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Assessing genotype-phenotype correlations in colorectal
cancer with deep learning: a multicentre cohort study
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Summary

Background Deep learning-based models enable the prediction of molecular biomarkers from histopathology slides of
colorectal cancer stained with haematoxylin and eosin; however, few studies have assessed prediction targets beyond
microsatellite instability (MSI), BRAF, and KRAS systematically. We aimed to develop and validate a multi-target
model based on deep learning for the simultaneous prediction of numerous genetic alterations and their
associated phenotypes in colorectal cancer.

Methods In this multicentre cohort study, tissue samples from patients with colorectal cancer were obtained by
surgical resection and stained with haematoxylin and eosin. These samples were then digitised into whole-slide
images and used to train and test a transformer-based deep learning algorithm for biomarker detection to
simultaneously predict multiple genetic alterations and provide heatmap explanations. The primary dataset
comprised 1376 patients from five cohorts who underwent comprehensive panel sequencing, with an additional
536 patients from two public datasets for validation. We compared the model’s performance against conventional
single-target models and examined the co-occurrence of alterations and shared morphology.

Findings The multi-target model was able to predict numerous biomarkers from pathology slides, matching and
partly exceeding single-target transformers. In the primary external validation cohorts, mean area under the
receiver operating characteristic curve (AUROC) for the multi-target transformer was 0-78 (SD 0-01) for BRAF,
0-88 (0-01) for hypermutation, 0-93 (0-01) for MSI, and 0-86 (0-01) for RNF43; predictive performance was
consistent across metrics and supported by co-occurrence analyses. However, biomarkers with high AUROCs
largely correlated with MSI, with model predictions depending considerably on morphology associated with MSI
at pathological examination.

Interpretation By use of morphology associated with MSI and more subtle biomarker-specific patterns within a
shared phenotype, the multi-target transformers efficiently predicted biomarker status for diverse genetic
alterations in colorectal cancer from slides stained with haematoxylin and eosin. These results highlight the
importance of considering mutational co-occurrence and common morphology in biomarker research based on
deep learning. Our validated and scalable model could support extension to other cancers and large, diverse
cohorts, potentially facilitating cost-effective pre-screening and streamlined diagnostics in precision oncology.
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Introduction and gene mutations such as TP53, BRAF, and KRAS.>°

Exome and targeted panel sequencing are central to preci-
sion oncology of colorectal cancer, but remain inaccessible
to many patients worldwide due to expensive equipment
and complex data analysis." By contrast, histopathology
slides stained with haematoxylin and eosin are standard
diagnostic tools used globally. The advent of deep learning
has revealed these slides as a quantifiable data resource.
Studies published over the past several years show that
deep learning can predict molecular biomarkers directly
from digitised slides stained with haematoxylin and eosin,
including microsatellite instability (MSI),>¢ hypermutation,
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When applied as pre-screening tools, these systems based
on deep learning can streamline the diagnostic workflow,
identifying cases that need further testing and ruling
out others."

Previous studies on deep learning in colorectal cancer
have predominantly targeted specific genetic alterations as
potential biomarkers, referred to as prediction targets in
computational pathology, with limited adoption of pan-
molecular frameworks.”"® These approaches are con-
strained by the scarcity of comprehensive, multicohort
sequencing datasets and the need to train separate
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Research in context

Evidence before this study

To assess the current landscape of research on artificial
intelligence in colorectal cancer histopathology, we performed
a comprehensive literature search. On April 18, 2024, we
searched PubMed, without restrictions on language or date, for
original research and review articles using the following search
terms: ("colorectal cancer" OR "colon cancer" OR "rectal
cancer") AND ("deep learning" OR "machine learning"

OR "artificial intelligence") AND ("mutation" OR
"microsatellite” OR "molecular") AND ("histopathology" OR
"pathology" OR "histology" OR "HE" OR "H&E" OR "WSI" OR
"digitized slides" OR "whole slide images"). We found

262 studies, many of which showed that deep learning can
predict molecular alterations (eg, mutations, microsatellite
instability [MSI], or both) directly from histopathological slides
stained with haematoxylin and eosin from patients with
colorectal cancer. These previous studies relied on a single-
target prediction architecture. Even though some studies
report that the accuracy of predictions might decrease within
some subpopulations (eg, BRAF-mutant colorectal cancers),
none of these studies have systematically accounted for the
potential confounding effects of co-occurring molecular
alterations and shared morphology.

Added value of this study
In this multicentre cohort study, we used slides stained with
haematoxylin and eosin from 1912 patients with colorectal cancer

models for each target’**° rendering them labour-
intensive and resource-intensive. Addressing these limi-
tations, this study introduces, to our knowledge, the first
approach based on pan-biomarker deep learning for colo-
rectal cancer by use of a multicentre cohort, applying a
single transformer-based model to simultaneously predict
multiple molecular targets.

Methods
Study design
In this multicentre cohort study, we developed a deep
learning model using a single transformer model to predict
multiple genetic alterations directly from anonymised
slides stained with haematoxylin and eosin of colorectal
cancer. The model was trained and validated on a dataset
from the Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO), which aggregates sequencing data
across diverse cohorts.'? Generalisability was assessed in
two external cohorts of patients with colorectal cancer.
Given the robust performance of deep learning in linking
phenotype to genotype, particularly for the prediction of
MSI** we extended this analysis to multiple prediction
targets using our comprehensive dataset and developed
model. We assessed the co-occurrence of genetic alterations
with MSI, evaluated their predictability based on deep

across seven independent cohorts, including two public datasets.
We developed a multi-target transformer model capable of
simultaneously predicting several genetic alterations from the
slides. Our multi-target model matched and partly exceeded
established single-target models in predicting numerous
biomarkers, such as BRAF or RNF43 mutations and MSI, from
pathology slides. Interestingly, biomarkers with high
predictability (eg, area under the receiver operating characteristic
curve >0-7) were strongly correlated with MSI, which is known to
be associated with distinct morphological features detectable
with deep learning algorithms. The dominance of morphology
associated with MSI in predictions challenges the assumption that
multiple genetic biomarkers can be independently predicted,
suggesting instead that co-occurring alterations are inferred
through shared morphological features, thereby advancing
understanding of morphological genomic interplay in colorectal
cancer.

Implications of all the available evidence

Our study shows the value of multi-target transformers for
predicting multiple genetic alterations from slides stained with
haematoxylin and eosin of colorectal cancer, although these
predictions were often linked to morphology associated with MSI.
These findings highlight the influence of cancer-specific
phenotypic and genetic co-occurrences, underscoring the need to
account for their impact in both past and future studies
evaluating deep learning models for potential clinical integration.

learning, and examined corresponding slide morphology in
relation to features linked to MSI. Prediction targets
encompassed both literature-reported alterations**® and
clinically relevant genes (ie, BMPR2, RNF43, and BRAF),
as well as MSI and hypermutation.

This study is reported according to TRIPOD guidelines
and was performed in accordance with the Declaration of
Helsinki. All cohorts contributing to GECCO obtained
written informed consent from all participants and received
approval from their respective institutional review boards.
The harmonised, de-identified genotype—phenotype data
analysed in this Article were accessed via the NIH Database
of Genotypes and Phenotypes (under study accessions
phs001078.v1.p1 and phs001415.v1.p1). For each individ-
ual study, we have added the reference with details available
in the appendix (pp 2-3). The overall analysis was
approved by the ethics board of the Medical Faculty of
Technical University Dresden (ID BO-EK-444102022).

Cohorts and sequencing

The primary dataset comprised 1376 patients with
colorectal cancer from five GECCO™ cohorts: European
Prospective Investigation into Cancer (EPIC; 183 [13-3%)),
Colorectal Cancer Study of Austria (CORSA; 158 [11-5%)]),
Iowa Women’s Health Study (IWHS; 390 [28-3%)]), Cancer
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Risk Assessment study (CRA; 321 [23-3%)]), and Women’s
Health Initiative (WHI; 324 [23-5%)]; figure 1A-C). Tissue
samples were obtained from patients by surgical resection
and stained with haematoxylin and eosin, before being
digitised into whole-slide images. Besides whole-slide
images, each cohort provided harmonised data on clinical
features, demographics, and lifestyle (appendix pp 2-3).

Tissue samples underwent centralised targeted sequen-
cing of up to 356 genes, with assessment of MSI and
hypermutation status. The analysis focused on non-silent
mutations and mutational signatures with a panel of
1-8 megabases, with tumour coverage of 975x and normal
coverage of 273x.

To assess generalisability, we used two external sec-
ondary datasets on 536 patients with colorectal cancer
with whole-slide images and matched molecular profiles
(figure 1C). The first dataset was The Cancer Genome
Atlas (TCGA) comprising samples from 426 patients,”
with MSI defined per Liu and colleagues:'* high MSI
was categorised as MSI, and low MSI and microsatellite
stability (MSS) were categorised as MSS.* The second
dataset was the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) comprising fresh-frozen colon
tissue samples from 110 patients.''®

In total, 1912 participants were included across all seven
cohorts in the primary and secondary datasets, of whom
1290 (67-5%) were women and 621 (32-5%) were men.
Most patients were White (1449 [75-8%)]), with smaller
proportions identifying as Black (82 [4-3%]), Asian
(33[1-7%)), and American Indian or Alaska Native (three [0-2%)];
appendix pp 2-3). Molecular annotations were obtained
from the Genomic Data Commons Data Portal. All collected
data were anonymised.

Experimental design
The prediction panel comprised alterations previously
assessed by deep learning, clinically relevant mutations, and
genes strongly associated with MSI in the TCGA cohort,
including APC, BMPR2, BRAF, KRAS, RNF43, TP53, and
ZNRF3#72V a5 well as MSI, hypermutation, and additional
targets from the GECCO cohorts (appendix pp 4-6). Con-
tinuous prediction targets were discretised at pre-set
thresholds for balanced class distribution; targets with fewer
than 20 cases per class were excluded to ensure robustness.
Model training involved 731 patients from the EPIC,
CORSA, and IWHS cohorts (figure 1C), in which seven-
fold cross-validation was used to balance training and
validation sets and to identify a median-performing model.
The resulting seven models were deployed on external test
sets. The primary test set comprised 645 patients from the
CRA and WHI cohorts, ensuring a representative split
addressing missing cases, class distribution, and inclusion
of all-women cohorts in both training (IWHS) and testing
(WHI). Generalisability was evaluated on a secondary test
set comprising the TCGA and CPTAC cohorts. External
validation and test set refer to the primary test set
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unless stated otherwise; cohort-wise analyses are explicitly
noted.

We conducted a total of 11 experiments using multi-target
models trained on identical internal datasets: a primary
model incorporating all targets (appendix pp 4-6), a sec-
ondary model excluding MSI to assess its impact, and nine
single-target models (one per main alteration). Primary and
secondary models were tested on both test sets; single-target
models were evaluated on the primary test set. All models
were compared with the primary model and literature
benchmarks.

Co-occurrence analysis

To investigate the co-occurrence of genetic alterations with
MSI in colorectal cancer, we analysed alterations with
complete data from the GECCO cohorts (appendix pp 2-3).
We quantified pairwise relationships using a two-step
procedure (appendix p 1). Briefly, we grouped mutations
using hierarchical clustering, followed by association rule
mining to identify co-occurrence patterns between muta-
tions and clinical features, such as MSI. Rules were gen-
erated with an initiating genetic alteration (ie, antecedent)
and a potentially resulting alteration (ie, consequent). The
presence of an initiating alteration statistically increases the
likelihood of observing a resulting alteration, without
implying biological causation.

Image processing and deep learning techniques

Digitised whole-slide images were tessellated into tiles of
224 x 224 pixels, corresponding to 256 x 256 pm (figure 1B).°
Tiles predominantly containing background (brightness
value >224) or blur, defined by up to 2% edge pixels
via Canny edge detection (thresholds 40-100)," were
discarded. A transformer-based® encoder—decoder model
for simultaneous multi-target prediction (figure 1B)
was trained from scratch on the training set, by use of
768-dimensional tile-level embeddings extracted with the
fixed, pre-trained CTransPath feature extractor,” which was
not fine-tuned during training. The tile embeddings were
projected into a 512-dimensional space with a fully con-
nected layer to reduce model complexity and improve
computational efficiency.

Encoded tokens were decoded into 1x 512 dimensional
class tokens,® each corresponding to a distinct prediction
target. These tokens were passed through a final fully
connected layer to generate target-specific predictions, with
scores ranging from 0-00 (negative prediction or wild type)
to 1-00 (positive prediction or mutated) per class and
patient. To address class imbalance during training, cross-
entropy loss was computed per target, weighted by the
inverse mutation frequency, and summed to ensure pro-
portional importance of rare mutations. Model training and
inference were conducted on an NVIDIA RTX A6000
(48 GB memory). Links to the directories containing all
source code used for the trained models are available in the
appendix (p 7).

For the Genomic Data
Commons Data Portal see
https://portal.gdc.cancer.gov/
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Figure 1: Experimental design, cohort characterisation, and schematic for predictive analysis
(A) Tissue samples from patients with colorectal cancer across five independent cohorts were obtained by surgical resection, and associated demographic, clinical, and sequencing data were collected.

Following staining with haematoxylin and eosin, tumour tissues were digitised into whole-slide images for profiling genetic alterations. The whole-slide images were then used to train and test a deep
learning-based algorithm for biomarker detection to simultaneously predict multiple mutational statuses and provide heatmap explanations. (B) The deep learning-based pipeline tessellated the whole-
slide images into smaller tiles while rejecting background and blurry areas, extracting feature vectors from tiles. Feature vectors were compressed and processed in a multi-target transformer, applying an
attention mechanism in an encoder-decoder structure for class token learning. The transformer generated individual scores for the respective number of classes per target. The code was able to comprise
positional tile embedding (dashed lines), which did not result in improved performance and was therefore excluded from the study. Numbers (eg, n x 768) denote matrices, where n is the number of
extracted image tiles and 768 is the length of each tile’s feature vector. Subsequent steps transform these to different dimensions (eg, n x 512). m x 512 refers to class token representations (m class tokens
representing m prediction targets), and m x subclasses refer to the final prediction outputs for each class or subclass. (C) Overview of the five GECCO and two public cohorts, including patient numbers,
slides, extracted features, and proportions of MSI cases. The GECCO cohorts were divided into train datasets and primary test datasets. (D) Schematic for interpreting result plots and statistics, delineating
dataset partitioning based on microsatellite status (MSS or MSI) and mutational status (mutated or wild type). The diagram illustrates distinct groups by colour, with the left side representing MSI
prediction scores and the right side showing prediction target scores. Ground truth labels of samples guide the group organisation, with model-generated scores depicted in corresponding colours.
CORSA=Colorectal Cancer Study of Austria. CPTAC=Clinical Proteomic Tumor Analysis Consortium. CRA=Cancer Risk Assessment study. EPIC=European Prospective Investigation into Cancer.
GECCO=Genetics and Epidemiology of Colorectal Cancer Consortium. IWHS=lowa Women'’s Health Study. MSl=microsatellite instability. MSS=microsatellite stability. TCGA=The Cancer Genome Atlas.

WHI=Women’s Health Initiative.
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Figure 2: Analysis of the co-occurrence of genetic alterations in cases of colorectal cancer in the GECCO cohorts

Hierarchical clustering analysis was conducted on the ground truth of genetic alterations with fully available information on mutational status. Each row corresponds to a
genetic alteration and each column represents a patient from the dataset. The top row indicates the distribution of patients from various cohorts within genetic clusters.
The distance calculation was performed with the Euclidean metric and the Ward method was applied to clustering (appendix p 1). Three unique genetic clusters were
identified and are indicated by horizontal lines and labelled as Cluster 1, Cluster 2, and Cluster 3 along the right side of the heatmap. The patient clustering shows a diverse
distribution of samples across all five cohorts and genetic clusters (top row). CORSA=Colorectal Cancer Study of Austria. CRA=Cancer Risk Assessment study.
EPIC=European Prospective Investigation into Cancer. GECCO=Genetics and Epidemiology of Colorectal Cancer Consortium. IWHS=lowa Women’s Health Study.

WHI=Women'’s Health Initiative.

Explainability

To investigate the model’s detection of relevant regions for
alteration prediction, we generated heatmaps based on
Grad-CAM” using the fold with the median area under the
receiver operating characteristic curve (AUROC) for the
detection of MSI to ensure consistent comparisons. Heat-
maps highlight the contribution of each tile to patient-level
predictions, visualising the morphological features the
model relies on. Notably, many positively contributing tiles
do not necessarily yield a high final score due to non-linear
aggregation and reliance on global cues not captured by the
heatmap. We identified highly predictive top tiles for rep-
resentative cases, selected on the basis of their scores and
attention values assigned by the model, and included top
tiles for each prediction target alongside those for MSI from
the same slide. We also analysed class-token interactions in
the decoder during deployment of the primary model to
assess overlap for the main prediction targets. Grad-CAM
was used to compute activations, capturing class token
score interactions, which were aggregated into a cross-
correlation matrix, averaged across patients, and visualised
as a heatmap.

Statistical analysis

Cohort characteristics are summarised with descriptive
statistics (appendix pp 2-3). We assessed model perform-
ance on training and test sets using AUROC, complemented
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by additional metrics and target-specific prediction scores
to provide a more representative evaluation in the context
of class imbalance due to rare mutations. Two-sided
DeLong tests were used to compare AUROCs between
single-target and multi-target models on the primary test
dataset, applying mean prediction scores across seven
folds. Mean, median, and corresponding measures of
variability in AUROCs were calculated per target across
folds.

Additional DeLong tests compared the primary model
(including MSI) with the secondary model (excluding MSI)
within each of the four external cohorts, based on mean
scores from the seven models. For each main prediction
target, the mean score per patient across seven folds was
stratified into the four following subgroups based on the
patient’s microsatellite status and target mutation status:
MSS and wild type, MSS and mutated, MSI and wild type,
and MSI and mutated (figure 1D).

Normality was tested with the Shapiro-Wilk test; statis-
tical significance between MSI and target scores within
subgroups was assessed with Mann—Whitney tests. Wilcoxon
tests evaluated model discrimination per target between
wild type and mutated within MSS and MSI tumours
(ie, MSS and wild type vs MSS and mutated; MSI and wild
type vs MSI and mutated) and between microsatellite
states within wild-type and mutated tumours (ie, MSS and
wild type vs MSI and wild type; MSS and mutated vs MSI
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Figure 3: Evaluation of the performance of the multi-target transformer on selected prediction targets for the external cohorts from GECCO

(A) The comparison between single-target transformer and multi-target transformers shows the AUROC from each of the seven folds of external cross-validation, with the median value highlighted with a
horizontal line in each box. Selected representative potential biomarkers of genetic alterations associated with MSS and MSI are shown. The test set cohorts consist of CRA and WHI. The horizontal line
positioned at an AUROC of 0-50 represents a random guess of the model. Significance was determined through a two-sided DeLong test with a p value threshold of less than 0-05, with * indicating p<0-05.
(B) Performance metrics of multi-target transformers for external validation. The mean (centre of dot) and SD (diameter of dot) for relevant selected prediction targets for the external set, as well as the MSI
and MSS subgroups, are shown based on the seven folds of cross-validation. The threshold for binary classification was predefined as 0-50. The evaluation metrics include the AUROC and AUPRC, along with
the corresponding mutation rates in external cohorts. Mutation rate refers to the fraction of instances with a specific mutation in the subgroup. MSI and the ratio of genetic alteration co-occurrence is the
fraction of cases with MSI among all cases with a particular genetic mutation. Performance metric data and an extended version of this panel with more metrics is shown in the appendix (pp 20, 26-27,
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and mutated). All statistical analyses were performed in
Python (version 3.11.9) and SciPy (version 1.14.0).

Role of the funding source

The funders of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the report.

Results

Our approach aimed to reproduce the findings of previous
deep learning studies that predicted genetic alterations in
colorectal cancer from slides stained with haematoxylin
and eosin,>*"*% extending to a broader set of alterations
through a multi-target transformer architecture (figure 1B).
We compared the external validation performance of our
transformer for selected targets, including main prediction
targets (figure 2), with the external validation AUROCs
reported in the literature for single-target models, which
used varying model architectures.

For the detection of MSI, mean AUROC was 0-91 (SD 0-02)
for single-target transformers and 0-93 (0-01) for multi-
target transformers on the primary test set (p=0-0015;
figure 3A; appendix p 8). Mean AUROC:s for the primary
model ranged from 0-87 (SD 0-01) in the TCGA cohort to
0-94 (0-01) in the WHI cohort (appendix pp 9-12, 31). For
selected targets, such as the detection of a BRAF mutation,
mean AUROC was 0-72 (SD 0-06) for the single-target
transformer and 0-78 (0-01) for the multi-target trans-
former (p<0-0001; figure 3A; appendix p 8). Mean
AUROC s for BRAF in the primary model (multi-target
transformer including MSI) versus the secondary model
(multi-target transformer excluding MSI) were lowest in
the WHI cohort (0-77 [SD 0-01] vs 0-76 [0-01]; p=0-13) and
highest in the CRA cohort (0-83 [0-02] vs 0-82 [0-03];
p=0-14); appendix pp 9-16, 32-33). In the detection of a
RNF43 mutation, mean AUROC was 0-80 (SD 0-05) for
the single-target transformer and 0-86 (0-01; p=0-0021) for
the multi-target transformer (figure 3A; appendix p 8).
Mean AUROCs for RNF43 comparing the primary
model with the secondary model ranged from 0-80
(SD 0-01) versus 0-79 (0-01; p=0-77) in the TCGA cohort to
0-87 (0-02) versus 0-85 (0-01; p=0-061) in the CRA cohort
(appendix pp 9-16, 32-33). For the detection of a KRAS
mutation, mean AUROC was 0-65 (SD 0-02) for the
single-target transformer and 0-65 (0-03) for the multi-
target transformer (p=0-56; figure 3A; appendix p 8).
Mean AUROCs for KRAS comparing the primary model
with the secondary model ranged from 0-56 (0-02) versus
0-55 (0-02; p=0-16) in the TCGA cohort to 0-69 (0-06)
versus 0-72 (0-03; p=0-39) in the CPTAC cohort
(appendix pp 9-16, 32-33). No cases of MSI with KRAS

mutation were observed in the CPTAC cohort, whereas up
to 19 instances were reported in the TCGA cohort. The
detection of hypermutation, TP53 mutation, and APC
mutation showed no significant differences between models
(figure 3A; appendix p 8). Additional prediction targets with
AUROCs of at least 0-75, including BMPR2 and ZNRF3
(figure 3A), are detailed in the appendix (pp 8-16, 32-33).
Hierarchical clustering identified two primary genetic
clusters. Cluster 1 included genes associated with MSS,
such as TP53, KRAS, and APC; cluster 2 comprised genes
associated with MSI (eg, BRAF, BMPR2, ZNRF3, and
RNF43), with strong co-occurrence with MSI and hyper-
mutation (figure 2). Association rule mining reinforced
robust MSI correlations in cluster 2 (eg, BMPR2 and
RNFA43), contrasting with the observation of inverse rela-
tionships in cluster 1 genes linked to MSS (eg, TP53 and
KRAS; appendix pp 17-19, 34-35). Cluster 2 showed higher
AUROCs for mutation prediction than did cluster 1
(figure 3B, C; appendix pp 20, 31). Additional metrics
and prediction score distributions (figures 1D, 3B, 4;
appendix pp 20-25, 34-35) quantified model certainty,
with prediction scores ranging from 0-00 (wild type, low) to
1-00 (mutated, high). Comprehensive summaries supported
both internal and external validation (appendix pp 36-39).
For cluster 1 genes (TP53, APC, and KRAS), AUROC: for
external validation ranged from 0-65 to 0-72, with MSI
scores effectively distinguishing between cases of MSS and
MSI (figures 2, 4A; appendix p 8). High MSI scores gen-
erally aligned with wild-type target predictions and low
scores (MSS) with mutated predictions. Consequently, in
MSI and mutated subgroups, as well as in MSS and wild-
type subgroups, target predictions deviated from the
ground truth. Cluster 2 genes (BMPR2, ZNRF3, RNF43,
and BRAF) showed high AUROCs (0-75-0-88) for external
validation (figures 2, 4B; appendix p 8). Alteration scores
correlated with MSI scores across subgroups, yielding
accurate trends in MSS and wild-type subgroups, as well as
MSI and mutated subgroups, but deviating from the
mutational ground truth in MSS and mutated subgroups
and MSI and wild-type subgroups. These findings, partially
reflected in AUROCs (figure 3B; appendix pp 34-35),
indicate reduced mutated-wild-type differentiation in MSS
and MSI subgroups relative to the combined group. In
patients with MSS, mutations in BMPR2 (three cases) and
ZNRF3 (nine cases) were rare; RNF43 (20 cases), BRAF
(39 cases), and TP53 (298 cases) showed modest mutated—
wild-type score separation (figure 4A, B), with slightly
higher scores for mutated cases than wild-type cases sug-
gesting partial differentiation. Although morphology
associated with MSI was a pronounced factor in predicting
phenotypes, aligning alteration-specific scores with
MSS (cluster 1) or MSI (cluster 2) profiles, AUROCs of

34-35). (C) Distribution of mean AUROCs (SD) for selected prediction targets and their co-occurrence with MSI; corresponding values and further metrics are shown in
the appendix (p 20). An extended version of this panel with AUROCs specific to MSS and MSI subgroups is provided in the appendix (pp 34-35). AUPRC=area under the
precision recall curve. AUROC=area under the receiver operating characteristic curve. CRA=Cancer Risk Assessment study. GECCO=Genetics and Epidemiology of
Colorectal Cancer Consortium. MSl=microsatellite instability. MSS=microsatellite stability. WHI=Women's Health Initiative.
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Figure 4: Evaluation of prediction scores based on the multi-target transformer in the external validation of the GECCO test set, subgrouped by the co-occurrence of prediction targets with MSI
Violin plots representing individual patient scores from the test set cohorts for MSI and representative genetic alterations in four subgroups based on microsatellite status and mutational status. The left y
axis represents the MSI score scale (left violin halves) and the right y axis corresponds to the prediction target scores (right violin halves). The legend shows grey horizontal lines in the concept violins that
represent the optimal position of the prediction scores based on ground truth. (A) Genetic alterations predominantly co-occurring with MSS: TP53, APC, and KRAS (genetic cluster 1). (B) Genetic alterations
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0-60-0-70 and intermediate prediction scores in patients
with MSS indicated minimal discrimination while sug-
gesting that the model captured subtle phenotypic
patterns (figure 3B; appendix pp 26-27, 34-35). Excluding
MSI as a target led to mostly modest, mutation-specific
performance shifts. The CRA cohort served as a represen-
tative example, in which KRAS showed increased sensi-
tivity at the expense of specificity, whereas BRAF remained
stable (appendix pp 9, 13).

To investigate underlying morphological patterns of
predicted genetic alterations, we manually reviewed whole-
slide image heatmaps and the top 20 high-attention tiles per
target across 25 cases from the CRA and WHI cohorts
(figures 5, 6; appendix pp 28-29, 40-62). Targets included
key alterations stratified by cluster: TP53, APC, KRAS in
cluster 1; and RNF43, BRAF, and hypermutation in cluster 2.
Model attention was predominantly directed toward tumour
regions, with minimal attribution to pen marks or non-
tumour areas (figure 5A-D; appendix pp 40-43), despite
the absence of explicit tumour labels during training.
Although pen marks were present on most slides, they were
rarely highlighted (figure 5C; appendix pp 46—47) and
appeared faintly in top tiles (appendix pp 52, 61).

Frequent features associated with MSI, including
medullary growth, high number of tumour-infiltrating
lymphocytes, and mucinous differentiation, were observed
in most MSI and cluster 2 gene mutations. However,
some cases of MSI showed atypical morphologies
(appendix pp 44—47). In cluster 1, predictions of KRAS
mutations assigned high attention to luminal tumour
regions, particularly villous adenomas with high-grade
dysplasia and invasive adenocarcinoma (appendix pp 55-56),
reflecting the model’s capability to capture heterogeneity
within tumours. Tiles with high MSI relevance showed
medullary carcinoma features, including tumour cell
sheets and a high number of tumour-infiltrating lym-
phocytes, and yielded low KRAS prediction scores
(figure 6A, B). Alterations in TP53 and APC, less frequent
in MSI than in MSS, were associated with MSS-like
morphology, including gland-forming adenocarcinoma
and dirty necrosis (appendix pp 57-59). Alterations linked
to MSI, such as BRAF, RNF43, and hypermutation, were
associated with medullary patterns, mucinous differ-
entiation with signet-ring cells (appendix p 62), and a high
number of tumour-infiltrating lymphocytes (figure 6C-D;
appendix pp 28-29, 51-54, 60), all features characteristic
of MSI. The pathological review highlighted tumour
budding as a potential morphological correlate of BRAF
mutations, particularly in MSS cases (appendix p 62).

Discussion

Many studies have used deep learning to predict
biomarkers from pathology slides, leading to clinically
approved or evaluated tools. However, these studies typic-
ally focus on a single target, such as MSI in colorectal
cancer, homologous recombination deficiency in breast
cancer,” or EGFRinlung cancer.?? In this study, we address
this limitation by predicting various biomarkers and
analysing their interactions and shared histological
patterns in colorectal cancer. By use of five GECCO cohorts
with harmonised sequencing and external validation in the
TCGA and CPTAC cohorts, the multi-target model
achieved performance within the literature range, out-
performing single-target models for some alterations while
enabling efficient and scalable prediction of multiple gen-
etic targets. The cohorts, primarily drawn from the USA
and Europe, were broadly representative of North American
and European patient populations with colorectal cancer.”
The IWHS and WHI cohorts were predominantly White
and increased the representation of female patients;
the TCGA cohort included the most Black or African
American patients; and CPTAC, limited to fresh—frozen
samples, was the smallest cohort. MSI frequency
ranged from 7% to 35%, consistent with reported rates
(15-20%),* and mutation frequencies for key genes
(ie, TP53, APC, KRAS, and BRAF)**™ aligned with
previous studies."”

Consistent with previous studies,**#*?*° MSI was the most
reliably predicted alteration; however, some cases scored
low due to the absence of typical morphological features,”
which was confirmed pathologically. Additionally, some
cases of MSI showed atypical morphologies not commonly
linked to MSI.** Predictions of KRAS mutations assigning
high attention to luminal tumour regions, particularly
villous adenomas with high-grade dysplasia and invasive
adenocarcinoma, are consistent with known associations of
KRAS mutations with villous adenomas?” and tumours
adjacent to polyps.?® For MSI detection, the mean range of
AUROCs for the primary model was consistent with the
range of 0-77-0-96 reported in the literature.*#** Mean
AUROC:s for BRAF in the primary model also aligned with
those reported in the literature (0-66 to 0-88).>'°* Mean
AUROCs for RNF43 comparing the primary model with
the secondary model (0-80 vs 0-79 in the TCGA cohort to
0-87 vs0-85 in the CRA cohort) exceed the literature range of
0-63 to 0-72.”7'° Mean AUROCs for KRAS comparing the
primary model with the secondary model (0-56 vs 0-55 in
the TCGA cohort to 0-69 vs 0-72 in the CPTAC cohort) fall
below and within the literature range of 0-60 to 0-80.>7#102°

predominantly co-occurring with MSI: BMPR2, ZNRF3, hypermutated, RNF43, and BRAF (genetic cluster 2). The data encompass both the CRA and WHI external cohorts.
Each dot represents the mean value of individual patient prediction scores calculated from seven folds, with the horizontal line on each side of the violin indicating the
median of all individual mean patient scores. A horizontal line at 0-50 denotes the line of model uncertainty. The sample count for each subgroup is indicated below the
violins. Statistical significance is denoted as follows: *p<0-05, **p<0-01, and ***p<0-001. After testing for normal distribution (appendix p 30), the Mann-Whitney test
was used for comparisons within groups and the Wilcoxon test was used for comparisons between groups. GECCO=Genetics and Epidemiology of Colorectal Cancer

Consortium. MSl=microsatellite instability. MSS=microsatellite stability.
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Results for the detection of hypermutation fell within the
literature range of 0-81-0-87,>¢° as did those for TP53
mutation: 0-60-0-75.>¢71° For the prediction of APC muta-
tional status, the results ranged above and below the single
available literature AUROC of 0-67.7*°

For several mutations, our multi-target model out-
performed single-target baselines and published models.
Prediction of hypermutation showed strong association
with MSI due to their frequent co-occurrence and shared
morphological features, which lowered scores in cases of
hypermutated MSS. Excluding MSI as a target led to mostly
modest, mutation-specific performance changes, consistent
with largely independent class token behaviour and limited
cross-token interaction in the decoder (appendix p 63). Given
the presence of morphology associated with MSI in
whole-slide images, features shared with other alterations,
such as BRAF, might have influenced predictions. BRAF
mutations showed detectable phenotypic changes,
including mucinous differentiation and poorly differ-
entiated clusters.? Histopathology confirmed mucinous
patterns predominated in mutated BRAF tiles and stroma-
rich patterns predominated in wild-type BRAF tiles.
Mucinous or signet-ring features contributed to BRAF
prediction but overlapped with morphology associated
with MSI, causing misclassifications in MSS.** Some
mutated BRAF tiles showed poorly differentiated clusters
and tumour budding, linked to BRAF mutations and
MSS.* MSI in colorectal cancer shows distinct histo-
pathological features, such as medullary growth, mucinous
differentiation, and prominent tumour-infiltrating lym-
phocytes, which support its high predictive performance in
models based on deep learning. These features frequently
co-occur with mutations in BRAF and RNF43, suggesting
that predictions are influenced by shared morphology.
Morphology associated with MSI reflects a composite
phenotype closely linked to MSI and co-occurring muta-
tions (eg, BRAF). This dominant morphology, linked to
diverse yet intertwined alterations, drives predictions but
could mask subtler, mutation-specific patterns. This

morphology functions as an integrated phenotype rather
than a confounder and influences targets differentially.

This study has several limitations. Despite the dataset’s
considerable scope, the detection of rare mutations and
their associated subtle morphologies showed variable per-
formance, likely due to the small sample sizes of these
alterations. Under-representation of non-White individuals
and missing annotations further limit generalisability and
accuracy, highlighting the need for even larger, more
diverse cohorts. Although infrequent and faint, residual
pen markings occasionally attracted model attention,
potentially introducing minor bias or capturing features
near tumour margins, warranting further investigation.
These findings emphasise the need for more advanced
explainability methods to validate patterns derived from
deep learning and link them to specific molecular targets,
enabling reciprocal insights between conventional and
computational pathology. Such methods might clarify how
morphology associated with MSI obscures subtler
mutation-specific features, a dominance that could be
mitigated by multimodal integration or unlearning strat-
egies to reveal less overt morphologies. Our model,
extending single-target transformers, might exhibit bias
toward targets associated with MSI due to a greater number
of co-occurring mutations with MSI than with MSS, war-
ranting further investigation of model mechanisms. Given
that AUROC:s alone can misrepresent the predictability of
biomarkers, evaluation should include additional metrics,
individual scores, a co-occurrence analysis, and a patho-
logical review. Additionally, future studies should use
diverse datasets, evaluate multiple targets across multiple
metrics, and address overlapping morphologies through
approaches such as our multi-target model.

Our framework offers practical value by identifying
predictable targets and their morphological basis; follow-up
studies could spatially correlate predictions based on deep
learning with existing molecular assays, such as surrogate
immunohistochemistry for BRAF alterations,* supporting
explainability and elucidating underlying Dbiological

Figure 5: Heatmaps of representative samples for the prediction of MSI, KRAS, BRAF, and hypermutated status from the external GECCO validation dataset
The heatmaps are derived from the model with median AUROC for the detection of MSI and most prediction targets evaluated by seven-fold cross-validation. The
cohort, sample ID, ground truth, and prediction scores for MS, along with the individual mutational status of the target and magnified views of specific areas are
provided for in-depth analysis. The heatmaps indicate relevant areas for the various predictions. The red areas indicate a high score or mutant type, whereas the blue areas
indicate a low score or wild type. The colour intensity demonstrates the model’s attention to that distinct area. Pen markings denote regions annotated by various
pathologists, highlighting tumour or other areas of interest. The meaning and consistency of these annotations vary, given that no uniform annotation protocol was
applied. (A) The tumour shows both gland-forming and more solid components, as well as extremely high numbers of tumour-infiltrating lymphocytes with dense
lymphoid aggregates. The pathological examination confirms the plausibility of a high MSI score indicating MSI, which is also the ground truth. A low KRAS score
indicates wild-type KRAS but the ground truth is mutated KRAS. The heatmap highlights similar tumour areas but with diverging scores: where the MSI map is red
indicating a high score, the KRAS map is blue indicating a low score. (B) The presence of mucinous differentiation in MSI. Wild-type BRAF results in high MSI and BRAF
scores. The MSI score is pathologically plausible, whereas the BRAF score indicates a contrary prediction tendency compared with the ground truth. For both predictions,
the model focuses on similar tumour areas with similar scores, indicating MSI or mutated BRAF. (C) Partly mucinous morphology indicates the possibility of MSI, with a
high score predicting MSI. Hypermutation is also predicted with a high score, even though hypermutation is not present for this sample. Both heatmaps primarily label
the tumour and the same region with similar relevance. (D) Villous adenoma with high-grade dysplasia is a common precursor lesion associated with a high frequency of
KRAS mutations.?”?® The heatmaps highlight similar large-scale tumour areas but with converging scores; where the MSI map is red indicating a high score, the KRAS map
is blue indicating a low score. (E) The tumour area seems to show mainly MSS and the heatmap predicts a correspondingly low score. Although the tumour seems
hypermutated in the ground truth, its prediction score indicates non-hypermutated. This tumour is a rare MSS case with hypermutation. Both heatmaps predominantly
mark the tumour area and the same region with similar relevance. AUROC=area under the receiver operating characteristic curve. CRA=Cancer Risk Assessment study.
GECCO=Genetics and Epidemiology of Colorectal Cancer Consortium. H&E=haematoxylin and eosin. MSl=microsatellite instability. MSS=microsatellite stability.
WHI=Women's Health Initiative.
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Figure 6: Top tiles for the prediction of genetic alterations and MSI for two selected slides from the GECCO test set

(A-B) WHI (1031792): medullary carcinoma with sheets of tumour cells, low stroma content, and high number of tumour-infiltrating lymphocytes in a wild-type KRAS
and MSI case, leading to low mutated KRAS prediction scores (A) and high MSI prediction scores (B). Colorectal cancers with MSI show reduced frequency of KRAS
mutations. Medullary carcinoma is a key morphological feature of colorectal cancers with MSI. (C-D) WHI (1031557): top tiles for the prediction of mutated BRAF and MSI.
Both predictions have high prediction scores and show a mixed morphology with partly medullary, mucinous, and gland-forming histology, as well as a high number of
tumour-infiltrating or associated lymphocytes. Medullary growth pattern with lymphocytic infiltration and mucinous differentiation are typical features of an MSI-like
morphology. Accordingly, the case was correctly predicted as MSI with a high prediction score (D). Given that mutated BRAF and MSI often co-occur and share
morphological overlap, the case was misclassified with regard to BRAF status, resulting in high prediction scores for mutated BRAF (C), even though the ground truth was
wild-type BRAF. GECCO=Genetics and Epidemiology of Colorectal Cancer Consortium. MSI=microsatellite instability. MSS=microsatellite stability. WHI=Women's Health
Initiative.
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mechanisms. Clinically, this scalable approach streamlines
diagnostics by enabling low-cost pre-screening, particularly
for patients with early-stage colorectal cancer and in
resource-limited settings. Biologically, this approach illus-
trates how genomic alterations shape morphology and
reinforces the role of surrogate markers, such as MSI, in
genotype—phenotype interplay. Given that co-occurrence
analysis remains underexplored in studies based on deep
learning, particularly beyond colorectal cancer,”? this
approach enables efficient, simultaneous prediction of
multiple targets across cancers, supporting broader
precision-oncology research.

In conclusion, multitarget transformers enable efficient,
simultaneous prediction of biomarkers and investigation of
biomarker-specific patterns from histopathology slides
stained with haematoxylin and eosin, with morphology
associated with MSI emerging as the dominant predictive
feature in colorectal cancer. The model’s reliance on shared
and distinct histological patterns across alterations high-
lights the limitations of AUROCs and underscores the need
for a subgroup-based analysis incorporating both mor-
phological context and the co-occurrence of alterations.
Importantly, future studies based on deep learning should
account for shared phenotypes, and past results should be
interpreted accordingly. This approach advances the inte-
gration of computational pathology, establishing a foundation
for broader application across cancer types.
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