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ISS
ABSTRACT
BACKGROUND: Polygenic scores (PGSs) hold the potential to identify patients who respond favorably to specific
psychiatric treatments. However, their biological interpretation remains unclear. In this study, we developed pathway-
specific PGSs (PSPGSs) for lithium response and assessed their association with clinical lithium response in patients
with bipolar disorder.
2025 THE AUTHORS. Published by Elsevier Inc on behalf of the Society of Biological Psychiatry. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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METHODS: Using sets of genes involved in pathways affected by lithium, we developed 9 PSPGSs and evaluated their
associations with lithium response in the International Consortium on Lithium Genetics (ConLi1Gen) (N = 2367), with
validation in combined PsyCourse (Pathomechanisms and Signatures in the Longitudinal Course of Psychosis) (N = 105)
and BipoLife (N = 102) cohorts. The association between each PSPGS and lithium response—defined both as a continuous
ALDA score and a categorical outcome (good vs. poor responses)—was evaluated using regression models, with
adjustment for confounders. The cutoff for a significant association was p , .05 after multiple testing correction.
RESULTS: The PGSs for acetylcholine, GABA (gamma-aminobutyric acid), and mitochondria were associated with
response to lithium in both categorical and continuous outcomes. However, the PGSs for calcium channel, circadian
rhythm, and GSK (glycogen synthase kinase) were associated only with the continuous outcome. Each score
explained 0.29% to 1.91% of the variance in the categorical and 0.30% to 1.54% of the variance in the continuous
outcomes. A multivariate model combining PSPGSs that showed significant associations in the univariate analysis
(combined PSPGS) increased the percentage of variance explained (R2) to 3.71% and 3.18% for the categorical and
continuous outcomes, respectively. Associations for PGSs for GABA and circadian rhythm were replicated. Patients
with the highest genetic loading (10th decile) for acetylcholine variants were 3.03 times more likely (95% CI, 1.95 to
4.69) to show a good lithium response (categorical outcome) than patients with the lowest genetic loading (1st decile).
CONCLUSIONS: PSPGSs achieved predictive performance comparable to the conventional genome-wide PGSs, with
the added advantage of biological interpretability using a smaller list of genetic variants.

https://doi.org/10.1016/j.bpsgos.2025.100558
Over the past 15 years, there has been significant progress in
the development of polygenic scores (PGSs). Key research
areas have been centered around evaluating their potential for
disease risk prediction, uncovering the genetic basis of com-
plex diseases, and clinical application for disease screening
and drug selection through pharmacogenomics, as well as
assessing their cross-population transferability (1–5).

Since the initial implementation of the polygenic theory for
assessing the genetic risk of schizophrenia (SCZ) by the In-
ternational Schizophrenia Consortium in 2009 (1), hundreds of
PGSs have been developed and investigated for their associ-
ation with the risk of common mental health disorders such as
SCZ (6), major depressive disorder (MDD) (7), and bipolar
disorder (BD) (8). In recent years, PGSs have emerged as a
promising tool for understanding the collective influence of
common single nucleotide polymorphisms (SNPs) on patients’
pharmacological treatment outcomes (9,10). For example, in
patients with SCZ, a PGS for SCZ (PGSSCZ) that was signifi-
cantly associated with antipsychotic treatment outcomes
explained 3.2% of the interindividual variability in treatment
response (11). Other studies have shown that a PGSSCZ

explained 2.0% of the variance in treatment-resistant SCZ
(12–15), w1% of the variance in antipsychotic-induced weight
gain (16,17), nearly 2% of the variance in clozapine-induced
myocarditis (18), and 2.7% of the variance in prolonged hos-
pitalization (19). Similarly, in patients with MDD, genetic scores
for SCZ, MDD, BD, and neuroticism showed significant asso-
ciations with antidepressant treatment response (20–23) and
resistance (24,25), although each of these scores explained
,2% of the variability. Among patients with BD, lithium
response was associated with PGSs for SCZ (26), MDD (27),
attention-deficit/hyperactivity disorder (28), and lithium
responsiveness (29). Combined analysis of SCZ and MDD
PGSs with clinical variables resulted in better prediction, with
the model accounting for approximately 14% of the variance in
lithium treatment response (30), emphasizing the potential
clinical relevance of algorithms that combine PGSs with clinical
Biological Psychiatry: Global Open Science September 2025; 5:1005
data. This result exceeds the accuracy of any PGSs that have
been analyzed individually or in combination using standard
measures, which at best have explained up to 5.6% of the
variance in psycho-pharmacotherapeutic outcomes, e.g., in
resistance to clozapine (31). While PGSs hold significance for
research purposes and offer promising clinical implications
for the future, their predictive performance remains limited for
direct clinical translation (10). Thus, there is a need to utilize
novel methods to develop PGSs with better predictive capa-
bilities and to refine existing scores for increased precision.

In this context, newly proposed approaches such as
biology-informed polygenic modeling have been evaluated for
various traits (32–34). This PGS approach leverages genetic
variants based on their relationship to molecular pathways that
are linked to the phenotype of interest, thereby enhancing their
predictive power and relevance to pharmacogenomics or dis-
ease screening (35). For example, an insulin receptor–based
PGS targeting the striatum and prefrontal cortex predicted
impulsivity and cognitive abilities in children, as well as
addiction and dementia risk in adults (32). Similarly, a PGS
composed of variants associated with nervous system devel-
opment and neuron differentiation explained 6.9% of the
variance in liability to psychosis in a sample of patients with
DSM-IV diagnoses of SCZ or psychosis-related disorders
determined by a structured clinical interview. This result sur-
passes the 3.7% of the variance explained by a conventional
PGSSCZ using genome-wide variants (34). Thus, restricting
PGSs to genetic variants within biological pathways known to
be associated with lithium response may reduce noise from
variants with spurious associations and increase the power of
polygenic models while explicitly building our mechanistic
understanding (36). Furthermore, the biology-informed poly-
genic approach may facilitate the effort to identify new treat-
ment targets (33,37).

Building on this knowledge, our study adopted the biolog-
ically informed strategy and developed pathway-specific PGSs
(PSPGSs) for lithium response. We hypothesized that these
58 www.sobp.org/GOS
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scores would improve the prediction of clinical response to
lithium and could identify biological targets for future drug
development in patients with BD.

METHODS AND MATERIALS

Study Sample Characteristics

The target data for this study were obtained from the Inter-
national Consortium on Lithium Genetics (ConLi1Gen) cohort
(http://www.conligen.org/), a global initiative established to
investigate the genetic underpinnings of lithium treatment
response in patients with BD. The discovery and target sample
included only patients of European ancestry (N = 2367) who
received lithium and were followed up for at least 6 months
(38). The number of participants in each country is described in
our previous study (29).

To replicate the findings from ConLi1Gen, we utilized
combined data from 2 German cohorts: the PsyCourse
(Pathomechanisms and Signatures in the Longitudinal Course
of Psychosis) study (N = 105) (39,40) and BipoLife (N = 102)
cohorts (41). A detailed sample selection procedure for the
replication cohorts is included in Supplemental Methods.

Target Outcome Measure

For both target and replication cohorts, the validated retro-
spective criteria for long-term treatment response in research
subjects, known as the ALDA scale, was used to assess
patient’s response to lithium treatment (42,43). This score
quantifies the degree of improvement during lithium response
expressed as a composite measure of change in frequency
and severity of mood symptoms (A score). The ALDA scale is
adjusted for 5 potential confounding factors that could affect
symptom improvement (B scale). These factors include the
number (B1) and the frequency (B2) of disease episodes
before/off the treatment, the duration of the treatment (B3),
and compliance and use of additional medication during the
periods of stability. The total ALDA score for each individual
was calculated by subtracting the total B score from the total
A score. The target outcome, lithium response, was defined
as categorical (good response vs. poor response) and
continuous outcomes. For the categorical outcome, patients
who had a total score $7 were classified as good responders,
and patients with a score ,7 were classified as poor re-
sponders (44). The total ALDA score was used as a contin-
uous lithium response measure after excluding patients with
B scores .4 or who had missing data. Negative scores were
recalibrated as 0. This algorithm has been used in previous
studies (26,27,30,45,46) and described in detail elsewhere
(44).

Genotyping, Quality Control, and Imputation
Procedures for the ConLi1Gen Sample

DNA was extracted from peripheral blood samples collected at
22 participating sites, and samples were genotyped using
either Affymetrix or Illumina SNP arrays (44). Prior to imputa-
tion, quality control (QC) procedures were implemented on the
genotype data using PLINK version 1.9 (47). SNPs with a poor
genotyping rate (,95%), strand ambiguity (A/T and C/G
SNPs), and a minor allele frequency (MAF) ,10% and SNPs
Biological Psychiatry: Global
that deviated from Hardy-Weinberg equilibrium (p , 1026)
were removed. Individuals with sex inconsistencies between
the documented and genotype-derived sex and genetically
related individuals were also excluded. The genotypic and QC
details of the ConLi1Gen cohort are available elsewhere (44).

The genotype data that passed QC were imputed in the
Michigan server separately for each genotyping platform using
the Haplotype Reference Consortium reference panel
comprising broadly European haplotypes at 39,235,157 SNPs
(48). For each cohort, imputation quality procedures were
implemented and excluded SNPs of low frequency (MAF ,

1%) and low quality (imputation quality score R2 , 0.6). Then,
genotype calls for the filtered SNPs were derived and merged
using PLINK from the imputed dosage score (47). The geno-
typing, QC, and imputation procedures for the replication co-
horts are provided in Supplemental Methods.

Steps of Developing Pathway-Specific Polygenic
Scores

Step 1: Identify Biological Pathways (Targets) of
Lithium. To develop a PSPGS, we first conducted a narrative
review to identify biological pathways or processes potentially
modulated by lithium. In this review, we identified 9 pathways
including acetylcholine, GABA (gamma-aminobutyric acid),
glutamate, dopamine, calcium channels, mitochondria, circa-
dian rhythm, GSK (glycogen synthase kinase), and NMDA as
potential targets for lithium in BD treatment (Supplement).

Step 2: Map Genes and SNPs for Each Biological
Pathway. Using the names of pathways relevant to lithium as
a search term, we extracted candidate genes in 3 existing
databases, specifically Gene Set Enrichment Analysis (https://
www.gsea-msigdb.org/gsea/index.jsp), HUGO Gene Nomen-
clature Committee (https://www.genenames.org/), and Kyoto
Encyclopedia of Genes and Genomes (https://www.genome.
jp/kegg/). The extracted lists of genes for each pathway are
provided in the Supplement. We used MAGMA software
(https://ctg.cncr.nl/software/magma) (49), with –annotate win-
dow = 100, 20 (100 kb upstream and 20 kb downstream
window), to annotate SNPs to these genes in each pathway.
The final list of annotated SNPs that were matched with the
target dataset (ConLi1Gen) and included in our analysis were
acetylcholine (6247), GABA (2994), glutamate (3840), dopa-
mine (5794), calcium channel (4236), mitochondria (7801),
circadian rhythm (6673), GSK (707) and NMDA (641). The lists
of genes and SNPs that were included in the final analysis are
provided in Supplemental Data. We note that some of the
genes/SNPs overlap across pathways.

Step 3: Compute Pathway-Specific Polygenic
Scores. To compute PSPGSs for participants in 13 countries
involved in the ConLi1Gen, we implemented a widely accepted
leave-one-country-out (LOC) procedure (50,51) in which PGSs
were calculated for participants of one country at a time (target
sample) using genome-wide association study (GWAS) sum-
mary statistics from the remaining 12 countries (discovery
sample). This iterative procedure was conducted separately for
the categorical and continuous measures of lithium response,
which resulted in a total of 26 analyses. Each discovery GWAS
Open Science September 2025; 5:100558 www.sobp.org/GOS 3
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Figure 1. Examples of potential targets of lithium (pathways) and detailed steps of the data analysis process. Ach, acetylcholine; Ca21, calcium ion; GABA,
gamma-aminobutyric acid; GSEA, Gene Set Enrichment Analysis; GSK, glycogen synthase kinase; GWAS, genome-wide association study; HGNC, HUGO
Gene Nomenclature Committee; KEGG, Kyoto Encyclopedia of Genes and Genomes; Li1, lithium; LOC, leave-one-country-out; PRS-CS, polygenic risk score
with continuous shrinkage; PSPGS, pathway-specific polygenic score; SNP, single nucleotide polymorphism.
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was performed using PLINK, with regression models adjusted
for age, sex, chip type, and the first 4 principal components
(PCs). Each of the PSPGSs was computed using the polygenic
risk score with continuous shrinkage (PRS-CS) method, which
incorporates continuous shrinkage priors on effect sizes and
accounts for linkage disequilibrium among SNPs (52). In the
replication analysis, a summary GWAS data from the full
ConLi1Gen was used as the discovery sample (29) to compute
Table 1. Characteristics of the Study Cohorts and
Participants

Cohort N
Sex,

Female Age (SD)

ALDA
Score,

Mean (SD)

Good
Response to
Lithium, N (%)

ConLi1Gen 2367 1369 47.53 (13.73) 4.12 (3.15) 660 (27.88%)

BipoLife 102 49 49.87 (13.62) 4.52 (2.93) 29 (28.43%)

PsyCourse 105 42 46.91 (12.64) 3.80 (2.87) 24 (22.86%)

ConLi1Gen, International Consortium on Lithium Genetics; PsyCourse,
Pathomechanisms and Signatures in the Longitudinal Course of Psychosis.

4 Biological Psychiatry: Global Open Science September 2025; 5:1005
PSPGSs in the combined PsyCourse (39,40) and BipoLife (41)
samples. Additional details on the development of PSPGSs are
provided in Supplemental Methods.

Step 4: Association Analysis. Finally, the associations
between each of the PSPGSs and lithium response were eval-
uated using linear regression analysis for the continuous
outcome and binary logistic regression analysis for the cate-
gorical outcome. Each association analysis was adjusted for
age, sex, chip type, and the first 4 PCs. The cutoff for a sta-
tistically significant association was p , .05 after correction for
multiple testing using the Benjamini-Hochberg procedure (53).
To evaluate the combined effect of multiple PSPGSs on lithium
response, we utilized a multivariate regression model consid-
ering only PSPGSs that showed a significant association with
lithium response in the univariate model. The performance of
this combined PSPGS model was compared with the conven-
tional genome-wide PGS model that uses genome-wide vari-
ants of lithium responsiveness. This analysis was conducted
using r2redux R package (54). We also performed elastic-net
regularization with 5-fold nested cross-validation in the
58 www.sobp.org/GOS
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Table 2. The Association of Pathway-Specific Polygenic Scores With Clinical Lithium Treatment Response in Patients With
Bipolar Disorder (N = 2367)

Pathways No. of Genes No. of SNPs

Categorical Outcome Continuous ALDA Score

aOR (95% CI) p Pseudo R2, % b (95% CI) p R2, %

Acetylcholine 164 6247 1.34 (1.22 to 1.49) 3.54 3 1028a 1.91% 0.38 (0.26 to 0.51) 3.24 3 1029a 1.54%

GABA Receptor 76 2994 1.15 (1.05 to 1.27) 9.14 3 1023a 0.34%a 0.15 (0.03 to 0.28) .03a 0.30%

Calcium Channel 134 4236 1.10 (0.99 to 1.21) .11 0.29% 0.18 (0.06 to 0.31) .01a 0.30%

Mitochondria 163 7801 0.82 (0.74 to 0.91) 7.42 3 1024a 1.05% 20.19 (20.30 to 20.09) 1.02 3 1024a 1.16%

Glutamate 92 3840 0.98 (0.89 to 1.08) .77 0.25% 0.09 (20.03 to 0.22) .21 0.20%

Circadian Rhythm 129 6673 1.09 (0.99 to 1.21) .10 0.62% 0.16 (0.04 to 0.29) .01 0.20%

Dopamine 155 5794 1.03 (0.94 to 1.14) .59 0.01% 0.12 (20.01 to 0.23) .11 0.01%

GSK 18 707 1.09 (0.99 to 1.21) .15 0.15% 0.24 (0.13 to 0.37) 1.85 3 1024a 0.60%

NMDA 11 641 0.93 (0.84 to 1.02) .14 0.01% 0.04 (20.09 to 0.17) .67 0.01%

Combined PSPGS 942 38,933 NA ,.01a 3.71% NA ,.01a 3.18%

Genome-Wide PGS 1.14 (1.03 to 1.27) 4.13 3 1029a 2.87% 0.45 (0.31 to 0.57) 2.41 3 1027a 2.69%

A statistically significant association was determined at p , .05 after correction for Benjamini-Hochberg multiple testing. The observed R2 in the categorical outcome is
transformed to a liability scale. The analysis models were adjusted for age, sex, chip type, and the first 4 principal components. R2 represents the variance explained by
polygenic scores. The combined PSPGS represents a multivariate analysis of PSPGSs with p values , .05 in the univariate analysis at least either of lithium response, i.e.,
acetylcholine, GABA, calcium signaling, mitochondria, circadian rhythm, and GSK potential pathways. The genome-wide PGS represents a PGS for genome-wide variants
of lithium responsiveness for lithium treatment response in a leave-one-country-out procedure.

aOR, adjusted odds ratio; GABA, gamma-aminobutyric acid; GSK, glycogen synthase kinase; NA, not applicable; PSPGS, pathway-specific polygenic score; SNP, single
nucleotide polymorphism.

aDenotes significant association after correction for multiple tests.
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continuous outcome model to mitigate potential over-
estimation of the performance of combined PSPGSs in the
multivariate analysis using ordinary least squares regression.
Furthermore, we implemented a stratified analysis by dividing
the ConLi1Gen sample into deciles, ranging from the lowest to
the highest polygenic loading for each PSPGS. The proportion
of phenotypic variance explained (R2) by each PSPGS was
calculated as the difference in R2 between the model fit with
specific PGSs and covariates and the model with only cova-
riates. For the categorical outcome, McFadden’s pseudo R2

was calculated as a measure of model performance (55). The
observed R2 values were subsequently transformed to the li-
ability (56), assuming a lithium responsiveness prevalence of
Table 3. The Association of Pathway-Specific Polygenic Scores
With Bipolar Disorder in Replication Cohorts (Combined PsyCou

Pathways No. of Genes No. of SNPs

Categor

aOR (95% CI)

Acetylcholine 164 6247 1.21 (0.88 to 1.67)

GABA 76 2994 1.53 (1.09 to 2.14)

Calcium Channel 134 4236 0.96 (0.69 to 1.33)

Mitochondria 163 7801 0.96 (0.70 to 1.33)

Circadian Rhythm 92 3840 0.99 (0.72 to 1.37)

Glutamate 129 6673 0.98 (0.71 to 1.35)

Dopamine 155 5794 1.07 (0.78 to 1.47)

GSK 18 707 1.13 (0.82 to 1.58)

NMDA 11 641 1.13 (0.77 to 1.69)

The cutoff for statistical significance was p , .05 after Benjamini-Hochberg procedu
chip type, and the first 4 principal components. The observed R2 in the categorical outc
stratification). R2 indicates variance explained by polygenic scores.

aOR, adjusted odds ratio; GABA, gamma-aminobutyric acid; GSK, glycogen synthas
of Psychosis; SNP, single nucleotide polymorphism.

aDenotes significant association after correction for multiple tests.
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30% (44,57) and responders to nonresponders ratio within
both the target and replication cohorts.

Figure 1 shows examples of potential targets of lithium
(pathways) and detailed steps of the data analysis process.

RESULTS

Description of Study Participants

Our discovery analysis included data from 2367 patients with
BD treated with lithium for at least 6 months. Nearly 60% of the
participants were female; the mean age (SD) was 47.53 (13.73)
years. Six hundred sixty (27.9%) patients had a good response
to lithium treatment (defined as an ALDA score $7), and the
With Clinical Lithium Treatment Response Among Patients
rse and BipoLife Cohorts) (N = 207)

ical Outcome Continuous Outcome

p Pseudo R2, % b (95% CI) p R2, %

.09 0.95% 0.24 (20.15 to 0.64) .22 0.22%

.01a 2.74% 0.57 (0.18 to 0.96) .01a 3.31%

.79 0.05% 0.25 (20.14 to 0.65) .21 0.30%

.83 0.03% 20.13 (20.52 to 0.27) .51 0.01%

.94 0.02% 0.40 (0.01 to 0.79) .04a 1.38%

.88 0.02% 0.29 (20.10 to 0.68) .15 0.54%

.67 0.13% 20.20 (20.60 to 0.19) .31 0.01%

.44 0.33% 0.01 (20.39 to 20.40) .96 0.01%

.81 0.03% 0.13 (20.26 to 0.52) .52 0.01%

re correction for multiple testing. The analysis models were adjusted for age, sex,
ome is transformed to a liability scale. aOR is from the total sample (before decile

e kinase; PsyCourse, Pathomechanisms and Signatures in the Longitudinal Course
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Figure 2. Trends in the odds ratios for favorable lithium treatment
response [with the categorical (A) and beta coefficeints in the continuous (B)
outcomes in patients with bipolar disorder, comparing patients with a high
pathway-specific PGS, deciles (2nd–10th) with patients with the lowest
genetic scores (1st decile; n = 2367)] for the pathways that had a significant
association after multiple testing. The dot points and error bars represent the
odds ratios and 95% CIs for the respective polygenic deciles. The PGS
deciles that crossed an odds ratio of 1 on the y-axis in the categorical
outcome (A) and a beta coefficient of 0 in the continuous outcome (B) are
not statistically significant. GABA, gamma-aminobutyric acid; GSK,
glycogen synthase kinase; PGS, polygenic score.
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mean (SD) ALDA total score was 4.12 (3.15). Among the
replication cohort participants, 48.0% of the BipoLife partici-
pants and 40% of the PsyCourse participants were female.
About 28% of patients in the BipoLife cohort and 23% of
patients in the PsyCourse cohort had a good response to
lithium treatment (Table 1).
Associations of Pathway-Specific Polygenic Scores
With Clinical Lithium Treatment Response

BD patients with higher PGSs for acetylcholine genetic vari-
ants (AChPGS) were more likely to have a good lithium treat-
ment response than BD patients with lower PGSs; adjusted
odds ratio (aOR) = 1.34 (95% CI, 1.22 to 1.49; p = 3.54 3 1028;
pseudo R2 = 1.91%) for the categorical outcome and b = 0.38
(95% CI, 0.26 to 0.51; p = 3.24 3 1029; R2 = 1.56%) for the
continuous outcome (Table 2). In the stratified analysis, pa-
tients with the highest genetic loading for ACh variants (10th
decile) were 3.03 times more likely (95% CI, 1.95 to 4.69) to
have a good lithium response than patients with the lowest
genetic loading (1st decile) (Figure 2). Similarly, BD patients
with higher PGSs for GABA genetic variants (GABAPGS) were
more likely to have a good lithium treatment response than BD
patients with lower GABAPGS; aOR = 1.15 (95% CI, 1.05 to
1.27; p = 9.14 3 1023; pseudo R2 = 0.34%) for the categorical
outcome and b = 0.15 (95% CI, 0.03 to 0.28; p = .03; R2 =
6 Biological Psychiatry: Global Open Science September 2025; 5:1005
0.30%) for the continuous outcome (Table 2). In the stratified
analysis, patients with the highest genetic loading for GABA
variants (10th decile) were 2.01 times more likely (95% CI, 1.30
to 3.09) to have a good lithium treatment response than pa-
tients with the lowest genetic loading (1st decile) (Figure 2).
Higher PGSs for calcium channel variants (Ca21PGS) in BD
patients were significantly associated with the continuous
lithium response (p = .01, R2 = 0.3%) but not with the cate-
gorical measure (p = .11) (Table 2). The PGS for GSK genetic
variants (GSKPGS) and the PGS for circadian rhythm genetic
variants (CIRPGS) were positively associated with better lithium
response—with continuous outcome (p = 1.84 3 1024; R2 =
0.6%) and (p = .01, R2 = 0.2%), respectively, but not with the
categorical outcome. In contrast, the increased genetic vari-
ance within mitochondria genes was associated with poorer
lithium response—categorical (p = 7.42 3 1024; pseudo R2 =
1.05%) and the continuous outcomes (p = 1.02 3 1024; R2 =
1.16%) in the PGS for mitochondria genetic variants
(MITOPGS). With a decreasing trend across deciles, BD patients
with the highest genetic loadings for mitochondria variants
(10th decile) had 52% lower odds of responding to lithium than
patients with the lowest genetic loadings (1st decile); aOR =
0.52 (95% CI, 0.33 to 0.80) (Figure 2). The remaining PSPGSs

were not significant. The full stratified analysis is presented in
the Supplement.

Combined Modeling of Pathway-Specific Polygenic
Scores

The multivariate modeling combining PSPGSs that showed a
significant association in univariate analysis (combined PSPGS)
explained 3.71% of the variance in the categorical and 3.18%
in the continuous lithium responses. These results were higher
than the variance explained by each of the PSPGSs. To
compare the predictive performance of PGSs developed from
the pathway-specific approach with the conventional genome-
wide method, we developed a PGS for lithium responsiveness
(Li1PGS) using a similar LOC procedure. The Li1PGS explained
significant variance in the categorical (pseudo R2 = 2.87%) and
continuous (pseudo R2 = 2.69%) outcomes (Table 2). When
comparing these Li1PGS R2 values with the combined PSPGS,
no statistically significant difference was found for either the
categorical (R2 difference = 84%; p = .58, non-nested model)
or the continuous (R2 difference = 0.49%; p = .88, non-nested
model) lithium treatment outcomes. These findings indicate
that the combined PSPGS resulted in model performance that
was comparable to that of the conventional genome-wide PGS
(see Supplement). Furthermore, the elastic-net regularization
regression model resulted in 2.98% of the variability in the
continuous outcome being explained, which is very similar to
the results in the multivariate analysis using ordinary least
squares regression (R2 = 3.18%) (Supplement).

Replication Analysis

Using the combined datasets from PsyCourse and BipoLife, we
found a statistically significant association between the
GABAPGS and lithium treatment response, both for the cate-
gorical (p , .01, pseudo R2 = 2.74%) and the continuous (p =
.01, R2 = 3.30%) outcomes, replicating the findings from the
above analysis. The results showed that patients with BD who
58 www.sobp.org/GOS
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had higher GABAPGSs were 1.53 times more likely (95% CI, 1.09
to 2.14) to have a good lithium treatment response than patients
with lower GABAPGSs (for the categorical outcome). For the
continuous outcome, each 1-unit increase in the GABAPGS was
associated with a 0.57-point increase in the ALDA score (95%
CI, 0.18 to 0.96). The CIRPGS was also significantly associated
with the continuous lithium response (p = .01, R2 = 1.38). Each
1-unit increase in the CIRPGS was associated with a 0.40-point
increase in the ALDA score (95% CI, 0.01 to 0.79). The asso-
ciation results of the PGSs for other potential biological path-
ways were not replicated. The full replication analysis results are
available in Table 3.
DISCUSSION

For the first time, we developed biologically informative PSPGSs

in well-characterized datasets and evaluated their association
with lithium treatment response in patients with BD. Building
on a previous study (29) that utilized the conventional genome-
wide PGS approach, the current analysis targeted genetic
variants mapped within acetylcholine, GABA, calcium channel,
mitochondria, glutamate, circadian rhythm, dopamine, NMDA,
and GSK pathways that are characterized as potential phar-
macological targets in the treatment of BD (58,59). We found
that BD patients with higher genetic loading of variants within
the acetylcholine, GABA, calcium channel, GSK, and circadian
rhythm pathways were more likely to respond to lithium
treatment. In contrast, individuals with higher loading for ge-
netic variants in the mitochondria pathway were less likely to
respond to lithium. Our stratified analysis showed that patients
with the highest genetic loading for acetylcholine, GABA, and
calcium channel pathway variants (in the 10th decile) had a
good lithium treatment response compared with patients with
the lowest genetic loading (in the 1st decile), with an increasing
trend of lithium treatment responsiveness across the 1st decile
to the 10th decile. The trend was reversed in the mitochondria
pathway.

Combined modeling of PSPGS explained 3.71% of the
phenotypic variance in categorical and 3.18% in the contin-
uous lithium response, comparable to the predictive power of
the conventional polygenic model developed using genome-
wide variants (29). While these approaches appear compara-
ble in predictive performance, the PSPGS has advantages over
the traditional whole genome polygenic approach in that it
uses biological information to optimize the number of SNPs in
each pathway or biological phenotype of interest (e.g., circa-
dian rhythm, mitochondrial function) (60). The process of
modeling individual genetic variation in lithium-related path-
ways attempts to enrich the selection of biologically significant
variants at the pathway level, making PSPGS more biologically
interpretable in comparison to conventional genome-wide PGS
(60). Moreover, PSPGS could make the process of drug repur-
posing more efficient through its focus on specific genes in
each pathway that are associated with pharmacogenomic
outcomes of interest (61). The pathway-specific polygenic
approach also prioritizes variants that may contribute to higher
heritability estimates and the detection of enriched and func-
tionally relevant GWAS signals by minimizing noise variants
and leveraging the genetic variation across multiple potential
biological pathways, thereby achieving better clinical utility
Biological Psychiatry: Global
(62–65). Combining these scores with clinical data may further
increase the variance explained, thereby improving their clin-
ical utility (30).

In terms of the direction of associations with lithium treat-
ment response, AChPGS, GABAPGS, Ca21PGS, CIRPGS, and
GSKPGS were positively associated. The positive associations
between AChPGS, GABAPGS, and lithium response are
consistent with evidence suggesting that lithium acts to cor-
rect deficits in acetylcholine and GABA neurotransmission
(58,59,66,67). A similar association between lithium treatment
response and Ca21PGS is consistent with evidence of disrup-
tion of cellular calcium concentrations in patients with BD (68).
Lithium is known to attenuate calcium release and regulate
intracellular calcium levels in hippocampal neurons, thereby
reducing excitotoxicity (69). Regarding the circadian rhythm
pathway, lithium is widely recognized for its efficacy in
improving sleep rhythm by increasing amplitude and slowing
rhythm cycles (70,71). Good lithium responders show higher
amplitude sleep cycle (72) and lithium has been found to cor-
rect rhythm abnormalities in patients with BD (73,74). The
positive association between GSKPGS and lithium treatment
response aligns with previously reported functional enrichment
of the PI3K-Akt signaling pathway, which involves GSK-3b and
is associated with response to lithium (75). From the above
evidence, a higher genetic loading for lithium response ap-
pears to be related to better treatability.

On the other hand, the increased genetic variance within
mitochondrial genes was associated with poorer lithium
treatment response. Evidence suggests that patients with BD
may experience reductions in mitochondrial enzyme levels and
overall mitochondrial health, resulting in reduced bioenergetic
capacity (76). Mitochondrial gene expression tends to be lower
in the postmortem brains of patients with BD and is rescued
specifically in lithium responders via a number of potential
mechanisms including expression of electron transport chain
proteins, second messenger systems such as protein kinase A,
protein kinase C and in intracellular potassium and calcium
regulation (76–78). Studies in induced pluripotent stem cell–
derived neuron culture suggest that lithium may act to
correct hyperexcitability via these mechanisms (76). The sig-
nificant association between MITOPGS and lithium treatment
response underscores the centrality of mitochondrial health in
lithium’s mechanism of action. The relationship between our
negative association of these genes with lithium response and
protein expression networks needs further exploration.

Pathway-specific PGSs have been employed in several
studies to enhance risk stratification in psychiatry (79–82). For
example, Grama et al. (79) investigated whether behavior- and
neuronal-related gene sets, previously implicated in SCZ, were
associated with subcortical volumes. They found that PGS
derived from an abnormal behavior gene set was associated
with right thalamic volume, and this association was robust
across p-value thresholds, unlike the finding from a genome-
wide approach (79). Warren et al. (80) also studied the
relationship between the genome-wide PGSSCZ and the
neurotransmitter PGSs (glutamate, GABA, dopamine, and se-
rotonin) with psychotic disorder presentation. In this study,
there was no significant association between individual
symptom measures and the PGSSCZ, while glutamate and
GABA pathway PGSs were associated with psychosis case
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status, and a dopamine pathway PGS was significantly asso-
ciated with poorer global functioning in participants with psy-
chosis (80). Other studies have shown that a PGS for oxidative
stress pathway significantly differentiated individuals with early
psychosis status from control individuals (82), and a dopamine
pathway PGS has been implicated in the pathophysiology of
SCZ (81).

Other examples of the development of PSPGSs in cardio-
vascular medicine have showcased their potential in
personalizing treatment approaches. For example, a PGS for
calcium signaling pathways together with phosphatidylinosi-
tol/inositol phosphate pathways was associated with hyper-
tensive status, suggesting that their regulation could be a
target for prevention and treatment of hypertension (83).
PGSs tailored to pharmacodynamic pathways of angiotensin-
converting enzyme (ACE) inhibitors (84) and b blockers,
respectively, have enhanced patient selection for ACE in-
hibitors and predicted mortality in patients with heart failure
(85). Similarly, a pharmacogenomic polygenic response score
developed with 31 genes associated with adenosine
diphosphate–based platelet reactivity during clopidogrel
treatment has been applied to predict major adverse cardio-
vascular events and cardiovascular death in patients with
coronary artery disease treated with clopidogrel (86).

Based on the evidence presented in our study and the liter-
ature summarized above, PSPGSs hold promise for the future of
precision psychiatry by refining patient treatment stratification
and improving treatment efficacy through leveraging genetic
information across specific pharmacological pathways. PSPGS-
based stratification of patients as likely good and poor re-
sponders could reduce delays in delivering effective treatment
and associated burden. Serious side effects of long-term lithium
therapy, including chronic renal failure, hypothyroidism, and
mortality due to toxicity (87), could also be minimized.
Limitations

While our study provides novel and robust support for the use
of PSPGS methods, the results should be interpreted in
conjunction with some limitations. First, the ConLi1Gen
cohort’s retrospective study design introduces challenges in
determining associations between a PSPGS and lithium
response without a placebo arm. However, the B scale in the
ALDA score measures and weights the effect of confounding
factors such as treatment duration, number and frequency of
mood episodes off treatment, compliance, and use of
concomitant psychotropics while on lithium. Second, only
participants of European ancestry were included, and these
results may not be generalized to other ancestrally diverse
populations. Third, while our general strategy for pathway
selection was based on the narrative review, we included
cholinergic and glutamatergic pathways identified in our
previous work with the same sample, highlighting the need for
external replication of these pathways (29). The PsyCourse
and BipoLife cohorts are genuine replications not used in the
previous analysis and therefore mitigate this issue somewhat.
Fourth, we used relatively small cohorts for the replication
analysis, suggesting that the failure to replicate results for
acetylcholine, calcium signaling, and mitochondrial pathways
may be subject to type II error. Large and diverse cohorts are
8 Biological Psychiatry: Global Open Science September 2025; 5:1005
needed to further explore and replicate our findings. Fifth, our
search was not exhaustive, and we may have excluded impor-
tant biological pathways implicated in lithium pharmacology.

Conclusions

By focusing on biologically relevant genetic variants, PSPGS for
lithium response has shown predictive capabilities comparable
to those of the conventional genome-wide PGS, but with the
advantage of using fewer SNPs and providing biological
interpretability. While the variance in lithium treatment
response explained by these models is still small, at best
3.71%, future models may include an expanded range of
lithium-specific pathways to improve accuracy, reaching an
effect size relevant to stratifying individuals by genetic risk for
personalization of lithium treatment. Our study invites further
investigation of how proteins including acetylcholine, GABA,
calcium signaling, mitochondria, GSK, glutamate, and circa-
dian rhythm pathways interact at the molecular level to define
lithium treatment response. Replication in larger cohorts,
including cohorts of participants of non-European ancestry, is
required to establish the clinical utility of PSPGSs.
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