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MULTISCALE MODELING AND SIMULATION OF A
CAHN--LARCH\'E SYSTEM WITH PHASE SEPARATION ON THE

MICROSCALE\ast 
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Abstract. We consider the process of phase separation of a binary system under the influence
of mechanical stress and we derive a mathematical multiscale model, which describes an evolving
microstructure taking into account the elastic properties of the involved materials. Motivated by
phase-separation processes observed in lipid monolayers in film-balance experiments, the starting
point of the model is the Cahn--Hilliard equation coupled with the equations of linear elasticity,
the so-called Cahn--Larch\'e system. Owing to the fact that the mechanical deformation takes place
on a macrosopic scale whereas the phase separation happens on a microscopic level, a multiscale
approach is imperative. We assume the pattern of the evolving microstructure to have an intrinsic
length scale associated with it, which, after nondimensionalization, leads to a scaled model involving
a small parameter \epsilon > 0, which is suitable for periodic-homogenization techniques. The problem
is formally homogenized using the method of two-scale asymptotic expansions, which leads to a
model of distributed-microstructure type in the limit. Finally, numerical simulations based on finite
elements showcase the model behavior of the distributed-microstructure model.
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1. Introduction. Binary phase-separation processes are often described by the
Cahn--Hilliard equation, a fourth-order equation for an order parameter taking dif-
ferent distinct values in each of the two phases; see the recent monograph [22] for
example. It is derived from a free-energy potential and ensures mass conservation.
The Cahn--Larch\'e system is the result of coupling the Cahn--Hilliard equation with
the equations of linear elasticity in order to take into account mechanical effects in
the separation process [16]. The chemical potential of the Cahn--Hilliard equation is
extended by a contribution derived from the elastic energy density and the elasticity
tensor depends naturally on the order parameter.

In the classical Cahn--Larch\'e system, all processes are modeled on the same length
scale. However, in certain situations, the phase separation and the mechanics occur
on distinctly different scales, which requires a multiscale analysis of the Cahn--Larch\'e
system. This can be achieved in a homogenization context by the method of asymp-
totic expansion and it is the focus of this work.

This study is motivated by the process of phase separation in lipid monolayers,
which can be observed in film-balance experiments, where phospholipid monolay-
ers are compressed. Such monolayers are investigated in experiments since phos-
phatidylcholines are the main phospholipids found in mammalian cell membranes.
The lipid dipalmitoylphosphatidylcholine (DPPC) is particularly common in this con-
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text (see, e.g., [13, 18, 25]), but many other phosphatidylcholines and, more generally,
other phospholipids are used, such as DMPC, DMPG, DMPE, DOPC, DLPC (see,
e.g., [21, 23, 14]). Biomembranes actually have the structure of a bilayer, but mono-
layers, which provide a simplified experimental model of such membranes, have the
advantage of simplified production and, in addition, the molecular density of a mono-
layer can be controlled by varying the area per molecule on a Langmuir--Blodgett film
balance [18]. A film balance is essentially a kind of water trough, equipped with a
controllable teflon barrier and a fluorescence microscope. The total area of the lipid
monolayer and consequently the density of the molecules can be controlled by moving
the barrier.

Lipids show different states or phases, corresponding to the alignment of the lipid
molecules, depending on certain factors. Generally, the lipids in the monolayer align
themselves with their hydrophilic head groups in the direction of the water due to
their amphiphilic properties. Assuming constant temperature, the monolayer becomes
denser and more rigid as the area available for the lipid monolayer is reduced, which
corresponds to increasing the lateral pressure. In the liquid-expanded (LE) phase,
the molecules are disordered and the chains are partially of convoluted structure. In
the liquid condensed (LC) phase, the molecules are much more closely packed and
ordered. After spreading the lipid mixture on the film balance, the lipid molecules
initially have plenty of space and are in a state known as the gas-analogue phase.
If the space available to the molecules is then reduced, a phase transition occurs in
which parts of the monolayer are transferred into the LE phase until, with further
compression, the entire monolayer is present in the LE phase. Further compression
results in a further phase transition into the LC phase. This part is the motivation
of this work: In experiments, the formation of two-phase regions can be observed in
which regions in the LC phase are dispersed in the less ordered LE phase. The size
of the LC domains is in the range of several microns, which differs from the scale of
the mechanical deformation induced by the teflon barrier by approximately 5 orders
of magnitude. The mechanical processes influence the size and shape of the arising
domains such as speed and strength of compression or waiting periods during multiple
compression operations, [18, 13, 25].

By interpreting the lipid monolayer with its coexisting phases as a binary mix-
ture, we use the Cahn--Hilliard model, which has already been successfully adapted
to study phase-separation processes in lipid bilayers [4, 8], to describe the phase sep-
aration. In the context of phase separation in lipid monolayers, the Cahn--Hilliard
model has already been extended to take elastic effects into account. In [3], it was
coupled with a viscoelastic fluid-flow model to study phase-separation processes in
lipid monolayers for a surface-acoustic-wave-actuated fluid flow for a monolayer in a
fluidic regime. Here, we consider the further compressed state. Since the LC phase
of the monolayer is gel-like and has an already relatively densely packed and ordered
molecular structure, we interpret the monolayer as a solid and use solid mechanics to
describe the mechanical behavior of the monolayer mathematically.

Motivated by these film-balance experiments, in what follows, we generally con-
sider a separation process in a binary solid under the influence of mechanical stress,
where the mechanical deformation takes place on a macrosopic scale and the phase
separation happens on a microscopic scale, and we use the Cahn--Larch\'e system to
model this phenomenon. We note that a (viscoelastic) Cahn--Larch\'e model in a mul-
tiscale context was used to study the decomposition process in eutectic alloys in [20].

In section 2, we introduce the Cahn--Larch\'e system and discuss it in the film-
balance context. In order to obtain a process-adapted model, in section 3 we pres-
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2172 L. REISCHMANN AND M. A. PETER

ent a nondimensionalization, which leads to a scaled system where different involved
characteristic length scales are taken into account and which is suitable for periodic-
homogenization techniques. This system is formally homogenized in section 4 via
two-scale asymptotic expansions. The resulting system is of the so-called distributed-
microstructure type which, in the limit, is a typical result for coupled systems where
one process occurs on the macroscopic scale and the other one on the microscopic
scale. Finally, in section 5, numerical simulations based on finite elements are pre-
sented to showcase the model behavior.

2. The Cahn--Larch\'e system. We briefly recall the Cahn--Hilliard model and
its extension to the Cahn--Larch\'e model in our notation. For the Cahn--Hilliard model,
we define an order parameter c : \Omega \times (0, T ) \rightarrow [0, 1], which describes the relative
concentration of a binary mixture in a domain \Omega \subset \BbbR N with boundary \Gamma = \partial \Omega over
the time interval (0, T ), where T > 0. Pure phases of the components correspond to
c = 0 and c = 1. We introduce a local free energy density (per volume) f so that the
total free energy of the mixture can be defined by

(2.1)

\int 
\Omega 

f(c) +
\lambda 

2
| \nabla c| 2 dx.

The second term is a regularization term, which penalizes interfaces. The parameter
\lambda can be interpreted as related to a line tension (in two dimensions). Specifically, we
choose a double-well potential of the form

(2.2) f(c) = \varphi c2(1 - c)2,

with a scaling parameter \varphi > 0. The minimas of the double-well potential are achieved
for c = 0 and c = 1, i.e., for pure phases. For homogeneous mixtures, the local
free energy is greater. Therefore, it is the driving force for phase separation of a
homogeneous mixture.

To arrive at a closed system, we introduce the chemical potential \mu \mathrm{C}\mathrm{H}, which can
be defined via the first variation of the total free energy with respect to c, i.e.,

(2.3) \mu \mathrm{C}\mathrm{H} = f \prime (c) + \lambda \Delta c.

According to Fick's law of diffusion, the mass flow is given by

(2.4) j =  - M\nabla \mu \mathrm{C}\mathrm{H},

where M denotes the mobility. Conservation of mass leads to an evolution equation
for the relative concentration c,

(2.5) \partial tc = \nabla \cdot (M\nabla \mu \mathrm{C}\mathrm{H}).

Inserting now the chemical potential defined by (2.3), we obtain the Cahn--Hilliard
equation, which describes the change of the relative concentration in time in a given
domain \Omega ,

\partial tc = \nabla \cdot 
\bigl( 
M\nabla 

\bigl( 
f \prime (c) - \lambda \Delta c

\bigr) \bigr) 
.(2.6)

For future reference, we note that, according to [15], we choose a constant mobility
factor of the form

(2.7) M = \varphi  - 1
\ast D,
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MULTISCALE MODELING OF A CAHN--LARCH\'E SYSTEM 2173

where the dimensional factor \varphi \ast denotes a characteristic value of the free energy of
the system.

The Cahn--Hilliard model does not capture effects caused by mechanical defor-
mations. This can be achieved by including an elastic contribution in the free energy,
which is the Cahn--Larch\'e model introduced in [16]. If only small deformations are
considered, a linearized theory is applicable. Thus, we consider only infinitesimal
strains defined by the linear strain tensor

(2.8) \scrE (u) = 1

2

\bigl( 
\nabla u+ (\nabla u)\mathrm{T}

\bigr) 
,

where u : \Omega \times (0, T ) \rightarrow \BbbR N is the deformation field. Typically, the two phases have
different elastic properties. Thus, the elasticity tensor \scrA (c), which contains the ma-
terial parameters characterizing the stiffness of the phases, naturally depends on the
order parameter c. According to Hooke's law, the stress tensor is defined by

(2.9) \scrS = \scrA (c)
\bigl( 
\scrE (u) - \=\scrE (c)

\bigr) 
,

where \=\scrE (c) denotes the eigenstrain. In general, this refers to a strain which is present
in the absence of any applied stress. This phenomenon occurs in the presence of
inhomogeneities, such as thermal expansions with phase transitions and leads to self-
generated internal stress [24]. The eigenstrain is often referred to as stress-free strain
and, just like the elastic material parameters, it may be different for each phase. A
natural choice is a multiple of the identity

(2.10) \=\scrE (c) = e(c)1,

where the scalar-valued function e specifies the eigenstrain behavior at a particular
phase state and 1 \in \BbbR N\times N is the second-order identity tensor. So, according to (2.10),
the eigenstrain is uniform in all directions, which seems to be a common choice; see,
e.g., [24, 7, 36]. According to [6, 12] the elastic energy density is now given by

(2.11) \scrW (u, c) =
1

2
(\scrE (u) - \=\scrE (c)) : \scrA (c) (\scrE (u) - \=\scrE (c)).

Adding the contribution of the elastic energy density (2.11) to (2.1), the total
energy of the system is given by

(2.12)

\int 
\Omega 

f(c) +
\lambda 

2
| \nabla c| 2 +\scrW (u, c) dx

and the chemical potential (2.3) of the system extends to

(2.13) \mu = f \prime (c) - \lambda \Delta c - \=\scrE \prime (c) : \scrS +
1

2
(\scrE (u) - \=\scrE (c)) : \scrA \prime (c)(\scrE (u) - \=\scrE (c)).

Inserting (2.13) into (2.5) leads to an extended Cahn--Hilliard equation,

(2.14) \partial tc = \nabla \cdot 
\Bigl( 
M\nabla 

\bigl( 
f \prime (c) - \lambda \Delta c - \=\scrE \prime (c) : \scrS +1

2
(\scrE (u) - \=\scrE (c)) : \scrA \prime (c)(\scrE (u) - \=\scrE (c))

\bigr) \Bigr) 
.

This equations needs to be supplemented by an equation of conservation of momen-
tum, which, taking into account (2.9), is given by

(2.15) \varrho \partial 2
t u = \nabla \cdot \scrS = \nabla \cdot 

\bigl( 
\scrA (c)(\scrE (u) - \=\scrE (c))

\bigr) 
,
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2174 L. REISCHMANN AND M. A. PETER

where \varrho is the density and neglecting gravitational effects. If we use our representation
for the eigenstrain (2.10), then, since

\=\scrE \prime (c) : \scrS = e\prime (c)1 : \scrS = e\prime (c) tr(\scrS ),
we obtain the Cahn--Larch\'e system as follows:

\partial tc = \nabla \cdot 
\Bigl( 
M\nabla 

\bigl( 
f \prime (c) - \lambda \Delta c - e\prime (c) tr(\scrS )(2.16a)

+
1

2
(\scrE (u) - e(c)1) : \scrA \prime (c)(\scrE (u) - e(c)1)

\bigr) \Bigr) 
in \Omega \times (0, T ),

\varrho \partial 2
t u = \nabla \cdot 

\Bigl( 
\scrA (c)

\bigl( 
\scrE (u) - e(c)1

\bigr) \Bigr) 
in \Omega \times (0, T ).(2.16b)

The system is completed by initial conditions for c and u and boundary conditions,
typically no-flux conditions for c and \mu in order to ensure mass conservation

\nabla c \cdot n = 0 on \Gamma \times S, \nabla \mu \cdot n = 0 on \Gamma \times S,

where n denotes the outer normal vector on \Gamma , as well as displacement and/or traction
conditions for the displacement.

As noted above, the two phases typically have different elastic properties and
hence we denote the elasticity tensor describing the elastic properties of the elastically
softer phase by \scrA \alpha and the elasticity tensor of the elastically stiffer phase by \scrA \beta .
Then, following [36], for the mixture, we consider

(2.17) \scrA (c) := \scrA \alpha + d(c)
\bigl( 
\scrA \beta  - \scrA \alpha 

\bigr) 
,

an elasticity tensor depending on the relative concentration of the mixture, which is
simply an interpolation of the two component tensors. The interpolation function d
should be defined such that

d(0) = 0, d(1) = 1, d\prime (0) = 0, d\prime (1) = 0,

hence

(2.18) d(x) =

\left\{     
0, x < 0,

 - 2x3 + 3x2, 0 \leq x \leq 1,

1, x > 1,

is an appropriate choice. With this we have also determined that c = 0 corresponds
to the elastically softer phase and c = 1 corresponds to the elastically stiffer phase.
We assume positive definiteness for the individual component tensor and the usual
symmetry conditions in linear elasticity theory, i.e., for \scrA i = (aiijkh)1\leq i,j,k,h\leq N , i \in 
\{ \alpha , \beta \} , we require

(2.19) aiijkh = aiijhk = aijikh = aikhij .

Obviously, the interpolated tensor defined by (2.17) is also positive definite and fulfils
the symmetry condition (2.19).

Remark 2.1 (existence of weak solutions). The existence of solutions of the Cahn--
Larch\'e model is well known. We refer to [9] in particular, where the author studied
phase separation in multicomponent alloys in the presence of elastic interactions and
proved the existence of solutions of a mixed formulation of the Cahn--Larch\'e system
in a Sobolev-space setting. This solution is shown to be uniquely determined if the
elasticity tensor is the same for both phases.
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ΩΓ0 Γg

Γs

Γs

Fig. 1. Domain Ω with boundary parts Γ0, Γg and Γs.

Remark 2.2 (Film-balance setting). For the modelling of phase separation of204

lipids in a Langmuir–Blodgett film balance, Ω ⊂ R2 is a rectangular domain repre-205

senting the area of the water trough of the film balance on which the lipid monolayer206

is examined, and with boundary Γ0 ∪ Γg ∪ Γs, with boundary parts Γ0, Γg and Γs as207

shown in figure 1. The force applied by the controllable barrier and compressing the208

lipid monolayer is modelled by applying a boundary force g on Γg, hence,209

(2.20) Sn = g on Γg × S.210

On the opposite boundary part Γ0 we do not expect any deformation and hence we211

require212

(2.21) u = 0 on Γ0 × S.213

Also, the monolayer cannot move beyond the lateral edges in the normal direction.214

Therefore, on the side part of the boundary Γs we set215

u · n = 0 on Γs × S, n · S τ = 0 on Γs × S,(2.22)216217

where τ is the tangential vector on Γ. These conditions describe that the monolayer218

cannot expand past the lateral edges and does not adhere there when compressed. It219

would also have been possible to set the free-slip condition on the boundary part Γ0220

as well instead of the Dirichlet condition u = 0. However, the boundary condition221

(2.21) ensures the uniqueness of u.222

3. Non-dimensionalisation and scaling. In § 1, we have already pointed out223

the multiscale aspect of the considered physical process, which assumes the micro-224

structure of the pattern to have an intrinsic length scale associated with it. The225

Cahn–Larché system (2.16a), (2.16b) as introduced in § 2 does not take into account226

that the processes take place on different scales. A suitable scaling of the system,227

which takes into account the different characteristic lengths, is therefore necessary,228

see e.g. [1, 11] for process-adapted scalings of other systems. In our case, this results229

naturally from a non-dimensionalisation, similar to e.g. [26, 29, 28, 27, 19].230

To make this more precise, we introduce a characteristic macroscopic length scale231

L, e.g. representing the order of magnitude of the size of the film balance, and a232

characteristic microscopic length scale l, which corresponds to the order of magnitude233

of the scale on which the phase separation is observable, and we write234

(3.1) ε =
l

L
� 1.235

It turns out that the non-dimensionalisation taking into account the characteristic236

macroscopic length scale L and the characteristic microscopic length scale l results in237

This manuscript is for review purposes only.

Fig. 1. Domain \Omega with boundary parts \Gamma 0, \Gamma g, and \Gamma s.

Remark 2.2 (film-balance setting). For the modeling of phase separation of lipids
in a Langmuir--Blodgett film balance, \Omega \subset \BbbR 2 is a rectangular domain representing the
area of the water trough of the film balance on which the lipid monolayer is examined,
and with boundary \Gamma 0 \cup \Gamma \mathrm{g} \cup \Gamma \mathrm{s}, with boundary parts \Gamma 0, \Gamma \mathrm{g}, and \Gamma \mathrm{s} as shown in
Figure 1. The force applied by the controllable barrier and by compressing the lipid
monolayer is modeled by applying a boundary force g on \Gamma \mathrm{g}, hence,

(2.20) \scrS n = g on \Gamma \mathrm{g} \times S.

On the opposite boundary part \Gamma 0 we do not expect any deformation and hence we
require

(2.21) u = 0 on \Gamma 0 \times S.

Also, the monolayer cannot move beyond the lateral edges in the normal direction.
Therefore, on the side part of the boundary \Gamma \mathrm{s} we set

u \cdot n = 0 on \Gamma \mathrm{s} \times S, n \cdot \scrS \tau = 0 on \Gamma \mathrm{s} \times S,(2.22)

where \tau is the tangential vector on \Gamma . These conditions describe that the monolayer
cannot expand past the lateral edges and does not adhere there when compressed. It
would also have been possible to set the free-slip condition on the boundary part \Gamma 0

as well instead of the Dirichlet condition u = 0. However, the boundary condition
(2.21) ensures the uniqueness of u.

3. Nondimensionalization and scaling. In section 1, we have already pointed
out the multiscale aspect of the considered physical process, which assumes the mi-
crostructure of the pattern to have an intrinsic length scale associated with it. The
Cahn--Larch\'e system (2.16a), (2.16b) as introduced in section 2 does not take into
account that the processes take place on different scales. A suitable scaling of the
system, which takes into account the different characteristic lengths, is therefore nec-
essary; see, e.g., [1, 11] for process-adapted scalings of other systems. In our case, this
results naturally from a nondimensionalization, similar to, e.g., [26, 29, 28, 27, 19].

To make this more precise, we introduce a characteristic macroscopic length scale
L, e.g., representing the order of magnitude of the size of the film balance, and a
characteristic microscopic length scale l, which corresponds to the order of magnitude
of the scale on which the phase separation is observable, and we write

(3.1) \epsilon =
l

L
\ll 1.

It turns out that the nondimensionalization taking into account the characteristic
macroscopic length scale L and the characteristic microscopic length scale l results in
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a system scaled by powers of \epsilon and which is suitable for the application of techniques
of periodic homogenization.

To facilitate an asymptotic analysis, the order parameter c, which describes the
microstructure, is assumed to depend on two independent spatial variables, x, associ-
ated with the macroscale and x

\epsilon , associated with the microscale. We denote this with
an index \epsilon and write

(3.2) c\epsilon (x, t) = c(x, x/\epsilon , t).

Note that we achieve this circumstance in practice by choosing an initial value for
c\epsilon , depending on the macroscopic variable x and on the microscopic variable x

\epsilon . Due
to the dependency on the order parameter, this also applies to the elasticity tensor
\scrA (c\epsilon ), which implies an analogue spatial dependence of the displacement field and,
hence, we write u\epsilon .

We further define characteristic microscopic lengths associated with the diffusion
and the mechanics, l\mathrm{d} and l\mathrm{m}, respectively, and express them as a multiple of the
geometric microscopic length l. We choose l\mathrm{d} = 1

10 l and l\mathrm{m} = l, since the mechanics
happens on the whole microscopic length scale whereas the diffusion scale is typically
a little shorter. The characteristic time for the diffusion is then defined by

(3.3) T\mathrm{d} :=
lr\mathrm{d} L

2 - r

D\mathrm{r}\mathrm{e}\mathrm{f}
,

and the characteristic time for the mechanics by

(3.4) T\mathrm{m} :=
\Bigl( ls\mathrm{m}L2 - s\varrho \mathrm{r}\mathrm{e}\mathrm{f}

\sigma \mathrm{r}\mathrm{e}\mathrm{f}

\Bigr) 1/2

,

both depending on powers of the two different characteristic length scales. The re-
spective influence of the different characteristic lengths is regulated by exponents de-
pending on parameters r, s \in [0, 2], which we have to determine later. With D\mathrm{r}\mathrm{e}\mathrm{f} , \sigma \mathrm{r}\mathrm{e}\mathrm{f} ,
and \varrho \mathrm{r}\mathrm{e}\mathrm{f} we denote reference values corresponding to the diffusivity, the stiffness, and
the density, respectively. With the dimensionless macroscopic space variable \~x := x/L
and the time variable \~t\mathrm{d} := t/T\mathrm{d} as well as D = M\varphi \ast from (2.7), (2.16a) becomes

(3.5) \partial \~t\mathrm{d}c\epsilon = \epsilon r 10 - r \~\Delta 
\Bigl( 
\~f \prime (c\epsilon ) - \epsilon 2\~\lambda \~\Delta c - e\prime (c\epsilon ) tr( \~\scrS )

+
1

2
(\scrE (u\epsilon ) - e(c\epsilon )1) : \~\scrA \prime (c\epsilon )(\scrE (u\epsilon ) - e(c\epsilon )1)

\Bigr) 
,

where we have defined the dimensionless quantities as follows:

(3.6) \~f \prime (c\epsilon ) := \varphi  - 1
\ast f \prime (c\epsilon ), \~\lambda := \varphi  - 1

\ast \epsilon  - 2L - 2\lambda , \~\scrA \prime (c\epsilon ) := \varphi  - 1
\ast \scrA \prime (c\epsilon )

and

(3.7) \~\scrS := \varphi  - 1
\ast \scrS = \varphi  - 1

\ast \scrA (c\epsilon )
\bigl( 
\scrE (u\epsilon ) - e(c\epsilon )1

\bigr) 
= \~\scrA (c\epsilon )

\bigl( 
\scrE (u\epsilon ) - e(c\epsilon )1

\bigr) 
with

(3.8) \~\scrA (c\epsilon ) := \varphi  - 1
\ast \scrA (c\epsilon ).

All quantities with a tilde denote dimensionless quantities, where \~f \prime (c\epsilon ) is of order 1.
Note that the strain is already dimensionless. Further, we have made use of the fact
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MULTISCALE MODELING OF A CAHN--LARCH\'E SYSTEM 2177

that the magnitude of the line tension \lambda is much smaller than the free energy level.
In order to account for this and to compensate for the length scale associated with
the Laplacian, a factor \epsilon 2 is explicitly taken out.

With \~u := u
L and with the dimensionless time variable \~t\mathrm{m} := t/T\mathrm{m}, (2.16b) be-

comes

(3.9) \partial 2
\~t\mathrm{m}
\~u\epsilon = \epsilon s \~\nabla \cdot 

\bigl( 
\^\scrA (c\epsilon )(\scrE (u\epsilon ) - e(c\epsilon )1

\bigr) 
with dimensionless elasticity tensor

(3.10) \^\scrA (c\epsilon ) = \sigma  - 1
\mathrm{r}\mathrm{e}\mathrm{f}\scrA (c\epsilon ).

Since we want to nondimensionalize the elasticity tensor in a unified way, we put
the two different dimensionless variants (3.8) and (3.10) in relation to each other and
get

(3.11) \^\scrA (c\epsilon ) = \sigma  - 1
\mathrm{r}\mathrm{e}\mathrm{f} \scrA (c\epsilon ) = \sigma  - 1

\mathrm{r}\mathrm{e}\mathrm{f} \varphi \ast \~\scrA (c\epsilon ) =: \kappa \~\scrA (c\epsilon ).

In summary, we can state the following dimensionless and scaled system:

\partial \~t\mathrm{d}c\epsilon = \epsilon r 10 - r \~\Delta 
\Bigl( 
\~f \prime (c\epsilon ) - \epsilon 2\~\lambda \~\Delta c - e\prime (c\epsilon ) tr( \~\scrS )

+
1

2
(\scrE (u\epsilon ) - e(c\epsilon )1) : \~\scrA \prime (c\epsilon )(\scrE (u\epsilon ) - e(c\epsilon )1)

\Bigr) 
,

(3.12a)

\partial 2
\~t\mathrm{m}
\~u\epsilon = \epsilon s \kappa \~\nabla \cdot 

\Bigl( 
\~\scrA (c\epsilon )

\bigl( 
\scrE (u\epsilon ) - e(c\epsilon )1

\bigr) \Bigr) 
(3.12b)

with a positive dimensionless constant \kappa := \sigma  - 1
\mathrm{r}\mathrm{e}\mathrm{f} \varphi \ast that ensures the unification of the

dimensionless elasticity tensor in the equations above. The other way around, setting
\~\scrA (c\epsilon ) = \kappa  - 1 \^\scrA (c\epsilon ), of course, could also be chosen.

Special attention must now be paid to the different characteristic times, since
they depend on different powers of the scaling parameter \epsilon . Further, to represent
the diffusion and the mechanics on a common time scale, we need to match the
characteristic times and want to unify them as well as possible. Therefore, we require

(3.13) T\mathrm{d} \approx T\mathrm{m} \approx 1.

For a concrete problem, these conditions allow us to determine r and s. In what
follows, we take the extreme cases r = 2 and s = 0, which correspond to the mechan-
ics being associated with the macroscale and the phase separation associated with
the microscale. We show how these numbers arise in the case of the film-balance
experiments in Remark 3.1 below.

Dropping the tildes for a simpler notation and better clarity, we get the following
dimensionless and scaled system:

\partial tc\epsilon = \epsilon 2 10 - 2\Delta 
\Bigl( 
f \prime (c\epsilon ) - \epsilon 2\lambda \Delta c - e\prime (c\epsilon ) tr(\scrS )

+
1

2
(\scrE (u\epsilon ) - e(c\epsilon )1) : \scrA \prime (c\epsilon )(\scrE (u\epsilon ) - e(c\epsilon )1)

\Bigr) 
,

(3.14a)

\partial 2
t u\epsilon =\kappa \nabla \cdot 

\Bigl( 
\scrA (c\epsilon ) (\scrE (u\epsilon ) - e(c\epsilon )1)

\Bigr) 
.(3.14b)

This system takes the different scales into account by its scaling by exponents of \epsilon .
Note that so far no assumption has been made about the periodicity of the micro-
structure, but only about the existence of macroscopic and microscopic characteristic
lengths.
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Remark 3.1. For the film-balance setup, we choose L = 1m as the characteristic
length corresponding to the macroscopic process and l = 10 - 4 m as the characteristic
microscopic length scale. Unfortunately, there are currently no complete parameter
sets of measured data from experiments available. Within the context of film-balance
experiments, a lipid monolayer seems to be a sensitive system and, in the literature,
the values of the physical quantities may vary depending on the specific lipid or lipids,
the phase state of the monolayer, temperature, and even on the measuring method.
However, we are only interested in the orders of magnitude to get an approximate esti-
mate of the characteristic times. Considering typical values of the diffusion coefficient,
we choose 1 µm2 s - 1 as the characteristic value [10]. Hence, we obtain

T\mathrm{d} =
10 - r lrL2 - r

D\mathrm{r}\mathrm{e}\mathrm{f}
= 10 - 5r+12.

Assuming that one DPPC molecule occupies an area of approximately 1/70 \cdot 
10 - 20 m2 in the beginning of the phase transition [35] and with the molar mass of
DPPC, which is 734.04 \cdot 10 - 3 kgmol - 1 [33], we calculate a characteristic value of
the order of magnitude \approx 10 - 2 kgm - 2 for the density of a lipid monolayer. With
10 - 1Nm - 1 as the characteristic value of the stiffness of a lipid monolayer [34], we get

T\mathrm{m} =
\Bigl( lsL2 - s\varrho \mathrm{r}\mathrm{e}\mathrm{f}

\sigma \mathrm{r}\mathrm{e}\mathrm{f}

\Bigr) 1/2

= 10
1
2 ( - 4s - 1),

which, with regard to the definition interval of the parameters, leads to r = 2 and
s = 0. Note that, with this scaling, we still consider the mechanics too slow compared
to the diffusion, which motivates the quasi-stationary setting in section 5.

4. Periodic homogenization via asymptotic expansions. Using the method
of two-scale asymptotic expansions in the context of periodic homogenization [2, 30,
11, 5], we derive an upscaled version of the system (3.14a), (3.14b). We assume the
unknowns of (3.14a) and (3.14b) to have an asymptotic expansion in \epsilon of the form

(4.1) c\epsilon (x, t) =

\infty \sum 
i=0

\epsilon i ci(x, x/\epsilon , t) and u\epsilon (x, t) =

\infty \sum 
i=0

\epsilon i ui(x, x/\epsilon , t),

whereby the coefficient functions ci and ui are smooth and these as well as their
derivatives are Y -periodic with respect to the second argument, where Y is the rep-
resentative unit cell of the microscale. We insert the expansions (4.1) into the scaled
Cahn--Larch\'e system (3.14a), (3.14b) and identify the coefficients of the different \epsilon -
powers. This procedure leads to a cascade of partial differential equations.

Generally, for a function v = v(x, y) depending on two variables in the same
way as introduced above, we consider v\epsilon := v(\cdot , \cdot 

\epsilon ), depending only on the variable x.
Then, the derivative is given by

(4.2)
\partial 

\partial xi
v\epsilon (x) =

\partial 

\partial xi
v(x, x/\epsilon ) + \epsilon  - 1 \partial 

\partial yi
v(x, x/\epsilon ).

In what follows, we also write \nabla x and \nabla y for the gradient with respect to x and y,
respectively.

For reference in the homogenization process, we first introduce a family of peri-
odic boundary-value problems posed on the unit cell Y , which are known as the cell
problems in linear elasticity. For detailed information on these problems, we refer to
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[5], where the homogenization result for the equations of linear elasticity was proven
using Tartar's method of oscillating test functions. Let \Omega \subset \BbbR N be a bounded domain
and Y = (0, l1) \times (0, l2) \times \cdot \cdot \cdot \times (0, lN ) \subset \BbbR N with positive numbers l1, . . . , lN . Let
\scrA = \scrA (y) with \scrA = (aijkh)1\leq i,j,k,h\leq N being an elliptic fourth-order tensor, and aijkh
being Y -periodic for i, j, k, h = 1, . . . , N . For any l,m \in \{ 1, . . . , N\} we consider the
vector-valued function plm = (plmk )1\leq k\leq N \in \BbbR N defined by

plmk (y) := ym\delta kl, y \in Y, k = 1, . . . , N,

with ym being the mth component of y \in Y . Then, for each l,m = 1, . . . , N , we want
to find a vector-valued function \omega lm which solves the following cell problem:

 - \nabla y \cdot 
\bigl( 
\scrA \scrE y(\omega lm)

\bigr) 
= \nabla y \cdot 

\bigl( 
\scrA \scrE y(plm)

\bigr) 
in Y,

\omega lm Y -periodic.
(4.3)

According to the notation used so far, we write \scrE x and \scrE y, where the subscripts
indicate the partial derivatives have been taken with respect to the variables x and
y, respectively.

We now insert the expansions (4.1) into the system (3.14a), (3.14b) and collect
the same powers of \epsilon . At scale \epsilon  - 2, provided by the mechanical equation, we obtain

(4.4) \nabla y \cdot 
\bigl( 
\scrA (c0) \scrE y(u0)

\bigr) 
= 0 in \Omega \times Y \times S.

Multiplying this equation by u0 and integrating over Y and by parts yields\int 
Y

\scrA (c0) \scrE y(u0) : \scrE y(u0) dy = 0,

where the boundary integral vanishes due to the Y -periodicity of the derivatives of
u0 and the components of \scrA . Since \scrA is positive definite, we get

\alpha \| \scrE y(u0)\| 2 \leq 
\int 
Y

\scrA (c0) \scrE y(u0) : \scrE y(u0) dy = 0

for a constant \alpha > 0 and which implies \scrE y(u0) = 0 and, hence,

(4.5) u0 = u0(x, t)

depends only on the macroscopic variable x and on time. So, we have found a candi-
date describing the macroscopic deformation. The \epsilon  - 1-term gives

(4.6) \nabla y \cdot 
\bigl( 
\scrA (c0)(\scrE x(u0) + \scrE y(u1) - e(c0)1) + c1\scrA \prime (c0)\scrE y(u0)

\bigr) 
+\nabla x \cdot 

\bigl( 
\scrA (c0)\scrE y(u0)

\bigr) 
= 0,

which we consider as an equation for the unknown u1. Using (4.5) and the Y -
periodicity of u1 we get a well-posed problem

 - \nabla y \cdot 
\bigl( 
\scrA (c0) (\scrE y(u1) - e(c0)1)

\bigr) 
= \nabla y \cdot 

\bigl( 
\scrA (c0) \scrE x(u0)

\bigr) 
in \Omega \times Y \times S,

u1 Y -periodic in y.
(4.7)
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2180 L. REISCHMANN AND M. A. PETER

For further considerations we need to work with the componentwise representation of
this equation, namely,

(4.8)  - 
N\sum 
j=1

\partial yj

N\sum 
k,h=1

\bigl( 
aijkh(c0) (ekhy(u0) - e(c0)\delta kh)

\bigr) 
=  - 

N\sum 
j=1

\partial yj

N\sum 
k,h=1

\bigl( 
aijkh(c0) ekhx(u0)

\bigr) 

for i = 1, . . . , N . At this step, we want to gain a representation of \scrE y(u1) in terms of
\scrE x(u0). Therefore, we need the auxiliary problems (4.3) for the mechanics, which we
also consider now in componentwise form:

(4.9)  - 
N\sum 
j=1

\partial yj

\sum 
k,h

aijkh(c0) ekhy(\omega 
lm) =

N\sum 
j=1

\partial yj

\sum 
k,h

aijkh(c0) ekhx(p
lm)

for i = 1, . . . , N . Recall that the right-hand side is defined as (plm(y))k = ym\delta kl for
l,m = 1, . . . , N . By using the identity

(4.10)

N\sum 
k,h=1

aijkh(c0) ekhx(p
lm) = aijlm

for i, j, l,m = 1, . . . , N , we write (4.9) as

(4.11)  - 
N\sum 
j=1

\partial yj

\sum 
k,h

aijkh(c0) ekhy(\omega 
lm) =

N\sum 
j=1

\partial yj aijlm(c0), 1 \leq i \leq N.

Multiplying both sides of (4.11) with elmx(u0) and summing up over l and m yields

(4.12)  - 
N\sum 
j=1

\partial yj

N\sum 
k,h=1

aijkh(c0)
N\sum 

l,m=1

ekhy(\omega 
lm) elmx(u0)

=

N\sum 
j=1

\partial yj

N\sum 
l,m=1

aijlm(c0)elmx(u0)

for i = 1, . . . , N . We compare both equations, namely, (4.12) and (4.8) and from the
left-hand sides we can directly read off a representation for u1 in terms of u0 with the
help of the solutions of the cell problems. We obtain

(4.13) eijy(u1) =

N\sum 
l,m=1

elmx(u0) eijy(\omega 
lm) + e(c0)\delta ij , 1 \leq i, j \leq N.
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Taking into account that \scrE y(u0) = 0, the \epsilon 0-term leads to

\partial tc0 =10 - 2\Delta y

\Bigl( 
f \prime (c0) - \lambda \Delta yc0  - e\prime (c0) tr

\bigl[ 
\scrA (c0)(\scrE x(u0) + \scrE y(u1) - e(c0)1)

\bigr] 
+

1

2

\bigl( 
\scrE x(u0) + \scrE y(u1) - e(c0)1

\bigr) 
: \scrA \prime (c0)

\bigl( 
\scrE x(u0) + \scrE y(u1) - e(c0)1

\bigr) \Bigr) 
,

(4.14a)

\partial 2
t u0 =\kappa \nabla y \cdot 

\Bigl( 
\scrA (c0)(\scrE x(u1) + \scrE y(u2) - e\prime (c0)c11)

+ c1\scrA \prime (c0)
\bigl( 
\scrE x(u0) + \scrE y(u1) - e(c0)1

\bigr) \Bigr) (4.14b)

+ \kappa \nabla x \cdot 
\Bigl( 
\scrA (c0)

\bigl( 
\scrE x(u0) + \scrE y(u1) - e(c0)1

\bigr) \Bigr) 
.

Integrating (4.14b) in a componentwise form over Y , we obtain

\partial 2
t (u0)i =

\kappa 

| Y | 
N\sum 
j=1

\partial xj

\int 
Y

N\sum 
k,h=1

aijkh(c0)
\bigl( 
ekhx(u0) + ekhy(u1) - e(c0)\delta kh

\bigr) 
dy(4.15)

for i = 1, . . . , N . Thereby, the integral of the first expression of the right-hand side of
(4.14b) vanishes due to the Y -periodicity of the involved functions. Next, we insert
(4.13), the representation for \scrE y(u1), into (4.15):

\partial 2
t (u0)i =

\kappa 

| Y | 
N\sum 
j=1

\partial xj

\int 
Y

N\sum 
l,m,k,h=1

aijlm(c0)
\bigl( 
\delta lk\delta mh + elmy(\omega 

kh)
\bigr) 
dy ekhx(u0)(4.16)

for i = 1, . . . , N . In this, we have now found an equation for the macroscopic part
of the deformation u0, which motivates us to define the effective or homogenized
elasticity tensor

\scrA \mathrm{h}\mathrm{o}\mathrm{m} = (a\mathrm{h}\mathrm{o}\mathrm{m}ijkh)1\leq i,j,k,h\leq N(4.17)

by its components

(4.18) a\mathrm{h}\mathrm{o}\mathrm{m}ijkh :=
1

| Y | 

\int 
Y

N\sum 
l,m=1

aijlm(c0)
\bigl( 
\delta lk\delta mh + elmy(\omega 

kh)
\bigr) 
dy

for i, j, k, h = 1, . . . , N , and write (4.16) as a purely macroscopic equation:

\partial 2
t u0 = \kappa \nabla x \cdot 

\bigl( 
\scrA \mathrm{h}\mathrm{o}\mathrm{m} \scrE x(u0)

\bigr) 
in \Omega .

Furthermore, to use tensor notation for better clarity, we write

\scrE \omega =
\bigl( 
e\omega lmkh

\bigr) 
1\leq l,m,k,h\leq N

with e\omega lmkh = elmy(\omega 
kh),(4.19)

and we also use the identity tensor

\scrI =
\bigl( 
\scrI lmkh

\bigr) 
1\leq l,m,k,h\leq N

with \scrI lmkh =
1

2
(\delta lm\delta kh + \delta mh\delta lk).(4.20)
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Now, we can state the formally homogenized system, given by

\partial tc0 =10 - 2\Delta y

\Bigl( 
f \prime (c0) - \lambda \Delta yc0  - e\prime (c0) tr

\bigl[ 
\scrA (c0)(\scrI + \scrE \omega ) \scrE x(u0)

\bigr] (4.21a)

+
1

2
(\scrI + \scrE \omega ) \scrE x(u0) : \scrA \prime (c0) (\scrI + \scrE \omega ) \scrE x(u0)

\Bigr) 
in \Omega \times Y \times S,

\partial 2
t u0 =\kappa \nabla x \cdot 

\bigl( 
\scrA \mathrm{h}\mathrm{o}\mathrm{m} \scrE x(u0)

\bigr) 
in \Omega \times S.

(4.21b)

The remaining unknowns of this limit system are c0 and u0, the coefficient func-
tions of the first terms of the expansions, whereby only c0 still depends on the mi-
croscopic variable y. The system above is of the so-called distributed-microstructure
type. In such a model, a unit cell Yx is associated with each macroscopic point x \in \Omega ,
in which the local (microscopic) equations are solved, the solutions of which feed into
the global (macroscopic) equation after averaging; cf. [1, 31, 32, 11, 19]. In our limit
system the local equation (4.21a) for c0 as well as the cell equations (4.3) have to be
solved in every unit cell Yx and the global equation (4.21b) for u0 has to be solved in
\Omega . On Yx, therefore, a microstructure can be seen which is representative near x \in \Omega .
In particular, the microstructure can evolve differently at each global point.

Note, that the homogenized tensor depends through c0 on both variables, on
x and on y. Notice further, that the homogenized mechanical equation does not
contain the eigenstrain explicitly. Self-generated tensions on the microscale are thus
macroscopically averaged out.

We remark that system (4.21) also has an energy associated with it given by

(4.22)

\int 
\Omega \times Y

f(c0) +
\lambda 

2
| \nabla yc0| 2 +

1

2
(\scrI + \scrE \omega ) \scrE x(u0) : \scrA (c0) (\scrI + \scrE \omega ) \scrE x(u0) dy dx,

which is of similar form to (2.12). Noting that \scrE \omega depends on c0 through (4.13), the
gradient-flow structure of the original system is inherited by the limit system.

5. Numerical simulations. We want to test the homogenized system phe-
nomenologically and demonstrate what can be realized with the model by two-dimen-
sional simulations. The implementation was realized using the finite element library
FEniCS [17] based on globally continuous, piecewise linear trial and test functions,
where the fourth-order equation was taken care of in terms of a mixed finite element
method for the concentration and the chemical potential as an auxiliary variable. In
order to keep things simple, we take the mechanics as quasi-stationary, i.e., (4.21b)
with zero left-hand side; also see Remark 3.1. For discretization in time of the ex-
tended Cahn--Hilliard equation (4.21a), we use a fully implicit Euler scheme, where a
Newton method is used to solve the resulting algebraic nonlinear system in each time
step. For comparison, we accompany the distributed-microstructure Cahn--Larch\'e
case studies with numerical simulations of the Cahn--Hilliard equation, nondimen-
sionalized corresponding to section 3, to compare the respective separation process
with a separation process without the influence of mechanical stress.

We choose \Omega = (0, 1)2 as the macroscopic domain provided with the boundary
parts as specified in Figure 1 and a standard unit cell Yxi

= Y = (0, 1)2 at each
macroscopic point. The macroscopic boundary conditions for the displacement are
chosen such that a nonuniform macroscopic strain results. For the displacement, we
choose a zero Dirichlet boundary condition on three of the four sides of \Omega ,

(5.1) u = 0 on (\Gamma 0 \cup \Gamma \mathrm{s})\times S
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and compress the domain at the fourth,

(5.2) u \cdot n = u\mathrm{g} on \Gamma \mathrm{g} \times S,

where u\mathrm{g} is chosen such that the macroscopic domain is reduced by 5\% in the horizon-
tal direction. A free slip in the tangential direction on \Gamma \mathrm{g}\times S completes the boundary
conditions. For c0, we have periodic boundary conditions and as initial condition we
use a locally randomly perturbed constant function, which is Y -periodic in y. More
precisely,

(5.3) c\mathrm{i}\mathrm{n}(y) = c\mathrm{m} + \xi (y), y \in Y,

where \xi is a function drawing random numbers from a uniform distribution in the
interval [ - 0.005, 0.005) for each argument and c\mathrm{i}\mathrm{n} is Y -periodic. In what follows, we
consider binodal phase separation by choosing c\mathrm{m} = 0.3 in (5.3) as well as spinodal
phase separation by setting c\mathrm{m} = 0.5. Otherwise, we always take the exact same
initial value for all simulations and for c0 in each Yxi . The other parameters are
always chosen as \lambda = 10 - 4 and \varphi = 0.75. For the mechanical parameters, we take
the Lam\'e constants

\lambda \alpha = 0.6, \mu \alpha = 0.6(5.4)

for the elastically softer phase and

\lambda \beta = 1.2, \mu \beta = 1.8(5.5)

for the elastically slightly harder phase, so that

(5.6) aikhlm = \lambda i\delta kh\delta lm + \mu i(\delta kl\delta hm + \delta km\delta hl)

for the components of the elasticity tensors \scrA i, i \in \{ \alpha , \beta \} , as well as e\prime (c) = 0.2 unless
stated otherwise. In order to realize the micro--macro coupling, at each node xi of the
macroscopic mesh, there is an associated unit cell Yxi

= Y provided with a finer mesh
compared with the macroscopic one. For a fixed time step size \tau > 0, which is chosen
as \tau = 5\times 10 - 2 in all simulations, we consider the discrete time steps tk = tk - 1 + \tau 
or tk = k \tau for k = 1, . . . , k\mathrm{m}\mathrm{a}\mathrm{x} for one k\mathrm{m}\mathrm{a}\mathrm{x} \in \BbbN and we set T\mathrm{m}\mathrm{a}\mathrm{x} := \tau k\mathrm{m}\mathrm{a}\mathrm{x}. Then, the
solution procedure at each discrete time step tk works as follows: In each time step,
we first solve the cell problems in each unit cell Yxi

associated with each macroscopic
node xi of the macroscopic mesh. With these cell solutions, we assemble and solve the
macroscopic equation. Then, with the calculated macroscopic displacement, iterating
over each macroscopic node xi, we solve the evolution equation for the order parameter
in every microscopic cell Yxi

.
Figure 2 shows a typical result for the magnitude of the displacement with some

marked points of the macroscopic domain in which we show the separation processes
in the following simulations. Since we are primarily interested in the microscopic
processes and we do not make any comparisons to experiments, we have only chosen
a coarse mesh. The microscopic mesh is chosen in such a way that an alignment of
the pattern of the evolving microstructure caused by structures of the mesh is avoided
and we refer to [8] for studies on such mesh effects.

Our choice of boundary conditions for the displacement implies that the strain
tensor varies locally and, in particular, includes shear; see Figure 2. As one can see
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×x5

×x1

×x4

×x2

×x3

1Fig. 2. Typical magnitude of the macroscopic displacement u0 and five marked macroscopic
points x1, . . . , x5.

from (4.21a), the macroscopic strain \scrE (u0) enters in the evolution equation describing
the evolving microstructure and, as it may be different in each macroscopic point, the
microstructure is expected to be different in each macroscopic point in general. In
the following simulations, we therefore expect that the phase separations in the differ-
ent macroscopic points differ from each other and that an influence on the resulting
patterns can be detected.

5.1. Binodal phase separation. In the case of binodal phase separation, we
first compare the evolution in time of the separation process described by the distri-
buted-microstructure model in the macroscopic point x1 with the separation process
without elasticity of the corresponding Cahn--Hilliard simulation. Figure 3 shows
the results of the Cahn--Hilliard simulation in the left column and the results of the
simulation of the distributed-microstructure model in the right column. Plots in
one row are at the same point in time tk specified underneath. For all following
simulations of the phase-separation processes, we use the color bar given by Figure
4 for the representation of the order parameter c. Of course, due to the numerical
solution methods and modeling aspects, such as the choice of the local free energy,
there may be a deviation beyond the limits 0 and 1 for values of the order parameter.
However, these are minimal and for standardization we always use this color bar.

The (standard) Cahn--Hilliard simulations show a typical separation process. Re-
gions of pure phases and domains of one component (corresponding to c = 1) are
formed in the other contiguous phase (corresponding to c = 0) and the separation
process is quite far advanced already at t30. As time progresses further, the fusion
and growth of the domains can be observed, which corresponds to a reduction of
the phase boundaries. The shape of the domains corresponds to the energetically
favorable circular shape of the red-colored domains. During the fusion of two do-
mains, ellipsoidal structures also occur temporarily, as can be seen particularly well
in Figures 3(b) and 3(d), but these quickly relax again into circularly shaped do-
mains.

Considering the results of the DM simulation (we use this abbreviation in what
follows for the simulation of the distributed-microstructure model), one can see that
the process is roughly the same as that observed by the Cahn--Hilliard simulation.
The initially homogeneous mixture separates, regions of pure phases are formed, and
the resulting domains of the elastically harder phase merge and grow together.
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(a) t30 = 1.5

(b) t40 = 2

(c) t60 = 3

(d) t80 = 4

Fig. 3. Pattern of two binodal separation processes at different times tk; left: results of the
Cahn--Hilliard model simulation; right: results of the DM model simulation in the point x1. The
associated color bar is displayed in Figure 4.

D
ow

nl
oa

de
d 

08
/2

5/
25

 to
 1

37
.2

50
.1

00
.4

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2186 L. REISCHMANN AND M. A. PETER

Fig. 4. Color bar giving values from 0 to 1 for the visualization of the order parameter c in all
subsequent figures.

A comparison of the two separation processes shows that the separation of the
phases progresses slowlier in the DM-simulation in x1 than in the Cahn--Hilliard sim-
ulation. This seems to be a general observation in macroscopic points close to the
compression boundary \Gamma \mathrm{g}. Even more significantly, the domains in the DM simulation
are ellipsoidally shaped not only during fusion and they are aligned in the diagonal
direction from the lower left corner to the upper right corner. The ellipsoid structure
is already recognizable from the beginning and is most noticeable in the early stages
of the separation process, i.e., immediately with the formation of the domains and
can be clearly seen when looking at the emerging microstructure at times t30 and t40;
cf. Figures 3(a) and 3(b).

The ellipsoidal structure is retained for at least a certain period of time, which can
be seen particularly well at times t40, t60, and t80 and in comparison to corresponding
domains at the same times of the Cahn--Hilliard simulation. In the DM simulation,
there are domains which do not grow and remain ellipsoidally shaped during the
considered period.

Figure 5 shows patterns in different macroscopic points. The arrangement of the
single plots corresponds approximately to the position of the macroscopic points in \Omega 
to which the patterns belong; cf. Figure 2.

As can be seen from the figure, different alignment directions of the domains
occur depending on the macroscopic position. The orientation of ellipsoidal domains
is most obvious in points x1 and x5; see Figures 5(a) and 5(e).

Generally, it can be observed that the orientation direction of the domains in
macroscopic points in the upper half of \Omega is rather towards the lower left corner and
the upper right corner (which corresponds to the points x1 and x2), whereas the
domains in the macroscopic points of the lower half of \Omega are rather oriented towards
the upper left corner and the lower right corner (which corresponds to the points
x4 and x5). In what follows, we refer to these two occurring directions, the two
diagonals just described, as orientation diagonals for the alignment of the patterns.
While the shear stress in x2 and x4 is much smaller than in x1 and x5, respectively,
it is negligible in the point x3, which lies in the middle along the vertical coordinate
of \Omega . Accordingly, the diagonal orientation of the domains in Figures 5(b) and 5(d)
is weak but still visible and nonexistent in 5(c). It can also be seen here (and in
similar simulations not shown) that there seems to be a preferred direction in which
domains merge with other domains. This direction corresponds to the direction of the
respective orientation angle of the ellipsoidal domains. These observations fully meet
our initial expectations. The macroscopic strain influences the phase separation. It
has an effect on the shape and orientation of the domains and the dynamics of the
separation process, e.g., merging of domains.

5.2. Spinodal phase separation. The influence of the locally different macro-
scopic strain becomes more pronounced in the case of spinodal phase separation.
Analogously to the binodal case, we first compare the Cahn--Hilliard simulation with
the simulation of the separation process in the macroscopic point x1. The patterns
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(a) Pattern at x1.

(b) Pattern at x2.

(c) Pattern at x3.

(d) Pattern at x4.

(e) Pattern at x5.

Fig. 5. Pattern of the evolving microstructure in different macroscopic points at time t40 = 2
for binodal phase separation. The associated color bar is displayed in Figure 4.

at different times can be seen in Figure 6. In the left column of the figure, the results
of the Cahn--Hilliard simulation are shown while the solution of the DM simulation
can be found in the right column. Results next to each other are at the same times
specified underneath. For the comparison of the results from the two simulations, we
have chosen different points in time than for the corresponding comparison in the case
of binodal separation. The reason for this is that the phase separation is faster here
and the selected points in time are adjusted accordingly.

The process of both simulations is roughly the same. In the beginning, the homo-
geneous mixture separates and regions of pure phases are formed, but in comparison to
binodal phase separation, no circular or ellipsoidal domains but stripe-like structures
are formed. As time progresses, the regions of pure phases grow, which corresponds
to a reduction of the phase boundaries.

At time t10, the phase separation is far from being complete in both cases. At this
time, in contrast to the Cahn--Hilliard simulation, in the DM simulation a diagonal
orientation of the microstructure is clearly visible already. This difference becomes
more pronounced at time t20. The plots of the DM simulation show the diagonal
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alignment of the pattern and there are structures which extend diagonally over almost
the entire domain. As time progresses, this preferential alignment of the patterns also
remains present during the growth of the pure phases as can be seen at times t40 and
t60. The structure of the pattern becomes more and more similar to diagonal stripes
as time progresses. A comparison of Figures 6(b) and 6(d) also shows that the phase
boundaries smoothen over time. The patterns of the Cahn--Hilliard simulation, on
the other hand, still appear disordered and do not show any particular orientation.

In Figure 7, results for different macroscopic points are shown. The selection of
the macroscopic points and the arrangement of the single pictures is the same as in
Figure 5 and corresponds approximately to the position of the macroscopic points to
which the patterns belong. In spinodal separation, the characteristics of the different
orientations of the patterns are more pronounced.

At first glance, it can be said that in all patterns shown in Figure 7 a certain
orientation is noticeable in comparison to the corresponding results of the Cahn--
Hilliard simulation; cf. Figure 6(d). The observation that we made in the binodal case
during the discussion of Figure 5 also applies here, that is that the microstructure in
those macroscopic points that is located in the upper or lower half of \Omega is oriented
along the respective diagonals. However, this orientation is seen much more strongly
in the spinodal case. Similarly, the orientation of the patterns in x1 and x5 is strongly
oriented to the diagonal while the patterns belonging to the points x2 and x4 are more
vertical already. Located vertically centered in \Omega , the formation of the pattern shown
in Figure 7(c) is oriented vertically. This becomes particularly clear in comparison to
the pattern of the pure Cahn--Hilliard simulation; cf. Figure 6(d).

5.3. Spinodal phase separation with other stiffnesses. Finally, we investi-
gate the effects of a variation of the material stiffness. For this purpose, we consider a
weaker and a stiffer material by taking Lam\'e coefficients multiplied by a factor of one
third, i.e., \lambda \alpha = 0.2, \mu \alpha = 0.2 and \lambda \beta = 0.4, \mu \beta = 0.6 and taking Lam\'e coefficients
multiplied by a factor of one and two thirds, i.e., \lambda \alpha = 1, \mu \alpha = 1 and \lambda \beta = 2, \mu \beta = 3,
in comparison to the original choice given in (5.4) and (5.5) and used to produce the
results shown so far.

The first row in Figure 8 shows the results of the DM simulation at selected
macroscopic points (specified underneath) with the decreased Lam\'e constants. In
the second and the third row, the respective results of the DM simulation with the
previously used Lam\'e constants given by (5.4) and (5.5) and with the increased Lam\'e
constants at the same point in time can be seen. Figures 8(a), 8(d), and 8(g) show
patterns in the vertically centered macroscopic point x3 at time t40 = 2. In the
case of higher Lam\'e constants, the vertical alignment of the pattern is much more
pronounced at this time. On the other hand, the results for the less stiff material given
in Figure 8(a), show less vertical alignment and are already similar to the results of a
Cahn--Hilliard simulation; see Figure 6(b). Figures 8(b), 8(e), and 8(h) show patterns
in x2, which is located in the upper half of \Omega . In the plot of the simulation with the
values for elastically harder components, the orientation of the patterns is stronger
the stiffer the material. The same applies to the patterns shown in Figures 8(c), 8(f),
and 8(i) for the point x1.

6. Summary and discussion. We considered the Cahn--Larch\'e system in a
multiscale context. Assuming two distinct length scales, a microscopic and a macro-
scopic one, we obtained a Cahn--Larch\'e system in terms of dimensionless quantities,
where certain terms were scaled with powers of the ratio of the length scales. For
the case where the mechanics is assumed to take place on the macroscopic scale
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(a) t10 = 0.5

(b) t20 = 1

(c) t40 = 2

(d) t80 = 4

Fig. 6. Pattern of two spinodal separation processes at different times tk; left: results of the
Cahn--Hilliard model simulation; right: results of the DM model simulation in the macroscopic point
x1. The associated color bar is displayed in Figure 4.
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(a) Pattern at x1.

(b) Pattern at x2.

(c) Pattern at x3.

(d) Pattern at x4.

(e) Pattern at x5.

Fig. 7. Pattern of the evolving microstructure at different macroscopic points at time t80 = 4
for spinodal phase separation. The associated color bar is displayed in Figure 4.

and the separation process occurs on the microscopic scale, which is the case in
Langmuir--Blodgett film-balance experiments, we obtained an upscaled system of
DM type using the method of asymptotic expansions in a periodic-homogenization
setting.

Typical simulation results were presented for the homogenized DM model. As in a
single-scale setting, where the separation process is described by the standard Cahn--
Larch\'e system, the influence of the mechanics on the patterns can be clearly seen
during phase separation. In the DM model, this effect arises on the microscale and
it is particularly evident in the spinodal case. In the binodal case, ellipsoidal shapes
were seen particularly clearly during the early stage of phase separation. Over time, it
could be observed that the ellipsoidal shapes relax into more circular shapes. In con-
trast, in the case of spinodal separation, we found that the alignment of the patterns
due to elastic stresses becomes clearer and stricter as time progresses. Furthermore,
these effects appear more strongly with elastically harder material parameters. Nev-
ertheless, in all cases, a certain alignment of the microstructure can be seen, which
varies locally macroscopically and which is in line with our expectations regarding the
model.
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(a) Pattern at x3 (b) Pattern at x2 (c) Pattern at x1

(d) Pattern at x3 (e) Pattern at x2 (f) Pattern at x1

(g) Pattern at x3 (h) Pattern at x2 (i) Pattern at x1

Fig. 8. Patterns at different macroscopic points at time t40 = 2 for elastically weaker (top row)
and stiffer (bottom row) materials. The associated color bar is displayed in Figure 4.

Unfortunately, no quantitative measurements of the film-balance experiments,
which motivated the developed multiscale model, are available. A quantitative com-
parison with numerical simulations is required in the future to validate the limit model.
Since the mathematics has been kept general, an application in three dimensions is also
feasible. For example, models of evolving microstructures in phase-separating metal
alloys under macroscopic mechanical stress could be considered in an analogous fash-
ion. Furthermore, the upscaling method based on matched asymptotic expansions
is mathematically heuristic. From an analytic point of view, passing to the limit in
a mathematically rigorous way would be an important mathematical justification of
the limit model. This poses a number of challenges, however, owing to the multiple
nonlinearities and the \epsilon 2-scaling.
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