate (the left one in Fig. 3) is grounded while the other plate (the right one, which is
to be designed) is attached to a circuit measuring the occurring electric potential. The
presented investigation is inspired by the question of optimized position and shape
of the measuring non-grounded sensor part. Evaluation of the experiments show a
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dipole behavior of the emitting source [29], which can be modeled by oppositely
applied charge densities on two hypothetical crack surfaces in the specimen. For a
given source on the two hypothetical crack surfaces, the aim is to place a sensor of
material A in the given subdomain £2; (shown in blue in Fig. 3) in such a way that the
maximum energy in the sensor is captured at the dominant emitted frequency.

The parameter describing the material properties derived in Sect. 2.3 represents a
joint parameter of electric permittivity and conductivity for given frequency w # O.
Hence, in what follows, the two materials A and B with material parameters o and 8
are distinguished phenomenologically in terms of their ability to absorb the electric
field, which is reflected in different imaginary parts of the material parameter. This
approach is based on the assumption that a sensor made of material A (e.g., copper) has
significantly stronger capability for absorption compared to the surrounding material
B (e.g., air).

The aim is the solution to the optimization problem searching for the sensor design
maximizing the energy measured at a sensor built of material A within the subdomain
21. The following choice of objective functional serves as a proxy for the captured
(absorbed) energy. We aim to minimize

J¥@,A") = min —/ G(x)(u(x)ﬁ(x))dx—i—l/ 0(x)dx
©.4mecp g,

min
0,A*)eCD Q4

on a subdomain €21 subject to the electric potential u satisfying the complex-valued
state equation

—div(A*(x)Vu(x)) = F, x € 2,
ulx) =0, x € 0Q2.

The vanishing Dirichlet boundary conditions model a grounded encasing at the bound-
ary of the domain or an attenuated far field far away from the region of interest.

To showcase the functioning of the method, material parameters « = 1 + 24i,
B = 1+ 1i and a volume constraint of 20% are chosen, the material parameter in
Q2 equals B = 1 + 1i and the source is given with strength of 100 and —100 on the
two hypothetical crack surfaces, respectively. Since the study is focused on qualitative
results, no units are given here and in what follows.

In order to reduce computational cost, the domain €2 is numerically truncated by a
so-called infinite element domain 2j.g, Which surrounds the design area of interest.
This approach has proven effective for the restriction of the model to parts of the
geometry which contain necessary details. When using the infinite element domain,
there must not be changes of material parameters at the boundary adjoining the infinite
element domain. For this reason, a material buffer zone 2y, is introduced in the model
in which no optimization takes place. Both Qj.q and €2}, are occupied by phase B,
their geometric arrangement is illustrated in Fig. 4. In what follows, reference to an
“optimal design” is always reference to the improved design after the application of
the optimization routine.
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Fig.4 Geometric arrangement of the model illustrated in z—x-cut-plane. Left: infinite element domain Qeq
(blue). Right: material buffer zone 2, (blue)
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Fig.5 Development of the value of the objective functional over 120 steps of the optimization routine

Numerical approximation of the state u; and adjoint state py is performed using the
finite element method on a triangular mesh with quadratic Lagrange elements resulting
in 76 000 DOF, initialized with constant density & = 0.2 and constant lamination
direction e = (1,0, 0)7. Figures 5, 6 and 7 illustrate the progress of the gradient
method for the first 120 steps of the described optimization problem in the area of
interest without infinite element domain.

The plot of the objective functional in Fig. 5 shows a significant improvement of
the objective functional with converging behavior. The major part of the optimization
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Cut-plane where 6 is plotted for the individual steps
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Fig.6 Progress of the gradient method. Density 6 at initialization (k = 0) and after stepsk = l and k = 5
in different cut-planes of €1

takes place approximately within the first 60 steps of the algorithm, which is further
supported by Figs. 6 and 7; after 60 steps of the gradient method, a design has emerged,
which consists mostly of a 0—1-design of the pure phases A and B with only a small
transition region with laminate materials described by intermediate densities 6 €
(0, 1). Figure 7 shows that this transition zone decreases further in size until step 120,
at which the optimization routine terminates. It is likely that further optimization steps
will lead to continuous reduction of this transition zone until ultimately a clear 0-
1 design is achieved. Due to the fact that the specimen is positioned in the middle
of the sphere, the hypothetical crack surfaces are asymmetrically positioned in the
sphere (not in the sphere center but shifted upwards in z-direction). This is reflected
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Fig. 7 Progress of the gradient method. Density € after steps k = 20, k = 60 and k = 120 in different
cut-planes of €2

in the emerged sensor design, which also shows asymmetric behavior regarding the
x—y-cut-plane.

The application example demonstrates that the objective functional can be sig-
nificantly improved by use of the derived gradient method. The optimized sensor
design reflects asymmetries of the source and geometrical arrangement. Furthermore,
it becomes clear that, just as in typical applications with real-valued material parame-
ters, no subsequent penalty process is necessary since a 0—1-design is already formed
in the optimization procedure. In further studies of the application, it became apparent
that an adjustment of the source strength depending on the geometry is advantageous
in order to improve feasibility of the method. In particular, a stronger source leads to
faster convergence to the desired design in the considered example.
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6 Conclusion

For two-phase design optimization problems subject to a scalar second-order elliptic
equations with complex-valued material parameters, application of the relaxation by
homogenization method described in [3] for real-valued parameters values requires
several extensions. Making assumptions on the admissible design set, which are known
to hold in the real-valued case but remain an open question in the complex-valued
case, we derive the Gateaux differential of the objective functional using Wirtinger
calculus and devise an optimization method based on the restriction of the design set
to simple laminates. Numerical simulations based on the resulting method show that
it successfully optimizes complex-valued design problems.

Appendix
Derivation of the directional derivative of the objective functional

In order to derive the formulation of the directional derivative of the objective
functional, consider the objective functional J* (6, A*), which is formally still depen-
dent on the state u and the complex conjugate of the state u. Thereby, we define
A[t](x) := O(x) + 180 (x) with admissible increment 60 € L*°(Q) for a.e. x € Q;
A*[t], u[t] and it[t] are defined correspondingly. Then,

d
8J*(0, A%) = EJ*(G[I], A*[t], ult], ale])
=0

= E [/ Oltga (x, ult], ult]) + (1 — 0[tDgp(x, ult], ult]) dx +l/ ot] dx]
dr | Jo Q 1=0

Applying Wirtinger calculus along with (13), we obtain

8]*(6,A*):/ 59(x)(ga(x,u(x),ﬁ(x))—gﬁ(x,u(x),ﬁ(x))—t-l) dx
Q

+2Re {/ (9(x)aif’(x, u(x), u(x)) + (1 — 9(X))afi_ﬁ(x, u(x), ﬁ(X))) Sﬁ(X)dX} ,
Q ou ou

.. ; _ 9 _ ..
where the derivatives aai; (x,u,u)and % (x, u, u) are to be understood as Wirtinger
derivatives.

It remains to show

e [ (. 1 - ) s
e O(x)—(x,u(x), u(x)) + (1 —60(x)—(x, u(x), u(x)) ) du(x)dx
Q ou ou
= —2Re {[ A (x)Vu(x), Vp(x)) dx}
Q

to eliminate the state increment in the directional derivative.
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Differentiating the state equation, we obtain du as unique solution of

{ —div(A*(x)Véu(x)) = div(A*(x)Vu(x)), x € Q, (18)

du(x) =0, x € 0Q2.

Multiplying Eq. (18) by p, integrating by parts and noting the homogeneous Dirichlet
boundary conditions, we obtain for the left-hand side

—/Q(diV(A*(x)V(Su(x)),p(x))dx=/Q(A*(x)V8u(x),Vp(x))dx,
and for the right-hand side

L(div(aA*(x)W(x)),p(x))dx = —/Q(SA*()C)VM()C),VP(X))dx.
Combination of both results leads to

/S;(A*(x)V(Su(x),Vp(x))dx = —/Q<5A*(x)w(x),v1)(x)>dx. (19)

Multiplying the adjoint Eq. (14) by du and integrating by parts gives, again noting
the homogeneous Dirichlet boundary condition, we obtain

/ (A (0)V p(x), Vou(x)) dx
Q
_ / 06282 (e, uie), () 20)
Q ou

agp _
+ (1 —G(X))ﬁ(x, u(x), u(x)), du(x)) dx.

Considering

f (A (x)V p(x), Véu(x)) dx = / (Vp(x), A*(x)Vu(x)) dx
Q Q

=/ (A*(x)Vdu(x), Vp(x)) dx,
Q
and combination of (19) and (20) leads to

08a - 8gﬁ —
(Q(x)a—_(x, u(x), u(x)) + (1 —0(x))—(x, u(x), u(x)), du(x))dx
Q u au

- _/ (BA*(X)Vu(x), Vp(x)) dx,
Q
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finally resulting in

2Re {/ (Q(X)ai_a(x, u(x), u(x)) + (1 — 9()6))@()6, u(x), u(x)), du(x)) dX}
Q au ou

= —2Re {/ (8A*(x)Vu(x), Vp(x)) dx} ,
Q

which completes the derivation.
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