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Abstract
The wild bootstrap is a popular resampling method in the context of time-to-event 
data analysis. Previous works established the large sample properties of it for appli-
cations to different estimators and test statistics. It can be used to justify the accu-
racy of inference procedures such as hypothesis tests or time-simultaneous confi-
dence bands. This paper provides a general framework for establishing large sample 
properties in a unified way by using martingale structures. This framework includes 
most of the well-known parametric, semiparametric and nonparametric statistical 
methods in time-to-event analysis. Along the way of proving the validity of the wild 
bootstrap, a new variant of Rebolledo’s martingale central limit theorem for count-
ing process-based martingales is developed as well.

Keywords  Counting processes · Martingale theory · Resampling · Statistical 
inference · Survival analysis · Wild bootstrap

1  Introduction

In medical studies about, say, the 5-year survival chances of patients following 
a therapy, not only the point estimate after 5 years is of interest, but also a confi-
dence interval which quantifies the estimation uncertainty. Furthermore, it makes 
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an essential difference for the patient whether the survival chances fall rather 
swiftly or slowly towards the 5-year survival chance; this has an influence on the 
expected remaining lifetime. For this reason, it is more instructive to construct 
time-simultaneous confidence bands for the survival curve function. For such, and 
also for all hypothesis tests, the distribution of the corresponding (test) statistics, 
which typically involve stochastic processes, are generally unknown and need to be 
approximated.

A solution to this challenge is the use of resampling techniques, such as random 
permutation, the bootstrap (Efron 1979), or the wild bootstrap (Chien-Fu 1986). 
Certain variants of these techniques were also proposed for incomplete, e.g., inde-
pendent left-truncated or right-censored, time-to-event data. Early references are 
Efron (1981) and Akritas (1986) for the classical bootstrap (drawing with replace-
ment from the individual data points), Neuhaus (1993) for random permutation (of 
the censoring indicators), and Lin et al. (1993) for the wild bootstrap.

Because of its popularity, computational efficiency, and flexibility, we focus in 
the present paper on the wild bootstrap as the method of choice in the context of sur-
vival and event history analysis. To mention a few related works, in Lin (1994) and 
Dobler et al. (2019) the wild bootstrap is applied to Cox models, and in Lin (1997), 
Beyersmann et al. (2013), and Dobler et al. (2017) to cumulative incidence functions 
in competing risks models; the latter two works allowed for more general multipli-
ers, compared to the commonly used standard normal ones. Fine and Gray (1999) 
proposed a multiplier bootstrap in the context of proportional subdistribution hazard 
models. Spiekerman and Lin (1998) considered multivariate failure time models, 
Lin et al. (2000) means in semiparametric models, and Scheike and Zhang (2003) 
Cox-Aalen models, and corresponding resampling options; these three papers 
focused on more general marginal hazard rate models, rather than intensity models. 
Bluhmki et al. (2018) and (Bluhmki et al. 2019) analyzed Aalen–Johansen estima-
tors in general Markovian multi-state models and general Nelson–Aalen estimators, 
respectively. Among the more recent works in survival or event history analysis, the 
following is an incomplete list of papers which utilize multiplier bootstraps: Hiabu 
et al. (2021) within excess additive regression models with two survival time scales; 
Titman and Putter (2022) about test for the Markov property in general multi-state 
models; Bakoyannis (2021) for confidence bands based on clustered, nonhomogene-
ous Markovian multi-state processes. In their monograph, Martinussen and Scheike 
(2006) exemplified various applications of such multiplier bootstraps, also from a 
practical point of view.

In this paper, we develop a rigorous theory to justify the use of the wild boot-
strap under various survival analysis models. The eligible statistic should be linear 
in counting process-based integrals. Additionally, individual counting processes 
may have multiple jumps each. The potential models may be nonparametric, sem-
iparametric, or parametric (regression) models as long as the intensity process 
related to the counting process is modelled. In particular, any multiplicative inten-
sity model is covered in our unified approach. In other words, this paper provides 
an umbrella theory for a large variety of specific applications of the wild bootstrap 
in the context of counting processes. As in many of the above-mentioned articles, 
we employ the wild bootstrap for mimicking the martingale processes related to 
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individual counting processes by replacing the martingale increments with the ran-
domly perturbed counting process increments. The involved multipliers may follow 
a general, possibly non-normal distribution with zero mean, unit variance, and finite 
fourth moment. In order to verify the asymptotic validity of the wild bootstrap as an 
approximation procedure, we show that the asymptotic distribution of the resam-
pled process coincides with that of the statistic of interest. Our proofs rely on weak 
regularity conditions and, differently from those in the above-mentioned articles, are 
developed in a novel way based on the martingale theory for counting processes as 
given in Rebolledo (1980) instead of on the commonly used variant of this theorem 
presented in Andersen et al. (1993). This more general version of Rebolledos mar-
tingale central limit theorem is needed for both the counting process-based statis-
tic, and the wild bootstrap counterpart. In the former case, an underlying martingale 
assumption does not hold in general. In the latter case, it is needed to also accom-
modate multipliers that follow a general, possibly asymmetrical distribution. In this 
way, our approach solves an open problem of handling the Lindeberg condition in a 
widely applicable manner.

As a rule of thumb, the wild bootstrap considered in this paper is available for 
resampling survival or event history data if all of the the following criteria are met: 
(i) the data are i.i.d.; (ii) the intensity process of counting processes is modeled; (iii) 
the estimators are asymptotically linear and martingale-based. Possible relaxations 
of these conditions are discussed at the end of this paper.

This paper is organized as follows. In Sect. 2, we introduce the general set-up, the 
precise form of the counting process-based statistic, and derive its asymptotic dis-
tribution. In Sect. 3, we define the wild bootstrap counterpart of the statistic under 
consideration and study its asymptotic distribution. Furthermore, we illustrate our 
findings with the Cox model throughout Sects. 2 and 3, and with some additional, 
well-known examples in Sect.  4. Finally, in Sect.  5, we provide a discussion. All 
proofs are given in a Supporting Information file available online.

2 � Notation, model, and convergence of counting process‑based 
estimators

2.1 � Basic model and asymptotic representation

Let N1(t),… ,Nn(t) , t ∈ T  , be independent and identically distributed counting 
processes. Each individual counting process Ni , i = 1,… , n , has in total ni = Ni(�) 
jumps of size 1 at observable (random) event times Ti,1,… , Ti,ni , with no two 
jumps at the same time. Here, T = [0, �] is a finite interval. Let N = (N1,… ,Nn) 
denote the n-variate counting process. The at-risk indicator for individual 
i is denoted by Yi(t) , t ∈ T  , i = 1,… , n , and the n-variate aggregation by 
Y = (Y1,… , Yn) . Additionally, an individual d-variate, possibly time-dependent 
covariate vector Z̃i(t) , t ∈ T, i = 1,… , n , may also be available. The observable 
vector of covariates is Zi = Z̃iYi , i = 1,… , n . The collections of all n observable 
d-dimensional covariate vectors are denoted by Z(t) , t ∈ T  . The collection of all 
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data is (N(t),Y(t),Z(t), t ∈ T) . Let � ∈ ℝ
q , q ≥ d , be a parametric model compo-

nent whereof d entries specify the influence of Z on the jump times of N and the 
remaining (q − d) entries could, for example, be the parameters of the baseline 
hazard in a parametric regression model. The simplest case of q = 0 corresponds 
to a nonparametric model; cf. Examples  1a–1g,  3,  and  4 below for some non- 
and semiparametric settings. Finally, (�,A,ℙ) denotes the underlying probabil-
ity space, and ℙ

⟶
 , L

⟶
 denote convergence in probability and law, respectively. 

Typically, multivariate quantities are written in bold type and the finiteness of a 
stochastic quantity is meant almost surely.

We will illustrate the general theory throughout the paper by means of the Cox 
model.

Example 1a  (Cox model) The ordinary Cox model is a semiparametric regression 
model with multiplicative intensity process and at most one event time per individ-
ual, that is, Ni(t) ∈ {0, 1} , i = 1,… , n . Let Yi(t) be the at-risk indicator of individual 
i. Given the d-variate predictable (with respect to a suitable filtration) and bounded 
covariate vectors Zi(t) , t ∈ T  , the intensity process of Ni is

with

i = 1,… , n . Here, �0 is the so-called baseline hazard rate for an individual with the 
zero covariate vector and �0 is the true regression coefficient. In this case, the pro-
cesses Mi(t) = Ni(t) − �i(t,Zi(t), �0) , t ∈ T  , are martingales with respect to a suit-
able filtration, where �i(t,Zi(t), �) = ∫ t

0
�i(u,Zi(t), �)du . The Breslow estimator for 

the cumulative baseline hazard function A0(t) = ∫ t

0
�0(u)du , t ∈ T  , is given by

where 𝜷n is the solution to the score equation Un(�, �) = 0 , with score statistic 
Un(t, �) =

∑n

i=1
∫ t

0
(Zi(u) − S(1)

n
(u, �)∕S(0)

n
(u, �))dNi(u) . Here, 𝜏 > 0 is the terminal 

evaluation time on the treatment time-scale, and

m ∈ {1, 2} , where Zi(t)
⊗1 = Zi(t) and Zi(t)

⊗2 = Zi(t)Zi(t)
⊤.

	�  ◻

�(dNi(t)|Yi(s),Zi(s) ∶ s ≤ t) = �i(t,Zi(t), �0)dt = Yi(t)�i(t,Zi(t), �0)dt, t ∈ T,

𝛼i(t,Zi(t), �0) = 𝛼0(t) exp(�
⊤

0
Zi(t)), t ∈ T,

Â0,n(t, 𝜷n) =
1

n

n∑

i=1
∫

t

0

nJ(u)

S
(0)
n (u, 𝜷n)

dNi(u), t ∈ T,

S(0)
n
(t, �) =

n∑

i=1

Yi(t) exp(Z
⊤

i
(t)�),

S(m)
n

(t, �) =

n∑

i=1

Yi(t)Zi(t)
⊗m exp(Z⊤

i
(t)�), t ∈ T,
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In the context of survival analysis, the respective estimator or test statistic, Â0,n(⋅, 𝜷n) 
in Example 1a, is often linear in counting process-based integrals, where the individual 
integral is formed with respect to some integrand. The form of the integrand depends 
on the particular estimator or the particular test statistic, while the linear counting pro-
cess-based structure remains the same. In particular, one is often interested in the esti-
mation of a vector-valued function X(t) , t ∈ T  , of dimension p by a counting process-
based statistic of the form

Here, the p-dimensional integrands kn,i(t, �) defined on � × T ×ℝ
q are stochastic 

processes that are not necessarily independent, with kn,i(⋅, �) uniformly bounded and 
predictable for � = �0 , and kn,i(t, ⋅) almost surely continuously differentiable in � , 
i = 1,… , n . We assume that 𝜷n is a consistent estimator of the true model parameter 
�0 with

Additionally, we impose an assumption on the asymptotic representation of √
n(𝜷n − 𝜷0) for n → ∞ , which will be specified later in this section.

Example 1b  (Cox model continued) In the case of the Cox model, we have 
X(t) = A0(t) and Xn(t) = Â0,n(t, 𝜷n) with integrand kn(t, �0) =

nJ(t)

S
(0)
n (t, �0)

 , t ∈ T  . In 

particular, kn(⋅, �0) as a function in t is bounded by J on T  and predictable due to the 
predictability of Yi and Zi , i = 1,… , n . 	�  ◻

In other contexts, one may be interested in employing univariate test statistics of the 
form (1) to test a null hypothesis H against an alternative hypothesis K. Obviously, use-
ful estimation of X is only achievable if the distribution of Xn − X is appropriately ana-
lyzed, and approximated if necessary. Likewise for the null distribution of a test statistic 
Xn in the case of testing.

In the following, we focus on the common situation that the exact distribution of 
Xn − X is unknown. The goal of this section is to determine the asymptotic distribution 
of the stochastic process 

√
n
�
Xn − X

�
 for n → ∞ . A special feature of such counting 

process-based statistics is that they have a strong connection to martingales, and mar-
tingale theory can be used to analyze the asymptotic distribution. The connection to 
martingale theory is established by means of the Doob-Meyer decomposition, which 
links the Ni uniquely to the martingale

with respect to the filtration F1(t) = �{N
i
(u),Y

i
(u),Z

i
(u), 0 ≤ u ≤ t, i = 1,… , n}, t ∈ T. The 

cumulative intensity process �i(t, �0) as introduced in (3) is the compensator of 
Ni(t) , t ∈ T  ; it is a non-decreasing predictable function in t with �i(0, �0) = 0 , 

(1)Xn(t) =
1

n

n∑

i=1
∫

t

0

kn,i(u, 𝜷n)dNi(u), t ∈ T.

(2)𝜷n − 𝜷0 = Op(n
−1∕2).

(3)Mi(t) = Ni(t) − �i(t, �0), t ∈ T,



636	 M. T. Dietrich et al.

i = 1,… , n . Additionally, we assume �i(t, �0) to be absolutely continuous with 
intensity process �i =

d

dt
�i and expected value �(𝛬i(𝜏, �0)) < ∞.

Note that we consider models for the intensity process which could also be 
expressed as �(dNi(t)|F1(t−)) = �i(t)dt . We explicitly do not consider so-called 
rate (or marginal) models �(dNi(t)|Ni(t−),Yi(t),Zi(u)) = �i(t)dt , because they typi-
cally do not result in martingale structures; see, e.g., Scheike and Zhang (2003). In 
Sect. 5, we will address rate models in some more detail.

Some event times may be unobservable due to independent right-censoring, left-
truncation, or more general incomplete data patterns such as independent censor-
ing on intervals in the sense of [Andersen et  al. 1993,  Chapter  III]. Technically, 
the covariate processes could also be expressed with the help of censored marked 
point processes; cf. [Andersen et  al. (1993),  Section  III.5]. To mention one par-
ticular example: in the case of independent left-truncation and right-censoring, 
the underlying probability measure should be conditional on (some) event times 
being bigger than the study entry (or left-truncation) time. The censoring mecha-
nisms are captured by the at-risk function Yi , i = 1,… , n, and incorporated in the 
structure of the intensity process by assuming the multiplicative intensity model: 
�i(t, �0) = Yi(t)�i(t, �0), t ∈ T, where �i(⋅, �0) is the hazard rate related to the events 
registered by the counting process Ni , and it does not depend on the censoring or 
the truncation. If a parametric or a semi-parametric model is chosen for the hazard 
rate, the hazard rate �i(t, �0) could, for example, take the form 𝛼0(t, �1;0)r(�

⊤

2;0
Zi(t)) 

or 𝛼0(t)r(�
⊤

0
Zi(t)) , t ∈ T  , respectively, with �0 = (�1;0, �2;0) for parametric models. 

Here, r(⋅) is some relative risk function, �0(⋅, �1;0) is the parametric baseline haz-
ard function, and �0(⋅) is the nonparametric baseline hazard function. See Andersen 
et al. (1993) for a general reference for models based on counting processes.

We wish to find a useful asymptotic representation for 
√
n(Xn(t) − X(t)) . Before 

the introduction of the general version of this representation, we revisit the particu-
lar example of the Cox model.

Example 1c  (Cox model continued) For the Breslow estimator Â0,n(t, 𝜷n) it is well-
known that, for t ∈ T  , 

√
n(Â0,n(t, 𝜷n) − A0(t)) equals

where Cn is a certain (random) d × d matrix. Note, in (4) it has been used that, for 
t ∈ T  , we have

and

(4)

1√
n

n�

i=1
∫

t

0

nJ(u)

S
(0)
n (u, �0)

dMi(u) −
1

n

n�

i=1
∫

t

0

nJ(u)S(1)
n
(u, �0)

⊤

S
(0)
n (u, �0)

2
dNi(u)

× Cn

1√
n

� n�

i=1
∫

𝜏

0

�
Zi(u) −

S(1)
n
(u, �0)

S
(0)
n (u, �0)

�
dMi(u)

�
+ op(1),

√
n

�
1

n

n�

i=1
∫

t

0

nJ(u)

S
(0)
n (u, �0)

d�i(u, �0) − A0(t)

�
=
√
n∫

t

0

(J(u) − 1)dA0(u) = op(1),
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with 𝜷n − 𝜷0 = Op(n
−1∕2) . 	�  ◻

Using Example 1c, we want to draw attention to common structures seen in the 
asymptotic representation of counting process-based estimators such as the Bres-
low estimator. That is, the asymptotic representation consists of four components: 
two scaled sums of martingale integrals, one scaled sum of counting process-based 
integrals and a matrix, Cn in Example 1c, where each of the martingale integrals is 
formed with respect to a different integrand. In view of the similar structure of the 
two martingale integrals, we introduce the (p + b)-dimensional stochastic process 
Dn,h = (D⊤

n,k
,D⊤

n,g
)⊤ which we define as

where the hn,i(t, �) = (kn,i(t, �)
⊤, gn,i(t, �)

⊤)⊤ ∶ 𝛺 × T ×ℝ
d
→ ℝ

p+b are bounded 
stochastic processes that are predictable for � = �0 , i = 1,… , n . Additionally, we 
define a (p × q)-dimensional counting process-based integral Bn(t) as

where Dkn,i denotes the Jacobian of kn,i(t, �) with respect to �.
In preparation of the presentation of the asymptotic representation of √
n
�
Xn − X

�
 , we make the following regularity assumption:

We also assume the following asymptotic representation for 𝜷
n
:

where Cn is some (q × b)-dimensional random matrix and gn,i ∶ � × T ×ℝ
q
→ ℝ

b 
are bounded stochastic processes that are predictable for � = �0 , i = 1,… , n . In 
Remark 1 at the end of this subsection, we illustrate why (8) is in general a natural 
condition for parametric models.

Now, we are ready to formulate the desired asymptotic representation for √
n(Xn(t) − X(t)).

Lemma 1  If (2), (7), and (8) hold, then

√
n(𝜷n − 𝜷0) = Cn

1√
n

n�

i=1
∫

�

0

�
Zi(u) −

S(1)
n
(u, 𝜷0)

S
(0)
n (u, 𝜷0)

�
dMi(u) + op(1),

(5)Dn,h(t) =
1√
n

n�

i=1
∫

t

0

hn,i(u, �0)dMi(u), t ∈ T,

(6)Bn(t) =
1

n

n∑

i=1
∫

t

0

Dkn,i(u, �0)dNi(u), t ∈ T,

(7)
1

n

n∑

i=1
∫

t

0

kn,i(u, �0)d�i(u, �0) − X(t) = op(n
−1∕2) for all t ∈ T.

(8)
√
n(𝜷n − 𝜷0) = Cn

1√
n

n�

i=1
∫

�

0

gn,i(u, 𝜷0)dMi(u) + op(1),
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Example 1d  (Cox model continued) Using the notation introduced above, we can 
rewrite the asymptotic respresentation of the Breslow estimator given in (4) as √
n(Â0,n(⋅, 𝜷n) − A0(⋅)) = Dn,k(⋅) + Bn(⋅)CnDn,g(𝜏) + op(1) , where the martingale 

integrals of the first term, Dn,k , are formulated in terms of kn(t, �) =
nJ(t)

S
(0)
n (t, �)

 at 

� = �0 , the martingale integrals involved in the second term, Dn,g , are formulated in 

terms of gn,i(t, �) = Zi(t) −
S(1)
n
(t, �)

S
(0)
n (t, �)

 at � = �0 , and the counting process-based inte-

grals of the second term, Bn , involve Dkn(t, �) = −
nJ(t)S(1)

n
(t, �)

S
(0)
n (t, �)2

 at � = �0 . Note 

that the integrands gn,i(⋅, �0) of Dn,g as functions in t are bounded, because 
S(0)
n
(⋅, �0)

−1 is bounded by S(1)
n
(⋅, �0) on T  and S(1)

n
(⋅, �0) is bounded due to the 

boundedness of Zi . Additionally, the integrands gn,i are predictable due to the pre-
dictability of Yi and Zi , i = 1,… , n.	�  ◻

Remark 1  To illustrate that (8) is a natural condition, we note that, for parametric 
models, it is common practice to take the maximum likelihood estimator as the esti-
mator 𝜷n for estimating the true parameter �0 . In Borgan (1984), parametric survival 
models are considered, where for n-variate counting processes (N1,… ,Nn) the like-
lihood equations are

for some parametric functions �i , i = 1,… , n , where ∇�i denotes the gradient of �i 
with respect to � . Denote the left-hand side of the likelihood equations above by 
Un(�, �) . Then

defines a square integrable martingale, as �i(t, �0)Yi(t)dt = d�i(t, �0) is the compen-
sator of dNi(t) . Under regularity conditions a Taylor expansion of Un(𝜷n, �) around 
�0 yields

Thus, (8) holds where gn,i(u, �0) = ∇�i(u, �0)�i(u, �0)
−1,

with

(9)
√
n(Xn(t) − X(t)) = Dn,k(t) + Bn(t)CnDn,g(�) + op(1), t ∈ T.

n∑

i=1
∫

�

0

∇�i(u, �)�i(u, �)
−1dNi(u) −

n∑

i=1
∫

�

0

∇�i(u, �)Yi(u)du = 0,

Un(�0, t) =

n∑

i=1
∫

t

0

∇�i(u, �0)

�i(u, �0)
dMi(u), t ∈ T

√
n(𝜷n − 𝜷0) = −

�
1

n
DUn(𝜷0, �)

�−1 1√
n
Un(𝜷0, �) + op(1).

Cn = −
(1
n
DUn(�0, �)

)−1
,
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Note that − 1

n
DUn(�0, �) is asymptotically equivalent to the optional covariation pro-

cess − 1

n
[Un(�0, ⋅)] of − 1√

n
Un(�0, ⋅) at � , which will be of use in Remark 3. 	�  ◻

In Sect.  2.3, we will focus on the derivation of the asymptotic distribution of 
the right-hand side of (9). Special attention is given to the martingale integrals 
Dn,h = (D⊤

n,k
,D⊤

n,g
)⊤ . According to Proposition  II.4.1 of Andersen et  al. (1993), 

Dn,h is a square integrable martingale with respect to F1 . Using this property, we 
will discuss in Sect. 2.2 an appropriate technique to proof the convergence in law 
of Dn,h on (D(T))p+b , as n → ∞ . Here, (D(T))p+b is the space of càdlàg functions 
in ℝp+b equipped with the product Skorohod topology. Additionally, given a multi-
dimensional vector of square integrable martingales Hn(t), t ∈ T  , the corresponding 
predictable and optional covariation processes are denoted by ⟨Hn⟩(t) and [Hn](t) , 
respectively. Furthermore, we denote v⊗2 = v ⋅ v⊤ ∈ ℝ

l×l for some v ∈ ℝ
l , ‖ ⋅ ‖ will 

denote the Euclidean norm, and B a neighborhood of �0.

2.2 � Rebolledo’s central limit theorem

To establish weak convergence results for the martingale components Dn,k and Dn,g 
of the martingale representation of Xn given in (9), the use of a central limit theo-
rem for martingales by Rebolledo (1980) seems the obvious choice. A variant of 
it, coined for applications in survival and event history analysis, is commonly used 
and propagated in textbooks, e.g., Andersen et al. (1993), Section II.5.1, and Aalen 
et  al. (2008),  Section  2.3.3. The stated requirements for the weak convergence of 
the martingales are the convergence of either of the predictable or optional variation 
processes. Additionally, it requires the convergence to zero of the predictable varia-
tion related to the process which only contains the jumps of the considered martin-
gale that exceed an arbitrarily chosen 𝜖 > 0 . Here, the underlying assumption is that 
this �-jump process is a martingale. However, as we will now see, this underlying 
assumption does not hold. This is due to the integrand in the �-jump process which 
is not predictable.

Remark 2  To make this more explicit, consider the square-integrable zero-mean 
martingale Dn,h(t) =

1√
n

∑n

i=1
∫ t

0
hn,i(u, �0)dMi(u).

Let us for simplicity focus on any component of this multivariate martingale, say, 
Dn,h(t) =

1√
n

∑n

i=1
∫ t

0
hn,i(u, �0)dMi(u) . Then the textbooks consider the stochastic 

process

DUn(�0, �) =

n∑

i=1
∫

�

0

∇2 log(�i(u, �0))dNi(u) −

n∑

i=1
∫

�

0

∇2�i(u, �0)Yi(u)du.

D𝜖
n,h
(t) = ∫

t

0

1{|𝛥Dn,h(u)| > 𝜖}dDn,h(u), t ∈ T,
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and its predictable variation process ought to converge to zero in probability. How-
ever, one may simplify the process as follows:

since jumps are only due to jumps of the counting process and there are jumps 
of size 1 only. In contrast, the first display on p. 84 of Andersen et al. (1993) also 
involves a centering term in the integrator by subtracting the intensity process. How-
ever, our previous display reveals that D�

n,h
(t) is not of the martingale form which 

is due to the non-predictability of the integrand 1{|𝛥Dn,h(u)| > 𝜖} . Consequently, it 
does not make sense to speak of the predictable variation process of this stochastic 
process. 	� ◻

The non-applicability of the variant of Rebolledo’s theorem as stated in the 
mentioned textbooks constitutes a gap in the literature that needs to be filled. In 
particular, the Lindeberg condition must be established with the help of another 
technique. To this end, we revisit the Lindeberg condition in (Rebolledo 1980) 
which requires the squared �-jump process to converge to zero in L1 , as n → ∞ . 
We combine this easily accessible Lindeberg condition with Rebolledo’s theorem 
for square integrable martingales by using the Lindeberg condition as a replace-
ment for the rather technical ARJ(2) condition of that theorem; see also Proposi-
tion 1.5 of the same reference. For the sake of completeness, we now state this 
version of Rebolledo’s theorem.

Theorem  1  (Rebolledo’s martingale central limit theorem, Theorem  V.1 of 
Rebolledo 1980) Let Hn be a square integrable zero-mean martingale which satisfies 
the Lindeberg condition, i.e., for each 𝜖 > 0 and t ∈ T ,

Consider the two following relations. 

(a)	 ⟨Hn⟩(t)
ℙ

⟶V(t) , as n → ∞ , for all t ∈ T ,
(b)	 [Hn](t)

ℙ

⟶V(t) , as n → ∞ , for all t ∈ T .

If (a) (respectively (b)) holds, then relation (b) (respectively (a)) is also valid and

Here, H denotes the 1-dimensional Gaussian centered continuous martingale with 
covariance function �(s, t) = V(s ∧ t) , (s, t) ∈ T 2 , where V(t) = ⟨H⟩(t) is a continu-
ous increasing real function with V(0) = 0.

D𝜖
n,h
(t) =

1√
n

n�

i=1
∫

t

0

1{�hn,i(u)� >
√
n𝜖}hn,i(u)dNi(u), t ∈ T,

(10)�(𝜎𝜖[Hn](t)) = �

(∑

s≤t
(𝛥Hn(s))

2
1{|𝛥Hn(s)| > 𝜖}

)
→ 0, as n → ∞.

H
n

L

⟶H, in D(T ), as n → ∞.
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We remark that the previous theorem considers one-dimensional martingales in 
the aforementioned paper. In contrast, we consider multi-dimensional martingales. 
To bridge this gap, one can make use of the Cramér–Wold theorem.

Although one may argue in a different way why the �-jumps of the martingale 
Dn,h are asymptotically negligible and then draw conclusions for the convergence in 
law of Dn,h , it is of general interest to have Theorem 1 available as a broadly applica-
ble solution that makes ad hoc workarounds superfluous.

2.3 � Regularity assumptions and weak convergence result

We are now ready to present the regularity conditions under which the asymptotic 
distribution of 

√
n(Xn − X) can be established. In fact, the assumptions stated in 

Assumption 1 are required for the weak convergence of Dn,h in the space of càdlàg 
functions, which is formulated in Lemma 5 in the Supporting Information.

Assumption 1  For each i ∈ ℕ there exists a (p + b)-dimensional stochastic process 
h̃i(t, �) defined on � × T × B such that 

(a)	 supt∈T,i∈{1,…,n} ‖hn,i(t, �̌n) − h̃i(t, �0)‖
ℙ

⟶0, as n → ∞ , for a consistent estimator 
�̌n of �0;

(b)	 h̃i(t, ⋅) is a continuous function in � ∈ B and bounded on T × B;
(c)	 the (p + b + 1)-tuples (h̃i(t, �0), 𝜆i(t, �0)) , i = 1,… , n , are pairwise independent 

and identically distributed for all t ∈ T .

Moreover, the following Assumption 2 is required to show a uniform weak law of 
large numbers for Bn ; see Lemma 6 in the Supporting Information for details.

Assumption 2  For each i ∈ ℕ there exists a (p × q)-dimensional stochastic process 
K̃i(t, �) defined on � × T × B such that 

(a)	 supt∈T,i∈{1,…,n} ‖Dkn,i(t, �̌n) − K̃i(t, �0)‖
ℙ

⟶0 , as n → ∞ , for �̌n which is consist-
ent for �0;

(b)	 K̃i(⋅, �0) is predictable w.r.t. F1 and bounded on T ;
(c)	 the (p + q + 1)-tuples (vec(K̃i(t, �0)), 𝜆i(t, �0)) , i = 1,… , n , are pairwise inde-

pendent and identically distributed for all t ∈ T .

Lastly, we state the convergence of Cn as an additional assumption; the examples 
in Sect. 4 below demonstrate that this convergence is often implied by the above-
stated assumptions.

Assumption 3  There exists C ∈ ℝ
q×b such that ‖Cn − C‖

ℙ

⟶0, as n → ∞.
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Based on Lemma  1, the assumptions above, and Lemmas  5  and  6 in the Sup-
porting Information, we finally obtain the desired weak convergence result for √
n(Xn − X).

Theorem 2  If Lemma 1 holds and Assumptions 1, 2, and 3 are fulfilled, then,

as n → ∞ , with Dk̃,Dg̃ , and B given in Lemmas 5 and 6 in the Supporting Informa-
tion. The limiting process is Gaussian.

Moreover, the matrix-valued (co)variance function of Dk̃ + BCDg̃(𝜏) is given as

Here, the covariance matrices Vk̃(t) ∈ ℝ
p×p,Vg̃(t) ∈ ℝ

b×b,Vk̃,g̃(t) ∈ ℝ
p×b , and 

Vg̃,k̃(t) ∈ ℝ
b×p , and B(t) ∈ ℝ

p×q are specified in Lemma 5 in  the Supporting 
Information.

3 � Application of the wild bootstrap and a weak convergence result

As we are faced with the ignorance of the (asymptotic) distribution of Xn − X in 
practical applications, we propose to employ the wild bootstrap as an approxima-
tion procedure. The wild bootstrap counterpart of Xn will be denoted by X∗

n
 . In order 

to verify the validity of the approximation procedure, we will prove in Sect.  3.2 
that, under regularity conditions, the (conditional) distributions of 

√
n(Xn − X) and √

n(X∗
n
− Xn) are asymptotically equivalent.

3.1 � The wild bootstrap estimator and its asymptotic representation

In order to define the wild bootstrap estimator X∗
n
 , we first introduce the core idea 

of the wild bootstrap. Naturally, the realisations of Xn vary with the underlying data 
sets. If we had many data sets and thus many estimates, we could draw conclusions 
about the distribution of the estimator. The wild bootstrap provides for this: the vari-
ation immanent in the estimates arising from different data sets is produced by so-
called random multipliers. In particular, the estimate calculated based on the avail-
able data set (N(t),Y(t),Z(t), t ∈ T) is perturbed by random multipliers such that 
for each realization of the random multiplier processes a new estimate is created. 
Based on these so-called wild bootstrap estimates, the distribution of the estima-
tor can be inferred. Thus, the multiplier processes, denoted by Gi(t) , t ∈ T  , with 
E(Gi(t)) = 0 , E(G2

i
(t)) = 1 , and finite fourth moment, i = 1,… , n , lie at the heart of 

√
n
�
Xn − X

�
= Dn,k + BnCnDn,g(𝜏) + op(1)

L

⟶Dk̃ + BCDg̃(𝜏), in (D(T ))p,

t ↦ Vk̃(t) + B(t)CVg̃(𝜏)C
⊤B(t)⊤ + Vk̃,g̃(t)C

⊤B(t)⊤ + B(t)CVg̃,k̃(t).
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the wild bootstrap. They are random piecewise constant functions that we consider 
in further detail below. The construction of the wild bootstrap counterpart X∗

n
 of Xn , 

B∗
n
 of Bn , C

∗
n
 of Cn , D

∗
n,h

 of Dn,h , or of any of the quantities that arise in this context, 
can be attributed to the following replacements:

Replacement 1 

(a)	 The square integrable martingale increment dMi(t) is replaced by the randomly 
perturbed counting process increment Gi(t)dNi(t) , i = 1,… , n;

(b)	 the unknown increments �i(dt, �0) are replaced by dNi(t) , i = 1,… , n;
(c)	 the unknown parameter coefficient �0 is replaced by the estimator 𝜷n;
(d)	 we set all op(1) terms in asymptotic representations to 0.

	�  ◻

Note that the substitution Gi(t)dNi(t) of dMi(t) , t ∈ T  , in Replacement 1 (a) is a 
square integrable martingale increment itself, given the data set, cf. Lemma 3 below. 
Moreover, for a broader applicability, we chose in Replacement 1 (b) the nonpara-
metric estimator dNi(t) rather than a semiparametric estimator 𝛬̂i(dt, 𝜷n) , t ∈ T  . As 
a consequence of Replacement 1, we also replace the counting process increments 
dNi(t) and the estimator 𝜷n in two steps. In case of the counting process increments, 
we decompose dNi(t) into dMi(t) + d�i(t, �0) according to the Doob-Meyer decom-
position given in (3). Second, Replacement 1 (a) and (b) are applied. Step one and 
two combined yield

as the replacement for dNi . Furthermore, we obtain a wild bootstrap counterpart of 
𝜷n via its asymptotic representation given in (8). According to that equation, we have

In order to define the wild bootstrap counterpart 𝜷
∗

n
 of 𝜷n , we replace Cn by some 

(q × b)-dimensional random matrix C∗
n
 which is a wild bootstrap counterpart of Cn , 

and apply Replacement  1 to the other terms on the right hand side of (11). This 
yields

Note that C∗
n
 could take many different forms as long as it is asymptotically equiva-

lent to Cn , i.e., as long as ‖C∗
n
− Cn‖ = op(1) holds for n → ∞ , cf. Assumption 4. 

When working with a particular model, a natural choice for C∗
n
 might be apparent; 

cf. Remark 3.

(
Gi(t) + 1

)
dNi(t), t ∈ T

(11)𝜷n = 𝜷0 + Cn

1

n

n∑

i=1
∫

�

0

gn,i(u, 𝜷0)dMi(u) + op(1).

(12)𝜷
∗

n
= 𝜷n + C∗

n

1

n

n∑

i=1
∫

�

0

gn,i(u, 𝜷n)Gi(u)dNi(u).
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We now consider the multiplier processes Gi(t) , t ∈ T, i = 1,… , n, in more detail. 
We define Gi as a random, piecewise constant function with jumps simultaneous 
with Ni , i.e., at

We note that the number of jumps for the i-th process is the random number 
ni = Ni(�) ≥ 0 . 

Indeed, addressing a reviewer’s comments, we would like to point out the conse-

quences of using time-constant multiplier processes for resampling Nelson–Aalen esti-

mator Ân(t) =
∑n

i=1 ∫
t

0

J(u)dNi(u)

Y(u)
 when Ni may have multiple events per individual, 

Ni(�) ∈ ℕ.
Moreover, the multiplier processes Gi are constructed such that at the jump time 

points Ti,j ∈ T
�

n,i
 they take the values of i.i.d. random variables Gi,j , j = 1, 2,… , that 

have mean zero, unit variance and finite fourth moment, and that are independent of 
F1(�) . In particular, Gi(t) = 0 for t < Ti,1 and Gi(t) = Gi,j for Ti,j ≤ t < Ti,j+1 , where 
Ti,ni+1 = ∞ . As an example for possible distributions of Gi,j , we refer to the simula-
tion studies of related articles in which Gi,j ∼ Poi(1) − 1 , Gi,j ∼ Exp(1) − 1 , and 
Gi,j ∼ N(0, 1) have been investigated; see, e.g., Beyersmann et al. (2013) and Dobler 
et  al. (2019). Furthermore, the multiplier processes G1(t),… ,Gn(t) , t ∈ T  , are pair-
wise independent and identically distributed. Conditionally on F1(�) , however, their 
jump times are fixed and the identical distribution is lost. See Bluhmki et al. (2018, 
2019) for similar approaches.

By applying Replacement 1 to Xn , we arrive at the wild bootstrap counterpart X∗
n
:

The remaining part of this section concerns the asymptotic behaviour of the wild 
bootstrap estimator X∗

n
 around Xn . In this context, we are interested in a repre-

sentation of 
√
n(X∗

n
− Xn) which is analogous to the asymptotic representation of √

n(Xn − X) given (9). For illustrative purposes, we start by returning to the exam-
ple of the Cox model.

Example 1e  (Cox model continued) Recall from Example 1a that the Breslow esti-
mator is given by

According to (14), the wild bootstrap counterpart Â∗
0,n

 of Â0,n is obtained by apply-
ing Replacement 1 to the Breslow estimator. That is,

(13)T
�

n,i
= {t ∈ T ∶ �Ni(t) = 1} = {Ti,1,… , Ti,ni}.

(14)X∗
n
(t) =

1

n

n∑

i=1
∫

t

0

kn,i(u, 𝜷
∗

n
)
(
Gi(u) + 1

)
dNi(u), t ∈ T.

Â0,n(t, 𝜷n) =
1

n

n∑

i=1
∫

t

0

nJ(u)

S
(0)
n (u, 𝜷n)

dNi(u), t ∈ T.
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A Taylor expansion of kn(t, 𝜷
∗

n
) around 𝜷n yields that 

√
n(Â∗

0,n
(t, 𝜷

∗

n
) − Â0,n(t, 𝜷n)) 

equals

where 
√
n(𝜷

∗

n
− 𝜷n) = C∗

n

1√
n

∑n

i=1
∫ �

0

�
Zi(u) −

S(1)
n
(u,𝜷n)

S
(0)
n (u,𝜷n)

�
Gi(u)dNi(u) with 

op(𝜷
∗

n
− 𝜷n) = op(n

−1∕2) . 	�  ◻

Using the example of the Cox model, we draw attention to common structures 
seen in the asymptotic representation of the wild bootstrap counterpart of count-
ing process-based estimators such as Â∗

0,n
(⋅, 𝜷

∗

n
) compared to the asymptotic repre-

sentation of the counting process-based estimators such as Â0,n(⋅, 𝜷n) . In particu-
lar, Replacement 1 transforms the components given in (4) into their counterparts 
seen in (15): the two scaled sums of martingale integrals are transformed into 
scaled sums of integrals with respect to the randomly perturbed counting pro-
cess increments GidNi , the scaled sum of counting process-based integrals into 
the scaled sum of integrals with respect to (Gi(u) + 1)dNi(u) , and the matrix Cn 
is replaced by a wild bootstrap counterpart denoted by C∗

n
 . Additionally, the inte-

grands of all integrals given in (15) are now evaluated at 𝜷n instead of at �0.
As a preparation for the generalization of these observations to the representa-

tion of 
√
n(X∗

n
− Xn) , we introduce the wild bootstrap counterpart 

D∗
n,h

= (D∗
n,k
,D∗

n,g
) of Dn,h = (Dn,k,Dn,g) . In particular, applying Replacement 1 to 

Dn,h(t) =
1√
n

∑n

i=1
∫ t

0
hn,i(u, �0)dMi(u) , t ∈ T  , yields

where again hn,i = (k⊤
n,i
, g⊤

n,i
)⊤ . We assume that hn,i(t, 𝜷n) , t ∈ T  , is a known, F1(�)

-measurable (p + b)-dimensional function. Additionally, we establish the wild boot-
strap version B∗

n
(t) of Bn(t) =

1

n

∑n

i=1
∫ t

0
Dkn,i(u, �0)dNi(u) , t ∈ T  , that is,

Â∗
0,n
(t, 𝜷

∗

n
) =

1

n

n∑

i=1
∫

t

0

nJ(u)

S
(0)
n (u, 𝜷

∗

n
)
(Gi(u) + 1)dNi(u), t ∈ T.

(15)

1√
n

n�

i=1
∫

t

0

nJ(u)

S
(0)
n (u, 𝜷n)

Gi(u) dNi(u)

−
1

n

n�

i=1
∫

t

0

nJ(u)S(1)
n
(u, 𝜷n)

S
(0)
n (u, 𝜷n)

2
(Gi(u) + 1)dNi(u)

× C∗
n

1√
n

� n�

i=1
∫

�

0

�
Zi(u) −

S(1)
n
(u, 𝜷n)

S
(0)
n (u, 𝜷n)

�
Gi(u) dNi(u)

�
+ op(1), t ∈ T

(16)D∗
n,h
(t) =

1√
n

n�

i=1
∫

t

0

hn,i(u, 𝜷n)Gi(u)dNi(u), t ∈ T,
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which is obtained by applying Replacement 1 to Bn . The following lemma reveals 
the desired representation for 

√
n
�
X∗

n
(t) − Xn(t)

�
 as a counterpart to the expression 

given for 
√
n
�
Xn(t) − X(t)

�
 in Lemma 1.

Lemma 2  If (12) holds with op(𝜷
∗

n
− 𝜷n) = op(n

−1∕2) , then

Indeed, as we will see later, 𝜷
∗

n
− 𝜷n = Op(n

−1∕2) . Hence, 
op(𝜷

∗

n
− 𝜷n) = op(n

−1∕2).

Example 1f  (Cox model continued) For the Cox model the scaled and centered wild 
bootstrap estimator Â∗

0,n
 can be written in the general form presented in Lemma , that 

is,

where the integrands kn(⋅, �) , gn,i(⋅, �) , and Dkn(⋅, �) of D∗
n,k

 , D∗
n,g

 , and B∗
n
 , respec-

tively, each evaluated at 𝜷 = 𝜷n , are given in Example 1d. 	�  ◻

In the upcoming Sect.  3.2, we make use of the following notation. Given a 
multi-dimensional vector of square integrable martingales Hn(t), t ∈ T  , L(Hn) 
and L(Hn|⋅) denote the law and the conditional law of Hn , respectively. Addition-
ally, let d[⋅, ⋅] be the Prohorov distance between probability distributions.

3.2 � Regularity assumption and weak convergence result

In order to prove that the proposed resampling procedure results in the correct 
limiting distribution, we wish to exploit martingale theory. This requires the defi-
nition of a filtration which captures the evolving randomness due to the multipli-
ers but not due to the original sample. The latter is considered to be fixed from 
the resampling point of view. In other words, we search a filtration that includes 
(i) all available data at time zero , that is, F1(�) ; (ii) the values of the wild boot-
strap multiplier processes Gi during the course of time. This leads us to

t ∈ T. Note that F2(0) = F1(�) represents the available data. From now on, the 
underlying filtered probability space is (�,A,F2,ℙ) . Moreover, we identify D∗

n,h
 as 

a square integrable martingale with respect to the proposed filtration and state its 
predictable and optional variation process.

(17)B∗
n
(t) =

1

n

n∑

i=1
∫

t

0

Dkn,i(u, 𝜷n)(Gi(u) + 1)dNi(u), t ∈ T,

(18)
√
n
�
X∗

n
(t) − Xn(t)

�
= D∗

n,k
(t) + B∗

n
(t)C∗

n
D∗

n,g
(�) + op(1), t ∈ T.

√
n(Â∗

0,n
(⋅, 𝜷

∗

n
) − Â0,n(⋅, 𝜷n)) = D∗

n,k
(⋅) + B∗

n
(⋅)C∗

n
D∗

n,g
(𝜏) + op(1),

F2(t) = 𝜎{Gi(s),Ni(u), Yi(u),Zi(u), 0 < s ≤ t, u ∈ T, i = 1,… , n},
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Lemma 3  D∗
n,h

 is a square integrable martingale with respect to F2 . Its predictable 
and optional covariation processes are

and

respectively.

According to Lemma  3, a martingale central limit theorem could be used to 
derive the asymptotic distribution of D∗

n,h
 . Along the lines of Sect. 2.2, we examine 

the applicability of Rebolledo’s martingale central limit theorem as stated in Theo-
rem II.5.1 of Andersen et al. (1993). Particular attention is paid to the applicability 
of the corresponding Lindeberg condition. Recall that the process D∗

n,h
 is a martin-

gale based on integrals with respect to the randomly perturbed counting processes 
GiNi with general multipliers Gi , i = 1,… , n . Due to the general, possibly asym-
metric multipliers, the Lindeberg condition of Rebolledo’s theorem as stated in the 
aforementioned textbook is again not applicable. This is, as the following example 
demonstrates, because the �-jump process of D∗

n,h
 is in general not a martingale. As 

a consequence, we cannot apply Theorem II.5.1 of Andersen et al. (1993), as it only 
makes sense to speak of the predictable covariation process of a martingale. For 
symmetrically distributed multipliers, however, the version of Rebolledo’s theorem 
in Andersen et al. (1993) would still be applicable to the bootstrapped quantities.

Example 2  We consider the case where Ni ≤ 1 and a square integrable martingale 
with integrand hn,i(t, 𝛽) ≡ 1 , i.e., D∗

n,h
(t) =

1√
n

∑n

i=1
∫ t

0
Gi(u)dNi(u) , t ∈ T  . That is, 

for the �-jump process D�,∗

n,h
(t) = ∫ t

0
1{|�D∗

n,h
(u)| ≥ �}D∗

n,h
(du),

⟨D∗
n,h
⟩(t) = 1

n

n�

i=1
∫

t

0

hn,i(u, 𝜷n)
⊗2 dNi(u), t ∈ T,

[
D∗

n,h

]
(t) =

1

n

n∑

i=1
∫

t

0

h
n,i(u, 𝜷n

)⊗2
G

2

i
(u) dN

i
(u), t ∈ T,
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which is in general not equal to D�,∗

n,h
(s) if the zero mean random variables 

G1,1,… ,Gn,1 follow an asymmetric distribution. Hence, D�,∗

n,h
(t) , t ∈ T  , does not ful-

fill the martingale property in the considered setting in which the multiplier pro-
cesses may follow a general, possibly asymmetric distribution with zero mean, unit 
variance, and finite fourth moment, such as the centered exponential distribution or 
the centered Poisson distribution. However, if the multipliers follow a symmetric 
distribution, the martingale property does hold, as the last expectation in the previ-
ous display vanishes. 	�  ◻

In conclusion, to prove the convergence in distribution of D∗
n,h

 , we have to resort 
to the widely applicable version of Rebolledo’s martingale central limit theorem as 
given in Theorem 1, albeit a conditional version thereof. The corresponding weak 
convergence result for D∗

n,h
 is presented in Lemma 8 in the Supporting Information.

Assumption 4  Under Assumption  3, we further assume that the (q × b)-dimen-
sional random matrices Cn and C∗

n
 are asymptotically equivalent, ‖C∗

n
− Cn‖

ℙ

⟶0 , 
as n → ∞.

We are ready to  state our main theorem about the asymptotic distribution of √
n(X∗

n
− Xn) conditional on the data.

Theorem 3  If Lemma 2 holds, Assumptions 1, 2, 3, and 4 imply

conditionally on F2(0) in probability, as n → ∞ , with Dk̃,Dg̃ , and B as stated in the 
Supporting Information, respectively. If also Lemma 1 holds , we have, as n → ∞,

In conclusion, Theorem 3 establishes the asymptotic validity of the wild boot-
strap for approximations of the distribution of counting process-based statistics of 
the form (1).

�(D�,∗

n,h
(t)�F2(s))

= �

�
1√
n

n�

i=1
�

t

0

1

������
1√
n

n�

i=1

Gi(u)�Ni(u)
��� ≥ �

�
Gi(u)dNi(u)

�����
F2(s)

�

= D
�,∗

n,h
(s) +

1√
n

n�

i=1
�

t

s

�

�
1

������
1√
n

n�

i=1

Gi(u)�Ni(u)
�����
≥ �

�
Gi(u)

�����
F2(s)

�
dNi(u)

= D
�,∗

n,h
(s) +

1√
n

n�

i=1

�

�
1

������
1√
n
Gi,1

�����
≥ �

�
Gi,1

�
(Ni(t) − Ni(s)), t ∈ T,

√
n
�
X∗

n
− Xn

�
= D∗

n,k
+ B∗

n
C∗

n
D∗

n,g
(𝜏) + op(1)

L

⟶Dk̃ + BCDg̃(𝜏), in (D(T))p,

d[L(
√
n(X∗

n
− Xn)�F2(0)),L(

√
n(Xn − X))]

ℙ

⟶0.
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Remark 3  We continue Remark 1 in order to illustrate how to choose the wild boot-
strap counterpart C∗

n
 of Cn in parametric survival models such that Assumption  4 

holds. In this way, we underline the wild bootstrap as an alternative to the paramet-
ric bootstrap. As stated in Remark  1, Cn is asymptotically related to the optional 
covariation process 1

n
[Un(�0, ⋅)] of 1√

n
Un(�0, ⋅) . Hence, we propose to choose C∗

n
 

similarly based on the optional covariation process 1
n
[U∗

n
(𝜷n, ⋅)] of the wild bootstrap 

version 1√
n
U∗

n
(𝜷n, ⋅) of the martingale 1√

n
Un(�0, ⋅) . Application of Replacement 1 to 

1√
n
Un(�0, ⋅) yields

According to Lemma 3 we obtain the following structure:

This is a natural choice for C∗
n
 because the (conditional) distributions of D∗

n,g
 and 

Dn,g =
1√
n
Un(�0, ⋅) are asymptotically equivalent and the same holds for their 

optional covariation processes; cf. the Supporting Information. 	�  ◻

Example 1g  (Cox model, conclusion)
Lastly, the assumptions required in Theorem 3 are considered in the context of 

the Cox model and final conclusions are drawn. First, the integrands introduced 
below Lemma 1 are examined. The uniform limits in probability of kn and gn,i are 

k̃ =
1

s(0)
 and g̃i = Zi −

s(1)

s(0)
 , respectively, where s(j) are the uniform deterministic lim-

its in probability of n−1S(j)n  , j = 0, 1 . Under the typically made assumptions (Condi-
tion VII.2.1 of Andersen et  al. 1993) and under the assumption that the covariate 
vectors Zi , i = 1,… , n , are pairwise independent and identically distributed, 
Assumption  1 is fulfilled. Similarly, the uniform limit in probability of Dkn is 

K̃ =
s(1)

(s(0))2
 . Next, the matrices Bn and Cn are considered, where the explicit form of 

Cn for the Cox model is 
�
1

n

∑n

i=1
∫ 𝜏

0

� S
(2)
n (u,�0)

S
(0)
n (u,�0)

−
� S

(1)
n (u,�0)

S
(0)
n (u,�0)

�⊗2�
dNi(u)

�−1
. Again, under 

Condition VII.2.1 and (7.2.28) of Andersen et al. (1993), Assumptions 2 and 3 are 
valid. The wild bootstrap counterpart C∗

n
 of Cn as given in Remark 3 simplifies for 

the Cox model to C∗
n
=
�
1

n

∑n

i=1
∫ 𝜏

0

� S
(2)
n (u,𝜷)

S
(0)
n (u,𝜷)

−
� S

(1)
n (u,𝜷)

S
(0)
n (u,𝜷)

�⊗2�
Gi(u)

2dNi(u)
�−1

. Assump-
tion 4 is satisfied as argued in Remark 3. Moreover, Lemmas 1 and 2 hold according 
to Examples 1c and 1e, respectively. Finally, Theorem 3 can be applied to verify the 
asymptotic validity of the wild bootstrap for statistical inference on the Breslow esti-
mator. 	�  ◻

D∗
n,g
(�) =

1√
n
U∗

n
(𝜷n, �) =

1√
n

n�

i=1
∫

�

0

∇�i(u, 𝜷n)

�i(u, 𝜷n)
Gi(u)dNi(u).

C∗
n
=

(
−

1

n
[U∗

n
(𝜷n, ⋅)](𝜏)

)−1

= −

(
1

n

n∑

i=1
∫

𝜏

0

(∇𝛼i(u, 𝜷n))
⊗2

𝛼i(u, 𝜷n)
2

G2
i
(u)dNi(u)

)−1

.
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4 � Examples

Additionally to Examples 1a–1g covering the Cox model, we will now present two 
additional examples which further illustrate specific cases of the general set-up 
described in Sects. 2 and 3. In particular, it is briefly outlined how the theory devel-
oped in this paper can be applied to these models. In a related paper (Dietrich et al. 
2023), the present approach is applied to the estimators involved in the Fine–Gray 
model under censoring-complete data and the details of the wild bootstrap for the 
corresponding cumulative incidence function is worked out.

Example 3  (Nelson–Aalen estimator) Let X(t) = A(t) = ∫ t

0
�(u)du , t ∈ T  , be the 

cumulative hazard function of a continuous survival time T, i.e., 
�(u)du = ℙ(T ∈ [u, u + du]|T ≥ u) . Let N1(t),… ,Nn(t) , t ∈ T  , be the counting pro-
cesses that are related to n independent copies of T which possibly involve right-
censoring. For X̂n(t) , t ∈ T  , we take the Nelson–Aalen estimator 

Ân(t) =

n∑

i=1
∫

t

0

J(u)

Y(u)
dNi(u) , t ∈ T  , Aalen (1978), where Yi(t) is the at-risk indicator 

for individual i at time t, Y(t) =
∑n

i=1
Yi(t) , and J(t) = 1{Y(t) > 0} . Thus, the count-

ing process-based estimator Ân exhibits the general structure stated in (1) with 
kn(t) =

nJ(t)

Y(t)
 , t ∈ T  . Furthermore, we have for t ∈ T ,

where d�i = YidA . As the integrand kn =
nJ

Y
 is bounded by J and predictable due 

to the predictability of Y, the first term on the right-hand side of (19) is a square 
integrable martingale. This martingale refers to Dn,k , cf. (5). The second term on the 
right-hand side of (19) is asymptotically negligible as n → ∞ , because J(t)

ℙ

⟶1 as 
n → ∞ , t ∈ T  . Hence, (7) is satisfied. Furthermore, we make the natural assumption 
that there exists a deterministic function y, which is bounded away from zero on T  
and such that

This weak assumption implies Assumption 1. Moreover, we deal with a nonpara-
metric model and as such we have for t ∈ T  , Dkn(t) ≡ 0 . This implies that Assump-
tion 2 is trivially satisfied and that Bn ≡ 0 . Additionally, due to the nonparametric 
model, the assumption (8) is superfluous and we set Cn = 0 and Dn,g(�) = 0 . There-
fore, also Assumptions  3 and  4 are redundant. In conclusion, for the normalized 
Nelson–Aalen process 

√
n(Ân − A) given in (19), the asymptotic representation (9) 

holds with BnCnDn,g(�) ≡ 0 , i.e., 
√
n(Ân − A) = Dn,k + op(1) . According to Replace-

ment 1, the wild bootstrap version of the normalized Nelson–Aalen process is

(19)

√
n(Ân(t) − A(t)) =

√
n

n�

i=1
∫

t

0

J(u)

Y(u)
(dNi(u) − d𝛬i(u)) +

√
n∫

t

0

(J(u) − 1)dA(u),

(20)sup
t∈T

||
Y(t)

n
− y(t)|| = op(1).
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where the term on the right-hand side of the equation above refers to D∗
n,k

 , cf. 
(16). Thus, also (18) holds with B∗

n
C∗

n
D∗

n,g
(�) ≡ 0 and op(1) set to zero, i.e., √

n(Â∗
n
− Ân) = D∗

n,k
 . Finally, Theorem  3 can be used to justify the wild bootstrap 

for the Nelson–Aalen estimator. In particular, the (conditional) distributions of √
n(Ân(t) − A(t)) and 

√
n(Â∗

n
(t) − Ân(t)) are asymptotically equivalent.

Furthermore, similar structures hold for more general multivariate Nelson–Aalen 
estimators beyond simple survival set-ups; here, the time-dependence of the multi-
plier processes is crucially important (Bluhmki et al. 2019). Indeed, when time-con-
stant multiplier processes are used instead of time-dependent multiplier processes as 
defined in Sect. 3, the asymptotic distribution would be incorrect. We illustrate this 

for the resampling Nelson–Aalen estimator Ân(t) =
∑n

i=1 ∫
t

0

J(u)dNi(u)

Y(u)
 when Ni 

may have multiple events per individual, Ni(�) ∈ ℕ . The Nelson–Aalen estimator 

has an asymptotic variance of the form ∫
t

0

�(u)

y(u)
du∕n . The resampling version of the 

normalized Nelson–Aalen estimator is 
√
n
�n

i=1 ∫
t

0

Gi(u)dNi(u)

Y(u)
 , where Gi(u) is 

defined as previously in the present paper. Considered as a martingale, it is easy to 

see that it exhibits the predictable variation process n
∑n

i=1 ∫
t

0

dNi(u)

Y2(u)
, t ∈ T  , 

which converges to the desired asymptotic variance function.
However, if each Gi were a time-constant random variable, then the conditional 

variance of the bootstrapped normalized Nelson–Aalen estimator equals

Using the approximation Y(u)∕n ≈ y(u) , dNi(u) = dMi(u) + �(u)du , as well as the 
uncorrelated martingale increments, the law of large numbers and straightforward 
algebra result in

This reveals that the limiting distribution would be corrupted by time-constant mul-
tipliers. Additionally, the time-constant multipliers are counterintuitive, as they 
would not conserve the martingale property.	�  ◻

Example 4  (Weighted logrank test) The two-sample weighted logrank statistic is

√
n(Â∗

n
(t) − Ân(t)) =

√
n

n�

i=1
∫

t

0

J(u)

Y(u)
Gi(u)dNi(u), t ∈ T,

V(t) ∶= n

n∑

i=1

(

∫
t

0

dNi(u)

Y(u)

)2

= n

n∑

i=1
∫

t

0

dNi(u)

Y2(u)
+ n

n∑

i=1
∫u∈(0,t] ∫v∈(0,t]⧵{u}

dNi(u)dNi(v)

Y(u)Y(v)
.

V(t)
p
−→∫

t

0

�(u)

y(u)
du + ∫

t

0 ∫
t

0

y(u ∨ y)

y(u)y(v)
�(u)�(v)dudv, as n → ∞.
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where Â(j)
n  are the Nelson–Aalen estimators, N(j)

i
 , i = 1,… , n , the counting pro-

cesses, and Y (j) the at-risk indicators in samples j = 1, 2 , n1, n2 are the sample sizes, 
Y = Y (1) + Y (2) , w is a positive weight function, and Ŝn is the Kaplan-Meier estimator 
Kaplan and Meier (1958) in the pooled sample, cf., e.g., Ditzhaus and Friedrich 
(2020) who conducted weighted logrank tests as permutation tests and Ditzhaus and 
Pauly (2019) who used the wild bootstrap. Hence, Tn1,n2 (w) is composed of two 
counting process-based statistics of a form similar to the one given in (1) evaluated 
at the upper integration bound ∞ , that is, Tn1,n2 (w) =

√
n1X

(1)
n1,n2

(∞) +
√
n2X

(2)
n1,n2

(∞) , 

where the integrand of X(1)
n1,n2

(∞) equals k(1)
n1,n2

(t) =

√
n1 + n2

n2
w(Ŝn(t−))

Y (2)(t)

Y(t)
 and 

the integrand of X(2)
n1,n2

(∞) equals k(2)
n1,n2

(t) = −

√
n1 + n2

n1
w(Ŝn(t−))

Y (1)(t)

Y(t)
 , t ≥ 0.

Under the null hypothesis of equal hazards, H0 ∶ A(1) = A(2) , we have

where we have applied the decomposition (3) in the first step of (22), and M(j)

i
 , 

i = 1,… , nj , are the sample j-specific counting process martingales.
Due to (22), the test statistic Tn1,n2 (w) has the following form
under the null hypothesis:

(21)

Tn1,n2 (w) =

�
n1 + n2

n1n2 ∫
∞

0

w(Ŝn(t−))
Y (1)(t)Y (2)(t)

Y(t)
(dÂ(1)

n
(t) − dÂ(2)

n
(t))

=
1√
n1

n1�

i=1
∫

∞

0

�
n1 + n2

n2
w(Ŝn(t−))

Y (2)(t)

Y(t)
dN

(1)

i
(t)

−
1√
n2

n2�

i=1
∫

∞

0

�
n1 + n2

n1
w(Ŝn(t−))

Y (1)(t)

Y(t)
dN

(2)

i
(t),

(22)

Y (2)

n1∑

i=1

dN
(1)

i
− Y (1)

n2∑

i=1

dN
(2)

i

= Y (2)

( n1∑

i=1

dM
(1)

i
+ Y (1)dA(1)

)
− Y (1)

( n2∑

i=1

dM
(2)

i
+ Y (2)dA(2)

)

H0
=Y (2)

n1∑

i=1

dM
(1)

i
− Y (1)

n2∑

i=1

dM
(2)

i
,

(23)

Tn1,n2 (w)
H0
=

1√
n1

n1�

i=1
∫

∞

0

�
n1 + n2

n2
w(Ŝn(t−))

Y (2)(t)

Y(t)
dM

(1)

i
(t)

−
1√
n2

n2�

i=1
∫

∞

0

�
n1 + n2

n1
w(Ŝn(t−))

Y (1)(t)

Y(t)
dM

(2)

i
(t).
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Under regularity conditions on the weight function and the sample sizes 

( 
nj

n1 + n2
→ �j as min(n1, n2) → ∞ , with �j ∈ (0, 1) , j = 1, 2 ), the stochastic pro-

cesses k(j)n1,n2 , j = 1, 2 , are uniformly bounded on any interval T = [0, �] . Clearly, they 
are also predictable. Thus, under H0 , the test statistic can be written as the sum of 
two square integrable martingales of a form similar to the one given in (5) evaluated 
at the upper integration bound ∞ , i.e., Tn1,n2 (w)

H0
=Dn1,n2,k

(1) (∞) + Dn1,n2,k
(2) (∞) , where 

the square integrable martingale Dn1,n2,k
(1) (t) , t ≥ 0 , relates to the first term on the 

right-hand side of (23) and the square integrable martingale Dn1,n2,k
(2) (t) , t ≥ 0 , 

relates to the second term on the right-hand side of (23). In order to obtain a similar 
structure for Tn1,n2 (w) as given in (9), we consider the 2-dimensional vectors 
M⊤

n1,n2
= (

1√
n1

∑n1
i=1

M
(1)

i
,

1√
n2

∑n2
i=1

M
(2)

i
)⊤ and k⊤

n1,n2
= (k(1)

n1,n2
, k(2)

n1,n2
)⊤ , t ≥ 0 . With 

this notation we get

where the right-hand side of (24) is the multidimensional martingale counterpart of 
the first term on the right-hand side of (9). With (24) we thus obtained a similar 
structure for Tn1,n2 (w) as in (9) with the second term on the right-hand side of (9) set 
to zero due to the nonparametric setting. The wild bootstrap version T∗

n1,n2
(w) of 

Tn1,n2 (w) under H0 is obtained by applying Replacement 1 to (24):

where M∗⊤
n1,n2

= (
1√
n1

∑n1
i=1

G
(1)

i
N

(1)

i
,

1√
n2

∑n2
i=1

G
(2)

i
N

(2)

i
)⊤ is the wild bootstrap coun-

terpart of Mn1,n2
 , and k∗⊤

n1,n2
= (k∗(1)

n1,n2
, k∗(2)

n1,n2
)⊤ with

is the wild bootstrap counterpart of kn1,n2 . Here, the multiplier processes 
G

(1)

1
,… ,G(1)

n1
, G(2)

1
,… ,G(2)

n2
 are pairwise independent and identically distributed. 

Note that this definition of T∗
n1,n2

(w) deviates slightly from the corresponding defini-
tion given in Ditzhaus and Pauly (2019) as it contains the wild bootstrap counterpart 
Ŝ∗
n
 of the pooled Kaplan-Meier estimator Ŝn . In the related paper (Dietrich et  al. 

2023), an idea of how such a resampling version may be constructed based on a 
functional relationship between the estimator of interest and Nelson–Aalen estima-
tors is given; this is exemplified by means of cumulative incidence functions in sem-
iparametric models. With (25) we thus obtained a similar structure for T∗

n1,n2
(w) as 

stated in (18) with B∗
n
C∗

n
D∗

n,g
(�) ≡ 0 due to the nonparametric setting and op(1) set to 

zero. It is left to show that a result as stated in Theorem 3 holds for Tn1,n2 (w) and 
T∗
n1,n2

(w) under the null hypothesis. For this, one may first argue with respect to any 

(24)Tn1,n2 (w)
H0
= ∫

∞

0

kn1,n2 (t)
⊤dMn1,n2

(t),

(25)T∗
n1,n2

(w)
H0
= ∫

∞

0

k∗
n1,n2

(t)⊤dM∗
n1,n2

(t),

k∗(j)
n1,n2

(t) = (−1)j+1

√
n1 + n2

n3−j
w(Ŝ∗

n
(t−))

Y (3−j)(t)

Y(t)
, t ≥ 0, j = 1, 2,
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finite upper bound of integration � . With one additional argument, the remaining 
integral from � to ∞ can be shown to be asymptotically negligible for n → ∞ fol-
lowed by � → ∞ ; use for instance Theorem 3.2 in Billingsley (1999). In this way, 
one obtains a justification of the wild bootstrap for the weighted logrank test within 
a multidimensional martingale framework which can be seen as an extension of the 
setting presented in this paper. 	�  ◻

5 � Discussion

We have proposed and validated a widely applicable wild bootstrap procedure for 
general nonparametric and (semi-)parametric counting process-based statistics. 
We gave a step by step description of how to construct the wild bootstrap coun-
terpart of the statistic. In particular, it is crucial to match each individual with one 
multiplier process. In order to justify the validity of the wild bootstrap, we have 
studied the (conditional) asymptotic distributions of the statistic of interest and of 
the wild bootstrap counterpart which turned out to coincide. We have found the 
wild bootstrapped martingales to be martingales as well. Thus, in the correspond-
ing proof, we made use of a carefully chosen variant of Rebolledo’s martingale 
central limit theorem. We illustrated the method for several main models in sur-
vival analysis.

The model assumptions in this paper are rather weak: they are satisfied under 
very natural regularity conditions; cf. Examples  1g,  3, and  4. However, Assump-
tion  1  (c) is, for example, not satisfied in shared frailty models, because in these 
models it is assumed that common unobserved variables influence the intensity pro-
cesses of multiple individuals. In this regard, the assumption of identically distrib-
uted counting processes could also be too strong for particular experimental designs, 
e.g., if one does sample in a stratified manner instead of randomly. However, the 
wild bootstrap is known to yield proper estimates for different residual distribu-
tions and we expect that, if all regularity conditions of the present paper are adjusted 
accordingly, the main results will also hold in the non-identically distributed regime.

For the construction of the wild bootstrap counterpart of a given counting pro-
cess-based statistic we have chosen the nonparametric estimator GidNi for the mar-
tingale increment dMi , cf. Replacement 1  (a). This choice guarantees a more gen-
eral applicability of the proposed wild bootstrap resampling procedure, because no 
specifications on the form of the cumulative hazard function have to be made. In 
contrast, Spiekerman and Lin (1998) proposed a semiparametric approach by choos-
ing GidM̂i =Gi[dNi − d𝛬̂i(⋅, 𝜷n)] as the replacement for the martingale increment. 
Under this semiparametric estimator the information encoded in the parameter � is 
incorporated in the wild bootstrap estimators, which could potentially lead to more 
accurate results. However, their approach is not as widely applicable as the non-
parametric one that we decided to employ. Moreover, in the context of Cox models, 
Dobler et al. (2019) revealed by means of a substantial simulation study that the dif-
ference between the results of the two methods is not significant.
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Although the assumed martingale structure for 𝜷n is satisfied in many mod-
els and common estimation strategies, it could be too restrictive for certain appli-
cations. For instance, if not the intensity process �i(t)dt = �(dNi(t)|F1(t−)) 
but only the rate process �i(t)dt = �(dNi(t)|Ni(t−),Yi(t),Zi(t)) is modeled, then 
M̃i(t) = Ni(t) − ∫ t

0
𝛾i(u)du, t ∈ T  , still defines a zero-mean process albeit not neces-

sarily a martingale; cf. Scheike and Zhang (2003) for a similar observation in the 
context of Cox-Aalen models. The authors of the above mentioned paper proposed 
to use GidM̂i(t) as resampling counterparts of dM̃i(t) , where dM̂i(t) = dNi(t) − 𝛾̂i(t)dt 
involves the estimated rate function. Thus, whenever 𝜷n does not have a martingale 
representation, but still exhibits an asymptotically linear structure in terms of M̃i , the 
approach considered in the present paper motivates as a first resampling attempt to 
incorporate time-dependent multipliers, resulting in Gi(t)dM̂i(t) instead of GidM̂i(t) . 
It remains to be investigated which of the two approaches is more suitable as a gen-
eral resampling procedure for rate models. In any case, it will be essential to ensure 
the correct correlation between the resampled estimators of the parametric and the 
nonparametric model components.

Finally, we would like to compare the wild bootstrap to Efron’s bootstrap, i.e., 
drawing n times with replacement from the individual data points. A clear advan-
tage of the wild bootstrap over Efron’s bootstrap is the computational efficiency: 
as the wild bootstrap exploits the asymptotically linear structures of estimators, 
it also only requires linear operations for the computation. In contrast, Efron’s 
bootstrap demands a potentially costly re-computation of all (potentially nonlin-
ear) estimators based on the bootstrap samples. However, this feature of the wild 
bootstrap could also be considered a drawback because the asymptotically lin-
ear structure (and martingale representation) of each estimator has to be derived. 
Moreover, Efron’s bootstrap is widely applicable for i.i.d. data and, according to 
some heuristic calculations we made, even seems to correctly resample the gen-
eral Nelson–Aalen estimator for survival data with possibly multiple events per 
individual. On the other hand, the wild bootstrap has originally been proposed for 
applications to heteroscedastic data (Chien-Fu 1986) and, in this sense, it is appli-
cable even beyond the i.i.d. setting. Furthermore, it allows for a great flexibility in 
the choice of multiplier distributions which could result in a better match of the 
martingale distribution.

In conclusion, the wild bootstrap procedure as presented in this paper is applica-
ble to a wide range of models and simple to implement. By means of this method, 
one may easily approximate the unknown distribution of a counting process-based 
statistic around the target quantity. In a connected paper (Dietrich et al. 2023), the 
results of the present paper are extended to a functional of counting process-based 
estimators via the functional �-method. In particular, a weak convergence result for 
the cumulative incidence function is derived in the context of the Fine–Gray model 
for censoring-complete data and this result is used to construct time-simultaneous 
confidence bands for that function. Generalizing the theory of the current paper to 
functionals of a counting process-based statistic via the functional �-method consti-
tutes an interesting extension for future research.
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6 � Supporting Information

Web Appendix A: Supporting Information contains all proofs, additional lemmas, 
and an additional corollary. It is referenced in Sects. 2 and 3 and is available online.
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Acknowledgements  The authors would like to thank the Associate Editor and two reviewers whose com-
ments have significantly improved our paper. Dennis Dobler would like to thank his affiliations, Depart-
ment of Statistics (TU Dortmund University) and Research Center Trustworthy Data Science and Secu-
rity (University Alliance Ruhr), where a smaller part of the work has been done.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aalen O (1978) Nonparametric inference for a family of counting processes. Ann Stat 6(4):701–726
Aalen OO, Borgan Ø, Gjessing HK (2008) Survival and event history analysis—a process point of 

view. Springer, New York
Akritas MG (1986) Bootstrapping the Kaplan–Meier estimator. J Am Stat Assoc 81(396):1032–1038
Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. 

Springer, New York
Bakoyannis G (2021) Nonparametric analysis of nonhomogeneous multistate processes with clustered 

observations. Biometrics 77(2):533–546
Beyersmann J, Di Termini S, Pauly M (2013) Weak convergence of the wild bootstrap for the Aalen–

Johansen estimator of the cumulative incidence function of a competing risk. Scand J Stat 
40(3):387–402

Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York
Bluhmki T, Schmoor C, Dobler D, Pauly M, Finke J, Schumacher M, Beyersmann J (2018) A wild 

bootstrap approach for the Aalen–Johansen estimator. Biometrics 74(3):977–985
Bluhmki T, Dobler D, Beyersmann J, Pauly M (2019) The wild bootstrap for multivariate Nelson–

Aalen estimators. Lifetime Data Anal 25(1):97
Borgan Ø (1984) Maximum likelihood estimation in parametric counting process models, with appli-

cations to censored failure time data. Scand J Stat 11(1):1–16
Chien-Fu JW (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann 

Stat 14(4):1261–1350
Dietrich MT, Dobler D, de Gunst MCM (2023) Wild bootstrap for counting process-based statistics—

part 2: application in Fine–Gray models, pp 55–111. https://​doi.​org/​10.​48550/​arXiv.​2310.​17308. 
arXiv:​2310.​17308 [stat.ME]

Ditzhaus M, Friedrich S (2020) More powerful logrank permutation tests for two-sample survival 
data. J Stat Comput Simul 90(12):2209–2227

https://doi.org/10.1007/s10985-025-09659-w
https://doi.org/10.1007/s10985-025-09659-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2310.17308
http://arxiv.org/abs/2310.17308


657Wild bootstrap for counting process‑based statistics: a…

Ditzhaus M, Pauly M (2019) Wild bootstrap logrank tests with broader power functions for testing 
superiority. Comput Stat Data Anal 136:1–11

Dobler D, Beyersmann J, Pauly M (2017) Non-strange weird resampling for complex survival data. 
Biometrika 104(3):699–711

Dobler D, Pauly M, Scheike TH (2019) Confidence bands for multiplicative hazards models: flexible 
resampling approaches. Biometrics 75(3):906–916

Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26
Efron B (1981) Censored data and the bootstrap. J Am Stat Assoc 76(374):312–319
Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J 

Am Stat Assoc 94(446):496–509
Hiabu M, Nielsen JP, Scheike TH (2021) Nonsmooth backfitting for the excess risk additive regres-

sion model with two survival time scales. Biometrika 108(2):491–506
Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 

53(282):457–481
Lin D (1994) Cox regression analysis of multivariate failure time data: the marginal approach. Stat 

Med 13(21):2233–2247
Lin D (1997) Non-parametric inference for cumulative incidence functions in competing risks studies. 

Stat Med 16(8):901–910
Lin D, Wei L-J, Ying Z (1993) Checking the Cox model with cumulative sums of martingale-based 

residuals. Biometrika 80(3):557–572
Lin D, Wei L-J, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of 

recurrent events. J R Stat Soc Ser B (Stat Methodol) 62(4):711–730
Martinussen T, Scheike TH (2006) Dynamic regression models for survival data. Springer, New York
Neuhaus G (1993) Conditional rank tests for the two-sample problem under random censorship. Ann 

Stat 21(4):1760–1779
Rebolledo R (1980) Central limit theorems for local martingales. Zeitschrift für Wahrscheinlichkeit-

stheorie und Verwandte Gebiete 51:269–286
Scheike TH, Zhang M-J (2003) Extensions and applications of the Cox–Aalen survival model. Biom-

etrics 59(4):1036–1045
Spiekerman CF, Lin D (1998) Marginal regression models for multivariate failure time data. J Am 

Stat Assoc 93(443):1164–1175
Titman AC, Putter H (2022) General tests of the Markov property in multi-state models. Biostatistics 

23(2):380–396

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Wild bootstrap for counting process-based statistics: a martingale theory-based approach
	Abstract
	1 Introduction
	2 Notation, model, and convergence of counting process-based estimators
	2.1 Basic model and asymptotic representation
	2.2 Rebolledo’s central limit theorem
	2.3 Regularity assumptions and weak convergence result

	3 Application of the wild bootstrap and a weak convergence result
	3.1 The wild bootstrap estimator and its asymptotic representation
	3.2 Regularity assumption and weak convergence result

	4 Examples
	5 Discussion
	6 Supporting Information
	Acknowledgements 
	References




