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Abstract
Purpose  To develop and evaluate a lymph node invasion (LNI) prediction model for men staged with [68Ga]Ga-PSMA-11 PET.
Methods  A consecutive sample of intermediate to high-risk prostate cancer (PCa) patients undergoing [68Ga]Ga-PSMA-11 
PET, extended pelvic lymph node dissection (ePLND), and radical prostatectomy (RP) at two tertiary referral centers were 
retrospectively identified. The training cohort comprised 173 patients (treated between 2013 and 2017), the validation cohort 
90 patients (treated between 2016 and 2019). Three models for LNI prediction were developed and evaluated using cross-
validation. Optimal risk-threshold was determined during model development. The best performing model was evaluated 
and compared to available conventional and multiparametric magnetic resonance imaging (mpMRI)-based prediction models 
using area under the receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis (DCA).
Results  A combined model including prostate-specific antigen, biopsy Gleason grade group, [68Ga]Ga Ga-PSMA-11 positive 
volume of the primary tumor, and the assessment of the [68Ga]Ga-PSMA-11 report N-status yielded an AUC of 0.923 (95% CI 
0.863–0.984) in the external validation. Using a cutoff of  ≥ 17%, 44 (50%) ePLNDs would be spared and LNI missed in one 
patient (4.8%). Compared to conventional and MRI-based models, the proposed model showed similar calibration, higher AUC 
(0.923 (95% CI 0.863–0.984) vs. 0.700 (95% CI 0.548–0.852)—0.824 (95% CI 0.710–0.938)) and higher net benefit at DCA.
Conclusions  Our results indicate that information from [68Ga]Ga-PSMA-11 may improve LNI prediction in intermediate 
to high-risk PCa patients undergoing primary staging especially when combined with clinical parameters. For better LNI 
prediction, future research should investigate the combination of information from both PSMA PET and mpMRI for LNI 
prediction in PCa patients before RP.

Keywords  Prostate cancer · Lymph node invasion · Prostate-specific membrane antigen positron emission tomography · 
Prediction

Introduction

Accurate primary staging of prostate cancer (PCa) is 
important for individualized treatment planning. Current 
guidelines recommend a bone scan and an abdominopelvic 
computed tomography (CT) or magnetic resonance imag-
ing (MRI) for non-invasive initial staging [1, 2]. However, 

novel and potentially more reliable diagnostic procedures 
are evolving rapidly [3]. [68Ga]Gallium-Prostate-specific 
membrane antigen 11 positron-emission tomography (PET) 
CT or MRI (further referred to as “PSMA PET” showed 
a promising diagnostic accuracy for primary staging [4-9].

Despite recent advances in imaging, pelvic lymph node 
dissection (PLND) during radical prostatectomy (RP) rep-
resents the gold standard for nodal staging in PCa. However, 
the therapeutic and prognostic benefits of extended PLND 
(ePLND) and PLND still remain controversial [10-13]. 
PSMA-PET might impact the indication for PLND and its 
extent but the oncologic benefit is not yet known [14]. The 
European Association of Urology (EAU) recommended in 
2022 ePLND in patients with a risk of lymph node invasion 
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(LNI)  ≥ 7% using the Briganti 2019 nomogram [15]. How-
ever, since up to 20% of the patients suffer a complication 
after PLND, there is a strong need to improve patient selec-
tion for PLND [16].

More recently, incorporation of quantitative imaging data 
from mpMRI or PSMA PET has been proposed to further 
improve LNI prediction [17-20]. However, there is still only 
limited data especially on the added value of PSMA PET for 
LNI prediction.

We aimed to develop and externally evaluate a predic-
tion model using a combination of clinical and qualitative/
quantitative information from PSMA PET/CT for prediction 
of LNI at RP in patients with intermediate to high-risk PCa.

Material and methods

Study design

This is a retrospective, dual-center study reported accord-
ing to the current guidelines [21]. We developed three LNI 
prediction models in a training cohort, selected the best 
performing model (including a clinically meaningful risk 
threshold), and applied it to a validation cohort. The per-
formance of the model was compared to the performance of 
available LNI prediction models [17, 18, 22-25]

Source of data and study population

Patient data from two tertiary referral centers served as data 
source for the training cohort (Klinikum Rechts der Isar, 
Technical University of Munich, Munich, Germany) and the 
validation cohort (University Hospital Zurich, University of 
Zurich, Zurich, Switzerland).

For the training cohort, the retrospective analysis was 
approved by the Ethics Committee of the Technical Univer-
sity Munich (permit 5665/13). For the validation cohort, all 
patients gave a general written informed consent for retro-
spective use of their data (Ethics Commission of the Canton 
of Zurich, Switzerland, BASEC Nr. 2018-01284).

We used pre-existing cohorts at both centers that were 
collected for works on T- and N staging in PCa regarding 
the training cohort and patient selection for ePLND in the 
validation cohort, respectively. We extended these cohorts 
with consecutive new patients. In both cohorts, consecutive 
PCa patients with histologically proven (D’Amico criteria) 
intermediate or high-risk PCa who underwent PSMA PET 
for primary staging followed by RP and ePLND were retro-
spectively identified (training cohort n = 192 between Janu-
ary 2013 and June 2017, validation cohort n = 96 between 
April 2016 and July 2019). Patients with missing biopsy 
data (training cohort n = 19) and without written consent 
for retrospective use of their data (validation cohort n = 6) 

were excluded, leading to a final training cohort of 173 
patients and validation cohort of 90 patients. Ninety-four 
of 173 patients of the training cohort were part of published 
works on T- and N staging in PCa patients [6, 8]. Sixty of 
90 patients of the validation cohort were part of a published 
work on patient selection for ePLND in PCa [19].

In the training cohort, all included patients underwent 
mpMRI-targeted /standard 12-core biopsy followed by 
PSMA PET and RP with ePLND. ePLND was performed 
according to a predefined template including bilateral, sepa-
rate dissection of the obturator fossa, external iliac, inter-
nal iliac, and common iliac vessels with the femoral canal 
and the aortic bifurcation as proximal and distal limits, 
respectively.

In the validation cohort, all patients with intermediate 
and high-risk PCa underwent a combined mpMRI-targeted/
saturation biopsy (min. 40 cores) followed by PSMA PET 
and RP with ePLND. ePLND was performed as previously 
reported [26].

Because of the different biopsy approaches, difference 
in pathological upgrading at RP between the two cohorts 
was assessed.

In both cohorts, patients underwent PSMA PET accord-
ing to standard procedure guidelines and no therapy has been 
initiated between PET and RP [8, 19].

Outcome

The predicted outcome was LNI at RP with ePLND. In the 
training cohort, RP was performed mainly open or robotic 
(< 10%) with ePLND to a template of 8 predefined anatomi-
cal fields. For the validation cohort, all surgical procedures 
were performed via robot-assisted transperitoneal laparo-
scopic RP with ePLND as described earlier [26]. In both 
cohorts, the removed LN were assessed for LNI by special-
ized uropathologists.

Predictors

The following data was collected for each patient: Clinical 
parameters: age [years], PSA value at the time of PSMA 
PET [µg/l], highest WHO/International Society of Urologi-
cal Pathology (WHO/ISUP) grade group (grade groups 1–5) 
[27] at systematic/targeted biopsy; Quantitative 68Ga-PSMA-
11-PET parameters of the primary tumor of the prostate: 
maximum standard uptake value (SUVmax), volume-based 
PSMA PET parameters were assessed using an absolute cut-
off at SUV ≥ 4, yielding PSMA positive volume (PSMAvol, 
[cm3]), and total PSMA accumulation (PSMAtotal = PSMAvol 
x SUVmean) as described earlier [19]. Qualitative PET infor-
mation: the conclusion of the interpreting physician regard-
ing LNI, i.e., PSMA PET report N-status (0, LNI negative; 
0.5, equivocal for LNI; 1, LNI positive, unitless) according 
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to Fanti et al. [28]. Since PET reporting was not standard-
ized during the inclusion time, all PSMA PET at both cent-
ers were reassessed by two nuclear medicine physicians in 
consensus and blinded regarding the outcome.

Data for comparison with published models

Additional data was extracted to compare the model’s per-
formance with published models in the validation cohort as 
listed in Supplemental Table S1.

Missing data

Cases with missing data were omitted (i.e., complete-case 
analysis).

Model development and selection

We developed three models for LNI prediction. In the first 
model, we combined all clinical and quantitative PET 
information (Model_Clinical_PET). In the second model, 
we added the PSMA PET report N-status as an additional 
variable to the first model (Model_Clinical_PET_Report). 
In the third model, we added the PSMA PET report N-status 
to the first model as a combined (ensemble) model (Model_
Clinical_PET/Report) [29]. WHO/ISUP grade groups (i.e., 
grade groups 1–5) and the PSMA PET report N-status were 
treated as continuous predictor. In an internal validation, 
we assessed the model’s discrimination ability. We chose 
the model with the highest internal discrimination ability 
for external validation. A probability threshold for clini-
cal application was estimated from the training cohort and 
applied to the validation cohort.

External validation

In the validation cohort, we assessed the model’s perfor-
mance in terms of model calibration, model discrimination 
ability, and clinical application.

Model comparison with published prediction 
models

In the validation cohort, the selected PSMA PET model 
was compared with six prediction models in clinical use 
(mpMRI-based models, 2019 Briganti nomogram [17], 
Draulans et  al. nomogram [18]; conventional models, 
MSKCC Pre-Radical Prostatectomy nomogram [22], the 
updated Partin tables (v.2016) [23], the Roach formula [24], 
and the Winter nomogram [25]). For the probability of LNI 
of the MSKCC Pre-Radical Prostatectomy nomogram, we 
used the model properties published online (https://​www.​
mskcc.​org/​nomog​rams/​prost​ate/​pre_​op/​coeff​icien​ts, Model 

N 6599/11816, updated 01/2020). For all other prediction 
models, the probability for LNI was calculated using the 
published model formulas. The final selected model was 
compared to the published prediction models regarding 
calibration, discrimination, and clinical application.

Statistical analysis

The patient’s characteristics were summarized using the 
mean, median, standard deviation, and interquartile range 
(IQR), as appropriate. Comparison of patients’ charac-
teristics was conducted by a two-sample t-test or Mann-
Whitney U Test for continuous variables and χ2 test for 
categorical variables.

Predictors were investigated for linearity/multicollin-
earity using scatter plots/generalized-variance-inflation 
calculations, respectively. We used a multivariable logistic 
regression model for the Model_Clinical_PET and Model_
Clinical_PET_Report model, and two separate logistic 
regression models for the ensemble model (Model_Clini-
cal_PET/Report) that were averaged using weights that 
were optimized using nonlinear optimization [29, 30]. 
Model calibration was assessed at mean, weak, and mod-
erate level including the Brier score and Spiegelhalter’s z 
[31]. Discrimination ability was assessed using AUC and 
clinical application using decision curve analysis, (DCA) 
respectively. Combined model calibration and discrimina-
tion was assessed using the index of prediction accuracy 
(IPA) [32]. AUC were compared using the Delong method 
[33]. For the internal validation, we applied a 10-times 
repeated tenfold cross-validation.

The probability threshold for the final model was selected 
using a 10-times repeated tenfold cross-validated DCA in 
the training cohort and by trying to match the reported 
spared ePLND (65.5%) and missed LNI (12.2%) for the 5% 
threshold for the 2012 Briganti model development [34].

For the external validation, the final model was trained on 
the training cohort and was applied to the validation cohort.

A 2-tailed P value of  < 0.05 was used to determine the 
statistical significance. We performed all statistical analysis 
in R version 4.0.5 (R Core Team (2021) R: A language and 
environment for statistical computing, Vienna, Austria).

Results

Patients’ characteristics and qualitative PSMA‑11 
PET performance

The data assembly process is demonstrated in Fig. 1. A 
total of 173 patients were available for the training cohort 
and 90 patients for the validation cohort. Table 1 lists all 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



3140	 European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:3137–3146

1 3

patient’s characteristics. The patients’ age was significantly 
higher in the training cohort (mean age 71.2 vs. 64.7 years, 
t = -7.34, df = 212.84, P < 0.001). Furthermore, the biopsy 
WHO/ISUP grade group distribution differed between the 
two cohorts with more ISUP grade 1 biopsies in the train-
ing group (ISUP grade 1, 8 vs. 0%, χ2 = 11.196, P = 0.02). 
There was no significant difference regarding pathological 
upgrading after RP (17 vs. 16%, χ2 = 0.0376, P = 0.85). The 
number of removed lymph nodes during ePLND did not dif-
fer between the training and validation cohort (mean 24.1 
vs. 23.7, P = 0.76).

Eighteen patients of the validation cohort had missing 
data concerning the 2019 Briganti model and 4 patients for 
the Draulans et al. model. Patient characteristics of the com-
plete case cohorts of these models are demonstrated in the 
Supplementary Table S2.

Supplementary Table S3 lists the qualitative PSMA PET 
results.

Model development and selection

Age and SUVmax showed a non-linear relationship with the 
logit of the outcome and PSMAtotal showed the highest collin-
earity. Therefore, we excluded these predictors. The AUC for 
predicting LNI was consistently high with all three models 
during internal validation (Model_Clinical_PET 0.721 (CI 
0.694-0.747) (ISUP, PSA, PSMAvol as predictors), Model_
Clinical_PET_Report 0.816 (CI 0.791-0.841) (ISUP, PSA, 
PSMAvol, PSMA PET report N-status as predictors), and 

Model_Clinical_PET/Report 0.842 (CI 0.82–0.865) (ISUP, 
PSA, PSMAvol, PSMA PET report N-status as predictors, 
combined in two models). Supplemental Table S4 lists the 
full model specifications. Model_Clinical_PET/Report 
(Fig. 1, Supplemental Table S4) showed the highest inter-
nally validated AUC (0.842 CI 0.82–0.865) and was selected 
for further analysis. The internally cross-validated DCA of 
this model showed a better net benefit (NB) than either the 
treatment or no treatment schemes when the threshold prob-
ability was  ≥ 0.15 (Supplementary Fig. 1). A threshold prob-
ability of  ≥ 17% with an estimated spared ePLND of 54.3% 
and missed LNI of 19.1% fitted best the reported correspond-
ing values of the 5% threshold of the 2012 Briganti model 
(spared ePLND of 65.5% and missed LNI of 12.2%) and was 
chosen as threshold for external validation.

External validation

In the external validation, the ensemble model Model_
Clinical_PET/Report showed good calibration-in-the-large 
(event rate = 0.30, average predicted risk = 0.28) and there 
was no evidence of systematic over- or underfitting (Inter-
cept = -0.297, Slope = 1.095, p = 0.41; Brier score 0.12, 
Spiegelhalter’s z -0.89). However, calibration curve showed 
an overestimation of the risk of LNI among patients with 
observed LNI probability below 0.22 and underestimated the 
risk of LNI among patients with observed LNI probability 
above 0.22 (Fig. 2). The model showed a high discrimination 
ability for LNI (AUC 0.923, 95% CI 0.863–0.984) (Table 2).

Fig. 1   Flow-chart of the 
ensemble (combined) model 
(Model_Clinical_PET/Report). 
The input (predictors) is 
processed within two separate 
logistic regression models 
and combined using averaged 
weights that were optimized 
using nonlinear optimization
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Table 3 lists the results of the model application to the vali-
dation cohort according to thresholds between a predicted prob-
ability of LNI of 0 and 0.30. By using the previously estimated 
cut-off of  ≥ 0.17, 45 ePLNDs (45/90, 50%) would have been 
avoided, 44 of them in patients without LNI (44/69, 63.8%) and 
one in a patient with LNI (1/21, 4.8%), respectively.

Model comparison with published prediction 
models

The proposed model showed similar calibration compared 
to the conventional and mpMRI-based models. Calibration 
curves/calibration characteristics are depicted in Fig. 2A-E/
Supplementary Table S3 and Supplementary Fig. 2A-D/
Supplementary Table S5/6 for comparison with conventional 
and mpMRI-based LNI prediction models, respectively.

The proposed model showed significantly higher discrim-
ination (AUC 0.923, 95% CI 0.863–0.984) compared to all 
conventional prediction models except the MSKCC model 
(AUC 0.824, 95% CI 0.710–0.938), and non-significant 
higher AUC compared to the mpMRI-based LNI prediction 
models (Table 2).

The proposed model showed higher combined discrimina-
tion and calibration (IPA 0.35) compared to the conventional 
models and a combined discrimination and calibration higher 
than the Draulans et al. model (IPA 0.31) and lower than the 
Briganti 2019 model (IPA 0.37). All IPA values are depicted 
in Table S5/6.

DCA revealed a high NB (0.165) of the proposed model 
compared to the treat-all strategy at the proposed threshold 
of  ≥ 17% (Fig. 3). Of the conventional models, only the 
MSKCC Pre-Radical Prostatectomy nomogram showed higher 

Table 1   Patient characteristics

a At targeted/systematic biopsy
Values in bold indicate statistical significance

Characteristics Training cohort (n = 173) Validation cohort (n = 90) P

LNI- LNI +  P LNI- LNI +  P

Age Mean 72 74 0.20 65 63.7 0.46  < 0.001
Range 50 – 85 53—89 51 – 79 50 – 76
SD 7.9 7.2 6.02 7.30

PSA Median 10 14.7 0.02 8.5 14.0 0.03 0.15
Range 1.82—93.9 0.57 -100 1.22 – 55.0 2.08 – 143
IQR 7.92 18.87 7.9 13.5

Highest biopsy ISUPa 1 12 2 0.15 - - 0.01 0.02
2 24 9 9 5
3 23 11 18 2
4 35 14 32 5
5 23 20 10 9

cT T1c - - - 53 9 0.01 -
T2a - - 15 11
T3a - - 1 1

SUVmax Median 10.7 12.73 0.08 10.2 18.0  < 0.001 0.92
Range 0—122.8 4.1- 42.6 0 – 45.7 6.2 – 48.4
IQR 11.3 11.6 10.6 14.6

PSMAvol Median 3.5 8.4  < 0.001 3.0 12.4  < 0.001 0.97
Range 0—89.5 0.04—64.5 0 – 20.4 0.61 – 39.5
IQR 5.2 24.8 5.2 19.0

PSMAtotal Median 21.2 49.3  < 0.001 13 89.9  < 0.001 0.51
Range 0.0—863.8 0.2—643.3 0 – 108.6 3.0 – 412.1
IQR 37.5 166.1 44.5 148.6

PSMA PET report N-status LNI negative 116 17  < 0.001 64 10  < 0.001 0.49
Equivocal 0 9 3 2
LNI positive 1 30 2 9

LNI 0 117 0 - 69 0 - 0.17
1 0 56 0 21
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NB compared to the treat-all strategy at the recommended 
threshold of 5% (Fig. 3A). Of the mpMRI-based models, the 
2019 Briganti nomogram showed a lower NB compared to 
the treat-all strategy at the recommended threshold of 7% and 
the Draulans et al. nomogram (no recommended threshold 
available) showed a consistently better NB compared to the 
treat-all strategy at a threshold of 7% (NB 0.189) and above 
(Fig. 3B, C).

Discussion

In this study, we developed and externally evaluated a mul-
tivariable prediction model including quantitative and quali-
tative information from PSMA PET for predicting LNI at 
RP with ePLND as reference and assessed its performance 
against conventional and mpMRI-based prediction models. 
Our results demonstrated that a model including imaging 
parameter from PSMA PET might improve models that are 

solely based clinical parameters. This is consistent with pre-
vious reports that assessed the inclusion of mpMRI param-
eters into prediction models for LNI [17, 18]. Our study 
introduces an innovative approach to predict LNI by combin-
ing PSMA PET reporting by a nuclear medicine physician 
with readily available quantitative PSMA PET parameters 
and clinical parameters. A web-calculator to determine the 
LNI probability according to the proposed model is available 
under https://​psma-​pet.​com/​predi​ct (this calculator should 
only be used for research purposes).

Our ensemble model incorporating PSA, highest biopsy 
ISUP, PSMAVol and the PSMA PET report N-status yielded 
high sensitivity (0.95) and moderate specificity (0.64) for 
LNI detection at the proposed threshold of  ≥ 0.17. These 
results are comparable with the external validation of the 
2019 Briganti nomogram (sensitivity of 0.97 and specificity 
of 0.61) [35]. Our results suggest that especially incorpo-
rating the LNI status of the imaging report may improve 
prediction models, which is in line with previous reports 

Fig. 2   Model calibration plots of predicted probability versus 
observed probability of lymph node involvement for (A) the proposed 
model (Model_Clinical_PET/Report), (B) the MSKCC Pre-Radical 
Prostatectomy nomogram, (C) the updated Partin tables (v.2016), (D) 

the Roach formula, and (E) the Winter nomogram. The dotted lines 
represent the LOESS fit, the dashed lines represent a straight fit. The 
black bars denote the distribution of predicted probabilities
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regarding esophageal cancer [36]. We suppose that a com-
bination of predictors from both, mpMRI and PSMA PET 
might be of value in LNI prediction.

The proposed threshold (≥ 17%) appears rather high 
compared to recommended cut-offs of 5% for conventional 
nomograms and 7% for the 2019 Briganti nomogram. How-
ever, the external validation shows that this threshold led 
to reliable results (50% of ePLND spared, with a risk of 
missing only 4.8% LNI) despite very probable differences 
between the training and validation cohort (e.g., calibration 

of the PET scanner). Moreover, a threshold of  ≥ 19% in the 
validation cohort would have yielded an even higher NB 
(0.185) and would have spared more ePLND (67.8%), with a 
risk of missing 9.5 LNI. However, the optimal recommended 
threshold should also be based on clinical reason, and it is 
questionable if a potentially higher number of missed LNI is 
clinically acceptable. Therefore, we suppose that the model’s 
calibration and the threshold should be further investigated 
in a larger external cohort.

The potential of imaging variables for predicting LNI in 
PCa has been reported almost 20 years ago using neural net-
works [37]. Recently, advanced machine learning algorithms 
have been reported for LNI prediction in PCa [38, 39]. Cysouw 
et al. reported an internally validated AUC of 0.86 for LNI in 
intermediate- to high-risk PCa using PSMA PET radiomics 
[38]. We think that the sophisticated application of more com-
plex models hinders its transition to clinical practice.

Our study has several limitations. Cases for which 
ePLND was not performed were not included, causing a 
selection bias. However, all LNI prediction models, which 
we used for comparison, are also based on PLND. Our 
proposed model is based on [68Ga]Ga-PSMA-11 PET, 
which is costly, not yet a standard procedure at many insti-
tutions and must be interpreted with care to avoid false 

Table 2   Area under the curve of the proposed model and other lymph 
node invasion prediction models in the validation cohort

N Model name AUC (95% CI)

90 MSKCC 0.824 (0.710–0.938)
Partin v.2016 0.644 (0.505–0.783)
Roach 0.700 (0.548–0.852)
Winter 0.720 (0.590–0.851)
Model_Clinical_PET/Report 0.923 (0.863–0.984)

67 2019 Briganti 0.786 (0.607–0.966)
Model_Clinical_PET/Report 0.900 (0.815–0.986)

86 Draulans et al 0.822 (0.700–0.944)
Model_Clinical_PET/Report 0.921 (0.859–0.983)

Table 3   Analyses of the proposed model-derived (Model_Clinical_PET/Report) cut-offs used to discriminate between patients with or without 
lymph node involvement confirmed at extended pelvic lymph node dissection

LNI, lymph node involvement; ePLND, extended pelvic lymph node dissection
Values in bold indicate the proposed threshold

Calculated probabil-
ity of LNI % (cut-off)

Number of patients, n (%) Sensitivity Specificity Net benefit

Below the cut-off (ePLND not recom-
mended)

Equal to or above the cut-off (ePLND 
recommended)

Total Without LNI With LNI Total Without LNI With LNI

0–13 0 (0) 0 (0) 0 (0) 90 (100) 69 (100) 21 (100) 1.000 0.000 0.119
14 4 (4.4) 4 (5.8) 0 (0) 86 (95.6) 65 (94.2) 21 (100) 1.000 0.058 0.116
15 15 (16.7) 15 (21.7) 0 (0) 75 (83.3) 54 (78.3) 21 (100) 1.000 0.217 0.127
16 28 (31.1) 28 (40.6) 0 (0) 62 (68.9) 41 (59.4) 21 (100) 1.000 0.406 0.147
17 45 (50) 44 (63.8) 1 (4.8) 45 (50) 25 (36.2) 20 (95.2) 0.952 0.638 0.165
18 54 (60) 53 (76.8) 1 (4.8) 36 (40) 16 (23.2) 20 (95.2) 0.952 0.768 0.183
19 61 (67.8) 59 (85.5) 2 (9.5) 29 (32.2) 10 (14.5) 19 (90.5) 0.905 0.855 0.185
20 65 (72.2) 62 (89.9) 3 (14.3) 25 (27.8) 7 (10.1) 18 (85.7) 0.857 0.899 0.181
21 68 (75.6) 63 (91.3) 5 (23.8) 22 (24.4) 6 (8.7) 16 (76.2) 0.762 0.913 0.160
22 69 (76.7) 63 (91.3) 6 (28.6) 21 (23.3) 6 (8.7) 15 (71.4) 0.714 0.913 0.148
23 71 (78.9) 63 (91.3) 8 (38.1) 19 (21.1) 6 (8.7) 13 (61.9) 0.619 0.913 0.125
24 72 (80) 64 (92.8) 8 (38.1) 18 (20) 5 (7.2) 13 (61.9) 0.619 0.928 0.127
25 72 (80) 64 (92.8) 8 (38.1) 18 (20) 5 (7.2) 13 (61.9) 0.619 0.928 0.126
26 73 (81.1) 64 (92.8) 9 (42.9) 17 (18.9) 5 (7.2) 12 (57.1) 0.571 0.928 0.114
27 73 (81.1) 64 (92.8) 9 (42.9) 17 (18.9) 5 (7.2) 12 (57.1) 0.571 0.928 0.113
28 73 (81.1) 64 (92.8) 9 (42.9) 17 (18.9) 5 (7.2) 12 (57.1) 0.571 0.928 0.112
29 73 (81.1) 64 (92.8) 9 (42.9) 17 (18.9) 5 (7.2) 12 (57.1) 0.571 0.928 0.111
30 73 (81.1) 64 (92.8) 9 (42.9) 17 (18.9) 5 (7.2) 12 (57.1) 0.571 0.928 0.110
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positive findings. However, it may be included into wides-
cale practice soon. Moreover, the proposed model is based 
on [68Ga]Ga-PSMA-11 and we did not assess its perfor-
mance with other PSMA tracers. Moreover, we did not 
investigate potential bias introduced by different PET scan-
ner and both, the training and the validation cohort were 
of relatively small sample size, which might have led to 
bias and may limit the generalizability of our results. The 
two cohorts differentiated regarding preoperative biopsy 
(mpMRI-targeted with saturation biopsy versus mpMRI-
targeted / standard 12-core biopsy) and surgical approach 
for RP; however, we did not find a significant difference 
regarding pathological upgrading after RP, number of 

removed lymph nodes or LNI rate, respectively. Lastly, 
because of missing data, we could not directly compare 
the two mpMRI-based models.

Our results indicate that combining clinical and qualita-
tive/quantitative 68Ga-PSMA-11 information may improve 
LNI prediction in intermediate to high-risk PCa patients 
undergoing primary staging. The proposed model with 
a  ≥ 17% threshold yielded a good performance compared 
to conventional and mpMRI-based models, sparing half of 
all ePLNDs with a risk of missing only  < 5% LNI. Future 
research should investigate the combination of information 
from both PSMA PET and mpMRI for LNI prediction in 
larger patient cohorts with PCa before RP.

Fig. 3   Decision curve analysis (DCA) of the proposed model (M_
clinical_PET/Report) compared to (A) conventional nomograms, (B) 
the 2019 Briganti nomogram, and (C) the Draulans et al. nomogram. 
The DCA depicts the net benefit (NB, y-axis) of a model or a strat-
egy (treat-all or treat-none with ePLND) according to a risk thresh-
old (x-axis). Of the conventional models (A), only the MSKCC model 
showed a higher NB compared to the treat-all strategy at the recom-
mended threshold of 5%. However, at this threshold, the net benefit 
of the MSKCC nomogram (0.195) was only slightly above the treat-
all strategy (0.193), meaning that one can perform 195-192 = 3 more 

beneficial ePLND (out of 1000 patients) when using the MSKCC 
nomogram). At a threshold of  ≥ 17%, the net benefit was 0.165 for 
the proposed model and 0.076 for the treat-all strategy, meaning that 
one can perform 165-76 = 89 more beneficial ePLND (out of 1000 
patients) when using the proposed model. Of the mpMRI-based mod-
els (B, C), the 2019 Briganti nomogram (B) showed a lower net bene-
fit compared to the treat-all strategy at the recommended threshold of 
7% and the Draulans et al. nomogram (C, no recommended threshold 
available) showed a consistently better net benefit (0.189) compared 
to the treat-all strategy at a threshold of 7% and above
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