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Abstract
Background  As an important branch of machine learning pipelines in medical imaging, radiomics faces two major 
challenges namely reproducibility and accessibility. In this work, we introduce open-radiomics, a set of radiomics 
datasets along with a comprehensive radiomics pipeline based on our proposed technical protocol to investigate the 
effects of radiomics feature extraction on the reproducibility of the results.

Methods  We curated large-scale radiomics datasets based on three open-source datasets; BraTS 2020 for high-grade 
glioma (HGG) versus low-grade glioma (LGG) classification and survival analysis, BraTS 2023 for O6-methylguanine-
DNA methyltransferase (MGMT) classification, and non-small cell lung cancer (NSCLC) survival analysis from the 
Cancer Imaging Archive (TCIA). We used the BraTS 2020 open-source Magnetic Resonance Imaging (MRI) dataset to 
demonstrate how our proposed technical protocol could be utilized in radiomics-based studies. The cohort includes 
369 adult patients with brain tumors (76 LGG, and 293 HGG). Using PyRadiomics library for LGG vs. HGG classification, 
we created 288 radiomics datasets; the combinations of 4 MRI sequences, 3 binWidths, 6 image normalization 
methods, and 4 tumor subregions. We used Random Forest classifiers, and for each radiomics dataset, we repeated 
the training-validation-test (60%/20%/20%) experiment with different data splits and model random states 100 times 
(28,800 test results) and calculated the Area Under the Receiver Operating Characteristic Curve (AUROC).

Results  Unlike binWidth and image normalization, the tumor subregion and imaging sequence significantly affected 
performance of the models. T1 contrast-enhanced sequence and the union of Necrotic and the non-enhancing 
tumor core subregions resulted in the highest AUROCs (average test AUROC 0.951, 95% confidence interval of (0.949, 
0.952)). Although several settings and data splits (28 out of 28800) yielded test AUROC of 1, they were irreproducible.

Conclusions  Our experiments demonstrate the sources of variability in radiomics pipelines (e.g., tumor subregion) 
can have a significant impact on the results, which may lead to superficial perfect performances that are 
irreproducible.

Clinical trial number  Not applicable.
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Background
Artificial Intelligence (AI) has found its applications 
across different fields, and medical imaging is one of the 
high-potential areas where AI solutions are promising [1, 
2]. Machine Learning (ML) is a subset of AI with tools 
for classification, regression, and decision-making, with 
many applications for medical imaging data [3]. ML algo-
rithms in medical imaging fulfill tasks such as region of 
interest (ROI) segmentation and classification, and they 
are used as building blocks of AI-based pipelines for 
diagnosis, prognosis, and therapeutic assessments.

Deep Learning (DL) is a branch of ML where multi-
ple-layer Neural Networks (NNs) are utilized at its core. 
Currently, AI-based segmentation is usually done using 
DL algorithms. However, for ML-based classification of 
medical imaging data, DL has a conventional competi-
tor namely radiomics. The suffix “omics” refers to large-
scale data derived to understand a biological perspective, 
such as genomics in Genetics [4]. Radiomics is a large set 
of manually defined features to study ROIs in Radiology 
images. From the Data Science point of view, radiomics 
provides a mapping. The mapping converts medical 
images into tabular data. Radiomics studies often start 
with image annotation, where 2D ROIs or 3D volumes 
of interest (VOIs) are segmented. Each radiomic feature 
is the result of applying a distinct and predefined equa-
tion to the ROI/VOI. Once the radiomic features are 
extracted, any ML classifier capable of handling tabular 
data, such as Random Forests (RF) [5], can be used to 
perform the classification task.

In comparison to DL, radiomics may offer a higher 
degree of explainability since its features are derived 
using transparent equations. However, there are multiple 
sources of variability impacting radiomics generalizability 
and reproducibility [6]. Radiomic features are sensitive to 
any form of change in ROIs/VOIs which leads to changes 
in the intensity values of image pixels/voxels within an 
ROI/VOI. Different vendors, imaging scanner settings, 
imaging protocols, contouring discrepancy (known as 
intra- and inter-reader variability), image normalization, 
and radiomics extraction settings may result in variation 
in radiomics results. Insufficient technical details, such 
as data split information, and lack of openness regarding 
data and code are other obstacles to having reproducible 
radiomics research. Depending on the source of the vari-
ability, addressing the issue may be infeasible in a given 
study. An example is tackling intra- and inter-reader vari-
ability in a fixed dataset of radiology images and ROI/
VOI segmentations, without further information about 
the reader and/or not having access to annotation of 
other reader. Nevertheless, all these sources of variability 

create a demand for a proper statistical approach for 
measuring the randomness of the results and hence, the 
reliability of radiomics studies. Radiomics studies often 
lack systematic randomness measurements. Thus, in this 
research, the aim is to provide open-source radiomics 
datasets along with a baseline classification pipeline. 
We also propose a technical protocol for developing 
radiomics pipelines for reproducible radiomics-based 
classification models.

To demonstrate how the proposed technical protocol 
can improve reproducibility of radiomics-based studies, 
we use the BraTS 2020 [7–9], an open-source multimodal 
Magnetic Resonance Imaging (MRI) datasets for brain 
tumor segmentation. BraTS is primarily a segmentation 
dataset and hence, the majority of articles in the litera-
ture are dedicated to automated segmentation methods 
for brain tumors [7, 9, 10]. As for classification meth-
ods, Dequidt et al. [11] used BraTS 2018 to conduct a 
radiomics-based low-grade glioma (LGG) vs. high-grade 
glioma (HGG) classification task. Five expert radiologists 
labeled the tumors based on World Health Organization 
(WHO) standards, which enabled them to compare their 
model against another set of ground truths in addition to 
the BraTS labels. They extracted a limited set of radiomic 
features (51 features for each MRI sequence), used Sup-
port Vector Machines (SVM) [12] as the classifier with a 
5-fold cross-validation for hyperparameter optimization, 
and achieved 84.1% accuracy with reference to the BraTS 
ground truths. Coupet et al. used BraTS 2020 as one of 
the datasets to train their models for healthy vs. glioma 
classification [13]. Polly et al. applied Otsu thresholding 
[14] to the images, used k-means for segmentation, Dis-
crete Wavelet Transform (DWT) for feature extraction, 
and Principal Component Analysis (PCA) for dimension-
ality reduction, followed by SVM for a two-stage classi-
fication: abnormal vs. normal and then HGG vs. LGG. 
They achieve 99% accuracy on a small and balanced sub-
set (50 HGG and 50 LGG) of BraTS 2017 and BraTS 2013 
datasets, with a one-time data split approach. Integrating 
deep learning with radiomics has been shown to enhance 
the performance of radiomics pipelines [15, 16]. How-
ever, this study prioritizes radiomics-only approaches 
due to their superior explainability.

In this paper, using BraTS 2020 dataset, we propose 
a comprehensive approach to investigating the effect 
of technical sources of variability for radiomics feature 
extraction including image normalization, the most 
impactful radiomics feature extraction hyperparameter 
(binWidth), imaging sequence, and tumor subregion on 
a radiomics-based tumor type classification pipeline. 
BraTS is an evolving collection of brain MRI datasets. 
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Compared with BraTS 2020, BraTS 2021 included more 
patients and a O6-methylguanine-DNA methyltransfer-
ase (MGMT) classification challenge in addition to tumor 
segmentation. BraTS 2023 is an extension of BraTS 2021 
for tumor segmentation. We extract radiomics features 
for BraTS 2023 and validate our proposed radiomics 
pipeline for reproducibility using the cohort from BraTS 
2021 for MGMT classification. We also apply the pro-
posed radiomics pipeline to computed tomography 
(CT) images of patients with non-small cell lung cancer 
(NSCLC) [17].

Contributions of this paper include (a) providing large-
scale radiomics datasets based on three open-source 
datasets; BraTS 2020 for HGG versus LGG classifica-
tion and survival analysis, BraTS 2023 for MGMT clas-
sification [7, 8, 10], and NSCLC survival analysis from 
the Cancer Imaging Archive (TCIA) (b) proposing 
open-radiomics technical research protocol, and (c) pro-
viding a baseline for BraTS classification based on open-
radiomics protocol as a technical validation.

Methods
While there are annotated open-source medical imag-
ing data, the extracted radiomics features are not usually 
available. Thus, each researcher must choose the appro-
priate tools/libraries and settings to extract the features. 
Consequently, radiomics studies are often conducted on 
small internal datasets with a selection of hyperparam-
eters narrowed down for extracting the features. Open-
radiomics (https://openradiomics.org) is our initiative 
for open-source large-scale radiomics datasets where we 
provide AI-ready tabular datasets along with baselines.

One of the sources of variability in radiomics research 
is the discrepancy between the feature extraction soft-
ware and packages used across the studies. Multiple 
options are available to the research community for 
radiomics feature extraction [18]. However, their back-
ends may differ (e.g., default settings or numerical preci-
sion), leading to irreproducibility of radiomics research. 
We will use PyRadiomics [19], which is widely used 
and supported by a large and established community. It 
should be highlighted that PyRadiomics-based packages, 
such as the Slicer Radiomics add-on module for 3D Slicer 
software (https://www.slicer.org/) [20] may mask some 
features of PyRadiomics (e.g., Local Binary Pattern (LBP) 
features), which may lead to suboptimal feature extrac-
tion (see Appendix H).

Datasets
BraTS 2020
The dataset is a collection of multisequence MRIs, 
including T1-weighted (T1), gadolinium-based con-
trast agent enhanced T1-weighted (T1CE), T2-weighted 
(T2), and FLAIR sequences. The training cohort of BraTS 

2020 is the data applicable to our research because its 
ground truth VOI segmentations are available. The 
cohort includes 369 adult patients with brain tumors, of 
which 76 cases are LGG, and 293 are HGG tumors. The 
images are all co-registered to the SRI24 atlas [21], skull 
stripped, resampled to 1 mm3, and their size is unified 
to 155 × 240 × 240 voxels. We acknowledge that there is a 
discrepancy in the definition of LGG and HGG between 
BraTS and WHO [11]. In this paper, we follow the binary 
grading system (HGG vs. LGG) provided by BraTS 
dataset.

BraTS 2012–2016 included four tumor subregions, 
labeled 1–4. The necrotic (NCR), and the non-enhancing 
(NET) tumor core were labeled as 1 and 3, respectively. 
Label 2 corresponded to the peritumoral edematous/
invaded tissue (ED), and active tumor (AT) was labeled 
as 4. Since BraTS 2017, NET and NCR are combined, and 
label 3 is removed from the annotations. Figure 1 depicts 
one slice of an image volume along with its correspond-
ing segmentation mask. We analyze the whole tumor 
(all four subregions combined), AT, ED, and the union of 
NET and NCR (NETnNCR), in separate scenarios.

For 236 patients out of 369, survival information, gen-
der, and extent of resection are available and are included 
in open-radiomics. Thus, open-radiomics BraTS 2020 
supports both classification and survival analysis.

BraTS 2023
BraTS 2023 is curated for segmentation of brain diffuse 
glioma patients and their sub-regions. Ground-truth 
segmentation masks are available for 1251 patients, 
with preprocessing procedure, imaging sequences, and 
tumor subregions similar to BraTS 2020. Through match-
ing patient IDs, we included the MGMT classification 
ground-truth labels from BraTS 2021 in open-radiomics 
BraTS 2023. Out of 1251 patients, MGMT classification 
labels are available for 577, of which 301 have methyl-
ated MGMT (labeled as 1) and 276 have unmethylated 
MGMT (labeled 0). In terms of tumor subregions, BraTS 
2023 includes enhancing tumor (ET), tumor core (TC), 
and the whole tumor (WT). TC entails the ET, and NCR. 
In open-radiomics BraTS 2023, we provide radiomics 
features extracted from WT, ED, ET, and NCR. As a 
result, open-radiomics BraTS 2023 includes 288 sets of 
radiomics for 1251 patients.

TCIA NSCLC
This dataset comprises images from 422 patients diag-
nosed with NSCLC. For each patient, pretreatment CT 
scans are provided along with manually delineated 3D 
volumes of the gross tumor by a radiation oncologist, and 
associated clinical outcome data (i.e., survival). Open-
radiomics NSCLC provides full radiomics features for 
the 422 patients in 18 sets (combinations of 3 binWidths 

https://openradiomics.org
https://www.slicer.org/
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and 6 image normalizations). The datasets include age, 
clinical stage, histology, gender, survival time, and dead/
alive status event, and thus can be used for a range of ML 
tasks, including classification and survival analysis.

NSCLC dataset on TCIA provides digital imaging and 
communications in medicine (DICOM) format for the 
images and radiotherapy structure set (RTSTRUCT) for 
the segmentation masks. We converted the images and 
each segmentation mask to neuroimaging informatics 
technology initiative (NIfTI), which is widely supported 
by ML pipelines and libraries. Segmentation masks for 
gross tumor volume (GTV), left and right lungs, spinal 
cord, heart, and esophagus are available for the patients 
and can be used for training multi-class segmentation 

models (Fig.  2). The preprocessed data is publicly avail-
able [22, 23].

PyRadiomics library
For radiomics feature extraction using PyRadiomics, 
there are technical details to be considered. Installation 
of the trimesh python package is essential (which can be 
done using pip install trimesh) to ensure all radiomic fea-
ture categories are extracted.

In general, radiomics studies can be 2D or 3D. A 2D 
analysis is used when the imaging method is 2D, such 
as X-Ray. However, when 3D images are accessible, 
2D and 3D radiomics analyses are both possible. If the 
2D approach is utilized with 3D images, the analysis is 
often done on the largest 2D cross-section of the ROI 

Fig. 2  An example TCIA NSCLC CT image and its corresponding segmentation masks: left lung, right lung, spine, and GTV annotated with green, blue, 
yellow, and red, respectively [17]

 

Fig. 1  An example BraTS 2020 image (the FLAIR sequence) and its corresponding segmentation mask. The orange area is AT, the green area is ED, and 
the gray parts are NETnNCR [7–9]
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(e.g., tumor). In the case of 3D analyses, such as this 
study, enabling the full set feature extraction forces the 
PyRadiomics library to extract 2D LBP features [24] in 
addition to the 3D LBP features (see Appendix A). In this 
research, we included both 2D and 3D LBP features, and 
thus a full set of 1,710 features were extracted for each 
VOI.

PyRadiomics has multiple hyperparameters that affect 
the feature extraction procedure [25]. One of the most 
important is binWidth, which has been studied in the 
literature extensively [26–28]. binWidth determines the 
bin size which is needed to create histograms used for 
discretizing gray levels in the image, and thus affects all 
features except the shape features which are independent 
of pixel/voxel intensities. The default value of binWidth 
in PyRadiomics is 25. In this research, in addition to bin-
Width of 25, we examine 35 and 15 to see how they affect 
the results. All other hyperparameters are set to their 
default values [25].

Image normalization
Image normalization plays an important role in ML 
pipelines, which can influence radiomics significantly. 
We implemented histogram equalization [29], z-score 
[30], gamma [31], and minmax [32] image normaliza-
tion methods and incorporated them into our 3D anal-
yses. As the coefficients of our gamma normalization, 
we explored 0.5 and 1.5, and the minmax normalization 
clipped voxel values of the image volumes between 0 and 
1. All the normalization methods were applied to the 
image volumes, not the VOIs. We did not investigate VOI 
normalization (where only voxels in the VOI are used for 
normalization) in this research because it would increase 
the computational load. Nonetheless, it can be studied in 
the future. Image normalization was performed prior to 
feature extraction, using a per-image approach. As such, 
normalization was applied independently to each image 
without reference to other cases, thereby avoiding any 
risk of data leakage or information transfer from the test 
set to the training pipeline.

Classification pipeline
Once feature extraction is complete, the classification 
modules can be designed and implemented. With the 
default settings of PyRadiomics, each dataset has a group 
of diagnostics features (e.g., python version, simple itk 
version, etc.), which will not contain differentiative infor-
mation, and thus we filtered them.

We propose a repetitive approach to measure random-
ness of our radiomics-based ML classification pipeline, 
which is illustrated in Fig.  3. We repeat our evaluations 
on the test sets N times. In this research, N is set to 100. 
In the external for loop with N repetitions, in each itera-
tion we randomly split our data into stratified test (p%) 
and development (dev) sets. In this research, p was set 
to 20%. In the next step, a feature filtration algorithm is 
trained on the dev set and applied to the test set to ran-
domly drop one of the features in pairs with a correlation 
coefficient above 0.95. Another layer of feature selec-
tion is Near-zero Variance (NZV) filtration. We train an 
algorithm on the dev set and apply it to the test cohort 
to remove any feature with a variance lower than 0.05. 
The last step of feature manipulation is a MinMax scaler, 
which learns the transformations from the dev set and 
applies them to the test.

RF models are explainable and differentiative when 
applied to radiomics [33, 34], and thus we chose them as 
our baseline classifiers. We defined a grid space for our 
classifier which is described in Appendix B. For each 
combination of the hyperparameters in the grid space, we 
conduct N_val experiments within an internal loop. In 
this research, N_val was set to 100. In each experiment, 
the dev set is randomly split into stratified training and 
validation (p_val%) cohorts. In this research, p_val is set 
to 25%. An instance of the classifier with the proposed 
hyperparameters is trained using the training set, and 
evaluated on the validation set based on the random split. 
While we use Area Under Receiver Operating Character-
istic Curve (AUROC) as our evaluation metric, any other 
criterion, such as accuracy, may be utilized. Nonetheless, 

Fig. 3  The repetitive classification approach
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AUROC is a suitable metric for imbalanced datasets and 
medical research [35].

Once the N_val experiments are completed for the 
whole grid space, the best hyperparameter set is derived 
based on the highest average AUROC. To measure the 
validation performance, instances of models with the 
best hyperparameter set are trained and validated N_val 
times on stratified random data splits with p_val% ratio. 
Average AUROC is considered to be the validation per-
formance of the models. In the final step, an instance of 
the model with the best hyperparameters is trained on 
the entire dev set and evaluated on the test cohort. As it 
was mentioned, the whole process is repeated N times, 
and thus we have N test AUROCs as well as N validations 
AUROC. Using consistent random seeds and data split 
generation across all 288 dataset variants, all configura-
tions were evaluated using the same set of stratified train/
test splits, ensuring fair and valid comparisons.

Data management and other technical concerns such 
as deriving feature importance are discussed in appen-
dices C and D, respectively. Table 1. includes the Open-
radiomics technical protocol, and the settings for this 
study are provided Appendix E.

Data records
All open-radiomics datasets are available on the project’s 
website (https://openradiomics.org). Open-radiomics 
BraTS 2020 includes three compressed archives, encom-
passing the three binWidths (15, 25, and 35). Each archive 
contains 96 comma-separated values (CSV) files based 
on specific tumor subregions, image normalizations, and 
sequences. Due to higher volumes of data in BraTS 2023, 
9 archives are curated. Thus, for each binWidth three 
archives are provided. Open-radiomics TCIA NSCLC is 
a single archive set. The CSV files for all three datasets 
are aligned with the Appendix C naming format. TCIA 
NSCLC preprocessed cohort is made available through 
Kaggle. Due to the dataset size limitations on the plat-
form, the dataset is partitioned into two parts [22, 23].

Results
Classification performance (brain tumors: HGG vs. LGG)
Figure 4a-d illustrates the effect of the four sources of 
variability on the AUROC performance of the classifiers, 
for validation and test cohorts. It should be highlighted 
that the highest AUROC might not be achieved with the 
combination of the best image normalization, binWidth, 
tumor subregion, and MRI sequence. Our approach is 
repetition-based and can be considered as a stochastic 
or random process, whose output is individual AUROCs. 

Table 1  Open-radiomics technical research protocol
Technical consideration Notes

1 Sources of variability in the research must be identified.
2 The specific sources of variability whose effects are to be measured 

should be clearly highlighted.
3 The radiomics extraction tool used should be specified. PyRadiomics is recommended.
4 All required software libraries must be properly installed. For PyRadiomics, the trimesh Python library is required.
5 All available radiomics features should be extracted. Full feature extraction is recommended. In PyRadiomics, use extrac-

tor.enableAllImageTypes() and extractor.enableAllFeatures().
6 It must be stated whether the study is based on 2D or 3D analysis. For 2D radiomics on volumetric data, a detailed explanation of ROI/

VOI derivation is necessary.
7 A complete list of extracted radiomics feature names must be included 

in the supplementary materials.
This enhances reproducibility.

8 A sample of diagnostic features should be provided in the supplemen-
tary materials.

Diagnostic features describe the extraction environment, aiding 
reproducibility and repeatability.

9 Data splits and model initialization should be repeated. For small datasets, repeated train/validation/test splits are recom-
mended. If the number of repetitions is low (e.g., 5-fold cross-valida-
tion), training and validation indices should be reported.

10 The inclusion of any feature engineering in the pipeline must be clearly 
stated.

Feature selection, filtration, or normalization should be based on the 
training or development set and applied to the test set. Improper 
feature engineering can affect generalizability and introduce bias.

11 The model architecture, hyperparameter search space, and evaluation 
metrics must be described in detail.

12 It must be stated whether the final model was retrained on the devel-
opment or training cohort.

Retraining with the development set and optimized hyperparam-
eters can improve performance on small datasets and yield superior 
test results.

13 It is strongly recommended that the dataset (extracted features and 
ground truth labels) become publicly available.

14 The method used to identify top-performing radiomics features must 
be explained.

https://openradiomics.org
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We achieve the highest average test AUROC perfor-
mance (0.956 ± 0.033) across the 100 experiments on 
T1CE, for NETnNCR subregion, with ZScore normaliza-
tion, and with binWidth of 15. The second and the third 
top-performing datasets (mean test AUROCs of 0.955 ± 
0.030 and 0.954 ± 0.032, respectively) had the same set-
ting except for their image normalization, which was 
MinMax, and Gamma 1.5, respectively.

Figure 5 depicts how the top feature (lbp-3D-k_glszm_
HighGrayLevelZoneEmphasis) differentiates the HGG 
and LGG examples on the top-performing dataset.

It is important to note that the boxplots in Fig.  4 
represent the range of average AUROCs. Hence, the 
maximum test performance of NETnNCR in Fig.  4-c 
(AUROCs = 0.956) is itself an average of 100 experiments. 
Thus, there are multiple experiments in which we achieve 
very high AUROCs, which are close or equal to 1.00. 
Such high results are clearly not reproducible. Along with 
the mean for each dataset, we also captured min, median, 
max, and first and third quartiles of the AUROC perfor-
mances. In 140 datasets out of 288, the highest achiev-
able AUROC was above 0.99. In 28 cases, including 
T1CE, ZScore normalization, whole tumor classification, 
binWidth15, we reached to AUROC of 1.00. Nonetheless, 
our results demonstrate that achieving an AUROC of 1.00 
for whole-tumor classification is highly irreproducible in 

practice. It is important to note that, from a technical 
standpoint, any result can be reproduced if the data split, 
model initialization, and random seeds are held constant. 
However, in this context, the term irreproducible refers 
to the improbability of obtaining identical results with-
out explicitly controlling for these factors, such as in an 
unseeded, single-run experiment. Figure 6 illustrates the 
range of AUROC performance of the top-ten datasets.

Multisequence classification performance
We conducted a multisequence classification through 
combining the radiomics vectors of the four MRI 
sequences (T1, T1CE, T2, RLAIR). With the exception of 
shape features, features from each sequence were concat-
enated, and their names were revised to reflect the cor-
responding MRI sequence. Figure 7 illustrates the effect 
of multisequence classification on improving the clas-
sification results. Multisequence classification improved 
the mean AUROC (0.932 ± 0.015 compared with 0.891 ± 
0.048 for single sequence, p-value < 0.001).

Feature extraction failure
We evaluated the configurations where radiomics fea-
ture extraction failed entirely (see Appendix F). For 
BraTS 2020, a total of 696 out of 106,272 radiomic fea-
ture extractions were unsuccessful, with the optimal 

Fig. 4  Effect of the studied factors on AUROC performance of the classifiers: (a) binWidth (b) image normalization (c) VOI subregion (d) MRI sequence
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Fig. 6  The 10 top-performing datasets

 

Fig. 5  Histograms of the top feature on the top dataset: The horizontal axis represents bins of the feature values, and the vertical axis shows the number 
of VOIs with values in each bin
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PyRadiomics binWidth appearing to be 25, the default 
setting. While the type of image normalization did not 
significantly influence failure rates (348 failed cases), the 
absence of normalization exacerbated the issue, lead-
ing to 445 failed cases. Feature extraction success was 
also dependent on tumor subregion characteristics, with 
larger and more convex subregions exhibiting higher 
success rates. Whole tumor classification had the fewest 
failures (48 cases), whereas the AT subregion resulted 
in the highest failure count (1952 cases). Although the 
differences among imaging sequences were marginal, 
T1 yielded the most reliable extractions, while T1CE 
exhibited the highest failure rate (535 vs. 556 cases, 
respectively).

Top ranking feature
In our experiments, lbp-3D-k_glszm_HighGrayLevel-
ZoneEmphasis radiomic feature appeared most fre-
quently among the top features, and Fig. 5 showed how 
this feature differentiated LGGs from HGGs. LBPs are 
operators that label pixels (or voxels, in the case of 3D 
VOIs) of images based on thresholding their neighbor 
points [24]. To form the lbp-3D-k, PyRadiomics extracts 
the spherical kurtosis image using the scipy.stats.kurtosis 
function [36], and applies the LBP operator to it. Kurto-
sis is defined as the fourth central moment times inverse 
of the square of the variance, and the kurtosis image 

corresponds to calculating kurtosis for every voxel. In 
radiomics, Gray Level Size Zone Matrix (GLSZM) is used 
for quantifying gray level zones in images. Gray level 
zones are defined as the number of connected voxels 
with similar gray-level intensities. High Gray Level Zone 
Emphasis (HGLZE), which is formulated as Eq.  1, rep-
resents a measurement of the distribution of the higher 
gray-level values. Higher HGLZE means the VOI con-
tains a greater proportion of higher gray-level values and 
size zones.

	
HGLZE =

∑Ng

i=1
∑Ns

j=1
P (i,j)

i2

Nz

� (1)

In Eq. 1., Ng  and Ns correspond to the number of dis-
crete intensity values, and the number of discrete zone 
sizes in the image, respectively. Nz  is the number of 
zones in the VOI, and P(i,j) is the size zone matrix.

Discussing a more comprehensive list of the top-per-
forming features is out of the scope of this study. Nev-
ertheless, we provide a list of the top ten features in 
supplemental material.

Discussion
Our study highlights the impact of technical variability 
in radiomics-based machine learning pipelines, empha-
sizing the need for a standardized protocol to ensure 

Fig. 7  Effect of the studied factors on AUROC performance of the multisequence classifiers: (a) binWidth (b) image normalization (c) VOI subregion
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reproducibility. By systematically examining imaging 
sequence selection, binWidth values, image normaliza-
tion techniques, and tumor subregion choices, we pro-
vide a comprehensive assessment of their effects on 
classification performance.

Overall, binWidth does not make a tangible differ-
ence in classification performance, with average test 
AUROCs of 0.892, 0.891, and 0.890 for binWidth values 
of 15, 25, and 35, respectively. Among the image nor-
malization techniques examined, Z-score normaliza-
tion slightly improved the average model performance 
(AUROC = 0.901) while also reducing the variance of 
test AUROCs (average standard deviation (SD) = 0.042), 
making it a preferable choice for radiomics-based ML 
pipelines. Our results suggest that the true potential of 
radiomics may not be fully leveraged in whole-tumor 
classification using the BraTS 2020 dataset, as specific 
tumor subregions yielded better results. In particu-
lar, subregion selection significantly influenced model 
performance, with NETnNCR producing the highest 
AUROCs (see Appendix G for more details). This finding 
supports prior research indicating that tumor subregion 
delineation is critical in radiomics-based classification 
tasks.

Additionally, we observed that T1CE consistently out-
performed other imaging sequences, further underscor-
ing its importance in radiomics pipelines. Among the 
four MRI sequences, T1CE achieved the highest perfor-
mance (AUROC = 0.931), whereas FLAIR had the lowest 
performance (AUROC = 0.864). The classification mod-
els for NETnNCR subregions of HGG and LGG tumors 
demonstrated high accuracy and reproducibility, with 
an average test AUROC of 0.942. In contrast, models for 
the AT subregion had an average test AUROC of 0.899 
but exhibited low variance (SD = 0.010), suggesting stable 
model performance. In the case of ED, we observed the 
highest AUROC variance (SD = 0.055), suggesting that 
its classification results were less reliable. Finally, the 
multisequence classification demonstrated that combin-
ing multiple MRI sequences led to a performance boost, 
reinforcing the benefit of leveraging multi-sequence 
imaging for radiomics-based machine learning models.

Except for the shape and first-order features, explaining 
the details and physical meaning of radiomics features is 
not straightforward. Radiomics includes multiple groups 
of features, which are described in the Image Biomarker 
Standardization Initiative (IBSI) [37]. One of the most 
frequently occurring top features in our experiments was 
lbp-3D-k_glszm_HighGrayLevelZoneEmphasis, high-
lighting the importance of LBP and GLSZM features in 
brain tumor classification. While radiomics features pro-
vide a degree of explainability not typically found in deep 
learning models, the clinical relevance of these features 
requires further validation.

Open-radiomics was developed independently and is 
not directly adapted from existing frameworks. While 
standards such as IBSI focus on the reproducibility and 
standardization of radiomics feature definitions, the 
Open-radiomics protocol is intended to guide the design 
and reporting of radiomics-based studies, regardless of 
whether they use IBSI-compatible or non-compatible 
tools. The protocol is meant to support methodological 
transparency and reproducibility at the study level.

The analysis of stochastic variability across multiple 
repetitions (N = 100) confirmed that high AUROC values 
(approaching 1.00) in radiomics studies are often irre-
producible. This emphasizes the importance of repeated 
evaluations to distinguish between robust and overfit-
ted results. By incorporating repetition-based analysis, 
we reduce the likelihood of misleading findings that may 
result from a single train-test split. To precisely com-
pare the performance of different dataset configurations 
(defined by combinations of bin width, tumor subregion, 
and image normalization method), a rigorous statisti-
cal comparison is necessary. As an illustrative example, 
we compared two configurations with identical VOI 
(NETnNCR) and sequence (T1CE), but differing in bin 
width and normalization method: one with bin width 15 
and Z-score normalization, and the other with bin width 
35 and image histogram normalization. A Shapiro–Wilk 
test confirmed the non-normality of the test AUROC 
distributions in both groups (p < 0.001), and the Mann–
Whitney U test indicated a statistically significant differ-
ence in performance between the two sets (p = 0.0432). 
These findings highlight the necessity of incorporating 
statistical validation to support reliable comparisons in 
radiomics-based classification studies.

Unlike prior work, our study systematically investigates 
multiple technical factors influencing reproducibility in 
radiomics classification, providing a rigorous baseline 
for future research. The findings also align with prior 
research on inter-reader variability and scanner-specific 
biases in radiomics, further supporting the necessity of 
standardized protocols.

Although our study provides valuable insights into 
technical variability, several limitations must be acknowl-
edged. While PyRadiomics is a widely used tool, fea-
ture extraction discrepancies across different radiomics 
software remain an open challenge. Future work should 
explore additional feature extraction frameworks to 
validate our protocol across multiple platforms. Fur-
thermore, incorporating prospective datasets with 
multi-center variability will help assess real-world repro-
ducibility beyond retrospective data. Finally, while we 
prioritize reproducibility over model optimization, 
integrating explainable AI techniques could enhance 
feature interpretability and facilitate clinical adoption. 
While AUROC was used as the sole evaluation metric 
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in this study, this choice was made to maintain focus 
on radiomics configuration rather than comprehensive 
model optimization. AUROC, as a non-parametric met-
ric, does not require threshold selection or calibration, 
and its ability to aggregate performance across all deci-
sion thresholds makes it well-suited for imbalanced clas-
sification tasks [38]. Nonetheless, the use of additional 
evaluation metrics such as balanced accuracy, precision, 
recall, and F1 score would provide a more complete 
understanding of model behavior. Incorporating these 
metrics, along with appropriate thresholding strategies, 
represents an important direction for future work.

Conclusions
In this research, we proposed a research protocol for 
radiomics-based ML pipelines to improve reproduc-
ibility. We extracted and open-sourced a large series 
of tabular radiomics datasets based on the BraTS 2020 
dataset that enables multiple opportunities for radiomics 
research. We established a reproducible baseline for 
the open-radiomics datasets, and studied the effect of 
PyRadiomics binWidth, image normalization, VOI subre-
gion, and the MRI sequence as four sources of variability 
on the performance of the radiomics pipeline.

Our experiments demonstrated the default binWidth 
increases the chance of a successful VOI feature extrac-
tion, although it does not improve the model’s general-
izability. For HGG versus LGG classification, NETnNCR 
VOI subregion is associated with the highest-performing 
models, and AT ranks second. However, ED and whole 
tumor classifications struggle to achieve comparable per-
formance. We found T1CE and FLAIR to be the best and 
worst sequences, respectively. While these results may 
be specific to the BraTS dataset, the protocol can be fol-
lowed to generate reliable and reproducible radiomics 
results for any given dataset.

Appendix A. How 2D features are extracted from 
VOIs
When full-set feature extraction for a VOI (3D) is 
enabled, 2D LBP features are extracted but 2D shape fea-
tures are skipped by PyRadiomics. With the default set-
tings, 2D LBPs are calculated for each slice of the VOI in 
the axial direction and stacked. The following code snip-
pet from PyRadiomics shows how 2D LBP features are 
calculated for 3D VOIs (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​A​I​M​-​​H​a​​r​v​a​​
r​d​/​​p​y​r​a​​d​i​​o​m​i​​c​s​/​​b​l​o​b​​/​m​​a​s​t​​e​r​/​​r​a​d​i​​o​m​​i​c​s​/​i​m​a​g​e​o​p​e​r​a​t​i​o​n​s​
.​p​y).

Table 2  Grid space of the RF models
Hyperparameter Grid Space
n_estimators 50, 100, 200
max_features ‘auto’, ‘sqrt’
max_depth None, 5, 10

Appendix B. Grid space of the RF models
The hyperparameter grid used for tuning the RF models 
is summarized in Table 2.

Appendix C. Data management
Data management is an essential part of radiomics stud-
ies. To avoid data fragmentation and possible mistakes, 
we suggest saving the features, ground truth labels, 
clinical variables, and any other information in a single 
csv file. Each row of the csv file (except the header row) 
should belong to a unique ROI/VOI. For the studies 
where a patient might have multiple ROIs/VOIs, creat-
ing unique ROI/VOI IDs and appending them as the 
first column to the dataset is preferred. The naming of 
the radiomics datasets (csv files) is important. All names 

https://github.com/AIM-Harvard/pyradiomics/blob/master/radiomics/imageoperations.py
https://github.com/AIM-Harvard/pyradiomics/blob/master/radiomics/imageoperations.py
https://github.com/AIM-Harvard/pyradiomics/blob/master/radiomics/imageoperations.py
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start with “Radiomics”, and the format is always csv. We 
use ‘_’ as the separator to include type of the normaliza-
tion, and sequence in the naming. If needed, other pieces 
of information can be included. Obviously, no under-
score should be used within the parts. Two examples of 
naming would be Radiomics_Gamma-0.5_FLAIR.csv, 
and Radiomics_NoNormalization_ED_T1.csv.

In this research, we study the effect of image normaliza-
tion, imaging sequence, tumor subregion, and PyRadiomics 
settings on an adult brain tumor classification pipeline. As 
it was mentioned, we have 6 image normalization meth-
ods (i.e., NoNormalization, Gamma0.5, Gamma1.5, His-
togram, ZScore, and MinMax), 4 imaging sequences (T1, 
T1CE, T2, FLAIR), 4 tumor subregions (i.e., whole tumor, 
AT, ED, and NETnNCR), 3 different binWidth values (i.e., 
15, 25, and 35). This creates 288 sets of tabular datasets for 
the radiomic features (∼ 2.9 GB of data).

Appendix D. Other technical concerns
Although no randomness is involved in the feature extrac-
tion process, seeding is recommended in all the codes. 
This improves reproducibility of the results if random IDs 
are assigned to ROIs/VOIs, or further analysis such as 
dimensionality reduction and data visualization are incor-
porated into the scripts. We encourage extracting the full 
set of radiomics features, which is not enabled by default 
(extractor.enableAllImageTypes() and extractor.enable-
AllFeatures() will result in a full set feature extraction).

Radiomics-based ML pipelines are more explainable 
compared with DL, which is a result of the transparent 
definitions of the radiomic features. Radiomics studies 
usually are concluded by highlighting the most important 
features, and we encourage this approach. However, not 
every algorithm is explainable. As an example, once an 
NN classifies a radiomics example, determining the influ-
ential features is perplexing. RF is an explainable model, 
and thus feature importances of an RF classifier can be 
derived. We capture the most important feature of each N 
experiments, for each dataset. Hence, we will have a list of 
288 × N top features, and the most frequent element of 
the list will represent the number one radiomics feature 
for BraTS 2020 tumor type classification. The last techni-
cal point is the choice of N = 100 and N_val = 100, which is 
made based on the practice of the Central Limit Theorem 
(CLT). This number of repetitions eliminates the need for 
k-fold cross-validation. Hence, we suggest setting N and 
N_vals above 30, where computational costs allow, and 
switching to k-fold cross-validation, otherwise. Appendix 
I includes a discussion on data splitting strategies.

Appendix E. Open-radiomics settings for the 
current research
The technical considerations and specific parameter set-
tings used in this study are detailed in Table 3, which fol-
lows the proposed Open-radiomics protocol to promote 
transparency and reproducibility.

Table 3  Open-radiomics settings for the current research
Technical consideration Setting for the current research

1 Sources of variability in the research must be identified. Segmentation (intra- and inter-reader variability), 
Imaging scanner vendor, imaging protocol, Imaging 
sequence, binWidth, image normalization, tumor 
subregion

2 The specific sources of variability whose effects are to be measured should be clearly 
highlighted.

Imaging sequence, binWidth, image normalization, 
tumor subregion

3 The radiomics extraction tool used should be specified. PyRadiomics
4 All required software libraries must be properly installed. check
5 All available radiomics features should be extracted. check
6 It must be stated whether the study is based on 2D or 3D analysis. 3D
7 A complete list of extracted radiomics feature names must be included in the supple-

mentary materials.
check

8 A sample of diagnostic features should be provided in the supplementary materials. check
9 Data splits and model initialization should be repeated. we employed repeated train/validation/test and set 

different random states for the models with each split
10 The inclusion of any feature engineering in the pipeline must be clearly stated. the feature engineering was learned from the devel-

opment set
11 The model architecture, hyperparameter search space, and evaluation metrics must be 

described in detail.
check

12 It must be stated whether the final model was retrained on the development or train-
ing cohort.

The final models were trained on the development 
sets

13 It is strongly recommended that the dataset (extracted features and ground truth 
labels) become publicly available.

The dataset is available on https://openradiomics.org

14 The method used to identify top-performing radiomics features must be explained. We selected the top features based on RF feature 
importance scores

https://openradiomics.org
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Appendix F. Feature extraction failure
We define the failure as a fatal error or a timeout pro-
duced by the PyRadiomics library during the feature 
extraction. On a system with an AMD Ryzen threadrip-
per pro 3955wx, 128 GB of RAM, 4 TB of M2 SSD, run-
ning Ubuntu 20.04.4 LTS, we set the timeout threshold 
at 120  s which created a safe margin because common 
ROI/VOI feature extraction time was of the order of sec-
onds. Corresponding figures are provided in supplemen-
tal material. It should be highlighted that identifying the 
reason for feature extraction failure is out of the scope of 
this research.

Appendix G. Biological and Imaging-Based 
comparison of tumor subregions in LGG versus 
HGG
Gliomas are broadly categorized LGG and HGG, with 
distinct biological behaviors and imaging characteristics. 
On MRI, particularly T1CE sequences, these differences 
become pronounced. NETnNCR represents regions of 
cellular necrosis and poorly perfused, hypoxic tumor tis-
sue. Such regions are predominantly observed in HGG, 
associated with rapid tumor growth, vascular insuffi-
ciency, and subsequent necrosis. Conversely, LGGs rarely 
present substantial necrosis or non-enhancing cores due 
to their slower proliferation and relatively preserved vas-
culature [7].

AT, or enhancing tumor, is defined by regions of dis-
rupted blood-brain barrier and active neoangiogenesis. 
While AT is characteristic of aggressive tumors, cer-
tain LGG subtypes can also exhibit mild enhancement, 

making enhancement alone less specific in distinguishing 
tumor grades [7].

ED reflects vasogenic fluid leakage around the tumor. 
Extensive edema is more indicative of aggressive HGG; 
however, it lacks specificity, as even LGGs can display 
variable degrees of edema [7].

As highlighted in existing literature, “although patho-
logical contrast enhancement is generally associated 
with more aggressive lesions, up to one-third of non-
enhancing gliomas are malignant” [39]. Hence, contrast 
enhancement alone is limited in distinguishing between 
HGG and LGG accurately.

Comparing the provided images in Fig. 8 clearly illus-
trates these points. The HGG example (Fig.  8-a) shows 
prominent central necrosis surrounded by a thick 
enhancing rim, a hallmark of high-grade pathology. This 
appearance strongly corresponds to significant hypoxia, 
rapid proliferation, and neoangiogenesis. The LGG exam-
ple (Fig. 8-b), in contrast, demonstrates subtle enhance-
ment with minimal central non-enhancing regions, 
indicating relatively preserved tissue structure, less 
aggressive growth, and minimal necrosis.

To quantitatively support these observations, we per-
formed a comparative analysis of intensity histograms 
across each tumor subregion (NETnNCR, AT, ED) in 
the images shown in Fig.  8. As shown in Fig.  9, inten-
sity distribution differences between HGG and LGG in 
the NETnNCR region particularly showed more distinct 
separations, providing computational evidence as to why 
NETnNCR-based radiomics features yielded higher pre-
dictive performance.

Fig. 8  Axial non-normalized T1CE MRI images demonstrating examples of high-grade glioma (a) and low-grade glioma (b). The outlined regions repre-
sent segmented tumor subregions: necrotic and non-enhancing tumor core (NETnNCR, red contour), active (enhancing) tumor core (AT, cyan contour), 
and peritumoral edema (ED, green contour)
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Fig. 9  Intensity histograms comparing T1CE MRI signal distributions for tumor subregions between HGG (blue) and LGG (orange). Subregions analyzed 
include: (a) ED, (b) AT, and (c) NETnNCR. The distinct separations between HGG and LGG intensity distributions in the NETnNCR region (c) highlight its 
higher discriminatory potential
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Appendix H. Radiomics extraction tools and 
frameworks
In addition to PyRadiomics [19], which we recommended 
in Table 1 due to its popularity, active maintenance, and 
comprehensive feature set, several other open-source 
radiomics toolkits are also noteworthy. The Cancer Imag-
ing Phenomics Toolkit (CaPTk) provides an intuitive 
graphical user interface (GUI) and an extensive range 
of feature classes, including Gray-Level Co-occurrence 
Matrix (GLCM), GLSZM, LBP, and additional features 
[40, 41]. However, we observed occasional software 
crashes when all features were enabled on a Windows-
based system, and the associated GitHub repository has 
not been updated for over three years. Similarly, 3D Slic-
er’s Radiomics extension, which leverages PyRadiomics 
in its backend, enables straightforward integration with 
the Slicer GUI [20]. Nonetheless, it extracts fewer fea-
tures than a complete PyRadiomics run, and the outputs 
require manual export from embedded tables. Addition-
ally, the extension does not always synchronize with the 
most recent version of PyRadiomics.

The Standardized Environment for Radiomics Analysis 
(SERA), a MATLAB-based tool adhering to Image Bio-
marker Standardization Initiative (IBSI) standards [37], 
has not received updates in over six years. Its authors 
subsequently redeveloped the software into a Python-
based package, Visualized and Standardized Environ-
ment for Radiomics Analysis (ViSERA) [42]. However, 
ViSERA lacks an available GitHub repository and has not 
been updated for over two years.

The Medical Image Radiomics Processor (MIRP), a 
more recent Python-based toolkit, emphasizes image pre-
processing and metadata extraction [43]. Although MIRP 
outputs data as Pandas DataFrames, which is highly com-
patible with Python workflows, its radiomics feature set 
remains less comprehensive than PyRadiomics.

Additional notable tools include a standalone Co-
occurrence of Local Anisotropic Gradient Orientations 
(CoLlAGe) feature extraction library (also supported by 
CaPTk), designed for quantifying local entropy in gradi-
ent orientations, although its codebase appears outdated 
[44]. PyRadiomics-CUDA claims significant GPU-based 
acceleration (10–50 times faster); however, users should 
carefully verify its compatibility with recent PyRadiomics 
versions and feature completeness [19]. Lastly, LIFEx 
offers a comprehensive and actively maintained 

GUI-based tool, particularly well-suited for DICOM 
images [45]. However, importing other formats, such as 
NIfTI is less straightforward.

A head-to-head comparison of extracted features 
across these toolkits is beyond the scope of this study, but 
remains an important area for future research. The inten-
tion here is to highlight key technical differences to guide 
researchers in selecting appropriate radiomics tools.

Appendix I. Data splitting considerations
Data splitting plays a critical role in ML by reducing 
performance estimation bias and enhancing generaliz-
ability. In this study, we employed repeated stratified ran-
dom splitting with 100 repetitions to quantify variability. 
While alternative strategies, such as K-Fold cross-vali-
dation and Leave-One-Out (LOO) are widely used, their 
applicability depends on dataset size, structure, and study 
objectives. In multi-institutional datasets with large and 
diverse samples, reserving data from entire institutions 
for external validation is often ideal; however, this was 
not feasible in our case.

To explore the impact of different test/train propor-
tions, we selected one representative radiomics set 
(T1CE, whole tumor, bin width 25, no normalization) 
and used an RF classifier with default hyperparameters. 
The test/train ratio was varied from 0.1 to 0.9 in 36 steps, 
each repeated 100 times with randomized splits and 
model initializations. As shown in Fig. 10, mean AUROC 
performance increased with training size, while AUROC 
variability was lowest when the split ratio ranged between 
0.6 and 0.4, suggesting a stability optimum.

We further compared evaluation schemes, includ-
ing one-time 4-, 5-, and 10-Fold CV, repeated 4-Fold 
(100 times), LOO, and our pipeline (75/25 split with 100 
repeats). As shown in Fig. 11, our approach yields mean 
AUROC values close to LOO, while repeated 4-Fold 
better captures performance variability due to even 
fold participation for each patient. However, repeated 
4-Fold is approximately four times more computationally 
intensive.

These results suggest that repeated random splitting 
is an appropriate evaluation method for the BraTS 2020 
LGG versus HGG classification task. Nonetheless, the 
optimal strategy is context-dependent. For small data-
sets, repeat counts should not exceed dataset size, in 
which case LOO becomes a more suitable option.
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Abbreviations
AI	� Artificial Intelligence
AT	� Active Tumor
AUROC	� Area Under the Receiver Operating Characteristic Curve
CI	� Confidence Interval
CLT	� Central Limit Theorem
CT	� Computed Tomography
DICOM	� Digital Imaging and Communications in Medicine
DWT	� Discrete Wavelet Transform
ED	� Edematous/Invaded Tissue
ET	� Enhancing Tumor
GLSZM	� Gray Level Size Zone Matrix
GTV	� Gross Tumor Volume
HGG	� High-Grade Glioma
IBSI	� The Image Biomarker Standardization Initiative
LBP	� Local Binary Pattern
LGG	� Low-Grade Glioma
MGMT	� O6-methylguanine-DNA methyltransferase
ML	� Machine Learning

MRI	� Magnetic Resonance Imaging
NCR	� Necrotic Tumor
NET	� Non-enhancing Tumor
NN	� Neural Network
NIfTI	� Neuroimaging Informatics Technology Initiative
NZV	� Near-zero Variance
PCA	� Principal Component Analysis
RF	� Random Forest
ROC	� Receiver Operating Characteristic
ROI	� Region of Interest
RTSTRUCT	� Radiotherapy Structure Set
SD	� Standard Deviation
SVM	� Support Vector Machines
TC	� Tumor Core
TCIA	� The Cancer Imaging Archive
VOI	� Volume of Interest
WT	� Whole Tumor

Fig. 11  Comparison of Data Splitting Methods. Boxplots of AUROC scores from six evaluation strategies: repeated 4-Fold CV, one-time 4-Fold, 5-Fold, 
10-Fold, repeated 75/25 split (our pipeline), and LOO. Our method closely matches LOO in mean performance, while repeated 4-Fold better captures 
variance at the cost of higher computation

 

Fig. 10  Effect of Test/Train Split Ratio on RF AUROC Performance. Mean AUROC and AUROC range (shaded area) are plotted across 36 test/train split ra-
tios (from 0.9 to 0.1), each repeated 100 times using stratified random splits. As the training set increases, mean AUROC improves, while AUROC variability 
is minimized near balanced splits (0.6 − 0.4), indicating optimal stability

 



Page 17 of 18Namdar et al. BMC Medical Imaging          (2025) 25:312 

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​8​8​0​-​0​2​5​-​0​1​8​5​5​-​2.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
KN and FK designed the study. MWW and BBW contributed to the clinical 
aspects of the research. KN developed the pipeline and conducted feature 
extraction and dataset curation. FK supervised the technical developments. All 
authors contributed to writing the manuscript.

Funding
This research has been made possible with the financial support of the 
Canadian Institutes of Health Research (CIHR) (Funding Reference Number: 
184015).

Data availability
All materials and data are publicly available at https://openradiomics.org.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Diagnostic & Interventional Radiology, The Hospital for 
Sick Children (SickKids), Toronto, ON, Canada
2Neurosciences & Mental Health Research Program, SickKids Research 
Institute, Toronto, ON, Canada
3Department of Medical Imaging, University of Toronto, Toronto, ON, 
Canada
4Department of Diagnostic and Interventional Neuroradiology, University 
Hospital Augsburg, Augsburg, Germany
5Institute of Medical Science, University of Toronto, Toronto, ON, Canada
6Department of Computer Science, University of Toronto, Toronto, ON, 
Canada
7Department of Mechanical and Industrial Engineering, University of 
Toronto, Toronto, ON, Canada
8Vector Institute, Toronto, ON, Canada

Received: 1 March 2025 / Accepted: 29 July 2025

References
1.	 Liu X, et al. Application of radiomic MRI quantitative features in diagnosis of 

combined hepatocellular-cholangiocarcinoma, cholangiocarcinoma and 
hepatocellular carcinoma using machine learning. In: RSNA; 2019.

2.	 Liu X, et al. Can machine learning radiomics provide pre-operative differen-
tiation of combined hepatocellular cholangiocarcinoma from hepatocellular 
carcinoma and cholangiocarcinoma to inform optimal treatment planning? 
Eur Radiol. 2020. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​7​​/​s​​0​0​3​3​0​-​0​2​0​-​0​7​1​1​9​-​7.

3.	 Wagner MW, Namdar K, Biswas A, Monah S, Khalvati F, Ertl-Wagner BB. 
Radiomics, machine learning, and artificial intelligence—what the neuroradi-
ologist needs to know. Neuroradiology. 2021;63(12):1957–67. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​
1​0​.​​1​0​0​7​​/​s​​0​0​2​3​4​-​0​2​1​-​0​2​8​1​3​-​9.

4.	 Yadav SP. The wholeness in suffix -omics, -omes, and the word om. J Biomol 
Tech. 2007;18(5):277.

5.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
6.	 Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in 

radiomics modeling: possible strategies in radiologic and statistical perspec-
tives. Korean J Radiol. 2019;20(7):1124–37. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​4​8​​/​k​​j​r​.​2​0​1​8​.​0​0​
7​0.

7.	 Menze BH, et al. The multimodal brain tumor image segmentation bench-
mark (BRATS). IEEE Trans Med Imaging. Oct. 2015;34(10):1993–2024. ​h​t​t​p​​s​:​/​​/​d​
o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​T​​M​I​.​2​0​1​4​.​2​3​7​7​6​9​4.

8.	 Bakas S, et al. Advancing the cancer genome atlas glioma MRI collections 
with expert segmentation labels and radiomic features. Sci Data. Sep. 
2017;4:170117. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​d​a​t​a​.​2​0​1​7​.​1​1​7.

9.	 Bakas S, et al. Identifying the best machine learning algorithms for brain 
tumor segmentation, progression assessment, and overall survival prediction 
in the BRATS challenge, 2018.

10.	 Baid U, et al. The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor 
segmentation and radiogenomic classification, 2021.

11.	 Dequidt P, et al. Exploring radiologic criteria for glioma grade classification on 
the brats dataset. IRBM. 2021;42(6):407–14. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​i​r​b​m​.​2​0​2​
1​.​0​4​.​0​0​3.

12.	 Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. 
IEEE Intell Syst their Appl. 1998;13(4):18–28.

13.	 Coupet M, et al. A multi-sequences MRI deep framework study applied to 
glioma classfication. Multimed Tools Appl. 2022. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​7​​/​s​​1​1​0​
4​2​-​0​2​2​-​1​2​3​1​6​-​1.

14.	 Liu D, Yu J. Otsu method and K-means. In: 2009 Ninth International Confer-
ence on Hybrid Intelligent Systems; 2009, p. 344–349. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​
/​H​​I​S​.​2​0​0​9​.​7​4

15.	 Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. 
Improving prognostic performance in resectable pancreatic ductal adenocar-
cinoma using radiomics and deep learning features fusion in CT images. Sci 
Rep. 2021;11:1378. 220AD.

16.	 Rauch P, et al. Deep learning-assisted radiomics facilitates multimodal prog-
nostication for personalized treatment strategies in low-grade glioma. Sci 
Rep. 2023;13(1):9494. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​8​-​0​2​3​-​3​6​2​9​8​-​8.

17.	 Aerts HJWL, et al. Data from NSCLC-Radiomics. The Cancer Imaging Archive; 
2019. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​7​9​3​7​​/​K​​9​/​T​​C​I​A​​.​2​0​1​​5​.​​P​F​0​M​9​R​E​I.

18.	 Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infra-
structure software platform to facilitate collaborative work in radiomics. Med 
Phys. 2015;42(3):1341–1353. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​8​​/​1​​.​4​9​0​8​2​1​0

19.	 van Griethuysen JJM, et al. Computational radiomics system to decode the 
radiographic phenotype. Cancer Res. 2017;77(21):e104 LP-e107. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​5​8​​/​0​​0​0​8​​-​5​4​​7​2​.​C​​A​N​​-​1​7​-​0​3​3​9

20.	 Fedorov A, et al. 3D slicer as an image computing platform for the quantita-
tive imaging network. Magn Reson Imaging. Nov. 2012;30(9):1323–41. ​h​t​t​p​​s​:​/​​
/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​m​r​i​.​2​0​1​2​.​0​5​.​0​0​1.

21.	 Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A. The SRI24 multichan-
nel atlas of normal adult human brain structure. Hum Brain Mapp. May 
2010;31(5):798–819. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​2​​/​h​​b​m​.​2​0​9​0​6.

22.	 Namdar K, Khalvati F. TCIA_NSCLC_Part1. Kaggle. 2024. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​4​7​
4​​0​/​​K​A​G​​G​L​E​​/​D​S​V​​/​8​​4​1​4​0​9​9.

23.	 Namdar K, Khalvati F. TCIA_NSCLC_Part2. Kaggle. 2024. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​4​7​
4​​0​/​​K​A​G​​G​L​E​​/​D​S​V​​/​8​​4​2​1​7​9​0.

24.	 Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation 
invariant texture classification with local binary patterns. IEEE Trans Pattern 
Anal Mach Intell. 2002;24(7):971–87. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​T​​P​A​M​I​.​2​0​0​2​.​1​0​1​7​
6​2​3.

25.	 PyRadiomics community. PyRadiomics documentation [Internet]. Version 
3.0.1. 2025 [cited 2025 Jul 31]. Available from: ​h​t​t​p​​s​:​/​​/​p​y​r​​a​d​​i​o​m​​i​c​s​​.​r​e​a​​d​t​​h​e​d​​o​c​
s​​.​i​o​/​​e​n​​/​l​a​t​e​s​t​/.

26.	 Schwier M, et al. Repeatability of multiparametric prostate MRI radiomics 
features. Sci Rep. Jul. 2019;9(1):9441. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​8​-​0​1​9​-​4​5​7​
6​6​-​z.

27.	 Belfiore MP, et al. Robustness of radiomics in Pre-Surgical computer tomogra-
phy of Non-Small-Cell lung cancer. J Pers Med. Dec. 2022;13(1). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​3​3​9​0​​/​j​​p​m​1​3​0​1​0​0​8​3.

28.	 Duron L, et al. Gray-level discretization impacts reproducible MRI radiomics 
texture features. PLoS ONE. 2019;14(3):e0213459. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​3​7​1​​/​j​​o​u​r​​
n​a​l​​.​p​o​n​​e​.​​0​2​1​3​4​5​9.

29.	 Sun X, et al. Histogram-based normalization technique on human brain 
magnetic resonance images from different acquisitions. Biomed Eng Online. 
2015;14(1):73. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​9​3​8​-​0​1​5​-​0​0​6​4​-​y.

https://doi.org/10.1186/s12880-025-01855-2
https://doi.org/10.1186/s12880-025-01855-2
https://openradiomics.org
https://doi.org/10.1007/s00330-020-07119-7
https://doi.org/10.1007/s00234-021-02813-9
https://doi.org/10.1007/s00234-021-02813-9
https://doi.org/10.3348/kjr.2018.0070
https://doi.org/10.3348/kjr.2018.0070
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1016/j.irbm.2021.04.003
https://doi.org/10.1016/j.irbm.2021.04.003
https://doi.org/10.1007/s11042-022-12316-1
https://doi.org/10.1007/s11042-022-12316-1
https://doi.org/10.1109/HIS.2009.74
https://doi.org/10.1109/HIS.2009.74
https://doi.org/10.1038/s41598-023-36298-8
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.1118/1.4908210
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1002/hbm.20906
https://doi.org/10.34740/KAGGLE/DSV/8414099
https://doi.org/10.34740/KAGGLE/DSV/8414099
https://doi.org/10.34740/KAGGLE/DSV/8421790
https://doi.org/10.34740/KAGGLE/DSV/8421790
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://doi.org/10.1038/s41598-019-45766-z
https://doi.org/10.1038/s41598-019-45766-z
https://doi.org/10.3390/jpm13010083
https://doi.org/10.3390/jpm13010083
https://doi.org/10.1371/journal.pone.0213459
https://doi.org/10.1371/journal.pone.0213459
https://doi.org/10.1186/s12938-015-0064-y


Page 18 of 18Namdar et al. BMC Medical Imaging          (2025) 25:312 

30.	 Reinhold JC, Dewey BE, Carass A, Prince JL. Evaluating the impact of 
intensity normalization on MR image synthesis. Proc SPIE Int Soc Opt Eng. 
2019;10949:109493H. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​7​​/​1​​2​.​2​5​1​3​0​8​9

31.	 Rahman S, Rahman MM, Abdullah-Al-Wadud M, Al-Quaderi GD, Shoyaib M. 
An adaptive gamma correction for image enhancement. EURASIP J Image 
Video Process. 2016;2016(1):35. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​s​​1​3​6​4​0​-​0​1​6​-​0​1​3​8​-​1.

32.	 Kociołek M, Strzelecki M, Obuchowicz R. Does image normalization and 
intensity resolution impact texture classification? Comput Med Imaging 
Graph. 2020;81:101716. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​o​​m​p​m​​e​d​i​m​​a​g​​.​2​0​2​0​.​1​0​1​7​1​
6.

33.	 Wagner MW, et al. Radiomics of pediatric low grade gliomas: toward a 
pretherapeutic differentiation of BRAF-mutated and BRAF-fused tumors. Am 
J Neuroradiol. 2021;42(4):759–65 ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​1​7​4​​/​a​​j​n​r​.​A​6​9​9​8

34.	 Ivanics T, et al. A pre-tace radiomics model to predict HCC progression and 
recurrence in liver transplantation: a pilot study on a novel biomarker. J 
Transpl. 2021;105(11):2435–44 

35.	 Namdar K, Haider MA, Khalvati F. A modified AUC for training convolutional 
neural networks: taking confidence into account. Front Artif Intell. 2021;4:155. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​r​a​i​.​2​0​2​1​.​5​8​2​9​2​8.

36.	 Virtanen P, et al. {SciPy} 1.0: fundamental algorithms for scientific computing 
in python. Nat Methods. 2020;17:261–72. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​2​-​0​1​
9​-​0​6​8​6​-​2.

37.	 Zwanenburg A, et al. The image biomarker standardization initiative: 
standardized quantitative radiomics for High-Throughput image-based 
phenotyping. Radiology. 2020;295(2):328–38. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​4​8​​/​r​​a​d​i​o​l​.​2​
0​2​0​1​9​1​1​4​5.

38.	 Namdar K, Khalvati F. Advanced receiver operating characteristic curve analy-
sis to identify outliers in binary machine learning classifications for precision 
medicine. In: IEEE-EMBS International Conference on Biomedical and Health 
Informatics; 2024. Houston, TX, USA, 2024, pp. 1–8 ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​B​​H​
I​6​​2​6​6​​0​.​2​0​​2​4​​.​1​0​9​1​3​5​9​7

39.	 Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Br J 
Radiol. 2011;84(Spec Iss 2):S107. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​2​5​9​​/​B​​J​R​/​6​5​7​1​1​8​1​0

40.	 Pati S, et al. The cancer imaging phenomics toolkit (CaPTk): technical over-
view. Lecture Notes Comput Sci (including Subser Lecture Notes Artif Intell 
Lecture Notes Bioinformatics). 2020;11993 LNCS:380–94. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​
0​0​7​​/​9​​7​8​-​​3​-​0​​3​0​-​4​​6​6​​4​3​-​5​_​3​8​/​F​I​G​U​R​E​S​/​5.

41.	 Davatzikos C, et al. Cancer imaging phenomics toolkit: quantitative imaging 
analytics for precision diagnostics and predictive modeling of clinical out-
come. J Med Imaging. Jan. 2018;5(1):011018. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​1​7​​/​1​​.​J​M​I​.​5​.​
1​.​0​1​1​0​1​8.

42.	 Salmanpour MR, et al. ViSERA: visualized & standardized environment for 
radiomics analysis - a shareable, executable, and reproducible workflow 
generator; 2023. p. 1–2. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​N​​S​S​M​​I​C​R​​T​S​D​4​​9​1​​2​6​.​2​0​2​3​.​1​0​3​
3​8​6​3​8

43.	 Zwanenburg A, Löck S, MIRP. A python package for standardised radiomics. J 
Open Source Softw. Jul. 2024;9(99):6413. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​2​1​1​0​​5​/​​J​O​S​S​.​0​6​4​1​
3.

44.	 Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of local anisotropic gradi-
ent orientations (CoLlAGe): a new radiomics descriptor. Sci Rep. 2016;6(1):1–
14. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​r​e​p​3​7​2​4​1

45.	 Nioche C, et al. Lifex: A freeware for radiomic feature calculation in multi-
modality imaging to accelerate advances in the characterization of tumor 
heterogeneity. Cancer Res. Aug. 2018;78(16):4786–9. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​1​​​5​8​​/​
0​​​0​0​8​-​​5​​4​7​​2​​​.​C​A​​​N​-​1​​8​​-​0​​1​2​​5​/​S​U​P​P​L​E​M​E​​N​T​A​R​Y​​-​V​I​D​E​O​-​S​1.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1117/12.2513089
https://doi.org/10.1186/s13640-016-0138-1
https://doi.org/10.1016/j.compmedimag.2020.101716
https://doi.org/10.1016/j.compmedimag.2020.101716
https://doi.org/10.3174/ajnr.A6998
https://doi.org/10.3389/frai.2021.582928
https://doi.org/10.3389/frai.2021.582928
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1109/BHI62660.2024.10913597
https://doi.org/10.1109/BHI62660.2024.10913597
https://doi.org/10.1259/BJR/65711810
https://doi.org/10.1007/978-3-030-46643-5_38/FIGURES/5
https://doi.org/10.1007/978-3-030-46643-5_38/FIGURES/5
https://doi.org/10.1117/1.JMI.5.1.011018
https://doi.org/10.1117/1.JMI.5.1.011018
https://doi.org/10.1109/NSSMICRTSD49126.2023.10338638
https://doi.org/10.1109/NSSMICRTSD49126.2023.10338638
https://doi.org/10.21105/JOSS.06413
https://doi.org/10.21105/JOSS.06413
https://doi.org/10.1038/srep37241
https://doi.org/10.1158/0008-5472.CAN-18-0125/SUPPLEMENTARY-VIDEO-S1
https://doi.org/10.1158/0008-5472.CAN-18-0125/SUPPLEMENTARY-VIDEO-S1

	﻿Open-radiomics: a collection of standardized datasets and a technical protocol for reproducible radiomics machine learning pipelines
	﻿﻿Abstract
	﻿Background
	﻿Methods
	﻿Datasets
	﻿BraTS 2020
	﻿BraTS 2023
	﻿TCIA NSCLC


	﻿PyRadiomics library
	﻿Image normalization
	﻿Classification pipeline
	﻿Data records
	﻿Results
	﻿Classification performance (brain tumors: HGG vs. LGG)
	﻿Multisequence classification performance
	﻿Feature extraction failure
	﻿Top ranking feature

	﻿Discussion
	﻿Conclusions
	﻿﻿Appendix A. How 2D features are extracted from VOIs
	﻿﻿Appendix B. Grid space of the RF models
	﻿﻿Appendix C. Data management
	﻿Appendix D. Other technical concerns
	﻿﻿Appendix E. Open-radiomics settings for the current research
	﻿﻿Appendix F. Feature extraction failure
	﻿﻿Appendix G. Biological and Imaging-Based comparison of tumor subregions in LGG versus HGG
	﻿﻿Appendix H. Radiomics extraction tools and frameworks
	﻿﻿Appendix I. Data splitting considerations
	﻿References


