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Abstract

Tumor heterogeneity encompasses genetic, epigenetic, and phenotypic diversity, impacting
treatment response and resistance. Spatial heterogeneity occurs both inter- and intra-
lesionally, while temporal heterogeneity results from clonal evolution. High-throughput
technologies like next-generation sequencing (NGS) enhance tumor characterization, but
conventional biopsies still do not adequately capture genetic heterogeneity. Liquid biopsy
(LBx), analyzing circulating tumor DNA (ctDNA), provides a minimally invasive alter-
native, offering real-time tumor evolution insights and identifying resistance mutations
overlooked by tissue biopsies. This study evaluates the capability of LBx to capture tumor
heterogeneity by comparing genetic profiles from multiple metastatic lesions and LBx
samples. Eight patients from the Augsburger Longitudinal Plasma Study with various
types of cancer provided 56 postmortem tissue samples, which were compared against
pre-mortem LBx-derived circulating-free DNA sequenced by NGS. Tissue analyses revealed
significant mutational diversity (4–12 mutations per patient, VAFs: 1.5–71.4%), with distinct
intra- and inter-lesional heterogeneity. LBx identified 51 variants (4–17 per patient, VAFs:
0.2–31.1%), which overlapped with mutations from the tissue samples by 33–92%. Notably,
22 tissue variants were absent in LBx, whereas 18 LBx-exclusive variants were detected
(VAFs: 0.2–2.8%). LBx effectively captures tumor heterogeneity, but should be used in
conjunction with tissue biopsies for comprehensive genetic profiling.
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1. Introduction
Tumor heterogeneity refers to the diverse genetic, epigenetic, and phenotypic varia-

tions exhibited by malignant cell populations [1,2]. This phenomenon manifests at multiple
levels: inter-tumor heterogeneity describes variability among patients with the same
histologically defined cancer type, whereas intra-tumor heterogeneity refers to differ-
ences among tumor cells within an individual patient [3,4]. Spatially, these variations
can be detected between metastatic sites (inter-lesional) and within a single lesion (intra-
lesional) [5,6]. Moreover, tumors evolve dynamically over time under selective pressures
such as therapy and changes in the tumor microenvironment, resulting in temporal hetero-
geneity referred to as clonal evolution [7,8].

Clinically, tumor heterogeneity has significant implications for treatment response and
the emergence of resistance. Molecular differences within the tumor can lead to “mixed”
responses, where some lesions respond while others progress [9–11]. Resistance often arises
from newly emerging subclones that evade targeted therapies, ultimately diminishing
treatment efficacy [12,13].

Advances in high-throughput technologies such as next-generation sequencing (NGS)
have facilitated comprehensive molecular characterizations of tumors [14]. However,
routine use of repeated or multiple tissue biopsies—required to capture both spatial and
temporal heterogeneity—remains clinically challenging due to invasiveness and logistical
constraints [15,16]. As a result, a single tissue biopsy (TBx) often provides only a limited
snapshot of a tumor’s complete molecular landscape.

By contrast, liquid biopsy (LBx) offers a minimally invasive approach to assess the
comprehensive genetic profile of solid tumors. Circulating tumor DNA (ctDNA), released
through processes such as apoptosis and necrosis, can be readily detected in the blood-
stream, providing real-time insights into the evolving tumor genome [17,18]. Studies
have demonstrated the potential of LBx to identify clinically relevant alterations, includ-
ing emerging resistance mutations that may be missed by a single tissue biopsy [19,20].
For instance, one report demonstrated a decline in a known resistance mutation (mutant
MEK1) under treatment while a previously undetected KRAS mutation emerged in a non-
responding metastasis [21]. In patients with gastrointestinal cancers who develop acquired
resistance to targeted therapies, liquid biopsy (LBx) detected resistance mutations absent in
matched tissue biopsies (TBx) in up to 78% of cases [22]. Building on this, we investigated
the efficacy of LBx in capturing inter- and intra-tumor heterogeneity by comparing ge-
netic profiles across multiple tumor lesions within individual patients representing diverse
cancer types. Specifically, we contrasted the sum of clonal alterations detected across
tissue samples with the mutational landscape observed in LBx. Our goal was to determine
whether LBx can sufficiently represent, resolve, and deconstruct the spatial heterogeneity
of solid tumors for routine clinical decision-making.

2. Results
2.1. Patient Characteristics and Sampling

The study cohort comprised seven patients with various tumor entities. Mean age at
diagnosis was 56.4 years, ranging from 41 to 76 years. All participants were Caucasian,
with one female patient.

Lung cancer was the most common tumor entity, accounting for 43% of cases (n = 3),
including two patients with lung adenocarcinoma (LUAD; Patients 2 and 4) and one
with lung squamous cell carcinoma (LUSC; Patient 5). Two patients had gastrointestinal
tumors: colorectal adenocarcinoma (COADREAD; Patient 1) and pancreatic adenocarci-
noma (PAAD; Patient 7). One patient was diagnosed with follicular thyroid carcinoma
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(THFO; Patient 6), and another patient (Patient 3) had an adenocarcinoma of unknown
primary (ADNOS).

Survival times, measured from diagnosis to death, ranged from 23 days to 186 months
(mean: 1044 days). Patient 6 (THFO) had the longest survival, while Patient 4 (ADNOS)
experienced the shortest survival, passing away shortly after diagnosis due to rapid dis-
ease progression. Detailed individual treatment timelines are provided in Supplemental
Figure S3.

All patients were diagnosed with stage IV disease at enrollment, presenting with
distant metastases. A total of 56 postmortem biopsy samples were collected, predominantly
from the lungs (25%), liver (17.9%), and lymph nodes (10.7%). Additional biopsies were ob-
tained from less common sites, including the spleen, epicardium, prostate, and peritoneum.
Sampling focused on biopsy sites showing radiological evidence of disease progression,
but additional samples from stable or regressing lesions, as well as previously undetected
metastases, were also included. Intra-lesional biopsies aimed at assessing within-lesion
heterogeneity were performed in five patients, primarily targeting progressive lesions.
Further details on biopsy locations, radiological findings, and intra-lesional sampling are
provided in Supplemental Figure S4. Additionally, pre-mortem liquid biopsies (blood
samples) were collected from each patient between 6 and 74 days prior to death (mean:
27 days).

2.2. Metastatic Lesions Demonstrate Heterogeneity to Variable Degrees

We first characterized the mutational landscape and intra-tumoral heterogeneity
based on TBx. All detected mutations, alterations, and their respective frequencies are
summarized in Supplemental Figure S5. The mean read depth (DP) was 1873 (range:
336–5389). TP53 variants were most frequently observed and were present in nearly
all lesions within individual patients. Approximately 50% of identified mutations were
consistently present across all investigated lesions per patient, including both missense and
synonymous alterations. Notably, in six cases, a specific mutation was absent in a singular
lesion, whereas 15 mutations were found exclusively in individual biopsy samples. This
highlights considerable intra-tumoral heterogeneity.

We further assessed the VAFs within each patient’s biopsies to understand intra-
tumoral heterogeneity in greater detail. Hierarchical clustering identified distinct mu-
tational profiles among samples, reflecting variability both within individual patients
(intra-patient heterogeneity) and between different lesions (inter-lesional heterogeneity)
(Figure 1; Supplemental Figure S6).

We highlight patients 4 and 5 as representative cases. Biopsies of Patient 4 formed two
distinct clusters (Figure 1A). One cluster, characterized by uniformly low VAFs (0–10%),
included mediastinal lymph nodes and the right adrenal gland. The second cluster, with
notably higher VAFs, particularly for CPXCR1 c.323 A>T (ranging from 35.1% to 58.1%)
and TP53 c.413 C>T (ranging from 39.8% to 50.4%) mutations, predominantly encompassed
left-sided lesions (lung, adrenal gland, rib) and both liver metastases. Interestingly, despite
radiologically stable appearances, the mutational profiles of the two adrenal glands differed
substantially, indicating pronounced clonal evolution.

Patient 5 demonstrated substantial variation in VAFs (ranging from 5.7% for ZNF521
c.2401 C>T to 71.4% for TP53 c.832 C>G) (Figure 1B). The prostate lesion distinctly clus-
tered apart, exhibiting highly prevalent APC c.7504 G>A (45.5%) and BRCA2 c.8851 G>A
mutations (45.5% and 59.2%, respectively). The left kidney harbored both mutations with
high VAF (e.g., FBXW7 c.1556 A>G (68.8%) and TP53 c.832 C>G (71.4%)) and alterations
exclusive to that site with lower VAF (e.g., GRM8 c.2315 G>C (26.1%)). Lung lesions showed
variable VAFs but clustered closely with the right kidney lesion.
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(A) (B) 

Figure 1. Exemplary hierarchical clustering of biopsied tumor lesions. Homunculi and heatmaps of
Patient 4 (A) and Patient 5 (B) with hierarchical clustering visualizing the similarity in the mutational
pattern of the lesions, including the corresponding variant allele frequencies (VAFs). The heatmap
encodes tissue VAFs ranging from 0.0 (dark blue) to 1.0 (yellow).

Patients 1 and 2 shared patterns akin to Patient 5, with unique VAF shifts in specific
anatomical sites, such as the mesenterial lymph node in Patient 1 and the spleen in Patient
2. Patient 3 displayed consistently low VAFs, primarily for TP53 c.743 G>A (14.2–19.2%).
Meanwhile, Patients 6 and 7 formed distinct clusters, driven by dominant mutations
in KEAP1 c.781 C>T, TP53 c.743 G>A, and KRAS c.34 G>C, respectively (Supplemental
Figure S6). These patterns emphasize the variable degrees of genomic divergence among
metastatic lesions.

2.3. Liquid and Tissue Biopsies Reveal Partially Overlapping Mutation Profiles

Next, we compared genetic alterations identified in LBx relative to those in TBx
(Figure 2). The average DP of LBx was 5589 (range: 1774–11,081) and detection
sensitivity < 0.1%. The numbr of mutations exclusively found in LBx varied notably across
patients, ranging from zero (Patient 6) to six (Patient 4), with a total of 18 somatic variants
(mean VAF = 0.05%, range: 0.2–2.8%) (Supplemental Table S1). Among the variants identi-
fied, one, located in KIT, overlapped with genes associated with clonal hematopoesis of
indeterminate potential (CHIP) and can therefore not be confidently associated as being of
tumor origin. The number of mutations uniquely detected in TBx ranged similarly, from
one (Patient 6) to eight (Patient 5) (Supplemental Table S2). Notably, the VAFs of mutations
exclusively detected in TBx (mean VAF: 15.4%) were significantly lower compared to all
TBx (mean VAF: 24.5%) detected alterations (p < 1 × 10−6). The number of overlapping
mutations detected both in LBx and TBx (cross-section (CS)) ranged from two (Patient 3) to
11 (Patient 4). On average, 67% of all LBx-detected variants (range: 50–100%) were also
found in TBx. In contrast, 64.5% of TBx-detected variants (range: 20–92%) overlapped
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with LBx findings. These results highlight a high degree of concordance between TBx and
LBx while underscoring their complementary nature in capturing the full spectrum of
tumor heterogeneity.

Figure 2. Variants exclusively detected in LBx or TBx and their overlap. Overview of variants
per patient (y-axis) found in LBx exclusively (green), TBx exclusively (violet), and the intersection
(turquoise). Respective numbers of variants are depicted in each bar. Proportions are shown on the
x-axis as percentages.

2.4. LBx and Its Potential to Mitigate the Risk of Missing Clinically Relevant Mutations in
Single-Lesion Tissue Biopsies

Understanding inter-lesional heterogeneity is critical for accurate molecular profiling
and was clearly evident in our cohort. Notably, more than 27% of the mutations detected by
both LBx and TBx were not consistently found across all lesions within individual patients.
Patients 2 and 6 presented uniform mutation profiles across all analyzed lesions, indicating
lower heterogeneity. In contrast, other patients showed significant variability. For instance,
in Patient 1, biopsy of the lymph node alone (TBx6) would have missed three mutations;
notably, POM121L c.849 C>T was uniquely detected in one TBx and the LBx. Similarly, in
Patient 5, the TP53 c.832 C>G variant was only identified in the left kidney biopsy and by
LBx. Patient 3 exhibited partial lesion-specificity for the KIT c.2278 G>A mutation, found
in only half of the biopsies, and in Patient 7, the RET c.1701 C>T mutation was absent in
biopsies from primary lesions. In Patient 4, detection varied substantially across different
lesions (Figure 3). These findings underscore the importance of multi-lesion sampling to
adequately capture tumor heterogeneity. Relying on a single TBx may overlook critically
relevant mutations due to substantial inter-lesional variability and highlights the role of
LBx in helping to overcome the limitations of localized tissue sampling.
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Figure 3. Alterations detected by LBx but not all TBx sites. Venn diagram visualizes the intersection
between TBx lesions and LBx (bottom) for different patients. Lesion sites are summarized as TBx1-8.
Colored bars encode corresponding variants shown on the right-hand side (top).

2.5. Correlation Between LBx and TBx Partly Reflects the Composition of the Tumor

Considering both the intra-lesional heterogeneity and the variability in DNA shedding
and degradation across tumor sites, we questioned the extent to which LBx reflects the
overall tumor composition. Therefore, we evaluated the correlation of VAFs between
TBx and LBx mutations shared by both methods using regression analysis (Figure 4A).
Patient 4 showed strong correlations with R2 values ranging from 0.680 to 0.966. Con-
versely, Patient 5 exhibited consistently weak correlations across all samples. Patients 1,
2, and 6 demonstrated variable correlation strengths, with sporadic R2 values above 0.5.
Correlation analysis was limited for Patient 3 due to few shared mutations. Patient 7,
despite limited available data points, exhibited notably high correlations (R2 = 0.885–0.999).
A full summary of these results is presented in Figure 4B. These findings emphasize patient-
specific variability in the concordance between TBx and LBx, suggesting that, although not
reliable across all patients, LBx can reflect the overall tumor composition, overcoming the
limitations of single-lesion biopsy.
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(A) 

(B) 

Figure 4. Correlation analysis between TBx and LBx with corresponding R2 values. (A) Exemplary
linear regressions between VAFs of mutations in the intersection of Patient 4. Analyses were con-
ducted for each lesion individually. Variants are described in the legend. Corresponding R2 values
are shown above each subfigure. (B) Summary of R2 values in descending order for each lesion
patient-wise (upper x-axis). R2 values range from 0.0 (yellow) to 1.0 (blue). No analysis is available
for lesions with fewer than two alterations at the intersection (NaN: Not a Number).

3. Discussion
Overcoming spatial tumor heterogeneity through genetic profiling via LBx presents a

promising approach to understanding the complex and dynamic mutational landscape of
solid tumors [23,24]. With our comparative analysis of post-mortem TBx and pre-mortem
LBx, we aimed to evaluate the potential of LBx to overcome the limitations of spatial sam-
pling and better reflect tumor-wide heterogeneity. LBx has the potential to estimate tumor
evolution, therapeutic response, and the molecular variability that underpins resistance
mechanisms missed by single TBx, which remains the clinical standard.

Tumor evolution is shaped by prolonged disease progression and multiple lines of ther-
apy, both of which are expected to contribute to diverse genetic profiles across metastatic
sites [25–27]. The long period of tumor development, coupled with multiple therapeutic
interventions, contributes to a shifting mutational landscape and the appearance of novel
subclones [28,29]. Here, we included both patients with relatively short and longer treat-
ment periods with several lines of therapies. Although our cohort showed little evidence
of therapy-specific molecular evolution in the form of resistance mechanisms, therapy-
induced heterogeneity has been well documented in previous studies [30,31]. Other factors,
such as the tumor microenvironment or intrinsic genomic instability, also play a role in
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shaping clonal dynamics [32,33]. Our data clearly confirms that genetic alterations are
not uniformly distributed across lesions, with notable variations in both the number and
type of mutations across intra- and inter-lesional samples. This becomes exceptionally
evident in the case of the patient with a history of prostate cancer (Patient 5) presumed
to have been curatively treated by definitive radiotherapy. A prostate lesion exhibited a
completely distinct molecular profile not observed in other biopsied lesions, underscoring
the risk of underestimating heterogeneity if relying on a single biopsy. Therefore, despite
the advantages of TBx in providing spatial context to tumor mutations, its feasibility in
routine clinical practice is constrained by invasive sampling procedures and accessibility
limitations [34,35]. In contrast, LBx offers a non-invasive and readily available alternative
that effectively captures a broader mutational landscape of tumors. This approach can yield
deeper insights in multi-site disease settings, especially in a scenario with an unexpected
tumor site, thereby addressing the limitations of conventional tissue methods [36,37]. High
concordance rates for genomic alterations detected in LBx and TBx underpin its great
potential [38].

Here, our findings reveal a complex interplay between TBx heterogeneity and LBx
as described in the literature previously [38–42]. Overall, heterogeneity observed in TBx
was also reflected in LBx. Notably, over 38% of mutations detected in common (LBx and
TBx) were missing in at least one of the eight lesions analyzed. In two cases, a KIT c.2278
G>A mutation in Patient 1 and a TP53 c.832 C>G mutation in Patient 5, the alterations
were solely detectable in a single localization as well as by LBx. This highlights the risk of
missing clinically relevant mutations when relying on a single lesion biopsy and, moreover,
underscores the risk of underestimating tumor heterogeneity.

Importantly, the mutational profile observed in LBx showed a positive correlation
with the heterogeneity seen in solid tumor lesions, as demonstrated by regression analyses.
However, this relationship was not consistent across all cases. For example, in Patient 5,
despite having multiple TBx samples from different tumor areas, the VAFs did not correlate
with those found in LBx. In contrast, Patient 4 displayed a strong correlation between TBx
and LBx VAFs, even though tissue samples were taken from five different organs. This
finding is particularly notable.

Several biological factors may explain these differences. Tumor size and growth
rate affect the amount of cell death, which is the main source of ctDNA released into
the bloodstream [43,44]. Supporting this, mutations detected only in tissue biopsies had
significantly lower VAFs, suggesting that mutations with low VAF in tissue may be missed
in LBx. However, some mutations were also found esxclusively in LBx. Additionally,
tumors with high microsatellite instability tend to release more ctDNA, causing variability
in ctDNA shedding among different cancer types [45]. Another important factor is tumor
vascularization and proximity to blood vessels, as efficient blood flow can facilitate the
release of ctDNA into circulation.

This can impact measurements even at a lesion-specific level [46] as exemplified by
the clinically relevant absence of the BRCA2 c.8851 G>A mutation in the LBx of Patient
5. Moreover, several studies have investigated the relationship between ctDNA levels
and radiological assessments of disease stability or progression, generally finding that
patients with progressive disease show elevated ctDNA levels compared to those with
stable disease [47]. However, in our cohort, no consistent association was observed between
radiological findings and the correlation results between LBx and TBx data (Supplemental
Figure S4).

Numerous mutations were exclusively detected in TBx and missed by LBx (Supple-
mental Table S2). However, these alterations exhibited significantly lower VAFs, which



Int. J. Mol. Sci. 2025, 26, 7614 9 of 14

may indicate their origin in subclonal populations. Given their low VAFs, the clinical
significance of these mutations for therapeutic decision-making remains uncertain.

Another key observation of our study is the identification of unique aberrations in the
LBx. The presence of LBx-exclusive mutations can result from the inability to sample all
tumor mass from all manifestations. This assumption is supported by the patient-specific
observations in Patient 5. Here, extensive tissue sampling was performed, and only a few
unique LBx variants were identified, suggesting that LBx helps compensate for lesions in
less-accessible or unrecognized metastases. However, detection of alterations in LBx with
low VAFs must be critically questioned concerning biological relevance in the context of
analytical hypersensitivity. On one hand, highly sensitive techniques such as NGS enable
the detection of minute DNA fragments; among them, CAPP-seq (Cancer Personalized
Profiling by deep Sequencing) offers enhanced sensitivity and specificity for identifying
low-frequency mutations in ctDNA [48]. On the other hand, the clinical relevance of such
low-VAF findings is not always clear [49,50].

Also, discriminating mutations related to CHIP by paired plasma and peripheral
blood cell sequencing is crucial to avoid misinterpretation of results [49,51]. In response
to the potential confounding role of CHIP in interpreting LBx-exclusive mutations, we
systematically evaluated all alterations listed in Supplementary Table S1 against a curated
set of genes frequently associated with CHIP. This list includes canonical drivers such as
DNMT3A, TET2, ASXL1, JAK2, TP53, SF3B1, PPM1D, SRSF2, IDH1, IDH2, and U2AF1,
among others, commonly implicated in age-related clonal expansions of hematopoietic
lineages. Among the variants identified, only one—located in KIT—overlapped with this
CHIP-associated gene set. However, this variant was classified as a variant of unknown
significance (VUS) and thus is unlikely to have clinical relevance in the present context,
particularly regarding drug resistance. Based on current evidence, we consider it unlikely
that CHIP-associated mutations significantly influenced our LBx findings. Nonetheless, we
emphasize the importance of incorporating paired plasma and leukocyte sequencing in
future studies to more definitively distinguish tumor-derived from hematopoietic-origin
variants. Furthermore, there is a risk of overinterpreting noise as a meaningful signal, so,
considering orthogonal assays for a second opinion to strengthen confidence in low-VAF
results is crucial before making premature clinical decisions.

There are some limitations to our findings. Firstly, the analysis was based on a small
cohort of patients with varying tumor types. Although we included a large number of
biopsies from various sites to obtain a comprehensive overview of each patient, the entire
landscape of the tumor’s manifestation may not have been fully captured, as not all lesions
were sampled. Notably, the patient with a history of presumed curatively treated prostate
cancer exemplifies significant intra-patient heterogeneity, which may remain undetected by
conventional TBx but could potentially be revealed through LBx.

Our study offered a unique opportunity of sampling patients from the Augsburg
Longitudinal Plasma Study (ALPS) cohort by full autopsy. Its primary strength lies in its
technical design. By including multiple tumor entities, examining samples from multiple
tumor lesions (including an intralesional sample), and harmonizing the biochemical work-
flow with identical library and panel technology for both, TBx and LBx, we ensured robust
comparability. In addition, all variants identified in the raw data were manually validated
to ensure accuracy.

4. Methods and Materials
4.1. Ethics Approval and Consent to Participate

All patients included in this study are participants in the Augsburg Longitudinal
Plasma Study (ALPS) [52]. All participants have provided written informed consent for the
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ALPS trial and the Augsburg Central Biobank (ACBB). This trial adheres to the principles of
the Declaration of Helsinki and was approved by the Local Ethics Committee (Ethikkommis-
sion der Ludwig-Maximilians-Universität München, (approval no. 20-0972)) and registered
at clinicaltrials.gov (ClinicalTrials.gov Identifier: NCT05245136, registered on 8 November
2021). The selected patients provided additional consent for post-mortem autopsy.

4.2. Patient and Post-Mortem Tumor Site Selection

Eligible patients were identified through reviewing appointment lists, recommenda-
tions from tumor conferences, and direct contact with the treating physicians. Complete
autopsies were performed according to standard procedures. Tissue samples were obtained
from all macroscopically apparent and clinically known tumor sites. Tissue material was
formalin-fixed and paraffin-embedded following the standard procedure of the Institute of
Pathology and Molecular Diagnostics at the University Hospital of Augsburg. Post-mortem
tissue was stained with hematoxylin and eosin and evaluated by a pathologist. Samples
were macro-dissected, targeting tumor content exceeding 80%. Eight tumor samples per pa-
tient were obtained for this study, including the primary tumor if available. Manifestations
showing progression during ongoing therapy based on CT, MRI, or PET were prioritized.

4.3. DNA Isolation and Sequencing of Tumor Material

DNA was extracted from the annotated tumor areas following the AVENIO Tumor
DNA Isolation and QC kit (Roche Holding AG, Basel, Switzerland) with the AVENIO
Tumor Cleanup and Capture Beads (Roche). Libraries were prepared using the AVE-
NIO Tumor Library Prep Kit (Roche) with the AVENIO Tumor Surveillance Panel V1
(Roche), which targets 197 cancer-related genes spanning approximately 198 kilobases (kb)
of genomic regions. Libraries were sequenced using paired-end 150 bp sequencing (dual
indexing), aiming at a coverage of approximately 20,000-fold on an Illumina Next-Seq
500/550 platform (Illumina, San Diego, CA, USA). Twenty-four barcoded samples were
sequenced per flow cell.

4.4. Cell-Free DNA (cfDNA) Isolation and CAPP-Seq Based Analysis

Peripheral blood (PB) was collected in the context of ALPS and processed within
two hours. Plasma was separated by two centrifugation steps at 2000× g for 10 min each.
Plasma samples were stored at −80 ◦C in the ACBB for long-term storage.

cfDNA was extracted from four mL of plasma, and libraries were prepared using the
AVENIO cfDNA Isolation kit and the AVENIO Library Prep Kit with the ctDNA Surveil-
lance Kit V1 (Roche Holding AG, Basel, Switzerland), respectively. cfDNA concentrations
were measured before library preparation using fluorometric methods (Qubit 1x dsDNA
HS Assay Kit; ThermoFisher Scientific, Waltham, MA, USA). Quality of both the isolated
cfDNA and the library preparation was assessed based on size distribution (Bioanalyzer
High Sensitivity DNA assay; Agilent Technologies, Santa Clara, CA, USA). Libraries were
sequenced using paired-end 150 bp sequencing, targeting approximately 20,000 folds on
an Illumina Next Seq550 or on an NovaSeq 6000 platform (both Illumina, San Diego, CA,
USA). Sequencing was performed by the NGS Competence Center Tübingen (NCCT) en-
suring a minimum analytical sensitivity of <0.1%, compliant with the Rili-Baek guidelines
stipulating a minimum sensitivity of 0.5% for DNA from cell free body liquids [53].

4.5. Bioinformatic and Statistical Analysis

Base Call Intensities (BCL) files were used as input for the proprietary pre-analysis
pipeline (AVENIO Oncology Analysis Software, Version 2.1.0) as well as the input DNA
Q-Ratio and input DNA Mass. The resulting unfiltered set of SNVs was additionally
annotated with VEP (Version 110.1) [54].
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Initially, NGS tissue results were filtered for germline variants from blood samples,
when available, or manually filtered based on variant allele frequencies (VAFs) (Supple-
mental Figure S1).

Subsequently, variants removed from TBx results were also excluded from LBx analy-
ses. An additional upper VAF threshold of 0.35 was applied to LBx variants to minimize
non-somatic mutation inclusion. Potential artifacts were identified by analyzing the alter-
nate allele depth (ALTDP), and values below 11 were discarded (Supplemental Figure S2).
Each annotated alteration was categorized as synonymous or missense.

Statistical analyses and data visualization utilized Python (3.11) and R (4.3.2). De-
scriptive statistics, hierarchical clustering analyses, and regressions were performed with
pandas and scikit-learn packages. Data visualization was performed with matplotlib and
seaborn packages. Oncoprint visualizations were generated in R using ComplexHeatmap
in combination with ggplot2. Comparisons between groups were performed using the
Mann–Whitney U test, with p-values < 0.05 considered statistically significant.

5. Conclusions
In conclusion, this study underscores the complementary roles of LBx and TBx in

capturing the full spectrum of the tumor mutational landscape. Integrating LBx into clinical
workflows alongside TBx may enhance the understanding of tumor genetics and individual
mutational trajectories.

Future research should assess the clinical significance of LBx-exclusive mutations and
further investigate the role of integrating LBx into routine molecular pathology workflows.
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ADNOS unspecified adenocarcinoma
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bp base pairs
CAPP-Seq Cancer Personalized Profiling by deep Sequencing

https://www.mdpi.com/article/10.3390/ijms26157614/s1
https://www.mdpi.com/article/10.3390/ijms26157614/s1


Int. J. Mol. Sci. 2025, 26, 7614 12 of 14

cfDNA cell-free DNA
CHIP clonal hematopoiesis of indeterminate potential
COADREAD colorectal adenocarcinoma
CS cross-section
CT Computed Tomography
ctDNA circulating tumor DNA
DNA deoxyribonucleic acid
DP depth
LBx liquid biopsy
LUAD lung adenocarcinoma
LUSC lung squamous cell carcinoma
MRI Magnetic Resonance Imaging
NCCT NGS Competence Center Tübingen
NGS next-generation sequencing
NMD nonsense-mediated decay
PAAD pancreatic adenocarcinoma
PB peripheral blood
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TBx tissue biopsy
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VAF variant allele frequency
VEP Variant Effect Predictor
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