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A B S T R A C T

Using neural ordinary differential equations (ODEs) to model complex systems is still a challenging venture and 

fails for various reasons, often resulting in convergence to unsatisfactory local minima or unintended termination 

of the training process due to solver issues. To take a step back, the root of the problem lies in either the com-

plexity of the optimization problem or the lack of data. The negative effects of both aspects can be reduced by 

incorporating a priori knowledge, a common strategy in Scientific Machine Learning. Especially when modeling 

physical systems, there is almost always more system knowledge available than is used for training. Examples 

range from knowledge of generic properties such as “the system is stable” to more quantifiable attributes such 

as “the system oscillates in a known frequency range”. To close the loop, such knowledge can be used to achieve 

faster convergence and better generalization. In this paper, we focus specifically on system properties that can 

be expressed based on eigenvalues, such as (partial) stability, oscillation capability, frequencies, damping, and 

stiffness. We explain how such properties can be intuitively integrated into training neural ODEs, provide open-

source software for this, and finally show in three academic examples that such eigen-informed neural ODEs are 

able to converge in fewer steps (median up to factor 6.41), generalize better (median up to factor 6.92) and are 

solvable more efficiently (median up to factor 1.12) compared to pure neural ODEs, and can even reconstruct a 

given system on undersampled data.

1. Introduction

In this work, we present the method of eigen-informed training by 

extending a common loss function with additional objectives. These 

objectives are defined based on system properties that depend on eigen-

values. The eigenvalues are calculated for the system matrix (which is 

obtained by linearization) at multiple points of the solution of the ordi-

nary differential equations (ODEs). By incorporating knowledge based 

on system properties, we will show that generalization and convergence 

are enhanced, which reduces the amount of required data. In addition,

common pitfalls such as instability and stiffness can be prevented. The 

corresponding method is investigated in detail in Section 2. In the fol-

lowing, we introduce the general topic and investigate related work in 

the context of neural ODEs.

1.1. Neural ordinary differential equations

Neural ODEs describe the structural combination of an Artificial 

Neural Networks (ANNs) and an ODE solver, where the ANNs functions 

as the right-hand side of the ODEs [1]. With this approach, models of
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dynamic systems can be learned without learning the numerical solv-

ing process itself. This powerful combination led to impressive results 

in different applications in physics [2–5].

A straightforward training process for neural ODEs looks as follows: 

First, the neural ODE is solved like a common ODE by numerically 

integrating the right-hand side (here, the ANN). Next, the gathered so-

lution is compared with some reference data (loss function), and finally 

the ANNs parameters inside the neural ODE are adapted based on the 

loss function gradient, so a better fit compared to the reference data is 

achieved.

If large or complex systems are modeled with neural ODEs, the cor-

responding ANNs become deeper and wider, and two major challenges 

must be faced: Solvability and convergence. These two challenges are 

often neglected in simple applications involving neural ODEs, or are 

handled in a very use case specific way that might not be reusable in 

other applications.

1.2. Solvability

Before investigating solvability, eigenvalues are briefly introduced 

in the context of neural ODEs. The eigenvalues of a neural ODE with

state 𝒙 and state derivative 𝒙̇ are defined as the eigenvalues of the sys

tem matrix 

-

𝑨 = 

𝜕𝒙̇
𝜕𝒙 . Linearization for equilibrium points (where 𝒙̇ = )

is applicable if the Hartman–Grobman Theorem is satisfied [

𝟎
6,7], which 

applies if 𝑨 has no eigenvalue with a zero real part. It is important to 

understand that linearization can only ever make a limited statement 

about the nonlinear system. This is reflected in the discrete evaluation 

in state space (the linearization is performed for a finite number of de-

termined states), but also by the limited guarantees for how the system 

behaves in the immediate surroundings of the linearization points (e.g., 

chaotic or bifurcating systems). Hard statements on the overall trajec-

tory of a nonlinear system cannot be made on the basis of linearization. 

On the other hand, the presented method is proposed as a regulariza-

tion strategy — so a soft constraint — and small and temporary errors 

in regularization can still lead to an improved training process, as we 

show in the experiments, even if this must not be the case for all classes 

of nonlinear systems. A further discussion on this topic is part of the 

limitations Section 4.2 and future work 4.3.

A neural ODE is considered solvable, if the solver is able to keep all the 

eigenvalues of the system within its stability region during the construc-

tion of the ODE solution. The stability region is the area of eigenvalues 

in the complex plane, for which the solution of the Dahlquist equation 

absolutely decreases [8]. There are two options that allow the solver to 

keep eigenvalues within its stability region:

1. Step size control: The size of the solver’s stability region scales

inversely with the solver’s step size. By taking smaller steps, the 

numerical solver can scale its stability region to cover all eigenval-

ues. However, this can still fail if eigenvalues are distributed over 

a wide range, far from the complex origin (stiff system) or are 

geometrically unreachable (stable solver and unstable system).

2. Order control: Solvers with dynamic order control (or hybrid

solvers that switch between different solvers) are able to switch 

between different stability region geometries and sizes, depending 

on eigenvalue positions.

If a neural ODE can not be solved, there is a major issue resulting 

from that: If the solver terminates the solving process, no solution can 

be obtained, no loss can be computed, and no parameter updates can 

be performed. This state cannot be cured by a new solving attempt, 

because the parameter values and therefore the ODEs (and their solv-

ability) remain unchanged. To prevent this, it is necessary to initialize 

neural ODEs in a solvable configuration to obtain a solution that can be 

used for training. But even if the neural ODE is initialized as solvable and 

the target solution is known to be solvable for the chosen solver, there is 

no guarantee that changing parameters during the optimization process

will not lead to an unsolvable system. So in addition to the solvable ini-

tialization, maintaining solvability during training must be considered 

to obtain a robust training process.

Without further arrangements, for a randomly initialized neural ODE 

— meaning the ANNs parameters are random values from an initializa-

tion routine like, e.g., Glorot [9] — there are no guarantees that the 

initialized neural ODE is (efficiently) solvable by a given ODE solver. 

The positions of the eigenvalues of the resulting system are simply not 

considered during initial parameter selection.

If the neural ODE is not solvable, there are two possible reasons for 

this: Instability or stiffness.

1.3. Stability

There are countless definitions of the system property stability, there-

fore, this term is introduced in a few lines. In this paper, a system is 

considered stable, if all eigenvalues of the system matrix 𝑨 have a nega-

tive real value. If the system matrix is not constant over time (nonlinear 

system), a system might be stable for specific locations in state and time, 

while it may be unstable in others. Furthermore, the process of pushing 

unstable eigenvalues from the right to the left half of the complex plane 

is called stabilization.

Stabilization of neural ODEs is an active and important topic of re-

search, and several strategies have already been published in this area: 

Stabilizing linear neural ODEs by constraining weights in the cost func-

tion is discussed in [10]. In [11], the stabilization of nonlinear systems is 

also presented by constraining weights, so that a Lyapunov-stable solu-

tion is obtained. [12] provides a novel loss formulation and framework 

that incorporates the Lyapunov condition into the training process of 

neural ODEs. Further publications like [13] focus on the stabilization of 

discrete systems.

However, the method presented in this contribution considers a more 

generic approach focusing on linear and nonlinear, stable, and unstable 

systems, as well as additional ODEs properties in addition to stability: 

Frequencies, damping, stiffness, and oscillation capability. In addition, 

the eigenvalues of the system are not affected indirectly by constraining 

weights during optimization, like in [10] and [11], but directly by locat-

ing the eigenvalues in a differentiable way and forcing them to specific 

locations or regions. In this way, also (partly) unstable systems can be 

trained, like the Van der Pol oscillator (VPO) in the later example.

1.4. Stiffness

Taking into account the actual solvability, another important attribute 

must be investigated, which is stiffness. Even if a system is solvable, the 

solution process can be very inefficient, i.e., the solver takes very small 

steps to guarantee a stable solution process.

Like stability, the topic of stiffness is discussed in the field of neural 

ODEs. For example, in [14] it is investigated that scaling (normalization) 

of the right-hand side is crucial to learn for stiff systems and a specialized 

and efficient method for sensitivity analysis (quadrature adjoint) is pre-

sented. In addition, [15] investigates Simple Temporal Regularization 

(STEER), which means that the termination time for the solving pro-

cess is not assumed fixed, but varies between training steps. In this way, 

smaller loss values could be achieved for stiff systems.

We would like to emphasize that this work is not focusing especially 

on learning stiff systems but also on preventing unintended stiffness. 

In addition, not only stiffness, but also multiple properties of the sys-

tem can be enforced simultaneously with the presented method. To the 

knowledge of the authors, there is no other method that allows for regu-

larization of a variety of eigenvalue-based system properties to directly 

compare our approach with.

1.5. Convergence

Even if the neural ODE is (and stays) solvable, a common issue is the 

convergence to an unsatisfactory local minimum. This can be observed
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Fig. 1. An example neural ODE of an oscillating system after 2500, 5000, 7500 

and 10000 training steps. This neural ODE is suffering from a typical local 

minimum. The local minimum is relative close to the optimum (black-dashed), 

leaving it is challenging because the loss function gradient vanishes.

especially for oscillating systems, as exemplified in Fig. 1. Instead of un-

derstanding a relatively complicated oscillation, a much simpler average 

over the oscillation is learned. Without further arrangements, it is often 

impossible to train a neural ODE to adequately describe an oscillating 

system over multiple periods or a highly dynamic system solely based 

on a simple cost function defined on the ODE’s solution.

However, there are different modifications to the training process to 

tackle this challenge:

• A common approach is the so-called growing horizon, which starts

with a small portion of the simulation horizon, i.e., the time span, 

and successively increases this horizon with consecutive training 

convergence. Disadvantageously, this introduces multiple new hy-

perparameters. 

1 The determination of these hyperparameters is not 

trivial. Especially for high-frequency applications, the hyperparam-

eters are very sensitive and problem-specific, and the chances of 

reusability in another application are low.

• Further, mini-batching strategies can be applied, which cut the

training trajectory into multiple pieces. Instead of computing the 

gradient for the entire trajectory at once, leading to averaging the 

information within the gradient, only one piece of the trajectory 

(the batch) is used. The length or size of batches is a sensitive hy-

perparameter. In stochastic mini-batching, the piece to train on is 

picked randomly, however, more advanced schedulers can be ap-

plied. If gradients for multiple pieces are computed in parallel, the 

method corresponds to multiple shooting [16]. Batching, as well as 

multiple shooting, requires reinitialization of the neural ODEs at var-

ious points in time, which requires knowledge of the entire system 

state 𝒙 based on data. Whereas this seems trivial for academic exam-

ples, this is not feasible for e.g., large-scale systems with hundreds 

or thousands of states.

To conclude, even if both strategies can be used to enhance convergence 

for neural ODEs, they heavily rely on appropriate hyperparameters and, 

in case of mini-batching, knowledge of the system state. In general, both 

approaches can be seen as artificial measures, incorporated by the user. 

Both strategies might be chosen based on the observation that the system 

contains high-frequency oscillations, therefore a training starting with 

a small timespan (growing horizon) or on small timespans in general

1 What is the horizon growing condition? What is the condition threshold? 

How much grows the horizon?

(mini-batching) is considered promising. However, in this paper, we in-

vestigate a more natural and direct way of incorporating knowledge of 

oscillation, frequency, and damping.

To summarize the introduction, solvability, stability, stiffness, and 

convergence behavior of neural (ordinary) differential equations are im-

portant and actively discussed topics in the scientific community, and 

many proposals have been made to cope with one of these challenges. 

However, we want to clarify that this work goes beyond individual top-

ics like stability and stiffness alone, and opens up to the incorporation of 

system properties, which depend on eigenvalues, in general (frequencies,

damping, etc.). Further, our method does not only focus, for example, 

on training stable or stiff systems, but also allows for targeting a specific 

stiffness or stability value. The proposed method could be applied to ad-

dress multiple or even all of the challenges investigated at once. Besides 

that, eigen-informed neural ODEs are not only useful to accomplish, e.g., 

stability, but also allow for improving model quality regarding a variety 

of other aspects, e.g., fitting under very limited amount of data or even 

dealing with undersampling.

2. Method

The core idea of the presented method is to force the system eigenval-

ues into specific positions, ranges, or geometric areas during the neural 

ODE training. This is achieved by a specially loss function design based 

on the system eigenvalues. Inside the loss function, the method can be 

subdivided into three steps:

1. Gather the system matrix (Jacobian) for multiple points in time

and compute the corresponding eigenvalues (see Section 2.1),

2. provide the eigenvalue sensitivities needed for the gradient over

the loss function (see Section 2.2) and

3. rate the eigenvalue positions (compared to target positions,

ranges, or areas) as part of a loss function (see Section 2.3).

Because the evaluation of physical equations in the cost function 

of ANNs is known as Physics-informed Neural Network (PINN) [17], 

we want to pursue this naming convention by presenting eigen-informed 

neural (ordinary) differential equations, which evaluate eigenvalues (or 

eigenvectors) as part of their loss functions. Here, two different types of 

loss functions can be distinguished:

1. Training based on the solution: Eigenvalues can be computed for

each solver step during solving of the ODE.

2. Training based on the derivative: Eigenvalues can be computed

for pre-defined points in time and state space by evaluation of the 

right-hand side, without actually solving the ODE. This is often 

referred to as collocation [18].

In the following, we focus on the more complex case of training on the 

solution of the eigen-informed neural ODE.

2.1. Eigenvalues of the system

Eigenvalues are computed for the system matrix 𝑨 = 𝜕 ̇ 𝒙
𝜕𝒙  , i.e., the

sensitivities of the state derivatives 𝒙̇ w.r.t. the states 𝒙. For linear sys

tems, this matrix is constant over the entire solving process, for nonlinear 

systems it is not. As soon as a neural ODE uses one or more nonlinear 

activation functions, it becomes a nonlinear system. Whereas for sim

ple nonlinear systems a symbolic Jacobian can be derived, for more 

complex systems, the system matrix must be determined numerically 

-

-

for every time step investigated. Depending on the size, the determina-

tion of this Jacobian is not computationally trivial, but often the system 

matrix is already calculated by another algorithm and can be reused. For 

example, most implicit solvers calculate and store the system Jacobian 

for solving the next integrator step [19]. In this case, the Jacobian can 

be reused without a computational effort worth mentioning. The other
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way around, a computed Jacobian for the application of this method 

can be shared with an implicit solver. If not available through an-

other algorithm, the system matrix can be computed using Automatic 

Differentiation (AD), sampled using finite differences, or could even be 

symbolically known.

After obtaining the Jacobian, the eigenvalues can be computed. 

There are multiple algorithms to approximate the eigenvalues of a given 

matrix 𝑨. One of the most famous is the approximation of eigenvalues 

and eigenvectors through iterative QR-decomposition [20]. This algo-

rithm may require many iterations to converge (for a tight convergence 

criterion), but the iteration count can be reduced by using different shift 

techniques or the algorithm extension deflation. Using the QR-algorithm, 

the eigenvalues and eigenvectors can be computed.

2.2. Sensitivities of eigenvalues

Computing sensitivities over iterative eigenvalue computations, like 

the QR-algorithm, using AD is computationally expensive. This is be-

cause additionally to the eigenvalue computation itself, all algorithm 

operations must be executed at derivation level for every algorithm iter-

ation. Furthermore, the numerical precision at derivation level may de-

crease with larger iteration counts, and an exact sensitivity computation 

is not guaranteed.

A better approach for sensitivity computation is to provide the sen-

sitivities analytically for the entire iterative process. The advantages are 

improved performance (the analytical expression needs only to be evalu-

ated one time for an arbitrary number of iterations within the algorithm) 

and improved numerical accuracy (no risk of loss of numerical precision 

through iteration).

Let 𝑫 = 𝑑𝑖𝑎𝑔(𝝀) be the diagonal matrix of eigenvalues 𝝀 and 𝑼 a 

matrix that contains the corresponding eigenvectors in columns. In the 

following, we investigate the function 𝑫, 𝑼 = 𝑒𝑖𝑔𝑒𝑛(𝑨), which computes 

eigenvalues and eigenvectors based on a given (system) matrix 𝑨.

Automatic differentiation (AD). AD is a technique to compute partial

derivatives on the fly, so along the actual computations, by performing 

differentiation based on symbolic expressions, but storing intermediate 

results numerically. AD comes in two different flavors, depending on 

whether the sensitivities are determined in (forward) or against (reverse) 

the direction of the actual computation. Forward AD results in a series 

of Jacobian-vector-products to propagate the sensitivity with respect to 

the input, known as seed, through the computational graph in order to 

determine the required sensitivity. Reverse AD on the other hand results 

in a series of vector-Jacobian-products to propagate the sensitivity with 

respect to the output (the adjoint or co-tangent) backwards through the 

computational graph [21]. Common AD libraries provide an interface for 

rules to define how sensitivities are propagated through a method call 

forward or in reverse. Such interfaces can be used to define custom rules 

for eigenvalue and eigenvector computation, e.g., via the QR-algorithm.

The sensitivities (seeds) for forward mode differentiation 

𝜕𝑫 

𝜕𝜐 and 

𝜕𝑼
𝜕𝜐

with respect to an input variable 𝜐 are provided in Eq. (1) and (2) based 

on [22].

𝜕𝑫
𝜕𝜐

= 𝑰◦ 

( 

𝑼−1 ⋅
𝜕𝑨
𝜕𝜐

⋅ 𝑼 

) 

(1)

𝜕𝑼
𝜕𝜐

= 𝑼 ⋅ 

( 

𝑭 ◦ 

( 

𝑼−1 ⋅
𝜕𝑨
𝜕𝜐

⋅ 𝑼 

)) 

(2)

Here, ⋅ is the matrix product and ◦ is the Hadamard product (element-

wise product). Further let 𝑭 be defined as:

𝐹 𝑖,𝑗 = 

{ 

(𝜆 𝑗 

− 𝜆 𝑖 

) 

−1 for𝑖 ≠ 𝑗
0 elsewhere.

(3)

In analogy, the reverse mode sensitivity (adjoint) 𝑨̄ 

 can be defined as in

[22]:

𝑨̄ = 

𝜕𝛾
𝜕𝑨

= 𝑼 

−𝑇 ⋅ 

(

𝜕𝛾
𝜕𝑫

+ 𝑭 ◦ 

(

𝑼 

𝑇 ⋅ 

𝜕𝛾 

𝜕𝑼

)) 

⋅ 𝑼 

𝑇 , (4)

where 𝛾 is the output variable for the sensitivity analysis.

Both differentiation rules, forward and reverse, are imple-

mented in our Julia package DifferentiableEigen.jl (https://github.com/ 

ThummeTo/DifferentiableEigen.jl) for the common AD frameworks. 

This package is also used in the experiments section.

2.3. Eigenvalue positions

Inducing additional system knowledge in different forms into ANNs 

has been shown to be an excellent method to improve the speed of 

training convergence and reduce the amount of training data needed, 

compared to solving a task by a pure ANNs alone. The concept of neural 

ODEs itself can be interpreted as the integration of the algorithm numer-

ical integration into a machine learning model. Based on that, injecting 

one or more symbolic ODEs to obtain physics-enhanced or hybrid neu-

ral ODEs further reduces the amount of training data and improves the 

training convergence speed, because only the remaining, not modeled 

effects (or equations) need to be understood by the ANNs [23–25].

Continuing this strategy, system properties can also be used as addi-

tional knowledge and can improve different aspects of neural ODE train-

ing. This paper especially focuses on eigenmodes, meaning eigenvalues 

and eigenvectors, which can describe the following system attributes:

• Stability (all eigenvalues on the left half of the complex plane, see

Section 2.3.1)

• Oscillation capability (existence of conjugate complex eigenvalue

pairs, see Section 2.3.2)

• Frequency (imaginary positions of conjugate complex eigenvalue

pairs, see Section 2.3.3)

• Damping (positions of eigenvalues, see Section 2.3.4)

• Stiffness (ratio between largest and smallest, negative real positions

of eigenvalues, see Section 2.3.5) 

• …

The way to include knowledge of these system properties in a cost func

tion of a neural ODE, to obtain an eigen-informed neural ODE, is shown 

in the following subsections.

-

In the following, let 𝝀(𝑡) denote the eigenvalues of the corresponding 

system for the time instant 𝑡 and 𝜆 the -th eigenvalue. The order of the𝑖   

 

(𝑡) 𝑖      

eigenvalues is not important as long as it does not change 

2 over 𝑡. The 

real part of a complex eigenvalue 𝜆 is denoted by , the imaginary𝑖    ℜ(𝜆 𝑖 

)    

 

part by ℑ(𝜆 𝑖 

).
For 𝑎, 𝑏 ∈ R, let 𝜖(𝑎, 𝑏) be an arbitrary function that evaluates the

deviation between 𝑎 and 𝑏, common choices are the well known mean 

squared error (MSE) and mean absolute error (MAE). Please note that 

𝜖 can not only be designed to enforce a specific frequency, damping or 

stiffness, but also to allow for a given range or geometry of target values. 

This is especially useful, if an upper and lower bound for the correspond-

ing system attribute is known, such as, e.g., frequencies in mechanical or

electrical systems. Furthermore, let max(𝑎, 𝑏) and min(𝑎, 𝑏) be the maxi-

mum/minimum functions of two elements 𝑎 and 𝑏 and max(𝒄) and min(𝒄) 

the maximum/minimum elements of a vector 𝒄 ∈ R 

𝑛.

2.3.1. Stability (STB)

Probably the most intuitively known system property, but often 

neglected during training of neural ODEs, is stability. Many physical 

systems are stable, and even unstable mechanical or electrical systems 

relevant in practice often only contain an unstable subsystem. As already 

stated, neural ODEs are not stable by design. Stability can be achieved 

(and preserved) by forcing all real parts of the system eigenvalues to be 

negative. For unstable systems, only the stable subset 

3 of eigenvalues

2 If the order of eigenvalues changes, e.g., because of function output with 

lexicographic sorting, eigenvalues must be tracked between time steps, so they 

can be uniquely identified.
3 This subset may vary over time, stable eigenvalues may become unstable 

and the other way round.
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can be forced to the negative real half-plane. Further, nonlinear systems 

can be unstable for specific parts in state space while being stable in 

others. A rotational pendulum, for example, is stable close to the sta-

ble equilibrium position but shows unstable eigenvalues as soon as it is 

closer to the unstable equilibrium position. In such cases, stability should 

be enforced only for stable regions of the state space, of course. A sim-

ple stability loss function 𝑙 𝑆𝑇𝐵 

that forces a completely stable system is

described in the following:

𝑙 𝑆𝑇𝐵 

(𝝀) =
|𝝀|
∑ 

𝑖=1
𝜖 𝑆𝑇𝐵(max(ℜ(𝜆 𝑖 

(𝑡)), 0), 0). (5)

The max function with second argument 0 ensures, that only eigenval-

ues with positive real value (unstable) are taken into account. The error 

function 𝜖 𝑆𝑇𝐵 

rates the deviation of the real part of the eigenvalue com-

pared to 0, where marginally stable eigenvalues are located. Of course, 

other thresholds or ranges can be deployed if needed, for example, to 

promote a stability margin instead of marginal stability or even allow 

instability to a certain extent.

2.3.2. Oscillation capability (OSC)

Oscillation of a system can be determined by identifying conjugate 

complex eigenvalue pairs, meaning eigenvalue pairs with identical real 

parts, but negated imaginary parts. Eigenvalues cannot appear with a 

non-zero imaginary part without a conjugate complex partner. As a 

consequence, to force two eigenvalues into an eigenvalue pair, it is nec

essary to start by synchronizing the real parts of the eigenvalues. For 

a given set 𝛀 of eigenvalue pairs (𝜆 with , a cost𝑎, 𝜆 𝑏) ∈ 𝛀  𝜆 𝑎, 𝜆 ∈ 

   𝑏   

 

𝝀  

function that forces oscillation can be defined as:

-

𝑙 𝑂𝑆𝐶 

(𝛀) = 

∑

(𝜆 𝑎 

,𝜆 𝑏 

)∈𝛀
𝜖 𝑂𝑆𝐶 (ℜ(𝜆 𝑎 

), ℜ(𝜆 𝑏 

)). (6)

A point worth mentioning is, that it is not necessary to know exactly 

which eigenvalues should be paired. The knowledge that eigenvalue 

pairs exist and the number of pairs is sufficient, because any two eigen-

values have the potential to establish a conjugate complex eigenvalue 

pair. 

4 However, as already stated, also in this case, the eigenvalues need 

to be tracked so that the pairs can be maintained during training.

After laying the foundation for oscillation capability, it might be in-

teresting to enforce a specific oscillation frequency (s. Section 2.3.3) or 

damping (s. Section 2.3.4).

2.3.3. Frequency (FRQ)

Oscillation frequencies in dynamical systems are measured (and 

therefore known) in 𝐻𝑧 = 

1
𝑠

 . This information must be converted

to eigenvalue positions in order to specify a loss function. As already 

stated, an oscillation is described by a pair of eigenvalues that share the 

same real part and a negated imaginary part. The frequency 𝑓 (𝜆) of an 

eigenvalue 𝜆 can be calculated using the well-known equation:

𝑓 (𝜆) = 

|ℑ(𝜆)|
2 ⋅ 𝜋

. (7)

Based on a ground truth frequency 𝑓 for𝑎𝑏  the eigenvalue pair (𝜆 , a𝑎,  

 

𝜆 𝑏 

)  

frequency based loss function may look as follows:

𝑙 𝐹 𝑅𝑄 

(𝛀) = 

∑

(𝜆 𝑎 

,𝜆 𝑏 

)∈𝛀
𝜖 𝐹 𝑅𝑄(𝑓 𝑎𝑏, 𝑓 (𝜆 𝑎 

)) + 𝜖 𝐹 𝑅𝑄 

(𝑓 𝑎𝑏, 𝑓 (𝜆 𝑏 

)). (8)

If 𝜆 and𝑎  𝜆 are𝑏  already paired, it  

  

applies that |ℑ(𝜆 𝑎 

)| = |ℑ(𝜆𝑏  

)|, which 

results in 𝑓 (𝜆 . Applying this,𝑎)  

 

= 𝑓 (𝜆 𝑏 

)   Eq. (8) can also be written only

4 This is because a neural ODE of sufficient dimension (states and parameters) 

can approximate any dynamic system, so any system eigenvector configuration.

depending on one of 𝜆 𝑎 

or 𝜆 𝑏 

as: 

𝑙 𝐹 𝑅𝑄 

(𝛀) = 2 ⋅ 

(𝜆 𝑎 

,𝜆 𝑏)∈𝛀
𝜖 𝐹 𝑅𝑄(𝑓 𝑎𝑏, 𝑓 (𝜆 𝑎 

)) = 2 ⋅ 

∑

(𝜆 𝑎 

,𝜆 𝑏)∈𝛀
𝜖 𝐹 𝑅𝑄(𝑓 𝑎𝑏, 𝑓 (𝜆 𝑏 

)). (9)
∑

Note that combined with eigenvalue tracking, this step reduces the com-

putational effort, because the loss function only depends on one instead 

of two eigenvalues per pair. As a result, it would suffice to compute the 

sensitivity of only one eigenvalue per pair. However, this requires modi-

fication of the QR-algorithm sensitivity rules, and a detailed examination 

is part of future work.

2.3.4. Damping (DMP)

Similar to the frequency, also the damping 𝛿 can be defined for an 

eigenvalue 𝜆:

𝛿(𝜆) = 

−ℜ(𝜆)
|𝜆|

= 

−ℜ(𝜆)
√

ℜ(𝜆)2 + ℑ(𝜆) 

2
. (10)

In analogy to Eq. (8), the damping loss function 𝑙𝐷 𝑀𝑃 

is defined straight 

forward for the ground truth damping 𝛿𝑎𝑏 of an eigenvalue pair: 

𝑙 𝐷𝑀𝑃 

(𝛀) = 

∑

(𝜆 𝑎 

,𝜆 𝑏 

)∈𝛀
𝜖 𝐷𝑀𝑃 (𝛿 𝑎𝑏, 𝛿(𝜆 𝑎 

)) +  𝜖 𝐷𝑀𝑃 (𝛿 𝑎𝑏, 𝛿(𝜆 𝑏 

)). (11)

Because ℜ(𝜆 𝑎) = ℜ(𝜆𝑏 )  

  

and |𝜆𝑎 | = |𝜆 𝑏      

 

| for eigenvalue pairs, it applies

that 𝛿(𝜆 𝑎 

) = 𝛿(𝜆 𝑏 

) and Eq. (11) simplifies to:

𝑙 𝐷𝑀𝑃 

(𝛀) = 2⋅ 

∑

(𝜆 𝑎 

,𝜆 𝑏)∈𝛀
𝜖 𝐷𝑀𝑃 (𝛿 𝑎𝑏, 𝛿(𝜆 𝑎 

)) = 2⋅ 

∑

(𝜆 𝑎 

,𝜆 𝑏 

)∈𝛀
𝜖 𝐷𝑀𝑃 ( ̃ 𝛿 𝑎𝑏 

, 𝛿(𝜆 𝑏 

)). (12)

This simplification to only depend on a single eigenvalue per eigenvalue 

pair results in the same benefits as for the frequency equations.

2.3.5. Stiffness (STF)

Finally, also the stiffness 𝜎̃ of a system may be known or at least an 

upper or lower boundary. The stiffness loss function for stable systems 

can be defined as:

𝑙 𝑆𝑇𝐹 

(𝝀) = 𝜖 𝑆𝑇𝐹

(

𝑚𝑎𝑥(ℜ(𝝀))
𝑚𝑖𝑛(ℜ(𝝀))

, 𝜎̃(𝑡) 

) 

. (13)

This stiffness definition basically only applies to stable systems, but for 

gradient determination it is important to provide a loss function that is 

defined for unstable systems, as well. Please note that the error function

𝜖 can be formulated not only to aim at a specific stiffness . Another𝑆𝑇𝐹            𝜎̃   

approach is to allow for a predefined stiffness range. In addition to train

ing the neural ODE to a known stiffness or range, this feature can also 

be used to enhance the simulation performance of the resulting neural 

ODE. Common ODE solvers use the ODE stiffness as criterion for the step 

size control; the stiffer the ODE the more integration steps need to be 

performed. If the training goal is to solve the resulting neural ODE in as 

few steps as possible, the secondary objective of the training could be 

𝜎̃ (𝑡) = 1 to promote a fast simulating model.

-

2.3.6. Further properties

Further properties from systems and control theory can be used 

within the proposed method, for example, the rise and settling time, 

time constants, natural frequency, and more [26,27]. However, for rea-

sons of space, we do not explain or validate all of them in detail and 

limit ourselves to the introduced properties above.

2.4. Training & computational cost

Common optimizers for gradient-based parameter optimization are 

designed to perform parameter changes based on a single gradient. As 

soon as additional gradients are obtained, it is necessary to deploy a 

strategy on how to further progress with multiple gradients. Basically, 

there are three obvious ways to include one or more property loss 

functions along with the original loss function in the training process:
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1. Extending the original loss function, for example, by mathemat-

ically adding further losses. This results in a single loss function 

gradient that can be passed to the optimizer. This corresponds to 

explicit regularization by adding regularization terms.

2. If an optimizer robust to gradient changes is used (e.g., optimizers

using momentum), all loss function gradients can be passed one 

after another to the optimizer to perform multiple optimization 

steps. For optimizers with momentum, depending on the param-

eterization, this results in a similar optimization compared to 

summing up multiple losses and determining a single gradient.

3. One can switch between gradients based on a defined gradient

criterion. This way, only a single gradient is selected and applied.

We apply the most common approach, which is to sum up the individual 

losses. However, we found that it is valuable to examine the individual 

optimization directions and would like to investigate potentials of that 

approach in the future. A great feature of generating multiple gradients 

for neural ODEs is that multiple optimization directions are generated 

at a very low computational cost. This is due to the fact that essential 

parts of the gradient computation can be reused, see the loss function 𝑙 

gradient defined in Eq. (14) with ODEs solution 𝑿 and ANNs parameters 

𝜽. Note that this loss function does not explicitly depend on parameters, 

like it would be the case for e.g., L1 or L2 regularization, but could be 

extended to do so if required.

𝜕𝑙(𝑿(𝜽))
𝜕𝜽

= 

𝜕𝑙(𝑿(𝜽))
𝜕𝑿(𝜽) 

⋅ 

𝜕𝑿(𝜽)
𝜕𝜽

(14)

The first part
𝜕𝑙(𝑿(𝜽))
𝜕𝑿(𝜽) of the loss function gradient is computationally 

cheap in general, it basically depends on the complexity of the used er-

ror function inside the loss function. The second factor, the Jacobian
𝜕𝑿(𝜽)
𝜕𝜽 on the other hand, is computationally expensive, because it re-

quires differentiation through the entire ODE solution 𝑿, which requires 

differentiation through the ODE solver. For every gradient that depends 

on the ODE solution,
𝜕𝑿(𝜽)
𝜕𝜽 can be reused after being created once.

The scalar loss function 𝑙 rating the deviation of the solution can 

be replaced by a vector loss function 𝒍, which also rates, e.g., multiple 

eigenvalue deviations. Based on the loss function vector output, a loss 

function Jacobian can be obtained, with only little impact on the compu-

tational performance. 

5 This Jacobian consists of multiple optimization 

directions. The loss function Jacobian is shown in Eq. (15) and uses the

same solution Jacobian 

𝜕𝑿 𝜽
𝜕𝜽 

.
( )

𝜕𝒍(𝑿(𝜽))
𝜕𝜽

= 

𝜕𝒍(𝑿(𝜽))
𝜕𝑿(𝜽)

⋅ 

𝜕𝑿(𝜽)
𝜕𝜽

(15)

To conclude, for cheap error functions like MSE and similar, the compu-

tational cost for a single as well as for multiple gradients is driven by

the cost of the Jacobian over the solution 

𝜕𝑿(𝜽)
𝜕𝜽 

.

To continue, the gradient over a cost function 𝒍 containing𝜆  

 

the

eigenvalue operation can be defined as:

𝜕𝒍 𝜆(𝝀(𝑿(𝜽)))
𝜕𝜽

= 

𝜕𝒍 𝜆(𝝀(𝑿(𝜽)))
𝜕𝝀(𝑿(𝜽))

⋅ 

𝜕𝝀(𝑿(𝜽))
𝜕𝑿(𝜽)

⋅ 

𝜕𝑿(𝜽)
𝜕𝜽 

. (16)

Similar to the loss function defined on the solution, the Jacobian 

𝜕𝒍 𝜆 

(𝝀)
𝜕𝝀

basically depends on the used error function and is computationally 

cheap in general, whereas the eigenvalue Jacobian 

𝜕𝝀(𝑿)
𝜕𝑿 needs deriva-

tion through the eigenvalue operations and is in general expensive. 

6 

Computationally advantageous is that as for the solution Jacobian 

𝜕𝑿(𝜽)
𝜕𝜽 

,

5 In this paper’s examples, computation time for the loss Jacobian compared 

to the loss gradient increased by ≈ 1.5 % using forward mode AD.
6 Besides the iterative nature of the QR-algorithm, for sensitivity estimation 

through the eigenvalue determination also the inverse of 𝑼 (s. Eqs. (1), (2) and 

(4)) is needed.

the eigenvalue Jacobian 

𝜕𝝀(𝑿) 

𝜕𝑿 can be shared between all loss functions

that consider eigenvalues and needs only to be determined once.

In conclusion, besides some computational savings, the number 

of time instances in which the system matrix and eigenvalues are 

computed should be handled deliberately because they may have a sig-

nificant impact on the overall training performance, depending on the 

dimensionality and complexity of the system. On the other hand, cal-

culating additional gradients based on already determined state- and 

eigenvalue-Jacobians is computationally cheap because the computa-

tionally expensive Jacobians can be cached and reused. Quite simply 

speaking, if losses are determined for the ODEs solution and one system 

property, further system properties can be investigated with negligible 

computational overhead. As stated above, if implicit solvers are imple-

mented, the system Jacobian can be shared between the solver and the 

loss function, resulting in major computational benefits and making 

eigen-informed training particularly interesting (and computationally 

cheap) for applications where implicit solvers are used anyway.

3. Experiments

The aim of the following examples and this work is to showcase an 

additional tool for dealing with data poverty or poor convergence in 

neural ODE applications, and not a universal strategy that supersedes ex-

isting approaches under all conditions. Furthermore, we know no other 

method that allows for regularization of all ODEs’ properties investi-

gated, e.g., frequencies, damping coefficients, stability and stiffness, that 

would allow for a meaningful comparison.

In the following, three examples are given to show the applicability 

and benefits of the presented method. During the experimental section, 

we baseline our approach against a common neural ODE under the very 

same training conditions. To compare various eigen-informed approaches 

to the training process without regularization, we repeat the experiments 

with different loss function configurations, i.e., different combinations 

of regularized system properties. Here, the gradient SOL refers to a pure 

neural ODE, so one that is trained solely on the ODE solution. Adding 

further gradients corresponds to eigen-informed neural ODEs in different 

configurations.

All experiments are repeated 50 times, plots and tables show the 

median, as well as 25th and 75th percentiles. Because we are more inter-

ested in the general applicability than in the best solutions (possibly only 

by chance), we primarily investigate median values in the discussions. 

The Tsit5 solver [28] (default parameterization) is used for solving the 

neural ODEs and the Adam optimizer [29] for training the neural ODEs. 

An exponential decay learning rate scheduler is applied with a decay 

rate of 2 ⋅ 10 

−3 and an initial learning rate of 10 

−2 that falls to 10 

−3 . Note

that Tsit5 is an explicit Runge-Kutta method with limited stability (only 

a part of the left complex plane is stable), so it is (intentionally) not a 

suitable solver for stiff equations. Because the systems to be learned are 

not stiff, this is a reasonable choice. However, if neural ODEs become 

stiff during training, this solver will need to take very small steps.

The ground truth data for the system properties (eigenvalue posi-

tions) is determined based on analysis of the simulation results of the 

ground truth system. All examples use a common, simple loss function 

to rate the ODEs Solution (SOL):

𝑙 𝑆𝑂𝐿 

(𝑿) = 

∑

𝒙∈𝑿
𝜖 𝑆𝑂𝐿(𝑥 1 

, 𝑥̃ 1 

(𝑡)), (17)

with 𝑥̃ 1 

(𝑡) being the ground truth ODE solution for the first entry of the 

state vector 𝑥 1 

(the position) and 𝜖𝑆 𝑂𝐿 

(𝑎, 𝑏) the MAE. Eigen-informed 

neural ODEs are obtained by adding additional objectives (error func

tions) as introduced. For all eigenvalue errors, the MAE is also applied. 

To obtain a single-objective optimization problem, all objectives are 

scaled and summed up. Formally, the resulting optimization problem 

states:

-

min
𝒑∈R 

|𝒑|

∑

𝑒∈𝑬
𝛼 𝑒 ⋅ 𝑙 𝑒 

(𝑿(𝒑), 𝝀(𝑿(𝒑)), (18)
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Table 1 

ANN layout for the examples.

Index Type Activation Dimension Parameters

1 Pre-Process identity 0 0

2 Dense tanh 2 → 32 96

3 Dense identity 32 → 1 33

4 Post-Process identity 0 0

Sum: 129

where 𝑬 ⊆ {𝑆𝑂𝐿, 𝐹 𝑅𝑄, 𝐷𝑀𝑃 , 𝑆𝑇 𝐵, 𝑂𝑆𝐶, 𝑆𝑇 𝐹 } — depending on the

experiment. The gradients of the eigen-value operations are scaled to 

match the order of magnitude of the solution gradient, so the corre
0 1 1 −1sponding    

 values  

 for 𝜶 are 10 (SOL), 10 (FRQ), 10 (DMP), 10 (STB), 

10 

1 −4(OSC) and 10 (STF). The corresponding software is written in 

the Julia programming language (v1.11) [

-

30] using the neural ODEs 

framework DiffEqFlux.jl (v4.2) [31] and is part of our open source reposi

tory DifferentiableEigen.jl

-

 

7 (v0.2). The scripts to reproduce the results are 

open source and part of the repository’s examples section.

The potential of the presented methodology is shown for three 

different use cases:

• A weakly damped translational oscillator (linear system) to show the

influence of different gradient setups (see Section 3.1),

• the same oscillator trained on sparse and undersampled data,

which does not fulfill the Nyquist-Shannon sampling theorem (see 

Section 3.2) and

• the nonlinear VPO, to show the applicability for nonlinear systems

(see Section 3.3).

All ANNs for the neural ODEs are set up as described in Table 1. Simple 

pre- and post-processing layers are applied, to shift and scale data 

(min/max normalization) in order to prevent saturation of the ANN [3]. 

Please note that the output dimension is 1 for systems consisting of 2 

states, because only the highest derivative (acceleration) is determined 

for the considered second order ODEs.

During the following experiments, we investigate the following 

qualitative (plot) and quantitative (table) properties:

Generalization investigates the performance on unknown data, giv

ing a measure to rate whether the model learned the intended 

behavior or just over-fitted. As a quantitative measure, we com

pare the loss values of the eigen-informed and pure neural ODEs 

on unknown testing data by continuing to simulate the trajectory. 

-

-

Convergence speed indicates the rate at which the loss function de

creases and is investigated by counting the number of optimization 

steps, until the loss falls below a limit. As a quantitative measure, we 

compare the number of optimization steps that the eigen-informed 

neural ODE requires to outperform the final loss value of the pure 

neural ODE (in the median).

-

Solving time and number of solver steps in order to reach the simula

tion termination time. This corresponds to the stiffness of the system 

and defines the cost of solving the ODE. Therefore, fewer steps 

are desirable. As a quantitative measure, we compare the median 

solving time of eigen-informed and pure neural ODEs. 

-

Computational cost of the training in terms of the median time

required to determine the loss function gradient. Of course, eigen-

informed regularization requires more time compared to the pure 

neural ODE, caused by the additional arithmetic operations re-

quired. However, quantification makes sense in order to weigh up 

the benefits in applications with limited computing resources.

7 https://github.com/ThummeTo/DifferentiableEigen.jl

Fig. 2. Comparison of the neural ODE solutions (oscillator position), trained 

with different gradients. The trajectory for the experiment closest to the median 

final loss is plotted. The first 10 s are training data, the last 10 s are for testing.

3.1. Linear system: weakly-damped oscillator

As already stated in the introduction, especially oscillating systems 

are a challenging training task for neural ODEs. By also applying a 

weak damping to the system, a longer simulation horizon must be 

considered because training on a single oscillation period will hardly 

capture the damping effect. The state space equation of the transla-

tional spring-damper-oscillator with position 𝑠 and velocity 𝑣 is given 

in Eq. (19):

̇ 𝒙 = 

[

𝑥̇ 1
𝑥̇ 2

] 

= 

[

𝑠̇
𝑣̇

] 

= 

[

𝑣
−𝑐⋅𝑠−𝑑⋅𝑣

𝑚

] 

, (19) 

with 𝑐 = 4𝜋 

2 
N

m
, 𝑑 = 0.05 

N⋅s 

m
and 𝑚 = 1 kg. Please note that this os-

cillator is a linear system. 

8 Training data is sampled equidistantly with 

a frequency of 10 Hz, and the simulation and training horizon are both 

10 s. Intentionally, no mini-batching is used, training is performed on 

the entire ODE solution.

Convergence. As can be seen in Fig. 2, most neural ODEs are capa-

ble of representing the oscillation frequency of the linear system after a 

training for 5, 000 steps; only the configuration SOL+STB+OSC cannot 

converge satisfactorily within the limited training setup. However, on 

testing data (right half of the plot), we find that damping is not suffi-

ciently present and the amplitude is too high in some places, motivating 

a more detailed investigation of the quantitative results.

Before investigating the quantitative deviations, in Fig. 3 the conver-

gence behavior (loss over training) is presented. Basically, all gradient 

configurations run into (insufficient) local minima, except the config-

urations containing FRQ and DMP which can leave the original local 

minima early.

Whereas the local optima the neural ODEs converge to look similar, 

we find that the trajectories that include FRQ+DMP+OSC converge to 

a better optimum (median ≈ 0.0145 − 0.0179), compared to the remain-

ing loss functions (median > 0.0263). This can be investigated in Table 2. 

We find that these configurations lead to significant improvements w.r.t. 

the found optimum. Further investigating the column Hit, giving the 

first training step for that the final loss value of the pure neural ODE 

is reached by the eigen-informed neural ODE, we find values around 

1, 000 for the best performing gradients — compared to the 5, 000 train-

ing steps of the neural ODE — resulting in approximately five times 

faster convergence of the considered eigen-informed approaches.

On testing data (Table 3), a very similar pattern can be observed: The 

last three loss functions feature significantly better loss values (median

8 Training a linear system with a nonlinear neural ODE is not the most reason-

able approach. This was done to always maintain the same neural ODE topology 

for all examples.
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Fig. 3. Comparison of the neural ODE convergence behavior, trained with dif-

ferent gradients. Figure shows the median loss defined on the ODE solution 

𝑙 𝑆𝑂𝐿 

. Semi-transparent ribbons show the 25th and 75th percentiles. Pink-dashed 

shows the final loss of the pure neural ODE (baseline), the intersection with other 

curves allows to check at which training step the baseline is outperformed.

Table 2 

Median, 25th and 75th percentiles for the final loss value of different loss func-

tions for training data. Hit identifies the first step, in which the pure neural ODE 

final loss value is outperformed.

Loss 𝑃 25 Median 𝑃 75 Hit

SOL 0.0154 0.0263 0.2085 n.a.

SOL+STB 0.0148 0.0266 0.2116 4460

SOL+STF 0.0159 0.0277 0.2121 4760

SOL+STB+OSC 0.0145 0.1993 0.2137 n.a.

SOL+FRQ+DMP+OSC 0.0109 0.0155 0.0259 1050

SOL+FRQ+DMP+STB+OSC 0.0106 0.0145 0.0233 940

SOL+FRQ+DMP+STB+OSC+STF 0.0138 0.0179 0.0245 1070

Table 3 

Median, 25th and 75th percentiles for the final loss values of different loss 

functions for testing data.

Loss 𝑃 25 Median 𝑃 75

SOL 0.0676 0.1068 0.165

SOL+STB 0.0571 0.106 0.1664

SOL+STF 0.0488 0.0973 0.1668

SOL+STB+OSC 0.0758 0.1597 0.1671

SOL+FRQ+DMP+OSC 0.0377 0.0511 0.0739

SOL+FRQ+DMP+STB+OSC 0.0333 0.0524 0.0717

SOL+FRQ+DMP+STB+OSC+STF 0.0367 0.0574 0.0838

≈ 0.0511 − 0.0574) compared to the remaining ones (> 0.0973). We ob-

serve that for this example, the more valuable information is included 

in the gradients FRQ and DMP. The gradient configurations including 

only STB, STF or OSC, are not able to convince in this case, because 

they show only limited (or no) quantitative benefit.

To summarize the first observations, we find that incorporation of 

frequency and damping information significantly improves the train-

ing of the spring-damper-pendulum in terms of convergence speed, as 

well as the found minimum. Regularization of stability and stiffness 

only seems to be of limited value in the considered, very easy use case. 

However, this observation should not be generalized too far beyond the 

application considered.

Stability. In addition, we compare the stability of the solution (see

Fig. 4), which shows the maximum real value over time of the most 

unstable eigenvalue 𝜆 𝑤. As expected, all gradient configurations con-

taining the STB gradient stabilize the system quickly during the first

Fig. 4. Comparison of the median neural ODE stability (rated by the maximum 

real value of the most unstable eigenvalue 𝜆 𝑤 

), trained with different gradients. 

Stable systems are located beneath the border stable line (black-dashed). Semi-

transparent ribbons show the 25th and 75th percentiles.

Table 4 

Median times for gradient computation, number of accepted and rejected solver 

steps for different loss functions on the training part of the trajectory.

Loss Sim. Grad. Acc. Rej.

Time [ms] Time [s] Steps Steps

SOL 2.47 0.93 89 6

SOL+STB 2.15 4.07 90 0

SOL+STF 2.19 4.08 84 1

SOL+STB+OSC 2.41 4.02 95 0

SOL+FRQ+DMP+OSC 2.2 4.11 84 0

SOL+FRQ+DMP+STB+OSC 2.24 4.13 86 1

SOL+FRQ+DMP+STB+OSC+STF 2.22 4.11 88 0

training steps and prevent the eigenvalues from leaving the stable half of 

the complex plane too far. Slightly unstable eigenvalues are only weakly 

punished, caused by  

  a small regularization 

−4multiplier (10 ), to prevent 

an oscillating optimization. However, a larger regularization multiplier 

can be applied to enforce real stability but was intentionally omitted 

here.

Computational performance. A brief investigation of solver statistics (s. 

Table 4) shows that the regularized training does not negatively affect 

the number of required solver steps that stay similar across all investi-

gated gradients. However, the number of rejected steps decreased (0-1 

vs. 6), showing that eigen-informed regularization can lead to solutions 

with better numerical properties. As expected, the computational cost 

(in terms of time) for the determination of the loss function gradient in-

cluding eigenvalues is higher, approximately four times compared to the 

cost for a pure neural ODE. However, the simulation times (inference) 

are similar across all approaches.

3.2. Linear system: insufficient data sampling frequency

Another interesting use case is the training of a neural ODE with 

data that does not satisfy the Nyquist-Shannon sampling theorem. To 

reproduce a signal that contains a maximum frequency of 𝑏 ( 

1 

s
), data

samples with a sampling distance < 

1
2 𝑏 (s) 

 are needed. As a consequence,

it is not possible to train a neural ODE (or any other model) to reproduce 

high-frequency effects that are not captured by a sufficiently high data 

sampling rate. In practical applications, the data recording frequency 

is often limited by different factors, but the eigenmodes of the system 

are often known. This information can be used in eigen-informed neural 

ODEs.
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For this example, the same model as in Section 3.1 is used, but 

with a damping of 𝑑 = 0.5 

N⋅s 

m
. The maximum (and only) frequency

of the oscillating system shall be 𝑓 = 1 Hz. The maximum allowed𝑚𝑎𝑥   

distance between data samples Δ𝑡 

 

can no𝑚𝑎𝑥  w be calculated using the 

Nyquist–Shannon sampling theorem:

Δ𝑡 𝑚𝑎𝑥 = 

1
2 ⋅ 𝑓 𝑚𝑎𝑥

= 

1
2 ⋅ 1 1

s

= 0.5 s. (20)

Therefore, data sampling with Δ𝑡 > Δ𝑡 will𝑚𝑎𝑥   

 

lead to an unrecover

able signal. For this example, we intentionally violate the theorem by 

selecting Δ𝑡 = 0.75 𝑠 > 0.5 𝑠 = Δ𝑡 𝑚𝑎𝑥 

.

-

Convergence. As can be seen in Fig. 5, the resulting data sampling 

points are very sparse. As expected, the neural ODE based on the SOL 

gradient is unable to replicate the signal and converges to a local min-

imum. In contrast, gradient configurations containing frequency and 

damping information lead to a very good fit after 5, 000 training steps 

and are capable of recovering the original ground truth signal.

This success can be quantitatively validated by investigation of the 

loss function values for training (Table 5) and testing (Table 6).

As expected, the convergence behavior (s. Fig. 6) of the gradient con-

figurations including FRQ+DMP looks excellent compared to the pure 

neural ODE (SOL), which is trapped in a local minimum. Even if some 

runs for the neural ODE (compare the 25th percentile) are able to con-

verge to a better local minimum compared to the median, the gradients 

including FRQ+DMP are again able to outperform even the best runs

Fig. 5. Comparison of the neural ODE solutions (oscillator position), trained 

with different gradients. The trajectory for the experiment closest to the median 

final loss is plotted. The first 10 s are training data, the last 10 s are for testing. 

The gradient configurations including FRQ+DMP (orange, green) lay close to 

the ground truth (black-dashed). For training, undersampled data points (black 

dots) are used.

Table 5

Median, 25th and 75th percentiles for the final loss value of different loss func-

tions for training data. Hit identifies the first step, in which the pure neural ODE 

final loss value is outperformed.

Loss 𝑃 25 Median 𝑃 75 Hit

SOL 0.0086 0.073 0.0737 n.a.

SOL+FRQ+DMP+OSC 0.0046 0.0182 0.1018 920

SOL+FRQ+DMP+STB+OSC 0.0041 0.0124 0.0475 780

Table 6 

Median, 25th and 75th percentiles for the final loss values of different loss 

functions for testing data.

Loss 𝑃 25 Median 𝑃 75

SOL 0.0036 0.009 0.0093

SOL+FRQ+DMP+OSC 0.0006 0.0016 0.0665

SOL+FRQ+DMP+STB+OSC 0.0004 0.0013 0.0119

Fig. 6. Comparison of the neural ODE convergence behavior, trained with dif-

ferent gradients. Figure shows the median loss defined on the ODE solution

𝑙 𝑆𝑂𝐿. Semi-transparent ribbons show the 25th and 75th percentiles. Pink-dashed 

shows the final loss of the pure neural ODE (baseline), the intersection with other 

curves allows to check at which training step the baseline is outperformed.

Fig. 7. Comparison of the median neural ODE stability (rated by the maximum 

real value of the most unstable eigenvalue 𝜆 𝑤 

), trained with different gradients. 

Stable systems are located beneath the border stable line (black-dashed). Semi-

transparent ribbons show the 25th and 75th percentiles.

of SOL. This is to be expected; otherwise, the Nyquist-Shannon theorem 

would be violated.

Stability. Regarding stability (s. Fig. 7), especially the configuration

that includes the STB gradient is stabilized very fast (compare the very 

beginning of the plot) and is maintained stable throughout the training 

process. In addition, the configuration SOL+FRQ+DMP+OSC (orange) 

is also able to achieve stability without regularization. This is to be ex-

pected, because damping (DMP) is highly related to stability (STB) and 

therefore stability is implicitly enforced by incorporation of damping, 

in this case. The pure neural ODE (SOL) is and stays stable, however, it 

is also too stable, featuring a too strong decay of the oscillation, as can 

also be observed in the previous solution plot (Fig. 5).

Computational performance. Again investigating the properties of the 

numerical solution, we find that the pure neural ODE is solved faster 

and with fewer steps. However, it should be noted that this is what we 

expect when investigating the shape of the solution (see Fig. 5), because 

the pure neural ODE is unable to produce meaningful results. As a result, 

a comparison is not meaningful and does not create any added value

Neurocomputing 654 (2025) 131358 

9 



T. Thummerer and L. Mikelsons

Table 7 

Median times for gradient computation, number of accepted and rejected solver 

steps for different loss functions on the training part of the trajectory. Brackets 

indicate invalid runs, that did not converge to an acceptable solution.

Loss Sim. Grad. Acc. Rej.

Time [ms] Time [s] Steps Steps

SOL (1.41) (0.55) (52) (1)

SOL+FRQ+DMP+OSC 2.01 1.67 85 0

SOL+FRQ+DMP+STB+OSC 2.19 1.67 85 0

here. The computational cost for gradient determination is slightly more 

than three times as much for eigen-informed training, compare Table 7.

3.3. Nonlinear system: Van der Pol oscillator (VPO)

Finally, a marginally stable and nonlinear system is also observed: 

The VPO. The nonlinear system is given by the well-known state space 

equation in Eq. (21):

̇ 𝒙 = 

[

𝜈̇
𝜈̈

] 

= 

[

𝜈̇ 

𝜇 ⋅ (1 − 𝜈 

2) ⋅ 𝜈̇ − 𝜈 

] 

, (21)

with 𝜇 = −0.025. Training data is sampled equidistantly with Δ𝑡 = 1.57 s 

to obtain 41 samples over a simulation and training horizon of 62.8 s 

each. No batching is used, training is applied to the entire ODE solution 

for 5, 000 training steps.

Convergence. Training on the solution gradient performs quite well on 

training data, however for testing, the damping suspends (see Fig. 8).

Adding the STB gradient slightly improves the fit. However, fur-

ther adding STB+OSC leads to convergence in a bad local minimum. 

The gradient configurations that include FRQ+DMP with and without 

STB can predict the behavior of the VPO, further training and larger 

ANNs topologies will improve the fit. These observations can be quanti-

tatively verified by investigation of Table 8. In analogy to the previous 

examples, convergence based on the loss function 𝑙 𝑆𝑂𝐿 

can be observed 

in Fig. 9. In this example, adding the STB gradient (yellow) leads to 

significantly faster convergence compared to the remaining configura-

tions. However, we also find that in this specific case, eigen-informed 

training (FRQ+DMP) converges faster during progress of training, but 

does not converge to a significantly better optimum at the end of the 

training.

However, this makes investigation of testing data even more inter-

esting (compare Table 9): The loss functions containing FRQ+DMP 

achieve significantly better fits compared to the pure neural ODE and

Fig. 8. Comparison of the neural ODE solutions (𝜈), trained with different gradi-

ents. The trajectory for the experiment closest to the median final loss is plotted. 

The first 62.8 s are training data, the last 62.8 s are for testing. The gradient con-

figuration SOL+FRQ+DMP+OSC (blue) and +STB (yellow) lay close to the 

ground truth (black-dashed). Further training will improve the fit.

Table 8 

Median, 25th and 75th percentiles for the final loss value of different loss func-

tions for training data. Hit identifies the first step, in which the pure neural ODE 

final loss value is outperformed.

Loss 𝑃 25 Median 𝑃 75 Hit

SOL 0.0115 0.0184 0.1692 n.a.

SOL+STB 0.0098 0.0159 0.1757 4370

SOL+STB+OSC 0.0125 0.026 0.1731 n.a.

SOL+FRQ+DMP+OSC 0.0131 0.0231 0.1991 n.a.

SOL+FRQ+DMP+STB+OSC 0.0116 0.0187 0.1992 4400

Fig. 9. Comparison of the neural ODE convergence behavior, trained with dif-

ferent gradients. Figure shows the median loss defined on the ODE solution

𝑙 𝑆𝑂𝐿. Semi-transparent ribbons show the 25th and 75th percentiles. Pink-dashed 

shows the final loss of the pure neural ODE (baseline), the intersection with other 

curves allows to check at which training step the baseline is outperformed.

Table 9 

Median, 25th and 75th percentiles for the final loss values of different loss 

functions for testing data.

Loss 𝑃 25 Median 𝑃 75

SOL 0.0633 0.0846 0.0904

SOL+STB 0.0429 0.0833 0.0904

SOL+STB+OSC 0.0487 0.0888 0.0907

SOL+FRQ+DMP+OSC 0.0346 0.0569 0.1091

SOL+FRQ+DMP+STB+OSC 0.0325 0.0639 0.1072

the remaining gradients. This nicely shows that even if a similar quanti-

tative local minimum was found by pure neural ODE and eigen-informed 

approaches using FRQ+DMP, the extrapolation (generalization) has 

improved significantly for the eigen-informed neural ODE.

Stability. As for the previous examples, the gradients containing STB

stabilize the systems at the beginning of the training and are able to keep 

the systems close to stable, see Fig. 10. Note that stronger regularization 

will lead to a fully stable system, however, it slows down convergence. In 

addition, in this special case, training the pure neural ODE already leads 

to a stable system. However, as can be seen from the previous examples, 

this is not the general case.

Computational performance. For the computation times (compare 

Table 10), we find again an increase by factor of three to four for eigen-

informed gradients. However, the resulting neural ODE is solvable in 

fewer steps and does not require rejection of steps for this example with 

the best-performing loss functions.
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Fig. 10. Comparison of the median neural ODE stability (rated by the maximum 

real value of the most unstable eigenvalue 𝜆 𝑤 

), trained with different gradients. 

Stable systems are located beneath the border stable line (black-dashed). Semi-

transparent ribbons show the 25th and 75th percentiles.

Table 10 

Median times for gradient computation, number of accepted and rejected solver 

steps for different loss functions on the training part of the trajectory.

Loss Sim. Grad. Acc. Rej.

Time [ms] Time [s] Steps Steps

SOL 2.55 1.56 93 2

SOL+STB 2.41 5.24 89 7

SOL+STB+OSC 1.75 5.25 68 0

SOL+FRQ+DMP+OSC 2.36 5.61 87 0

SOL+FRQ+DMP+STB+OSC 2.18 5.51 84 0

4. Conclusion

Finally, we summarize our work and highlight current and future 

research.

4.1. Summary

We highlighted a suitable strategy to induce additional system 

knowledge in the form of ODEs’ properties into a neural ODE training 

process and obtained an eigen-informed neural ODE. From a technical 

view, ODEs’ properties are translated to eigenvalue positions. These po-

sitions of eigenvalues can be intuitively considered in the loss function 

design. To maintain a gradient-based training for eigen-informed neu-

ral ODEs, the sensitivities over the eigenvalue operations are needed. 

For this purpose, we provide a suitable implementation in the Julia 

programming language called DifferentiableEigen.jl (https://github.com/ 

ThummeTo/DifferentiableEigen.jl), which also includes the example 

scripts to reproduce the experiments presented.

Common neural ODEs tend to converge to local minima and are not 

protected from becoming unsolvable. We showed that eigen-informed 

neural ODEs are capable of avoiding or reducing these problems and 

outperform pure neural ODEs in the presented disciplines. In three aca-

demic examples, we investigated that eigen-informed neural ODEs are 

able to converge in fewer steps, generalize better, and even lead to a nu-

merical system that can be solved faster, compared to pure neural ODEs 

(see Table 11). We further exemplified that eigen-informed neural ODEs 

are capable of handling modeling applications that are unsolvable for 

common neural ODEs: Eigen-informed neural ODEs allow for training 

on the basis of insufficient data — meaning data that does not fulfill 

the Nyquist-Shannon sampling theorem — if the system eigenmodes are 

known.

Last but not least, knowledge of ODE properties like stability, fre-

quencies, damping, and/or stiffness can improve training convergence

Table 11 

Quantitative summary (factors of improvement) of results. The values compare 

the median for selected eigenvalue-regularization experiments and the median 

of the corresponding neural ODE without eigen-informed regularization. Values 

larger than 1 correspond to improvements.

Example Loss Accuracy Reduced Conv.

SOL+FRQ+DMP (testing) solv. time speed

Pendulum +OSC ≈ 2.09 ≈ 1.12 ≈ 4.76
Pendulum +STB+OSC ≈ 6.92 n.a. ≈ 6.41
(undersamp.)

VPO +STB+OSC ≈ 1.33 ≈ 1.08 ≈ 1.17

in many different use cases, regardless of issues from local minima or

instability. The presented technique, the eigen-informed neural ODE, 

can often be implemented for a moderate additional computational cost 

compared to the deployment of pure neural ODEs, especially if implicit 

solvers are used. Whether the trade-off (additional computational cost, 

but faster convergence) is economical must be examined on a case-by-

case basis. For problems that are not solvable at all by pure neural ODEs, 

deploying the presented method will often be beneficial.

4.2. Limitations

The presented method of eigen-informed training features limitations 

in its current state, which are briefly highlighted in this section.

Need for a priori knowledge. This work is largely based on the avail-

ability of additional system knowledge (such as stability, frequencies, 

etc.) next to pure data. A legitimate question is therefore whether and 

to what extent such system knowledge is available in real applications. 

The answer to this question depends largely on the area of application, 

and there are certainly areas in which little or none of this additional 

knowledge is available. Nevertheless, we would like to highlight three 

examples of areas of application where additional system knowledge is 

often available and which are therefore predestined candidates for the 

application of this method:

Mechanical engineering The eigenvalue positions of classical me

chanical systems are mainly defined by the stiffness, damping, and 

mass/inertia of the components. Engineers can intuitively derive sys

tem properties and thus eigenvalue positions from the component 

parameters. 

-

-

Electrical engineering Similarly, the eigenvalues in electrical systems

are determined by the known parameters of the installed components 

(e.g. capacitors and inductors). Especially oscillating systems (oscil-

lating circuits) are widely studied; for example, especially frequencies 

of circuits can be approximated using various rules of thumb. 

Fluid Dynamics Further, in computational fluid dynamics, some sys

tems can be linearized for examination, especially if in the steady 

state. Different fluid properties, such as the well-known Reynolds 

number, correlate with system properties such as stiffness and sta

bility. Experts in the field are able to define limit values for stiffness 

and stability for a given simulation, which, in turn, can be used for 

regularization.

-

-

Of course, there are also counterexamples, e.g., pure black-box applica-

tions are unsuitable for the application of the method, i.e., if no prior 

knowledge of the system to be modeled is available (e.g., brain dynam-

ics) or should be assumed (e.g., climate models). As a final note, the 

properties of the system could also be determined based on data analy-

sis (operational modal analysis). Nevertheless, the usual limitations for 

data quality (e.g., limited noise) also apply here.

Validity of linearization. Although the method is widely applicable for 

linear systems, nonlinear systems must first be linearized. Linearization 

is not suitable for all types of nonlinear systems. For example, the in-

formative value of linearization is limited near chaotic, branching, and
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Fig. 11. Comparision of the computation time for a neural ODE gradient with 

and without eigen-informed regularization. The number of linearization points 

for eigen-informed training is given in square brackets. The experimental curves 

are fitted by least-squares approximations of exponential functions (coefficients 

given in the legend). Note, that the y-axis features a logarithmic scale.

discontinuous points in state space. For systems including such features, 

it must be investigated separately whether the proposed method can 

be applied, and making general statements on these classes of systems 

remains open area of research.

Computational overhead. Although we showed that eigen-informed 

training is beneficial in various aspects, we also noted the additional 

complexity of the approach, caused by nested differentiation that is 

required for linearization during the computation of the parameter gra-

dient. Whereas we highlighted that the obtained Jacobian could be 

reused (e.g., implicit solvers), we did no performance evaluation for 

this strategy. For explicit solvers, we note a significantly longer com-

putation time for gradient determination (by factors of two to four) 

compared to common neural ODE training. The size of the matrix for 

the determination of the eigenvalues equals the number of states within 

the system. Investigation of the computational cost for the determi-

nation of the eigenvalues and the sensitivity analysis of eigenvalue 

algorithms in the presence of larger (non-academic) systems requires de-

tailed examinations and further optimizations to make eigen-informed 

training efficient. Special algorithms for sparse systems need to be 

considered. Note that, for example, the proposed sensitivity equations 

involve matrix inversion, which is computationally expensive, especially 

for large matrices. This can be quantitatively shown by investigating the 

computation times for gradients for an example ODE in Fig. 11.

As can be seen, the cost for both approaches is approximately in

creasing exponentially with the size of the system 𝑛. Whereas the cost for 

training a  

 pure neural ODE training is ≈ 𝑛1 .5, the cost of eigen-informed 

3training is ≈ 𝑛  

 . This can be justified by matrix inversion within the 

AD rules, which has a computational complexity of (𝑛 

3 ) in general. 

However, methods for sparse matrices can be considered for such cases 

but are part of current and future work. Furthermore, for training in 

large applications with many states and eigenvalues, a reliable eigen

value tracking method as in [

-

-

32,33] and its application are an active 

research topic.

Applicability to real-world models. Although we investigated the ben-

efits of eigen-informed training for academic example ODEs, the ap-

plicability to real-world applications was not investigated in this arti-

cle. This covers, for example, challenges such as high-dimensionality, 

multi-timescale or hybrid systems, and noisy, incomplete, or uncertain 

measurements (data).

All mentioned limitations are major parts of future work planned on 

the topic.

4.3. Future research & research questions

Further future and open research questions are given in the following 

section.

Detailed analysis of the (multi-objective) optimization problem. The struc-

ture of the multi-objective optimization problem could be examined in 

more detail, similar to, e.g., in [34]. For example, the individual er-

ror terms that make up the cost function (and thus the gradient) can 

be examined individually and discussed. This includes in particular con-

straints that lead to contradictory optimization directions. Exploring the 

Pareto front and investigation of, e.g., adaptive balancing between ob-

jectives (in this work, we use statically determined factors) seem to be

intriguing research directions. Finally, investigation of training on mul-

tiple (possibly switching) gradients, e.g., based on a gradient criterion, 

is an interesting direction for future research.

Other types of differential equations. Basically, the presented method 

is not limited to the use in neural ODEs but opens up to the entire 

family of (neural) differential equations. The presented eigen-informed 

optimization is applicable to many other (engineering) applications and 

to parameter optimization of differential equations in general. This, 

for example, includes neural partial differential equations that are of-

ten used for fluid dynamics simulations which have a natural tendency 

toward stiffness and instability caused by the problem domain.

Error functions. In addition to the very simple error functions pre-

sented for eigenvalues, there are many other interesting options to 

explore. In addition to specific locations for eigenvalues, geometric areas 

can be defined that correspond to intuitive system properties.

Collocation. Eigen-informed training is not limited to training on the 

neural ODE solution. It is also applicable to training on the neural ODE 

derivative, for example, in collocation training [18]. Even though this 

should be possible from a theoretical point of view (collocation can be 

seen as a simplification of a training on the solution), this was not further 

investigated in this work, and the final validation is therefore future 

research.

Further system attributes. In addition to the system properties inves-

tigated, there are a variety of additional attributes from system and 

control theory [26,27] that might be interesting to incorporate as part 

of eigen-informed neural ODEs. Furthermore, the investigations in this

article were restricted to the system matrix 𝑨 = 

𝜕 ̇ 𝒙
𝜕𝒙 . For systems with

inputs 𝒖 and outputs, additional system properties, such as, e.g., con-

trollability, depend on the linearization 𝑩 = 

𝜕𝒙̇
𝜕𝒖 . Investigation of further

system properties depending on other linearizations in addition to 𝑨 

to tackle controllability, observability, and more, within neural ODEs 

seems a promising direction for future research.

Alternatives to QR-algorithm. In general, other algorithms for eigen-

value approximation, like computation via ANNs as in [35] could be 

interesting, due to the seamless compatibility with AD and (possibly) 

improved computational performance. In addition, there are different 

methods to estimate the largest eigenvalue for a moderate computational 

cost compared to the calculation of all eigenvalues, which could be an 

efficient way to estimate the stability gradient / regularization.

Detailed investigation of extrapolation. Because eigen-informed neural

ODEs offer the potential to apply soft constraints to the model that are 

valid beyond training data, we assume improved extrapolation behavior. 

This includes tests w.r.t. small unknown deviations (like perturbations 

around the actual training data) and large unknown deviations, like gen-

eralization beyond the subpart of state space the model was trained on. 

However, this will be validated in detail as part of future work.
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Controller design. Future work covers the extension of this concept 

to the use in physics-enhanced neural ODEs [3], the combination of 

a conventional ODE, ANNs and an ODE solver and universal differen-

tial equations [24] in general. Besides dealing with instability and local 

minima, this will also open up to nonlinear control design. We will show 

that eigen-informed physics-enhanced neural ODEs can be used to train 

powerful nonlinear controllers, simply by defining a loss function based 

on a target trajectory, together with an additional gradient/regulariza-

tion for pushing the unstable eigenvalues to the left half of the complex 

plane — satisfying the universal controller design objective.
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