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ABSTRACT

PURPOSE Epidermal growth factor receptor (EGFR) mutations are a main actionable 
driver in non–small cell lung cancer (NSCLC). However, the clinical significance 
of catenin beta-1 (CTNNB1) comutations remains unclear. This study evaluated 
outcomes of patients with EGFR/CTNNB1 comutated NSCLC in a dual-center 
cohort.

METHODS A retrospective analysis of 1,804 patients with NSCLC undergoing next-
generation sequencing (NGS) in 2019-2024 at University Hospital W ̈urzburg 
(single-center cohort, including 15 patients with EGFR/CTNNB1 comutations) 
was complemented with patients with EGFR/CTNNB1 comutated NSCLC re-
ceiving first-line osimertinib at the Thoraxklinik Heidelberg (n 5 11) to extend 
and validate initial findings. We assessed clinical outcomes after first-line 
osimertinib therapy in 90 EGFR-mutated patients with CTNNB1 wild-type 
(wt) status and 23 with CTNNB1 comutation.

RESULTS CTNNB1 mutations were identified in 2.0% (36/1,804) of all patients with NSCLC 
from the single-center cohort, with 41.7% of these also harboring EGFR mu-
tations. Among EGFR-mutant tumors, 7.7% (15/195) exhibited concurrent 
CTNNB1 mutations. In the dual-center cohort, the objective response rate with 
first-line osimertinib was 74.4% in CTNNB1-wt (n 5 90) and 65.0% in 
CTNNB1-mutant patients (n 5 23; P 5 .38). Notably, CTNNB1 mutations were 
associated with significantly longer progression-free survival (PFS; hazard 
ratio [HR], 0.32; P < .001) and overall survival (OS; HR, 0.33; P 5 .003). Mul-
tivariate analysis confirmed CTNNB1 comutation as an independent prognostic 
factor for improved PFS (HR, 0.31 [95% CI, 0.14 to 0.69]; P 5 .004) and OS (HR, 
0.26 [95% CI, 0.10 to 0.65]; P 5 .004). Additionally, CTNNB1 mutations cor-
related with lower PD-L1 expression (P 5 .001) and TP53-wt status (P < .001).

CONCLUSION CTNNB1 comutations are associated with lower PD-L1 expression and TP53-wt 
status, correlating with improved outcomes in patients with EGFR-mutant 
NSCLC undergoing osimertinib therapy. These results suggest that CTNNB1 
comutations may serve as a favorable prognostic biomarker in patients with 
EGFR-mutant NSCLC. Additional prospective studies are warranted to validate 
these results.

INTRODUCTION

Non–small cell lung cancer (NSCLC) accounts for 80%-
85% of lung cancer cases and remains a leading cause of 
cancer-related mortality. Targeted therapies have notably 
improved outcomes, especially in patients harboring epi-
dermal growth factor receptor (EGFR) mutations. 1 The 
prevalence of EGFR mutations is influenced by factors such

as adenocarcinoma histology, nonsmoking status, female 
sex, and ethnicity, with rates ranging from 10%-15% in 
Western populations to up to 40% in Asian populations. 2 

Common activating EGFR mutations, including in-frame 
deletions within exon 19 (Ex19del) and the L858R substi-
tution in exon 21, account for 90% of EGFR mutations in 
NSCLC and are associated with high sensitivity to EGFR 
tyrosine kinase inhibitors (EGFR-TKIs). 1,3 Conversely,
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atypical EGFR mutations may contribute to reduced re-
sponsiveness to EGFR-TKIs, underscoring the heteroge-
neity of therapeutic response among EGFR-mutant 
NSCLC. 3 Osimertinib, a third-generation EGFR-TKI, is a 
standard first-line treatment for patients with common 
EGFR mutations on the basis of the results from the 
FLAURA trial. 4 However, its efficacy is limited by primary 
and acquired resistance, which highlights the importance 
of the underlying biological context. Certain molecular 
features, like TP53 comutations, 5,6 have been associated 
with worse outcomes under EGFR inhibitors.

The Catenin beta-1 (CTNNB1) gene, encoding b-catenin, is 
involved in the Wingless-related integration site (Wnt) 
signaling pathway and plays a significant role in various 
cancers. 7 An extensive analysis of 7,437 patients with lung 
adenocarcinoma using the cBioPortal database revealed a 
significant positive correlation between mutations in EGFR 
and CTNNB1 (Log2 odds ratio, 1.065; P < .001; q < 0.001), 8 

which is consistent with previous studies showing that 
CTNNB1 mutations frequently co-occur with EGFR muta-
tions in lung adenocarcinoma. 9,10 Furthermore, in vitro data 
suggest that CTNNB1 mutations may represent a resistance 
mechanism to EGFR-targeted therapies. 11-15 However, the 
clinical significance of co-occurring CTNNB1 and EGFR 
mutations in NSCLC remains unclear because current 
research provides limited information on their impact on 
treatment efficacy and disease outcomes. 9,16-18

METHODS

Data Characteristics

For the single-center cohort, next-generation sequencing 
(NGS) data of 1,804 patients with unresectable and ad-
vanced NSCLC who received molecular diagnostics by the 
National Network Genomic Medicine (nNGM) Lung Cancer
center W ̈ urzburg 19 from January 2019 to March 2024 were

retrospectively analyzed. For patients receiving more than 
one molecular testing during this time period, only the first 
molecular testing was included in the analysis. Histo-
pathologic diagnosis, PD-L1 assessment, and panel-based 
molecular testing were performed. The nNGM lung cancer 
panel for DNA-based NGS included, depending on the panel 
version, between 19 and 28 genes to detect mutations, 
including CTNNB1, EGFR, KRAS, BRAF, ERBB2, and MET 
(Appendix Table A1). Gene rearrangements/fusions in ALK, 
RET, and ROS1 as well as amplifications in MET were de-
tected by FISH and/or RNA-based NGS. To evaluate the 
impact of CTNNB1 comutations on EGFR-TKI therapy 
outcomes, a comparative analysis was performed. To ex-
tend and validate initial findings, data of all EGFR-mutated 
patients with concurrent CTNNB1 mutation receiving first-
line osimertinib during the same time period 2019-2023 in 
the Thoraxklinik at Heidelberg University Hospital (n 5 11) 
were added to form a dual-center cohort of EGFR-mutated 
stage IV NSCLC. These patients had been identified using 
combined DNA/RNA NGS as published. 20 In the dual-center 
cohort, patients were permitted to have a documented 
history of curative intended treatment for their NSCLC, 
initial chemotherapy as bridging therapy, or radiotherapy 
for metastases during palliative first-line treatment. The 
study adhered to the ethical standards set by the Decla-
ration of Helsinki and received approval from the ethics 
committee of the Medical Faculty at the University of
W ̈ urzburg (no. 221/19_z) and Heidelberg (S-469/2017),
which waived the need for informed consent because of its 
retrospective character.

Statistical Analysis

Objective response rate (ORR) and disease control rate (DCR) 
were calculated by the patients’ best objective response 
during the treatment period. The ORR included patients who 
achieved either complete response (CR) or partial response 
(PR), whereas the DCR included patients who achieved CR,

CONTEXT

Key Objective
Do catenin beta-1 (CTNNB1) comutations influence clinical outcomes in patients with epidermal growth factor receptor 
(EGFR)–mutant non–small cell lung cancer (NSCLC) receiving EGFR-targeted therapy?

Knowledge Generated
In our dual-center analysis, NSCLC patients with EGFR/CTNNB1 comutations receiving first-line osimertinib had signifi-
cantly improved progression-free and overall survival compared with those patients with CTNNB1 wild-type tumors. 
CTNNB1 comutations emerged as an independent prognostic factor in EGFR-mutant NSCLC, although these tumors were 
associated with low PD-L1 expression and TP53 wild-type status.

Relevance
Identifying CTNNB1 co-mutations as a marker of improved outcome may help to stratify patients with EGFR-mutated 
NSCLC and guide therapeutic decision-making in clinical practice.
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PR, or stable disease (SD). The median follow-up time was 
calculated according to the reverse Kaplan-Meier method. 20 

For progression-free survival (PFS), the progression date 
was verified with review of radiologic images, that is, chest 
computed tomography/brain MRI every 6-12 weeks, by the 
investigators without formal RECIST re-evaluation. PFS was 
calculated from the day of initiation of the targeted therapy 
until disease progression or death. Overall survival (OS) was 
calculated from the day of the initial NSCLC diagnosis in the 
palliative setting to death. Kaplan-Meier analysis was used 
to compare the PFS and OS. Patients without progression or 
patients still alive at the time of last follow-up were cen-
sored. A log-rank test was applied to analyze the differences 
between the Kaplan-Meier curves. Multivariable Cox re-
gression was performed to assess the relationship between 
multiple independent variables and the PFS and OS. Hazard 
ratios (HRs) with 95% CIs for each covariate included in the 
model were provided. Statistical significance was deter-
mined at a P < .05. The Chi-square test was used to assess the 
independence of variables. The Phi coefficient was applied to 
determine the strength of the correlation. The Fisher exact 
test was used when the expected frequency in any category 
was <5. Statistical analyses were performed using IBM SPSS 
statistics version 29.0 (IBM, Armonk, NY). Graphs were 
created with GraphPad Prism version 10.1.2 (GraphPad 
Software, Boston, MA).

RESULTS

This study offers a comprehensive analysis of the incidence 
and treatment outcomes in patients with co-occurring 
EGFR and CTNNB1 mutations. Initially, we assessed the 
incidence and molecular characteristics of CTNNB1 muta-
tions in NSCLC. A retrospective single-center analysis was
conducted at the University Hospital W ̈ urzburg, encom-
passing 1,804 patients with NSCLC from January 2019 to 
March 2024. Genomic data were analyzed using a NGS panel 
to identify co-occurring genomic aberrations, focusing on 
actionable genes. Within this cohort, 195 patients (10.8%) 
harbored EGFR mutations, consisting of 96 EGFR Ex19del, 38 
L858R, 34 atypical, and 27 complex mutations. The distri-
bution of key oncogenic driver mutations across the cohort is 
shown in Figure 1A. CTNNB1 mutations were identified in 
2.0% of patients (n 5 36), primarily located in exon 3. These 
hot spot mutations impair key phosphorylation sites leading 
to the stabilization and nuclear accumulation of b-catenin 
(Fig 1B). Compared with other key drivers, CTNNB1 muta-
tions were significantly associated with EGFR mutations, 
which occurred in 41.7% (n 5 15) of patients with CTNNB1-
mutated NSCLC (Fig 1C). In line with results from previous 
studies, 17 the prevalence of CTNNB1 mutations was higher in 
EGFR-mutated (7.7%) than in EGFR wild-type NSCLC (1.3%; 
x 2 (1) 5 36.279; P < .0001; Fig 1D).

Table 1 summarizes the clinical and genetic characteristics, 
treatment regimens, and outcomes of 15 patients with 
NSCLC with co-occurring EGFR and CTNNB1 mutations in 
the single-center cohort. All patients had adenocarcinoma,

and CTNNB1 mutations were detected at initial diagnosis, 
predominantly as subclonal alterations (73.3%, n 5 11/15). 
The majority harbored an EGFR Ex19del (66.67%, n 5 10) or 
a L858R point mutation (20.0%, n 5 3), with two patients 
having a complex EGFR mutation consisting of a L858R 
together with an uncommon mutation (patient 1) or two 
uncommon mutations (patient 5). Additional coalterations 
included mutations in TP53, FGFR1, FGFR2, PIK3CA, or PTEN 

as well as high-level MET amplification.

For therapy, osimertinib was the primary first-line palliative 
therapy (80.0%, n 5 12/15), with one patient receiving the 
second-generation EGFR-TKI afatinib and another receiving 
osimertinib as second-line palliative therapy. Three patients 
underwent curative therapy (surgery: n 5 2, radio-
chemotherapy: n 5 1). The ORR to EGFR-TKIs was 69.2% 

(n 5 9/13), and the DCR was 92.3% (n 5 12/13). Response to 
osimertinib in patient 8 was indeterminate because of the 
lack of measurable tumor lesions postsurgery, and patient 13 
had not yet started palliative therapy. At the last follow-up 
examination, disease progression occurred in six patients 
undergoing targeted therapy.

Notably, in patient 5, a tumor rebiopsy revealed a significant 
increase in CTNNB1 mutation frequency (0.4%-30.0%), 
alongside an increase in EGFR allele frequency (27/28% to 
62/62%), correlating with a higher tumor cell content (40% 

v 70% at rebiopsy). Despite this, the patient opted to con-
tinue osimertinib until death. By contrast, the CTNNB1 
mutation could not be detected in rebiopsy of patient 4 after 
progressing on afatinib. This is likely to be a result of the 
extremely limited quantity of tumor sample examined, 
which corresponds to the low allele frequency of 8% of the 
EGFR mutation. At the time of the initial diagnosis, the allele 
frequency of the EGFR mutation was 98%, and the CTNNB1 
mutation had an allele frequency of 24%. Patients 1 and 7 
declined rebiopsy, and patient 2 was excluded because of 
deteriorating health. Patient 6, with cerebral progression, 
received radiation therapy.

To assess the impact of CTNNB1 comutations on EGFR-TKI 
therapy outcomes, a comparative analysis was performed. 
To increase statistical power and ensure a sufficiently 
large case cohort, additional data from patients with 
EGFR-mutant NSCLC harboring CTNNB1 comutations were 
collected from the Thoraxklinik at University Hospital 
Heidelberg (2019-2023) and integrated into a dual-center 
data set. The comparative analysis of the dual-center co-
hort included 90 EGFR-mutant patients with wild-type 
CTNNB1 (CTNNB1-wt) and 23 with CTNNB1 comutations 
(CTNNB1-mut). Detailed characteristics provided in Ap-
pendix Table A2.

Among the CTNNB1-wt group, 62.2% of patients had an 
EGFR Ex19del, 25.6% had a L858R mutation, and 12.3% 

harbored uncommon or complex EGFR mutations. The 
CTNNB1-mut group demonstrated a comparable pattern, 
with 65.2%, 21.7%, and 13.0%, respectively (Fig 2A).

JCO Precision Oncology ascopubs.org/journal/po | 3
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Osimertinib yielded an ORR of 74.4% in CTNNB1-wt patients 
versus 65.0% in CTNNB1-mut patients (x 2 (1) 5 0.712; P 5 

.399) and a DCR of 89.0% and 95.0% (x 2 (1) 5 0.649; P 5 

.420), respectively (Fig 2B). In the CTNNB1-wt group, 16.7%, 
61.1%, and 22.2% had PD-L1 expression <1%, 1%-49%, 
and ≥50%, respectively. By contrast, the CTNNB1-mut group 
showed different proportions: 52.2%, 43.4%, and 4.3%. The 
Fisher exact test showed significant relationship between 
CTNNB1 mutation status and PD-L1 tumor proportion score 
(TPS) when categorized as <1%, 1%-49%, and ≥50% 

(x 2 (2) 5 13.805; P 5 .001), confirming the observation that 
CTNNB1-mutated patients by mean had a lower PD-L1 TPS. 
Moreover, the CTNNB1-wt group had a higher frequency of 
TP53 comutations compared with the CTNNB1-mut group

(58.9% v 13.0%). A chi-square test was used to compare 
CTNNB1 and TP53 mutational status. The results showed a 
negative correlation between CTNNB1 and TP53 mutations in
the cohort (x 2(1) 5 15.402; P < .001; w 5 –0.369). To confirm
this relationship, an analysis of 12,261 patients with NSCLC 
from the cBioPortal database showed mutual exclusivity of 
CTNNB1 and TP53 (Log2 odds ratio, –0.663; P < .001; q <
0.001), 8 suggesting that this association is not limited to
EGFR-mutated patients. Moreover, a reduced proportion of 
patients in the CTNNB1-mut group exhibited MET ampli-
fication (17.8% v 4.3%). However, no significant correlation 
between CTNNB1 mutation status and MET amplification 
was indicated by the Fisher exact test (x 2 (1) 5 1.824; 
P 5 .0.177).
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FIG 1. Co-occurrence of EGFR and CTNNB1 mutations in patients with NSCLC. (A) Distribution of key oncogenic driver 
mutations within a single-center cohort of 1,804 patients with NSCLC. (B) Detailed analysis of activating CTNNB1 mutations, 
showing their frequency and types across the study population (n 5 36). (C) Comutation patterns involving CTNNB1 in 
NSCLC, with a focus on the notable prevalence of concurrent EGFR mutations. (D) Venn diagram showing the overlap 
between EGFR and CTNNB1 mutations (n 5 15) in the single-center cohort. P < .0001 for the frequency of CTNNB1 in EGFR-
mutant versus unselected NSCLC with a chi-square test. CTNNB1, catenin beta-1; EGFR, epidermal growth factor receptor; 
NSCLC, non–small cell lung cancer.
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TABLE
 
1. Patient Characteristics and

 
Treatment Outcomes

 
in
 
EGFR-Mutant NSCLC 

With
 
Co-Occurring

 
CTNNB1

 
Mutations

ID Age Sex Histology UICC
EGFR

 
Mutation

(frequency)
CTNNB1

 
Mutation

(frequency)
Other Genetic
Alterations Pretreatment TKI

Line
 
of 

Therapy
(palliative)

Best
Response

PFS
(mos)

OS
(mos)

Pat 1 78 M ADC IVb L858R
 
(5%) 1

 
T854A

 
(5%) S45F

 
(8%) — No Osimertinib 1st line PR 39.2 50

Pat 2 63 M ADC IVb Ex19del (40%) S37C
 
(18%) FGFR2

 
L526R,

PIK3CA
 
G1049R, 

TP53
 
c.673-1G>A

 
p.?

No Osimertinib 1st line PR 15.3 50.9

Pat 3 72 M ADC IVa Ex19del (8%) S37F
 
(2%) — No Osimertinib 1st line PR 54.81 55.11

Pat 4 78 F ADC IIIc Ex19del (98%) D32N
 

(24%) FGFR1
 
L172R, TP53 

L289fs, high-level 
MET

 
amplification

 
(polysomy)

Yes, RCT 
(CIS/VIN)

Afatinib 1st line PR 41.0 47.1

Pat 5 72 M ADC IVb G719A
 
(27%) 1

 S768I (28%)
S45P

 
(0.4%) PTEN

 
N117Ifs*17 No Osimertinib 1st line SD 7.1 10.9

Pat 6 75 F ADC IVb Ex19del (53%) S37C
 
(14%) — No Osimertinib 1st line PR 15.0 34,61

Pat 7 82 F ADC IVb L858R
 
(94%) S33C

 
(5%) — No Osimertinib 1st line PD 3.8 12.0

Pat 8 78 M ADC IVa Ex19del (33%) G34V
 
(13%) — Yes, SUR Osimertinib 1st line nd 37.01 39.01

Pat 9 70 F ADC IVb Ex19del (22%) S37F
 
(13%) — No Osimertinib 1st line PR 26.51 27.51

Pat 10 68 F ADC IVb Ex19del (44%) S37F
 
(25%) — Yes, CAR/PAC Osimertinib 2nd

 
line PR 21.31 30.41

Pat 11 80 F ADC IVa Ex19del (29%) S37C
 
(8%) — No Osimertinib 1st line SD 24.41 25.01

Pat 12 69 M ADC IVb Ex19del (19%) S33C
 
(19%) — No Osimertinib 1st line PR 17.11 18.11

Pat 13 84 F ADC IVa L858R (39%) D32N
 

(7%) — Yes, SUR Not yet — — — —

Pat 14 52 F ADC IVa Ex19del (52%) S33Y
 
(57%) FGFR1

 
R601Q No Osimertinib 1st line PR 9.11 9.11

Pat 15 73 F ADC IVa L858R (29%) S33Y
 
(25%) TP53

 
R249_P250delinsSS, 

high-level MET
 

amplification
 
(polysomy)

No Osimertinib 1st line SD 5.91 6.91

NOTE. Detailed overview
 
of the patient characteristics and clinical outcomes

 
in
 
the
 
single-center cohort of patients with EGFR-mutant NSCLC 

with
 
concurrent CTNNB1 mutations. Demographic

 
data, 

including
 
age, sex, and histological subtypes, are presented

 
along

 
with

 
genetic

 
profiles

 
revealing

 
EGFR

 
and

 
CTNNB1

 
mutations

 
as
 
well as additional genetic alterations

 
in
 
patients. Treatment 

modalities, such as
 
the
 
type

 
of TKI administered

 
and

 
the
 
line

 
of therapy, are described. The figure also includes

 
clinical outcomes, highlighting the

 
BOR

 
to
 
therapy, PFS, and OS

 
in
 
months, illustrating 

the
 
different responses to

 
treatment in patients

 
with

 
complex mutational landscapes.

Abbreviations: ADC, adenocarcinoma; BOR, best objective response; CAR/PAC, carboplatin/paclitaxel; CIS/VIN, cisplatin/vinorelbine; CTNNB1, Catenin beta-1; EGFR, epidermal growth factor 
receptor; Ex19del, in-frame

 
deletion

 
within

 
exon

 
19; F, female; M, male; mos, months; nd, not defined; OS, overall survival; Pat, patient; PD, progressive disease; PFS, progression-free survival; PR, 

partial response; RCT, radiochemotherapy; SD, stable disease; SUR, surgery; TKI, tyrosine kinase
 
inhibitor; UICC, Union for International Cancer Control; 1, indicates that disease progression

 
under 

therapy or death of the patient did not occur at the time
 
point of last follow-up.
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The median follow-up time was 31.46 months for the 
CTNNB1-wt and 43.27 months for the CTNNB1-mut group. 
Kaplan-Meier analyses demonstrated significant differences 
in PFS and OS between the groups (Figs 2C and 2D). The 
median PFS was 15.2 months for the CTNNB1-wt group and 
44.53 months for the CTNNB1-mut group (HR, 0.32 [95% CI, 
0.20 to 0.53]; P 5 .0006). Similarly, the median OS was 
24.49 months for the CTNNB1-wt group, whereas the 
CTNNB1-mut group had not reached median OS (HR, 0.33 
[95% CI, 0.19 to 0.59]; P 5 .003). Given that the CTNNB1-
mutant group exhibited a lower prevalence of TP53 muta-
tions and lower PD-L1 TPS compared with the CTNNB1-wt 
group, we conducted a subgroup analysis focusing on

TP53-wt patients with PD-L1 TPS <50%. Stratification by 
CTNNB1 mutation status revealed a significant improvement 
in PFS (HR, 0.29 [95% CI, 0.13 to 0.63]; P 5 .0009) and OS 
(HR, 0.34 [95% CI, 0.14 to 0.79]; P 5 .015) in CTNNB1-mut 
patients (n 5 20) compared with CTNNB1-wt patients (n 5 

26; Appendix Fig A1).

To determine whether CTNNB1 is an independent prognostic 
marker, we conducted a multivariable Cox regression 
analysis. Therefore, we assessed the impact of several var-
iables, including age, smoking history, ECOG performance 
status, Union for International Cancer Control stage, CNS 
metastasis, PD-L1 expression, TP53 mutation status, MET
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FIG 3. Forest plots depicting the cox proportional hazards regression analysis for clinical outcomes in patients with EGFR-mutant 
NSCLC. (A) Analysis of factors influencing PFS. HRs are represented by black dots, with red whiskers indicating the 95% CI. Key factors 
analyzed include ECOG performance status, UICC stage at the time of palliative first-line therapy, CNS metastasis, PD-L1 TPS, TP53 
mutation status, MET amplification, and the presence of specific EGFR and CTNNB1 mutations. Notably, poor ECOG performance 
status is significantly associated with shorter PFS, whereas the presence of co-occurring CTNNB1 mutations is associated with 
improved PFS. (B) Analysis of factors that affect OS. Similar to the PFS analysis, HRs are represented with 95% CIs. Significant 
predictors of reduced OS include poor ECOG performance status and uncommon or complex (continued on following page)
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amplification, EGFR mutation subtypes, and CTNNB1 mu-
tation status on both PFS and OS (Fig 3). Consistent with the 
univariable analysis, the presence of CTNNB1 comutations 
emerged as a significant prognostic factor for improved PFS 
(HR, 0.31 [95% CI, 0.14 to 0.69]; P 5 .004) and OS (HR, 0.26 
[95% CI, 0.10 to 0.65]; P 5 .004). Poor ECOG performance 
status was identified as predictor of poor PFS (HR, 3.13 [95% 

CI, 1.68 to 5.85]; P < .001) and OS (HR, 4.39 [95% CI, 2.16 to 
8.92]; P < .001). Additionally, uncommon and complex EGFR 
mutations were significantly associated with reduced OS 
(HR, 2.98 [95% CI, 1.34 to 6.64]; P 5 .007). In the multi-
variable analysis, TP53 was not identified as a significant 
prognostic factor for either PFS or OS when analyzed 
alongside CTNNB1. Conversely, in the univariable analysis, 
patients with TP53 comutation exhibited significantly 
poorer PFS (HR, 1.58 [95% CI, 0.99 to 2.52]; P 5 .048), 
whereas a trend was observed for OS (HR, 1.53 [95% CI, 0.91 
to 2.60]; P 5 .104), although it did not reach statistical 
significance. Kaplan-Meier curves for ECOG performance 
status, EGFR mutation types, and TP53 mutation status are 
shown in Appendix Fig A2.

DISCUSSION

This study is one of the most comprehensive retrospective 
analyses of patients with EGFR-mutant NSCLC with co-
occurring CTNNB1 mutations. The most important finding 
of this study was the improved clinical outcome associated 
with CTNNB1 comutations when present at baseline in 
EGFR-driven lung cancer. Despite a similar ORR compared 
with CTNNB1-wt patients, CTNNB1-mut patients achieved 
superior and prolonged disease control, as well as signifi-
cantly improved PFS and OS with osimertinib treatment. 
Although the expression of b-catenin has been described to 
be increased in EGFR-mutant NSCLC, 14 an additional po-
tential increase in Wnt pathway activity because of patho-
genic CTNNB1 mutations had no impact on patient outcome. 
Instead, our data indicate that CTNNB1 comutations may 
have a protective effect, leading to improved PFS and OS, 
challenging the traditional view that additional oncogenic 
mutations uniformly worsen outcomes. This raises ques-
tions about the potential benefit of combining EGFR TKIs 
with b-catenin inhibitors to enhance clinical outcomes in 
EGFR-mutant NSCLC. 21 This is in contrast to previous studies 
that focused on the role of CTNNB1 as possible resistance 
mechanism or lacked sufficient clinical data. 9,11-18

Of note, this study is one of the largest studies analyzing 
CTNNB1 mutations in EGFR-mutated NSCLC and, to our 
knowledge, the first one that systematically investigates 
the response to EGFR-TKIs in first-line therapy. Although

CTNNB1 mutations are rare in EGFR-mutated NSCLC, our 
dual-center approach enabled a robust and meaningful 
analysis. The cohort analyzed here consisted mainly of el-
derly patients with adenocarcinoma, a typical population 
group for EGFR-mutant NSCLC. Our findings confirm the 
prognostic value of ECOG performance status, where higher 
scores correlate with significantly shorter PFS and OS. In 
addition, the presence of uncommon and complex EGFR 
mutations was associated with poorer OS, another typical 
finding underscoring the representative nature of our cohort 
and the therapeutic challenges of standard EGFR-TKI 
therapy for NSCLC with these mutations. Notably, CTNNB1 
mutations frequently co-occurred together with both clas-
sical and atypical EGFR alterations.

Although Wnt/b-catenin signaling is typically implicated in 
tumorigenesis, 7 its role in this context may involve inter-
actions with effective EGFR-TKI treatment leading to 
transcriptional downregulation of CTNNB1 expression. 22 

Moreover, certain cell types, such as bronchiolar epithelial 
cells, may be inherently resistant to its oncogenic effects. 23 

However, in the context of frank disease progression, it is 
conceivable that the b-catenin levels may contribute to the 
resistance network in drug-sensitive/resistant cells. These 
observations may explain the improved clinical outcome in 
patients with CTNNB1 comutations and support the con-
tinued use of EGFR-TKIs regardless of CTNNB1 mutation 
status. Notably, a similar protective effect of CTNNB1 mu-
tations has also been observed in endometrial carcinoma, 
indicating this may not be specific to NSCLC. 24

Our analysis revealed a negative correlation between 
CTNNB1 and TP53 mutations in the comutational landscape 
of EGFR-mutant NSCLC, supported by data from the cBio-
Portal database. As TP53 mutations have been linked to 
poorer outcomes with EGFR-targeted therapies, 5,6 including 
third-generation TKI osimertinib, 25-27 the anti-correlation 
with CTNNB1 mutations represents a potential explanation 
of the apparently favorable impact of the latter in this 
analysis. In addition, it may explain the lack of statistical 
significance for PFS and OS with TP53, when analyzed 
alongside CTNNB1 status in multivariable regression. Fur-
thermore, our findings suggest that although TP53 muta-
tions are often considered a negative prognostic factor in 
EGFR-mutant NSCLC, their impact may be context-
dependent and influenced by additional comutations, such 
as CTNNB1.

Additionally, we identified a significant correlation be-
tween CTNNB1 mutation status and lower PD-L1 TPS. This 
finding is noteworthy because high PD-L1 expression has

FIG 3. (Continued). EGFR mutations. Conversely, concurring CTNNB1 mutation is associated with improved OS. CTNNB1, catenin beta-
1; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; HR, hazard ratio; NSCLC, non–small cell lung 
cancer; OS, overall survival; PFS, progression-free survival; TPS, tumor proportion score; UICC, Union for International Cancer Control.
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been previously linked to shorter PFS and OS under first-
line osimertinib treatment. 28-31 Of note, a higher PD-L1 
expression has also been linked to more aggressive courses 
of driver-dependent NSCLC, for example, ALK1 and 
METDex141 tumors, 32,33 and may reflect a stronger onco-
genic signaling, as PD-L1 is a downstream target of these 
cascades. The link between CTNNB1 mutations and reduced 
PD-L1 expression also suggests a potential interaction 
between the Wnt/b-catenin signaling pathway and immune 
evasion in EGFR-mutant NSCLC. Previous studies have 
implicated Wnt/b-catenin activation in modulating immune 
cell infiltration within the tumor microenvironment. 34 

Our findings align with this concept, potentially indicating 
that CTNNB1-mutant tumors may exhibit distinct immu-
nobiologic properties. Additionally, CTNNB1-mutant pa-
tients showed a lower prevalence of MET amplification, 
although the association was not statistically significant. 
Although MET amplification is a well-established resis-
tance mechanism to osimertinib, 35 its role as an intrinsic 
driver in EGFR-TKI therapy remains inadequately un-
derstood. Despite these findings, neither PD-L1 TPS nor 
MET amplification proved to be significant predictors in 
the multivariable analysis.

Collectively, patients with CTNNB1 mutations exhibit mo-
lecular features indicative of a favorable prognosis, including 
the absence of TP53 mutations and low PD-L1 TPS, and a 
tendency to have less MET amplification. Importantly, a 
subgroup analysis of TP53-wt patients with a PD-L1 
TPS <50% in the dual-center cohort demonstrated signif-
icantly better PFS and OS for CTNNB1-mut patients. These 
findings suggest that CTNNB1 may be an independent 
prognostic factor and that better clinical outcomes may not 
solely be caused by the TP53 or PD-L1 status.

In conclusion, our findings demonstrate that concurrent 
CTNNB1 mutations may serve as independent prognostic 
markers for improved clinical outcomes in EGFR-mutated 
NSCLC. It is important to note that the retrospective nature 
of the study and the relatively small sample size limit the 
generalizability of these findings. The lack of prospective 
validation necessitates a cautious interpretation of the re-
sults. To substantiate these findings and better understand 
the mechanistic basis of the survival benefit associated with 
CTNNB1 mutations, larger, prospectively designed cohorts 
and multicenter studies are essential to improve data di-
versity and enhance the generalizability.
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APPENDIX

B

Number at risk

wt 26 19 9 6 5 3 2 0

mut 20 18 15 12 8 7 4 0
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wt 26 15 5 3 0

mut 20 16 14 10 7 5 4 0
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Median PFS: 15.16 44.32

FIG A1. Clinical outcomes of EGFR-mutant NSCLC patients without TP53 comutation and PD-L1 TPS <50%. 
Subgroup analysis of EGFR-mutant NSCLC patients without TP53 comutation and PD-L1 TPS <50%, stratified by 
CTNNB1 mutation status (CTNNB1-wt: n 5 26; CTNNB1-mut: n 5 20). (A) Kaplan-Meier curve for PFS. (B) Kaplan-
Meier curve for OS. Statistical significance was assessed using the log-rank test, with P < .05 considered significant. 
CTNNB1, catenin beta-1; EGFR, epidermal growth factor receptor; HR, hazard ratio; nr, not reached; NSCLC, non– 
small cell lung cancer; OS, overall survival; PFS, progression-free survival; TPS, tumor proportion score.
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FIG A2. Clinical outcomes of patients with EGFR-mutant NSCLC on the basis of ECOG performance status, EGFR 
mutation subtypes, and TP53 mutation status. (A, C and E) illustrate Kaplan-Meier curves for PFS on the basis of 
ECOG performance status, EGFR mutation subtypes (Ex19del, L858R and uncommon/complex EGFR mutations) and 
TP53 mutation status. (B, D and F) display Kaplan-Meier curves for OS on the basis of ECOG performance status, 
EGFR mutation subtypes and TP53 mutation status. A log-rank test was conducted to assess statistical significance, 
with a P value <.05 considered significant. ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth 
factor receptor; Ex19del, in-frame deletion within exon 19; HR, hazard ratio; NSCLC, non–small cell lung cancer; OS, 
overall survival; PFS, progression-free survival.
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TABLE A1. Genes and Exon Coverage in the nNGM Lung Cancer Panels

Gene nNGM-Panel 1.0 nNGM-Panel 2.0 nNGM-Panel 3.1

ALK Exons: 22-25 Exons: 20-28

BRAF Exons: 11, 15 Exons: 11, 12, 14, 15

CTNNB1 Exons: 3

CUL3 Exons: 1-16

EGFR Exons: 18-21

ERBB2 Exons: 8, 19, 20 Exons: 8, 18-21

FGFR1 Exons: 4-7, 10, 12-15 Exons: 5-8, 11, 13-16 Exons: 5-8, 11, 13-17

FGFR2 Exons: 6-15, 18

FGFR3 Exons: 3, 6, 7, 9, 10, 12, 14, 16, 18 Exons: 3, 6, 7, 9, 10, 12, 13-16, 18

FGFR4 Exons: 3, 6, 9, 12, 13, 15, 16

HRAS Exons: 2-4

IDH1 Exons: 4

IDH2 Exons: 4

KEAP1 Exons: 2-6

KRAS Exons: 2-4

MAP2K1 Exons: 2, 3

MET Exons: 14 (1introns), 16-19

NFE2L2 Exons: 1-5

NRAS Exons: 2-4

NTRK1 Exons: 13-17

NTRK2 Exons: 16-21 Exons: 14-19

NTRK3 Exons: 15-20

PIK3CA Exons: 10, 21 Exons: 8, 10, 21

PTEN Exons: 1-8 Exons: 1-8, 9 (without 
R378-D386)

RET Exons: 10-18

ROS1 Exons: 34-41

STK11 Exons: 1-9

TP53 Exons: 4-8 Exons: 2-11

NOTE. Genes and corresponding exons analyzed across three iterations of the nNGM Lung Cancer Panels, used for DNA-based NGS in NSCLC. The 
individual panel versions (1.0, 2.0, and 3.1) are compared with each other to demonstrate the progress and expansion of genomic coverage over 
time. The table lists key oncogenes and tumor suppressor genes, showing the specific exons targeted for mutation detection in each panel. This 
detailed comparison highlights the panels’ increasing ability to detect a wide array of actionable genetic alterations, critical for developing 
personalized therapeutic approaches in NSCLC.
Abbreviations: NGS, next-generation sequencing; nNGM, National Network Genomic Medicine; NSCLC, non–small cell lung cancer.
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TABLE A2. Demographic and Clinical Characteristics of EGFR-Mutant 
NSCLC Patients With and Without CTNNB1 Mutations

Characteristic Total population CTNNB1-wt CTNNB1-mut

No. of patients 113 90 23

Age at diagnosis (mean) 68.69 67.92 71.26

No. (%) No. (%) No. (%)

Sex

Male 40 (35.4) 33 (36.7) 7 (30.4)

Female 73 (64.6) 57 (63.3) 16 (69.6)

Smoking status

Nonsmoker 63 (55.8) 49 (54.4) 14 (60.9)

Former smoker 36 (31.9) 30 (33.3) 6 (26.1)

Current smoker 13 (11.5) 10 (11.1) 3 (13.0)

Unknown 1 (0.9) 1 (1.1) —

Initial curative treatment

No 101 (89.4) 82 (91.1) 19 (82.6)

Yes 12 (10.6) 8 (8.9) 4 (17.4)

ECOG 1L palliative

0 35 (31.0) 26 (28.9) 9 (39.1)

1 56 (49.6) 44 (48.9) 12 (52.2)

2 15 (13.3) 14 (15.6) 1 (4.3)

3 7 (6.2) 6 (6.7) 1 (4.3)

UICC-stage 1L palliative

IVa 37 (32.7) 27 (30.0) 10 (43.5)

IVb 76 (67.3) 63 (70.0) 13 (56.5)

Histology

Nonsquamous 109 (96.5) 86 (95.6) 23 (100.0)

Squamous 2 (1.8) 2 (2.2) —

Adenosquamous 2 (1.8) 2 (2.2) —

CNS metastasis

No 73 (64.6) 58 (64.4) 15 (65.2)

Yes 40 (35.4) 32 (35.6) 8 (34.8)

PD-L1 TPS

<1% 27 (23.9) 15 (16.7) 12 (52.2)

1%-49% 65 (57.5) 55 (61.1) 10 (43.5)

≥50% 21 (18.6) 20 (22.2) 1 (4.3)

TP53 mutation status

Wild-type 57 (50.4) 37 (41.1) 20 (87.0)

Mutated 56 (49.6) 53 (58.9) 3 (13.0)

MET amplification

No 92 (81.4) 70 (77.8) 22 (95.7)

Yes 17 (15.0) 16 (17.8) 1 (4.3)

Unknown 4 (3.5) 4 (4.4) —

EGFR mutation status

Exon19del 71 (62.8) 56 (62.2) 15 (65.2)

L858R 28 (24.8) 23 (25.6) 5 (21.7)

(continued in next column)

TABLE A2. Demographic and Clinical Characteristics of EGFR-Mutant
NSCLC Patients With and Without CTNNB1 Mutations (continued)

Characteristic Total population CTNNB1-wt CTNNB1-mut

Uncommon 5 (4.4) 5 (5.6) —

Complex 9 (8.0) 6 (6.7) 3 (13.0)

NOTE. Demographic and clinical characteristics of the dual-center
cohort consisting of 123 patients with EGFR-mutant NSCLC,
categorized by the presence or absence of CTNNB1 mutations. 
Variables presented include patient demographics (eg, age at
diagnosis, sex, smoking history), clinical factors (ECOG performance
status, UICC stage, histology, presence of CNS metastasis), and
molecular characteristics (PD-L1 expression levels, TP53 mutation
status, MET amplification levels, and specific EGFR mutation
subtypes). By comparing the CTNNB1-wt group with the CTNNB1-mut
group, the table highlights the distribution of these factors and explores 
their potential implications for treatment outcomes and disease
progression within this patient cohort.
Abbreviations: ADC, adenocarcinoma; CTNNB1, catenin beta-1;
CTNNB1-mut, CTNNB1-mutant; CTNNB1-wt, CTNNB1-wild-type; ECOG,
Eastern Cooperative Oncology Group; EGFR, epidermal growth factor
receptor; Ex19del, in-frame deletion within exon 19; NSCLC, non–small 
cell lung cancer; L858R, leucine to arginine mutation at codon 858; TPS,
tumor proportion score; UICC, Union for International Cancer Control.
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