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Abstract

Emotional Speech Synthesis (ESS) is a rapidly evolving field, with significant
advancements in both Emotional Text-to-Speech (ETTS) and Emotional Voice
Conversion (EVC). These two research areas are integral to the development of
ESS, aiming at different application scenarios. This thesis researches into the
background, state-of-the-art studies and key concepts of ETTS and EVC, providing
a comprehensive analysis of their respective methodologies and implementations.

In the ETTS domain, this work presents the design and experimentation of one
neutral TTS system and two distinct ETTS systems. These systems are evaluated on
various performance metrics to assess their capability in synthesising speech with
emotional expression. The ETTS systems leverage transfer learning, highlighting
the effectiveness of enhancing emotional expressivity in synthetic speech.

Conversely, the EVC domain is explored through both frame-to-frame
and sequence-to-sequence approaches. Two frame-to-frame EVC systems are
implemented, focusing on CycleGAN and VAE-GAN models. These two systems
are tested and analysed, including objective and subjective evaluations, to determine
their performance in converting neutral speech into emotional speech.

Additionally, in order to optimise the speech quality of the converted speech,
a sequence-to-sequence EVC systems are developed first, based on an advanced
model architecture called Transformer. The experimental results demonstrate the
feasibility; however, the findings also result in the necessity for further optimisation
to achieve more natural and high-quality output. Challenges such as training
strategy, data augmentation and information disentanglement are addressed, offering
insights for improvement.

This thesis concludes by outlining the general challenges in ESS, along with
an outlook on future developments. The exploration of non-autoregressive models,
flow-based TTS and diffusion-based TTS, as well as the integration of large models,
are discussed as promising directions for improving ESS. These insights contribute
to the ongoing efforts to bridge the gap between state-of-the-art studies and the
ultimate goal of achieving the synthesis of natural emotional speech.
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1

Introduction

In recent decades, computers have become an integral part of daily life in various
forms, including desktops, laptops, tablets, smartphones, and wearable smart
devices. From the perspective of how computers assist humans, they are embedded
in work, study and personal life. Consequently, a specific research field focusing on
techniques that bridge humans and computers emerged, known as Human-Computer
Interaction (HCI) [1]. This interaction encompasses two directions: humans sending
signals to the computer and the computer providing feedback to humans.

Traditional HCI methods involve using a mouse, keyboard and joystick to
input information [2], while the computer mainly provides feedback via a monitor,
displaying text and images. However, this interaction pattern does not align with
the way humans typically communicate. Although textual communication (e.g.,
writing letters) is common, speaking and conversing are the primary modes of human
interaction. Thus, one significant natural interaction pattern is for humans to speak
directly to the computer, which then responds to humans using speech [3].

Another research field, Artificial Intelligence (AI), shares a similar goal with HCI:
creating human-like machines capable of human abilities and foresight [4]. Therefore,
speech-based interaction is not only a key objective of AI research but also benefits
from AI’s rapid technological advancements. In recent years, neural networks, a
crucial AI technology, have made it possible to solve the complex tasks of human
speech understanding and generation. As a result, Automatic Speech Recognition
(ASR) [5]—where a computer understands speech—and speech synthesis—where
a computer generates speech—have gained significant attention in the research
community.

However, merely understanding linguistic information and generating plain
speech falls short of achieving a truly human-like interaction. Human
communication conveys two types of information: explicit linguistic content and
implicit information about the speaker, such as emotional expression [6]. Therefore,
the ability to recognise emotional expression in speech and generate emotionally
expressive speech is crucial for more human-like interaction. Consequently, Speech
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1. Introduction

Emotion Recognition (SER) [7] and emotional speech synthesis [8] have become
prominent areas of research.

Affective computing is a field focused on the recognition, detection,
interpretation, analysis, and generation of emotional characteristics by
computers [9]. The term ‘affective’ refers to ‘emotional’ [10], making SER
and emotional speech synthesis subfields of affective computing, benefiting from
advancements in this area. Although affective computing research contains text,
speech and video, studies on speech remain the mainstream, as spoken language is
the most natural and common form of human communication [8]. Moreover, with
the progress in computational power and neural network architecture, generative
models are now capable of producing nuanced speech, which is advantageous for
generating emotional speech. Particularly after the successful real-life applications
of speech synthesis, such as chatbots [11], the potential for emotional speech
synthesis appears bright and promising, both in academic research and application.

Therefore, this thesis focuses on emotional speech synthesis, including both
synthesis and conversion. Each chapter provides a comprehensive description
of the studies, including the background introduction, literature review, model
architecture, experimental setup, results, and discussion. Neutral text-to-speech
is introduced in Chapter 2, and emotional text-to-speech is demonstrated in
Chapter 3. Regarding emotional conversion, two different schemes—frame-to-frame
and sequence-to-sequence—are discussed in Chapter 4 and Chapter 5, respectively.
Finally, the challenges and outlook of emotional speech synthesis research are
presented in Chapter 6, along with the conclusion of the thesis.
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2

Neutral Text-to-Speech

In addition to perceiving information from humans and the environment, expressing
information is another crucial process for computers in HCI, as introduced in
Chapter 1. A typical method of communication is through spoken language, which
is also an intuitive and preferred interactive method for human beings [12]. For
example, a simple spoken-language-based HCI system involves two main procedures:
the machine receives and understands speech from humans using an ASR system,
and then generates responses and synthesises speech using a speech synthesis system,
as introduced in this chapter.

2.1 Text-to-Speech

Speech synthesis, also known as Text-to-Speech (TTS), refers to the process and
technique of converting written text into speech [13]. Since most research on TTS
does not consider emotional expression, it is referred to as neutral TTS in this
chapter.

2.1.1 Background

TTS systems have a wide range of real-life applications. Firstly, TTS enhances
accessibility for people with visual impairments, enabling them to interact
with computers and smart devices [13]. Secondly, TTS provides a means of
acquiring information, such as through screen readers, audiobooks and public
announcements [12]. Lastly, TTS assists people suffering from aphasia in expressing
themselves to others [14].

In addition to these applications, there are numerous potential areas where
speech synthesis can offer support or improvement. As a result, many researchers
and engineers have sought to synthesise speech using machines. As early as the
eighteenth century, a Hungarian scientist built a speaking machine using musical

3



2. Neutral Text-to-Speech

Figure 2.1: Architecture of the Typical TTS System

Text Analysis
Module

Acoustic
Model VocoderText Speech

instruments [15]. The development of speech synthesis systems has primarily evolved
through five stages: Articulatory Synthesis, which simulates human articulators to
generate speech [16]; Formant Synthesis, which synthesises speech by manipulating
the formant frequencies and spectral properties of human speech [17]; Concatenative
Synthesis, which involves concatenating recordings of syllables, words and sentences
according to specific rules [18]; Statistical Parametric Speech Synthesis (SPSS),
which generates speech from acoustic parameters, such as spectral, pitch and
duration parameters [19]; and Neural Synthesis, which utilises Deep Neural Networks
(DNNs) to synthesise speech from acoustic features, linguistic features or even
directly from input text [20, 21, 22].

Currently, a typical TTS system consists of three components: Text Analysis
Module, which extracts linguistic features from the input text; Acoustic Model,
which converts linguistic features into acoustic features; and Vocoder, which
synthesises the speech waveform using these acoustic features [22]. A typical TTS
architecture is shown in Figure 2.1. Additionally, there is research focused on
End-to-End models that can synthesise speech directly from input characters [23]
or phonemes [24].

2.1.2 Text Analysis Module

The first step in TTS is to extract linguistic information from the input text.
Various processing methods are employed to normalise the input text and generate
linguistic features. First, the written text must be converted into spoken text to
provide pronunciation information, a procedure known as Text Normalisation [22].
In practice, text normalisation can be either rule-based [25] or accomplished using
neural networks [26]. Second, for languages such as Chinese and Japanese, correct
delimiters between words must be determined through Word Segmentation [27]
to prevent misunderstandings. Third, some words have different pronunciations
depending on their Part of Speech (POS, also known as word class) in the sentence;
this issue can be addressed using POS Tagging [28]. Fourth, to achieve more
accurate and natural speech synthesis, prosody information must be predicted, a
process called Prosody Prediction [29]. Finally, applying phonemes is generally
preferable to using graphemes, as lexicons may not always cover pronunciation in
some languages, such as English [22]. Therefore, it is often necessary to convert all
words into phonemes, a conversion process known as Grapheme-to-Phoneme [30].
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Table 2.1: Examples for Text Analysis Methods

Input Sequence Output Sequence

Text Normalisation
‘200 apples.’
‘In 1800.’

‘Two hundred apples.’
‘In eighteen hundred.’

Word Segmentation ‘一点点奶茶’
‘一点点 奶茶’
‘一点点奶茶’

POS Tagging
‘John keeps records.’
‘Alice records the film.’

‘n. v. n.’
‘n. v. art. n.’

Prosody Prediction
‘I want to go.’
‘Do you want to go?’

‘I want to go(➘).’
‘Do you want to go(➚)?’

Grapheme-to-Phoneme
‘Speech’
‘Synthesis’

‘S P IY CH’
‘S IH N TH AH S AH S’

For better understanding, two examples of each text analysis method are provided
in Table 2.1.

2.1.3 Acoustic Model

After obtaining linguistic features from text analysis, the next step is to derive
acoustic features using these linguistic features (or directly from the input
text/phonemes). Over time, three main types of acoustic models have been
developed: SPSS-based models [19, 31], Sequence-to-Sequence models [20, 32], and
the latest Parallel Generation models, which utilise feed-forward networks [22, 33,
34].

As described in Section 2.1.1, SPSS uses linguistic features to generate acoustic
parameters. This modelling can be performed using the more traditional Hidden
Markov Model (HMM) [19, 35] or more advanced neural networks [31, 33, 36, 37].

Given the outstanding performance of sequence-to-sequence models in machine
translation tasks [38], they were introduced to TTS, treating the task as a form
of text-to-speech translation. Sequence-to-sequence learning takes one sequence
as input and outputs another sequence. The first attempt at this approach
used a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN)
model [39]. With the use of an encoder and a decoder, a commonly applied
sequence-to-sequence architecture is established [20, 21, 32, 40]. Specifically, an
input sequence X = (x1, x2, x3, ..., xT ) is fed into the encoder to produce the memory
M = (m1,m2,m3, ...,mT ), which represents the hidden states of the input sequence:

mt = enc(xt,mt−1) (2.1)
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2. Neutral Text-to-Speech

where the previously generated memory mt−1 also contributes in the RNN. To
enhance the alignment between the encoder and the decoder, an attention module
is typically employed, allowing the model to learn the alignment between the
grapheme/phoneme in the input text and its corresponding pronunciation in the
output speech [20]. For example, the equation for the context vector ct in
content-based attention is given by [41]:

ct =
T∑
i=0

αtimi (2.2)

where αti is the attention weight, which is computed by softmax function:

αti =
exp(eti)∑T
j=0 exp(etj)

(2.3)

where

eti = aln(ŷt−1,mi) (2.4)

is referred to as the alignment model, which evaluates the correlation between the
memory around i and the decoder output around t. During the training phase, the
decoder utilises the attention vector C, along with the previous element ŷt−1 in the
target sequence, to predict the output yt:

ŷt = dec(yt−1,C) (2.5)

which is also referred to as teacher-forced learning, as it utilises the target (ground
truth). However, during the inference phase, where the target is not available, the
previous element ŷt−1 in the predicted sequence is used:

ŷt = dec(ŷt−1,C) (2.6)

Since the model predicts the output using its own earlier predictions, it is
classified as an autoregressive model [42]. The architecture of an RNN-based
sequence-to-sequence model with content-based attention is illustrated in Figure 2.2,
where ⟨SOS⟩ and ⟨EOS⟩ represent the Start of the Sequence (SOS) token and
End of the Sequence (EOS) token, respectively. The orange section of the figure
corresponds to the encoder, while the red section represents the decoder.

Autoregressive RNN models require waiting for the previous prediction before
predicting the next one, which results in longer processing times during both the
training and inference phases. To address this, Convolutional Neural Networks
(CNNs) [32] and self-attention mechanisms [40, 43] were introduced into TTS,
successfully accelerating the training phase. However, they still encountered
challenges with slow inference [22]. To overcome this, five different models for
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2.1. Text-to-Speech

Figure 2.2: RNN-based Sequence-to-Sequence Model with Content-based Attention

Content-based Attention
: Encoder

: Decoder

the parallel generation have been developed: Feed-Forward Transformer [33, 40],
Generative Adversarial Networks (GANs) [44], Inverse Autoregressive Flow [45],
Generative Flow [46], and Diffusion models [47, 48].

2.1.4 Acoustic Features

For SPSS-based TTS models, the selection of acoustic features and the corresponding
vocoder is another key consideration in model design. Two commonly used feature
sets include F0-based features and spectrogram-based features.

The fundamental frequency (F0) is defined as the smallest inverse of the period
of a periodic signal [49] and is often used in combination with other features such
as Mel-Cepstral Coefficients (MCEPs, also known as MCCs) [19] and Line Spectral
Pairs (LSPs) [37] to synthesise waveforms.

Recently, feature sets like the spectrogram and Mel-spectrogram have been
widely adopted in TTS, especially within DNN-based architectures. While the
original waveform only conveys information in the time domain, information in the
frequency domain is also crucial for speech. Therefore, Fourier Transformation (FT)
is employed to convert the waveform into a frequency spectrum:

f̂(ξ) =

∫ ∞
−∞

f(t) · exp(−2πi·tξ)dt (2.7)

where ξ represents the frequency, and the complex number f̂(ξ) represents the
spectrum of the input waveform f(t) at the frequency ξ. Similarly, the waveform
can be reconstructed using Inverse Fourier Transformation (IFT):

f(t) =

∫ ∞
−∞

f̂(ξ) · exp(2πi·ξt)dξ (2.8)
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2. Neutral Text-to-Speech

However, the discrete Short-Time Fourier Transformation (STFT) [50], which
uses a sliding window, is more practical than FT:

f̂(ξ, n) =
l−1∑
k=0

w(k) · f(n×h+ k) · exp(−2πi·ξk
l

) (2.9)

where n represents the index of the sliding window, w represents the window
function, and l and h denote the length and hop length of the window, respectively.

Subsequently, to capture information in both the frequency and time domains:

S[f(t)] =
∣∣∣f̂(ξ, n)

∣∣∣2 (2.10)

where S[f(t)] represents the spectrogram of the input waveform f(t). A notable
application of the spectrogram in TTS is Tacotron [20], where the Griffin-Lim
algorithm [51] was used to reconstruct the predicted linear-scaled spectrogram back
into a waveform.

To enhance the quality of generated speech and avoid characteristic artefacts,
Tacotron 2 [21] uses the Mel-spectrogram instead of the linear spectrogram. The
Mel-spectrogram is obtained by applying a Mel-scale, a scale designed to reflect the
auditory perception of human beings, to the spectrogram.

2.1.5 Vocoder

As discussed in Section 2.1.1, the vocoder’s purpose is to convert the output of
the acoustic model into a waveform. STRAIGHT [52] and WORLD [53] are two
conventional vocoders that use acoustic features as input. Both vocoders employ
F0, MCEPs, and aperiodic features, though they differ in their methods of analysis
and extraction. For vocoders that utilise neural networks, CNNs [44, 54, 55, 56,
57, 58, 59] and RNNs [60, 61, 62] are commonly used. Various models, including
autoregressive models [54, 61], flow-based models [55, 56], GAN-based models [44,
57], and diffusion-based models [58, 59], have been implemented.

2.2 Application: Tacotron 2 and LPCNet

In this section, a neutral TTS system that implements Tacotron 2 and the LPCNet
vocoder will be introduced, analysed, and discussed.

2.2.1 Tacotron 2

Tacotron 2 [21] is a neutral TTS system that improves upon Tacotron [20].
The most noticeable difference between them lies in the acoustic representation
and the corresponding vocoder. Tacotron uses a linear-scaled spectrogram and

8



2.2. Application: Tacotron 2 and LPCNet

employs the Griffin-Lim algorithm [51] to reconstruct the waveform, whereas
Tacotron 2 utilises a Mel-spectrogram and uses Parallel WaveNet [63] as the
vocoder. Additionally, Tacotron 2 replaces the CBHG module—which includes
1D convolution filters, highway networks, and a bidirectional Gated Recurrent
Unit (GRU) RNN—with LSTMs and convolutional layers. Moreover, the
encoder-decoder attention mechanisms differ: Tacotron 2 deploys location-sensitive
attention [64], which accumulates attention weights from previous timesteps,
optimising the content-based attention [41] used in Tacotron.

Tacotron 2 simplifies text analysis by directly using characters as input to
the encoder. The encoder, which comprises three convolutional layers and one
bidirectional LSTM layer, extracts linguistic features. The attention module
then uses these hidden features to generate location features. Since Tacotron
2 employs an autoregressive decoder, the previous timestep prediction (with the
⟨GO⟩ frame for the first step) is fed back into the decoder after processing through
a prenet consisting of four fully connected layers. The previous output features
and the attention context vector are then sent to the decoder, which includes
two uni-directional LSTM layers. The decoder output and the attention context
vector are concatenated and passed to two linear projection layers: one predicts
the Mel-spectrogram, and the other predicts the stop token. The predicted
Mel-spectrogram is subsequently processed by a postnet, which comprises five
convolutional layers with a residual architecture. Finally, Parallel WaveNet [63]
converts the post-net output into the waveform [21]. The architecture of Tacotron
2 is illustrated in Figure 2.3.

2.2.2 LPCNet

Although Tacotron 2 improves performance by using Mel-spectrograms compared
to Tacotron [21], the Mel-spectrogram’s size can still be optimised for real-time
processing and reduced storage. For instance, Tacotron 2 employs an 80-dimensional
Mel-scale [21], while LPCNet [62] offers a more efficient vocoder by using only
20 dimensions of features, including 18 Bark-frequency Cepstral Coefficients
(BFCCs) [65], pitch period, and pitch correlation for speech reconstruction.

LPCNet derives its name from Linear Predictive Coding (LPC), a signal
processing technique that predicts the current timestep sample using a linear
combination of previous samples [66]. LPCNet improves upon WaveRNN [61],
a classic GRU-RNN-based neural vocoder, by introducing linear prediction. The
compute prediction block in LPCNet uses the output from the previous 16 timesteps
to generate predictions [62]. Additionally, to enhance robustness against noisy input
features, LPCNet computes a prediction residual, referred to as ‘excitation’ which
combines the current prediction, previous output and excitation, and adds it to
the current output [62]. This approach enables LPCNet to significantly outperform
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Figure 2.3: Tacotron 2
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WaveRNN while maintaining the same model size. The architecture of LPCNet is
depicted in Figure 2.4.

A straightforward way to combine the advantages of both Tacotron 2 and
LPCNet is to use BFCCs and the two pitch parameters as the output features
for Tacotron 2 (instead of Mel-spectrograms), and then apply LPCNet to convert
the output features into speech. Furthermore, reducing the network size, narrowing
the receptive field of convolutional layers and replacing location-sensitive attention
with dynamic convolutional attention have been implemented to achieve similar
performance to the ground truth [67]. These modifications are primarily aimed at
optimising performance for mobile devices, where real-time processing is critical.
However, in the context of synthesising emotional speech, where the TTS system
functions as a base module rather than the main component, a simple combination
of Tacotron 2 and LPCNet is sufficient.

2.2.3 Dataset: Blizzard 2011

Next, it is important to introduce the datasets used for training. Several English
datasets have been well-validated and applied in previous studies, including CMU
ARCTIC [68], VCTK [69], Blizzard 2011 [70], Blizzard 2013 [71], LJSpeech [72],
LibriSpeech [73], and LibriTTS [74].
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Figure 2.4: LPCNet
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Since 2005, the Blizzard Challenges have aimed to promote the development of
corpus-based speech synthesis systems, requiring participants to train TTS models
using specified datasets [70, 71]. In 2011, a single-speaker dataset was chosen for
training. This dataset was recorded by Nancy Krebs, a female native English
speaker with an American accent and also a voice coach [75]. The dataset includes
approximately 12, 000 utterances, totalling 16.6 hours of recordings at a 16 kHz
sampling rate, with corresponding text transcriptions.

2.2.4 Preprocessing

Tacotron 2 uses the characters of the input text as the source sequence [20],
making it necessary to modify the input pipeline phoneme-based to prevent
mispronunciation. Therefore, a module for grapheme-to-phoneme conversion, known
as a phonemiser [76], is essential. In this experiment, a phonemiser based on
the CMU Pronouncing Dictionary (version 0.7b) [77] was constructed to generate
phonemes from the input text.

The CMU Pronouncing Dictionary (CMU-Dict) includes phonemes for over
134, 000 words in North American English, encompassing 39 different phonemes
in total [77]. Examples of phonemes for the words ‘speech’ and ‘synthesis’ have
been provided in Table 2.1.
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Table 2.2: Phonemes in CMU-Dict

AA AE AH AO AW AY B CH D DH EH ER EY

F G HH IH IY JH K L M N NG OW OY

P R S SH T TH UH UW V W Y Z ZH

Figure 2.5: Proposed Neutral TTS System
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Despite the careful pairing of audio samples with their corresponding prompt
texts in the Blizzard 2011 dataset, some audio samples were missing. These
incomplete audio-text pairs were removed from the dataset. The remaining prompt
texts were normalised according to the text normalisation procedures outlined in
Section 2.1.2. A cross-search was then conducted between all the words in Blizzard
2011 and the CMU-Dict, discarding sentences containing words not present in the
dictionary, as they could not be phonemised correctly. Consequently, 10, 254 usable
audio-text pairs remained, which were divided into three subsets for the experiments:
7, 191 pairs (70 %) for the training set, 1, 541 pairs (15 %) for the validation set, and
1, 522 pairs (15 %) for the test set.

2.2.5 Experimental Setup

The cascade architecture combining Tacotron 2 and LPCNet, which represents the
simplest scheme for integrating both models, was chosen for implementation. The
architecture of this combined system is depicted in Figure 2.5. Since Tacotron
2 originally utilises Mel-spectrograms while the LPCNet employs BFCCs and
pitch parameters, any pre-trained Tacotron 2 models could not be used directly.
Consequently, a new LPCNet model was trained using the Blizzard 2011 dataset to
achieve optimal performance in the final neutral TTS system.

It is important to note that LPCNet’s input features comprise a total of 55
dimensions, divided into five parts: 18-dimensional BFCCs, an 18-dimensional
zero gap, 2-dimensional pitch features, another 1-dimensional zero gap and
16-dimensional space for iterative prediction. An experimental comparison between
generating all 55 dimensions versus only 20 dimensions of features revealed that the
20-dimensional feature set performed better, leading to its selection as the training
feature set. Specifically, the generated 20-dimensional features are interpolated with
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Figure 2.6: Loss Curves of Tacotron 2 with BFCCs and Pitch Features
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gaps according to the structure described, and LPCNet reconstructs the speech using
the expanded feature set.

Both Tacotron 2 and LPCNet were trained and fine-tuned on an NVIDIA®

TITAN X graphics card. The modified Tacotron 2 model converged to a minimum
loss of 0.364 after 90 epochs and 10, 000 iterations, as shown in Figure 2.6. To avoid
potential overfitting, LPCNet training was early stopped at 155 epochs, achieving a
loss of 2.948, as illustrated in Figure 2.7.

2.2.6 Subjective Evaluation

Unlike typical classification or regression tasks, subjective evaluation is more
persuasive in speech synthesis tasks because human perception aligns more closely
with the ultimate purpose of these tasks than any objective evaluation method [78].
Consequently, a phonetic expert was invited to assess the synthetic speech by
comparing 8 pairs of speech samples, each consisting of one natural and one
synthetic speech sample expressing the same content. While the synthetic speech
demonstrated intonation similar to the natural one, a few segmental distortions
on vowels were still observed. To gain a more comprehensive evaluation, the
neutral TTS system was assessed subjectively using two metrics: speech emotion
classification and Mean Opinion Score (MOS) on naturalness, speech quality, and
likeability.

The experiment was designed to evaluate not only the performance of the neutral
TTS system but also the emotional voice converter, which is introduced in Chapter 4.
A total of 14 participants participated in the subjective evaluation. Eight different
sentences were selected, and for each sentence, one ground truth sample (natural
recording), one synthetic neutral sample, and eight emotional samples were chosen.
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Figure 2.7: Loss Curve of LPCNet in Training Phase
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Each participant was asked to listen to a total of 80 (= 8 × (1 + 1 + 8 )) samples and
determine which emotion they believed the sample expressed. Of the 114 synthetic
samples (8 synthetic samples × 14 participants), 103 were correctly identified as
Neutral, resulting in an emotional recognition accuracy of 90.35 %. In comparison,
96 ground truth samples were correctly recognised, achieving an accuracy of 84.21 %.
These results indicate that the neutral TTS system, based on Tacotron 2 and
LPCNet, was successful and even outperformed natural recordings in emotional
expression.

In addition to identifying the perceived emotion, participants were also asked to
rate each speech sample on three aspects: naturalness, speech quality, and likeability,
using a scale from 1 (worst/least) to 5 (best/most), with an interval of 1. This
evaluation method is known as MOS.

The results of the three MOS tests are presented in Figure 2.8. The most
significant difference between the ground truth and synthetic speech was in
naturalness, where the ground truth achieved a score of 4.7, while the neutral TTS
system scored 3.1. This 1.6-point gap suggests that improving the naturalness of
the neutral TTS system should be a priority. However, the results in speech quality
(0.6-point gap) and likeability (0.8-point gap) were quite promising.

2.2.7 Real-time Performance Evaluation

Furthermore, the real-time performance of the neutral TTS system was assessed
using the Real-Time Factor (RTF) as the metric. RTF is defined as the time taken
by the system to process one second of speech [53, 67]. The evaluation was conducted
on a laptop equipped with an Intel® Core™ i7-8565U CPU, and the results are
presented in Tables 2.3 and 2.4. The ‘FFmpeg’ column in Table 2.3 indicates the
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Figure 2.8: Results of the MOS Test on the Proposed Neutral TTS System
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Table 2.3: Results of the Proposed Neutral TTS System on Time Consuming (s)

Phonemiser Tacotron 2 LPCNet FFmpeg Σ

µ 0.1296 2.2133 0.4920 0.0195 2.8546

σ 0.0059 0.1312 0.0205 0.0008 0.1568

CI (95%) 0.0037 0.0813 0.0127 0.0005 0.0972

RTF performance of the FFmpeg toolkit1, which was used to convert the 16-bit
Pulse-Code Modulation (PCM) files—the output of LPCNet—into waveform files.
The result shows that after model loading, the proposed system is able to generate
speech in real-time (RTF < 1).

Table 2.4: Results of the Proposed Neutral TTS System on RTF

Loading Tacotron 2 LPCNet

µ 0.9872 0.7747 0.1722

σ 0.1184 0.0424 0.0059

CI (95%) 0.0734 0.0263 0.0037

1https://www.ffmpeg.org/
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3

Emotional Text-to-Speech

Despite the advancements, neutral TTS systems are not yet perfect in practice.
Compared to natural human speech, the generated speech often lacks expressivity,
particularly in prosody [79]. Prosody refers to the lexical-independent representation
of the acoustic-phonetic properties of speech, including emphasis, pitch accenting,
intonational breaks, rhythm and intonation [80]. This limitation has led to increased
interest in a new field focused on enhancing the expressivity of TTS systems,
known as Expressive/Emotional Speech Synthesis (ESS). In ESS research, models
are generally categorised into two primary types based on the input modality they
use. This section will focus on the category that generates emotional speech from
text input, commonly referred to as Expressive/Emotional Text-to-Speech (ETTS).

3.1 Emotional Text-to-Speech

Some studies on ESS or ETTS, focus solely on enhancing expressivity based on the
content of the text, without adhering to a specified expression style. For instance,
prosodic information was successfully integrated into TTS systems by extracting
prosody embeddings [81]. Similarly, the extraction of global style tokens and their
incorporation into Tacotron has also been demonstrated to be effective [82]. Both
approaches utilised the audiobook dataset from the Blizzard Challenge 2013 [70],
which includes 147 hours of recordings from 49 books, read in an animated and
emotive style by a single speaker. Since the expression style in this dataset was not
guided by specific instructions, the prosody of the generated speech was determined
solely by linguistic information.

Research has shown that prosody affects not only linguistic expression but also
emotional expression. In other words, linguistic prosody and affective prosody are
closely related [79], and any modification to prosody invariably alters the perceived
emotional states [8]. Furthermore, the term ‘Expressive’ is often considered
synonymous with ‘Emotional’ or ‘Affective’ in speech synthesis studies [83, 84].
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Given these considerations, it is both impractical and unnecessary to draw a clear
distinction between expressive speech synthesis and emotional speech synthesis.
Therefore, research on either of these topics will be analysed and discussed
collectively under the umbrella of ESS or ETTS in this section.

3.1.1 Background

Similar to neutral TTS, ETTS takes the text of a sentence as input and generates
speech that incorporates emotional expression. Consequently, ETTS is often
considered an extension of TTS [8]. The first attempts at ETTS were made in 1989,
as documented in two independent doctoral theses [85, 86]. These early systems
modified emotional acoustic correlations in existing speech synthesisers, with the
rules for parameter modification determined by experts. Recognition evaluations
demonstrated the feasibility of these approaches. Later research explored different
ranges of parameters to achieve higher recognition rates, although it still relied on
the manipulation of acoustic parameters [87].

Concatenative synthesis, discussed in Section 2.1.1, was also introduced into
ETTS research and gained more attention than the rule-based methods mentioned
above [88, 89]. However, this approach faced the same challenge: the need for a
large amount of data to select appropriate utterance units for different emotions
and speakers, which limited the development of concatenative ETTS [8].

As ETTS research progressed, it began to incorporate SPSS techniques from
TTS, where the ETTS system includes an additional input of emotional information
within the classic ‘text analysis, acoustic model and vocoder’ TTS architecture,
as described in Section 2.1. Specifically, emotional features are introduced into
the system before the acoustic features are passed to the vocoder, which then
generates emotional speech. Various network architectures, such as HMM [90],
LSTM-RNN [91, 92, 93, 94], CNN [95], and Transformer [96], have been explored in
SPSS-based ETTS research. Additionally, emotional information has been leveraged
in end-to-end TTS systems [81, 82, 97], and transfer learning has been employed to
address the low-resource challenge in ETTS [98]. The distinction between TTS and
ETTS is illustrated in Figure 3.1.

3.1.2 Emotional Representation

There are two main approaches to integrating emotional information into a speech
synthesis system. The first is reference-based, which utilises an emotional speech
sample to specify the target emotional category for the synthetic speech. This
approach requires an emotional encoder to extract emotional information from the
reference speech [81, 82, 93, 94, 95]. Alternatively, emotional information can be
input into the system through emotional vectors, such as one-hot vectors [97, 95] or
other representations [92, 91], instead of using reference speech. The reference-based
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Figure 3.1: Model Architecture of TTS and ETTS
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approach enables finer-grained synthesis compared to using emotional vectors [8].
Moreover, it eliminates the need for the time-consuming and expensive annotation
of emotional speech, as reference speech samples can be used instead. However,
the choice of emotional representation must align with the specific requirements of
different tasks, such as imitating emotion from another speech sample, extracting
emotional information from the input text, or determining the required emotional
category from an interactive system.

3.1.3 Emotional Datasets

In ETTS research, a variety of datasets have been utilised to understand and
replicate human emotions through synthetic voices. As summarised in Table 3.1,
it is noteworthy that these datasets are predominantly in Asian languages such as
Japanese, Chinese and Korean, with only a few in English. The size of these datasets
varies significantly, ranging from approximately 1, 800 samples [98] to 21 hours [97],
providing diverse scales for model training and validation.

The emotion categories covered by these datasets also vary significantly. For
example, the dataset used in [92] includes a broad range of emotion categories, such
as Calm and Insecure, which are not commonly found in other datasets. In contrast,
many datasets primarily focus on more generic emotion categories like Joyful and
Sad.

Moreover, the demographics and number of speakers differ across datasets.
While most datasets involve a single female speaker, some, such as those used
in [95] and [96], include multiple male and female speakers, with balanced gender
representation (5 males and 5 females). This shift indicates a growing interest in
capturing a broader spectrum of vocal features and utilising multi-speaker datasets.

It is also worth noting that some studies have specialised focuses. For instance,
studies [81] and [82] diverge by targeting expressive TTS using character voices,
relying on the same large-scale dataset. In terms of dataset usage, only 10 English
speakers were included in the study by [96], while [98] focused on a single female
English speaker, highlighting limitations in dataset diversity.
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Table 3.1: Information of Emotional Datasets in ETTS Research

Paper Name Language Size Speaker Categories

[81]3 — English 147 h 1 F
Expressive

Voices

[82]3 — English 147 h 1 F
Expressive

Voices

[90] ATR JSD Japanese
3 018
samp.

1 M
1 F

Reading, Joyful, Sad

[91] — Chinese 5.5 h 1 F
Neutral, Angry,
Happy, Sad

[92] — Japanese 16.95 h 1 F
Neutral, Angry, Calm,

Excited, Happy,
Insecure, Sad

[93] — Korean 11.7 h 1 F Neutral, Happy, Sad

[94] — Korean 3.9 h 1 M
Neutral, Angry,
Happy, Sad

[95] — Korean
4 000
samp.

5 M
5 F

Neutral, Angry,
Happy, Sad

[96]1
ESD
[99]

English 13 h
5 M
5 F

Neutral, Angry,
Happy, Sad,
Surprise

[97] — Korean 21 h 1 F
Neutral, Angry,
Fear, Happy,
Sad, Surprise

[98]2
EmoV-DB

[100]
English

∼1 800
samp.

1 F
Neutral, Angry,
Disgust, Happy,

Sleepy

M: Male
F: Female
samp.: Samples
1 Only 10 English speakers were included in the experiment.
2 Only one female English speaker was included in the experiment.
3 These two papers focused on expressive TTS and used the same dataset.
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3.1.4 Evaluation Metrics

The evaluation metrics employed in state-of-the-art ETTS research exhibit both
consistency and variety across studies, as detailed in Table 3.2. Objective methods
such as Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mel-Cepstral
Distortion (MCD) and Voicing Decision Error (VDE) are notably used in works
such as [91] and [95]. MSE is frequently utilised not only as a loss function
but also as an objective evaluation metric to measure the difference between the
synthetic and target speech signals. MSE quantifies the average squared difference
between corresponding values in the synthetic sequence Ŷ and the target sequence
Y, providing a comprehensive numerical indicator of the model’s performance. It is
expressed mathematically as:

MSE(Y, Ŷ) =
1

T

T∑
t=1

(yt − ŷt)2 (3.1)

where N is the length of the synthetic and target sequence.

Similarly, RMSE is essentially the square root of the MSE, offering a more
interpretable scale of the errors by converting them back to the original units of
the data. RMSE can be computed by using the following equation:

RMSE(Y, Ŷ) =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (3.2)

MCD is also a widely used objective evaluation metric in TTS and ETTS research
for assessing the similarity between synthetic and target speech signals [101]. MCD
calculates the distance between Mel-Frequency Cepstral Coefficients (MFCCs),
which are compact representations of the spectral envelope, for each frame of speech.
The MCD is computed as follows:

MCD(M, M̂) =
1

T

T−1∑
t=0

√√√√ N∑
n=1

(mt,n − m̂t,n)2 (3.3)

where T represents the total number of frames, and N is the number of dimensions
of the target MFCCs M and the synthetic MFCCs M̂. mt,n and m̂t,n denotes the
target and synthetic elements at t-th frame and n-th dimension, respectively.

VDE, also known as Voiced/Unvoiced Error Rate, is a metric used to evaluate
the accuracy of voicing decisions in speech synthesis and recognition tasks [102].
Specifically, it quantifies the discrepancy between the target and synthetic speech
in terms of their voicing decisions across a series of frames. A voicing decision is
essentially a binary value indicating whether a particular frame in a speech is voiced
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3. Emotional Text-to-Speech

or unvoiced. The equation of VDE between two voice decision sequences V and V̂
is expressed as:

V DE(V, V̂) =

∑T−1
t=0 1[vt ̸= v̂t]

T
(3.4)

where T represents the total number of frames, vt and v̂t are the voice decisions of
the t-th frame in the target and the synthetic speech, respectively. The value of
indicator function 1[·] is set to 1 when the equation in the brackets is true, and 0
otherwise. All these four evaluation metrics have the characteristic that lower values
indicate greater similarity between the synthetic and the target speech.

Yet, several studies, such as [90], [92] and [93], waive objective metrics altogether
in favour of purely subjective methods. Among these, the MOS test stands out
as the most widely used, often employed to measure various dimensions such as
naturalness, similarity, quality, intensity, and emotional expressivity. As described
in Section 2.2.6, MOS, including Degradation MOS, is the most applied subjective
evaluation method in state-of-the-art research. However, there are some variations
in the classic MOS setting. For example, [91] applied a MOS test on naturalness
with a range from 0 to 5, while a range from 1 to 7 was set for the intensity MOS
test.

Furthermore, SER is recurrent as a subjective evaluation method in studies such
as [90] and [93], although [96] integrates it by using a pre-trained speech emotion
classifier.

A few studies apply distinct evaluation strategies; for instance, [92] incorporates
Frobenius Distance between the confusion matrix of the evaluated model and
the ground truth, and [81] introduces an ABX subjective method to measure
the similarity. Thus, while there is a general trend towards subjective methods,
especially MOS, the field is marked by a continual search for comprehensive and
context-specific evaluation frameworks.

3.2 Application: Transfer Learning

The first ETTS application, which is based on transfer learning, will be introduced
in this section. However, before presenting the system, it is important to explain
why transfer learning was chosen as the initial approach.

3.2.1 Emotional Speech Datasets

All datasets applied in the state-of-the-art ETTS research are summarised in
Table 3.1. While EmoV-DB [100] and ESD [99] are publicly available emotional
speech datasets, most other datasets in studies are either not publicly available or
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3.2. Application: Transfer Learning

Table 3.2: Evaluation Metrics in ETTS Research

Paper Objective Methods Subjective Methods Comments

[81]
MCD, GPE,
VDE, FFE

ABX1
1‘AXY’ in paper

1Range:-3–3

[82] WER, LDA PT2(spk.), MOS (natl.)
2‘Side-by-side’

in paper

[90] — SER, MOS (simil.) —

[91]
MSE (Duration, F0),

MCD, VDE
SER, MOS (natl.3, int.4)

3Range: 0–5
4Range: 1–7

[92] — FD5, MOS (int., qual.)
5Involving

crowd-sourcing

[93] — SER, MOS (qual. & expr.6) 6Simultaneously

[94] — MOS (qual., like.) —

[95]
MCD, BAPD,

RMSE (F0), VDE
MOS (natl.),

DMOS (simil.7, simil.8)

7Speaker
8Emotion

[96] WER, SER9 MOS (natl., simil.) 9Pre-trained

[97] — — Online demos

[98] WER10 MOS (expr.11)
10Word accuracy

11Range: 0–5

ABX: Identify X as either A or B
BAPD: Band Aperiodicity Distortion
DMOS: Degradation Mean Opinion Score
FD: Frobenius Distance
FFE: F0 Frame Error
GPE: Gross Pitch Error
LDA: Linear Discriminative Analysis
MOS: Mean Opinion Score
MSE: Mean Square Error
PT: Preference Test
RMSE: Root Mean Square Error
SER: Speech Emotion Recognition
VDE: Voicing Decision Error
WER: Word Error Rate
expr.: Expressivity
int.: Intensity
like.: Likeability
natl.: Naturalness
qual.: Quality
simil.: Similarity
spk.: Speaker
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3. Emotional Text-to-Speech

their names are not disclosed. Consequently, it is essential to review all possible
emotional speech datasets.

The landscape of emotional speech and multimodal datasets is diverse in terms of
content and methodological design. Table 3.3 provides a comprehensive summary
of these datasets, highlighting key dimensions such as language, modalities, size,
triggers, number of actors, emotional models and number of annotators.

Regarding language, the datasets cover various languages, including English
(IEMOCAP [103], MSP-IMPROV [104], RAVDESS [105], CREMA-D [106]),
French (RECOLA [107]), Italian (DEMoS [108]) and German (EMO-DB [109],
FAU-AIBO [110]). The EmoV-DB [100] and ESD [99] datasets are bilingual,
covering English/French and English/Chinese, respectively, which enhances their
utility for cross-lingual studies. Most datasets, such as IEMOCAP, MSP-IMPROV,
RECOLA, RAVDESS, and CREMA-D, include both audio and visual components,
while DEMoS, EMO-DB, FAU-AIBO, EmoV-DB, and ESD focus solely on audio.

The sizes of datasets vary significantly. For example, IEMOCAP contains
12 hours of data, RECOLA has 9.5 hours, while RAVDESS and CREMA-D are
sample-based with 1,440 and 7,442 samples, respectively. FAU-AIBO and DEMoS
are larger, with around 9 hours of audio each. ESD is the largest, boasting 35, 000
samples across 2 languages and 20 speakers. The number of actors and their gender
distribution are also different. IEMOCAP and EMO-DB each comprise 10 actors
(5 male, 5 female), while DEMoS involves 68 actors (45 male, 23 female), providing
greater demographic diversity.

The elicitation method for emotional expression within each dataset is denoted
as the emotional trigger, and it manifests in three primary categories: Acted,
Re-acted, and Inter-acted, as delineated in prior literature [111]. In the acted
paradigm, participants, often professionally trained actors, are instructed to simulate
designated emotional states during data recording. The re-acted modality entails
exposing participants to specific visual or auditory stimuli—such as scenes from
a horror film—and subsequently recording the resultant emotional expressions, for
instance, a state of fear. The inter-acted category indicates spontaneous emotional
expressions that emerge during participant interactions, such as during an interview
session. A review of existing emotional datasets reveals the advantage of the acted
elicitation method. However, datasets like RECOLA and FAU-AIBO deviate from
this norm by incorporating inter-acted triggers, while the DEMoS dataset uniquely
employs the re-acted elicitation approach.
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Table 3.3: Information of Reviewed Emotional Speech Datasets

Dataset Language Modalities Size Triggers Actors Model Annotators

IEMOCAP [103] English
Audio
Video

12 h Acted
5 M
5 F

9 Classes
V/A/D

2

MSP-IMPROV [104] English
Audio
Video

9 h Acted
6 M
6 F

4 Classes Crowd-source

RAVDESS [105] English
Audio
Video

1, 440
samp.

Acted
12 M
12 F

8 Classes Pre-defined

CREMA-D [106] English
Audio
Video

7, 442
samp.

Acted
48 M
43 F

6 Classes Crowd-source

RECOLA [107] French
Audio
Video

9.5 h Inter-acted
19 M
27 F

V/A 6

DEMoS [108] Italian Audio 7.8 h Re-acted
45 M
23 F

8 Classes
3

Self-report

EMO-DB [109] German Audio
500

samp.
Acted

5 M
5 F

7 Classes 20

FAU-AIBO [110] German Audio 9 h Inter-acted
21 M
30 F

11 Classes 5

EmoV-DB [100]
English
French

Audio
7, 590
samp.

Acted
3 M
2 F

5 Classes Pre-defined

ESD [99]
English
Chinese

Audio
35, 000
samp.

Acted
10 M
10 F

5 Classes Crowd-source

A: Arousal D: Dominance V: Valence samp.: Samples25



3. Emotional Text-to-Speech

Figure 3.2: Schematic Diagram of Valence-Arousal Dimensional Model
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Another critical dimension in the configuration of emotional datasets is the
emotional model employed. Two predominant frameworks exist for emotion
modelling in these datasets: Categorical models and Dimensional models, as
introduced in the existing literature [111]. The categorical model posits that a
finite set of basic emotional states suffices for the accurate characterisation and
representation of emotional expression. For example, the ESD dataset applies
this approach by comprising 35, 000 samples across 5 distinct emotion categories,
specifically: Neutral, Angry, Happy, Sad and Surprise.

In contrast to the categorical model, the dimensional model, also known as the
continuous model, represents another prevalent methodology for the description
of emotional states. This model employs two dimensions to characterise an
emotional state, namely Valence—which ranges from negative to positive—and
Arousal—which ranges from relaxed to excited [112]. For example, in a dimensional
model, the categorical emotion of Angry would be situated at a point representing
high arousal and low valence, as illustrated in Figure 3.2. An extended version
of this model incorporates a third dimension, Dominance [113]. Importantly,
categorical and dimensional models are not mutually exclusive and can coexist
within the same emotional dataset. As an illustrative case, the IEMOCAP dataset
adopts a categorical approach, directing actors to express nine different emotional
states such as Neutral, Angry, Excited, Fear, Sad, Surprised, Frustrated, Happy
and Disappointed. Concurrently, the dataset also employs a 3-dimensional model
for annotation; two evaluators are tasked with rating each sample along the axes
of valence, arousal and dominance, using a scale that ranges from 1 (indicating
negative, relaxed or weak) to 5 (indicating positive, aroused or strong) [103].
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3.2. Application: Transfer Learning

Overall, Table 3.3 provides a structured overview of the state-of-the-art
emotional datasets, thereby aiding researchers in making informed choices suitable
for their specific research requirements. Notably, a majority of the emotional
datasets are suboptimal for ETTS applications due to their design orientation
toward perceptual tasks such as ASR and SER. For instance, the IEMOCAP
dataset instructs one male and one female actor to recite dialogue transcription
while expressing predefined emotional states [103]. As a result, environmental
noises and overlapping speech—which substantially influence the quality of the
synthetic speech—are inevitable. Likewise, while the CREMA-D dataset comprises
a seemingly robust set of 7, 442 speech samples, it suffers from limitations in lexical
variability [99, 106]. Specifically, the dataset contains only 12 distinct sentences,
each of which is presented in 6 different emotional states by 91 actors. This narrow
lexical range restricts its utility for ETTS tasks that require a richer vocabulary.
Upon analysing all datasets listed in Table 3.3, it becomes obvious that EmoV-DB
and ESD are the only two datasets that meet the criteria requirement for ETTS
applications. In contrast to the datasets utilised in the TTS research, the sizes
of both EmoV-DB and ESD are comparatively limited in scale. Consequently,
transfer learning emerges as an intuitive and preferred approach for addressing this
low-resource problem.

3.2.2 Transfer Learning

Transfer learning is a machine learning training technique where a model pre-trained
for a particular task is adapted for another, usually related task. Transfer learning
involves two distinct elements: a source domain Ds associated with a learning task
Ts, and a target domain Dt associated with a learning task Tt. The objective
of transfer learning is to enhance the learning performance of a target predictive
function ft(·) within Dt by leveraging the knowledge obtained from Ds and its
associated task Ts. Crucially, for transfer learning to be applicable, either Ds and
Dt must differ (Ds ̸= Dt), or Ts and Tt must not be identical (Ts ̸= Tt) [114].
Traditional supervised learning approaches often require a large amount of labelled
data and computational resources for model training. However, transfer learning
makes it possible for a model to leverage the pre-existing knowledge gained from
a ‘Pre-training’ task (source domain) to improve its performance on a new but
related ‘Fine-tuning’ task (target domain). Therefore, this approach is particularly
beneficial when the target domain has limited labelled data available.

Transfer learning has proven its efficacy across diverse research domains, notably
encompassing Natural Language Processing (NLP) [115, 116], Computer Vision
(CV) [117, 118], Computer Audition (CA) [119, 120], and Artificial Intelligence
Generative Content (AIGC) [121, 122]. Within the realm of affective computing,
the integration of transfer learning strategies has enhanced the Unweighted Average
Recall (UAR) of a sparse-Autoencoder-based SER model, and this enhancement
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3. Emotional Text-to-Speech

has been validated across various emotional speech datasets [123]. Concurrently, for
similar SER tasks, Deep Belief Networks (DBNs) have been integrated with transfer
learning across five datasets containing three different languages: English, German
and Italian [124]. This research highlights how well the suggested SER system
works in multi-lingual situations, especially benefiting lesser-known languages that
often lack available datasets. Due to its excellent efficacy in affective learning,
transfer learning has gained widespread adoption. Consequently, resources like
the multi-corpora dataset EmoSet and the pre-trained transfer learning framework
EmoNet are readily accessible for academic exploration [125].

While transfer learning offers significant advantages, it is not without any
drawbacks. One major concern is the risk of negative transfer, where the model’s
performance decreases due to irrelevant or misleading information from the source
domain. To circumvent this limitation, it is crucial to implement prior studies on the
transferability between the source and target domains or tasks [114]. Furthermore,
it is worth noting the potential difference in feature spaces between the source and
target domains, even though the same spaces are typically observed in the majority
of cases [114]. Additionally, the adaptability of the model may require careful
fine-tuning to avoid overfitting to the new dataset. In other words, the determination
of an optimal termination criterion for fine-tuning needs to be strictly considered.

To summarise, transfer learning provides a robust methodology for improving
the performance of models in low-resource machine learning tasks. However, its
effective implementation demands careful planning and consideration of various risks
and challenges.

3.2.3 Dataset: EmoV-DB

As described in Section 3.2.1, EmoV-DB is one of the qualified datasets for ETTS
model training, even though the size of EmoV-DB is very limited. However, transfer
learning makes it possible to use a small dataset in the model training. The
information of every speaker and the number of samples for every speaker in every
emotional state are given in Table 3.4.

The table presented the composition of the EmoV-DB, breaking down the dataset
by speaker, language, gender and emotion categories. The emotion categories
included are Neutral, Amused, Angry, Disgust and Sleepy. Four speakers expressed
emotions in English, including two male and two female speakers, while one male
speaker used French. Each speaker’s contributions to the emotion categories are
specified, along with the total number of utterances per speaker. Particularly notable
is that the speaker Spk-Sa has the highest total utterances with 2, 454 across all
emotion categories, while the speaker Spk-Jsh and Spk-No have missing entries for
some emotions, indicating a lack of data in those particular categories. Besides,
all speakers that incorporate all emotional categories are in English. Therefore,
after discarding these two speakers with missing categories, Table 3.5 describes the
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Table 3.4: Details of EmoV-DB

Speaker Language Gender
Emotion Categories

Σ
neu. amu. ang. dis. sle.

Spk-Je English F 417 222 496 189 466 1, 790

Spk-Bea English F 357 296 304 333 497 1, 787

Spk-Sa English M 492 501 468 497 495 2, 453

Spk-Jsh English M 302 298 — — 263 863

Spk-No French M 317 — 273 — — 590

neu.: Neutral amu.: Amused ang.: Angry dis.: Disgust sle.: Sleepy

Table 3.5: Duration Information of the Three Qualified Speakers in EmoV-DB

Speaker Gender
Emotion Categories

Σ
neu. amu. ang. dis. sle.

Spk-Je F 31′ 31′′ 18′ 22′′ 43′ 42′′ 15′ 35′′ 37′ 58′′ 2h 27′ 08′′

Spk-Bea F 23′ 23′′ 20′ 29′′ 19′ 03′′ 29′ 19′′ 51′ 13′′ 2h 23′ 27′′

Spk-Sa M 29′ 18′′ 54′ 20′′ 31′ 01′′ 53′ 01′′ 52′ 36′′ 3h 40′ 16′′

neu.: Neutral amu.: Amused ang.: Angry dis.: Disgust sle.: Sleepy

EmoV-DB dataset from the perspective of the length of the recordings. This data
offers precise insight into the temporal distribution of emotional expressions within
the EmoV-DB dataset. Among them, the male speaker, Spk-Sa, has the highest
total duration of utterances at 3 h 40 m 16 s. Conversely, speaker Spk-Bea has the
least total duration of 2 h 23 m 27 s, although closely followed by Spk-Je (2 h 27 m
08 s).

3.2.4 Tacotron 2 with EmoV-DB

The employment of a neutral TTS system as the source task for the transfer learning
in divers other speech synthesis tasks is considered highly beneficial due to the
obvious similarities among these distinct tasks [121, 126]. Given the limited size
of the EmoV-DB, as well as the pre-trained neutral TTS system introduced in
Section 2.2, an intuitive effort towards ETTS is the exploitation of transfer learning
from the neutral TTS model. Specifically, the emotional speech dataset, EmoV-DB,
is utilised for the fine-tuning of the neutral TTS model, which is a Tacotron 2 model
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Figure 3.3: Architecture of the Transfer Learning via Tacotron 2 and EmoV-DB
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with LPCNet vocoder and initially trained by using the Blizzard 2011 dataset. The
architecture of this transfer learning process is shown in Figure 3.3.

Upon careful examination of the datasets presented in Table 3.4 and 3.5, it is
obvious that for a transfer learning scheme where the source task involves a TTS
model trained on the voice of an actress (Blizzard 2011), Spk-Bea appears to be the
optimal choice of speaker. The reason for this decision is multifaceted:

• Gender Relevance. Spk-Bea is one of the female speakers, aligning with the
gender-specific requirement of the source task for better knowledge transfer.
This alignment is crucial for preserving gender characteristics in the speech
synthesis process.

• Data Volume. According to both tables, it is shown that Spk-Bea contributes
a total of 1, 866 emotional samples and the duration is around 2 h 23m, which,
while not the largest nor longest in the dataset, presents a substantial volume
of data crucial for a robust transfer learning process.

• Balanced Data Distribution. A balanced data distribution among different
emotions is vital for training a model with a well-rounded understanding and
capability of speech synthesis in different emotional states. The data from
Spk-Bea illustrates a relatively balanced distribution across all five emotion
categories, thereby enhancing the general performance of the fine-tuned ETTS
system.

Nevertheless, another notable challenge arises relating to the phonemic
representation of the text. The CMUDict, utilised in the neutral TTS system
for deriving phonemes from the input sentence, incorporates a total of 84 distinct
phonemes. However, an absence of 16 phonemes is observed within the text
transcription of EmoV-DB, including AA, AE, AH, AO, AW, AY, EH, ER, EY, IH,
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IY, OW, OY, OY0, UH, and UW. Furthermore, certain words present in EmoV-DB,
such as ‘self-esteem’ and ‘provocateur’, are not collected within the CMUDict. While
unknown words can be addressed by means of segmentation (‘self’ and ‘esteem’) or
looking up from alternative dictionaries, no effective measure is available for the
missing phonemes. This phonemic problem may not obstruct the training process
but could potentially negatively impact the performance of the fine-tuned ETTS
model.

A total of four distinct models have been employed, each dedicated to a specific
emotional category, whilst maintaining the model architecture of the neutral TTS
system. The reason for avoiding the utilisation of an emotional control module is
the potential for any newly implemented module to affect the knowledge transfer
negatively. Moreover, the fine-tuning was not only applied to Tacotron 2; the
vocoder LPCNet was also fine-tuned by using the EmoV-DB dataset to enhance
the vocoding performance.

Since the number of samples in each emotional category of the EmoV-DB dataset
is limited, the same 10 samples were selected as the validation set for each emotional
TTS model during the training phase, allowing more samples to be allocated to the
training set. The training results are depicted in Figure 3.4 as loss curves. Four
emotional categories—Amused, Angry, Disgust and Sleepy—achieved their lowest
validation losses of 0.372, 0.357, 0.293 and 0.236 at the iterations of 12, 000, 11, 000,
13, 000 and 16, 000, respectively. Notably, three of these categories showed lower
validation losses than the neutral TTS system, which achieved a validation loss of
0.364. However, it is important to remember that the ultimate goal of the ETTS
task is human perception, which holds greater significance than numerical metrics,
even though these metrics represent the ‘distance’ between the generated speech and
the target speech.

The Angry ETTS model demonstrated commendable performance in
synthesising angry speech from sentences not present in the training dataset. The
effectiveness of this model was further evaluated across various sentences. However,
the models corresponding to the other three emotional categories—Amused, Disgust
and Sleepy—did not achieve satisfactory results. Despite the clear expression of
emotions, the synthetic speech exhibited a significant loss in intelligibility. This
suggests that while the output retained the human-like vocal characteristics, the
clarity of the content was compromised, rendering the speech incomprehensible.

Upon closer examination of both the model and the dataset, the reason behind
the Angry ETTS model’s success becomes evident. In the EmoV-DB dataset,
actors and actresses were instructed to express sentences while embodying specific
emotional states. To enhance emotional expressivity, performers often incorporated
non-verbal utterances—such as laughter, sighs and yawns—particularly in the
Amused, Disgust and Sleepy categories. However, these non-verbal utterances were
not annotated in the text transcriptions of the EmoV-DB dataset. This oversight
caused the model to mistakenly identify non-verbal utterances as phonemes in the
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Figure 3.4: Loss Curves of ETTS System of Tacotron 2 with EmoV-DB
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text, significantly impairing its ability to accurately capture and reproduce the
intended content in those categories. The Angry ETTS model, however, was not
affected because the angry speech in the dataset was clearer and did not include
such non-verbal utterances.

Following the initial investigation, a similar study was conducted by other
researchers, which claims the earlier findings. In this research, three manual
preprocessing methods—resampling, silence trimming and removal of non-verbal
utterances—were applied before the experiment [98]. After removing all non-verbal
utterances, a remarkable improvement in both the intelligibility and emotional
expressivity of the synthetic speech was observed, as measured by Word Error Rate
(WER) and MOS evaluations. This confirms that acquiring and utilising a clear
emotional speech dataset can significantly enhance the performance of an ETTS
system when transfer learning is employed.

3.2.5 Dataset: ESD

The ESD dataset [99] emerges as a consequential stride towards establishing a
robust, comprehensive and large emotional speech dataset aimed at enriching the
linguistic and speaker variability among emotional speech datasets. The purpose
of the ESD dataset was driven by a desire to improve the limitations of existing
emotional speech datasets, and to establish a corpus that would enhance the
performance and the scope of investigations in multi-speaker and multi-lingual ESS
and other speech synthesis research.

The ESD dataset was designed for a multi-lingual nature, embodying both
Chinese and English speech samples. This unique aspect provides strong support for
investigating emotional expressions across diverse linguistic and cultural contexts.
ESD demonstrates a remarkable breadth in speaker variability by incorporating
emotional speech data from 10 native Chinese speakers and 10 native English
speakers, where each includes 350 utterances across 5 emotion categories: Neutral,
Angry, Happy, Sad and Surprise [99]. Such a configuration outperforms the
speaker and lexical diversity provided in the previous datasets, thereby addressing
the substantial need for them. The gender-balanced setting among the speakers
further enhances the richness of data and facilitates in-depth exploration into
speaker-independent ESS studies.

More importantly, to minimise confounding factors that could potentially affect
performance, the ESD dataset maintains a uniform age range (25-35) among its
speakers and requires the use of standard dialects—Standard Mandarin for Chinese
speakers and North American English for English speakers [99]. Additionally,
speakers were instructed to avoid any non-verbal utterances, such as laughter or
sighs, during recording. This strict control over potential confounding factors
enhances the fidelity and robustness of the ESD dataset.
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Table 3.6: Information of the English Data in ESD

Emotion Categories
Σ

neu. amu. ang. dis. sle.

Speakers (M/F) 5/5 5/5 5/5 5/5 5/5 5/5

Utterances (#) 350 350 350 350 350 350

Words (#) 2, 203 2, 203 2, 203 2, 203 2, 203 11, 015

Unique Words (#) 997 997 997 997 997 997

Total Duration (s) 9, 135 9, 800 10, 430 9, 450 9, 555 48, 370

neu.: Neutral amu.: Amused ang.: Angry dis.: Disgust sle.: Sleepy

The recording environment was carefully planned to achieve an optimal
Signal-to-Noise Ratio (SNR) of over 20 dB with a sampling frequency of 16 kHz,
ensuring that the recordings are suitable for state-of-the-art ESS frameworks [99].
Moreover, the organisation and partitioning of the ESD dataset are structured
into training (300 utterances), evaluation (20 utterances), and test (30 utterances)
sets, with non-overlapping utterances, making it a well-organised and ready-to-use
resource for researchers.

As detailed in Table 3.6, the ESD dataset includes a total of 11, 015 words,
incorporating 997 unique lexical items across 1, 750 utterances. This broad lexical
coverage, which closely mirrors that of everyday communication, enhances the
dataset’s utility for ESS research [99]. Additionally, analyses of utterance duration
and F0 across different emotional categories provide valuable insights into the
prosodic modulation of emotions, potentially serving as a catalyst for multilingual
studies on ESS.

Collectively, the ESD dataset—with its multilingual scope, diverse speaker
representation, controlled recording environment and robust organisational
structure—serves as a valuable asset for advancing research in ESS. Through careful
design and comprehensive statistical analysis, the ESD dataset not only addresses
the gaps present in existing emotional speech datasets but also facilitates robust and
nuanced investigations in the realm of emotional speech processing and analysis.

3.2.6 Transformer with ESD

The effectiveness of the ESD dataset was explored in the context of ETTS tasks
employing transfer learning. To enhance the performance, a modification was
applied to the network architecture by replacing the Tacotron 2 framework with a
Transformer model. Although the Transformer-based model reached a similar level
of performance in the MOS test as Tacotron 2, the Comparative MOS test revealed
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an advantage for the Transformer-based framework, surpassing Tacotron 2 by a
margin of 0.048 [40]. This section presents the setup and results of implementing the
Transformer model with the ESD, while a detailed introduction to the Transformer
model is provided in Section 5.2.1.

The architectural foundation of the model is based on the Transformer TTS
framework [40], with the LJSpeech dataset [72] being used for the neutral TTS
pre-training phase. The LJSpeech dataset contains 13, 100 utterances, all spoken by
a single female speaker, with each utterance carefully paired with its corresponding
text transcription, forming a pair of <wave, text>. From a lexical perspective,
the dataset includes a total of 225, 715 words, with 13, 821 unique lexical entities,
averaging 17.23 words per utterance. The total duration of the dataset is
approximately 23 h 55 m 17 s, with individual utterances ranging from 1.11 seconds
to 10.10 seconds, averaging 6.57 seconds per utterance. The performance of
LJSpeech has been validated through several TTS studies [98, 127, 128], affirming
its suitability for this research.

The Transformer TTS architecture incorporates an additional linear layer to
predict the stop token, which signals the model to stop synthesis when the stop
token prediction reaches a value of 1 [40]. The length of the stop token vector
matches the length of the synthetic Mel-spectrogram, where most values in the
vector are 0, with the final digit being 1. A stop token weight, ranging from 5.0 to
8.0, is applied to the last digit during the computation of the loss in the training
phase [40]. However, the repository 1 used in the experimental framework reported
a problem with the stop learning upon the application of the stop token predictor,
leading to the implementation of a hyperparameter related to maximum length
to control the duration of the synthetic speech. To achieve automatic synthesis
termination, a modification was made to the original loss function:

LT−TTS = Lmel + Lpost + λstopLstop (3.5)

where the variables Lmel and Lpost represent the MSE loss values computed using the
outputs from the Transformer’s decoder and the postnet along with the ground truth
of the Mel-spectrogram, respectively. A weight λstop is applied to Lstop, representing
the binary cross-entropy loss associated with stop token prediction, with the optimal
value determined to be 0.2 according to experimental evaluations.

The results of the neutral TTS system training are shown in Figure 3.5, in the
form of loss curves. Ultimately, based on both achieved loss values and human
perception, the model demonstrated excellent performance in both speech and
duration prediction. After 450, 000 iterations, the model achieved a Lmel of 0.015,
a Lpost of 0.015 and a Lstop of 2.034 × 10−5. This model has been selected and is
ready for fine-tuning through ETTS transfer learning.

1https://github.com/soobinseo/Transformer-TTS
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Figure 3.5: Loss Curves of Transformer-based TTS System
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It is important to note that only the backbone of the Transformer was pre-trained
using the LJSpeech dataset, as improvements were still needed in the prediction of
the stop token. While the postnet in the neutral TTS system mentioned above was
pre-trained by the author of the code, in the context of emotional transfer learning,
both the backbone and the postnet require fine-tuning. Due to the limited number
of samples in the ESD dataset and the emphasis on human perception, no validation
set was used. Instead of computer-based validation, several samples were generated
after every 2, 000 iterations for human evaluation.

Figure 3.6 illustrates the training results for both the backbone and postnet of the
Transformer in synthesising speech across four emotional states: Angry, Happy, Sad
and Surprise. The loss curves for both Lmel and Lpost show significant oscillations,
which can be attributed to the small size of the training set. All three losses stabled
after 10, 000 iterations, and the best models for each emotional state were selected
from the saved models after this point, based on human perception evaluations.

Unlike the ETTS system based on Tacotron 2 with the EmoV-DB dataset,
described in Section 3.2.4, the generated speech across all four emotional categories
demonstrates improved performance, not only in the Angry category. This outcome
further confirms that a clearer emotional speech dataset, free from non-verbal
utterances, can achieve better fidelity and intelligibility, leading to superior results
in human perception evaluations.
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Figure 3.6: Loss Curves of ETTS System of Transformer with ESD
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4

Frame-to-Frame Emotional Voice
Conversion

In addition to the direct synthesis of emotional speech from text, an alternative
methodology exists for generating emotional speech by utilising speech as the input,
termed Emotional Voice Conversion (EVC). EVC constitutes a significant research
field within ETTS, attracting significant attention from the research community. In
this chapter, the background, definition, experimental investigations and results of
EVC, will be discussed.

4.1 Voice Conversion and Emotional Voice

Conversion

Voice Conversion (VC) represents an evolving technology with a pivotal function
in the transformation of a speaker’s vocal characteristics, whilst maintaining the
underlying linguistic content [129]. More precisely, this technology facilitates the
transformation of the vocal characteristics of one speaker into those of another
speaker, thereby affording a diverse group of applicable and creative prospects. VC
has shown its utility across a spectrum of domains, including speech synthesis, the
realm of personalised virtual assistants, and the art of voice disguise [130].

4.1.1 Voice Conversion

In recent years, VC has undergone significant advancements, transitioning from
conventional statistical methodologies to state-of-the-art deep learning techniques.
Initially, VC relied mainly on statistical techniques such as Gaussian Mixture
Models (GMMs) [131], Dynamic Kernel Partial Least Squares [132], Frequency
Warping [133] and Non-Negative Matrix Factorisation [134]. These early methods
were constrained by the need for parallel data, which required the availability of
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4. Frame-to-Frame Emotional Voice Conversion

corresponding utterances from both the source and target speakers. Despite the
exploration of non-parallel data in the research of statistical techniques [135, 136],
the rise of deep learning has declared significant improvements in the VC domain,
making it more data-efficient and flexible.

Deep learning, despite its inherent data-driven nature and its apparent
dependence on the size of the dataset, has emerged as the key of contemporary VC
research, primarily due to its efficacy in auxiliary tasks, such as speech reconstruction
from converted features [130]. Notably, deep learning methodologies commonly
applied in VC can be described based on their dependence on parallel training data.
When leveraging parallel data, DNNs utilise their non-linear mapping capability
to achieve the transformation of spectral features in frame-to-frame VC [137].
Additionally, temporal correlation among speech frames can be effectively exploited
through the utilisation of LSTM-RNNs [138]. However, because of the constraint of
the same duration between the source and converted speech frames in frame-to-frame
VC, sequence-to-sequence models incorporating the ‘encoder-attention-decoder’
architectures have also been investigated to enhance performance in diverse
variations of style among different speakers [139].

In order to the challenge posed by the lack of available parallel multi-speaker
datasets, researchers have introduced four distinct categories of methods that
operate independently of parallel data. The first approach involves the
preservation of both linguistic and prosodic features during the process of speaker
transformation [130], a task considerably more complex and difficult in the absence
of parallel data. CycleGAN-VC [140] has raised as a notable success story in this
regard. This method leverages a classical architecture of GAN, incorporating three
different loss functions: adversarial loss, cycle consistency loss, and identity loss.

VC can further benefit from the potential of closely related technologies,
notably TTS systems and ASR systems. The TTS module, characterised by its
comprehension of linguistic content, offers valuable support for VC tasks, enabling
the better preservation of linguistic information within the source speech [141].
Conversely, the ASR module supports VC tasks from a distinct perspective,
emphasising the extraction of linguistic information from the source speech [142].
The capability of these modules is brought by their training on extensive corpora,
thus the pre-trained modules free VC from the constraints of available dataset
limitations.

Furthermore, another key focus within the realm of VC research involves the
disentanglement of the speaker’s identity from the linguistic content, based on
the underlying assumption that speech is composed of both the speaker’s vocal
identity and the linguistic content [130]. This paradigm, by permitting the
independent manipulation of the speaker’s identity, introduces novel prospects
for voice conversion. The architectural framework of the VC system based on
the disentanglement of the speaker’s identity is illustrated in Figure 4.1. Novel
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Figure 4.1: Framework of VC System with Speaker’s Identity Disentanglement
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techniques, including Autoencoders [143] and GANs [144], have been effectively
deployed to accomplish this disentanglement.

In the context of training data, it is worth noting that diverse resources have
become valuable assets for VC research. Prominent among these are datasets such as
CMU-Arctic [68] and VCTK [69], which include speech data from multiple speakers,
making them feasible for both parallel and non-parallel VC tasks. Additionally,
large-sized datasets, characterised by their extensive coverage, though potentially of
lower quality (such as LibriTTS [74] and VoxCeleb [145]), play an important role in
facilitating the training of fundamental components required for the investigation of
VC.

To summarise, VC stands as a dynamically evolving field with obvious practical
applications. The technologies demonstrated above generally have the capacity to
generate speech of superior quality, thereby substantially enhancing the efficiency of
VC systems. The collaboration between deep learning methodologies and available
multi-speaker datasets has opened up new opportunities, promising significant
improvement in human-computer interactions and enabling creative voice-related
applications.

4.1.2 Emotional Voice Conversion

As introduced in Section 4.1.1, VC, the well-established domain within the scope
of speech processing, primarily centres its attention on the transformation of the
speaker’s identity while preserving the integrity of linguistic content [129]. Within
the study of EVC, also known as Emotional Speech Conversion [146], researchers
investigate under the premise of a two-piece assumption in VC, wherein speech
contains a third element, namely emotional information. Consequently, EVC,
being a specialised sub-field of VC, is dedicated to the transformation of emotional
expression in speech, whilst preserving the integrity of both linguistic content and
the speaker’s identity [147]. The similarities and differences between VC and EVC
are visually presented in Figure 4.2 for clarity and comprehension.

EVC represents an evolving and essential area within the realm of speech
processing technology, playing a critical role in the enhancement of emotional
expressivity in synthetic speech. Diverging from conventional TTS systems
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Figure 4.2: Framework of VC System and EVC System
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that primarily centre their efforts on the linguistic content of speech synthesis,
EVC advances the field by incorporating emotional components into spoken
communication [8]. This technological realm has acquired significant academic
attention in recent years, as evidenced by the emerging research literature devoted
to EVC. EVC holds essential relevance across various applications, including ETTS,
SER and the development of conversational agents capable of expressing a wide
range of emotional states [99].

A fundamental challenge encountered in the research of EVC is the accurate
representation and manipulation of emotional prosody, a critical aspect of emotional
expression in speech. Emotions in speech are expressed through various acoustic
features, including pitch, energy and duration [99]. These acoustic features
collectively produce emotional prosody, which plays an essential role in shaping
listeners’ perceptions and interpretations of the emotional information incorporated
in the speech. Given the complexity of emotional prosody, characterised by the
interplay of these acoustic features, the accurate characterisation and modelling of
speech emotions bring a strong challenge. In the research of EVC, two vital research
inquiries commonly arise: firstly, the effective description and representation of
emotional states, and secondly, the modelling of the complex process including
emotional expression and human perception [99].

Within the study of emotional representation, researchers have systematically
investigated two principal approaches, similar to those employed in ETTS. The
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categorical approach, inspired by foundational theories such as Ekman’s six basic
emotional states [148], namely Anger, Disgust, Fear, Happy, Sad and Surprise,
discretely categorises emotions into distinct, predefined groups. While this
categorical framework provides conceptual clarity, it is considered to lack the
capacity to effectively capture the nuances of human emotions [99].

In contrast, the dimensional approach, exemplified by Russell’s circumplex
model [112], grounds emotions in dimensions like arousal, valence and dominance.
This alternative approach provides a more nuanced and fine-grained representation
of emotional states, enabling the distinction of subtle differences between closely
related emotional states. Such dimensional representations play a pivotal role not
only in the context of SER but also in the field of EVC, guiding the transformation
of speech into different emotional states [99].

An additional important research challenge within EVC centres on the
comprehensive modelling of the complex process of emotional expression and human
perception, which is not involved in the research of VC. One proposal, which is
frequently employed in the context of SER [149], is that the perception of emotion
is essentially multi-layered, including various layers such as emotion categories,
semantic primitives and acoustic features [99]. EVC, conversely, attempts to model
the inverse process, wherein acoustic features are transformed to express multiple
different emotional states. Notably, prosodic features, including voice quality,
speech rate and F0, hold particular significance in the research of EVC. F0, in
particular, assumes the importance of the characterisation of prosody, describing
aspects of intonation and emotional expressiveness in speech [99]. Furthermore,
on account of the inherently supra-segmental and hierarchical nature of emotional
expression [150], emotions express themselves in both prosodic and spectral
dimensions, a mapping that has typically not been a considered point in conventional
VC research efforts [151]. Diverse methodological approaches, ranging from
stylisation techniques [152, 153] to advanced deep learning approaches [154, 155],
have been applied to manipulate F0 and other acoustic features with the aim of
achieving the target emotional state in speech.

The methodologies employed in the research of EVC can be further categorised
based on their reliance on specific types of training data, presenting a distinction
between Parallel and Non-Parallel approaches. Parallel techniques depend on
the utilisation of paired or grouped utterances that maintain identical linguistic
content and the speaker while differing in emotional expression [8]. This approach
contributes to the ability of the model to understand the complex mapping from
one emotional state to another. However, it is critical to acknowledge that the
availability of parallel data resources is often limited and brings challenges in terms of
quantity acquisition, especially when considering the requirements of deep learning
methodologies.

Consequently, non-parallel methods have become advantageous alternatives in
the research of EVC. Non-parallel data, wherein emotional expressions do not strictly
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Figure 4.3: Architecture of Conventional and Cascade ETTS System
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share the same linguistic content, presents a more scalable and practical solution [99].
Advanced techniques, such as Autoencoders [146] and CycleGANs [156], have
effectively demonstrated the effectiveness of non-parallel approaches. These methods
enable the acquisition of knowledge relevant to emotional domain transformation
without the necessity of the expensive and restrictive parallel dataset.

In summary, EVC constitutes a promising and evolving research realm,
offering the important potential for enhancing the expressiveness and emotional
impact of synthetic speech. It effectively navigates the complexity of speech
emotion, addressing the challenge of precise emotional prosody representation and
manipulation. As technology continues to advance and novel methodologies arise,
EVC stands on the edge of redefining our comprehension of and engagement with
computer-generated speech, thereby leading to a paradigm shift in HCI by improving
it with enhanced emotional expressiveness and context awareness.

4.1.3 Cascade ETTS with EVC

An additional aspect deserving attention is the relation between ETTS and EVC.
The principal objective of ETTS is the synthesis of speech along with emotional
expression based on provided textual sentences. Due to the fact that EVC has the
capacity to convert the emotional state of the input speech to another emotional
state whilst retaining other information such as linguistic features and speaker
identity [78, 99], it is possible and practical to be investigated and implemented
in the ETTS research and application. Despite its reliance on speech waveforms as
input instead of textual sentences, EVC can be integrated as an auxiliary module
within a neutral TTS framework, thereby realising a cascade TTS architecture as
presented in Figure 4.3.

In a conventional ETTS system introduced in Chapter 2, the input text
is processed by the model to generate the feature representation of emotional
speech, which can subsequently be exploited by a vocoder, or alternatively, it
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can directly generate the emotional speech as in an end-to-end ETTS system.
However, in the cascade ETTS system presented in Figure 4.3, the neutral speech is
initially synthesised by a TTS system, which is afterwards converted to emotional
speech through the implementation of an EVC model. Despite the more complex
architecture of the cascade ETTS system compared to its conventional application,
the investigation of EVC has a significant advantage in leveraging the low-resource
availability of emotional speech datasets and a discussion on this will be given in
succeeding sections of this chapter.

4.1.4 Parallel and Non-Parallel EVC Approaches

Given the conceptual similarities between VC and EVC, the former being a more
extensively explored and prominent subject within the research community, the
investigation of EVC has naturally drawn inspiration and insights from VC. The
methodologies employed in EVC can also be taxonomically categorised according
to two primary criteria. First, classification by the model architecture includes
two different categories, namely, Frame-to-Frame and Sequence-to-Sequence.
Conversely, classification based on the requirement of training data includes parallel
methods and non-parallel methods. In this chapter, we will commence by providing
an overview of the more practical approaches performed by non-parallel training
data first, subsequently followed by the parallel-data-based approaches, including
the introduction, background, experiments, results and discussion.

As described in Section 4.1.2, the fundamental distinction between parallel
and non-parallel datasets predominantly depends on the requirement for identical
linguistic content across different emotional categories. The inherent characteristics
of parallel datasets pose substantial challenges and constraints during their
collection. The recording process requires that a single actor performs the same
sentence in various emotional states, thereby resulting in considerable workloads for
the performers, alongside increasing time and financial burden for the data collectors.
In fact, upon a comprehensive survey of the field of emotional speech datasets, it is
evident that the popularity of non-parallel datasets significantly surpasses that of
parallel datasets.

Another influencing factor that illustrates the observation above involves the
field of affective computing. The majority of investigations within this field are
primarily oriented towards affect recognition tasks, including the research of emotion
recognition and sentiment analysis [9, 157]. Furthermore, it is noteworthy that
within the TTS research, the integration of emotional expression into synthetic
speech is not commonly addressed. Hence, the availability of speech datasets that
satisfy the requirements for EVC studies based on parallel training data—even those
relying on parallel training data—remains considerably constrained.

Another related concern regarding the training data employed in the EVC
research deserves much attention. For the purpose of enhancing the performance
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and robustness of SER systems, training datasets often incorporate irrelevant noise
alongside the speech signal [103, 104]. Furthermore, certain datasets containing
conversational speech samples, such as the IEMOCAP dataset [103], intentionally
include samples of overlapping speech involving two speakers. These intentional
contents are designed to simulate real-world scenarios, thereby assisting the model
in achieving better performance across diverse and complex real-life environments.
However, it must be noted that the model training for both EVC and ETTS do
not derive advantages from this characteristic; rather, they are held back by it.
The model training for EVC and ETTS requires original, clear and high-quality
speech samples, carefully recorded using professional equipment in controlled studio
environments [99]. Consequently, the situation relating to the lack of suitable
training data for both EVC and ETTS, be it through parallel or non-parallel
approaches, is aggravated by the reasons above.

4.2 Conventional Frame-to-Frame EVC

As discussed in Section 4.1.4, the utilisation of EVC methodologies that rely
on non-parallel data is more practical and has gained attention within the
research community, due to the compelling reasons described. An in-depth
investigation of state-of-the-art highlights that frame-to-frame EVC methodologies
exhibit remarkable potential in leveraging non-parallel training data, thereby
demonstrating commendable performance. However, these compromise approaches
are not free from their inherent limitations. The most important of these limitations
is the poor compatibility of conventional frame-to-frame EVC techniques with
non-parallel training data. The conventional frame-to-frame EVC approach typically
includes three main stages: Feature Extraction, Feature Alignment and Feature
Mapping [99]. Figure 4.4 illustrates the architectural framework characterising the
conventional frame-to-frame EVC system.

In the conventional frame-to-frame EVC methodologies, two distinct speech
samples called Source speech and Target speech, each characterised by different
emotional expressions, are utilised as input data. Subsequently, Prosodic and
Spectral features are extracted from both the source speech and target speech
through the utilisation of an identical feature extraction technology. This common
feature extraction procedure is then followed by the respective alignment of prosodic
and spectral features for both source and target speech samples. Following this
alignment step, the mapping between the source and target spectral features is
modelled, and another model is implemented to learn the corresponding mapping
between the prosodic features. Consequently, two distinct mapping functions are
acquired, which facilitate the conversion of both prosodic and spectral features from
the source emotional state to the target emotional state. In the conversion phase,
the converted prosodic and spectral features serve as input to a vocoder, enabling
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Figure 4.4: Framework of Conventional Frame-to-Frame EVC System
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the generation of the converted speech. It must be emphasised that due to the
nuanced nature of emotional expression, this conversion process is different from
conventional VC, which exhibits supra-segmental and hierarchical characteristics.
Consequently, both prosodic and spectral features must be converted to capture
the full scope of emotional expression from the source emotional state to the target
state [99]. Hence, the initial step in EVC requires the extraction of prosodic and
spectral features from both the source and target speech samples.

4.2.1 Feature Extraction

In the domain of spectral features commonly employed within frame-to-frame EVC
investigations, Mel-frequency-based cepstral features have emerged as a predominant
choice, as evidenced by a large number of studies [146, 147, 151, 154, 155, 156,
158, 159, 160, 161, 162, 163, 164, 165]. It is notable that Mel-frequency-based
cepstral features, commonly referred to as MFCCs and MCEPs, exhibit considerable
similarities in terminology and have often been interchangeably referenced in
academic literature [166, 167]. Both methodologies involve cepstral analysis and
serve as representations of the spectrum, yielding highly relevant features. However,
the primary difference between them is the extraction process. In practice, MFCCs
are derived through the implementation of a Mel filter bank [168, 169], whereas
MCEPs are obtained from Smoothed Spectral Envelopes (SSEs) to achieve similar
results [170, 171]. Consequently, in this paper, the application of a Mel filter bank
serves as a defining criterion for distinguishing between MFCCs and MCEPs.

Beyond their application within TTS research, as introduced in Section 2.1.4,
MFCCs and MCEPs have demonstrated excellent performance across various
domains in speech-related studies, notably in ASR [5] and SER [172]. The
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computation of MFCCs involves a sequential four-step process: initialisation
with the computation of the power spectrum from the input speech signal,
application of a Mel filter bank—engineered to mimic the human auditory
system’s response [173]—onto the spectrum, logarithm computation of the powers
at each Mel-frequency band, and subsequent decorrelation via Discrete Cosine
Transformation (DCT) [174]. One example of Mel-filters with triangular overlapping
windows is

Mel(f) = 2595log(1 +
f

700
) (4.1)

where f represents the original frequency [174]. Toolkits like librosa [168],
OpenSMILE [175] and WORLD [53], are widely employed for the extraction of
MFCCs and MCEPs in state-of-the-art research. Additionally, the 80-dimensional
Mel-spectrogram has also demonstrated effectiveness in representing spectral
features within emotional speech for frame-to-frame EVC [176], as previously
introduced in Section 2.1.4.

In the field of frame-to-frame EVC studies, the utilisation of F0 stands out as
a universal prosodic feature, occupying prominently in nearly all state-of-the-art
investigations. Exploiting the information embedded within F0, Continuous
Wavelet Transformation (CWT) serves as a consistent approach, facilitating the
decomposition of the F0 contour into distinct temporal scales. This enables
the modelling of diverse prosodic levels ranging from short-term to long-term
variations [158]. It is worth noting that the efficacy of CWT has been confirmed
across various fields of audio signal research [177, 178, 179, 180]. When applied to
an input signal, such as the F0, CWT can be mathematically expressed as:

W (s, p) =
1√
s

∫ +∞

−∞
F0(t) · ψ(

t− p
s

)dt (4.2)

Here, the symbol ψ denotes a continuous function referred to as the mother
wavelet, instrumental in generating daughter wavelets through operations involving
scaling by using the scale parameter s and translation by using the position
parameter p. An example of a customary mother wavelet is the Mexican hat wavelet,
determinable via calculations involving:

ψM(t) =
2√
3
π−

1
4 · (1− t2) · exp(−t

2

2
) (4.3)

However, in the realm of signal processing, the common practice is the
adoption of Discrete Wavelet Transformation (DWT) instead of CWT, employing
numerous sampling scales for effective implementation [161]. The mathematical
form representing DWT is expressed as:
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W̃ (j, k) =

∫ +∞

−∞
F0(t) · ψj,k(t)dt (4.4)

ψj,k =
1√
2j
ψ · (t− 2jk

2j
), j = 1, 2, 3, ..., J (4.5)

where the symbol 2j denotes the sampling scale, while J signifies the number of
discrete scales employed. The parameter k ∈ Z represents the translation parameter,
as the translation usually exhibits a proportional relationship to the scale within
DWT. Additionally, it is noteworthy that the inverse transformation is able to
achieve an approximate reconstruction of the input F0 [161].

F0(t) ≈
J∑

j=1

W̃ (j, k) · ψj,k(t) (4.6)

Typically, the determination of the number of discrete scales is contingent
upon the octave configuration within the system. For instance, a 10-scale setup
implies that each scale corresponds to one complete octave [156], while a 30-scale
configuration signifies that each scale corresponds to one-third of an octave [165].
Moreover, investigations within the field of EVC have explored adaptive scaling
methodologies within CWT specifically applied to F0 [160].

Indeed, CWT represents only one approach among various methodologies
employed to extract valuable information from F0. DCT [181] and statistical
features encompassing measures such as mean, topline and baseline [182] of F0

have demonstrated exceptional performance within the EVC research. Furthermore,
among a series of prosodic features incorporated in frame-to-frame EVC research, the
spectrum, denoted as f̂(ξ) obtained from the input speech f(t) through Equation 2.7,
the energy of which has also been considered [147, 159]. The computation of the
energy of the spectrum in frames can be expressed as:

Et =

√√√√ D∑
d=1

∣∣∣f̂(ξ)d,t

∣∣∣2, t = 1, 2, 3, ..., T (4.7)

The spectrum, denoted as f̂(ξ), is characterised by dimensions represented as (D,T ),
where D expresses the feature dimension, and T corresponds to the number of frames
within the spectrum [159]. Additionally, CWT presents an alternative methodology
for leveraging the information of the energy contour across various temporal scales.

4.2.2 Feature Alignment

In the pursuit of aligning identical feature sets within both the source and target
speech signals, the commonly applied method employed in frame-to-frame EVC
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investigations is Dynamic Time Warping (DTW) [158, 160, 163, 165, 183]. DTW
represents a widely recognised technique used for measuring the similarity between
two sequences and subsequently aligning them by temporal transformations to fit
the detected similarities in their shapes [184]. The application of DTW needs to
comply with three constraints for the given sequences:

1. Each element within one sequence must be matched with at least one
corresponding element in the other sequence.

2. The initial and final elements of each sequence should be matched with the
initial and final elements of the other sequence, respectively.

3. The indices representing matched elements in one sequence and their
corresponding indices in the other sequence must be monotonic increasing.

All speech pairs within the parallel emotional speech dataset inherently satisfy
the constraints above. However, the applicability of DTW is limited in research
employing non-parallel training data due to the reliance on sequence similarity
comparisons, making it unsuitable for such datasets due to different linguistic
content within paired samples. Algorithm 1 describes the procedural steps of
classical DTW, which primarily involves the computation of the accumulated cost
matrix.

where the symbol dtwi,j denotes the distance measure between S1:i and T1:j,
signifying the cumulative distance between the sequences from the beginning to the
indices i and j. Hence, dtwm,n represents the cumulative distance between the source
sequence S and the target sequence T. Besides, recent advancements in neural
networks have revealed several promising methods for feature alignment. These
methods include novel techniques such as speech recognisers [185] and attention
mechanisms [186, 187].

4.2.3 Feature Mapping

As shown in Figure 4.4, subsequent to the feature alignment process, it follows
the important phase of discovering the relationship between the source and
target features, commonly referred to as feature mapping. Early exploration
within conventional frame-to-frame EVC approaches involved employing statistical
modelling to attain feature mapping. One of the classical statistical model, GMM,
has been utilised in various studies. Notably, GMMs were employed to convert
statistical F0 features on a syllable-wise basis [182], while another study utilised
two GMMs to individually convert the spectrum and DCT coefficients of F0 [181].
Furthermore, the adoption of Non-negative Matrix Factorisation contributed to the
conversion of both spectrum and F0, presenting enhanced performance in emotional
expressivity through a MOS test compared to individual conversions, as described
in prior studies [158, 183].
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Algorithm 1: Computation of Accumulated Cost Matrix by DTW

Input: Source Sequence: S = (s1, s2, s3, · · · , sm), m ∈ R+

Target Sequence: T = (t1, t2, t3, · · · , tn), n ∈ R+

Output: Accumulated Cost Matrix: dtw
1 dtw ←M(m+1)×(n+1)

2 i← 0
3 while i ≤ m do
4 j ← 0
5 while j ≤ n do
6 dtwi,j ←∞
7 j += 1

8 end
9 i += 1

10 end
11 dtw0,0 ← 0
12 i← 1
13 while i ≤ m do
14 j ← 1
15 while j ≤ n do
16 dtwi,j ← ∥Si −Tj∥+min(dtwi−1,j, dtwi,j−1, dtwi−1,j−1)
17 j += 1

18 end
19 i += 1

20 end
21 return dtw
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Figure 4.5: Architectural Framework of MLP
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4.2.3.1 Multi-Layer Perceptron

In recent years, the advancement in neural network technology has presented
convincing prospects to achieve feature mapping. This exploration spans from
the employment of fundamental neural networks such as DBNs and Multi-Layer
Perceptrons (MLPs) [154, 163, 165]. Within this context, DBNs were utilised
for spectral feature conversion (specifically, MCEPs), while MLPs were deployed
for prosodic feature conversion (specifically, CWT-F0). An MLP architecture
is composed of multiple fully-connected layers, thereby often referred to as a
Fully-connected Network. The architectural representation of an MLP is given in
Figure 4.5. The computational process within each neuron of an MLP with inputs
can be expressed as:

y = a(
I∑

i=1

wi · xi + b) (4.8)

where the symbols xi and wi denote the value and weight, respectively, of the
i-th input neuron. Here, I indicates the total number of input neurons, while b
represents the bias of the current neuron. The symbol a refers to the activation
function employed to introduce non-linear characteristics to the linear computation
and regulate the output value range. As an example, a classical activation function
is the hyperbolic tangent function, denoted as Tanh, and computed by the formula:

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(4.9)

4.2.3.2 Deep Belief Network

A DBN [154, 163, 165] is constructed from multiple Restricted Boltzmann Machines
(RBMs), each comprising one visible layer and one hidden layer, visually represented
in Figure 4.6. Unlike MLPs, RBMs facilitate bidirectional propagation, allowing
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Figure 4.6: Architectural Framework of DBN
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interactions between the visible and hidden layers. Consequently, each neuron within
the visible layer possesses an activation probability expressed as:

P (vi = 1|h) = σ(
J∑

j=1

wij · hj + bi) (4.10)

where P (vi = 1|h) denotes the probability of activation for the i-th visible neuron,
bi denotes the bias of the i-th visible neuron, and wij represents the weight between
the i-th visible neuron and the j-th hidden neuron. Besides, hj stands for the value
of the j-th hidden neuron, and J indicates the total number of hidden neurons. The
symbol σ corresponds to the sigmoid activation function, mathematically expressed
as:

σ(x) =
1

1 + exp(−x)
(4.11)

Likewise, the probability of activation for the j-th hidden neuron can be
computed as:

P (hj = 1|v) = σ(bj +
I∑

i=1

wij · vi) (4.12)

In this equation, bj represents the bias of the j-th hidden neuron, while vi denotes
the value of the i-th visible neuron, and I denotes the total number of visible neurons.
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4.2.3.3 Recurrent Neural Network

Several other neural network architectures have been employed in the latest research.
Despite the full connectivity of MLPs, their structure is not qualified to consider
sequential or temporal information inherent in input speech signals. Therefore,
RNNs have attracted significant attention and application across various tasks
related to speech signals [188, 189]. Neurons within RNNs compute the hidden state
ht not solely based on their current input xt, but also depend on the hidden state
from the previous timestep ht−1. Mathematically, this computation is represented
as:

ht = a(whh · ht−1 + wxh · xt + bh) (4.13)

where the symbol whh denotes the weight parameter between the two hidden states,
ht−1 and ht, while wxh represents the weight parameter connecting the current input
xt to the hidden state ht. Additionally, bh denotes the bias, and a signifies the
activation function used in the computation. To compute the output at the current
timestep:

yt = why · ht + by (4.14)

where why represents the weight parameter connecting the hidden state to the
output, while by denotes the bias associated with the output computation.

Despite the advantages, conventional RNNs face two significant challenges:
the long-term dependency problem, where neurons from later timesteps struggle
to memorise the information from earlier ones, and issues during training,
wherein computed errors tend to either escalate or diminish across timesteps in
backpropagation [190]. This latter phenomenon, known as Gradient Explosion
or Gradient Vanishing, is particularly evident as sequences grow longer [191].
Mitigating gradient issues during backpropagation often involves employing L1 and
L2 regularisation techniques. However, models employing LSTM address these
challenges differently by adapting the structure of conventional RNN neurons to
benefit the preservation of long-term dependencies and solve gradient explosion and
vanishing problems simultaneously. The architecture of an LSTM cell is presented
in Figure 4.7.

The LSTM mechanism assigns a cell state and three distinct gates to each cell.
Initially, upon receiving the current input xt and the preceding hidden state ht−1,
a forget gate ft is employed to decide which information from the preceding cell
should be forgotten:

ft = σ(wfh · ht−1 + wfx · xt + bf ) (4.15)

In this equation, wfh, wfx, and bf represent the weights associated with the
previous hidden state, the current input, and the bias, respectively. Subsequently,
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Figure 4.7: Architectural Framework of LSTM

similarly to the conventional RNNs, new information from the input xt and the
preceding hidden state ht−1 are employed to compute the input gate it. Thus, the
input gate manages what the information should be received at the current time-step:

it = σ(wih · ht−1 + wix · xt + bi) (4.16)

where symbols wih, wix, and bi denote the weights associated with the previous
hidden state, the current input, and the bias, respectively. The subsequent step
involves computing the candidate value c̃t for the cell update using ht−1 and xt:

c̃t = tanh(wch · ht−1 + wcx · xt + bc) (4.17)

where symbols wch, wcx, and bc represent the weights associated with the previous
hidden state, the current input, and the bias, respectively. Moreover, in conjunction
with the input gate it, forget gate ft, and the cell state from the previous cell ct−1,
the current cell state can be updated and obtained:

ct = ft · ct−1 + it · c̃t (4.18)

To generate the hidden state for the current timestep, an output gate ot is initially
computed using the previous hidden state ht−1 and the input xt:

ot = σ(woh · ht−1 + wox · xt + bo) (4.19)

where symbols woh and wox denote the respective weights, while bo represents the
bias. Ultimately, the hidden state is updated as follows:

ht = ot · tanh(ct) (4.20)
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Hence, the output value of the current cell can be obtained using Equation 4.14.

However, another limitation of RNNs lies in their ability to leverage information.
Conventional RNNs and LSTM-RNNs can only access and process information from
preceding contexts, whereas the information from future contexts could also be
leveraged to enhance speech processing since the entire speech signal is processed
at the same time [192]. Consequently, a modified RNN architecture capable of
processing sequences in both forward and backward directions was introduced,
known as Bidirectional RNN [193]. Given Equation 4.14, the alteration to the
output of the current timestep is expressed as:

yt = w−→
h y

−→
h t + w←−

h y

←−
h t + by (4.21)

which describes the bidirectional nature of information flow, with two types of
arrows representing the forward and backward directions. In frame-to-frame EVC
investigations, bidirectional LSTM-RNNs demonstrated commendable performance
converting MCEPs, CWT-F0, and the energy of spectrum [159].

4.2.4 Non-Parallel Training

However, within the framework of conventional frame-to-frame methods, feature
alignment and mapping face limitations when applied to non-parallel training data
due to inconsistencies in the linguistic content. Therefore, alternative strategies
have been proposed to address the challenges caused by the demanding and costly
collection of parallel data. These include the application of emotional domain
translation, disentangling linguistic and emotional information, and the integration
of TTS and ASR systems as potential solutions [99]. Moreover, researchers have
deeply researched two neural network architectures, namely Variational Autoencoder
(VAE) and GAN, within the domain of non-parallel frame-to-frame EVC research.

4.2.4.1 Variational Autoencoder

In the researcher of EVC, VAEs have become a potent mechanism, introducing a
novel perspective to the manipulation of emotional features within speech signals.
Autoencoder, a type of unsupervised neural network consisting of an Encoder and
a Decoder, aims to learn latent representations from the input [194]. The encoder
compresses the input into a lower-dimensional space, while the decoder subsequently
reconstructs the original input from the latent representations. This sequence of
processes can be represented as:

z = enc(x)

x′ = dec(z)
(4.22)
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Figure 4.8: Architectural Framework of VAE
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where the measure |x− x′|2 represents the distance between the initial input x
and the reconstructed input x′, thereby denoting the performance of the latent
representation z.

Nevertheless, a significant challenge arises when employing Autoencoders for
generative purposes. While Autoencoders have the capability of generating
x′ directly from the representation z, the breadth of diversity and novelty
in the generated content is restricted by the deterministic encoding nature of
Autoencoders. Hence, VAEs diverge from this deterministic approach by employing
an encoder that produces the posterior probability of a Gaussian distribution
qϕ(z|x) [195].

qϕ(z|x) = N (z|µϕ(x), σ2
ϕ(x)) (4.23)

where µ represents the mean and σ denotes the standard deviation. Additionally,
the decoder is also probabilistic in nature:

pθ(x|z) = N (x|µθ(z), σ2
θ(z)) (4.24)

The architecture of VAEs is described in Figure 4.8. This inherent probabilistic
nature provides VAEs with the capability to generate content. Notably, in the
research of EVC, an adapted VAE model that learns a factorised representation
from features across multiple temporal scales within the input speech effectively
transformed the Mel-spectrogram from one emotional state to another [176].

4.2.4.2 Generative Adversarial Network

The application of GANs brought a revolutionary paradigm within generative
modelling. The GAN architecture consists of two neural networks: a Generator,
denoted as G, and a Discriminator, denoted as D, engaged in an adversarial
training process resembling a competitive game. As illustrated in Figure 4.9, the
generator produces synthetic data by utilising a prior distribution pz(z), attempting
to approach the distributions pdata(x) representing real data x. Conversely, the
role of the discriminator is to distinguish between the original and the synthetic
samples, or rather, distinguish real and fake samples [196]. Essentially, the generator
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Figure 4.9: Architectural Framework of GAN
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aims to generate new samples conforming to the learned distribution, while the
discriminator takes responsibility of identifying the authenticity of the generated
samples, attempting for them to resemble real-world data. This interplay between
the generator and the discriminator involves a two-player minimax game controlled
by the value function V (G,D) [197], formulated as:

min
G

max
D

V (G,D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log (1−D(G(z)))] (4.25)

This value function serves as a catalyst for the ongoing enhancement of both
networks, benefiting the creation of remarkably realistic and diverse content. GANs
have exhibited exceptional performance across multiple fields, including CV [198],
CA [199] and NLP [200]. Their ability to generate novel content of superior quality
has propelled them to the forefront of advanced research in AI and machine learning.

Numerous GAN variants have been proposed, and several of which have
been implemented in frame-to-frame EVC studies, demonstrating outstanding
efficacy. Combined with fully-convolutional networks, a dual adversarial
network architecture effectively transformed MCEPs and CWT-F0 from neutral
speech into emotional speech, incorporating expressions like Happiness, Anger
and Sadness [161]. Additionally, leveraging the encoder-decoder structure of
Autoencoders, various Autoencoder variants have exhibited their effectiveness
when integrated with GANs, such as Autoencoder GAN [155], Variational
Autoencoder GAN (VAE-GAN) [146] and Variational Autoencoding Wasserstein
GAN (VAW-GAN) [151, 164]. Furthermore, alternative architectures like
CycleGAN [147, 156] and its advanced model, StarGAN [162], have achieved
remarkable performance in frame-to-frame EVC tasks.
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4.3 Application: CycleGAN

As discussed in Section 4.2 and 3.2, the practical application of EVC using the
EmoV-DB dataset, which contains a limited number of parallel samples, implements
non-parallel training. This method allows the utilisation of each speech sample
for training purposes without requiring its corresponding match or the exclusion
of samples lacking counterparts in other emotional states. Furthermore, recent
state-of-the-art research validates the feasibility of speaker-independent training in
non-parallel EVC investigations [151], where speech samples from multiple speakers
are combined as the training set, significantly expanding the pool of available
training sample pool. Consequently, this section introduces CycleGAN, one of the
frame-to-frame EVC solution based on adversarial training.

4.3.1 CycleGAN

The conventional GAN architecture encompasses a generator and a discriminator,
responsible for content generation and real-vs-fake discrimination, respectively.
CycleGAN, initially developed for image style transfer in CV, addresses the challenge
of insufficient parallel training samples [201]. Its efficacy in style transfer has also
been validated in the research of VC [140, 202]. The highlight of CycleGAN, beyond
the standard source-to-target mapping, is the introduction of an inverse mapping
with cycle consistency loss, to optimise the mapping without the corresponding
sample. As shown in Figure 4.10, this alteration on regular GAN architecture
involves the deployment of two generators GX→Y and GY→X , along with two
discriminators DX and DY , a deviation from the conventional single generator and
discriminator setup of GAN.

Figure 4.10a illustrates the regular adversarial training process, where a slight
modification is made on Equation 4.25:

Ladv(GX→Y , DY ) = Ey∼pdata(y)[log DY (y)]

+ Ex∼pdata(x)[log (1−DY (GX→Y (x)))]
(4.26)

Similarly, the loss function of the backward adversarial process can be computed
by using:

Ladv(GY→X , DX) = Ex∼pdata(x)[log DX(x)]

+ Ey∼pdata(y)[log (1−DX(GY→X(y)))]
(4.27)

Nonetheless, the adversarial losses in both directions merely guarantee the
capability of both generators to produce outputs conforming to the target or source
distribution, while the content of the input might be ignored [201]. To address this,
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Figure 4.10: Architectural Framework of CycleGAN
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Cycle Consistency Loss is formulated and employed to preserve the information of
the input content. It achieves this by instructing the generator to map the output
of the opposing generator back to the initial input, as shown in Figure 4.10b. This
cyclic process is mathematically represented as:

Lcyc(GX→Y , GY→X) = Ex∼pdata(x)[∥GY→X(GX→Y (x))− x∥1]
+ Ey∼pdata(y)[∥GX→Y (GY→X(y))− y∥1]

(4.28)

Despite the effectiveness of adversarial loss and cycle consistency loss in
instructing the training of the model, an unexpected alteration in style has been
observed when the source input x is fed into the opposing generator GY→X [201].
Under this circumstance, the expected output should ideally remain unchanged
since the input already possesses the target style, as illustrated in Figure 4.10c.
Consequently, to address this problem, Identity Loss is incorporated into CycleGAN,
which is formulated as:

Lid(GX→Y , GY→X) = Ey∼pdata(y)[∥GX→Y (y)− y∥1]
+ Ex∼pdata(x)[∥GY→X(x)− x∥1]

(4.29)

To summarise, the loss function of the training of CycleGAN can be represented
as below:

LCycleGAN(GX→Y , GY→X , DX , DY ) = Ladv(GX→Y , DY )

+ Ladv(GY→X , DX)

+ λcycLcyc(GX→Y , GY→X)

+ λidLid(GX→Y , GY→X)

(4.30)

Here, the symbol λ represents the weighting factor applied to various losses. The
similarity between image-to-image translation and VC/EVC tasks, both involving
the translation of the ‘style’ of the input signal to another, facilitates the transfer
of the utilisation of CycleGAN from the field of CV to CA.

4.3.2 Dual-CycleGAN Application

Considering the discussion on the applicable datasets in Section 3.2.3, the EmoV-DB
dataset is selected as the training dataset. Additionally, as a result of the exceptional
efficacy of F0 and MCEPs in both VC and EVC studies, CWT-F0 was selected
as the prosodic feature while MCEPs were designated as the spectral feature for
CycleGAN application. Recognising the different physical significance of prosody
and spectrum, the requirement arose for two distinct CycleGANs—one to convert
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Figure 4.11: Architectural Framework of Dual-CycleGAN EVC System
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the prosodic feature and another for the spectral feature. Consequently, a model
integrating two parallel CycleGANs, termed ‘Dual-CycleGAN’, was implemented
and researched [156].

4.3.2.1 Architectural Framework

The architectural framework of the Dual-CycleGAN EVC system is illustrated in
Figure 4.11. During the training phase, a pair of speech samples, consisting of source
(neutral) and target (emotional) samples, undergo processing using the WORLD
vocoder to extract F0 and SSEs. Subsequently, while the SSEs from the source
sample are encoded to MCEPs and then channelled into one CycleGAN—referred
to as Spectral CycleGAN—for conversion, the F0 from the source requires to be
transformed through CWT before entering the other CycleGAN, which is referred to
as Prosodic CycleGAN. Essentially, these two CycleGANs operate independently to
convert the source CWT-F0 and MCEPs, respectively. The backpropagation update
for both CycleGANs depends on the converted source CWT-F0 and its corresponding
target, alongside the converted source MCEPs and their target counterparts.

After the training, both trained CycleGANs are employed in the inference phase.
Feature extraction, including CWT and the spectral coding, and the conversion
process remain the same as in the training phase. However, instead of updating
models, the converted CWT-F0 and MCEPs are leveraged to reconstruct speech by
using the WORLD vocoder. It is important to note that to generate speech, the
WORLD vocoder [53] requires prosodic features (F0), spectral features (spectral
envelope) and aperiodicity features (band aperiodicity, which represents the power
ratio between the speech and the aperiodic component in a signal [203]). Hence,
the converted CWT-F0 requires to be transformed back to its original state using
Equation 4.6 before the speech reconstruction. Similarly, the converted MCEPs need
to be decoded by WORLD to obtain the converted spectral envelope. Additionally,
the necessary band aperiodicity is taken directly from the source speech sample,
because there is no emotional information incorporated in it [155].

Both the prosodic and spectral CycleGAN models utilise the same network
architecture, as applied in [156]. The generator consists of 5 key modules, beginning
with 1 gated 1D convolutional block, designed to address the gradient vanishing
and explosion issues typically associated with traditional recurrent layers, while
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Figure 4.12: Network Settings of All Modules in Dual-CycleGAN EVC System
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also enhancing processing speed [204]. This is followed by 2 downsampling blocks, 6
residual blocks, and 2 upsampling blocks. At the generator’s end, a 1D convolutional
layer is applied to generate output. In contrast, the discriminator’s architecture is
simpler, comprising a gated 2D convolutional block, three downsampling blocks, and
a fully connected layer. The detailed architectures of all modules are depicted in
Figure 4.12.

4.3.2.2 Experimental Setups and Results

In this experiment, the EmoV-DB dataset was selected for training, focusing on
50 groups of speech samples performed by the speaker Spk-Bea due to the gender
similarity. The F0 extraction process began with a frame window duration of 5 ms,
constrained within a frequency range of 71 Hz to 800 Hz. Following this, CWT
was applied to the extracted F0 using the Mexican hat wavelet function, defined
in Equation 4.3, as the mother wavelet. The frame window size was maintained at
5 ms, and 10 scales were extracted with an interval of 1, resulting in a 10-dimensional
prosodic feature.
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For spectral feature extraction, SSEs were computed from the speech signal and
F0 using WORLD, with an Fast Fourier Transformation (FFT) size of 1, 024. The
SSEs comprised 513 dimensions, which were then encoded by WORLD to produce
24-dimensional MCEPs, suitable for use in the spectral CycleGAN.

To enhance model performance, the extracted CWT-F0 and MCEPs were
normalised using the mean µ and standard deviation σ across the entire training
set, with this Mean-Std Normalisation expressed as:

x̂ =
x− µ(x)

σ(x)
(4.31)

As with the approach described in Section 3.2.6, and given that the trained EVC
model was used to convert synthetic speech from the Blizzard 2011 dataset rather
than the EmoV-DB dataset, regular human perception evaluation was conducted
instead of applying a validation set. Adam was set as the optimiser, with learning
rates of 2 × 10−4 for the generator and 1 × 10−4 for the discriminator to optimise
training performance.

The training results for both CycleGANs across 4 different emotional categories
are presented in Figure 4.13. The loss values for all four MCEP generators
converged similarly across the four EVC models, decreasing from around 30.0 to
below 5.0, while the loss values of the CWT-F0 generators reached approximately
3.0. After 4, 000 epochs, the loss curves began to flatten. Based on human perception
evaluation, one spectral CycleGAN and one prosodic CycleGAN were selected from
the saved models during training to convert MCEPs and CWT-F0. The converted
CWT-F0 was then processed, and combined with the band aperiodicity of the
source speech to reconstruct the speech using the WORLD vocoder. The converted
speech in 4 emotional states demonstrated corresponding emotional expression while
preserving linguistic information with good intelligibility.

4.3.3 Mono-CycleGAN Application

Although the Dual-CycleGAN system demonstrates decent performance on the
EVC task, there is still space for improvement. Given the complexity involved
in optimising two CycleGANs with different objectives, a similar system based on a
single GAN model was proposed [155].

4.3.3.1 Architectural Framework

Instead of using two GANs to convert the prosodic and spectral features separately,
a simpler approach called Log Gaussian Normalisation is applied for the conversion
of F0 [155], instead of applying a CycleGAN. The mathematical expression for log
Gaussian normalisation is:
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Figure 4.13: Loss Curves of EVC System of Dual-CycleGAN with EmoV-DB
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4. Frame-to-Frame Emotional Voice Conversion

Figure 4.14: Architectural Framework of Mono-CycleGAN EVC System
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where F0 and F̂0 represent the fundamental frequency of the source and converted
speech. The variables µ and σ denote the mean and standard variance of f0 across
all speech samples, with subscripts s and t referring to the source and target datasets
of the calculated samples, respectively.

Additionally, the proposed system employs a CycleGAN model, as introduced
in Section 4.3.2, replacing the original Autoencoder GAN used in the
state-of-the-art [155]. The architecture of this Mono-CycleGAN EVC system is
depicted in Figure 4.14, where the CycleGAN focuses solely on converting the
MCEPs of the source speech. As in previous methods, the band aperiodicity of
the source speech is directly utilised by the WORLD vocoder.

4.3.3.2 Experimental Setup and Results

Given the high similarity between the Mono-CycleGAN EVC system and the
Dual-CycleGAN EVC system—both aiming to generate MCEPs—the trained
models from Section 4.3.2.2 were directly applied. After reconstructing the
speech using the converted MCEPs (via spectral decoding), linearly normalised
F0 and the source band aperiodicity, the Mono-CycleGAN EVC system achieved
performance comparable to the Dual-CycleGAN system when converting synthetic
speech produced by the neutral TTS system from Section 2.2, as evaluated by
human perception. However, the model’s complexity was nearly halved, resulting in
reduced storage space and shorter model loading times during the inference phase.
This significant advantage of the Mono-CycleGAN EVC system prompted further
investigation.

4.3.4 Exploration of Improvement on CycleGAN

As demonstrated above, both the Dual-CycleGAN and the Mono-CycleGAN
systems effectively preserve linguistic information. However, improvements are still
needed in emotional expression and speech quality. To address these shortcomings,
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4.3. Application: CycleGAN

Figure 4.15: Conversion of F0 and MCEPs v.s. Conversion of Spectrogram
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an approach that considers error accumulation throughout the process was proposed
and subsequently investigated through experiments.

According to the experiments and state-of-the-art methods discussed above,
CycleGANs have demonstrated significant capability in mapping between different
emotional states in non-parallel training schemes. However, challenges remain in the
EVC procedure. The left side of Figure 4.15 illustrates the current EVC procedure
during the inference phase. The process begins with extracting MCEPs from the
source speech sample, followed by feeding these MCEPs into a CycleGAN model to
generate the converted MCEPs. In this figure, the log Gaussian normalisation of F0

is omitted. Subsequently, the WORLD vocoder reconstructs the speech using the
converted features. The loss functions are then calculated based on the difference
between the converted and target MCEPs.

It is crucial to note that four types of errors accumulate throughout this
procedure: one from the CycleGAN mapping, another from log Gaussian
normalisation, and two additional errors stemming from feature extraction and
speech reconstruction by the vocoder [53]. In fact, experiments have shown that
the WORLD vocoder cannot perfectly reconstruct speech even when using its own
extracted acoustic features. These cumulative errors adversely affect the accurate
mapping capabilities of the EVC system.

To mitigate the impact of these cumulative errors, an approach to optimise
the procedure was proposed. As depicted in the right part of Figure 4.15, the
spectrogram was selected as the acoustic feature instead of both F0 and MCEPs.
The inverse STFT can nearly perfectly reconstruct speech using the spectrogram,
and reducing the number of utilised features also decreases the unnecessary errors
caused by F0 and MCEPs. Moreover, the loss functions in the training phase are
calculated using the converted and target waveforms directly—in other words, loss
calculation is based on the time-domain rather than the frequency-domain. This
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4. Frame-to-Frame Emotional Voice Conversion

Figure 4.16: Loss Curves of Mono-CycleGAN with Spectral Features
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modification has the advantage of making the differences between the converted
and target speech more straightforward.

However, after implementing the spectrogram-based system, results showed that
its performance was inferior to the baseline. Several experiments were conducted,
including variations in spectrogram and log magnitude, as well as different FFT
lengths (256 and 512). The results of these attempts with conversion between
Neutral and Amused are illustrated in Figure 4.16. Notably, models under all
three setups failed to converge during training, indicating an inability to learn
the mapping between source and target speech. Additionally, human perception
evaluations revealed that the converted speech had much worse quality than the
baseline, with a significant loss in intelligibility. The primary reason for the failure of
spectrogram is that its ‘perfectly reconstructable’ nature also means it contains too
much information for effective EVC, especially in non-parallel training. Therefore,
retaining both prosodic and spectral features, such as F0 and MCEPs, remains a
prudent choice despite the complexity and potential for errors in the procedure.

4.4 Application: VAE-GAN

In the proposed ETTS system, neutral speech is first generated by a neutral TTS
module and then processed through an EVC system. Since the training datasets
used by the neutral TTS model and the EVC model involve different speakers,
the EVC model must handle unseen speakers during the inference phase. As
discussed in Section 4.3.4, the CycleGAN-based EVC system struggles to effectively
convert the voices of unseen speakers. To address this issue, an alternative neural
network architecture known as VAW-GAN, which is claimed to have the capability
to process unseen speakers [151], was considered. However, VAW-GAN’s reliance on
its approximated metric, VAEs with Wasserstein Distance, often requires arbitrary
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choices and may not lead to the desired Gaussian distribution [205]. Therefore,
inspired by another study on non-parallel GAN-based EVC [146], VAE-GAN was
implemented on the EmoV-DB dataset to explore its performance with unseen
speakers.

4.4.1 VAE-GAN

As introduced in Section 4.2.4.1, VAEs have the ability to generate content
due to their probabilistic nature. VAEs benefit from the generator-discriminator
architecture of GANs, forming a combined network known as VAE-GAN, where the
decoder of the VAE also functions as the generator in the GAN.

A typical VAE-GAN architecture involves three models: an Encoder, a
Generator, and a Discriminator. The encoder processes the input data to produce
the mean and log variance parameters, which are used to construct a Gaussian
distribution. These parameters define a latent space from which a representation
can be sampled. The generator then takes this latent representation to estimate
a new data representation [8]. This forms the classic VAE model. In a
VAE-GAN, a discriminator is added to evaluate a real/fake decision of the generated
representation, guiding the generator to produce more realistic samples, similar to
its role in a regular GAN.

The encoder’s training is guided by two loss functions: Kullback-Leibler
Divergence (KLD) and Reconstruction loss. KLD measures the distance between
two probability distributions P and Q, denoted as DKL(P ||Q) [206]. In VAEs
and VAE-GANs, it is used to measure the distance between the latent distribution
q(z|x) produced by the encoder and the prior distribution p(z), denoted as
DKL(q(z|x) || p(z)).

A challenge arises because the prior distribution of the latent space is unknown
and unobtainable. However, this issue can be mitigated if the decoder/generator
of the VAE/VAE-GAN has sufficient expressivity for reconstruction, allowing the
shape of the prior distribution to be arbitrary [207]. For computational simplicity, a
standard Gaussian distribution N (0, 1) is commonly used as the prior distribution.
The Kullback-Leibler loss function in VAEs/VAE-GANs is therefore defined as:

LKL(µ, σ2) = DKL(N (µ, σ2) || N (0, 1)) (4.33)

where µ and σ denote the mean and standard deviation obtained from the encoder’s
output. To simplify the calculation involving N (0, 1):

DKL(N (µ, σ2) || N (0, 1)) =
1

2
(µ2 + σ2 − log(σ2)− 1) (4.34)

Another common measure used in VAE architectures to replace KLD is the
Wasserstein Distance. This combination forms what is known as VAW-GAN, which
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has been applied and explored in non-parallel VC [144], EVC [151] and singing voice
conversion [208].

Returning to the classical VAE/VAE-GAN, the reconstruction loss involves
minimising the negative log-likelihood, expressed as:

Lrecon = −Eqϕ(z|x)(log pθ(x|z)) (4.35)

where qϕ(z|x) and pθ(x|z) are the posterior probability distributions from
Equations 4.23 and 4.24. The encoder’s optimisation is achieved by summing these
two loss functions:

LE = λKLLKL + λreconLrecon (4.36)

where λKL and λrecon are weights to balance the training.

The generator and discriminator losses in VAE-GAN follow those of a regular
GAN, where the generator aims to produce data that is both close to the target and
able to fool the discriminator. The generator-discriminator interplay is captured in
the loss function:

LG = λreconLrecon + λadvLadv (4.37)

where λrecon and λadv are the respective weights, and the adversarial loss Ladv is
defined as:

Ladv = −Ez∼p(z)[log D(G(z))] (4.38)

where z represents the latent representation sampled from the latent distribution
p(z).

The discriminator’s role is to distinguish between real data x and generated data
G(z). The discriminator loss function LD is expressed as:

LD = −Ex∼pdata(x)[log D(x)]− Ez∼p(z)[log (1−D(G(z)))] (4.39)

In summary, the overall loss function of VAE-GAN is the sum of the loss values
of all three components:

LV AE−GAN(E,G,D) = LE + LG + LD (4.40)

The architectural framework of VAE-GAN is illustrated in Figure 4.17.
VAE-GAN has demonstrated its capabilities in various tasks, including VC [209],
EVC [146, 176], music generation [210] and other generative tasks [211].
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Figure 4.17: Architectural Framework of VAE-GAN
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4.4.2 Dual-VAE-GAN Application

Given the excellent performance of F0 and MCEPs, and the fact that spectral
features like spectrograms are not suitable to be used as the sole feature in
EVC, the first proposed EVC system based on VAE-GAN adopts a dual-model
approach. In this system, each model is responsible for converting the prosodic
and spectral features, respectively. This design has proven to be highly
effective in handling speaker-independent emotional representation, owing to its
encoder-decoder architecture [151].

4.4.2.1 Architectural Framework

The training process of the Dual-VAE-GAN EVC system is illustrated in Figure 4.18.
The conversion procedure is highly similar to that of the Dual-CycleGAN EVC
system, with the training phase comprising the following steps:

1. Feature Extraction. The WORLD vocoder is used to extract prosodic
features (F0), spectral features (SSEs) and aperiodicity features (band
aperiodicity). However, the aperiodicity feature is not used during the training
phase.

2. Prosodic Feature Conversion. The extracted F0 is first transformed using
CWT to obtain CWT-F0, which is then fed into the encoder of the prosodic
VAE-GAN model. The output, enriched with emotional information, is passed
through the prosodic generator to generate the converted prosodic feature.

3. Spectral Feature Conversion. The process of converting spectral features
follows a similar approach to that used for F0, with two key differences. Firstly,
SSEs can be directly fed into the spectral encoder without any additional
transformation. Secondly, since the spectral feature incorporates prosodic
information and relies on it to some extent [151], the conversion of spectral
features benefits from using F0 as an additional input to the spectral generator.

71



4. Frame-to-Frame Emotional Voice Conversion

Figure 4.18: Training Process of Dual-VAE-GAN EVC System
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4. Loss Calculation. The converted prosodic and spectral features, along
with their ground truth counterparts, are used to compute the loss values
for backpropagation and model updates. Additionally, two discriminators
are employed to predict the real/fake decision of both converted features,
contributing to the adversarial loss calculation, which in turn enhances the
generative performance of the two generators.

In the inference phase, the process can be divided into four similar steps, as
depicted in Figure 4.19:

1. Feature Extraction. Prosodic, spectral and aperiodicity features are
extracted using WORLD.

2. Prosodic Feature Conversion. This step mirrors the training phase, using
the trained generator to convert the CWT-F0 of the input speech. However, to
synthesise the speech using the converted features, an inverse CWT is required
to obtain the converted F0.

3. Spectral Feature Conversion. Unlike in the training phase, the converted
F0 (obtained by applying the inverse CWT to the output of the prosodic
generator) is used as input to the spectral generator instead of the original F0.

4. Speech Synthesis. Finally, the converted F0, SSEs and the source speech’s
band aperiodicity are combined using the WORLD vocoder to reconstruct
the converted speech.

The Dual-VAE-GAN EVC system follows the network settings of [151]. Apart
from the differences in feature dimensions, as seen in the Dual-CycleGAN EVC
system discussed in Section 4.3.2.1, the Dual-VAE-GAN system introduces another
difference: the spectral VAE-GAN generator has an extra input compared to the
prosodic VAE-GAN. This extra input is the ground truth F0 during the training
phase, while the converted F0 is used during the inference phase. Nonetheless, both
VAE-GANs employ similar network modules and blocks, as illustrated in Figure 4.20,
with this slight difference. The encoder comprises 5 2D convolutional layers, followed
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Figure 4.19: Inference Process of Dual-VAE-GAN EVC System
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by 2 separate fully-connected layers that generate 2 vectors from the flattened
output. The mean and log variance vectors obtained from the fully-connected layers
are then used to define a Gaussian distribution.

The generator takes a sample from the latent Gaussian distribution, along with
the Emotion ID and F0 (in the case of the spectral VAE-GAN), as input. The
Emotion ID and F0 are first processed through an embedding layer. The latent
sample and the embeddings of the Emotion ID (and F0) are then processed by 2 (or
3) fully-connected layers, respectively. The sum of these outputs is fed into another
fully-connected layer. Finally, 4 2D transposed convolutional layers are used to
generate the converted feature. The discriminator, on the other hand, consists of 3
2D convolutional layers to process the input feature, followed by a fully-connected
layer that provides the real/fake decision for both the ground truth and the converted
samples.

4.4.2.2 Experimental Setup and Results

The VAE-GANs were trained using the EmoV-DB dataset, similar to the
CycleGAN-based EVC systems, but with two key differences. Firstly, speech
samples from two female speakers, Spk-Je and Spk-Bea, were selected, instead of
only using samples from Spk-Bea. Secondly, while 10 samples from each speaker in
each emotional category were set aside for human evaluation, all other samples were
included in the training set. This resulted in a training set comprising 764 Neutral
samples, 508 Amused samples, 790 Angry samples, 512 Disgust samples, 953 Sleepy
samples, totalling 2, 574 samples.

Given that the SSEs lose information when encoded to MCEPs, the SSEs were
chosen as the spectral feature in the Dual-VAE-GAN system. The same process
of extracting a 513-dimensional SSEs as described in Section 4.3.2.2 were applied,
with the exception of the spectral encoding procedure. Subsequently, the SSEs were
normalised using the common logarithm to reduce the influence of high variance.
Additionally, Min-Max Normalisation was applied across the dataset, defined as:

x̂ =
x−min(x)

max(x)−min(x)
(4.41)
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4. Frame-to-Frame Emotional Voice Conversion

Figure 4.20: Network Settings of All Modules in Dual-VAE-GAN EVC System
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4.4. Application: VAE-GAN

To minimise the impact of outliers, the 0.5th and 99.5th percentiles were used
in place of the minimum and maximum in Equation 4.41. Meanwhile, the CWT-F0

was normalised using Mean-Std Normalisation.
The model was optimised using RMSProp with a learning rate of 1× 10−4 and a

decay rate of 0.9. Initially, the VAE (encoder and generator) was pre-trained for 15
epochs to stabilise the training process and provide a solid initial representation for
both the encoder and generator. Following this, the discriminator was introduced
into the training process for an additional 45 epochs to enhance the generator’s
performance.

Since the three loss values were not of the same order of magnitude, a substantial
adversarial weight λadv = 5× 103 was applied. As depicted in Figure 4.21, the loss
curves of the three modules in the system are shown. Notably, there is a significant
change in the loss values of the discriminator and generator around 11, 000 iterations,
which marks the transition between the grey and white areas. Additionally, the
loss curve of the discriminator exhibited severe and random oscillations before
approximately 11, 000 iterations. These phenomena can be attributed to the
discriminator not being trained until the 16th epoch, causing the absence of the
adversarial loss Ladv in the parameter updates to influence the losses of both the
generator and discriminator.

The initial phases of the encoder training, particularly before the participation
of the discriminator, show a rapid decrease in loss values, showing the encoder’s
quick adaptation to the fundamental structures within the speech data. This phase
is crucial for establishing a baseline understanding of the inherent patterns of the
speech in the different emotional states (Amused, Angry, Disgust and Sleepy) and
the different representations (prosodic and spectral).

As training progresses, the loss curves exhibit gradual stabilisation, with less
obvious decreases in loss values. This stabilisation reflects the excellent performance
of the encoder in learning and its capacity to balance objectives of minimising
both the Kullback-Leibler loss LKL and the reconstruction loss Lrecon. The
KLD component encourages the encoder to produce a latent representation that
approximates a standard Gaussian distribution, promoting the generative aspect of
the model, while the reconstruction component ensures that the encoded features
can be effectively reconstructed back into meaningful speech data.

As for the generator, during the initial grey area, where the discriminator does
not participate in training, the loss curves for all eight models exhibit relatively
stable and convergent trends. This phase is critical for the generator as it focuses on
minimising the reconstruction loss Lrecon, without the adversarial component coming
into training. The convergence observed in this phase indicates the generator’s
capability to learn and reproduce the input features accurately, laying a foundational
understanding of the data without the pressure of fooling the discriminator.

Transitioning into the white area, post 11, 000 iterations, the introduction of the
discriminator into the training process marks a significant shift in the generator’s loss
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4. Frame-to-Frame Emotional Voice Conversion

behaviour. The adversarial loss component, magnified by a large weight, injects a
competitive dynamic into the training, aiming to enhance the generator’s ability to
produce realistic outputs that can fool the prediction by the discriminator. The
result is a notable value increase in loss oscillations, reflecting the generator’s
adjustments in response to the feedback of the discriminator. These oscillations
signify the learning struggle and adaptation, as the generator endeavours to optimise
both reconstruction and adversarial objectives.

The discriminator was not active in the initial 15 epochs, roughly corresponding
to the first 11, 000 iterations and a grey area in the figure. As training progresses
beyond the grey area, the loss curves for all eight models begin to exhibit a more
stable and convergent behaviour. This stability suggests that the discriminator
is effectively learning to distinguish between the ground truth and the generated
emotional speech features as it receives training updates.

Among all three figures, the distinction between the prosodic and spectral
models in terms of their loss curves indicates different learning dynamics, due
to the inherent differences in the complexity and characteristics of the prosodic
and spectral features. Besides, the difference among four emotional states in
the same representation reflects the inherent complexity of each emotional state.
Following the human perception tests, it was observed that all converted speech
samples exhibited excellent intelligibility and clear emotional expressions, while the
speech quality did not meet the desired level of satisfaction. However, due to the
considerable expense associated with systematic subjective evaluations, particularly
in terms of time, a subjective evaluation was specifically applied to the improved
Dual-VAE-GAN EVC system, as detailed in Section 4.4.3.3.

4.4.3 Optimisation of VAE-GAN

The experiment described above demonstrates that the speech quality of the
converted speech produced by the Dual-VAE-GAN EVC system is not sufficiently
satisfactory. Consequently, it is crucial to design and investigate effective and
practical improvements to enhance the system’s performance.

4.4.3.1 Optimisation of Process

The first approach to improving the Dual-VAE-GAN EVC system draws inspiration
from the existing EVC system’s process. As outlined in Section 2.2 and
depicted in Figure 4.3, the current ETTS system—whether based on CycleGAN
or VAE-GAN—incorporates a speech-to-speech EVC module. In the upper part of
Figure 4.22, the input text is processed by Tacotron 2, generating 18-dimensional
BFCCs and 2-dimensional pitch features. LPCNet then synthesises neutral speech
using these 20-dimensional features. The synthetic speech is subsequently processed
by a feature extractor to obtain F0 and SSEs (or MCEPs in CycleGANs), which
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Figure 4.21: Loss Curves of EVC System of Dual-VAE-GAN with EmoV-DB
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(c) Discriminator Loss LD
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Figure 4.22: Comparison between ETTS Systems with the Different Features
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the EVC model converts to emotional features. Finally, emotional speech is
reconstructed using these converted features.

However, the current ETTS process involves two feature extraction stages and
two speech synthesis stages, due to the differing feature sets used in the TTS
and EVC modules. This procedure can be optimised for both performance and
synthesis speed by unifying the feature sets used in both modules. As illustrated
in the lower part of Figure 4.22, the new approach involves directly converting the
extracted features to emotional BFCCs and pitch features within the EVC module.
LPCNet then reconstructs the emotional speech using these converted features. This
procedure reduces information loss and accelerates synthesis.

Three different frameworks for this optimisation are proposed, as shown in
Figure 4.23. The first approach involves converting a concatenation of BFCCs and
pitch features using a single VAE-GAN model, which considers the relationship
between prosodic and spectral features. The second approach employs two separate
VAE-GAN models to convert BFCCs and pitch features independently. The third
approach is inspired by the Mono-CycleGAN EVC model described in Section 4.3.3,
where BFCCs are converted using a VAE-GAN model, while a linear transformation
is applied to pitch features. This method leverages the physical similarities between
prosodic features, as well as between spectral features.

However, experiments with all three approaches revealed that the speech quality
and intelligibility of the converted speech were compromised. The primary reason
for this is that LPCNet is an autoregressive model, meaning that the content of each
timestep is generated based on the prediction from the previous 16 timesteps [62].
This characteristic makes the current prediction heavily dependent on the accuracy
of previous predictions, as errors from earlier timesteps accumulate in future
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Figure 4.23: Three Approaches for Process Optimising on VAE-GAN EVC Model
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Figure 4.24: Schematic Diagram of Forced Alignment with Aeneas

speech.wav

"They may become their

parents helpers."

Aeneas

f000001,0.000,0.320,"they"

f000002,0.320,0.520,"may"

f000003,0.520,0.760,"become"

f000004,0.760,0.960,"their"

f000005,0.960,1.480,"parents"

f000006,1.480,2.000,"helpers"

predictions. As a result, mapping the neutral and emotional features in a way that
LPCNet can effectively utilise proves challenging and may require a significantly
large dataset for training.

4.4.3.2 Improvement of Performance

Given the similarities between VC and EVC tasks, exploring approaches that have
proven effective in non-parallel VC could offer valuable insights for EVC research.
One promising approach leverages the text input available in cascade ETTS systems,
which has shown to be effective in VC by incorporating linguistic information.

Phonetic Posteriorgrams (PPGs) are 2-dimensional representations that display
the posterior probabilities of specific phonetic classes over time [212]. PPGs
have been widely studied across various domains, including VC [129, 166], accent
conversion [213, 214] and singing voice conversion [215, 216], due to their ability to
enhance model performance by incorporating linguistic information. For example,
in one VC study, a pre-trained ASR model was used to predict PPGs for both
the encoder and decoder of a VAE model, ensuring speaker-independent phonetic
content [129].

In the context of a cascade ETTS system, the input is already text-based,
providing direct access to linguistic information, rendering the use of an ASR model
unnecessary. A more suitable technique to leverage this linguistic information is
Forced Alignment. Forced alignment uses input speech and its corresponding text
transcription—obtained either from ground truth or any ASR system—to align
them, producing an output similkear to PPGs but with the actual words included
instead of posterior probabilities.

For this experiment, Aeneas [217] was chosen as the toolkit to align the speech
signal with the text transcription, as illustrated in Figure 4.24. In this figure, the
output columns represent the ID, start timestamp, end timestamp and the aligned
word. By applying Aeneas for alignment, one can extract linguistic information,
which is then fed into the encoder along with acoustic features, according to the
distribution of the pronunciation. This integration of precise linguistic information
aims to enhance the performance of the EVC model.
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4.4.3.3 Objective and Subjective Evaluation

The implementation of the improvement above led to both objective and subjective
evaluations of the proposed EVC system. Initially, the system’s real-time
performance was assessed, achieving an RTF of 2.47. Additionally, three objective
evaluation metrics, as introduced in Section 3.1.4, were selected to compare the
proposed EVC system against the baseline, namely MCD, Log-Spectral Distortion
(LSD) and RMSE of F0. Ten different Neutral speech samples from the EmoV-DB
dataset were chosen to be converted by both EVC models, with the converted speech
samples in all 4 emotional states, including Amused, Angry, Disgust and Sleepy,
being evaluated. Firstly, to compare speech samples of differing lengths, DTW was
applied to all converted samples. Following this, the three metrics were calculated
between the ground truth samples and the converted speech samples by the baseline,
and then the same calculations were performed for the proposed EVC system and
the ground truth. Thus, the comparison between the proposed and baseline EVC
systems is presented in Table 4.1.

The results indicate that the proposed EVC system outperforms the baseline in
Amused and Sleepy, with Sleepy achieving the best performance, which includes an
MCD of 6.23 (baseline: 6.26), an LSD of 5.85 (baseline: 5.98) and an F0-RMSE of
72.85 (baseline: 75.57). However, the proposed EVC system does not perform as
well in Angry and Disgust under these three evaluation criteria.

Considering that the objective of EVC is not to generate speech identical to the
ground truth emotional speech, the objective evaluation results above can only serve
as a useful reference for model performance. Hence, subjective evaluation, based on
human perception, is more convincing and necessary.

The subjective evaluation encompassed both the neutral TTS system introduced
in Section 2.2 and the proposed EVC system. The entire evaluation setup involved
14 participants affiliated with the University of Augsburg or the Munich Research
Centre of Huawei. Eight different sentences from the evaluation set of the EmoV-DB
dataset were randomly selected, and the corresponding neutral and four emotional
speech samples were subsequently chosen. After obtaining the ground truth samples,
the synthetic neutral speech samples and the converted emotional speech samples
derived from them were also prepared. As a result, a total of 8×[(1 + 4) + (1 + 4)] =
80 samples were included.

To conduct the subjective evaluation, a questionnaire was designed, beginning
with 5 self-evaluation questions, including:

1. I am an empathic person, e.g. I get sad or angry during dramatic scenes in
movies.

2. I can easily hear and identify how a person feels in a phone conversation. I
don’t need to see them to recognise their emotions.
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Table 4.1: Objective Evaluation Results of EVC System with VAE-GAN

(a) Amused

Model MCD LSD F0-RMSE

Baseline 6.86± 0.80 6.096± 2.19 100.54±11.32

Proposed 6.80±0.79 5.71±2.07 100.91± 10.61

(b) Angry

Model MCD LSD F0-RMSE

Baseline 6.97±0.75 5.32±1.63 101.37±9.03

Proposed 7.39± 0.86 6.11± 1.54 103.14± 11.16

(c) Disgust

Model MCD LSD F0-RMSE

Baseline 5.29±0.52 3.58±1.22 76.09±7.56

Proposed 5.35± 0.53 4.50± 1.87 79.17± 7.21

(d) Sleepy

Model MCD LSD F0-RMSE

Baseline 6.26± 0.42 5.98± 2.92 75.57± 9.10

Proposed 6.23±0.37 5.85±2.94 72.85±9.10

MCD: Mel-Cepstral Distortion
LSD: Log-Spectral Distortion
F0-RMSE: Root Mean Square Error of F0
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3. I am musically trained, e.g. I can play a musical instrument.

4. High audio quality in media is important to me, e.g. I own high-end speakers.

5. I am good at predicting other people’s behaviour, e.g. I know how my actions
will make others feel.

All questions were followed by five options: Strongly disagree, Disagree, Neutral,
Agree and Strongly agree. The objective of these questions was to allow participants
to self-evaluate their performance in emotional perception, speech quality tolerance
and their speech-related experience.

Following the self-evaluation, all 80 samples were presented to the participants
one by one, accompanied by five questions with specific evaluation criteria.
Participants were required to answer these questions based on the sample they had
just heard. These questions include:

1. What emotion do you think of the voice expressed?

1 - Neutral, 2 - Amused, 3 - Angry,

4 - Disgust, 5 - Sleepy

2. If NOT neutral, what do you think of the intensity?

1 - Very weak, 2 - Weak, 3 - Moderate,

4 - Strong, 5 - Very strong

3. How close to human would you rate the voice speaking?

1 - Not at all, 2 - A little bit close, 3 - Close,

4 - Very close, 5 - Extremely close

4. Do you think the voice is clear and understandable?

1 - Strongly disagree, 2 - Disagree, 3 - Neutral,

4 - Agree, 5 - Strongly agree

5. How much do you like the voice speaking?

1 - Not at all, 2 - Hardly, 3 - Moderately,

4 - Greatly, 5 - Extremely
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Figure 4.25: Confusion Matrix of Subjective Emotion Recognition Results
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These five questions were designed based on different criteria. The first question
focused on subjective SER, where participants were asked to select the emotion they
perceived. The subsequent questions addressed emotional intensity, naturalness,
speech quality and likeability, each using a MOS test, with a range from 1 to 5 and
an interval of 1. The order of sample presentation was structured as follows: all 10
samples sharing the same linguistic content were grouped, with the order of these 8
groups decided randomly. Within each group, the sequence of the ground truth and
the synthetic samples expressing different emotional states was entirely randomised.
This setup allowed participants to continuously listen to and evaluate a group of
samples with identical linguistic content, while the random order within each group
prevented habitual decisions.

The subjective evaluation of the neutral TTS system has been detailed in
Section 2.2.6, but its results are included here for completeness. Initially, the
SER results of all ground truth samples are presented as a confusion matrix in
Figure 4.25a as a baseline. The emotional expression of the ground truth samples
from the EmoV-DB dataset is clearly perceptible, as indicated by the diagonal line
from upper left to lower right in the figure. The best performance was observed in the
Sleepy emotion, where all 112 samples were correctly classified. However, the Disgust
emotion had the lowest performance, with an accuracy of 59 / (8× 14) = 52.7 %.

Figure 4.25b illustrates the SER results of the proposed neutral TTS and
EVC systems. Overall, the neutral TTS system performs well, as discussed in
Section 2.2.6, while the proposed EVC system does not fare as well. Notably, none
of the converted Sleepy samples were correctly recognised. However, to differentiate
whether the emotional expression is incorrect or merely weak, the information within
the first column from the left—which indicates how many synthetic samples were
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classified as Neutral—is useful. If an emotional sample is classified correctly or
as Neutral, but not as another emotional state, it can be considered ‘acceptable’.
According to this criterion, the acceptable rates for Amused, Angry, Disgust and
Sleepy are 75.9 %, 84.8 %, 75.9 % and 75.0 %, respectively.

Given that most of the converted samples were not classified correctly in terms
of emotional expression, the MOS test results on intensity are not particularly
insightful. Therefore, an analysis of naturalness, speech quality and likeability is
more pertinent. Figure 4.26a presents a bar chart of perceived naturalness, with
the blue bins representing ground truth samples and the red bins representing
synthetic/converted samples. The neutral TTS system achieved the best result, with
an average score of 3.1, compared to 4.7 for the ground truth. The proposed EVC
system averaged around 1.5, while the ground truth samples averaged around 4.3.
Since the proposed emotional samples were converted from synthetic neutral speech,
the score difference between them—approximately 1.6—merits further attention.

The fourth question in the questionnaire assesses the quality of the speech, and
the results are shown in Figure 4.26b. The synthetic Neutral speech and the ground
truth achieved scores of 4.0 and 4.6, respectively. In contrast, the proposed emotional
speech attained a score of about 2.6, resulting in a difference of 1.4 compared to the
neutral speech.

Likeability, which measures how much the participants enjoyed the speech
sample, is determined by the last question in the questionnaire. As depicted in
Figure 4.26c, the difference between the converted emotional and the neutral speech
is 1.2, with the former scoring 1.8 and the latter 3.0. Although the likeability
results are the best among the three MOS-based evaluation methods, there remains
a significant gap compared to the neutral TTS system across all criteria.

In summary, the proposed EVC system has three main strengths. Firstly, despite
being based on the neutral TTS system using Tacotron 2 and LPCNet, it can be
directly implemented on any neutral TTS system to accomplish the ETTS task.
Secondly, it offers a smaller RTF, decreasing from around 5.5 to 2.5 compared to the
Dual-CycleGAN EVC system, as presented in Section 4.3.2. Lastly, the proposed
EVC system is trained using a non-parallel dataset and is speaker-independent,
reducing the dataset requirements compared to other parallel-trained EVC models.

On the other hand, the system has some weaknesses. The first is that it only
converts prosody and pitch at the frame level, so the converted speech and the input
neutral speech have the same length. However, the pronunciation duration of the
same word can vary across different emotional states. For example, Sleepy speech
tends to be longer, while Angry speech tends to be shorter. This is one reason
why the emotional expression does not perform well, according to the results above.
The second weakness is that the proposed EVC system relies on speech-to-speech
conversion, which results in a longer synthesis time (TTS + EVC) due to the
two feature extraction phases and two voice synthesis phases, as explained in
Section 4.4.3.1. Feature-to-feature conversion could shorten the conversion time.
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Figure 4.26: Bar Charts of the MOS Test Results
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Therefore, further research and improvement of the EVC technique are necessary,
based on the invaluable evaluation results and discussion in this section.

4.4.3.4 Further Investigation

Besides the evaluation questions introduced in Section 4.4.3.3, several participants
left extra comments on their questionnaires. The most valuable opinion was that
the speech quality influences the perception of emotional expression. Therefore,
to address all problems revealed by the evaluation, the highest priority should be
given to optimising the speech quality. The first factor considered was the vocoder.
According to the attempt described in Section 4.3.4, both prosodic and spectral
features are essential rather than the sole spectrogram for EVC. Although novel
vocoders based on Mel-spectrograms have achieved great performance, WORLD
is still an excellent vocoder based on F0 and SSEs. Thus, two different feature
extraction functions provided by WORLD, dio() and harvest(), were compared,
and harvest() performed better in the extraction of F0. The converted speech using
harvest() eliminates the clicking sound but results in a slightly longer extraction
time.

The second aspect concerns the framework of the current ETTS system. The
proposed EVC system converts synthetic speech generated by the neutral TTS
system, and the converted samples in the subjective evaluation were produced in
this way. However, the training of the EVC model is based on natural speech
recordings. There are two main differences between the training and inference
phases: the speaker and the naturalness. During training, the model learns the
mapping between the ‘natural’ speech of speakers in the ‘EmoV-DB’ dataset. In
contrast, during inference, the model is required to convert the ‘synthetic’ speech
of the speaker in the ‘Blizzard 2011’ dataset. Therefore, bringing the training data
closer to the data used in the inference phase is one potential way to improve speech
quality. Two different experiments were designed and implemented: the first used
natural samples from the Blizzard 2011 dataset as training data, while the second
used synthetic samples generated by the neutral TTS system, with the speaker being
the same in both training sets. Results showed that both models performed worse
than the proposed EVC system, likely because both models had to learn additional
information due to the speaker differences between the source and the target samples.
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5

Sequence-to-Sequence Emotional
Voice Conversion

EVC is defined as the conversion of speech from one ‘source’ emotional state to
another ‘target’ emotional state [78, 147]. The term ‘conversion’, used in both EVC
and VC, has led most mainstream studies to focus on frame-to-frame methods,
as introduced in Sections 4.1 and 4.2. However, the frame-to-frame method has
inherent disadvantages in conversion tasks, especially in EVC, where emotional
expressions are involved.

The most significant disadvantage is that emotion is inherently suprasegmental
and complex, involving multiple signal attributes related to both prosody and
spectrum. The frame-to-frame EVC method, particularly when converting prosody
and spectrum separately, is insufficient [78]. Additionally, because of the
frame-to-frame conversion, the input and output have the same number of frames,
meaning that the converted speech and the source speech have the same duration.
However, it is widely understood that the duration of the same sentence can vary
depending on the emotional expression. In other words, speech rates differ when
expressing different emotional states, even for the same speaker. Lastly, emotional
expression in speech often appears only in parts or certain words, which is not always
captured by the frame-to-frame method. Therefore, a new solution is necessary to
address these issues currently encountered in frame-to-frame conversion, and this
new solution is called sequence-to-sequence.

5.1 Sequence-to-Sequence Emotional Voice

Conversion

In this section, sequence-to-sequence learning, as the core of sequence-to-sequence
EVC research, is introduced first. Next, the challenges associated with applying
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Figure 5.1: Architectural Framework of Sequence-to-Sequence Model

DecoderEncoder

sequence-to-sequence learning are explained. Following this, state-of-the-art studies
are organised and analysed from different perspectives.

5.1.1 Sequence-to-Sequence Learning

Sequence-to-sequence learning was initially proposed for machine translation
tasks [39] and has since demonstrated its effectiveness in several speech processing
and synthesis tasks [20, 218, 219]. A typical sequence-to-sequence model
consists of two main modules: the encoder and the decoder. Unlike in a
standard Autoencoder model, where the decoder generates the output at one
time [176], sequence-to-sequence models generate predictions iteratively. The
previous prediction, along with the encoded information, is used as the input to
the decoder until the entire sequence is generated [39].

The framework diagram of a typical sequence-to-sequence model is illustrated
in Figure 5.1. The source sequence X = (x1, x2, x3, · · · , xm) is first processed
by the encoder to extract information H that will be utilised by the decoder.
On the other side, the decoder begins with the ⟨SOS⟩ token to predict the first
frame ŷ1 using the encoder’s output. The predicted frame ŷ1 is then treated as
a new input for the decoder to predict the next frame ŷ2. This inference process
continues iteratively until the ⟨EOS⟩ token is generated, resulting in the generated
sequence Y = (ŷ1, ŷ2, ŷ3, · · · , ŷn). Algorithm 2 explains the sequence-to-sequence
learning process in pseudocode, clearly demonstrating that the lengths of the
generated sequence and the source sequence are not necessarily equal. This flexibility
allows sequence-to-sequence models to generate outputs of variable lengths, which
is particularly beneficial for tasks such as machine translation between different
languages [39].
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Algorithm 2: Sequence-to-Sequence Learning

Input: Source Sequence: (x1, x2, x3, · · · , xm), m ∈ R+

Start of the Sequence Token: ⟨SOS⟩
End of the Sequence Token: ⟨EOS⟩
Max Length: L ∈ R+

Output: Sequence (ŷ1, ŷ2, ŷ3, · · · , ŷn), n ∈ R+, n ≤ L
1 H← Encoder((x1, x2, x3, · · · , xm))
2 ŷ0 ← ⟨SOS⟩
3 i← 0
4 while i ≤ L do
5 i += 1
6 ŷi ← Decoder(ŷi−1,H)
7 if ŷi = ⟨EOS⟩ then
8 return (ŷ1, ŷ2, ŷ3, · · · , ŷi−1)
9 end

10 end
11 return (ŷ1, ŷ2, ŷ3, · · · , ŷL)

5.1.2 Sequence-to-Sequence in EVC

Returning to the three disadvantages of frame-to-frame EVC methods discussed
earlier in this chapter, sequence-to-sequence models offer solutions to all of them,
at least to some extent. Sequence-to-sequence models have demonstrated superior
performance in the joint conversion of prosody and spectrum in EVC tasks [78],
as compared to frame-to-frame models, which have been shown to be inadequate
for this purpose in previous studies (Sections 4.3.4 and 4.4.3.1). Furthermore,
sequence-to-sequence models can produce variable-length outputs, meaning the
duration of the converted speech is not fixed, which can significantly enhance
emotional expression.

A similar problem exists in machine translation, related to the relationship
between specific words in the source sentence and the current predicted word. This
issue was not fully appreciated until the attention mechanism was introduced [41], as
discussed in Section 2.1.3. In the context of EVC, attention mechanisms can assign
greater weight to the more relevant parts of the source speech when predicting the
converted speech.

To summarise, the application of sequence-to-sequence learning in EVC offers
three main advantages over frame-to-frame methods:

1. Sequence-to-sequence models can simultaneously learn feature mapping,
alignment and duration prediction.
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2. Sequence-to-sequence models avoid errors that arise from the separate
mapping of prosody and spectrum.

3. The attention mechanism enables sequence-to-sequence models to focus on
emotionally emphasised parts of the speech.

However, sequence-to-sequence training typically requires a large dataset to
enable the model to learn effectively [220]. Section 3.1.3 has reviewed and analysed
publicly available emotional speech datasets, revealing that few datasets contain
large volumes of speech samples. Additionally, the training data must be parallel,
a requirement not necessary for some frame-to-frame models [151, 156]. This is
because, in sequence-to-sequence EVC, the decoder synthesises speech starting from
the ⟨SOS⟩ token, meaning all the information the decoder needs must be provided
by the encoder and the input speech. In contrast, in frame-to-frame EVC, it suffices
for the model to learn the mapping of prosody and spectrum since the source speech
provides some information, such as linguistic content, during the conversion.

This represents a significant challenge for the adoption of sequence-to-sequence
models in EVC research, and it has so far hindered this paradigm from becoming
dominant in the field. The following section will introduce and discuss six key
perspectives of sequence-to-sequence EVC research, based on current state-of-the-art
studies [186, 187, 221, 222, 223, 224].

5.1.3 Challenges and Attempts

The introduction of sequence-to-sequence learning to EVC research began with a
study focused on the conversion of F0 [186]. This approach employed a three-step
procedure: extracting F0, transforming it, and applying the resulting contour to the
signal. This method enabled the conversion of any neutral speech to a specific
emotional category. Although F0 contains less information compared to other
commonly used features, this pioneering study laid the groundwork for further
research in the field.

One of the key challenges in EVC, similar to VC, is addressing mispronunciations.
To tackle this, TTS was integrated into sequence-to-sequence EVC models to
guide linguistic information, moving away from text supervision techniques used in
VC [225] and reducing reliance on text [187]. This study also overcame the limitation
of one-to-one EVC models, such as the one proposed in [186], by introducing a
many-to-many EVC model. This model employed a reference speech that conveyed
the target emotion, providing direction for the conversion process.

Given the limited size of available emotional speech datasets, researchers have
sought to minimise the number of required training samples. For instance, manually
balancing word distribution and increasing the proportion of uncommon words in a
dataset have demonstrated improved training efficiency and stability, even with fewer
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training samples [221]. Additionally, implementing an emotion encoder enabled the
development of a one-to-many model capable of converting high-quality emotional
speech.

However, manual preprocessing of datasets is both time-consuming and costly.
A more efficient solution should focus on the model itself. To this end, a two-stage
training strategy was proposed to enhance the performance of many-to-many EVC
models using only a small-sized parallel emotional dataset [223]. In the first stage,
a TTS dataset (with neutral speech samples) was used to initialise the style. This
was followed by a stage of emotion training using the small-sized parallel emotional
dataset.

The studies mentioned above predominantly focused on the emotional categories
expressed by the converted speech, but human emotional expression also involves
varying intensities. To control the intensity of emotional expression, one approach
manipulated a weight that was multiplied by the emotional embedding [222].
Another approach trained the model with variations in intensity without explicit
annotations, achieving this with a smaller training set than the former method [224].

5.1.4 Training Strategy

In the training phase of a classic sequence-to-sequence model, its inherent
architecture introduces two significant challenges. Firstly, since the decoder
generates the frame for the current timestep based on the frame generated in the
previous timestep [39], errors tend to accumulate as the sequence progresses. This
accumulation makes it difficult for the model to converge, especially when dealing
with long sequences. Secondly, the generation process is time-consuming because
each frame must wait for the previous frames to be generated before it can proceed.
To address these issues, the training strategy known as Teacher-Forced Learning is
commonly employed. In teacher-forced learning, instead of feeding the generated
frames back into the decoder, the ground truth (target) frames are used as input.
This approach prevents error accumulation by ensuring that the decoder is always
working with the ‘correct’ input, rather than potentially flawed generated frames.
Additionally, teacher-forced learning significantly speeds up the training process
through parallel training since the need to wait for the sequential generation of
frames is eliminated [218].

Beyond these general strategies, specific challenges in EVC necessitate specialised
training approaches. One such approach is multi-task learning, which was introduced
into sequence-to-sequence EVC to address issues of mispronunciation and training
instability [187]. In this approach, TTS is implemented as a secondary task. The
input text is encoded into a linguistic embedding by a text encoder, while the
original EVC task is performed by a content encoder, which generates the linguistic
embedding from the source speech. During training, the model alternates between
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performing either EVC or TTS. This form of alternating multi-task learning helps
the model avoid mispronunciation errors by leveraging the strengths of both tasks.

To mitigate the requirement for a large-sized training set, a two-stage training
strategy was investigated for sequence-to-sequence EVC [223]. This strategy begins
with style initialisation using a large neutral TTS dataset, followed by emotional
fine-tuning on a smaller emotional dataset. Additionally, a pre-training task
involving VC has been shown to benefit EVC due to their inherent similarities [221].

Furthermore, adversarial training has been applied to enhance the
disentanglement of style/emotional information from linguistic information. This
is achieved by adding an emotional classifier that helps to remove emotional
information from the linguistic embedding [223]. A similar strategy involves
incorporating emotion supervision training with a pre-trained SER module.
Recognising that the reconstruction loss between the target and converted speech
does not adequately capture human emotional perception—which is the ultimate
evaluation metric in EVC—a SER module is introduced to compute two perceptual
losses: emotion classification loss and emotional embedding similarity loss. These
perceptual losses help optimise the emotional perception of the converted speech.

5.1.5 Model Architecture

The simplest sequence-to-sequence model architecture for EVC includes one encoder,
one decoder, and one attention module. In this basic setup, the encoder processes
the extracted features from the input speech and generates a context vector, which is
then used by the decoder—along with the previous frames—to produce the converted
features. The attention mechanism plays a crucial role by providing an explicit
alignment between the input (source) and the output (converted) speech.

However, to enhance the extraction of different types of information from the
speech signal, multiple encoders can be employed, with each encoder dedicated
to handling a specific kind of information. For instance, a sequence-to-sequence
EVC model was developed using three individual encoders: a style encoder, a
content encoder and a text encoder [187]. In this architecture, the style encoder
focuses on extracting style embedding from a reference speech sample, while the
content encoder and text encoder are designed to extract linguistic embeddings from
the source speech and the input text, respectively, facilitating multi-task learning.
During TTS training, the style embedding, along with the linguistic embedding from
the text, is sent to the decoder to reconstruct emotional speech. In EVC training,
the source speech is used instead of the text to obtain the linguistic embedding,
allowing the model to perform both TTS and EVC based on the input type after
training.

The application of additional encoders also brings other advantages to the EVC
model. For example, incorporating a speaker encoder, which disentangles speaker
information, enables the model to utilise multi-speaker datasets during training [221,
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222]. The speaker encoder extracts speaker information, which in turn enhances the
extraction of other relevant information from the speech.

To further optimise the extraction of linguistic information, adversarial learning
is applied by introducing an emotion classifier alongside the encoders mentioned
above [223]. Although linguistic information can be obtained by the content encoder,
residual emotional information may still be present in the extracted linguistic
embedding, necessitating further elimination. The emotion classifier is used to
ensure that sufficient speaker information is included while irrelevant emotional
information is excluded.

Conversely, from a different perspective, a source decoder and a target decoder
were utilised to ensure that the linguistic embedding contained the necessary
information [222]. This approach helps maintain the relevance and quality of the
linguistic embedding during the conversion process.

Building on this, two additional modules—an intensity encoder and a pre-trained
SER module—were introduced to control emotional intensity and enhance the
emotional expressiveness of the output speech [224]. Based on the assumption that
emotional intensity can be viewed as the relative difference between neutral speech
(zero intensity) and emotional speech, relative attributes were employed to train
the emotional intensity model without explicit labels. The intensity embedding,
which can be derived from reference speech or manually set, is then concatenated
with the emotional embedding. The combined embedding is fed into the decoder to
reconstruct the emotional speech with the desired intensity.

The pre-trained SER model also contributes to improving performance by
generating two perceptual losses [224]. An emotion classification loss is computed
by classifying the converted emotional speech using the SER model and comparing
it with the ground truth emotional category. Additionally, an emotion embedding
similarity loss is calculated by comparing the emotion embedding from the emotion
encoder with the SER embedding derived from the converted speech. Visualisation
of the results showed that these perceptual losses help the emotion encoder better
discriminate between different emotion categories.

Moreover, other modules like the length regulator, which aligns the lengths of
the encoder outputs with the decoder inputs, and the Connectionist Temporal
Classification (CTC) recogniser [226], implemented after the decoder to guide
alignment, have been shown to successfully improve the performance of EVC
models [221]. These modules contribute to more accurate and expressive
emotional speech conversion by addressing alignment and temporal aspects in the
sequence-to-sequence learning process.

5.1.6 Datasets

As discussed in Section 5.1.2, a large-sized dataset is crucial for achieving
good performance in sequence-to-sequence training [220]. Specifically,

95



5. Sequence-to-Sequence Emotional Voice Conversion

sequence-to-sequence EVC training requires a large, parallel, one-speaker and
emotional dataset. For example, the mKETTS dataset, a Korean emotional speech
dataset, was used in EVC [187]. This dataset contains 3, 000 utterances per
emotional category, all spoken by one male speaker, with 7 emotional categories in
total (Neutral, Anger, Disgust, Fear, Happiness, Sadness and Surprise).

In contrast, a smaller dataset with only 200 emotional speech samples (10
sentences × 4 emotional categories × 5 levels of intensity) was used in another
study [186], which included the emotions Anger, Joy, Fear and Sadness. This small
dataset was sufficient because the conversion was performed at the syllable level,
with the model being trained on approximately 1, 100 syllable pairs after forced
alignment [227].

The inclusion of a speaker encoder has expanded the range of available datasets
from single-speaker datasets to multi-speaker datasets. For instance, a Chinese
emotional speech dataset featuring 3 speakers, 3 emotional categories (Anger,
Happiness and Sadness), and a total of 6 hours of recordings was used to fine-tune
a pre-trained VC model for EVC [221]. Similarly, a Korean dataset containing 100
sentences across 4 different emotional categories (Neutral, Anger, Happiness and
Sadness), performed by 5 male and 5 female actors, resulting in a total of 4, 000
samples, was also utilised [222].

Modifications to the training strategy have made it possible to use datasets that
were originally unsuitable. For example, in the first stage of a two-stage training
strategy, approximately 30 hours of recordings from 99 speakers in the VCTK
multi-speaker neutral dataset [69] were used. This was followed by fine-tuning with
only 350 pairs of emotional speeches from the ESD dataset [99], enabling the model
to incorporate emotional expression and improve performance [223, 224].

These examples highlight the flexibility and adaptability of sequence-to-sequence
EVC training, demonstrating that both dataset size and training strategies play
critical roles in achieving effective emotional voice conversion.

5.1.7 Model Inputs

Most sequence-to-sequence EVC studies have utilised Mel-spectrograms as the
primary acoustic feature [187, 221, 222, 223, 224], but different vocoders have been
employed to synthesise the final speech output. For instance, researchers have used
vocoders such as Parallel WaveGAN [228], WaveRNN [61] and HiFi-GAN [44]. An
exception to this trend is found in a study focusing on syllable-level conversion,
where the F0 contour was chosen as the feature. The converted F0 contour was then
used to reconstruct the speech using the SuperVP vocoder [229].

A critical aspect of EVC is the control of the target emotion. Beyond
the straightforward one-to-one EVC [186], there are three primary methods to
introduce target emotion information into the model. The most direct approach
involves feeding an emotion ID into the emotion encoder [221]. Alternatively,
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a reference speech sample can be used during the inference phase to guide the
model [187]. Another method involves using emotional embeddings, which are
calculated by averaging a set of emotional embeddings from the same emotional
category [222, 223, 224].

5.1.8 Evaluation Methods

Both objective and subjective evaluation methods have been employed in
state-of-the-art EVC studies. Objective evaluation typically involves calculating a
specific measure of difference or correlation between the output and the target. For
example, WER [187, 221] and Character Error Rate (CER)[221], commonly used
metrics in ASR, were utilised to assess the linguistic consistency of the emotion
conversion. Additionally, other metrics focus on the acoustic perspective. For
instance, MCD was used in three studies to measure the distortion between the
converted and target speech[222, 223, 224]. Furthermore, VDE, GPE, FFE [222] and
Difference of Duration (DDUR) [223, 224], which calculates the duration difference
between the converted and target speech, were employed to evaluate the performance
of the EVC model.

Subjective evaluation involves asking human participants to listen to the output
samples and provide their subjective opinions based on given perspectives. For
example, MOS, the most popular metric in TTS, VC and EVC, was used in five
sequence-to-sequence EVC studies to assess dimensions such as clarity, naturalness
and similarity [187, 221, 222, 223, 224]. Additionally, the ABX test, which asks
participants to identify whether a provided sample X belongs to class A or B, was
used in one study [222]. Best-Worst Scaling (BWS), another evaluation metric that
identifies extreme items (best and worst) [230], was applied in a study also on clarity,
naturalness and similarity [223, 224]. Moreover, subjective SER was conducted in
another study, where 87 participants were asked to select the emotion category they
perceived from the given speech [186].
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Table 5.1: Information of Reviewed Sequence-to-Sequence EVC Papers

Paper Highlights
Feature Set
& Vocoder

# of
Samples

Language
Emotional
Model

Evaluation
Methods

[186]
First work

Syllable-level conversion
F0 contour
SuperVP

∼1 100
syllables

French One-to-one SSER

[187] Multi-task learning
Mel-spectrogram

Griffin-Lim
21 000 Korean Many-to-many

WER CS
MOS ABX

[221]
Redundancy reduction

CTC leverage
EVC fine-tuning

Mel-spectrogram
HiFi-GAN

6 000 Chinese One-to-many
WER CER

MOS

[222]
Multi-speaker dataset
Context preservation
Emotional intensity

Mel-spectrogram
Parallel WaveGAN

4 000 Korean One-to-many
MCD VDE
GPE FFE

MOS ABX SSER

[223]
Two-stage training

Small dataset
Mel-spectrogram

WaveRNN
350 English Many-to-many

MCD DDUR
MOS BWS

[224]
Style pre-training

Small dataset
Emotional intensity

Mel-spectrogram
Parallel WaveGAN

350 English Many-to-Many
MCD DDUR
MOS BWS

ABX: ABX test BWS: Best-Worst Scaling CER: Character Error Rate CS: Cosine Similarity
CTC: Connectionist Temporal Classification DDUR: Differences of Duration FFE: F0 Frame Error
GPE: Gross Pitch Error MCD: Mel-cepstral Distortion MOS: Mean Opinion Score
SSER: Subjective Speech Emotion Recognition VDE: Voicing Decision Error WER: Word Error Rate
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5.2 Application: Transformer and EmoV-DB

As described in Section 4.2.3.3, RNNs, including variants like LSTM-RNN and
GRU-RNN, were designed to handle sequential data in machine learning. However,
their inherent recurrent nature prevents them from processing data in parallel [231].
While CNNs are capable of computing much faster than RNNs [232], they lack
the ability to effectively manage long-range dependencies in sequential data [233].
To overcome the limitations of recurrence in RNNs and convolutions in CNNs, the
Transformer model architecture processes sequential data differently by relying solely
on the attention mechanism [43].

5.2.1 Transformer

The architectural figure of the Transformer is presented in Figure 5.2. The most
innovative aspect of the Transformer is its use of Scaled Dot-Product Attention,
which is applied in the Self-Attention, Masked Self-Attention and Encoder-Decoder
Attention blocks depicted in the figure. For example, given two sequences, X =
(x1, x2, x3, · · · , xm) and X′ = (x′1, x

′
2, x
′
3, · · · , x′n), their scaled dot-product attention

can be computed starting with the Keys, Values and Queries:

ki = WK · xi
vi = WV · xi
qi = WQ · x′i

(5.1)

where WK , WV and WQ are three trainable parameter matrices. Then, queries q
and the key matrix K = (k1, k2, k3, · · · , km) are used to compute the weight vector
α:

αi = softmax(
KT · qi√

dK
) (5.2)

where dK denotes the dimension of the key matrix. Using the value matrix
V = (v1, v2, v3, · · · , vm) and the weight vector α, the context matrix C =
(c1, c2, c3, · · · , cm), which is also the output of the attention module, is computed as
follows:

ci = V · αi (5.3)

To summarise, the equation for scaled dot-product attention between two
sequences is expressed as:

attnsdp(X,X
′) = softmax(

(WK ·X)T · (WQ ·X′)√
dK

) · (WV ·X) (5.4)
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Figure 5.2: Architectural Framework of Transformer
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Alternatively, in the form of query, key, and value:

attnsdp(Q,K, V ) = softmax(
KT ·Q√

dK
) · V (5.5)

In the Transformer, the encoder-decoder attention is computed using the output
of the encoder and the output of the masked self-attention (explained later) in the
decoder. As an autoregressive generative model, the input to the decoder begins
with an ⟨SOS⟩ token, denoted as t̂0. This token is then sent into the decoder,
where the output is regarded as t̂1 and fed back into the decoder as the new input.
This process continues until the ⟨EOS⟩ token is generated as the l-th token, or the
maximum length l is reached. The final output is T̂ = (t̂1, t̂2, t̂3, · · · , t̂l).

The purpose of applying self-attention in the Transformer is to compute a
representation of a sequence by capturing the relationships and dependencies
between tokens within the same sequence. The computation of self-attention
is performed using one sequence instead of two; for example, in the encoder,
it is computed as attnsdp(S,S), where S is the input sequence to the encoder.
However, considering the complex nature of the decoder’s input, especially during
teacher-forced training, information from future tokens (those to the right of the
current token) cannot be used. To prevent improper usage, the values of future
tokens in the attention mechanism are set to −∞, resulting in no contribution from
future information, and it is called masked self-attention [43].

Furthermore, to enhance the representational power of the Transformer, multiple
scaled dot-product attentions are computed instead of just one, with each individual
attention denoted as a Head [43]. The computation process for multi-head attention
is expressed as:

multihead(Q,K, V ) = WO · concat(head1, head2, · · · , headh),

headi = attnsdp(Qi, Ki, Vi)
(5.6)

where WO is a parameter matrix used to project the concatenated outputs of the
different heads back to the original model dimension.

Both the encoder and the decoder consist of attention layers, feed-forward layers
and layer normalisation layers. Additionally, a residual architecture [234] is applied
to the connections between the layers, as shown in Figure 5.2. With a linear layer and
a softmax operation (for the original machine translation task of the Transformer)
following the decoder, the main architecture of the Transformer is established.

However, without a recurrent or convolutional architecture, the model cannot
leverage information from the token order in the sequence, which is essential for
understanding the sequence deeply [43]. Therefore, the inputs to both the encoder
and decoder need to be augmented with positional information. Instead of using the
simplest discrete method (0, 1, 2, · · · ) or trainable encoding, the Transformer applies
sine and cosine functions to smooth variations between tokens:
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pe(p, i) =

sin(
p

10000i/d
), if i is even

cos(
p

10000i/d
), if i is odd

(5.7)

where p and i indicate the position and the dimension, respectively. d denotes the
dimension of the model. The positional encoding pe(p, i) has the same dimension
as the input, so they are added together and sent into the network.

Despite the excellent performance in machine learning tasks, the Transformer
has several advantages:

1. Parallelisation. The Transformer benefits from its self-attention mechanism,
allowing it to process the source sequence in parallel, which saves time
compared to the sequential processing of RNNs, particularly during the
training phase.

2. Long-range Dependencies. The Transformer can capture and learn
long-range dependencies in a sequence, which is not the strength of CNNs.
Even compared to RNNs, which specialise in sequential data, the Transformer
achieves better performance [43].

3. Scalability. It is easy to scale the Transformer according to the size of the
training dataset and the complexity of the task by adjusting the dimensions,
the number of encoder and decoder layers, the number of heads, etc.

However, the Transformer still struggles in several aspects and under certain
circumstances:

1. Computational Complexity. The Transformer requires substantial
computational resources due to the self-attention process, especially when
dealing with complex tasks.

2. Data Efficiency. The Transformer needs a large amount of training data
to achieve convergence. While RNNs require smaller training sets, benefiting
from a better understanding of sequential information.

3. Sequential Adaptability. Although the Transformer introduces sequential
information through positional encoding, RNNs still surpass it in exploiting
sequential information due to their inherent recurrence.

The Transformer has demonstrated its exceptional performance in a wide range of
machine learning tasks. Besides its original application in machine translation [43,
235], other studies focusing on NLP [236, 237], CV [238, 239], CA [40, 240] and
multimodality [241, 242] have achieved remarkable results using the Transformer.
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Moreover, Large Language Models (LLMs)—the most powerful application of neural
networks—are also built on the Transformer architecture [243, 244]. Therefore, in
this section, the Transformer is selected as the fundamental architecture to explore
the capability of the sequence-to-sequence model in the EVC task.

5.2.2 Pilot Experiment

This section begins the exploration of Transformer-based models within the EVC
field. A pilot experiment was designed to evaluate the performance of the
Transformer on a parallel emotional speech dataset, focusing specifically on a
one-speaker conversion from Neutral to Angry emotion.

Given the demonstrated success of Mel-spectrograms in state-of-the-art
systems [187, 221, 222, 223, 224], the 80-dimensional Mel-spectrogram was selected
as the acoustic feature. The high complexity of the Transformer, while beneficial
for capturing complex patterns, also demands significant computational resources.
This complexity justified the choice to replace the conventional ‘F0 + MCEPs/SSEs’
scheme with the Mel-spectrogram in this experiment.

For the model architecture, the original Transformer configuration [43] was
largely retained, including 6 encoder layers, 6 decoder layers, and 8 attention heads,
to mitigate the influence of model complexity on the performance. However, the
dimension of the source sequence was adjusted to 80, in contrast to the original 512
dimensions. The MSE loss function was employed, and a teacher-forced training
strategy was used to accelerate the training process.

Data for this experiment was sourced from the EmoV-DB dataset [100],
specifically focusing on the Neutral and Angry samples of the speaker Spk-Je.
Given the noted issues with speech quality (as discussed in Section 3.2.4), a strict
data cleaning procedure was conducted. This process addressed problems such as
incorrect ID-sample pairings and inaccurate transcripts. After manual selection,
Spk-Je was chosen over another female speaker due to a more balanced distribution
of Neutral and Angry samples. The initial count of 417 Neutral and 496 Angry
samples was reduced to 364 pairs post-cleaning. The dataset was then split into a
training set (287 pairs), a validation set (72 pairs) and a test set (5 pairs).

The Adam optimiser was employed with a learning rate of 1 × 10−4 and a
decay rate of 0.1. The training was conducted on a single NVIDIA® TITAN X
graphics card, with a batch size of 8, reflecting the computational demands of the
Transformer. The results of this pilot experiment are presented in Figure 5.3.

During training, both the training and validation losses decreased significantly
within the first 40, 000 iterations. The lowest validation loss recorded was 0.295
MSE after 84, 600 training iterations, with the training loss at 0.259. However,
despite the low MSE, the perceptual quality of the reconstructed speech (by using
HiFi-GAN [44]) was poor, with the converted speech lacking linguistic clarity. This
suggests that while the Transformer model effectively learned the acoustic features,
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Figure 5.3: Loss Curves of Pilot Experiment of Transformer EVC with EmoV-DB
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the reliance on teacher-forced learning may have led to overfitting, as evidenced by
the model’s failure to generalise well without teacher forcing, where the validation
loss plateaued around 30.

5.2.3 Optimisation of Training Strategy

Despite the generalisation drawbacks of teacher-forced learning, it offers the
advantage of accelerating the training process in Transformer models by enabling
parallel computation. Additionally, by using ground truth data instead of generated
outputs, this approach helps prevent the accumulation of errors during the
step-by-step generation process, leading to more efficient parameter updates [245].
To address the issue of generalisation while maintaining the error-prevention
benefits, several strategies were implemented and tested. These strategies aimed to
enhance the generalisation capability of the model without sacrificing the advantages
provided by teacher-forced learning.

5.2.3.1 Non-Teacher-Forced Fine-Tuning

The first approach to improving performance involved fine-tuning the pre-trained
model, initially trained with teacher-forced learning, using non-teacher-forced
learning. Essentially, this process removes the dependency on ground truth during
fine-tuning. Given that the pilot experiment showed the model had successfully
learned to convert the ground truth into the target, the next step was to train
the model to perform the task during the inference phase, using the converted
Mel-spectrogram to generate the subsequent frame. The best-performing model
from the pilot experiment, trained for 84, 600 iterations (2, 350 epochs), was selected
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Figure 5.4: Loss Curves of Non-Teacher-Forced Fine-Tuning of Transformer EVC
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for fine-tuning without teacher-forced learning. The results of this fine-tuning are
presented in Figure 5.4.

As depicted in the figure, the absence of ground truth data initially caused the
training loss to increase from 0.259 to 14.551, after which it gradually decreased, as
anticipated. However, the minimum loss value only converged to 13.215, which is
significantly higher than that in the pilot experiment. A similar pattern was observed
in the validation loss, which initially dropped to 12.338 but then showed an upward
trend. This outcome indicates that the pre-trained model did not benefit from
fine-tuning with generated features in an autoregressive manner. It also confirms
the earlier hypothesis that the pre-trained model was overly reliant on ground truth
data.

5.2.3.2 Semi-Teacher-Forced Learning

The key to successfully transitioning the model from training to inference lies in
addressing the differences between the ground truth frames and the generated
frames. To reduce the model’s reliance on ground truth, Semi-Teacher-Forced
Learning was introduced, a technique previously applied in the study of
autoregressive End-to-End ETTS models [97]. Semi-teacher-forced learning
incorporates both the ground truth and the generated frames to produce the next
frame. Mathematically, it sends the mean of the ground truth and generated frames
into the decoder, rather than relying solely on the ground truth. The equations
describing teacher-forced learning, semi-teacher-forced learning and the inference
phase are expressed as follows:
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Figure 5.5: Loss Curves of Semi-Teacher-Forced Training of Transformer EVC
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Teacher-Forced: ŷn+1 = model(yn)

Semi-Teacher-Forced: ŷn+1 = model(
yn + ŷn

2
)

Inference: ŷn+1 = model(ŷn)

(5.8)

where yn and ŷn represent the ground truth frame and the generated frame at time
step n, respectively.

An experiment was conducted with the same configuration as the pilot
experiment, except for the training strategy, and the results are shown in Figure 5.5.
Since the model was trained from scratch, the training loss decreased significantly
from 29.799 to a minimum of 13.266, while the validation loss converged from 14.966
to 12.420. However, this MSE value indicates that the model did not generalise
well to the validation set despite using semi-teacher-forced learning. This outcome
suggests that while semi-teacher-forced learning helps mitigate over-reliance on
ground truth and improves generalisation to some extent, it still falls short in terms
of fitting the validation data, particularly with a small training set.

5.2.3.3 Semi-Teacher-Forced Fine-Tuning

The final training strategy employed was fine-tuning the pre-trained model
using semi-teacher-forced learning. The same pre-trained model described in
Section 5.2.3.1 was utilised, and the results are illustrated in Figure 5.6.

After experiencing severe oscillation at the start, both the training and validation
loss curves eventually declined to relatively low values, although slight rising
trends were observed thereafter. The fine-tuned model, which exhibited the lowest
validation loss, was achieved after an additional 14, 400 iterations (99, 000−84, 600),
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Figure 5.6: Loss Curves of Semi-Teacher-Forced Fine-Tuning of Transformer EVC
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reaching a loss value of 1.147. This outcome demonstrates a significant improvement
compared to the non-teacher-forced fine-tuning strategy. However, the results
remain unsatisfactory in terms of speech reconstruction from a human perceptual
evaluation. Additionally, the training speed was notably impacted by the use
of generated frames, as the generation of each frame required waiting for the
computation of all preceding frames.

While the aforementioned experiments on training strategies have yielded some
results, the overall performance in terms of human perception remains unproductive.
Although the models perform well with ground truth during training, their
performance deteriorates drastically when ground truth is removed. This indicates
the necessity for alternative strategies that specifically address the gap between the
training and inference phases.

5.2.4 Optimisation of Data Augmentation

The Transformer model has demonstrated its powerful capability in converting
ground truth to the target, as evidenced by the experimental results discussed
earlier. However, the model’s heavy reliance on ground truth during training
highlights a significant limitation. Specifically, the model’s performance is highly
dependent on the size of the dataset, with larger datasets offering greater potential
for optimisation. Given the strict limitation on the availability of parallel emotional
speech datasets, employing data augmentation techniques becomes a more practical
approach in this context.

Data augmentation encompasses a variety of techniques that artificially increase
the size of a dataset based on existing data, thereby providing more training samples
for neural networks [246]. This approach has proven effective in mitigating the
overfitting problem that often arises from insufficient training data [247]. In the
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field of speech processing, several commonly used data augmentation methods exist,
including adding noise, time masking, time warping, time stretching, time shifting
and filtering [248]. Additionally, generative neural networks offer another approach
to synthesise samples for augmenting training data [162].

It is important to note, however, that while data augmentation methods can
effectively enlarge a dataset, each method may also introduce negative effects on
model training. For example, time shifting has been successful in addressing
issues and performing well in recognition tasks [249]. However, in generative
tasks—particularly those that require a parallel dataset—time shifting can create
more challenges than it resolves. Therefore, careful consideration must be given to
the choice of data augmentation methods. In this study, several data augmentation
techniques were explored, with adding noise being the first method investigated.

5.2.4.1 Adding Noise

Adding noise as a data augmentation technique has been well-explored in ASR
research, where it has been shown to enhance performance, particularly in terms
of reducing the WER [250]. While noise can negatively impact the quality of
converted speech, its influence can be readily assessed and controlled through human
perception. To increase the dataset size, Gaussian noise with four different SNRs was
applied to all samples from the EmoV-DB dataset. This augmentation expanded
the dataset by five times. The selected SNRs, ranging from 46 to 52 with an interval
of 2, were chosen to ensure that the augmented samples remained clear and easily
intelligible, creating a noticeable difference from the original samples.

Given the promising results of semi-teacher-forced learning from previous
experiments, this method was used to train the model from scratch. Although
semi-teacher-forced learning slows down the training process compared to
teacher-forced learning, the primary goal here is to generate intelligible speech. The
training results are presented in Figure 5.7.

The data augmentation approach using noise significantly improved model
performance compared to the experiment without augmentation (Figure 5.5). The
training loss dropped to a minimum of 6.068, and the validation loss reached 6.312
MSE after approximately 430, 000 iterations. In contrast, the baseline model without
data augmentation only managed to achieve a validation loss of 12.420. This
experiment demonstrates that data augmentation can effectively optimise the model,
although further investigation into additional augmentation methods is necessary.
Despite the improvements, the converted speech with an MSE of 6.312 remains
unintelligible, indicating that noise alone is insufficient for producing high-quality
speech and that other techniques should be explored.
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Figure 5.7: Loss Curves of Transformer EVC with Adding Noise
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5.2.4.2 Time Masking and Removal

The second data augmentation method implemented in this study was time masking,
a technique introduced to ASR research through methods like SpecAugment [251].
In SpecAugment, time masking is performed consecutively by selecting a starting
point and a duration, both sampled from a uniform distribution within a preset
mask parameter. Time masking has been shown to be more efficient than other
methods like time warping and frequency masking in ablation studies.

However, directly applying this consecutive time masking to a generative task like
EVC presents challenges. The primary concern is that consecutive masking disrupts
the parallel alignment between source and target speech samples, a critical aspect of
the conversion process. Additionally, as an autoregressive model, the Transformer
relies on accurate prediction of ⟨EOS⟩ token to cease generation, and the applied
masking could interfere with this prediction.

To address these concerns, an alternative scheme was adopted: removing 5 %
of frames from the Mel-spectrogram instead of masking them. These frames were
selected randomly, and this process was repeated four times to create an augmented
dataset equal in size to the previous one. The discrete frame removal method is
better suited to the generative nature of the task, and the processed speech remains
intelligible and of decent quality.

The results of this experiment, depicted in Figure 5.8, indicate that time removal
outperforms noise addition. The training loss reached a minimum of 4.635, compared
to 6.068 achieved by adding noise. Similarly, the validation loss for time removal
was lower, converging to 4.460 after approximately 950, 000 iterations.

In addition to time removal on the Mel-spectrogram, a similar approach was
tested, involving time removal on the waveform itself. However, human perception
tests revealed that removing 5 % of the waveform had a more negative impact on
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Figure 5.8: Loss Curves of Transformer EVC with Removing Mel-Spec. Frames
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Figure 5.9: Loss Curves of Transformer EVC with Removing Waveform Frames
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speech quality than removing frames from the Mel-spectrogram. To mitigate this,
1 % of the waveform was randomly removed, and this process was repeated four
times, resulting in an augmented dataset five times the size of the cleaned EmoV-DB.

The results for time removal on the waveform, presented in Figure 5.9, show that
this approach performed worse than noise addition. The training loss converged to
an MSE of 6.502, while the validation loss reached a minimum of 6.790. The poorer
performance can be attributed to the additional processing required to extract the
Mel-spectrogram from the modified waveform, which introduces more uncontrolled
modifications to the acoustic features used for model training.
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Figure 5.10: Loss Curves of Transformer EVC with Time Stretching
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5.2.4.3 Time Stretching

In the context of emotional speech, the speech rate is a critical factor for conveying
emotional expression, making temporal data augmentation methods such as time
warping and time stretching particularly cautious to implement. While methods
like SpecAugment use time warping on selected parts of the Mel-spectrogram, this
approach is not ideal for generative tasks like EVC. The challenge lies in finding
a method that minimally affects emotional expression while producing sufficiently
diverse new samples.

To address this, a linear time stretching technique was applied to the entire
speech sample with ratios of [0.90, 0.95, 1.00, 1.05, 1.10], resulting in an augmented
dataset comparable in size to those generated by the other methods previously
discussed. The results of this time-stretching approach are shown in Figure 5.10.

Among the data augmentation techniques tested, time stretching yielded the
best performance. The training loss started at 25.435 and steadily decreased to a
minimum of 1.972. The validation loss also reached an impressive low of 2.058 after
approximately 880, 000 iterations.

However, despite these promising quantitative results, a human perception test
revealed that the intelligibility of the converted speech was still insufficient. This
suggests that while time stretching effectively enhanced the model’s performance
according to the loss metrics, it did not fully address the challenges of generating
clear and intelligible speech, highlighting the ongoing need for more refined data
augmentation methods or alternative strategies in the training process.
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Figure 5.11: Loss Curves of Lighter Transformer EVC
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5.2.5 Optimisation of Model Architecture

In neural networks, increasing model depth can often lead to overfitting, particularly
when dealing with smaller datasets, which can subsequently degrade performance.
This has prompted the exploration of reducing model complexity as a potential
solution, especially for training with limited data. In the experiments discussed
earlier, the default Transformer configuration—comprising 6 encoder layers, 6
decoder layers and 8 attention heads—was applied uniformly. However, given the
constraints of the EmoV-DB dataset, even with data augmentation, such a deep
model may have hindered performance.

To address this, the model complexity was reduced by decreasing both the
encoder and decoder layer numbers to 4 and the number of attention heads to 4.
Other configurations remained consistent with the previous experiments to facilitate
a clear comparison. The results of this experiment are depicted in Figure 5.11.

In the initial experiment with the default Transformer configuration, the best
validation performance achieved was an MSE of 12.420 using semi-teacher-forced
learning. Conversely, the lighter model improved this significantly, reducing the
validation MSE to 6.695 after approximately 944, 000 iterations. This suggests that
a lighter model configuration is indeed more effective when working with a small
dataset, offering better generalisation and training efficiency.

Following this promising result, the lighter model configuration was applied to
the augmented dataset generated by time stretching. This experiment, using the
same settings as described earlier in the context of data augmentation, yielded the
results shown in Figure 5.12.

As anticipated, the Transformer benefited from both data augmentation and
the lighter architecture, resulting in the best performance observed across all
experiments implementing semi-teacher-forced learning. After 423, 000 iterations
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Figure 5.12: Loss Curves of Lighter Transformer EVC with Time Stretching
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(or 2, 350 epochs), the training loss reached a low of 1.224, with the validation MSE
at 1.261. This represents the most effective result achieved, surpassing previous
efforts with both the original and augmented datasets.

To further evaluate whether a lighter model architecture could improve
performance across various data augmentation methods, the same lighter
Transformer was tested with the augmented datasets previously discussed. The
results, summarised in Table 5.2, reveal that the lighter Transformer improved
performance primarily with the original and time-stretched datasets. Conversely,
the methods involving time removal did not yield better results; in fact, the MSE
increased when the model size was reduced, particularly with time removal on
the Mel-spectrogram. This can be attributed to the disruption of speech signal
continuity, which poses a challenge for a lighter generative neural network in
predicting future frames. This trend underscores the importance of preserving
continuity in generative tasks, as evidenced by the superior performance of the
time-stretched dataset with the lighter model, similar to the original dataset.

Despite these advances, the intelligibility of the converted speech remains a
challenge. While the model achieved low MSE on the validation set, this success
was partly due to the semi-teacher-forced learning strategy. The significant drop
in performance when ground truth is removed from the decoder input highlights
the need for strategies that can bridge this gap. By mitigating or eliminating the
reliance on ground truth during inference, the model’s performance could improve,
potentially leading to more intelligible speech outputs.

5.2.6 Optimisation of Scheduled Sampling

The phenomenon observed in the previous experiments is not an isolated case but
is known as Exposure Bias. This term describes a situation where an autoregressive
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Table 5.2: Results of the Lighter Transformer with Data Augmentation Methods

Model Original AN TR-M TR-W TS

Training
Default
Lighter

13.266
6.303

6.068
—

4.635
6.236

6.502
6.798

1.972
1.224

Validation
Default
Lighter

12.420
6.695

6.312
—

4.460
6.134

6.790
6.674

2.058
1.261

AN: Adding Noise
TR-M: Time Removal on Mel-spectrogram
TR-W: Time Removal on Waveform
TS: Time Stretching

model is trained exclusively using the ground truth from the training set, rather
than its predictions, which is common in teacher-forced learning. The primary
consequence of exposure bias is that errors tend to accumulate during generation
when the model relies on its own predictions, leading to degraded performance.
Although semi-teacher-forced learning attempts to address this by incorporating
model predictions during training, the reliance on ground truth has still been evident
in the experiments. Therefore, techniques that address exposure bias must be
explored and implemented.

One such technique is Scheduled Sampling, which has been shown to mitigate the
effects of exposure bias and improve the performance of Transformers. Scheduled
sampling, similar to semi-teacher-forced learning, encourages the model to use its
predictions during training. However, unlike semi-teacher-forced learning, which
averages the ground truth and predictions, scheduled sampling operates at the frame
level, requiring two decoders that share parameters.

The scheduled sampling process involves the following steps:

1. Encoding. Similar to the standard Transformer process, the encoder
generates an output from the source sequence, which is then fed into both
decoders.

2. Ground Truth Prediction. The first decoder predicts the Golden Output
using the encoder output and the ground truth target. However, this decoder
is not updated at this stage.

3. Decoder Input Mixing. The golden output and ground truth target
are mixed at the frame level according to a predefined mixing ratio, which
determines the proportion of ground truth frames.
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Figure 5.13: Illustration of the Application of Scheduled Sampling in Transformer
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4. Mixture Training. The second decoder, which is updated during training,
uses this mixed sequence alongside the encoder output to make predictions.
The parameters of the second decoder are shared with the first.

Scheduled sampling offers a distinct advantage over semi-teacher-forced learning
in terms of efficiency. While semi-teacher-forced learning requires predictions
for each frame sequentially, scheduled sampling only needs two predictions per
batch—one from the first decoder for the golden output, and one from the second
decoder for the final output.

A crucial aspect of scheduled sampling is the Decay Schedule [252], which
smoothly transitions the model from relying on ground truth during training to using
its predictions. The linear decay schedule is one such approach, where the proportion
of ground truth frames decreases gradually, eventually reaching zero. This method
aims to eliminate the dependency on ground truth as training progresses.

In addition to scheduled sampling, Voice Activity Detection 1 was applied to
further clean the dataset, leaving 361 pairs of Neutral and Angry speech samples.
A subset of 355 pairs was used for training, with the remaining 6 pairs reserved for
the test set. To maintain consistency between the training and inference phases,
as well as aim for more intuitive validation results, the autoregressive method was
employed during validation.

Given the success of time stretching as a data augmentation technique, an
extended version of the dataset was created by stretching speech samples with ratios

1https://pytorch.org/hub/snakers4_silero-vad_vad/
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Figure 5.14: Loss Curves of Transformer EVC with Linear Decay Schedule
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ranging from 0.90 to 1.10, in intervals of 0.02. This resulted in a significantly larger
training set of 3, 905 pairs.

The final modification was made to the model architecture. Due to the similarity
between the VC and EVC tasks, a Transformer-based VC model was reproduced
and implemented for the current task to optimise performance [219]. Compared to
the previous Transformer, the current model applies a prenet to both the encoder
and the decoder, where the prenet consists of two linear layers and increases the
input dimension from 80 to 256. Correspondingly, a postnet is utilised to transform
the decoder output back to the 80-dimensional Mel-spectrogram. To assist in the
training of the encoder and decoder, a source decoder and a target decoder are
respectively connected to their outputs, attempting to restore the source input and
the target from the output features. Finally, guided attention loss is introduced to
the model for better alignment between the encoder and the decoder.

Although there are many modifications to the model, the key focus is the
effectiveness of the scheduled sampling. The first implemented decay schedule is the
Linear Decay Schedule [252]. Let ϵ be the proportion of the ground truth frames:

ϵ =
number of ground truth frames

number of all frames
(5.9)

Linear Schedule: ϵ = max(0, 1− 0.001t)× 100% (5.10)

where t denotes the t-th epoch in the training phase. According to Equation 5.10,
the proportion of the ground truth will linearly decrease from 100 % to 0 over 1, 000
epochs. The result is shown in Figure 5.14, where the orange line indicates the decay
schedule in the ground truth ratio.

The results show that the discrepancy between training and inference (test) is
significant, even though scheduled sampling was applied. The MSE of the training
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Figure 5.15: Loss Curves of Transformer EVC with Stepped Decay Schedule
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set decreases dramatically and reaches a very low level after only a few epochs. This
performance was expected since the model was basically trained using teacher-forced
learning with around 100 % of the ground truth ratio. However, the MSE of the
converted test speech reaches 7.420 at the 9th epoch, then increases and eventually
stabilises around 14. This is a typical manifestation of overfitting, where the model
relies excessively on the ground truth.

Therefore, another experiment was designed and implemented, applying a
Stepped Decay Schedule:

Stepped Schedule: ϵ = max(0, 0.5− 0.05(⌊t/100⌋))× 100% (5.11)

where the operation ⌊a/b⌋ indicates integer division. Under this schedule, the
ground truth ratio starts at 50 %, then decreases by 5 % every 100 epochs, eventually
reaching 0 after 1, 000 epochs. The stepped schedule aims to train the model at the
same ratio for a longer period. The starting ratio was set to 50 % to alleviate the
model’s dependency on the ground truth. The result of the stepped decay schedule
is shown in Figure 5.15.

As anticipated, the MSE curve of the training set is flatter than in the previous
experiment, as the participation of the ground truth in model training is reduced.
Additionally, the MSE curve of the test set also changes: the MSE drops during
the first 50 epochs, remains roughly flat for about 250 epochs, and then increases
as the ground truth ratio decreases. This result indicates that the stepped decay
schedule’s objective has been achieved.

However, the lowest MSE of the test set does not improve significantly compared
to the linear decay schedule, where the MSE decreases from 7.317 to 7.118. This
result is not significant enough, and an MSE of 7.118 on the Mel-spectrogram is not
sufficient to reconstruct intelligible speech. The experimental results in this section
demonstrate that simply modifying the training strategy cannot resolve model
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overfitting. Improving training with limited resources still requires modification
of the training data.

5.3 Application: Information Disentanglement

Currently, the overfitting problem is primarily caused by the limited size of the
training set, which originally includes fewer than 300 pairs of samples. These
sample pairs are drawn from one speaker and one emotional pair (Neutral/Angry).
However, the dataset contains many more samples that are not being utilised.
For instance, considering the newer ESD dataset, which includes 10 speakers, 5
emotional categories and 350 samples, this results in 10×5×350 = 17, 500 qualified
samples (excluding the Chinese samples). If all these samples can be utilised in
training, the model would likely benefit significantly from the expansion of the
training data.

5.3.1 Information Disentanglement

In Section 5.2, the model aimed to convert a single speaker’s speech from Neutral
to Angry. Since the Mel-spectrogram was chosen as the acoustic feature, it is a
conventional approach to convert the Mel-spectrograms of the speaker to achieve
this goal. If emotional expression can be converted independently, speech samples
from other speakers can also be used to train the emotional conversion model, as
the speaker information is neither involved nor altered. For the same reason, the
transcripts of the source and target speech do not necessarily need to match. In other
words, the constraint of parallel sample pairs is removed in sequence-to-sequence
EVC.

Moreover, converting the Mel-spectrogram solely to alter emotional expression
can be seen as an overly complex approach. Since the Mel-spectrogram is the only
feature used, and it can be reconstructed into speech by a vocoder, it contains
nearly all the information of the speech. However, in this task, only the emotional
expression needs to be processed. Therefore, the model can shift from the complex
task of modelling the entire Mel-spectrogram to focusing on the simpler task of
modelling emotional expression in speech.

To summarise, a potential strategy to utilise more training samples in the dataset
is to separate the emotional information from the source speech, convert it to another
emotional category, and reconstruct the output speech using the converted emotional
information along with the other information from the source speech. Although
different studies use varying terminologies for this separation process [221, 222, 223,
224, 253], in this section, this process is referred to as Information Disentanglement.

The application of information disentanglement is based on the assumption
that speech characteristics comprise several types of information, including
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speaker information, style information (e.g., speech rate, prosody) and emotional
information [222]. Therefore, emotional information can be extracted from speech
and converted independently. For example, emotional information can be extracted
and averaged across the same category as an emotional vector. The target
emotional vector, speaker vector (encoded by speaker ID) and the extracted source
linguistic information are then used to reconstruct the converted speech [222]. This
‘speaker + linguistic + emotional’ scheme is also employed in other state-of-the-art
studies [221, 253]. Additionally, a simpler binary ‘linguistic-emotional’ scheme is
used in one-speaker EVC studies that also achieve excellent results [223], even in
controlling emotional intensity [224].

Given the success of applying information disentanglement in
sequence-to-sequence EVC, the ‘speaker + linguistic + emotional’ scheme is
selected as the system architecture. Moreover, all three representations are
expected to be extracted from the speech, rather than relying on ID-based
representation [221, 222]. To accomplish this, three encoders, each dedicated to
extracting one specific representation, are required instead of a single encoder.

Unlike previous experiments where the emotional state is converted to another
state directly, information disentanglement enables the extraction of information
and the ‘assembly’ of speech using emotional information disentangled from another
speech sample rather than the original one. This ‘arbitrary assembly’ capability
allows for training with multi-speaker and multi-emotion datasets.

Furthermore, since the speech information can be extracted and reassembled
by the model, the trained model is not only capable of performing EVC (changing
emotional information while preserving speaker and linguistic information) but also
VC (changing speaker information) and even linguistic content conversion (changing
linguistic information). The application of information disentanglement will create
a comprehensive system capable of handling various speech-related generative tasks.

5.3.2 Exclusive Information Validation

After determining the system architecture, ensuring that each encoder extracts the
corresponding information becomes essential. Two studies introduced an emotional
classifier applied to the linguistic embedding to eliminate emotional information
from the embedding [223, 224]. Inspired by this, a solution is proposed that not
only eliminates unnecessary information but also preserves the required information,
named Exclusive Information Validation (EIV).

Taking the emotional encoder as an example, its purpose is to extract output
containing emotional information. Therefore, an emotional classifier is applied to
supervise the emotional encoder using the following loss function:
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Lemo→emo
EIV = −

C∑
i=1

yemo
i · log ŷemo→emo

i (5.12)

where the superscript emo→ emo indicates that the loss is computed by using the
extracted ‘emotional’ representation and the ‘emotional’ classifier. yemo represents
the ‘emotional’ label, and ŷemo→emo is the prediction of the ‘emotional’ classifier
when fed with the extracted ‘emotional’ representation. And C is the number of
classes.

Since the emotional representation is intended to be correctly recognised by
the emotional classifier, the loss computation uses the classic cross-entropy loss.
However, while the emotional classifier ensures that the representation contains
emotional information, it does not guarantee the exclusive presence of emotional
information. For instance, the emotional representation could still contain speaker
information without affecting the classifier’s performance. Therefore, a speaker
classifier is implemented to eliminate speaker information using the MSE loss:

Lemo→spk
EIV =

1

C

C∑
i=1

(ŷemo→spk
i − 1

C
)2 (5.13)

where C is the number of classes, and ŷemo→spk denotes the prediction of the ‘speaker’
classifier when fed with the extracted ‘emotional’ representation.

Since the goal is to eliminate any speaker information rather than preserving
incorrect speaker information, the training target for ŷemo→spk is a uniform
distribution

[
1
C
, 1
C
, · · · , 1

C

]
, indicating that the classifier is ‘confused’ due to the

absence of required information.
Thus, during the training phase, all three encoders and both classifiers are

connected to guide the encoders in extracting the corresponding information. If
the encoder and classifier types are the same, Equation 5.12 is used to compute the
loss value. Otherwise, the loss function is Equation 5.13 to eliminate unnecessary
information. The total EIV loss is computed as follows:

LEIV = λemo
EIVLemo

EIV + λspkEIVL
spk
EIV

Lemo
EIV = Lemo→emo

EIV + Lspk→emo
EIV + Llin→emo

EIV

Lspk
EIV = Lemo→spk

EIV + Lspk→spk
EIV + Llin→spk

EIV

(5.14)

where the superscript lin stands for ‘linguistic’. λemo
EIV and λspkEIV indicate the weights

for the emotional and speaker classifiers, respectively. It is important to note that
no classifier is implemented for linguistic information. The main reason is that a
‘linguistic classifier’ would be too large and complex for the current model. To
achieve the same objectives as the other two classifiers, the ‘linguistic classifier’
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Figure 5.16: Architectural Framework of Barlow Twins
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would need to be an ASR module, which is a sequential classification task. Even
if a pre-trained ASR module were applied as the ‘linguistic classifier’, the output
would be a large uniform distribution matrix rather than a vector, adding to the
computational load. Therefore, the model is determined to use three encoders and
two classifiers.

5.3.3 Correlation Consistency Validation

The application of EIV ensures that the output of a specific encoder contains only the
intended information. However, the consistency of outputs from the same encoder,
particularly the linguistic encoder that lacks a corresponding classifier, is also crucial
for effective information disentanglement. To address this, Correlation Consistency
Validation (CCV) is introduced to the model, which is explained in this section.

Consider a pair of speech samples [E, S, L] and [E, S ′, L′], where E, S, and L
represent emotional, speaker and linguistic information, respectively. The emotional
category is the only the same information between the two samples. Therefore, after
feeding these samples into the emotional encoder, their outputs should exhibit a
high correlation. This principle of high correlation is extended to all three encoders,
ensuring that each type of information is extracted correctly and consistently.

The concept of CCV is inspired by Barlow Twins [254], a self-supervised network
architecture designed to enhance learning with large, unlabelled image datasets.
The architecture of Barlow Twins is depicted in Figure 5.16. Barlow Twins aids
the model in learning the embedding of input samples by utilising distortions.
Specifically, an input image is distorted into two images that are then processed
by an encoder to extract representations. Subsequently, a projector generates two
embeddings from these representations. Finally, the model performs matrix-matrix
multiplication on the embeddings to compute their correlation, with the training
target being an identity matrix. Notably, a weight is applied to the off-diagonal
elements during correlation computation.
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Given that Z1 and Z2 are the latent embeddings of these two distorted images,
the cross-correlation matrix P is computed as:

P = Z1Z2 (5.15)

The loss during training is computed using the cross-correlation matrix and an
identity matrix. For diagonal elements, the loss is computed as:

Lon diag =
1

N

N∑
i=1

(Pii − 1)2 (5.16)

where N denotes the dimension of the cross-correlation matrix, and Pii represents
the element in the i-th row and the i-th column of P. The loss for off-diagonal
elements is:

Loff diag =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

(Pij)
2 (5.17)

Considering the weight applied to the off-diagonal loss:

LBT = Lon diag + λoff diag Loff diag (5.18)

where λoff diag represents the weight of the off-diagonal elements.
In the proposed scheme, a similar architecture to Barlow Twins is applied.

Barlow Twins is trained to model the input image by understanding the similarity
between two distortions. This concept can be adapted to understand the similarity
between two speech samples. For example, CCV can learn the emotional information
from [E, S, L] and [E, S ′, L′] since the only sameness between them is the emotional
expression.

Consequently, three auxiliary speech samples are required during training, with
each sample sharing only one unique type of information with the original input
according to the certain encoder. Through the combined supervision of EIV and
CCV, the three encoders can effectively disentangle the information in speech for
further processing.

5.3.4 Architectural Framework

Figure 5.17 illustrates the architectural framework of the proposed system. The
system operates with two input speech samples: a source sample and a reference
sample. Specifically, the source speech provides the speaker and linguistic
information, while the reference speech supplies the emotional information. In terms
of notation, given the source speech [E, S, L] and the reference speech [E ′, S ′, L′],
the model generates the converted speech [E ′, S, L].
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Figure 5.17: Illustration of the EVC System with Information Disentanglement
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Within the system, the source speech is fed into both the speaker encoder and the
linguistic encoder to extract the speaker representation and linguistic representation,
respectively. Similarly, the emotional representation is extracted from the reference
speech by the emotional encoder. Additionally, three auxiliary speech samples are
provided to the encoders for CCV. Following this, the three extracted representations
are fed into two classifiers for EIV. Finally, all three representations are passed to
the decoder, which synthesises the converted speech.

The system builds upon the lighter Transformer architecture used in the
experiments described in Section 5.2, with all three encoders sharing the same
architecture. Each encoder consists of 4 encoder layers with 256 hidden
units, 4 attention heads and a prenet—a linear layer that transforms the input
Mel-spectrogram into a 256-dimensional embedding. Each encoder is followed
by a projector composed of three linear layers that reduce the dimension of the
representation from 256 to 20 for CCV, with ReLU activation functions. For EIV,
each classifier comprises three convolutional layers with ReLU activation functions,
followed by a linear layer.

5.3.5 Experimental Setup and Results

The ESD dataset has proven superior to the EmoV-DB dataset in terms of
quality and training results, as discussed in Section 3.2. With the introduction of
information disentanglement, it is now possible to utilise all English samples in the
ESD dataset. The dataset comprises 350 groups of speech samples, with 300 groups
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Figure 5.18: Loss Curves of Correlation Consistency Validation
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(ID 51–350) designated as the training set, 20 groups (ID 1–20) as the validation
set, and the remaining 30 groups (ID 21–50) as the test set. This equates to 15, 000
samples in the training set, 1, 000 samples in the validation set, and 1, 500 samples
in the test set. The expanded size of the training set, made possible by information
disentanglement, offers significant advantages.

During the training phase, a source speech sample, denoted as [ES, SS, LS],
is randomly selected from the training set. Two auxiliary samples, [E ′S, SS, L

′
S]

and [E ′S, S
′
S, LS], are then randomly selected for CCV of the speaker encoder and

linguistic encoder, respectively. For the reference speech, [ER, SR, LR] is randomly
chosen, while the emotional auxiliary speech sample is [ER, S

′
R, L

′
R].

The loss function for the training process accounts for both EIV and CCV, and
is expressed as:

LID = LEIV + LCCV (5.19)

LCCV = λemo
CCVLemo

BT + λspkCCVL
spk
BT + λlinCCVLlin

BT (5.20)

where all CCV losses (LCCV ) are computed using Equation 5.18 with λ = 0.05. The
weights for the emotional, speaker and linguistic encoders are represented by λemo

CCV ,
λspkCCV and λlinCCV , respectively. The optimiser used was Adam, with a learning rate
of 1× 10−5, and the batch size was set to 32.

5.3.5.1 Correlation Consistency Validation

The first experiment aims to evaluate the performance of CCV. For this purpose,
λemo
CCV , λspkCCV and λlinCCV are all set to 1, while λemo

EIV and λspkEIV are set to 0. The results
of the CCV are illustrated in Figure 5.18.
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On the training set, the losses for the emotional and speaker encoders converge
rapidly, reaching low levels after 24, 000 iterations. However, the loss curve for the
linguistic encoder flattens after approximately 200, 000 iterations, likely due to the
higher complexity of linguistic information. Additionally, all three encoders exhibit
better performance on the validation set during training. A notable exception
is the linguistic encoder, whose loss value decreases, reaching its lowest point
at 52, 680 iterations before gradually increasing. These results demonstrate that
CCV effectively benefits all three encoders, enabling them to model the correlation
between the source and auxiliary samples.

5.3.5.2 Full Experiment

The next step involves activating the training of the two classifiers, along with the
decoder that combines the three representations into the converted Mel-spectrogram.
Based on the results in Section 5.2.5, the lighter Transformer decoder, which includes
4 decoder layers and 4 heads, was integrated with the three encoders. The decoder
takes the concatenated representations as input and generates the Mel-spectrogram
autoregressively, assisted by a postnet. Additionally, a linear layer is applied at the
end of the decoder to predict if the current frame is ⟨EOS⟩ token, which signals the
termination of generation. Consequently, the MSE between the target and converted
Mel-spectrograms is computed as the sequence-to-sequence loss. A stop loss is also
incorporated, resulting in the following loss function:

LID−full = λemo
EIVLemo

EIV + λspkEIVL
spk
EIV

+ λemo
CCVLemo

CCV + λspkCCVL
spk
CCV + λlinCCVLlin

CCV

+ λS2SLS2S + λstopLstop

(5.21)

where λS2S and LS2S represent the sequence-to-sequence weight and loss,
respectively. Similarly, λstop and Lstop denote the weight and loss of the stop
prediction. All weights in Equation 5.21 were set to 1, giving equal importance
to all modules. Due to the additional modules, the batch size was adjusted from 32
to 20. The experimental results are presented in Figures 5.19, 5.20, 5.21 and 5.22.

Figure 5.19 illustrates the performance of CCV, with all curves following a similar
pattern to those in Figure 5.18. However, all three training losses converge at higher
levels, likely due to the added tasks. Consequently, the validation loss curves exhibit
greater oscillation, especially in their later stages. These results confirm that CCV
remains effective throughout the full experiment.

Regarding EIV, Figure 5.20 shows that both the emotional and speaker classifiers
achieve excellent results, with losses nearing zero. Notably, the speaker classifier
attains an outstanding cross-entropy loss of 0.025 on the validation set, while the
emotional classifier performs slightly worse, with a minimum loss of 0.848. This
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5. Sequence-to-Sequence Emotional Voice Conversion

Figure 5.19: Loss Curves of Correlation Consistency Validation in Full Experiment
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Figure 5.20: Loss Curves of Exclusive Information Validation in Full Experiment
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5.3. Application: Information Disentanglement

Figure 5.21: Loss Curves of Sequence-to-Sequence in Full Experiment
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Figure 5.22: Loss Curves of Full Experiment
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suggests that the differences in expression among speakers are more distinguishable
to the classifiers than those among different emotional states.

As for the system’s primary task, the sequence-to-sequence loss and stop loss
are depicted in Figure 5.21. The EOS predictor not only learns effectively from
the training set but also performs well on the validation set, leading to low loss
values in both cases. The sequence-to-sequence training loss consistently decreases,
showing a continuous decreasing trend even at the end of training. On the validation
set, the MSE reaches 0.263 at 90, 000 iterations, but then increases with significant
oscillation. This result is the best among all previous experiments, surpassing the
last best validation loss of 0.295 reported in Section 5.2.2.

Figure 5.22 shows the total loss curves calculated using Equation 5.21. The
training loss decreases smoothly over the iterations, while the validation loss follows
a similar trajectory with higher oscillation, reaching a minimum of 4.042. This
supports the excellent modelling and generative performance of the Transformer
architecture. However, after reconstructing the speech using the Griffin-Lim
algorithm, the converted speech exhibits clear speaker characteristics and emotional
expression, though the linguistic content remains difficult to recognise.
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5. Sequence-to-Sequence Emotional Voice Conversion

This result does not imply that information disentanglement is ineffective.
Figure 5.23 demonstrates the performance of information disentanglement using
t-Distributed Stochastic Neighbour Embedding (t-SNE) 2. t-SNE is a technique for
visualising high-dimensional data in a two- or three-dimensional map [255], and
it provides an intuitive way to assess whether an encoder preserves or eliminates
certain information. To implement t-SNE, all test set samples were passed through
the three encoders, and the output representations were processed by t-SNE. The
dimension-reduced features generated by the same encoder were plotted in the same
figure, with each point representing a speech sample. The colour of each point
corresponds to the sample’s label.

Figures 5.23a and 5.23b show the emotional representations coloured according to
emotional and speaker labels, respectively. The representations are clearly clustered
into five groups. In Figure 5.23a, the points within each group are mostly the same
colour, with only a few outliers, indicating that the emotional encoder can extract
similar representations for samples with the same emotional labels. Conversely, in
Figure 5.23b, the coloured points are chaotically distributed, suggesting that the
emotional encoder is not extracting similar representations from speech samples
of the same speaker. In other words, the emotional encoder successfully removes
speaker information from the input speech.

Figures 5.23c and 5.23d show similar results for the speaker encoder: samples
with the same emotional expression are not grouped, while samples from the same
speaker are successfully clustered. The last two figures indicate that the linguistic
encoder excludes both emotional and speaker information, resulting in disordered
colour distribution in both cases.

In conclusion, the t-SNE tests confirm that information disentanglement
successfully preserves the desired information while eliminating other information
in the emotional and speaker encoders. However, without a ‘linguistic classifier’,
the linguistic encoder can only ensure the exclusion of emotional and speaker
information, without guaranteeing the extraction of linguistic information. This
is also reflected in the lack of intelligibility of the converted speech.

5.3.5.3 Optimisation of Information Disentanglement Weights

To optimise the intelligibility of the model, it is essential to enhance the linguistic
encoder and ensure that the model focuses more on the target speech. Therefore,
several experiments were conducted, varying the weights of the linguistic encoder
and the sequence-to-sequence component to investigate their impact.

Table 5.3 presents a comparison of the results across eight different
configurations, focusing on the weights λlinCCV and λS2S. All other weights introduced
in Equation 5.21 were held constant at 1. The first row of the table shows the results

2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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5.3. Application: Information Disentanglement

Figure 5.23: Visualised Distribution of Representations by Using t-SNE

(a) emo Encoder + emo Labels (b) emo Encoder + spk Labels

(c) spk Encoder + emo Labels (d) spk Encoder + spk Labels

(e) lin Encoder + emo Labels (f) lin Encoder + spk Labels
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Table 5.3: Result Comparison among Different λlinCCV and λS2S

λlinCCV λS2S LEIV LCCV LS2S LID−full

1 1 0.923 2.799 0.263 4.042

1 2 0.894 2.791 0.258 4.009

1 5 0.922 2.825 0.261 4.052

1 10 0.977 2.832 0.257 4.099

2 5 0.886 2.805 0.259 3.996

5 5 0.924 2.841 0.260 4.045

10 5 0.965 2.833 0.262 4.088

10 10 0.983 2.837 0.262 4.099

of the previous full experiment. As demonstrated, no particular weight configuration
stood out as significantly better than the others. For the sequence-to-sequence loss
LS2S, which indicates the closeness of the converted speech to the target speech, the
lowest value of 0.257 was achieved with λlinCCV = 1 and λS2S = 10. However, this
result does not show significant superiority over the worst value of 0.263, aside from
being directly influenced by the higher sequence-to-sequence weight. Regarding the
total loss LID−full, the best result was obtained with λlinCCV = 2 and λS2S = 5 at
3.996, but this was also not substantially different from the other results.

In conclusion, information disentanglement has been shown to improve the
performance of sequence-to-sequence EVC, particularly in emotional expression and
speaker characteristics. By leveraging information disentanglement, the range of
the training set is extended, allowing for the use of multi-speaker, multi-emotion
speech samples. The introduction of EIV and CCV to the model, through the
application of two classifiers and three projectors, respectively, further enhances
its performance. However, without a classifier to guide the extraction of linguistic
information, the converted speech still lacks intelligibility. Therefore, integrating
an ASR module as a ‘linguistic classifier’ is a practical solution. This classifier
would help preserve linguistic information in the linguistic representation while
excluding it from the other two representations. Given the complexity difference
between a simple classifier and an ASR module, a pre-trained ASR module is
more practical. Additionally, multi-task learning with TTS [187] and TTS assistant
training [223, 224] are promising techniques to improve linguistic understanding.
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Challenges, Outlook and
Conclusion

To summarise, two distinct methods of computer-generated emotional expression,
including ETTS and EVC, have been introduced, implemented, analysed and
discussed. Beginning with a neutral TTS system, the research concentrated on
addressing the challenge of emotionalising speech synthesis in scenarios where
emotional speech datasets are limited. The investigation covered two ETTS
systems based on transfer learning techniques, two GAN-based frame-to-frame EVC
systems and two schemes for sequence-to-sequence EVC, all aiming to overcome
the low-resource limitation from various perspectives. Each of these techniques and
schemes represents a significant and viable direction in advancing HCI with artificial
intelligence.

However, several challenges were identified during the research and
implementation phases. This chapter introduces and discusses these challenges,
along with the outlook they present, beginning with general challenges and then
moving on to those specific to each method.

6.1 Challenges in Emotional Speech Synthesis

One primary challenge that has been repeatedly highlighted is the lack of training
resources in ESS research, where the dataset is required to be clean, large and
either text-speech parallel for ETTS or speech-speech parallel for EVC. Although
alternative solutions, such as two-stage training [223], style pre-training [224],
transfer learning (as proposed in Section 3.2) and even recent large models [253, 256]
have been developed to alleviate the need for a large parallel emotional dataset, the
main challenge for ESS remains the availability of suitable public datasets. Most
existing emotional speech datasets are either too small or lacking in quality. For
instance, the ESD dataset [99] is clean and parallel but contains only 350 groups
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of samples per speaker. In contrast, the EmoV-DB dataset [100] has more groups
of samples but includes non-speech utterances such as laughter (in Amused) and
yawning (in Sleepy). Although an ETTS system was trained using EmoV-DB, a
data cleansing process was necessary, which reduced the number of useful samples
and required additional time and resources. Thus, the collection and release of
appropriate datasets to the public would significantly advance research in this
promising field and help optimise performance.

Another concern arises from the perspective of downstream application [8]. The
application of ESS techniques is not limited to generating speech in a specific
emotional category with a certain intensity, and so on. An ideal ESS scheme would
allow users or downstream modules to adjust the nuanced emotional expression to
their desired output, which requires effective disentanglement of mixed information
in the speech [8].

The final challenge to discuss is related to comparison. Specifically, it is
challenging to compare different ETTS and EVC models, respectively. Objective
evaluation methods are not always intuitive, as they typically indicate how ‘close’ or
‘similar’ the output is to the target in specific evaluation dimensions [78]. However,
synthetic speech that is considered as ‘similar’ by objective measures is not always
perceived as such by humans. For example, the WER metric measures how many
words are incorrectly pronounced in synthetic speech. This metric is generally
interpreted as ‘the lower, the better’, aligning with human expectations for ‘good
speech’. Thus, comparing objective evaluation values across different models can be
convincing to some extent.

However, only a few objective metrics align with human perception. For instance,
the MCD metric measures the difference between the Mel-cepstrum of the output
speech and the ground truth, but it does not reflect any aspects that humans focus
on, such as emotional expression, speech quality, and naturalness.

Addressing this issue involves unifying objective and subjective evaluation
metrics. Subjective metrics are more aligned with human standards, while
objective evaluation is cheaper and faster. Promising approaches to mitigating this
challenge include using evaluation methods based on pre-trained SER and ASR
models or attempting to predict subjective evaluation scores, as targeted by the
INTERSPEECH VoiceMOS Challenge 2022 [257]. However, until these methods
mature sufficiently for practical use, subjective annotations will remain the gold
standard for ESS evaluations.

Nevertheless, subjective evaluation also has drawbacks when comparing different
models. One typical issue is participant bias between studies. For example,
individuals from different cultural backgrounds may interpret emotional expressions
in speech differently. This issue is aggravated when cultural differences involve
different native languages.

Moreover, most ESS studies do not share the synthetic speech samples used in
subjective evaluations, nor do they share the text of these samples. This makes it
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impossible to ensure a fair comparison, given that context strongly influences how
emotional expression is perceived by humans [258]. For instance, upon hearing a
sentence like ‘Great job.’, people might assume it is Happy, even if it is spoken in a
Neutral tone.

Finally, some studies are impossible to compare, even if they apply the same
subjective evaluation criteria. For example, one study might use the MOS [222]
to assess speech similarity in EVC research, while another might use BWS [224].
However, determining the ‘best’ or ‘ideal’ metric for the same criteria is difficult, as
each metric has its own focus in evaluation. Additionally, investigating all available
metrics individually would be highly labour-intensive.

In conclusion, the challenges in comparing models using both objective and
subjective evaluation metrics are significant and pressing. As ESS advances, there
will be a need for better solutions to replace simple evaluations of speech that are
independent of context or interaction scenarios [78]. New qualitative evaluation
methods will be required to identify fine-grained differences between ESS models,
considering conversational contexts and speaker intents in more detail.

6.2 Outlook for Emotional Speech Synthesis

In recent years, the development of AI and neural networks has accelerated, leading
to the rapid emergence of new models, architectures and demonstrations. In this
chapter, several innovative techniques in TTS will be introduced, which have the
potential to inspire further research in ESS.

6.2.1 Autoregressive and Non-Autoregressive Models

In statistics, an autoregressive model is defined as one that generates future outputs
where the output can be expressed linearly by using past data points [259]. However,
in generative models, the definition of an autoregressive model is broader and
is not limited to linear relationships, as long as the generation process leverages
previous information [22]. For example, the sequence-to-sequence ETTS models
(Tacotron 2 and Transformer) introduced in Sections 3.2.4 and 3.2.6, as well
as the Transformer-based EVC model in Section 5.2, can also be categorised as
autoregressive models.

Recently, the term ‘sequence-to-sequence’ has become more commonly used to
describe the task that the model performs, which is a transformation from one
sequence to another sequence. Sequence-to-sequence models take one sequence as
input and generate another sequence [39]. For instance, ETTS generates speech
sequences from textual sequences, and EVC generates speech sequences from other
speech sequences. This characteristic sets sequence-to-sequence models apart from
autoregressive models.
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A good example of an autoregressive model that is not sequence-to-sequence is
the Generative Pre-trained Transformer (GPT) series, such as GPT-3 [260]. GPT-3,
without separate encoders and decoders, understands the input text and generates
the output sequence autoregressively using a stack of Transformer decoders.
GPT-3 is not considered a sequence-to-sequence model because no translation
between domains is involved. Conversely, an example of a non-autoregressive
sequence-to-sequence model is the TTS model FastSpeech [33].

The motivation for non-autoregressive solutions lies in addressing the limitations
of autoregressive models. Firstly, due to the inherent nature of autoregression,
generating one frame requires the completion of all previous frames. Although
teacher-forced learning speeds up processing during training, it still results in long
inference times, even for CNN and Transformer-based models [32, 40]. Additionally,
errors generated at one timestep accumulate across all subsequent timesteps,
affecting output speech quality with issues like word-skipping and repeating [32].
Another challenge with autoregressive TTS models is the limited controllability
of speech rate and prosody, which are crucial for emotional expressivity [33].
This is because autoregressive models typically use trainable attention modules for
text-speech alignment, which is not an explicit solution.

FastSpeech [33] addresses these challenges through a novel architecture, shown
in Figure 6.1. Instead of the conventional encoder-decoder architecture used
in Transformers [43], FastSpeech employs a feed-forward architecture to achieve
parallel generation, significantly increasing training speed. The model uses
a multi-head self-attention mechanism and 1D convolutional networks to learn
cross-position information and adjacent relationships, respectively. Rather than
relying on the encoder-decoder attention module for alignment, FastSpeech uses
a phoneme duration predictor for hard alignment, acquired from a pre-trained
autoregressive Transformer TTS model. This design reduces error accumulation and
poor alignment, mitigating issues like word-skipping and repeating. Furthermore,
whereas conventional autoregressive models determine generation termination based
on the current generated frame, such as recognising an ⟨EOS⟩ token [39] or
predicting a stop signal [40], FastSpeech uses a length regulator. This regulator
leverages the duration of each phoneme in the sentence to determine the output’s
length.

Building on FastSpeech, FastSpeech 2 [261] introduced improvements in two key
areas. Forced alignment replaced pre-trained autoregressive text-speech alignment,
and the model introduced control over speech duration, pitch and energy through
conditional inputs. Moreover, FastSpeech 2s [261] replaces the Mel-spectrogram
decoder with a waveform decoder, creating an end-to-end TTS system. Given
the strong performance of the FastSpeech series, their potential in ETTS has been
explored through various designs [262, 263].
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Figure 6.1: Architectural Framework of FastSpeech
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6.2.2 Flow-based TTS

Deterministic models, such as Autoencoders, generate a unique output that directly
depends on the input. This means that once the model and its input are defined, the
output remains consistent. However, this deterministic nature limits the creativity
of such models in generating speech, as the objective of TTS is not merely to produce
identical speech outputs but to generate human-like, natural variations. Therefore,
models based on probability distributions are better suited for generative tasks.

One probabilistic model, the VAE, has been introduced in Section 4.2.4.1.
Another common probabilistic model used in TTS is the Flow-based model. Unlike
the VAE, where the encoder creates a Gaussian distribution to sample a vector
for the decoder to generate the output, the flow-based model, also known as
a normalising flow, uses a series of invertible functions to convert a Gaussian
distribution directly into the output [264]. A prominent example of a flow-based
TTS model is Parallel WaveNet [63]. The original WaveNet model discarded
the recurrent architecture in favour of dilated causal convolutional layers, which
increased processing speed while maintaining long-range temporal dependency
due to the larger receptive field [54]. However, the generation speed was still
slow because the process was inherently sequential and autoregressive. Parallel
WaveNet improved processing speed by introducing the inverse autoregressive
flow [265], which constructs a multivariate distribution as an invertible non-linear
function [63]. This allowed the sampling process to be parallelised, significantly
reducing processing time.

Beyond autoregressive approaches, bipartite transformation has also been
explored in flow-based TTS research. Since the transformation must be invertible,
affine coupling layers—incorporating operations like splitting, concatenation
and permutation—were used to ensure that each dimension affects the others
effectively [266]. WaveGlow [55] implemented bipartite transformation in the TTS
task, achieving better speech quality than WaveNet in the MOS test (3.96± 0.13 to
3.89± 0.12) with a faster inference speed than Parallel WaveNet. FloWaveNet [267]
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also utilised affine coupling layers, focusing on eliminating the need for two-stage
training in Parallel WaveNet by using only a single maximum likelihood loss.

6.2.3 Diffusion-based TTS

The diffusion model is one of the most popular and powerful deep learning models
recently, and it has been widely applied to various generative tasks, including text,
audio, speech, image and video generation [268]. Denoising Diffusion Probabilistic
Model (DDPM), Noise Conditioned Score Network and Stochastic Differential
Equation are the three main architectures of diffusion models. These models aim to
find a mapping between the original sample and a probability distribution, typically
a Gaussian distribution [269].

Taking DDPMs as an example [270], during the training phase, random Gaussian
noise is iteratively added to the original sample until it becomes pure Gaussian noise.
This forward process can be expressed as:

xt =
√

1− βt xt−1 +
√
βt zt−1 (6.1)

where x0 is the original sample, xt represents the corrupted sample after noise z
has been added for t times. The different subscripts of zt and zt−1 means these
two noises are sampled from N (0, I) independently, where I represents the identity
matrix. [β1, β2 · · · βt] denote the series of hyperparameters controlling the intensity
of the noise. To simplify this process, another coefficient ᾱt is introduced:

ᾱt =
t∏

n=1

(1− βn) (6.2)

which leads to an equation that can compute the corrupted sample from the original
sample directly by performing a single sampling of the noise:

xt =
√
ᾱt x0 +

√
1− ᾱt z0 (6.3)

where z0 denotes the sampled noise from N (0, I). The goal of forward process is to
train a noise predictor ϵθ(xt, t) which is used in the inference phase to predict the
noise from the corrupted sample xt and the current denoising step t.

During the inference phase, given a Gaussian noise sample xt, DDPMs generate
the denoised output step by step. This process, known as the reverse process, is
expressed as:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz0 (6.4)

where the coefficients
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αt = 1− βt (6.5)

σt =
√
βt or σt =

√
1− ᾱt−1

1− ᾱt

βt (6.6)

The reverse process is repeated t times until x0 is computed, resulting in the final
denoised sample. Diffusion models have demonstrated outstanding performance
across various AIGC tasks [268]. However, they also have notable limitations,
primarily from the multiple diffusion steps required during generation, which results
in slower inference speeds compared to other probabilistic generative models [269].

Diffusion models have also achieved remarkable results in TTS research, as
evidenced by models like Diff-TTS [48], Grad-TTS [47] and Guided-TTS [271,
272]. Diff-TTS introduced the diffusion architecture to restore noise to the
Mel-spectrogram conditioned on the input text and employed accelerated sampling
to improve inference speed [48]. The unaccelerated Diff-TTS achieved speech quality
comparable to the reconstructed ground truth (extracting Mel-spectrogram and then
reconstructing it with HiFi-GAN) in the MOS test, scoring 4.34± 0.06 compared
to 4.32± 0.06. Although the accelerated sampling implementation decreased speech
quality slightly, it significantly improved inference RTF, reducing it from 1.744 to
as low as 0.035 [48].

6.2.4 Large Models and TTS

The GPT series, developed by OpenAI, represents a significant advancement in
the field of NLP. Starting from GPT-1 [273] with 110 million parameters to
GPT-2 with 1.5 billion parameters [274], the performance of LLMs has been
validated across various NLP tasks. In 2018, Google introduced a Transformer-based
neural network called Bidirectional Encoder Representations from Transformers
(BERT), designed for tasks like Masked Language Modelling and Next Sentence
Prediction [243]. BERT’s base model, with 110 million parameters, and its larger
variant, with 340 million parameters, delivered excellent results. Subsequently,
OpenAI released GPT-3 [260], which utilised an astounding 175 billion parameters.
Inspired by the success of models with vast numbers of parameters, recent LLMs
have seen exponential growth in size, with GPT-4 reportedly reaching 4 trillion
parameters [244].

Researchers have also explored the application of large models in audio
processing. A common approach in voicebot implementations involves concatenating
ASR, LLM and TTS systems to leverage the capabilities of LLMs, such as
those in ChatGPT 4 [275]. However, inspired by the exceptional performance of
LLMs in text-based tasks, audio-based large models have emerged. For instance,
the BERT-like approach of predicting masked tokens was adapted for speech

137



6. Challenges, Outlook and Conclusion

representation learning, resulting in Hidden-unit BERT (HuBERT) [276]. HuBERT
introduced three models of varying sizes, with the largest containing 1 billion
parameters, improving the prediction of predetermined cluster assignments. The
extracted representations from HuBERT have been effectively used in EVC tasks
by combining them with speaker and emotion-label representations [253].

Additionally, contrastive learning has been applied to speech representation
extraction, leading to another BERT-based model called w2v-BERT [277]. The
pre-training of w2v-BERT involves multitasking, training on both masked language
modelling and contrastive tasks simultaneously. w2v-BERT is also considered a
large model for audio, with its largest variant, w2v-BERT XXL, employing 1 billion
parameters. The w2v-BERT XL, which includes 0.6 billion parameters, was utilised
in AudioLM [278] to acquire discrete semantic tokens for audio generation.

Similarly, the TTS model VALL-E [256] implemented a strategy using discrete
codes instead of continuous ones, both from input acoustic prompts and phonemes.
This approach transforms TTS from a signal regression task into a conditional NLP
task. VALL-E’s neural audio codec enables the synthesis of personalised speech using
only three seconds of an unseen speaker’s speech in a zero-shot condition. To enhance
performance in multilingual tasks such as cross-lingual TTS and speech-to-speech
translation, an improved version called VALL-E X [279] was introduced.

Despite the impressive performance of large models in speech-related tasks, their
computational requirements are substantial. For example, VALL-E required 16
NVIDIA® Tesla® V100 32GB graphics cards for 800, 000 training steps [256], while
VALL-E X increased the number of graphics cards to 32 [279]. Even for speech audio
extractors like HuBERT BASE, 32 graphics cards were used for 650, 000 training
steps, while HuBERT LARGE and HuBERT X-LARGE required 128 and graphics
cards, respectively [276]. These requirements limit the accessibility of this research
field, particularly for researchers and students in academic settings. As a result,
studies focusing on the application of pre-trained large models are more practical,
such as using the pre-trained models without modifications [253] or employing
Parameter-Efficient Fine-Tuning [280, 281].

Moreover, training large models necessitates an extensive corpus, which is
often not feasible in emotional speech research as discussed in Section 3.1.3. For
instance, HuBERT BASE was trained on 960 hours of speech from LibriSpeech,
while HuBERT LARGE and HuBERT X-LARGE used 60, 000 hours from
Libri-light [276]. VALL-E utilised both LibriSpeech and Libri-light [256], while
VALL-E X employed an additional 73 million sentence pairs for speech-to-speech
translation training [279]. However, benefiting from the extensive training data
and complex model architecture, VALL-E and VALL-E X inherently preserve the
emotional expression in the audio prompt [256, 279]. Fine-tuning a pre-trained large
model for audio with a small emotional speech dataset is also a viable approach.

In conclusion, while there are significant challenges and limitations in current
research, advancements in technology, corpora and evaluation metrics will continue
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to improve the performance of ESS. In this thesis, ESS is divided into two research
areas: ETTS and EVC, based on their respective application scenarios. The
background, state-of-the-art studies and key concepts of both fields are explored,
followed by the implementation and analysis of several models. For ETTS, one
neutral TTS system and two ETTS systems were designed and tested. Additionally,
two frame-to-frame EVC systems and two sequence-to-sequence EVC systems were
developed. Experimental results demonstrate that ESS models can be implemented
to generate emotional speech; however, further optimisation is necessary to achieve
better, more natural and higher-quality performance. This thesis contributes to the
ongoing exploration of ESS and paves the way for future research to address the
challenges identified, ultimately aiming to improve human-computer interactions
through more sophisticated and emotionally resonant speech synthesis technologies.
Nevertheless, ESS remains a promising research field and is expected to play a crucial
role in HCI, enhancing efficiency in work, study and daily life.
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ŷt . . . . . . . . . . . . . . t-th frame/token of predicted sequence

yt . . . . . . . . . . . . . . t-th frame/token of ground truth target

Signal Processing and Feature Extraction

f̂(·) . . . . . . . . . . . . Spectrum

ξ . . . . . . . . . . . . . . . Frequency variable

exp(·) . . . . . . . . . . Exponential function

f(·) . . . . . . . . . . . . Waveform

145



Acronyms

t . . . . . . . . . . . . . . . Time variable

i . . . . . . . . . . . . . . . Imaginary unit

w(·) . . . . . . . . . . . . Window function

n . . . . . . . . . . . . . . . Index of the sliding window

h . . . . . . . . . . . . . . .Hop length of the sliding window

l . . . . . . . . . . . . . . . Length of the sliding window

S . . . . . . . . . . . . . . Spectrogram

Mel(·) . . . . . . . . . Mel-scale

W (·) . . . . . . . . . . . Continuous Wavelet Transformation

s . . . . . . . . . . . . . . . Scale parameter

p . . . . . . . . . . . . . . . Position parameter

F0(·) . . . . . . . . . . . Fundamental frequency

ψ(·) . . . . . . . . . . . . Mother wavelet function

ψM(·) . . . . . . . . . . Mexican hat wavelet function

W̃ (·) . . . . . . . . . . . Discrete Wavelet Transformation

J . . . . . . . . . . . . . . .Number of discrete scales

k . . . . . . . . . . . . . . .Translation parameter

Et . . . . . . . . . . . . . .Energy of spectrum at t-th frame

D . . . . . . . . . . . . . . Dimension of spectrum

T . . . . . . . . . . . . . . Number of spectrum frames

F̂0 . . . . . . . . . . . . . .Normalised fundamental frequency

µs, µt . . . . . . . . . . .Means across all source and target speech samples

σs, σt . . . . . . . . . . . Standard deviation across all source and target speech samples

Evaluation Metrics

Y . . . . . . . . . . . . . . Target Sequence

yt . . . . . . . . . . . . . . t-th element of target sequence
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ŷi . . . . . . . . . . . . . . Predicted label of i-th generated speech sample

C . . . . . . . . . . . . . . Number of classes

λemo
EIV . . . . . . . . . . . Weight of Emotional exclusive information validation loss

P . . . . . . . . . . . . . . Cross-correlation matrix

Z1,Z2 . . . . . . . . . . Latent embeddings by distorting the same image

Lon diag . . . . . . . . . Loss function of diagonal elements

N . . . . . . . . . . . . . . Dimension of cross-correlation matrix

Pij . . . . . . . . . . . . . The element in i-th row and j-th column of matrix P

Loff diag . . . . . . . . Loss function of off-diagonal elements

LCCV . . . . . . . . . . Correlation consistency validation loss function

LBT . . . . . . . . . . . . Loss function of Barlow Twins

λoff diag . . . . . .Weight of off-diagonal loss

LID . . . . . . . . . . . . Loss function of information disentanglement

Lemo
BT . . . . . . . . . . . Barlow Twins loss of Emotional encoder

λemo
CCV . . . . . . . . . . .Weight of Emotional correlation consistency validation loss

LS2S . . . . . . . . . . . Sequence-to-sequence loss function

λS2S . . . . . . . . . . . .Weight of sequence-to-sequence loss

Neural Networks

x . . . . . . . . . . . . . . . Input

148



Acronyms

y . . . . . . . . . . . . . . . Output

a(·) . . . . . . . . . . . . Activation function

wi . . . . . . . . . . . . . .Weight of i-th neuron

b . . . . . . . . . . . . . . . Bias

P (A|B) . . . . . . . . Probability of A under the condition B

sigmoid(·). . . . . .Sigmoid function

vi . . . . . . . . . . . . . . i-th visible neuron

hj . . . . . . . . . . . . . . j-th hidden neuron

J . . . . . . . . . . . . . . .Number of hidden neurons

wij . . . . . . . . . . . . . Weight between neuron i and neuron j

bi . . . . . . . . . . . . . . Bias of neuron i

yt . . . . . . . . . . . . . . t-th element of output

ft . . . . . . . . . . . . . . Forget gate of t-th cell

it . . . . . . . . . . . . . . .Input gate of t-th cell

c̃t . . . . . . . . . . . . . . Update of t-th cell

ct . . . . . . . . . . . . . . State of t-th cell

ot . . . . . . . . . . . . . . Output gate of t-th cell

w−→
h y

. . . . . . . . . . . . Forward weight between hidden state and output

w←−
h y

. . . . . . . . . . . . Backward weight between hidden state and output

−→
h t . . . . . . . . . . . . . Forward hidden state of t-th cell
←−
h t . . . . . . . . . . . . . Backward hidden state of t-th cell

enc(·) . . . . . . . . . . Encoding process

dec(·) . . . . . . . . . . Decoding process

z . . . . . . . . . . . . . . . Latent representation

x′ . . . . . . . . . . . . . . Reconstructed input

q(z|x) . . . . . . . . . . Probability distribution of z given x

p(x|z) . . . . . . . . . . Probability distribution of x given z

ϕ, θ . . . . . . . . . . . . .Parameters of distribution

N (z|a, b) . . . . . . . Gaussian probability distribution of z, constructed by mean a
and variance b

149



Acronyms

µ(·) . . . . . . . . . . . . Mean

σ(·) . . . . . . . . . . . . Standard deviation

min
A
B . . . . . . . . . . The minimum of B with respect to A

max
A
B . . . . . . . . . .The maximum of B with respect to A

V (·) . . . . . . . . . . . . Value function

G . . . . . . . . . . . . . . Generator

D . . . . . . . . . . . . . . Discriminator

EAB . . . . . . . . . . . Expectation of B with respect to A

x ∼ p(x) . . . . . . .x is sampled from probability distribution p(x)

x̂ . . . . . . . . . . . . . . .Normalised input

min(·) . . . . . . . . . Minimum value

max(·) . . . . . . . . . Maximum value

Activation Functions

x . . . . . . . . . . . . . . .Activation function input

tanh(·) . . . . . . . . . Hyperbolic tangent function

exp(·) . . . . . . . . . . Exponential function

softmax(·) . . . . . Softmax function

Transformer

X,X′ . . . . . . . . . . .Sequences

xi, x
′
i . . . . . . . . . . . i-th element in X and X′

ki . . . . . . . . . . . . . . i-th element of key matrix

WK . . . . . . . . . . . . Parameter matrix of key

vi . . . . . . . . . . . . . . i-th element of value matrix

WV . . . . . . . . . . . . Parameter matrix of Value

qi . . . . . . . . . . . . . . i-th element of query matrix

WQ . . . . . . . . . . . . Parameter matrix of Query

150



Acronyms

α . . . . . . . . . . . . . . .Weight vector

K . . . . . . . . . . . . . . Key matrix

KT . . . . . . . . . . . . .Transpose of key matrix

dK . . . . . . . . . . . . . Dimension of key matrix

C . . . . . . . . . . . . . . Context matrix

ci . . . . . . . . . . . . . . i-th element of context matrix

V . . . . . . . . . . . . . . Value matrix

attnsdp(·) . . . . . . . Scaled dot-product attention function

Q . . . . . . . . . . . . . . Query matrix

S . . . . . . . . . . . . . . .Source sequence

T . . . . . . . . . . . . . . Target sequence

T̂ . . . . . . . . . . . . . . Generated sequence

multihead(·) . . . Multihead attention function

WO . . . . . . . . . . . . Multihead weight parameter matrix

headi . . . . . . . . . . . i-th attention head

h . . . . . . . . . . . . . . .Number of attention heads

pe(·) . . . . . . . . . . . Positional encoding

sin(·) . . . . . . . . . . Sine trigonometric functions

cos(·) . . . . . . . . . . Cosine trigonometric functions

p . . . . . . . . . . . . . . . Position index

i . . . . . . . . . . . . . . . Dimension index

d . . . . . . . . . . . . . . . Dimension of model

Training Strategies

yn . . . . . . . . . . . . . .n-th element of ground truth sequence
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A video vision Transformer,” in Proc. ICCV, Online, 2021, pp. 6836–6846.

[240] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-augmented
Transformer for speech recognition,” in Proc. INTERSPEECH, Shanghai,
China, 2020, pp. 5036–5040.

[241] L. H. Li, M. Yatskar, D. Yin, C. Hsieh, and K. Chang, “VisualBERT: A
simple and performant baseline for vision and language,” arXiv preprint
arXiv:1908.03557, 2019.

[242] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” in Proc. ICML, Online,
2021, pp. 8821–8831.

[243] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional Transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2019.

173



Bibliography

[244] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, and et al., “GPT-4 technical report,”
arXiv preprint arXiv:2303.08774, 2023.

[245] X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Zhang,
S. Subramanian, and A. Trischler, “Machine comprehension by text-to-text
neural question generation,” in Proc. RepL4NLP, Vancouver, BC, Canada,
2017, pp. 15–25.

[246] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[247] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[248] P. M. Sørensen, B. Epp, and T. May, “A depthwise separable convolutional
neural network for keyword spotting on an embedded system,” EURASIP
Journal on Audio, Speech, and Music Processing, vol. 1, no. 10, p. 10, 2020.

[249] M. Song, Z. Yang, A. Baird, E. Parada-Cabaleiro, Z. Zhang, Z. Zhao,
and B. W. Schuller, “Audiovisual analysis for recognising frustration during
game-play: Introducing the multimodal game frustration database,” in Proc.
ACII, Cambridge, UK, 2019, pp. 517–523.

[250] A. Pandey, C. Liu, Y. Wang, and Y. Saraf, “Dual application of speech
enhancement for automatic speech recognition,” in Proc. SLT, Shenzhen,
China, 2021, pp. 223–228.

[251] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.
Le, “SpecAugment: A simple data augmentation method for automatic speech
recognition,” in Proc. INTERSPEECH, Graz, Austria, 2019, pp. 2613–2617.

[252] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Proc. NeurIPS,
Montreal, QC, Canada, 2015, pp. 1171–1179.

[253] F. Kreuk, A. Polyak, J. Copet, E. Kharitonov, T. A. Nguyen, M. Rivière,
W. Hsu, A. Mohamed, E. Dupoux, and Y. Adi, “Textless speech emotion
conversion using discrete & decomposed representations,” in Proc. EMNLP,
Abu Dhabi, UAE, 2022, pp. 11 200–11 214.

[254] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” in Proc. ICML, Online,
2021, pp. 12 310–12 320.

174



Bibliography

[255] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.

[256] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu,
H. Wang, J. Li, L. He, S. Zhao, and F. Wei, “Neural codec language models
are zero-shot text to speech synthesizers,” arXiv preprint arXiv:2301.02111,
2023.

[257] W. C. Huang, E. Cooper, Y. Tsao, H. Wang, T. Toda, and J. Yamagishi, “The
VoiceMOS Challenge 2022,” in Proc. INTERSPEECH, Incheon, South Korea,
2022, pp. 4536–4540.
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