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Abstract
Purpose  This retrospective analysis evaluates baseline 18F-flotufolastat positron emission tomography (PET) parameters 
as prognostic parameters for treatment response and outcome in patients with metastatic castration-resistant prostate cancer 
(mCRPC) undergoing treatment with [177Lu]Lu-PSMA-I&T.
Methods  A total of 188 mCRPC patients with baseline 18F-flotufolastat PET scans were included. Tumor lesions were 
semiautomatically delineated, with imaging parameters including volume-based and standardized uptake value (SUV)-based 
metrics. Outcome measures included prostate-specific antigen (PSA) response, PSA-progression-free survival (PSA-PFS), 
and overall survival (OS). Univariate and multivariate regression analyses assessed the impact of baseline imaging and 
pretherapeutic clinical parameters on outcome. Event time distributions were estimated with the Kaplan-Meier method, and 
groups were compared with log-rank tests.
Results  Significant prognostic parameters for PSA response and PSA-PFS included log-transformed whole-body SUV-
max (odds ratio (OR), 3.26, 95% confidence interval (CI), 2.01–5.55 and hazard ratio (HR), 0.51, 95% CI, 0.4–0.66; both 
p < 0.001) and prior chemotherapy (OR 0.3, 95% CI, 0.12–0.72 and HR 1.64, 95% CI, 1.07–2.58; p = 0.008 and p = 0.028, 
respectively). For OS, significant prognosticators were the following log-transformed parameters: number of lesions (HR 
1.38, 95% CI, 1.24–1.53; p < 0.001), TTV (HR 1.27, 95% CI, 1.18–1.37; p < 0.001), and ITLV (HR 1.24, 95% CI, 1.16–1.33; 
p < 0.001), with log-transformed TTV (HR 1.15, 95% CI, 1.04–1.27; p = 0.008) remaining significant in multivariate analysis.
Conclusion  At baseline, SUV-based 18F-flotufolastat PET metrics (e.g., whole-body SUVmax) serve as significant positive 
prognosticators for short-term outcomes (PSA response and PSA-PFS). In contrast, volume-based metrics (e.g., TTV) are 
significant negative prognosticators for long-term outcome (OS), in mCRPC patients treated with [177Lu]Lu-PSMA-I&T.
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Introduction

177Lu-labeled prostate-specific membrane antigen (PSMA)-
targeted radioligand therapy (RLT) has emerged as an 
established treatment option for patients with metastatic 
castration-resistant prostate cancer (mCRPC). Initially sup-
ported by data from compassionate use programs, subse-
quent phase II and III trials have confirmed the low toxicity 
and therapeutic efficacy of 177Lu-labeled PSMA-RLT, with 
the first agent now approved by regulatory bodies worldwide 
[1–6]. Substudies from both the TheraP and the VISION tri-
als demonstrated the prognostic value of baseline [68Ga]
Ga-PSMA-11 positron emission tomography (PET), show-
ing that a higher whole-body mean standardized uptake 

value (SUVmean) correlates with better treatment efficacy 
of [177Lu]Lu-PSMA-617 [7, 8]. These observations are sup-
ported by further analyses utilizing [68Ga]Ga-PSMA-11 
PET, demonstrating that higher tumor volume and lower 
PSMA-ligand uptake intensity prognosticate poorer overall 
survival (OS) in patients treated with [177Lu]Lu-PSMA-617 
[9–12]. Meanwhile, diagnostic imaging is increasingly 
shifting from 68Ga- to 18F-labeled PSMA-ligands due to 
several advantages of these compounds. These include a 
longer half-life and higher positron yield with lower energy, 
which contribute to higher diagnostic accuracy, as well as 
wider availability through facilitated delivery [13]. This 
shift has emphasized the prognostic impact of 18F-labeled 
PSMA-ligands (e.g., 18F-PSMA-1007, or 18F-flotufolastat 
(formerly 18F-rhPSMA-7.3) for mCRPC patients undergo-
ing 177Lu-labeled PSMA-RLT. In response, a recent analy-
sis reported that baseline tumor uptake of 18F-PSMA-1007 
PET was significantly associated with outcome in mCRPC 
[14]. However, to date there are no data on the prognostic 
impact of 18F-flotufolastat, which was approved by the US 
Food and Drug Administration in May 2023 for diagnostic 
imaging of patients with suspected recurrent, or primary, 
prostate cancer [15]. Therefore, this retrospective analysis 
aimed to evaluate baseline 18F-flotufolastat PET parameters 
(e.g., total tumor volume (TTV), whole-body SUVmax) as 
potential prognostic parameters for prostate-specific anti-
gen (PSA) response, PSA-progression-free survival (PSA-
PFS) and OS in a large cohort of mCRPC patients receiving 
177Lu-labeled PSMA-RLT.

Materials and methods

Patients and 177Lu-labeled PSMA-RLT

In this retrospective, single-center analysis data from 
patients with mCRPC undergoing [177Lu]Lu-PSMA-I&T 
therapy at our clinic between November 2017 and Sep-
tember 2021 were retrospectively reviewed. The patients 
received RLT with a standard activity of approximately 7.4 
GBq [177Lu]Lu-PSMA-I&T at a median interval of 6 weeks. 
The treatment activity could be slightly adopted based on 
e.g. lab tests and tumor burden. Detailed patient character-
istics are given in Table  1. Baseline 18F-flotufolastat PET 
scans were available for all patients. For treatment eligi-
bility, PSMA-ligand uptake in tumor lesions had to be at 
least as high as the liver background. [177Lu]Lu-PSMA-
I&T was prepared in accordance with good manufacturing 
practices and the German Medicinal Products Act (AMG 
§ 13 2b). All patients gave written informed consent. Treat-
ment was performed under the conditions outlined in arti-
cle 37 of the Declaration of Helsinki concerning unproven 

Table 1  Patient characteristics
Characteristic
Age (yr) 74 (68–79)
Time since initial diagnosis (yr) 5.4 (3.4–9.5)
No. of [177Lu]Lu-PSMA-I&T cycles 4 (2–6)
Pretherapeutic blood parameters
  PSA, ng/mL (n = 184) 71.5 (23.0-219.4)
  LDH, U/L (n = 183) 251 (215-324.5)
  AP, U/L (n = 182) 117 (73.3-213.3)
  Hb, g/dL (n = 186) 11.9 (10.4–13.1)
Prior systemic therapies
  Abiraterone 159 (84.6)
  Enzalutamide 115 (61.2)
  223Ra 15 (8.0)
  Docetaxel 131 (69.7)
  Cabazitaxel 25 (13.3)
  Previous chemotherapy 133 (70.7)
Site of metastasis
  Lymph nodes 127 (67.6)
  Bone 174 (92.6)
  Visceral, overall 39 (20.7)
  Liver 13 (6.9)
  Lung/Pleura 20 (10.6)
  Adrenal 10 (5.3)
  Brain 2 (1.1)
Baseline18F-flotufolastat PET parameters
  Number of lesions (n) 128 (41.0-239.0)
  TTV, mL 394.1 (122.2-1125.9)
  ITLV, mL 877.6 (255.7-2527.7)
  Highest SUVmax 60.6 (36.9–98.0)
  Whole-body SUVmax 13.9 (9.8–22.0)
  Whole-body SUVmean 5.6 (4.8–7.2)
  Whole-body SUVpeak 9.0 (6.3–14.0)
Data are reported as median (interquartile range) or n 
(%).177Lu = Lutiteum-177; PSMA = prostate-specific membrane anti-
gen; PSA = prostate-specific antigen; LDH = lactate dehydrogenase; 
AP = alkaline phosphatase; Hb = hemoglobin; mCRPC = metastatic 
castration-resistant prostate cancer; 223Ra = Radium-223; 18F = Fluo-
rine-18; PET  =  positron emission tomography; TTV  =  total tumor 
volume; ITLV = intensity-weighted lesion volume; SUVmax = maxi-
mum standardized uptake value; SUVmean  =  mean standardized 
uptake value; SUVpeak = peak standardized uptake value
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interventions in clinical practice. This retrospective analysis 
was approved by the institutional ethics committee (refer-
ence number 115/18S).

PSMA-ligand PET imaging procedure

The radiolabeling of 18F-flotufolastat was carried out as pre-
viously described [16]. The preparation of 18F-flotufolastat 
adhered to the German Medicinal Products Act, AMG § 13 
2b. All patients gave written informed consent. A mean 
activity of 309 ± 65 MBq of 18F-flotufolastat (range, 89–493 
MBq) was administered via intravenous bolus, with scan-
ning initiated at a median time of 70  min (interquartile 
range (IQR), 65–79 min) post-injection. Patients received a 
diluted oral contrast medium (300 mg of Telebrix; Guerbet) 
and 10 mg of furosemide. 18F-flotufolastat PET/computed 
tomography (CT) was performed on a Biograph mCT Flow 
scanner (Siemens Medical Solutions) or a Biograph Vision 
scanner (Siemens Medical Solutions). PET/CT scans were 
acquired in 3-dimensional mode with an acquisition time of 
0.8 mm/s (mCT Flow scanner) and 1.1 mm/s (Vision scan-
ner), respectively. PET images were reconstructed using 
ordered-subset expectation maximization (TrueX, 4 itera-
tions, 8 subsets) followed by a postreconstruction smooth-
ing Gaussian filter (3 mm in full width at half maximum). 
A diagnostic CT scan was initially performed in the portal 
venous phase 80 s after intravenous injection of an iodinated 
contrast agent (Imeron 300; Bracco Imaging) and was fol-
lowed by the PET scan.

Baseline 18F-flotufolastat parameters

The following imaging parameters were analyzed: num-
ber of lesions, TTV, intensity-weighted total lesion volume 
(ITLV = ∑ (lesion index × lesion uptake volume), highest 
SUVmax, whole-body SUVmax, SUVmean, and SUVpeak. 
These parameters were assessed through semiautomatic 
delineation using aPROMISE software [17–19]. Missed 
pathological foci were manually added when necessary, and 
PSMA-avid foci resulting from physiological tracer accu-
mulation were removed. An experienced PSMA-ligand PET 
reader (IR) subsequently reviewed all lesions.

Pretherapeutic clinical parameters, PSA response 
and PSA-progression-free survival

The following pretherapeutic clinical parameters were 
assessed: age, time since initial diagnosis, prior chemo-
therapy, the presence of liver metastases and visceral metas-
tases (obtained from baseline 18F-flotufolastat) and PSA, 
alkaline phosphatase (AP), lactate dehydrogenase (LDH) 
and hemoglobin (Hb). PSA response was defined as PSA 

decline ≥ 50% from baseline according to Prostate Cancer 
Clinical Trials Working Group 3 [20]. PSA progression was 
either defined as PSA increase ≥ 25% and ≥ 2 ng/mL above 
the nadir after initial PSA decline or PSA increase ≥ 25% 
and ≥ 2 ng/mL from baseline in case with no PSA decline 
[20].

Statistical analysis

Continuous covariates are reported as median values with 
IQR, while categorical covariates are described by their 
frequencies and proportions. Outcome measures are PSA 
response, PSA-PFS, and OS. The Kaplan-Meier method 
was used to estimate event time distributions, and log-rank 
tests were used to compare groups. Spearman’s rank correla-
tion coefficient was used to quantify strength of association 
between quantitative variables. A logarithmic transforma-
tion (base 2) was applied to normalize data distribution and 
reduce skewness for the following parameters: number of 
lesions, TTV, ITLV, highest SUVmax, whole-body SUV-
max, SUVmean and SUVpeak, time since initial diagnosis, 
PSA, AP, and LDH. Univariate and multivariate logis-
tic and Cox regression analyses were performed to assess 
the impact of baseline imaging and pretherapeutic clinical 
parameters on PSA response, PSA-PFS, and OS. Highly 
correlated (r > 0.7; Supplementary Table 1) volume- and 
SUV-based metrics (highest SUVmax, whole-body SUV-
max, and SUVmean as well as number of lesions and TTV) 
were included in multivariate logistic and Cox regression 
models and a backward variable selection procedure with 
a significance level of 0.05 was performed to determine the 
covariate(s) with the strongest association to the outcome 
variables. The remaining significant parameters were then 
included in a multivariate model together with other signifi-
cant pretherapeutic clinical parameters from the univariate 
analyses. Whole-body SUVpeak and ITLV were excluded 
from this analysis due to their high correlation with whole-
body SUVmax and TTV, respectively. Both indicating an 
almost perfect linear correlation and therefore providing no 
additional prognostic benefit (Supplementary Fig.  1A and 
B and Supplementary Table 1). Odds ratios (OR), hazard 
ratios (HR) and corresponding 95% confidence intervals 
(CI) are presented, with a p-value of < 0.05 considered sta-
tistically significant. Statistical analyses were performed 
using GraphPad Prism version 10.2.2 (341) for Mac.

Results

Median follow-up time was 13.3 months (IQR, 6.7–21.6 
months). PSA response was achieved in 36.1% (65/180) 
patients. Median OS was 14.4 months (95% CI, 12.9–15.9 
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whole-body SUVmax remained a significant prognosticator 
for PSA response (OR, 3.26, 95% CI, 2.01–5.55, p < 0.001) 
and PSA-PFS (HR, 0.51, 95% CI, 0.4–0.66, p < 0.001). 
Prior chemotherapy also showed significance as a prognos-
ticator for both PSA response (OR, 0.3, 95% CI, 0.12–0.72, 
p = 0.008) and PSA-PFS (HR, 1.64, 95% CI, 1.07–2.58, 
p = 0.028).

Overall survival

Detailed results for univariate and multivariate Cox regres-
sion analyses for OS are presented in Table  4. Baseline 
imaging parameters significantly prognostic for OS in uni-
variate Cox regression analysis included the following log-
transformed volume-based metrics: number of lesions (HR, 
1.376, 95% CI, 1.24–1.533; p < 0.001), TTV (HR, 1.271, 
95% CI, 1.182–1.368; p < 0.001), and ITLV (HR, 1.24, 95% 
CI, 1.158–1.329; p < 0.001). Figure 1 presents examples of 
two patients with varying levels of these parameters and dif-
ferent outcomes. A stepwise backward Cox regression anal-
ysis was performed, including the number of lesions and 
TTV as candidates, which identified TTV as the stronger 
prognosticator for OS. When testing the prognostic value of 
TTV adjusting for significant pretherapeutic clinical param-
eters from the univariate analysis, namely log-transformed 
time since initial diagnosis, prior chemotherapy, the pres-
ence of liver metastases and visceral metastases, log-trans-
formed PSA, log-transformed AP, log-transformed LDH 
and Hb, the following remained significant prognosticators 

months) and median PSA-PFS was 4.1 months (95% CI, 
3.2–5.0 months). At the time of analysis, 74.5% (140/188) 
patients had shown PSA progression and 86.2% (162/188) 
patients had deceased.

PSA response and PSA-progression-free survival

Detailed results of univariate and multivariate logistic and 
Cox regression analyses for PSA response and PSA-PFS are 
presented in Tables  2 and 3, respectively. Baseline imag-
ing parameters that were significant prognosticators of PSA 
response and PSA-PFS in the univariate analyses include 
the following log-transformed SUV-based metrics: highest 
SUVmax (OR 1.85, 95% CI, 1.33–2.62 and HR 0.68, 95% 
CI, 0.57–0.81; both p < 0.001), whole-body SUVmax (OR 
2.80, 95% CI, 1.83–4.48 and HR, 0.59, 95% CI, 0.47–0.74; 
both p < 0.001), whole-body SUVmean (OR, 3.96, 95% CI, 
2.0-8.33 and HR. 0.60, 95% CI, 0.42–0.86; p < 0.001 and 
p = 0.006, respectively), and whole-body SUVpeak (OR, 
2.65, 95% CI, 1.71–4.25 and HR, 0.6, 95% CI, 0.47–0.76; 
both p < 0.001). A stepwise backward multivariate logistic 
and Cox regression analysis was performed, identifying 
whole-body SUVmax as the strongest prognosticator for 
both PSA response and PSA-PFS. Whole-body SUVmax 
was then tested against all other significant pretherapeutic 
clinical parameters from the univariate analysis, namely 
age, log-transformed time since initial diagnosis, prior 
chemotherapy, log-transformed AP (only for PSA-PFS) 
and log-transformed LDH. In this multivariate analysis, 

Table 2  Logistic regression analysis of baseline parameters and PSA Response
Parameter Univariate logistic regression,

OR (95%CI)
p-value Multiple logistic regression,

OR (95%CI)
p-value

PSMA-ligand PET parameters
  Number of lesions 0.95 [0.8–1.15] 0.611
  TTV 1.02 [0.89–1.16] 0.802
  ITLV 1.05 [0.92–1.19] 0.488
  Highest SUVmax 1.85 [1.33–2.62] < 0.001
  Whole-body SUVmax 2.80 [1.83–4.48] < 0.001 3.26 [2.01–5.55] < 0.001
  Whole-body SUVmean 3.96 [2.0-8.33] < 0.001
  Whole-body SUVpeak 2.65 [1.71–4.25] < 0.001
Pretherapeutic clinical parameters
  Age 1.04 [1.0-1.08] 0.035 1.0 [0.95–1.06] 0.987
  Time since initial diagnosis 1.38 [1.03–1.87] 0.034 1.31 [0.9–1.94] 0.166
  Prior chemotherapy 0.33 [0.17–0.64] 0.001 0.3 [0.12–0.72] 0.008
  Liver metastases 1.12 [0.32–3.49] 0.855
  Visceral metastases 0.95 [0.44-2.0] 0.890
  PSA 1.02 [0.90–1.15] 0.810
  AP 0.78 [0.58–1.03] 0.091
  LDH 0.57 [0.31–0.93] 0.039 0.79 [0.42–1.37] 0.435
  Hb 1.15 [0.98–1.37] 0.094
All continuous parameters except age and Hb were log (base2) transformed. Significant p-values are given in bold. PSA = prostate-specific anti-
gen; OR = odds ratio; CI = confidence interval; PSMA = prostatespecific membrane antigen; PET = positron emission tomography; TTV = total 
tumor volume; ITLV  =  intensity-weighted lesion volume; SUVmax  =  maximum standardized uptake value; SUVmean  =  mean standardized 
uptake value; SUVpeak = peak standardized uptake value; AP = alkaline phosphatase; LDH = lactate dehydrogenase; Hb = hemoglobin
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Table 3  Cox Regression Analysis of Baseline Parameters and PSA-PFS
Parameter Univariate Cox regression,

HR (95%CI)
p-value Multivariate Cox regression,

HR (95%CI)
p-value

PSMA-ligand PET parameters
  Number of lesions 1.04 [0.93–1.15] 0.529
  TTV 0.99 [0.92–1.06] 0.722
  ITLV 0.97 [0.91–1.04] 0.436
  Highest SUVmax 0.68 [0.57–0.81] < 0.001
  Whole-body SUVmax 0.59 [0.47–0.74] < 0.001 0.51 [0.4–0.66] < 0.001
  Whole-body SUVmean 0.60 [0.42–0.86] 0.006
  Whole-body SUVpeak 0.6 [0.47–0.76] < 0.001
Pretherapeutic clinical parameters
  Age 0.96 [0.94–0.98] < 0.001 0.98 [0.96–1.01] 0.226
  Time since initial diagnosis 0.8 [0.68–0.93] 0.005 0.9 [0.74–1.09] 0.266
  Prior chemotherapy 1.68 [1.15–2.49] 0.008 1.64 [1.07–2.58] 0.028
  Liver metastases 1.0 [0.52–1.74] 0.986
  Visceral metastases 0.80 [0.52–1.19] 0.292
  PSA 1.02 [0.96–1.09] 0.543
  AP 1.27 [1.09–1.47] 0.002 1.09 [0.89–1.33] 0.387
  LDH 1.46 [1.18–1.76] < 0.001 1.30 [0.98–1.69] 0.056
  Hb 0.50 [0.23–1.11] 0.084
All continuous parameters except age and Hb were log (base2) transformed. Significant p-values are given in bold. PSA = prostate-specific anti-
gen; PFS = progression-free survival; HR = hazard ratio; CI = confidence interval; PSMA = prostate-specific membrane antigen; PET = posi-
tron emission tomography; TTV = total tumor volume ITLV = intensity-weighted lesion volume; SUVmax = maximum standardized uptake 
value; SUVmean = mean standardized uptake value; SUVpeak = peak standardized uptake value; AP = alkaline phosphatase; LDH =  lactate 
dehydrogenase; Hb = hemoglobin

Table 4  Cox Regression Analysis of Baseline Parameters and OS
Parameter Univariate Cox regression,

HR (95%CI)
p-value Multivariate Cox regression,

HR (95%CI)
p-value

PSMA-ligand PET parameters
  Number of lesions 1.38 [1.24–1.53] < 0.001
  TTV 1.27 [1.18–1.37] < 0.001 1.15 [1.04–1.27] 0.008
  ITLV 1.24 [1.16–1.33] < 0.001
  Highest SUVmax 1.12 [0.97–1.29] 0.139
  Whole-body SUVmax 0.96 [0.79–1.17] 0.711
  Whole-body SUVmean 0.78 [0.55–1.09] 0.148
  Whole-body SUVpeak 0.98 [0.81–1.19] 0.849
Pretherapeutic clinical parameters
  Age 1.0 [0.98–1.02] 0.988
  Time since initial diagnosis 0.75 [0.65–0.88] < 0.001 0.85 [0.71–1.02] 0.089
  Prior chemotherapy 1.56 [1.11–2.23] 0.012 1.10 [0.75–1.65] 0.63
  Liver metastases 2.07 [1.05–3.68] 0.021 0.89 [0.41–1.83] 0.747
  Visceral metastases 1.77 [1.18–2.58] 0.004 1.76 [1.04–2.87] 0.028
  PSA 1.17 (1.091–1.250) < 0.001 0.98 [0.9–1.07] 0.684
  AP 1.56 (1.365–1.779) < 0.001 1.14 (0.941–1.367) 0.173
  LDH 2.21 (1.801–2.651) < 0.001 1.42 (1.032–1.921) 0.026
  Hb 0.7 (0.631–0.774) < 0.001 0.86 (0.761–0.907) 0.015
All continuous parameters except age and Hb were log (base2) transformed. Significant P-values are given in bold. OS = overall survival; 
HR = hazard ratio; CI = confidence interval; PSMA = prostatespecific membrane antigen; PET = positron emission tomography; TTV = total 
tumor volume; ITLV = intensity-weighted lesion volume; SUVmax = maximum standardized uptake value; SUVmean = mean standardized uptake 
value; SUVpeak = peak standardized uptake value, PSA = prostate-specific antigen; AP = alkaline phosphatase; LDH = lactate dehydrogenase; 
Hb = hemoglobin
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Discussion

SUV-based metrics in baseline 18F-flotufolastat PET prior 
to [177Lu] Lu-PSMA-I&T, including highest SUVmax, 
whole-body SUVmax, whole-body SUVmean, and whole-
body SUVpeak, were significantly associated with PSA 
response and PSA-PFS in univariate analysis. Among these, 
whole-body SUVmax remained a significant prognosticator 
for both PSA response and PSA-PFS in multivariate analy-
sis. However, these imaging parameters were not signifi-
cant prognosticators of OS. In contrast, for OS, significant 
prognosticators included volume-based metrics such as the 
number of lesions, TTV, and ITLV with TTV remaining sig-
nificant in multivariate analysis. The combination of imag-
ing and pretherapeutic clinical parameters, namely TTV, the 
presence of visceral metastases, LDH, and Hb levels, that 
remained significant prognosticators of OS in multivariate 
analysis enabled effective stratification of patients regard-
ing survival.

Despite the scarcity of comparative studies, our findings 
showed consistency with existing data on 18F-labeled com-
pounds in patients with mCRPC receiving 177Lu-labeled 
PSMA-RLT. Specifically, our results confirm aspects of 
a recent analysis by Hartrampf et al., which explored 

of OS: log-transformed TTV (HR, 1.147, 95% CI, 1.038–
1.271; p = 0.008), presence of visceral metastases (HR, 
1.764, 95% CI; 1.038–2.874; p = 0.028), log-transformed 
LDH (HR, 1.421, 95% CI, 1.032–1.921; p = 0.026), and Hb 
(HR, 0.86, 95% CI, 0.761–0.97; p = 0.015).

Risk stratification model

Following the approach of Hartrampf et al. [14], we propose 
a risk factor (RF) stratification model including all param-
eters that reached significance in multivariate Cox regres-
sion analysis for OS (Fig. 2). The model included high TTV 
(> 394.1 mL) and LDH levels (> 251 U/L) defined as values 
above the median, low Hb levels (< 11.9 g/dL) defined as 
values below the median, and the presence of visceral metas-
tases, with each parameter representing one RF. Patients 
with no RFs had a median OS of 25.2 months. Patients with 
1–2 RFs had a median OS of 15.0 months with a HR of 2.55 
(p < 0.001) compared to those with 0 RFs. Patients with 3–4 
RFs had a median OS of 7.7 months with an HR of 4.16 
(p < 0.001) compared to those with 0 RFs.

Fig. 1  (A) A 70-year-old patient 
with lymph node metastases, 
showing 17 tumor lesions, a total 
tumor volume (TTV) of 31 ml, 
and an intensity-weighted total 
lesion volume (ITLV) of 55 ml. 
(B) A 77-year-old patient with 
bone metastases, showing 139 
tumor lesions, a TTV of 322 ml, 
and an ITLV of 626 ml. PSA-PFS 
and OS were 5.4 months and 54.9 
months for patient A, compared 
to 1.8 months and 12.0 months 
for patient B. The number of 
lesions, TTV, and ITLV were 
semiautomatically assessed, with 
tumor lesions shown in pink
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where noise may significantly affect the maximum voxel 
value. Additionally, if a lesion is not precisely centered 
within the voxel, SUVmax may underestimate true activ-
ity, misrepresenting the lesions intensity [21]. Despite these 
potential drawbacks, we believe that measuring the mean 
SUVmax across the entire tumor burden, as represented by 
whole-body SUVmax, may help reduce these weaknesses 
and improve the reliability of SUVmax as a prognostic 
parameter. In contrast, SUVpeak includes a local average 
of SUV values from surrounding voxels, which reduces 
noise impact and provides a more stable, statistically reli-
able measurement. However, this averaging process can 
make SUVpeak less representative of the true activity, par-
ticularly in small lesions, compared to SUVmax. Addition-
ally, the lack of standardization of SUVpeak across imaging 
protocols can result in inconsistencies in its application and 
interpretation [21].

While Hartrampf et al. [14] demonstrated a significant 
impact of whole-body SUVmean on OS (HR, 0.91; p = 0.03), 
our data showed no significant association between log-
transformed SUV-based metrics in general, and particularly 
whole-body SUVmean with OS (HR, 0.78; p = 0.148). The 
positive association between whole-body SUVmean and OS 
has also been thoroughly reported in the context of [68Ga] 
Ga-PSMA-11 PET [7–10, 12]. For instance, a VISION trial 
substudy found that higher baseline SUVmean was associ-
ated with better OS (HR, 0.88), with the highest quartile 

the prognostic value of baseline 18F-PSMA-1007 PET-
derived parameters in mCRPC patients undergoing [177Lu] 
Lu-PSMA-I&T therapy [14]. Consistent with the prior anal-
ysis we found that volume-based metrics, such as PSMA-
positive tumor volume, showed no significant impact on 
prognosticating PSA response [14]. We also confirm that 
whole-body SUVmean has a significant prognostic impact 
on PSA response, with a OR of 3.96 (p < 0.001) in our analy-
sis compared to 1.18 (p = 0.004) in Hartrampf et al. [14]. 
However, due to a logarithmic transformation of SUV-based 
metrics in our analysis, direct comparison between the OR is 
not possible. Interestingly, in our analysis, log-transformed 
whole-body SUVmax was an even better prognosticator of 
PSA response (OR 2.80, p < 0.001 vs. OR 1.00, p = 0.27 in 
[14]), and it also significantly prognosticated PSA-PFS (HR 
0.59, p < 0.001). Our findings on the impact of SUV-based 
metrics on PSA response and PSA-PFS are also consis-
tent with recent analyses using [68Ga] Ga-PSMA-11 PET 
as baseline imaging before 177Lu-labeled PSMA-RLT [7, 
9, 12], further underlying their potential role in prognosti-
cating short-term outcomes. Given that the calculation of 
whole-body SUVmean is more complex and depends heav-
ily on the segmentation method, SUVmax measurements 
are easier to implement in clinical routine. However, SUV-
max, representing the highest voxel value within the region 
of interest, is susceptible to image noise, which can lead to 
variability in measurements, particularly in small lesions, 

Fig. 2  Kaplan-Meier survival 
curves for the risk stratification 
model, which includes baseline 
imaging and pretherapeutic 
clinical parameters that reached 
significance in the multivari-
ate Cox regression analysis for 
OS. The model consists of the 
upper median values for total 
tumor volume (TTV) and lactate 
dehydrogenase (LDH) levels, the 
lower median value for hemoglo-
bin (Hb), and the presence of vis-
ceral metastases. Each parameter 
represents one risk factor (RF). 
Patients were stratified based on 
the number of RFs: 0 RF (green 
line), 1–2 RFs (blue line), and 
3–4 RFs (red line)
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outcomes. Patients with 1–2 RFs had an approximately two 
times higher risk of death (HR 2.546; p < 0.001), and those 
with 3–4 RFs had an approximately four times higher risk of 
death (HR 4.161; p < 0.001) compared to those with 0 RFs. 
This risk stratification model demonstrates that combining 
risk factors identified in our multivariate analysis provides a 
potential tool for prognosticating outcomes.

In addition to the retrospective nature of the present 
analysis, this analysis has several limitations. Volume-based 
metrics were assessed without distinguishing the origin 
of lesions, which could affect outcomes. Additionally, as 
mentioned above, the SUVmean calculation depends on 
the segmentation method, unlike parameters such as SUV-
max, which should be considered when comparing with 
other studies using different approaches (e.g., relative vs. 
fixed thresholding). A further limitation of this analysis 
is the slightly wider imaging window with a median time 
of 70 min post-injection compared to the 60-minute time-
frame recommended by EANM guidelines [24] and the 
50–70-minute window used in the Phase III LIGHTHOUSE 
and SPOTLIGHT studies [25,26], which could introduce 
minor variability in tracer uptake quantification.

Conclusion

In conclusion, baseline 18F-flotufolastat PET prior to 177Lu-
labeled PSMA-RLT demonstrated significant prognostic 
value for outcome. SUV-based metrics, such as whole-body 
SUVmax, were useful for prognosticating short-term out-
come (PSA response and PSA-PFS), while volume-based 
metrics (e.g., TTV) showed utility for prognosticating long-
term outcomes (OS).

Abbreviations
AP	� Alkaline phosphatase
CI	� Confidence interval
CT	� Computed tomography
Hb	� Hemoglobin
HR	� Hazard ratio
IQR	� Interquartile range
ITLV	� Intensity-weighted total lesion volume
LDH	� Lactate dehydrogenase
mCRPC	� Metastatic castration-resistant prostate cancer
OR	� Odds ratio
OS	� Overall survival
PET	� Positron emission tomography
PFS	� Progression-free survival
PSA	� Prostate-specific antigen
PSMA	� Prostate-specific membrane antigen
RF	� Risk factor
RLT	� Radioligand therapy

having an OS of 21.4 months vs. 12.6–14.6 months in the 
lower quartiles [8]. The median whole-body SUVmean in 
our cohort was 5.6 with an IQR of 4.8–7.2, indicating more 
homogeneous tumor uptake, which may explain the lack of 
correlation with OS. This reduced variability and effect size 
potentially reflect a narrower range of tumor differentia-
tion, which could reduce the prognostic impact of whole-
body SUVmean. However, further analyses are necessary to 
confirm this hypothesis and to assess the usability of SUV-
based metrics in mCRPC with 18F-flotufolastat PET prior to 
177Lu-labeled PSMA-RLT, especially considering the ongo-
ing shift from 68Ga- to 18F-labeled PSMA ligands.

Our analysis shows a significant association between 
OS and all volume-based metrics, with TTV demonstrating 
significant prognostic value in multivariate analysis. These 
findings are in line with other retrospective analyses using 
[68Ga] Ga-PSMA-11 PET prior to 177Lu-labeled PSMA-
RLT [10, 11] and comparable to the results from Seifert et al. 
[10], who reported a significant impact of log-transformed 
number of lesions (HR, 1.255; p = 0.009 vs. HR, 1.38; 
p < 0.001 in our analysis) and log-transformed PSMA-TV 
(HR, 1.299; p = 0.005 vs. HR, 1.27; p < 0.001 in our analy-
sis). Our results underline the potential of volume-based 
metrics as a prognostic marker for long-term outcome.

In addition to baseline 18F-flotufolastat PET parameters, 
pretherapeutic clinical parameters significantly impacted 
prognosticating outcome. Prior chemotherapy was signifi-
cantly associated with worse short-term outcomes like PSA 
response and PSA-PFS in multivariate analyses (OR, 0.3 
and HR, 1.64; p = 0.008 and p = 0.028, respectively). This 
association, previously reported with 177Lu-labeled PSMA-
RLT and radiographic PFS, likely reflects the more advanced 
disease stage of heavily pretreated patients [12,22,23]. The 
same applies to the role of visceral metastases, where their 
presence at the start of 177Lu-labeled PSMA-RLT indicates 
more aggressive disease and poorer outcomes. Numerous 
retrospective analyses have shown their negative prognostic 
impact on OS [2, 6, 12]. Our findings also demonstrate that 
visceral metastases are significantly associated with poorer 
OS (HR, 1.76, p = 0.028). Furthermore, our results demon-
strate that higher levels of log-transformed LDH and lower 
levels of Hb are independently associated with poorer OS 
(HR, 1.42; p = 0.026; and HR, 0.86; p = 0.015, respectively). 
These associations were also reported by previous retro-
spective analyses [2, 6, 12], further underlying the prognos-
tic significance of these parameters.

The combination of all significant prognostic parameters 
of OS from the multivariate analysis into a risk stratifica-
tion model—including high tumor volume (TTV > 394.1 
mL), elevated lactate dehydrogenase (LDH > 251 U/L), 
low hemoglobin (Hb < 11.9 g/dL), and the presence of vis-
ceral metastases—allowed for effective stratification of 
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