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Abstract— As industries face changes in population and the
need for better production efficiency arises, combining human
workers with robots is becoming more common. In such collab-
orations, besides the user experience, the safety of the human
worker is a critical aspect. This paper introduces an Al-based
safety system designed to maintain a safe distance from human
workers to prevent injuries. To circumvent the limitations of
similar safety approaches, the system uses redundant methods
to detect humans and their various joints. An evaluation in
a real-world scenario shows that such an Al-based system can
reliably detect humans and stop robots before a collision occurs.
This work proves that using Al-based systems for human
detection in safety-related contexts is not impossible and creates
a basis for a new generation of safety systems that can enhance
future human-robot collaborations.

I. INTRODUCTION

Following demographic changes and the demand for effi-
cient production, many processes are being automated. Since
not every task can be fully automated, because the task is too
complex for a robot or needs high flexibility, a collaboration
between humans and robots can be a good solution. In
such an application, both can bring in their strengths to
achieve a common goal. The most important aspect of such
a collaboration is the safety of the human worker, since the
robot can cause severe injuries if errors occur.

While there already exist several safety systems for robots,
most of them are not suitable for efficient human-robot
collaborations, because they are too restrictive. Commonly
used systems, like light barriers [1] or light-based distance
sensors [2], already stop the robot before the human is even
close to the robot, while others, like CoBots [3] for example,
only stop after a collision has occurred. Both system types
are not ideal for human-robot collaborations. While contact
with the hands is usually acceptable or even desired for some
tasks, contact with the rest of the body should be avoided,
especially the head should always be kept at a safe distance.
Thus, a system is desirable that can differentiate between
different body parts.

Therefore, in this work, a safety system is presented that
uses redundant Al-based methods to detect humans and
their various joints. The system is evaluated in a real-world
scenario, in which it can be shown that the system reliably
detects humans and stops the robot before a collision occurs.
This makes it the first Al-based system for which, over the
investigated experiment duration, a reliability was reached
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Fig. 1: Human robot collaboration without safety barriers.

that is required for real production environments. This work
thus lays the ground for a new generation of safety systems
that can improve future human-robot collaborations.

II. RELATED WORK I

To allow collaboration with human workers, the robot
cell must be openly accessible, and not fenced off like
in conventional industrial applications. There already exist
several commercial options for this:

A simple approach for open access is to use light barriers
or floor plates that detect the human worker. This is a very
reliable system, but it has the disadvantage that the robot, if
it is not combined with another safety system, has to stop
if the worker enters the work cell, even if the worker is not
in danger [4]. This can lead to a significant reduction in
productivity, and true collaboration is not possible at all.

Another option is to use robots with built-in collision
detection, that automatically stop if they hit an obstacle.
There already exist several robots that have this feature, like
the KUKA LBR iiwa or some of the Universal Robots URs.
The disadvantage of these systems is that the robot only
stops after a collision, which is not the best user experience
for workers, and the maximum speed and payload of the
robot are also restricted. There also exists some research
into classifying whether contacts were intended or not [5],
but from a safety perspective, those systems are not reliable
enough yet to allow the robot to continue its movement.

One approach to stopping the robot before contact is the
use of capacitive sensors. They can detect the human worker
before a collision occurs, but they have the disadvantage
that they only have a range of a few centimeters, and are
sensitive to environmental influences in the workspace. One
commercial example is the Bosch APAS system, though there
exist more examples in research [6,7].



A different option is the use of additional external sensor
systems, like cameras or laser sensors, that detect the human
from some distance. In [8] a laser scanner is used to stop
the robot if a human enters the workspace. With the Pilz-
SafetyEye there was also a commercial camera-based system
that allowed the monitoring of a 3D-space using multiple
safety zones around the robot. It is not available anymore.
Splitting the workspace into more zones allows reducing the
number of stops, but true collaboration is still not possible.

Ideally the robot system should be aware of the worker’s
position and only create the minimal required safety zone
around the human body to prevent unnecessary stops. The
following chapters will investigate how this can be achieved.
After a description of the robot scenario, an overview of com-
mon safety standards is given, followed by an explanation of
the proposed safety concept. The system is then evaluated,
and compared to further related work.

III. SCENARIO DESCRIPTION

The checking of returned packages is a common task for
many online shops. The packages are returned by customers
and need to be checked for completeness and damage so
that they can be put back into stock if they are still in good
condition. This task is normally done by a human worker,
because the quality inspection is hard to automate. The
worker needs to open the packages, check the contents and
sort the packages into different categories. In the examined
example scenario, the parcels are delivered on a Euro-pallet.
The worker takes the parcels from the pallet and puts them
on a table in front of them. The parcels are then opened, and
the contents are checked. After the check is completed, the
worker sorts the parcels into two different boxes, depending
on the condition of the contents. This task is very repetitive
and can lead to physical strain for the worker.

The task of the robot in the KoARob example is thus to
assist the worker by fetching the parcels from the pallet and
placing them on the table. This reduces the physical strain
on the workers and allows them to focus on the quality
inspection. Since robot and worker work close together, the
robot system needs to be able to detect the worker and ensure
their safety. Also, in case a package is too damaged for the

robot to lift it with the suction gripper, the worker should be
able to fetch it manually.

Figure 2 shows the setup for the application. The robot
is a KUKA KRI16 with a custom suction gripper. It lifts the
packages from the pallet on the right side and places them
onto the table, alternating between two drop positions. After
the worker has inspected the contents of each parcel, he
sorts them into two boxes on the left side (yellow-green for
reusable ones, pink-red for waste). The worker is watched
by five Roboception rc-visard stereo-cameras mounted on
the trusses, while another one detects the locations of the
packages on the pallet. If the robot is unable to lift a package,
the worker can walk around the table and fetch it manually.

IV. SAFETY ANALYSIS

The safety of the system is a critical aspect, especially in a
scenario where the robot is working close to a human worker.
To ensure the safety of a human worker each system has to
follow safety regulations. This chapter will present a short
overview of the generally common procedure. The safety of
the system needs to be analyzed in different steps according
to the ISO 13849-1 standard. First, the risks of the robot are
identified. Then the safety measures are defined to reduce
the risks. Finally, the safety measures are evaluated to ensure
that they are sufficient to reduce the risks to an acceptable
level. In the case of using a robot, additional standards like
ISO 10218-1 and ISO 10218-2, and for a collaboration robot
additionally ISO 15066, need to be considered as well.

A. Risk assessment

In general, after the risks of the system are identified,
the risks need to be analyzed to determine the required
performance level (PL,) of the safety system. Depending on
their severity they can be classified into one of five levels a-e,
for example by following the simple procedure in Figure 3.
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Fig. 3: Risk assessment according to ISO 13849 [4].



Due to space constraints, we concentrate on a small
selection of the most important risks:

o The robot places a parcel on the table while the human
has its hand on the put-down position:

S1 (suction gripper is somewhat flexible)

F'2 (could occur more than once per hour)

P1 (robot moves slow enough that human could
pull back hand)

— PL, = b (according to Figure 3)

« Robot drops the parcel, it falls on human foot:
S1 (parcel weight < 5kg), F2, P1, PL, =b
« Robot moves on teached path and hits human:
S1 (robot moves slow, no major squeeze points), F'2,
P1 (lot of space around robot), PL,. =
« Robot has an error and leaves the workspace:
S2, F1, P2, PL, =d
« Robot has an error and moves too fast:
S2, F1, P2, PL, =d
Each risk needs to be handled by a safety measure that
has at least the required performance level. One safety system
might secure multiple risks together. So in this case, if only
one safety system shall be used, a PL; is required, as
ISO 10218-1 requires for robots in general, if no detailed
risk assessment was done.

B. System assessment

After defining a safety function for each risk, the per-
formance level of each safety measure has to be analyzed.
For this, the following three factors are most important: the
function’s structural category, the reliability, and the runtime
parallel testing of possible system errors. The categories
describe the structure of the system, whether it is basic (B),
uses better components (1), has additional runtime tests (2),
and also includes redundancy (3/4). The reliability is given
by the mean time to dangerous failure (MTTF,;), which
is measured in years and converted to four different lev-
els (not suitable (< 3a), low (> 3a), medium (> 10a),
high (> 30a)). The runtime parallel testing is measured
through the diagnostic coverage (DC), which is the percent-
age of dangerous failures that are detected by the safety sys-
tem, which is also converted to four levels (none (< 60%),
low (> 60%), medium (> 90%), high (> 99%)). The
overall performance level of the evaluated safety function
can then be taken from the diagram in Figure 4 (there also
exists another option to directly calculate the PF'Hp value
if required).

Note that the standard has additional requirements, for
example regarding testing of common causes of failures
or the specification and verification of software, but the
aforementioned factors are the most important ones for the
following evaluation.

V. SAFETY CONCEPT

To simplify development, the safety functions are divided
into three main parts: safe robot positioning, safe human de-
tection, and distance monitoring. The safe robot positioning

Cat.B Cat.1 Cat. 2 Cat. 2 Cat. 3 Cat.3 Cat. 4
Dnc,, = DC,, = DC,, = DC,, = DnC,, = DG, = Dc,, =
none none low medium low medium high
Legende
PFH,  Average probability of dangerous failure per hour
PL Performance Level

I:‘ MTTF, of each channel = low

MTTF, of each channel = medium

. MTTF of each channel = high

Fig. 4: System assessment according to ISO 13849 [4].

ensures that the robot is not moving too fast or at the wrong
positions, while the safe human detection and the distance
monitoring ensure that the robot stops if a human gets too
close.

A. Safe Robot Position

As found in the risk analysis, leaving the workspace or
moving too fast are two very critical risks that can lead to
severe injuries. Especially too rapid acceleration needs to be
detected quickly. To reach the required performance level a
redundant system with at least two channels is needed. Often
the robot’s software already provides safety functions to
monitor the robot’s position and speed. If this is not the case
or the robot does not output its position redundantly, a second
channel is needed to verify the robot’s position. This could
for example be achieved using an Inertial Measurement
Unit (IMU) attached to the robot’s gripper, a camera system
detecting AprilTags [9] attached to the robot’s joints, or Wire
Draw Encoders [10] to measure the robot’s position directly.
Since the focus of this work is on reliable Al-based human
detection, it will be assumed that the robot’s position output
is safe and reliable.

B. Safe Human Detection

To introduce redundancy in the human pose estimation,
three different approaches were developed in this project:

The first, published as VoxelKeypointFusion [11], uses
a top-down approach with RTMPose [12] to first detect
humans in each 2D image by their bounding boxes and
then their joints (keypoints) in the box cutouts. The heatmap
representations of the keypoints are then triangulated in
voxelized space to estimate 3D joint proposals at overlap-
ping positions. The resulting proposals are then merged
and assigned in a bottom-up approach to complete persons.
The second, called PlaneSweepPosePlus is a combination



of RTMO [13] with PlaneSweepPose [14] to make it end-
to-end runnable, including some additional improvements.
It uses a bounding-box approach to detect locations of 2D
persons with their joints in a single step, and a mixture of
depth estimation and per-view consistency to estimate the
3D poses. The third, published as SimpleDepthPose [15],
predicts 2D keypoints using a bottom-up approach with a
modified HigherHrNet [16] model that only predicts directly
visible joints. Then the corresponding distances of each joint
are extracted from the cameras’ depth images. The resulting
3D poses per view are merged, and, after dropping outliers,
averaged to get the final 3D poses.

One important aspect here is that all three models use
different architectures to detect the human joints, to increase
the probability that at least one of them detects the human if
the others have problems. For example, a top-down approach
normally achieves better localization results, because they
can cut out their boxes with higher resolutions, while in
contrast to bottom-up approaches, they are more likely to
miss the complete person if only very few joints are visible
and no box is predicted. Using depth information allows
the accurate detection of persons even if they are visible
in only one camera, but if the depth information is noisy,
the resulting poses can be very inaccurate. A triangulation-
based approach needs at least two cameras to detect a person,
but can also estimate positions of occluded joints if the 2D
models correctly predict/estimate those joints.

Other common challenges for vision-based detectors, like
unusual clothing, severe occlusions or challenging light-
ing, which also would affect the above approaches, can
be mitigated by making use of the controlled setup. The
company owner can influence the workers’ clothing and the
system developer can optimize the number and positions of
the cameras to reduce occlusions, as well as the lighting
conditions.

The three models were evaluated across multiple publicly
available datasets (Panoptic Studio [17], Human3.6m [18],
Campus & Shelf [19], MVOR [20]), and compared to
many other open-sourced state-of-the-art approaches (Vox-
elPose [21], Faster-VoxelPose [22], MvP [23], PRGnet [24],
TEMPO [25], SelfPose3d [26], mvpose [27], mv3dpose [28],
PartAwarePose [29], OpenPTrack [30]). It was found that
regarding the performance of the models, on datasets yet
unseen to them to test their generalization capabilities, the
three models described before were in summary the most
reliable. Further details about the evaluations and their results
can be found in the papers of VoxelKeypointFusion [11]
and SimpleDepthPose [15], which also include links to their
source codes and any pre-trained models.

C. Distance Monitoring

To simplify the redundant execution of the safety function,
to reduce hardware requirements, and to ensure explainabil-
ity, a simple concept for distance monitoring is chosen. The
robot and the human are represented by two voxelmaps,
which define their space occupancy (see Figure 5). If a voxel

is occupied by the robot and the safety-hull of the human
occupies it, the robot is stopped. If the voxel is freed again
by one of them, the robot can continue to move. Besides
that, the safety system also ensures that both voxelmaps are
up to date, so if one voxelization module stops sending new
messages, the robot is automatically stopped.

Since the person detectors can differentiate between dif-
ferent body parts, the human pose voxelization process can
define different safety distances for different body parts. For
the scenario three different distances for the head, torso
and hands were chosen. So the system can ensure a larger
distance for the worker’s head and a lower distance for his
hands.

An additional buffer was introduced to prevent the robot
from constantly jerking in borderline cases when the human
is located directly at the robot’s safety boundary zone and
the voxels at the boundary are sometimes occupied and
sometimes released due to slight movement. Therefore, this
second safety module aggregates the output of the voxelmap
occupancy over a certain period of time (currently 100ms)
and only releases the robot if all states in it are “free”.
This module has the additional advantage that other modules
can also trigger a stop outside the voxelmap architecture.
A camera monitoring module for example could generate a
stop if it detects that the camera has moved or is no longer
providing current images.

The occupancy evaluation runs on a single Raspberry-Pi-4,
and takes about 1-3ms (at 5ecm voxel size). It should
therefore also be possible to run the calculation on somewhat
weaker but safety-certified hardware.

Fig. 5: Voxel-based distance monitoring. The human is represented
by the orange/yellow voxels (depending on the limb type), and the
robot by the purple/blue ones.

D. System architecture

Figure 6 shows the overall software pipeline, and how the
three safety parts are combined. As interface to the KUKA
robot RSI is used to receive the robot’s position and to update
the override speed to stop it. For communication between
the other modules ROS2 is used. The modular software
architecture allows an easy exchange of the safety modules.
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Fig. 6: Software pipeline.

VI. EVALUATION

The safety as well as the usability of the system were
finally evaluated using the setup described in Chapter II1.

A. Pose Estimation

To assess the reliability of the person recognition in
the given scenario, a dedicated dataset was created and
labeled. To create the dataset, various people were asked
to process the “returns handling” scenario with the robot. In
the scenario, the robot placed several packages with different
contents on top of the table in front of the worker, which
they then inspected and, depending on whether an object
was present or not, sorted them into two boxes for reusable
returns or waste. Meanwhile, the robot was monitored by the
safety system described before and stopped automatically if
the distance between the person and the robot fell below a
certain threshold.

The images from the cameras were recorded during this
process, and afterward, parts of the sequences were labeled.
A semi-automatic procedure was implemented for this, in
which one of the algorithms (regularly switched to prevent
biases) created an initial suggestion for the joint positions,
which was then corrected manually to repair any misidentifi-
cations. A total of 1100 images from 10 people were labeled.
The sequences were labeled at a frame rate of 10H 2z with
a few seconds of consecutive frames and then a larger gap
before the next sequence. See Figure 7 for an example of
the labeled dataset.

The three models were evaluated using the standard
metrics in computer vision. Percentage of Correct Key-
points (PCK) calculates the percentage of how many key-
points were detected with an error lower than the given
threshold in millimeters. Mean Per Joint Prediction Er-
ror (MPJPE) calculates the mean error of all joints for
each person and then averages over all persons, dropping
persons with an error of above 500mm as not matched.
In total 13 keypoints are evaluated (2 shoulders, 2 hips,
2 elbows, 2 wrists, 2 knees, 2 ankles, 1 nose/head). The
Recall shows the percentage of persons with an average
joint error regarding the ground-truth lower than the given
threshold. Invalid counts the percentage of predictions that

Fig. 7: Evaluation dataset example of a 3D pose and their projection
into the five camera views.

were not matched to any ground-truth label, and 1 combines
it with the Recall @500 score into a single value. More details
can be found in the paper of VoxelKeypointFusion [11]. The
FPS states the end-to-end (images-to-poses) inference speed,
evaluated on a single Nvidia-3090.

In Table I it can be seen that VoxelKeypointFusion and
PlaneSweepPosePlus which both only use color images had
problems in correctly detecting all persons (Recall@500). In
contrast, SimpleDepthPose recognized all persons and was
also the fastest. In comparison to other datasets evaluated
previously, the lack of synchronization of the cameras was
found to result in some performance decreases. For hardware
reasons only the most recent image from each camera could
be used instead of generating all images simultaneously. If
the person moves quickly, the joints can be recorded at dif-
ferent points in the respective images. VoxelKeypointFusion
in particular then has problems with triangulation, since the
heatmap rays no longer overlap correctly. SimpleDepthPose
also had problems with the quality of the depth data and
additional extensive occlusions, this algorithm had always
performed most reliable in the previous comparisons.

Since, as Table I shows, no algorithm reliably recognizes
all joints within 500mm (PCK@500), they need to be
combined to improve the results. Using their diverse archi-
tectures, this should lead to better reliability. Two different

| Method | PCK@100/500 | MPJPE | Recall@100/500 | Invalid | Fl1 | FPS |
VoxelKeypointFusion 828 994 59.1 90.2 99.6 0.0 99.8 6.2
PlaneSweepPosePlus 86.5 992 459 948  99.3 0.7 99.3 8.6

SimpleDepthPose

| 625 979 | 112 | 513 100 | 111

| 941 | 227 |

TABLE I: Results of single approaches on the new koarob dataset



| Method

| minPCK@99% | minPCK@99.9% | minPCK@100% | non-close-percentage |

0.30
0.25

close persons ‘

0.20
fused keypoints

0.15

‘ 0.45 ‘

21.4 (stop frames)
0.30

11.7 (extra joints)

TABLE II: Results of merged approaches on the new koarob dataset. min PC K in meters.

| Method | Head | Shoulders |  Elbows | Wrists | Hips | Knees | Ankles |
close persons 0.30 0.25 | 0.20 0.20 | 0.30 0.20 | 0.30 0.25 | 0.25 0.25 | 0.30 0.45 | 0.30
fused keypoints 0.25 0.15 ] 0.25 0.15 | 0.30 0.15 ] 0.25 0.20 | 0.25 0.25 | 0.30 0.30 | 0.30

TABLE III: Results per joint (minPCK@ 100%, left|right) of merged approaches on koarob

approaches were investigated for this purpose. The first
one checks in the first step whether all algorithms have
recognized the same number of persons and then whether
all 3D joint coordinates of these persons are also close to
each other. If not, a stop is triggered. The second approach
just merges the results of all algorithms, and thus detects the
persons at all suggested positions (which then can simply
overlap).

As can be seen in Table II, both combination approaches
now recognize all joints reliably (minimal distance in which
all joints are detected (minPCK@100%) is less than
500mm). With the second, however, the minimum required
safety space all human joints are recognized within is
somewhat smaller, which allows closer cooperation between
humans and robots. Both concepts have their own advantages
and disadvantages. The first approach stops the robot in
21% of the images (although these are not expected to be
randomly distributed, but position-dependent, which means
if the worker enters an area with poor visibility, the robot
remains stationary all the time). On the other hand, it can be
assumed that the accepted images have a good pose accuracy.
The second approach does not stop the robot directly, but
increases the amount of occupied voxels. Approximately
12% of the occupied joint points are further than 500mm
away from the actual ones.

The results per joint in Table III show that the localization
error notably differs between the joint types. Especially
the ankles, which were highly occluded in the evaluated
scenario, have a larger error. By adding more cameras to
reduce occlusions it is expected that this position error can
be reduced. Instead of the partition in head, torso and limbs,
used while running the evaluation (as shown in Figure 5),
one could also use a custom voxel-occupation radius per joint
type. In most applications only a close distance to the hands
and arms is of importance, the rest of the body can stay
further away.

B. Safety System

Regarding the assessment of the safety system according
to Figure 4, the category of the system is B, since no
redundancy is used for the distance monitoring and the
three human detection methods were merged into a single
channel. While there are a few runtime tests, like for recent
timestamps, the overall DC' is below 60%. In combination
this would match to the first column of Figure 4. To reach a
certifiable PL with the safety system, one would now need
to show a longer MTTF}; duration. While the evaluation

showed the reliability of the presented safety system for a
short time, a much longer testing phase would be needed to
show the reliability for at least 3 years to reach a suitable
MTTFy level.

One option could be to test the system in real industrial
applications in which there are either no serious risks of
injuries to persons or in which protection is provided by
other measures and sensors. Another option if the reliability
already was shown for some longer time, would be to
reduce the possible risks that they require a lower PL,.. For
example, in the current scenario, this could be possible if
the risks are split into two parts, one caused by the robot
which is secured by a PL; system, and a second one that
contains only the human risks which only require PL;. One
of course, and according to ISO 10218-1 as well, would need
to do a detailed risk analysis then, which covers all normally
possible risks. This would have the benefit that the MTTFj
which needs to be verified could be lower in the first step.
In a running application, the MTTF,; could then be further
evaluated to prove that it also meets the requirements for
higher PL.

VII. RELATED WORK II

There is already some existing research into tighter safety
zones around the human workers to compare against:

In [31] multiple Time of Flight (ToF)-cameras are used to
detect obstacles that trigger a stop if they reach a dynamically
adjusted safety zone. In [32] two ToF-cameras are used
to detect humans in the path of the robot. Another early
research project is [33], in which multiple depth-cameras
are used to partition the workspace into three different types,
background, robot and human/unknown. Robots and humans
received an additional safety-hull and if they overlapped
the robot is stopped. A similar concept was presented
in [34], including additional collision avoidance. All those
systems lack safety certification and thus can not be used
in production environments. One commercially available
and safety-certified system following the same approach is
Veo Freemove [35], which also separates between back-
ground, robot and person/unknown using multiple cameras.
To reach redundancy, besides redundant calculations, each of
the ToF-cameras has two sensors that can be cross-checked.
The main disadvantage of purely depth-based systems is that
they only distinguish between large unknown objects and
background, a finer distinction between human body parts,
like head or hands, is not possible. Therefore such a system
can not allow acceptable contacts with a human hand and
prevent dangerous contacts with the head at the same time.



To distinguish between the body parts one could use a
marker-based approach in which the workers are required to
wear special clothing that can easily be detected by sensor
systems. Examples of such systems are the commercially
available Vicon Motion Capture Suit or other research works
like [36-38]. This might be a very reliable system, even
though none of the authors have added a detailed safety
analysis. Such a system, however, has the disadvantage
that the workers have to wear special suits, which can be
uncomfortable and restrict their movement, or in some use-
cases is not possible at all.

Regarding Al-based safety systems, which would solve
the aforementioned problems, and which would be able to
differentiate between body parts without using tracking suits,
there are only a few existing research projects so far: In [39],
a voxel-based concept was extended with information from a
human pose estimation system to annotate voxel-types. They
mentioned a latency of around 0.8s for voxels of 4cm size
and only used a single camera system which is susceptible to
occlusions. The detection reliability was not evaluated. The
authors of [40] used multiple modalities including thermal
images for background removal and segmentations before de-
tecting human bounding-boxes. Those bounding-boxes were
then used to separate the point-cloud into robot, background
and human points. They reported a miss-rate of at least 4%,
depending on the modalities they used. The approach of [41]
used an object detection system to detect body parts in the
workcell and another neural network to predict whether the
object is inside the safety distance or not. While they were
able to correctly detect all intrusions in their test dataset, the
approach is not transferable to other scenarios, since every
time the second network needs to be retrained. In [42] a
camera with a top-down view was used to detect the heads
of humans in the workspace. A cylindrical safety zone was
then created around the person and depending on the distance
the robot’s speed was reduced. The authors reported a recall
of 91.5% for the detection in the danger zone. The system
is also not able to distinguish between body parts. Unlike
those works, the presented system was able to detect all
persons as well as all their joints in the workspace with
100% reliability. The evaluation also closely followed the
requirements of current safety standards.

In different domains, the project KI Absicherung [43,44]
explored the usage of Al-based safety systems for au-
tonomous vehicles and developed both models and archi-
tectural concepts for such a system. In the currently ongoing
project safe.trAln [45] a similar approach is followed for the
railway domain, using a driverless regional train as example.

VIII. CONCLUSION

This work presented a safety concept for human-robot
collaboration using Al-based sensor processing, which was
evaluated in a real-world scenario. To improve the perfor-
mance, three different human-pose detectors were combined.
The system was able to reliably detect humans and stop
the robot if the distance between the robot and any of the
human’s joints dropped below a certain threshold.

Since the system, and especially the human joint detection
algorithms, are not specifically designed or trained for this
package-returning scenario, but allow a general detection of
humans in some workspace, the system is not limited to this
specific application. Instead, it can be used in a wide range
of other applications where a robot needs to work close to
a human worker. A more complex scenario could be in bike
manufacturing, for example, when the human integrates the
different cables into the bike frame. The robot can hold and
move the frame, to ergonomically improve the positioning,
while the worker needs to contact the frame with his hands
at the same time to hold and insert the cables.

The main contribution of this work is showing that us-
ing Al-based systems for human detection in safety-related
contexts is not impossible. Unlike previous works that used
Al-based concepts, it was shown, even though only for a
short time so far, that the system can detect persons and
their joints in the workspace with 100% reliability. This is
the most important requirement for a new type of safety
system, because if it is not completely reliable, the system
will not be usable in any production environment.

In the future, the investigated safety concept will allow
the use of specific benefits of Al-based approaches, like the
ability to differentiate between different body parts. This
enables an optimization of the safety distances depending
on the joint type, for example to allow closer contacts
with the hands than with the head, which can then lead
to higher collaboration productivity. Besides stopping the
system before a collision occurs, one could further argue,
in line with ISO 15066, that transient contacts with limited
speeds are acceptable. Because the speed (and force) limits
for limbs, and especially the hands, are higher (the contact
impulse is lower because they can be pushed away more
easily), the now available ability to differentiate between
joint types would allow faster movements of the robot in
certain spaces and thus again higher productivity.

One of the main remaining challenges is to prove the
reliability of the system over a longer time, which is needed
to reach a certifiable performance level. However, this is
expected to be solvable with further research. Although
a general safety certification is left for future work, the
presented system is already usable in some applications. For
example, in an application using an already safe CoBot, the
system could be used to avoid contact with certain body
parts, to improve the user experience of the workers.
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